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ABSTRACT 

The mitochondria theory of aging proposes that accumulation of mitochondrial DNA 

(mtDNA) with pathogenic mutations, and the resultant respiration defects, are responsible 

not only for mitochondrial diseases but also for aging and age-associated disorders, 

including tumor development. This theory is partly supported by results obtained from our 

transmitochondrial mice (mito-mice), which harbor mtDNA with mutations that are 

orthologous to those found in patients with mitochondrial diseases: mito-mice express 

disease phenotypes only when they express respiration defects caused by accumulation of 

mutated mtDNA. With regard to tumor development, specific mtDNA mutations that 

induce reactive oxygen species (ROS) enhance malignant transformation of lung carcinoma 

cells to cells with high metastatic potential. However, age-associated respiration defects in 

elderly human fibroblasts are due not to mtDNA mutations but to epigenetic regulation of 

nuclear-coded genes, as indicated by the fact that normal respiratory function is restored by 

reprogramming of elderly fibroblasts.  

 

Introduction 

Because mitochondria are highly oxygenic organelles that produce ROS and because many 

chemical carcinogens have been shown to accumulate in mitochondria, mtDNA in 

mitochondria experiences stress of both endogenous ROS and exogenous chemical 

carcinogens. Therefore, the mitochondria theory of aging holds that mtDNA accumulates 

mutations much faster than does nuclear DNA, and the resultant respiration defects are 

responsible for the expression of mitochondrial diseases, aging, and age-associated 
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disorders [1–6]. For example, the three most prevalent mitochondrial diseases (chronic 

progressive external ophthalmoplegia [CPEO]); myoclonic epilepsy with ragged-red fibers 

[MERRF]; and mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like 

episodes [MELAS]) are believed to be caused by mtDNA harboring a large-scale deletion 

(ΔmtDNA), a single point mutation in the tRNALys gene, and a single point mutation in the 

tRNALeu(UUR) gene, respectively [1–3]. Moreover, in addition to their associations with 

mitochondrial diseases, these mtDNA mutations are hypothesized to be associated with 

human aging and age-associated disorders, including oncogenic transformation of normal 

cells to develop tumors. However, no convincing evidence for this hypothesis has yet been 

discovered. 

 

Mito-mice as models for mitochondrial diseases and for gene therapy 

Mitochondrial diseases that show maternal inheritance are considered to be due to mtDNA 

with pathogenic mutations that induce respiration defects upon their accumulation [1–3]. 

However, we cannot exclude the possible involvement of nuclear abnormalities in the 

pathogenesis of these diseases. To confirm that mtDNA mutations are responsible for these 

diseases, we have to generate transmitochondrial mice (mito-mice) harbouring mtDNA 

with large-scale deletions (ΔmtDNA) or point mutations that are orthologous to those found 

in patients with mitochondrial diseases. These mice are effective for precise investigation 

of disease pathogenesis and for development of effective gene therapies for these diseases.  
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In previous studies [7, 8], we generated mito-miceΔ, which harbor ΔmtDNA and therefore 

are disease models for CPEO, by transferring ΔmtDNA from a mouse cell line into the 

germline of female B6 mice. In addition, we recently generated new mito-mice that harbor 

mtDNA with a pathogenic G7731A mutation in the tRNALys gene (mito-mice-tRNALys7731), 

which may be useful as models for MERRF [9]. These mito-mice share the B6 nuclear 

background and express disease phenotypes only when respiration defects are induced by 

accumulation of mtDNA with pathogenic mutations [7–9], suggesting that the mtDNA 

mutations are responsible for respiration defects and the resultant expression of 

abnormalities (Fig. 1). 

Mito-miceΔ have also been used for development of gene therapy in embryos [10] and in 

adult mice [11]. Because inheritance of mammalian mtDNA is strictly maternal (from 

mother to children) [12], maternal transmission of mitochondrial diseases to progeny has 

been effectively prevented by the use of nuclear transplantation into enucleated zygotes of 

normal mice [10]. In adult mice, bone marrow transplantation from normal mice to mito-

miceΔ has been shown to be effective for partial prevention of the expression of disease 

phenotypes [11]. 

Subsequently, human embryos are used to perform nuclear transplantation from oocytes of 

one woman into enucleated oocytes from an unrelated woman for future prevention to 

transmit mitochondrial diseases [13-15]. However, there are few cases for which this 

technology is applicable. Because most children born from mothers affected by 

mitochondrial diseases, such as MERRF or MELAS, do not express disease phenotypes [16, 

17], most of the oocytes of affected mothers do not have sufficient amounts of the mutated 
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mtDNA to induce diseases, probably because oocytes with large amounts of mutated 

mtDNA are not viable. 

We recently reported an alternative therapeutic strategy that does not use oocytes from 

unrelated women and instead uses oocytes from affected mothers [9]. MERRF model mice 

(mito-mice-tRNALys7731) show stochastic segregation of the heteroplasmic mtDNA 

(mtDNA with and without the mutation), and the resultant marked variation in the 

proportions of G7731A mtDNA among pups due to bottleneck effects [18–20]. Considering 

that abnormalities are not observed in mito-mice-tRNALys7731 with low proportions of 

G7731A mtDNA [9], simple selection of oocytes with extremely low proportions of the 

mutated mtDNA from affected mothers likely would be sufficient to yield unaffected 

children (Fig. 2). 

 

Regulation of metastasis by mutations in mtDNA 

Respiration defects and the resultant upregulation of glycolysis under normoxia enable cell 

growth under hypoxia and thus are thought to be involved in tumor development [21−24]. 

Because pathogenic mtDNA mutations also induce upregulation of glycolysis under 

normoxia by inducing mitochondrial respiration defects, pathogenic mtDNA mutations or 

somatic mutations in mtDNA have been proposed to induce tumor development [1−3].  

If this proposal is correct, patients with mitochondrial diseases can be expected to 

preferentially develop tumors, because patients express upregulation of glycolysis under 

normoxia due to the pathogenic mutations in mtDNA. However, no statistical evidence for 
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association between mitochondrial diseases and tumor development in patients has been 

reported.  Moreover, if we assume that some mtDNA mutations, irrespective of whether 

they are pathogenic or polymorphic, induce tumor development, all family members 

sharing a mother carrying such mutations should develop tumors as a result of the maternal 

inheritance of mtDNA, but no bias toward maternal inheritance of tumor development has 

been reported. Nonetheless, it is still possible that mtDNA mutations are involved in 

processes other than tumor development (oncogenic transformation of normal cells into 

tumor cells); for example, mtDNA mutations may be involved in malignant transformation 

of tumor cells into highly metastatic tumor cells. 

Our previous studies [25–27] have provided convincing evidence that mtDNA with a 

pathogenic G13997A mutation in the ND6 gene (G13997A mtDNA) controls the malignant 

transformation of B6-derived lung carcinoma cells from poorly metastatic into highly 

metastatic (Fig. 1), whereas this mutation does not control tumor development 

(transformation of normal cells into tumor cells). Moreover, because the induction of high 

metastasis is due not to the respiration defects but rather to overproduction of ROS, 

expression of high metastatic potential can be reversibly controlled by treatment with 

antioxidants [25–27], indicating that antioxidant administration effectively prevents 

development of high metastatic potential in tumor cells. 

The effects of G13997A mtDNA on aging and tumor development in living mice can be 

examined by generating mito-mice-ND613997, which carry the nuclear genome from B6 

mice and G13997A mtDNA from B6-derived lung carcinoma cells [28]. Mito-mice-

ND613997 do not express premature aging phenotypes and have a normal lifespan but show 
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lactic acidosis, hyperglycemia, and lymphoma development, indicating the possible 

involvement of mtDNA mutations in lymphoma development in B6 mice (Fig. 1). However, 

considering that the B6 nuclear background is prone to lymphoma development, G13997A 

mtDNA might not develop lymphoma independently. By generating mito-mice with 

G13997A mtDNA and a nuclear background from the A/J strain mice, which are not prone 

to lymphoma development, we show that these mito-mice do not develop lymphoma [29]. 

These results indicate that G13997A mtDNA simply enhances the frequency of lymphoma 

development, which is due primarily to abnormalities in the B6 nuclear genome. 

 

Epigenetic regulation of human age-associated respiration defects  

The mitochondrial theory of aging also holds that ROS overproduction and the resultant 

accumulation of somatic mutations in mtDNA are responsible for aging and age-associated 

respiration defects [1–6]. This contention is supported partially by subsequent studies [30, 

31], which have generated mtDNA mutator mice expressing a proofreading-deficient 

mtDNA polymerase: mtDNA mutator mice show accelerated accumulation of somatic 

mutations in mtDNA due to the proofreading deficiency and the resultant expression of 

respiration defects and early-onset aging phenotypes. However, it appears controversial that 

mtDNA mutator mice do not show ROS overproduction [31], and mito-mice-ND613997 

overproducing ROS do not show early-onset aging phenotypes [28]. Moreover, one 

important question that has to be addressed is whether elderly human subjects really 
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accumulate such amounts of somatic mtDNA mutations as the mtDNA mutator mice do in 

their tissues. 

Our previous studies have suggested the involvement of nuclear mutations in the age-

associated respiration defects found in elderly human fibroblasts, as indicated by 

experiments involving mtDNA transfer from elderly fibroblasts into mtDNA-less HeLa 

cells [32] and by experiments involving nuclear DNA transfer from mtDNA-less HeLa 

cells into elderly fibroblasts [33]. Because transfer of the nuclear genome from mtDNA-

less HeLa cells (that is, the nuclear genome uncontaminated by mtDNA) into elderly 

fibroblasts restores the respiration defects, these defects must be caused not by mtDNA 

mutations but by nuclear-recessive mutations [33]. However, our findings can also be 

explained by assuming the involvement of epigenetic regulation of nuclear genes in the 

absence of nuclear-recessive mutations.  

The issue of whether age-associated respiration defects observed in elderly human subjects 

are due to mutations or to epigenetic changes is resolved by reprogramming of human 

fibroblasts [34]. First, we show that age-associated mitochondrial respiration defects are 

expressed in the absence of either ROS overproduction in the mitochondria or the 

accumulation of somatic mutations in mtDNA indicating that these aging phenotypes 

expressed in human fibroblasts are not caused by mtDNA mutations [34]. Moreover, when 

elderly fibroblasts are reprogrammed by the creation of induced pluripotent stem cells 

(iPSCs), reduced respiratory function is restored, suggesting that epigenetic—not genetic—

regulation confers these human aging phenotypes [34]. It is therefore likely that these age-

associated respiration defects are controlled neither by ROS overproduction nor by 
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mutations but rather by reversible epigenetic regulation of nuclear genes (Figs. 1 and 3). A 

recent study [35] proposes that reprogramming also recovers other aging phenotypes of 

human fibroblasts, such as abnormal mitochondrial metabolism, shortened telomeres, and 

limited proliferation capacities. Therefore, most age-related phenotypes in human 

fibroblasts are under epigenetic regulation. 

The question then arises as to which nuclear genes cause age-associated mitochondrial 

respiration defects by means of epigenetic regulation? A microarray analysis has revealed 

that epigenetic downregulation of nuclear-coded genes, including GCAT and SHMT2, 

which regulate glycine production in mitochondria, results in respiration defects [34]. 

Given that the age-associated respiration defects in elderly fibroblasts are likely due in part 

to reduced translation activity in the mitochondria [32, 33], defects in glycine metabolism 

in the mitochondria as a result of a reduction in SHMT2 and GCAT expression would be 

partly responsible for the reduction in mitochondrial translation, resulting in the expression 

of age-associated respiration defects. For generalization of the concept that age-related 

phenotypes in human fibroblasts are under epigenetic regulation, further works are 

necessary to show whether epigenetic regulation of aging phenotypes are common to other 

human tissues.  

Our major arguments are summarized in Fig. 1. 
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Fig. 1. Mutations in mtDNA regulate mitochondrial diseases and tumor phenotypes but do not 
regulate age-associated respiration defects 

 

 
 
 
Fig. 2. Two strategies, nuclear transplantation and oocyte selection, for primary prevention of 
maternal inheritance of mitochondrial diseases 

 



Fig. 3. Reversible regulation of age-associated respiration defects observed in fibroblasts from 
elderly human subjects 
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