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• We present a new gravitational octree code on GPU that adopts a block time step. 
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• The averaged performance of the code is 10–30% of the theoretical peak performance. 
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a b s t r a c t 

The tree method is a widely implemented algorithm for collisionless N -body simulations in astrophysics 

well suited for GPU(s). Adopting hierarchical time stepping can accelerate N -body simulations; however, 

it is infrequently implemented and its potential remains untested in GPU implementations. We have de- 

veloped a Gravitational Oct-Tree code accelerated by HIerarchical time step Controlling named GOTHIC , 
which adopts both the tree method and the hierarchical time step. The code adopts some adaptive op- 

timizations by monitoring the execution time of each function on-the-fly and minimizes the time-to- 

solution by balancing the measured time of multiple functions. Results of performance measurements 

with realistic particle distribution performed on NVIDIA Tesla M2090, K20X, and GeForce GTX TITAN X, 

which are representative GPUs of the Fermi, Kepler, and Maxwell generation of GPUs, show that the hi- 

erarchical time step achieves a speedup by a factor of around 3–5 times compared to the shared time 

step. The measured elapsed time per step of GOTHIC is 0.30 s or 0.44 s on GTX TITAN X when the parti- 

cle distribution represents the Andromeda galaxy or the NFW sphere, respectively, with 2 24 = 16,777,216 

particles. The averaged performance of the code corresponds to 10–30% of the theoretical single precision 

peak performance of the GPU. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

Collisionless N -body simulations are frequently employed to in-

estigate large scale structure formation and the formation and

volution of gravitational many-body systems such as galaxies. The

cceleration of N -body particles is given by Newton’s equation of

otion, 

 i = 

N−1 ∑ 

j =0 , j � = i 

Gm j 

(
r j − r i 

)
(∣∣r j − r i 

∣∣2 + ε2 

)3 / 2 
, (1) 

here m i , r i , and a i are the mass, position, and acceleration of the

 th particle of N particles, respectively. The remaining symbols are
∗ Corresponding author. Fax: +81298536406. 

E-mail address: ymiki@ccs.tsukuba.ac.jp (Y. Miki). 

B  

m  

s

ttp://dx.doi.org/10.1016/j.newast.2016.10.007 

384-1076/© 2016 The Authors. Published by Elsevier B.V. This is an open access article u
he gravitational constant G and the Plummer softening parameter

. The latter is commonly adopted in collisionless N -body simula-

ions to eliminate divergence due to division by zero. Hereafter, we

all the particles which feel and cause gravitational force as i- and

-particles , respectively, and denote their total numbers N i or N j . 

Employing a large number of N -body particles is essential for

erforming N -body simulations that resolve astrophysical phenom-

na. Since the computational cost of order O ( N i N j ) is too high to

nvestigate realistic phenomena in detail, many earlier studies have

ttempted to accelerate N -body simulations. Widely used algo-

ithms for reducing the amount of computations are the particle-

esh method and the tree method ( Hockney and Eastwood, 1988;

arnes and Hut, 1986 ). The computational complexity of the tree

ethod is O ( N i log N j ) because the multipole expansion technique

ignificantly reduces the contribution from j- particles. 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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a  
Many N -body simulations adopt a shared time step, and that

means all N -body particles share the time step that is required to

track the orbital evolution of the particle that evolves its physical

quantities in the shortest time span. The timescale of the evolu-

tion is not uniform in most astrophysical phenomena; for example,

the free-fall time, which is a measure for the timescale of evolu-

tion due to self-gravity, scales as the inverse square root of the

mass density, and the mass densities have order-of-magnitude dif-

ferences in typical systems. Therefore, adopting a shared time step

causes unnecessary, additional computations to track the evolution

of the system. To overcome the situation, a scheme in which every

N -body particle has their own individual time step was introduced

by Aarseth (1963) . Because individual time steps for all particles is

not suitable for parallelization, McMillan (1986) proposed the use

of block time steps (or sometimes called hierarchical time steps) in

which a group of particles has the same time step. Adopting block

time steps can reduce the number of computations by reducing N i .

Exploiting accelerator devices is another approach to reducing

the time-to-solution. In the field of numerical astrophysics, a fa-

mous accelerator for N -body simulations is the GRAPE (“GRAvity

PipE”) series ( Sugimoto et al., 1990; Ito et al., 1990, 1991, 1993;

Fukushige et al., 1991, 2005; Okumura et al., 1993; Makino et al.,

1997, 2003; Kawai et al., 20 0 0; Umemura et al., 2012 ). Its high

performance is a result of the pipelined and massively parallel ar-

chitecture design, which enables massive parallelization of grav-

itational force calculations. Another widely used accelerator de-

vice is the Graphics Processing Unit (GPU), which was originally

developed as a processor dedicated to image processing, and is

equipped with a large number of computing units (typically a few

hundred to a few thousand), suitable for parallel computing. The

memory architecture of GPU mainly consists of shared memory

and global memory: the former is fast and small on-chip mem-

ory ( ∼ 1 MB per GPU), and the latter is slow and large off-chip

memory ( ∼ 1–10 GB per GPU, but about 100 times slower than

the shared memory). Rapid performance improvement of GPUs and

the development of General Purpose computing on GPU (GPGPU)

have elevated GPUs to be the most attractive accelerators. More-

over, recent demands for power efficient devices strongly support

the rapid development of accelerator devices such as GRAPE, GPU,

and Intel Xeon Phi. 

To promote GPU computing, NVIDIA provides the C/C++ like

programming environment named Compute Unified Device Archi-

tecture (CUDA: NVIDIA, 2007, 2015 ). CUDA helps programmers

implement GPU codes and optimize them by abstracting actual

management of GPU cores and hiding differences among GPUs of

various generations. For example, an essential building block of

the Fermi generation GPUs is the streaming multiprocessor (SM),

which is a group of 32 CUDA cores. In the Kepler generation of

GPUs and Maxwell generation of GPUs SM are called SMX and

SMM, respectively, and have 192 or 128 CUDA cores. For simplic-

ity, we will refer to this fundamental group of CUDA cores as SM,

irrespective of the GPU’s generation. The fundamental parallelism

in CUDA is thread parallelism, and a bunch of threads is called a

block (typically 128–512 threads). Also, a group of blocks is called a

grid; the hierarchical structure composed of the thread, block and

grid is a key concept in CUDA. CUDA assigns multiple blocks to an

SM for hiding latency to access memory and switch threads effec-

tively. Since, in most applications, the number of threads per SM is

sufficiently large compared to the number of CUDA cores per SM,

all we have to do is to determine the number of threads per block.

Through such abstractions of programming and the achieved high

performance, GPU computing is now an important domain in high

performance computing (HPC) community. 

Many earlier studies showed that the tree method efficiently

works on GPU(s) ( Nakasato, 2012; Ogiya et al., 2013; Bédorf et al.,

2012, 2014; Watanabe and Nakasato, 2014 ). However, none of the
tudies have coupled their tree method with the block time step

n GPU. One difficulty when coupling the block time step with

he tree code running on GPU is maintaining performance in the

ow N i -regime. As mentioned above, the reduction of the time-

o-solution by the block time step is due to the decrease of N i .

owever, the performance of massively parallel architectures al-

ays drops in the low-number limit because only some of the

ores perform any computations while others do not, leading to

 waste of computing resources. In the typical implementation

f a direct N -body code running on GPU, the critical number of

articles required in order not to waste CUDA cores is 10 4 ( Miki

t al., 2012, 2013 ). A viable method to decrease the critical num-

er is to adopt ij -parallelization ( Nitadori et al., 2006; Nyland et al.,

007; Miki et al., 2012 ), by which multiple processors calculate

he force on a common particle. Miki et al. (2012) showed that

j -parallelization can sustain the high performance of their direct

 -body code down to N ∼ 10 3 on NVIDIA Tesla C2070. An option

o activate ij -parallelization may increase the performance of tree

ode on GPU that adopts the block time step. 

In GPU computing, a bunch of threads, 32 threads in the case

f CUDA called a warp, always execute the same operation con-

urrently. If two threads in a warp are forced to execute differ-

nt operations due to conditional branching, then the threads run

oth operations. Since there are 32 threads in a warp, this be-

avior, named “warp divergence”, may cause up to 32 times slow

own of calculations in the worst case. Therefore, avoiding the

arp divergence is one of the key strategies to accelerate calcu-

ations using GPU. In a case of the tree code runs on GPU, Ogiya

t al. (2013) proposed an algorithm that reduces the warp diver-

ence within the tree traversal and showed it improves the per-

ormance. On the other hand, concurrent operations by 32 threads

resent an opportunity to remove explicit synchronizations within

 warp because they are implicitly synchronized. Synchronization

s an inevitable operation for parallel computing to proceed prop-

rly; however, it often hinders achieving high performance. Hence,

emoving explicit synchronizations recovers high performance in

arallel computing and reduces the time-to-solution. In N -body

imulation with direct summation, Miki et al. (2012) demonstrated

he benefits of removing explicit synchronizations, especially in the

ow N runs, where the contribution from synchronization grows. 

There is further room for accelerating N -body simulations

hrough automatic performance tuning (auto-tuning). Several ex-

mples of auto-tuning accelerating software libraries have been de-

eloped in the HPC community (e.g., Whaley et al., 2001; Frigo and

ohnson, 2005 ). The primary purpose of auto-tuning is to provide

erformance portability on various architectures and to benefit

rom the rapid performance improvements of architectures with-

ut needing to significantly modify optimized codes. Another es-

ential objective of auto-tuning is to ensure the high performance

f the code irrespective of input. For example, the performance of

parse matrix-vector multiplications (SpMV) on GPU has a strong

ependence on the input sparse matrix ( Bell and Garland, 2008 ).

any studies showed the benefits of auto-tuning for SpMV ( Reguly

nd Giles, 2012; Ashari et al., 2014; Liu and Vinter, 2015; Maggioni

nd Berger-Wolf, 2016 ). In astrophysics, Ishiyama et al. (2009) ;

shiyama et al. (2012) achieved a good load balance for their mas-

ively parallel TreePM code by incorporating on-the-fly measure-

ents for the execution time of each function within the simula-

ion. Just like SpMV, the time-to-solution of the tree method are

ependent on the initial data because the particle distribution de-

ermines the total number of calculated interactions. Introducing

ome adaptive features to the tree code would contribute to accel-

rating N -body simulations by reducing slowdowns in the compu-

ation due to the non-uniform particle distribution. 

These considerations drove us to develop and test a tree code

dopting a block time step that runs on the GPU. The name of the
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Fig. 1. Definition of a pseudo j -particle. The filled circles and the star indicate loca- 

tions of real N -body particles and the corresponding pseudo j -particle, respectively. 

The dotted circle represents the size of the pseudo j -particle b J . 
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ode is GOTHIC (Gravitational Oct-Tree code accelerated by HIer-

rchical time step Controlling). The remainder of this paper is or-

anized as follows. Section 2 introduces the implementation and

ptimizations of GOTHIC using CUDA. Section 3 presents results

f performance measurements, and Section 4 contains discussions.

inally, Section 5 summarizes this work. 

. Implementation 

This section describes our strategy, implementation, and opti-

izations in detail. In GOTHIC , all instructions are performed on

PU, just like Bonsai ( Bédorf et al., 2012, 2014 ) to minimize com-

unication between CPU and GPU. Also, all floating-point opera-

ions are performed in single precision because this provides suf-

cient accuracy to follow the time evolution of collisionless sys-

ems. Section 2.1 explains how to construct tree structure on GPU,

nd Section 2.3 presents the algorithm to calculate the gravita-

ional force adopted in GOTHIC . Sections 2.4 and 2.5 introduce

dditional optimizations aiming to keep performance even in sit-

ations not suitable for GPU. Section 2.6 gives information on

urther optimization to reduce the time-to-solution of GOTHIC ,
ather the execution time of a specific function. Sections 2.2 and

.7 present other information required to implement a tree code,

nd Section 2.8 shows additional tips and issues related to the Ke-

ler generation GPUs. 

.1. Generating tree structure 

The space-filling curve based construction of the tree struc-

ure, which represents the particle distribution as a logical struc-

ure, is performed by the GPU. In this study, we adopt the

eano–Hilbert space-filling curve ( Sagan, 2012 ) to exploit its one-

troke sketch nature, which the more familiar Morton curve does

ot have. First, the GPU generates the Peano–Hilbert key for

ll N -body particles in the global memory of the device (see

ppendix A for more details). Then, the N -body particles are

orted according to the Peano–Hilbert space-filling curve by us-

ng cub::DeviceRadixSort::SortPairs function provided 

n CUB 

1 v1.5.1. Using the Peano–Hilbert curve guarantees that the

articles near one another in memory space are also near one an-

ther in physical space. The relation between memory space and

hysical space is important when optimizing codes, as shown by

giya et al. (2013) for accelerating gravity calculations using the

ree structure. 

Next, the GPU links the Peano–Hilbert key with the tree struc-

ure. The Peano–Hilbert space-filling curve itself has a hierarchi-

al structure. Dividing a cube into eight sub-cubes (i.e., generating

n octree structure) corresponds to dividing the Peano–Hilbert key

nto eight equal parts (or finding seven partitions of the Peano–

ilbert key). Because increasing parallelism is essential to acceler-

ting calculations using many-core architectures such as GPU, we

onstruct the tree structure in a breadth-first manner. Checking

ultiple tree cells in parallel is possible. However, child cells of all

hecked cells must have serial numbers to identify them. Calculat-

ng prefix sums ( Blelloch, 1990 ) is necessary to tag all tree cells

onsistently. 

When calculating prefix sum within a warp in parallel, the im-

licit synchronization of 32 threads is an important feature to

xploit. Since the warp shuffle instruction is available in GPUs

tarting with the Kepler generation, our implementation of paral-

el prefix sum calculation within a warp utilizes the warp shuf-

e instruction on the Kepler and Maxwell generation GPUs or the

hared memory on the Fermi generation GPUs. Repeated execu-

ions of a parallel scan within a warp with the appropriate use of
1 http://nvlabs.github.io/cub/index.html . 

c  

T  

A  
syncthreads() and shared memory yield parallel prefix sums

ithin a block. To implement parallel prefix sums within a grid,

lobal synchronization of multiple blocks within a grid is neces-

ary. GOTHIC adopts the GPU lock-free synchronization proposed

y Xiao and Feng (2010) as a global synchronization mechanism.

n the algorithm, all blocks within a grid must run simultaneously

o as not to cause a deadlock. The _launch_bounds_ qualifier is

seful to control the number of concurrent blocks in the case that

he register usage limits the number of concurrent blocks per SM.

lso, cudaFuncAttributes::numRegs obtained by calling the

udaFuncGetAttributes function is helpful to judge whether

he deadlock will occur just before calling the device function. 

Since GOTHIC adopts the monopole approximation for grav-

ty calculation between an i -particle with a tree cell, introducing

maginary particles corresponding to tree cells can simplify the im-

lementation of the function to calculate the gravitational force.

fter the Peano–Hilbert keys are associated with the tree structure,

he GPU generates imaginary particles called pseudo j -particles and

onnect them with tree cells. The pseudo j -particle has informa-

ion on mass m J , position r J and the size b J ; hereafter, the capi-

alized subscript indicates the index of the pseudo particles. The

ass is the total mass of real N -body particles contained in the

orresponding tree cell and the position is the center-of-mass of

he particles. The size of the pseudo j -particle is defined as the ra-

ius of a sphere centered on r J which can contain all N -body par-

icles contained in the tree cell (see Fig. 1 ). All physical quantities

f the pseudo j -particles must be recalculated at every time step

o calculate gravitational force properly. 

.2. Multipole acceptance criterion 

If a pseudo j -particle is far, then the gravity from the particle is

alculated; if it is near, the tree cell is restricted to the lower level.

o judge whether a pseudo j -particle is near or far, the Multipole

cceptance Criterion (MAC) is employed. The most simple MAC is

http://nvlabs.github.io/cub/index.html
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Fig. 2. Sketch of the distance evaluation between i -particles and a pseudo j -particle. 

Filled stars show positions of a pseudo i -particle ( r I ) and a pseudo j -particle ( r J ). 

Filled circles enclosed by a dotted circle centered on the pseudo i -particle are real 

i -particles. The filled diamond shows the possible nearest position of i -particles to 

the pseudo j -particle, r ′ I . The distance between the pseudo i -particle and pseudo 

j -particle is measured as | r J − r ′ I | . 
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opening angle criterion proposed by Barnes and Hut (1986) : 

b J 

d iJ 
≤ θ, (2)

where d iJ is the distance to the particle from an i -particle and θ is

an accuracy controlling parameter. 

Because the above MAC cannot directly control the accuracy

with which the gravitational forces are calculated, more sophis-

ticated MACs have been proposed. The MAC proposed by Warren

and Salmon (1993) ; Salmon and Warren (1994) is as follows: 

d iJ ≥
b J 

2 

+ 

√ 

b 2 
J 

4 

+ 

√ 

3 B 2 

�mul 

, (3)

where �mul is an accuracy controlling parameter and 

B 2 ≡
∑ 

j 

m j 

(
r j − r J 

)2 
. (4)

The MAC defined by Eq. (3) ensures the required accuracy by mon-

itoring the truncation error of the multipole expansion. 

In addition, the acceleration MAC by Springel (2005) given by 

d iJ ≥
( 

Gm J b J 
2 

�acc 

∣∣a 

old 
i 

∣∣
) 1 / 4 

(5)

also gives the required accuracy, where a 

old 
i 

is the acceleration of

the i -particle in the previous time step and �acc is an accuracy

controlling parameter. This MAC directly monitors the acceleration

of each i -particle, and gives the appropriate accuracy of the accel-

eration specified by �acc . 

The best choice of MAC from the three above must be deter-

mined by experiments. In the case of a tree code running on CPU,

Nelson et al. (2009) compared the elapsed time of each MAC as a

function of achieved accuracy, and concluded that the acceleration

MAC was the optimal choice. The performance of the MAC, how-

ever, should depend on the implementation of the function which

calculates the gravitational acceleration and is optimized for a spe-

cific architecture, in our case, GPU. Comparing MACs is, therefore,

still necessary for tree codes optimized for GPU and we will pro-

vide results of the comparison in Section 3.2 . 

2.3. Traversing tree structure 

Increasing arithmetic intensity leads to performance improve-

ments since hiding the latency to access global memory becomes

much easier. To increase the arithmetic intensity in the kernel

function, Ogiya et al. (2013) introduced the technique of “vectoriza-

tion”. Ogiya et al. (2013) adopted the depth-first search on-the-fly

and the number of i -particles per thread is assumed to be N vec ( ≥
1). When judging whether the distance to a pseudo j -particle is far

or near, they calculate the distance between the pseudo j -particle

and N vec i -particles one by one. A minimum of N vec evaluations

of distance is used for the distance judgment. The total number

of interactions increases due to the minimum of N vec evaluations;

therefore, N vec has some optimal value determined by balancing

pros and cons of the effects by the vectorization. 

During tree traversal when calculating the gravitational force,

warp divergence occurs when some threads in a warp judge the

distance to a pseudo j -particle to be sufficiently far while the re-

mainder judge the distance to still be near. Ogiya et al. (2013) in-

troduced “grouping” to reduce the warp divergence. In this step,

they group the distance judgment into N grp threads ( N grp must

be smaller than 32 to utilize the implicit synchronization within

a warp) by sharing the minimum distance to a pseudo j -particle

from N vec i -particles in N grp threads. Just like N vec , there is also an

optimal value of N grp . 
In Ogiya et al. (2013) , N vec distance calculations by N grp threads

nd log 2 N grp comparisons to group the judgement in N grp threads

re required to judge whether a specific pseudo j -particle is near or

ar. Here, we modify the vectorization method proposed by Ogiya

t al. (2013) by using a breadth-first search. The vectorization in

he original form requires N vec -times N i particles for sustained

erformance. This diminishes the benefits of the block time step.

herefore, we adopt a compromise between an on-the-fly method

nd an interaction list method. In this method, a small sized inter-

ction list is created in shared memory. Once the size of the inter-

ction list reaches a certain predefined value, we calculate gravita-

ional forces between i -particles and pseudo j -particles in the list

nd clear the list. By repeating the procedure, the gravity by all j -

articles is properly calculated. The arithmetic intensity of the ker-

el function is determined by the capacity of the interaction list,

hich depends on the number of threads per block and the cache

onfiguration of the shared memory. 

To use the shared memory efficiently and reduce warp diver-

ence, we adopt the grouping almost in the original form. Group-

ng the interaction list of N grp threads leads to a N grp times bigger

ist to be stored in the shared memory. We modify the algorithm

or grouping the distance judgment to remove log 2 N grp compar-

sons as follows. Since the breadth-first search can access queued

ree cells in parallel, distance evaluations to multiple pseudo j -

articles can be performed at the same time. We introduce a

seudo i -particle shared by N grp threads as shown in Fig. 2 . The

seudo i -particles is to include all corresponding real i -particles by

efining the appropriate radius b I . There is some freedom in defin-

ng the center of the enclosing sphere r I : for example, the center

f the smallest enclosing ball, the center-of-mass of real i -particles,

r the geometric center of the enclosing rectangular cuboid (see

ppendix B for more detail). The optimal choice to minimize the

lapsed time of GOTHIC will be determined in Section 3.1 to pro-

ide the shortest elapsed time in micro-benchmarks. The distance

etween the pseudo i -particle and a pseudo j -particle is evaluated

s the distance between an imaginary particle and the pseudo j -

article. The imaginary particle is set at the intersection of the

urface of the pseudo i -particle with a line connects the pseudo

 -particle with the pseudo j -particle, r ′ I : 

 r J − r ′ I | ≡ λr JI , (6)

here 

= 

{
1 − b I 

r JI 
(b I < r JI ) , 

0 (b I ≥ r JI ) . 
(7)
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ntroducing the pseudo i -particle is functionally the same as the

ectorization and the grouping by Ogiya et al. (2013) because the

istance between the pseudo i -particle and the j -particle is always

maller than that between all corresponding i -particles and the j -

article. 

When traversing the tree structure in a breadth-first manner,

any tree cells must be stored in a large buffer compared to

ne child cell stored under the depth-first search. The breadth-

rst search requires additional global memory allocation. Because

he total capacity of the global memory on GPU is limited (e.g.,

 GB for NVIDIA Tesla M2090 and K20X with ECC enabled), so-

histicated memory management is necessary. In order to allocate

s large as possible a chunk of global memory for the buffer, we

rst query the unused capacity of the global memory using the

udaMemGetInfo() function and then allocate the buffer in the

lobal memory. The next problem is the assignment of the buffer

o each thread-block. In this study, the capacity of the shared

emory sets the upper limit on the number of thread-blocks per

M to two. It determines the maximum number of thread-blocks

hich can run simultaneously, and we equally divide the buffer

nto the given number of pieces. The special register %smid ac-

uired by the inline PTX function tells the ID of SMs, and is useful

o assign unused parts of the buffer to a running thread-block. It

hould be noted that %smid is a volatile variable. Thus, a careful

reatment is required to occupy and release the partitioned buffer

orrectly. 

.4. Splitting particle groups in low dense region 

One of the shortcomings of the method introduced in

ection 2.3 is an over-computation when i -particles in a low dense

egion are selected as a group of i -particles. To avoid this situa-

ion, we introduce a critical separation r crit to judge whether to

nify i -particles into a group or not. If the value is too large or

oo small, then the elapsed time will become longer due to over-

omputation or over-splitting of the kernel, respectively. The crit-

cal separation r crit must be set carefully to minimize the elapsed

ime; however, it is impossible to determine the optimal value be-

ore the calculation because r crit depends on the particle distri-

ution which evolves in the simulation. This leads us to set r crit 

hrough trial-and-error during the simulation. In other words, we

pply auto-tuning to determine the optimal value of r crit . The strat-

gy we adopt is to search for the optimal r crit by minimizing the

PU time to calculate gravity using Brent’s method ( Press et al.,

007 ) and treating the GPU time as a function of r crit . Since the

ptimal value of r crit would also depend on time, some perturba-

ion on r crit is additionally introduced. According to this scheme,

 crit automatically evolves to reduce the elapsed time. 

.5. Increasing parallelism in gravity calculation 

Maintaining the high performance of the code down to the low

 i -regime is an essential point to achieve high performance with

he block time step. However, this is difficult because a lack of

arallelism reduces the GPU performance by wasting CUDA cores.

he critical number of particles to saturate GPU performance is 10 4 

n the case of direct N -body calculation ( Miki et al., 2012, 2013 ).

ome remedy should be introduced to limit the performance de-

rease in low N i -regime. A straightforward remedy is introducing

j -parallelization to increase parallelism ( Nitadori et al., 2006; Ny-

and et al., 2007; Miki et al., 2012 ). In the case of ij -parallelization,

ultiple threads share an i -particle and calculate gravity to the

article. As a result, we regain running CUDA cores and GPU per-

ormance even in the low N i -regime. 

Introducing ij -parallelization requires an implementation of a

orce accumulation process among multiple threads that share a
ommon i -particle. In this work, we have implemented an essen-

ially identical version of the algorithm proposed by Miki et al.

2012) . In principle, either synchronization or exclusive control or

oth are inevitable to sum up the threads’ results, and this al-

ays impedes the performance improvement in parallel comput-

ng. Miki et al. (2012) proposed an algorithm specialized for GPU

omputing to alleviate the burden of the force accumulation pro-

ess. They remove explicit synchronization of multiple threads by

ggressively utilizing the specification of CUDA that 32 threads in

 warp always perform the same operation (implicit synchroniza-

ion). Therefore, the number of threads that share an i -particle, S ,

ust satisfy S ≤ 32. 

.6. Tree rebuild interval 

The cost of tree construction, t make , is not negligibly small com-

ared to that of tree traversal, t walk , and there is no requirement to

ebuild the tree structure every time step. Since the particle distri-

ution is almost the same for two time steps in succession, reusing

he old tree structure will not deteriorate t walk without additional

ost to rebuild the tree structure. The mismatch between the tree

tructure and the actual particle distribution would increase the

xecution time, and the timescale of the increase is a function of

he time evolution of the particle distribution. There ought to be

n optimal interval to rebuild the tree structure and finding it is a

ask suited to auto-tuning. 

The code determines the rebuild interval n by guessing the to-

al elapsed time t tot . The total elapsed time between the tree con-

tructions is given by 

 tot = t make + 

n ∑ 

i =1 

t (i ) 
walk 

, (8)

here t (i ) 
walk 

is the execution time to calculate gravity in the i th step

ut of n steps which use the same tree structure. 

Here, we introduce three toy models, a linear growth model, a

ower-law growth model, and a parabolic growth model, to guess

 

(i ) 
walk 

. In the first model, we assume t walk grows as 

 

(i ) 
walk 

= t 1 + (i − 1) Δt, (9)

here t 1 and �t are intercept and slope, respectively. The above

tting parameters are determined using the least squared method

y monitoring the execution time in every time steps. Then, the

otal elapsed time is estimated as 

 tot = t make + n (t 1 − Δt) + 

n (n + 1) 

2 

Δt. (10)

o minimize the mean execution time t mean ≡ t tot / n , differentiate

 mean with respect to n : 

d 

dn 

t tot 

n 

= − t make 

n 

2 
+ 

Δt 

2 

. (11) 

herefore, the condition to get the extremum is 

 

2 = 

2 

Δt 
t make . (12) 

urthermore, the second derivative with respect to n is evaluated

s 

d 2 

dn 

2 

t tot 

n 

= 

2 t make 

n 

3 
, (13) 

nd is always positive meaning that Eq. (12) always minimizes the

ean execution time. 

The power-law and the parabolic growth models are shown in

ppendix C . The model which gives the smallest reduced χ2 value,

2 
ν ≡ 1 

ν

n ∑ 

i =1 

( 

t (i ) 
walk , model 

− t (i ) 
walk , measured 

σi 

) 2 

, (14) 
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is the most appropriate of the three choices. The degrees of free-

dom ν is n − 2 (for the linear or power-law growth model) or

n − 3 (for the parabolic growth model), and we simply assume σ i 

is unity. 

2.7. Orbit integration 

When the block time step is employed, every i -particle has its

own time step. Since the adaptive, block time step is employed, we

adopt a second-order Runge–Kutta method to integrate the particle

orbit. In the prediction step, we update positions and velocities of

all j -particles by 

v n +1 / 2 
j 

= v n j + 

�t n 
j 

2 

a 

n 
j , (15)

r n +1 
j 

= r n j + �t n j v 
n +1 / 2 
j 

, (16)

where v n 
j 

is the velocity of the j th particle at the n th time step,

subscripts and superscripts indicate the index of particles and time

step, respectively. We then calculate gravity from all j -particles to

selected i -particles, and execute the correction step for the chosen

i -particles as 

v n +1 
i 

= v n +1 / 2 
i 

+ 

�t n 
i 

2 

a 

n +1 
i 

. (17)

Because the above predictor–corrector method is not a symplectic

integrator, it does not conserve the pseudo-Hamiltonian unlike the

leap-frog method often employed with the shared, fixed time step.

For the comparison cases where the time step is shared and

fixed, we adopt a second-order leap-frog method. In this case, orbit

integration is performed as 

v n +1 / 2 
j 

= v n −1 / 2 
j 

+ 

�t n 
j 

2 

a 

n 
j , (18)

r n +1 
j 

= r n j + �t n j v 
n +1 / 2 
j 

. (19)

For fixed shared timesteps, the Runge–Kutta integrator reduces to

the leap-frog method. 

2.8. Note for Kepler generation GPUs 

Kepler generation GPUs support more functions that are useful

in performance optimization compared to Fermi generation GPUs.

One is warp shuffle instructions, which enable reading registers in

other threads within a warp without using the shared memory.

Warp shuffle instructions are heavily exploited in the calculation

of parallel prefix sums and reductions since it is faster than ac-

cessing registers via shared memory. The read-only data cache is

another feature to be noted. Just adding the const _restrict_
qualifier tells the compiler to use a distinct cache in addition to L2

cache of the global memory. It effectively enlarges the capacity of

cache and increases effective memory bandwidth. 

A warp scheduler has two instruction dispatch units (IDUs) on

Kepler generation GPUs ( NVIDIA, 2012 ) while it has only one IDU

on Fermi generation GPUs ( NVIDIA, 2009 ). The presence of multi-

ple IDUs within a warp scheduler causes scheduling issues if sub-

sequent operations within a warp have mutual dependencies. Fur-

thermore, Lai and Seznec (2013) reported that bank conflict of reg-

isters could occur among four banks on Kepler generation GPUs.

Both the scheduling issue and bank conflict of registers cause a

slowdown of operations on Kepler generation GPUs. Introducing

instruction level parallelism can remove the dependency between

subsequent operations and remove the scheduling issue created by

multiple IDUs. We examined effects of increasing instruction level

parallelism of multiple executions of fused multiply-add (FMA) in-

structions and direct N -body code without removing bank conflict
f registers on NVIDIA Tesla K20. However, the performance did

ot improve; this suggests that a careful arrangement of registers

o prevent bank conflicts is also necessary for further optimization.

ecause NVIDIA does not provide any tool or framework to arrange

egisters manually and CUDA shuffles locations of registers, we did

ot increase instruction level parallelism of subsequent computa-

ions or arrange locations of registers. Once such problems origi-

ated by hardware are resolved, we can expect the performance of

OTHIC to increase on Kepler or Maxwell generation GPUs. 

. Performance measurements of the code 

.1. Configuration of measurements 

Performance measurements were done on HA-PACS (Highly Ac-

elerated Parallel Advanced system for Computational Sciences)

nd a workstation at the University of Tsukuba. HA-PACS is com-

osed of two clusters: the Base Cluster (BC) and the Tightly Cou-

led Accelerator (TCA). HA-PACS/BC and HA-PACS/TCA is equipped

ith NVIDIA Tesla M2090 (Fermi generation GPU) and NVIDIA

esla K20X (Kepler generation GPU), respectively. NVIDIA GeForce

TX TITAN X (Maxwell generation GPU) is installed on the work-

tation. Table 1 lists the detailed information of the measurement

nvironments. All environments have multiple GPUs, but we use

nly a single board of GPU on each machine in the measurements

elow. 

Fundamental parameters of the code (e.g., the number of

hreads per block for each kernel function) are determined

y micro-benchmarks for a Navarro–Frenk–White (NFW) sphere

 Navarro et al., 1995, 1996 ), a Plummer sphere ( Plummer, 1911 ),

 King sphere ( Michie, 1963; Michie and Bodenheimer, 1963; King,

966 ) and a Hernquist sphere ( Hernquist, 1990 ). All initial condi-

ions used in this study are generated by the MAny-component

alactic Initial-conditions (MAGI) generator ( Miki and Umemura,

n preparation ). Table 2 summarizes the resultant configuration

or functions related to the tree structure. Obviously, optimal

alues exist for each function ( walkTree executes tree traver-

al, makeTree , linkTree , and trimTree build tree structure,

alcMAC calculates physical quantities of pseudo j -particles, and

enPHkey translates the position of an i -particle to a Peano–

ilbert key). The adopted enclosing ball for walkTree is the effi-

ient bounding sphere ( Ritter, 1990 ) on GTX TITAN X, while M2090

nd K20X use the sphere centered on the geometric center of the

nclosing rectangular cuboid. 

.2. Measured elapsed time 

First, we investigated relations among the accuracy controlling

arameters of three MACs ( Section 2.2 ), the resultant accuracy of

ravity calculation and the elapsed time on various generations of

PUs. This is similar to the evaluation of a tree code performed by

elson et al. (2009) . Fig. 3 shows the result in the case of an NFW

phere with 2 23 = 8,388,608 particles. The cutoff radii of the den-

ity profile and the length of the Plummer softening are 5 r s and

 s /64, respectively, where the scale length r s is set to unity. The

lapsed time is evaluated as the wall clock time per time step (to-

al number of time steps is fixed to 1024) to include the effects

f auto-tuning; it also includes the time required to read/write

les and allocate/deallocate memory. The accuracy of the gravity

alculation is evaluated as a relative error of acceleration in the

ree code a 

tree 
i 

compared to acceleration in the direct N -body code,

 

direct 
i 

, where the subscript i indicates the index of the N -body par-

icles. Upper and lower panels of the figure present the results for

he 99 percentile error and median error, respectively. In other

ords, the points trace the loci at which 99% (50%) of N -body

articles have a smaller error of the acceleration than the plotted
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Table 1 

Measurement environment. 

System HA-PACS/BC HA-PACS/TCA Workstation 

Number of nodes 268 64 1 

CPU Intel Xeon E5-2670 Intel Xeon E5-2680 v2 Intel Xeon E5-2640 v3 

8 cores, 2.6 GHz 10 cores, 2.8 GHz 8 cores, 2.6 GHz 

2 sockets per node 2 sockets 

RAM DDR3-1600, 8 channels DDR3-1866, 8 channels DDR4-2133, 8 channels 

128 GB per node 64 GB 

GPU NVIDIA Tesla M2090 NVIDIA Tesla K20X NVIDIA GeForce GTX TITAN X 

512 cores, 1.3 GHz 2688 cores, 732 MHz 3072 cores, 1 GHz 

4 boards per node 2 boards 

Video RAM 6 GB (GDDR5, ECC on) per GPU 12 GB (GDDR5) per GPU 

C Compiler icc 15.0.5.223 (gcc 4.4.7 compatibility) gcc 4.8.5 

CUDA Toolkit 7.5.17 

Fig. 3. Elapsed time per step as a function of force accuracy. Distribution of the N -body particles is an NFW sphere with 2 23 = 8,388,608 particles. Solid and dotted lines 

with symbols are results of the block time step and shared time step, respectively. Each symbol indicates different MACs: red circles are acceleration MAC ( Springel, 2005 ), 

blue squares are multipole MAC ( Warren and Salmon, 1993 ), and black diamonds are opening angle ( Barnes and Hut, 1986 ). The green triangles with dashed line show 

the elapsed time of the public code Bonsai ( Bédorf et al., 2012, 2014 ). Values of the accuracy controlling parameters are 2 −2 , 2 −3 , ���, 2 −19 for the acceleration MAC and 

the multipole MAC, 0.9, 0.8, ���, 0.1 for the opening angle and Bonsai from right to left. Upper and lower panels show the measured elapsed time against 99% error and 

median error of acceleration as a vector, respectively. Each panel exhibits benchmark results on different GPUs: left (M2090), middle (K20X), and right (GTX TITAN X). 
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alue for each MAC in the upper (lower) panels. The figure clearly

eveals the block time step (solid lines) is roughly twice as fast as

he shared time step (dotted lines). The block time step with the

cceleration MAC (red filled circles with solid line) has the short-

st elapsed time in most cases. The multipole MAC (blue squares)

s sometimes the optimal choice, especially with lower accuracy,

nd its performance with higher accuracy is comparable to that of

he opening angle (black diamonds). 
We have also compared the performance of GOTHIC with the

ublic code Bonsai 2 ( Bédorf et al., 2012, 2014 , green triangles)

hich runs on the Fermi and Kepler generation GPUs. On M2090,

he performance measurement with θ = 0 . 1 for Bonsai was not

ompleted because the computation time was too long. In all cases,

OTHIC with acceleration MAC and block time step (i.e., fastest

onfiguration) was faster than Bonsai except for the case for
2 https://github.com/treecode/Bonsai . 

https://github.com/treecode/Bonsai
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Table 2 

Configuration of thread-blocks. 

Function GPU a T tot 
b T sub 

c S d R e 

walkTree M2090 256 32 1 63 

K20X 512 32 1 64 

TITAN X 512 32 4 64 

makeTree M2090 128 8 53 

K20X 128 8 49 

TITAN X 128 8 64 

linkTree M2090 128 27 

K20X 256 27 

TITAN X 256 23 

trimTree M2090 128 18 

K20X 128 22 

TITAN X 128 22 

calcMAC M2090 128 32 59 

K20X 128 32 55 

TITAN X 256 32 64 

genPHkey M2090 256 36 

K20X 1024 40 

TITAN X 1024 40 

a Name of GPU. 
b Number of threads per block. 
c Number of threads share operations. 
d Number of threads share an i -particle. 
e Register usage per thread. 
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which the median force error was less than ∼ 10 −5 on K20X. The

figure clearly shows that the improvements of GOTHIC with re-

spect to Bonsai are more significant on M2090 compared to

K20X. This was expected, because Bédorf et al. (2014) performed

sophisticated optimizations focused on the Kepler generation GPUs

while we omit some optimizations (see Section 2.8 ). In other

words, the performance improvements of GOTHIC from Bonsai
on the Kepler generation of GPUs would increase if we introduced

optimizations highly focused on the Kepler generation of GPUs. The

typical accuracy for N -body simulations on galactic scales is around

10 −3 , which corresponds to a value of θ of 0.5–0.7. In such realistic

parameter regions, GOTHIC is a few time faster than Bonsai on

M2090. 

The NFW sphere is not suitable for evaluating effects of the

block time step owing to its simple density profile. A more com-

plicated particle distribution having a wider dynamic range in the

temporal domain of the orbit evolution of individual particles is

be a better choice for performance measurements to examine ef-

fects of the block time step. In order to measure the performance

in a realistic distribution, we generate a model of the Andromeda

galaxy (M31). The mass distribution model of M31 is given by

Geehan et al. (2006) ; Fardal et al. (2007) . Its composition is a

dark matter halo with an NFW profile (the mass is 8.11 × 10 11 M �

and the scale length is 7.63 kpc) with 7,730,866 particles, a stel-

lar bulge with a Hernquist profile (the mass is 3.24 × 10 10 M �

and the scale radius is 0.61 kpc) with 308,853 particles, and an

exponential disk (the mass is 3.66 × 10 10 M �, the scale length

is 5.4 kpc, and the scale height is 0.6 kpc) with 348,889 parti-

cles. The total number of N -body particles is 2 23 = 8,388,608, the

masses of all N -body particles are identical and the Plummer soft-

ening length is set to 16 pc. On M2090, a performance measure-

ment with �mul of 2 −19 for GOTHIC with the multipole MAC and

the shared time step was not finished due to the limitation of the

execution time on HA-PACS. Fig. 4 shows the results of the mea-

surements. Again, the block time step with the acceleration MAC

achieves the best performance in most cases. The performance gain

of the block time step is significantly greater than that for a pure

NFW sphere ( Fig. 3 ). This is because additional components (the

bulge and the disk) make the density profile steeper. A steeper

density profile means a wider range of time steps of N -body par-

ticles since the free-fall time, one of the typical time scales of the
ystem, is proportional to the inverse square root of the volume

ensity. Indeed, the number of time step levels increases from four

or the NFW sphere to five for the M31 model. The block time step

ith the acceleration MAC (red filled circles) achieves the short-

st elapsed time in most cases, and is always faster than Bonsai
green triangles). On M2090, the performance measurement with θ
f 0.1 for Bonsai was not completed due to exceeding the maxi-

um execution time on HA-PACS. Since the performance improve-

ents from the shared time step are more significant compared

o the pure NFW model, the speed increase of GOTHIC compared

o Bonsai is greater in the case of the Andromeda galaxy model

ompared to the NFW model. 

.3. Benefits from block time step 

To assess benefits of adopting the block time step in detail,

ig. 5 shows the speed up of the block time step from the shared

ime step in the case of M31. The block time step results in two

imes faster completion compared to the shared time in all cases.

n galactic scale N -body simulations, the typical value for θ is 0.5–

.7. Corresponding values of �acc and �mul which give similar ac-

uracy are from 2 −8 to 2 −6 and from 2 −5 to 2 −2 , respectively (see

ig. 4 ). For such a typical accuracy, adopting a block time step re-

ults in about 2–5 times speed up for all three MACs on M2090,

20X, and GTX TITAN X. The amount of speed up tends to improve

ith increasing values of the accuracy-controlling parameters (i.e.,

he decreasing of the accuracy). When increasing the accuracy of

ravity calculations, the number of calculations in high density re-

ions increases because many particles are located near each other.

ince the speed up of the block time step comes from the reduc-

ion of calculations in the low density regions, this increase in cal-

ulations weakens the benefits of adopting the block time step. 

Hereafter, we regard the block time step with the acceleration

AC as a fiducial configuration, and go into more detail about the

esults from this configuration. Fig. 6 shows a breakdown of the

xecution time of various functions during the first 101 steps of

he benchmark with Δacc = 2 −7 = 7 . 8125 × 10 −3 on K20X. The ini-

ial condition of the system is a model of M31 in dynamical equi-

ibrium with 2 23 = 8,388,608 particles. A slightly slow execution at

he first step pushes back the first tree reconstruction to the 26th

tep; thereafter, the execution times of all functions settle into a

egular repeating pattern because the system is in dynamical equi-

ibrium. The execution time for calculating gravity (red circles) is,

or the most part, the dominant contribution to the total execution

ime. For the case of the model of M31, there are three distinct

anges of execution times for calculating gravity; the fast steps

ith execution times in the range 4 × 10 −3 s – 2 × 10 −2 s, steps

ith intermediate execution times in the range 0.15 s – 0.4 s, and

he slow steps with execution times of ∼ 2 s). We group the steps

n these ranges and label them as “FSeq” (fast sequence), “ISeq”

intermediate sequence), and “SSeq” (slow sequence), respectively.

he decrease in the number of steps with execution times above

 s (FSeq) to ten times during the first 101 steps is a consequence

f the block time step reducing the number of calculations for

lowly moving i -particles. This is the main reason for the acceler-

tion by the block time step. The achieved mean elapsed time per

tep is 0.33 s, and is a little above 10% of the execution time to

alculate gravity in the SSeq. The nearly fixed cost to calculate the

osition and mass of pseudo j -particles (black crosses), which is

 . 2 × 10 −2 s, sometimes becomes the most time-consuming func-

ion at a given time step. This suggests that further optimization

f that function might also accelerate the code. Performing a more

recise time integration is also possible without worsening the to-

al elapsed time. For example, one could increase the number of

 -particles at the cost of an increase in the execution time to cal-

ulate gravity. Unless the increase of the execution time in the
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Fig. 4. Elapsed time per step as a function of force accuracy. The distribution of the N -body particles represents the spiral galaxy M31 with 2 23 = 8,388,608 particles. 

Symbols, lines and panels are the same as those in Fig. 3 . 
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Seq is much greater than that the execution time to update j -

articles, this would not increase the total elapsed time since the

otal elapsed time is still dominated by the execution of the SSeq

n the gravity calculation is the main reason for the acceleration

sing the block time step. The costs for correcting the velocity of i -

articles (black triangles) roughly fall into three sequences as well,

ith execution times of 5 × 10 −5 s, 2 . 6 × 10 −3 s, and 5 × 10 −3 s.

his implies that the number of i -particles within each sequence

s fairly constant and suggests the scheme is successfully reducing

he calculations of gravity for i -particles in the low density regions.

he required time to predict position and velocity of j -particles

green crosses) is almost constant at 4 . 6 × 10 −3 s, roughly the same

s the slowest sequence for the corrector, in every time step. This

s because the number of j -particles is always equal to N tot = 2 23 . 

The mean interval between successive tree reconstructions is

bout 12 steps. The costs of functions related to tree reconstruction

generation and sorting Peano–Hilbert keys, sorting N -body parti-

les using Peano–Hilbert key, tree construction, and split i -particle

roups in the low dense region) are almost independent of the par-

icular time step. Because the radix sorting of 32-bit integers with

4-bit keys, which takes about 0.1 s, is the limiting process, further

cceleration of the sorting library is essential to reduce the cost to

econstruct tree structures. The execution of the SSeq of the tree

raversal and tree reconstruction often form a pair. Because tree

onstruction is an order of magnitude faster than tree traversal,

ven a tiny increase in the cost to traverse the tree structure is

reater than the cost of the tree reconstruction, and thus, the ex-
 a  

c

cution of the SSeq of tree traversal becomes a trigger to rebuild

he tree structure. 

.4. Dependence on number of N -body particles 

To examine the effects of ij -parallelization, we measured

lapsed time while varying the number of i -particles, N i , and

eeping the total number of N -body particles fixed at N tot =
 

23 = 8,388,608. Fig. 7 presents the results for varying number of

hreads that share a common i -particle, S , on M2090, K20X, and

TX TITAN X. The elapsed time monotonically decreases with N i .

his feature is associated with the reason for the acceleration by

he block time step, and roughly scales as N 

1 
i 

if N i � 10 4 / S except

or N i ∼ N tot . The steep increase at N i ∼ N tot for all cases except for

 = 32 is related to gravity calculations for i -particles in the low-

st density regions. As noted in Section 2.4 , GOTHIC tends to in-

rease the number of interactions in the low density regions and

his causes an increase in the elapsed time. Because T sub /S = 32 /S

articles share the tree traversal, the steepness of the increase be-

omes weaker with greater S and vanishes for S = 32 . Also, parti-

les in the lowest density regions have the longest free-fall time

nd would have the longest time step; therefore, they would not

e selected as i -particles if N i < N tot , and this makes the increase

f elapsed time steeper. If further optimizations or another algo-

ithm succeeded in reducing the steep increase of the elapsed time

t N i ∼ N tot , then the total elapsed time GOTHIC could be signifi-

antly decreased. 
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Fig. 5. Speed up of the block time step compared to the shared time step as a function of the accuracy controlling parameter. The particle distribution is M31 by 

2 23 = 8,388,608 particles. The open circles with the dashed line, the open squares with the solid line, and the filled diamonds with the dotted line in each panel show 

the speed up on M2090, K20X, and GTX TITAN X, respectively. Each panels presents different MACs: (a) acceleration MAC ( Springel, 2005 ), (b) multipole MAC ( Warren and 

Salmon, 1993 ), and (c) opening angle ( Barnes and Hut, 1986 ). 

Fig. 6. Execution time of each function on K20X as a function of the time step. The particle distribution is M31 with 2 23 = 8,388,608 particles. The execution time of 

the function for gravity calculation (red circles connected by red line), tree construction (magenta circles), generation and sorting Peano–Hilbert keys with particles (blue 

squares), calculating position and mass of pseudo j -particles (black crosses), splitting i -particles groups (blue diamonds), predicting j -particles’ position and velocity (green 

crosses), and correcting velocity of i -particles (black triangles connected by black line) are plotted as a function of time steps. The slow, intermediate, and fast sequences are 

highlighted by bands in three shades of red. 

Fig. 7. Dependence on the number of i -particles N i where the total number of N -body particles is 2 23 = 8,388,608. The black dashed line ( S = 1 ), the red solid line ( S = 2 ), 

the blue dotted line ( S = 4 ), the magenta dot-dashed line ( S = 8 ), the green triple-dot-dashed line ( S = 16 ), and the brown solid ( S = 32 ) line represent the elapsed time for 

the number of threads that share a common i -particle S . Each panel reveals results on different generation of GPUs: (a) M2090, (b) K20X, and (c) GTX TITAN X. 
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Fig. 8. Breakdown of the elapsed time of GOTHIC as a function of the total number of N -body particles N tot . Each panel shows the elapsed time of functions for gravity 

calculation (red circles with dashed line), calculating position and mass of pseudo j -particles (blue squares with dotted line), tree construction (magenta diamonds with 

dot-dashed line), orbit integration (green triangles with triple-dot-dashed line), and sum of them (black solid line). The particle distribution is the M31 model and each 

panel shows results on different GPUs: (a) M2090, (b) K20X, and (c) GTX TITAN X. 
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The critical number 10 4 / S , which separates the monotonic de-

rease with N i and the constant elapsed time irrespective of N i ,

s determined by the number of running CUDA cores. Because the

umber of thread-blocks per SM is two, the number of threads per

lock is 256 or 512, and the number of SMs per device is around

0. The number of threads to saturate CUDA cores is given by the

roduct of these three factors and is around 10 4 . Introducing ij -

arallelization activates S times more threads compared to simple

 -parallelization. These two properties result in the critical number

eing 10 4 / S . The origin and value of the critical number are same

or the case of direct summation ( Miki et al., 2012 ). 

The dependence of GOTHIC on the number of N -body particles

s the final concern we address. Fig. 8 presents the elapsed time

s a function of the total number of N -body particles with Δacc =
 

−7 = 7 . 8125 × 10 −3 on M2090, K20X, and GTX TITAN X. Contribu-

ions of each function are measured as the elapsed time averaged

y 1,024 steps. The number of N -body particles is changed from

 

10 = 1,024 to 2 24 = 16,777,216. The two-fold greater global mem-

ry on GTX TITAN X compared with others enables it to perform

 -body simulation with 2 24 particles that could not run on M2090

r K20X. Traversing the tree structure (red circles with dashed line)

lways dominates the execution time and scales roughly as N tot if

 tot � 10 5 on all GPUs. It is slightly weaker than the expected

caling of the tree algorithm as O ( N i log N j ). The scaling gradually

ecomes worse when decreasing the problem size. In N tot � 10 4 ,

he execution time to calculate the mass, the position, and the size

f pseudo j -particles (blue squares with dotted line) approaches a

onstant floor on each device. Furthermore, the floor value is not

egligible compared with the elapsed time to calculate gravity and

ncreases its contribution. Improving the scaling is also necessary

o achieve a shorter time-to-solution for N tot � 10 4 . 

Contributions from tree construction (magenta diamonds with

ot-dashed line) and orbit integration (green triangles with triple-

ot-dashed line) are comparable for most values of N tot and negli-

ibly small in any case. It should be noted that performance opti-

ization of tree construction is also helpful to decrease the time-

o-solution even though its execution time itself is negligible. As

tated in Section 2.6 , the interval between successive tree con-

tructions is determined by the balance between execution time of

ree traversal and construction. Therefore, performance enhance-
 c
ents of the function to update the tree structure can accelerate

 -body simulation by decreasing the execution time for calculat-

ng gravity. This is a characteristic behavior of GOTHIC due to op-

imizations affecting multiple functions. 

The measured elapsed time per step is 0.47 s (0.58 s), 0.39 s

0.38 s), and 0.14 s (0.21 s) for the M31 model (the NFW sphere)

ith 2 23 = 8,388,608 particles on M2090, K20X, and GTX TITAN

, respectively. On GTX TITAN X, we ran N -body simulation using

 

24 = 16,777,216 particles and they took 0.30 s and 0.44 s per step

or the M31 model and the NFW sphere, respectively. Ogiya et al.

2013) reported that the elapsed time per step of their code was

5 s on M2090 for the NFW sphere with 2 24 particles. This indi-

ates that the sophisticated algorithms and optimizations adopted

n GOTHIC , and performance improvements of GPU achieve more

han ten times acceleration of N -body simulations compared to

giya et al. (2013) . 

. Discussion 

The tree method has a better scaling compared to the direct

ethod and is always faster in the high N -regime. However, in the

ow N -regime, the direct method becomes faster owing to its sim-

licity. Here, we briefly discuss the transition point at which to

witch between the tree method and the direct method. Miki et al.

2013) reported that the execution times for calculating gravity by

he direct method with N = 2 12 = 4,096 and N = 2 13 = 8,192 on

2090 are 9 . 7 × 10 −4 s and 1 . 9 × 10 −3 s, respectively. They are

early the same as those with GOTHIC (see Fig. 8 ). Since 10 4 is

 sufficiently large number of N -body particles to obtain the sus-

ained performance on M2090, the growth of the elapsed time is

roportional to N 

2 for N � 10 4 . This implies that the tree method

ecomes faster than the direct method on GPU for N � 10 4 . Since

irect N -body codes on GPU can maintain their O ( N 

2 ) scaling down

o ∼ 10 3 through ij -parallelization ( Miki et al., 2012 ), direct N -body

odes becomes faster than the tree method in N � 10 4 . Further-

ore, Miki et al. (2013) adopted the shared time step instead of

he block time step, so further speed up of their direct N -body

ode is possible. In summary, the execution time of GOTHIC is

omparable with that of direct N -body codes if N ∼ 10 4 and be-

omes shorter the larger the problem size. 
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Fig. 9. Measured performance of GOTHIC . The upper and lower panels present the 

number of interactions and the calculation speed, respectively, as a function of the 

time step. Different symbols indicate different GPUs: black circles, red diamonds, 

and blue squares represent M2090, K20X, and GTX TITAN X, respectively. The left 

panels show results for the NFW model, and the right ones display results for the 

M31 model, both with N = 2 23 = 8,388,608. Execution of the slow sequence is high- 

lighted by vertical bands (colored according to GPU). 
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To estimate the achieved performance of GOTHIC , we have first

counted the number of interactions computed in each time step.

The counting of interaction pairs is done in a separate run to that

of measurements of the elapsed time in order to remove the ad-

ditional burden of the performance measurements. Fig. 9 shows

the measured results as a function of the time step. The directly

measured values are the calculated number of interactions in each

time step and are shown in Fig. 9 a and b. They have similar val-

ues on different generations of GPUs. The origin of the differences

is differences of the configuration of the kernel function to calcu-

late gravitational force (see Table 2 ). The gradual increase in the

number of interactions with time step in the FSeq is the reason

for the growth of the execution time for calculating gravity while

using the same tree structure repeatedly. Since rebuilding the tree

structure is auto-tuned as described in Section 2.6 , the time steps

at which the tree is rebuilt will differ depending on the problem or

the utilized GPU. The number of interactions calculated per second

( Fig. 9 c and d) on each GPU is derived by combining independent

measurements of the elapsed time. The measured results exhibit

clear differences among the three GPUs, reflecting their theoretical

peak performance. 

The significant difference in each time step is attributable to

the block time step. Step by step comparison between the num-

ber of interactions and the execution time in each time step re-

veals two things: (1) the lowest calculation speed is associated

with the highest number of interaction pairs (as highlighted by

vertical bands in Fig. 9 ) and (2) the minimum number of inter-

action pairs does not necessarily result in the highest calculation

speed (this is more evident in the M31 model). The SSeq which

corresponds to the maximum number of interaction pairs per step

includes all i -particles in the lowest density regions, while the ISeq

and FSeq, which correspond to the smaller number of interaction

pairs per step, do not include i -particles in the lowest density re-
ions. Including i -particles in the lowest density regions drastically

ncreases the number of distance evaluations between a group of

 -particles and pseudo j -particles. The remedy for this, introduced

n Section 2.4 , starts to work at later time steps, and the calcu-

ation speed decreases significantly. This is also the case with the

teep increase of the elapsed time around N i ∼ N tot observed in

ig. 7 . The lowest number of interaction pairs does not lead to a

ustained performance in the M31 model either. We find that the

ighest calculation rate is associated with an intermediate number

f interaction pairs. 

Conversion from the measured elapsed time to achieved per-

ormance requires an assumption about floating-point operation

ounts per interaction; however, such a conversion is not always

igorous especially in realistic scientific computations. Various val-

es of the floating-point operation counts have been adopted in

he literature for collisionless N -body simulations. Examples in

tudies using GPU(s) are: 20 by Nyland et al. (2007) , 26 by Miki

t al. (2012 , 2013) , and 23 by Bédorf et al. (2014) , while 38 appears

o be the typical value used in astrophysics ( Kawai et al., 1999;

amada and Iitaka, 2007; Nitadori and Makino, 2008; Hamada

t al., 2009; Hamada and Nitadori, 2010; Tanikawa et al., 2013 ).

he reason for the differences lies in the estimation of the exe-

ution cost of the inverse square root. In this study, we assume

hat the cost of executing the inverse square root corresponds

o the ratio of the throughput of the reciprocal square root to

hat of addition or multiplication. This is found to be 8, 6, and

 Flops (floating-point operations) on M2090, K20X, and GTX TI-

AN X, respectively. It should be noted that an alternative is adopt-

ng 4, 3, and 2 Flops on different generations of GPUs ( Capuzzo-

olcetta and Spera, 2013; Bédorf et al., 2014 ). This choice takes

nto account the fact that GPUs by NVIDIA support FMA opera-

ions and thus can execute 2 Flops per clock cycle. The remain-

ng operations are three subtractions, three multiplications, and

even FMA operations (20 Flops in total), because GOTHIC cal-

ulates not only the gravitational force but also the gravitational

otential (an FMA operation returns the potential). In summary,

e assume that floating-point operation counts per interaction

re 28, 26, and 24 Flops, respectively, on M2090, K20X, and GTX

ITAN X. 

Table 3 summarizes the measured number of interactions cal-

ulated per second and the corresponding performance in units

f GFlop/s (Giga Floating-point operations per second) for the

FW sphere and the M31 model with N = 2 23 = 8,388,608 on the

hree generations of GPUs. The averaged performance over time

teps on M2090, K20X, and GTX TITAN X are around 320 GFlop/s,

60 GFlop/s, and 1750 GFlop/s, respectively. They correspond to

0–30% of the theoretical peak performance. The maximum per-

ormance on each GPU is around 40%, 20% and 55% of its theoret-

cal peak performance on M2090, K20X, and GTX TITAN X, respec-

ively. Finally, the minimum performance over several time steps

rops to less than 10% of the theoretical peak performance except

or the M31 model on M2090. This is the case with the highest

umber of interaction pairs as shown in Fig. 9 ; i.e., it is equivalent

o the performance of the shared time step. This means that the

enefit of adopting the block time step lies not only in avoiding

nnecessary calculations to follow the time evolution of the sys-

em but also in increasing the average calculation speed per time

tep. 

Watanabe and Nakasato (2014) proposed a hybrid tree algo-

ithm to reduce the calculation cost of collisionless N -body simula-

ions applying Particle-Particle Particle-Tree (PPPT) algorithm origi-

ally developed by Oshino et al. (2011) for collisional systems. They

ivided the gravitational force calculation into two steps, short-

ange and long-range, and reduce the relative frequency of long-

ange force calculation. Because neglecting small changes of the

ravitational field in the distant region does not generate a sig-
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Table 3 

Achieved performance. 

GPU Model a Number of interactions per second Achieved performance b (GFlop/s) TPP c (GFlop/s) 

Average Maximum Minimum Average Maximum Minimum 

M2090 NFW 1.06 × 10 10 1.92 × 10 10 3.87 × 10 9 296 536 108 1332 

M31 1.20 × 10 10 1.86 × 10 10 4.90 × 10 9 336 521 137 

K20X NFW 1.45 × 10 10 3.40 × 10 10 3.77 × 10 9 377 885 98 3935 

M31 1.34 × 10 10 3.30 × 10 10 3.81 × 10 9 349 859 99 

GTX TITAN X NFW 6.77 × 10 10 1.59 × 10 11 2.49 × 10 10 1626 3827 598 6611 

M31 7.80 × 10 10 1.50 × 10 11 2.46 × 10 10 1871 3595 590 

a Model of initial particle distribution. 
b One interaction is assumed to correspond to 28, 26 and 24 Flops on M2090, K20X and GTX TITAN X, respectively. 
c Theoretical peak performance using single precision for each GPU. 
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ificant error in the force calculations, they succeeded in acceler-

ting the computations without loss of accuracy. They reported a

0% acceleration of the N -body simulation for a Plummer sphere;

owever, the speed up rate probably depends on the distribution

f N -body particles. In this study, the acceleration by the block

ime step compared to the shared time step in a Plummer sphere

s around 50% for a given typical accuracy while that in the M31

odel reaches 500%. This suggests that the hybrid tree algorithm

as the potential to accelerate the calculation more than what was

eported by Watanabe and Nakasato (2014) . Also, combining the

ybrid tree algorithm with GOTHIC is possible because the orig-

nal PPPT algorithm was designed to couple with the individual

ime step scheme. 

There is another unexplored avenue to further accelerate

OTHIC . The block time step introduces an order of magnitude

ariance of the number of i -particles N i in each time step. As

learly shown in Fig. 7 , the optimal value for the number of

hreads to share an i -particle, S , depends on N i . In the current ver-

ion of GOTHIC , we fix S throughout in the simulation to imple-

ent the code easily. However, dynamically adjusting the optimal

alue for S in each time step would accelerate the code especially

n the low N i -regime. This sort of auto-tuning is suitable to opti-

ize codes whose performance depend strongly on the inputted

roblems, and might become a key issue to achieve a good strong

caling in future studies. 

Operations for floating point numbers using half precision are

upported on current GPUs and are twice as fast as those using

ingle precision on the Pascal generation of GPUs designed for

PC (i.e., GP100 architecture). The number of mantissa bits for

alf precision is 10 in the IEEE 754-2008 standard. Tanikawa et al.

2013) showed that the approximate inverse square root function

ith 12 bits accuracy could provide sufficient accuracy for colli-

ionless systems and implemented this in their software library

Phantom-GRAPE”, a high-performance direct N -body library for

PU. This suggests that the approximate inverse square root func-

ion using half precision might also give sufficient accuracy for col-

isionless N -body simulations. Because the inverse square root is

he heaviest function in N -body simulations, it would accelerate

 -body simulations further. Even if the accuracy is not sufficient,

he Newton–Raphson method can improve the accuracy at only

 small cost. Furthermore, adopting arithmetic operations using

alf precision is promising in the tree method since the distance

valuation stage described in Section 2.3 does not require a pre-

ise value of the distance in single precision. Current NVIDIA GPUs

upport the approximate inverse square root function rsqrtf()
ith at least 21 bits accuracy ( NVIDIA, 2015 ) for variables at sin-

le precision and they were found to successfully accelerate colli-

ionless N -body simulations ( Nyland et al., 2007; Miki et al., 2012,

013 ). Exploiting the half precision version of rsqrtf() , if it

xists, would also increase the performance of realistic scientific

omputations. 
. Summary 

Adopting the tree method is a common way to accelerate

ollisionless N -body simulations in astrophysics, even on GPU.

any earlier studies presented tree codes efficiently running on

PU(s), yet none had coupled their code with the block time

tep ( Nakasato, 2012; Ogiya et al., 2013; Bédorf et al., 2012, 2014;

atanabe and Nakasato, 2014 ). Since the block time step can also

ccelerate N -body simulations significantly, we have developed a

ravitational octree code ( GOTHIC ), which is accelerated by the

lock time step. The code adopts the breadth-first search, and runs

ntirely on GPU, just like Bonsai by Bédorf et al. (2012 , 2014) .

he algorithm in the tree traversal is an improved version of the

lgorithm proposed by Ogiya et al. (2013) , which used a depth-first

earch. GOTHIC also does adaptive optimizations, i.e., auto-tuning,

y monitoring the execution time of each function. The optimiza-

ions reduce the time-to-solution by balancing the execution time

f multiple functions, and using optional ij -parallelization to main-

ain high performance in the low N i -regime. 

The performance of the code is measured on NVIDIA Tesla

2090, K20X, and GeForce GTX TITAN X, which are representative

PUs of the Fermi, Kepler, and Maxwell generation of GPUs, us-

ng realistic particle distributions found in astrophysics. The results

how that the code with the fiducial configuration (the block time

tep with the acceleration MAC) achieves around a 3–5 times ac-

eleration compared to the shared time step, and is faster than the

ublic code Bonsai . The elapsed time of the code scales roughly

s N for N � 10 5 ; the dependence is slightly weaker than the ex-

ected scaling for the tree method, O ( N log N ). The averaged perfor-

ance of the code corresponds to 10–30% of the theoretical peak

erformance of each GPU. The measured elapsed time per step

f GOTHIC is 0.30 s and 0.44 s on GTX TITAN X when the par-

icle distribution represents the Andromeda galaxy and the NFW

phere, respectively, with 2 24 = 16,777,216 particles. The achieved

ime-to-solution is more than ten times smaller than that achieved

n Ogiya et al. (2013) . There are still some possibilities for fur-

her optimizations that can be explored, for example: (1) adopting

 more sophisticated algorithm such as the hybrid tree algorithm

roposed by Watanabe and Nakasato (2014) , (2) performing deeper

ptimizations focusing on specific generation of GPUs, (3) auto-

uning of the optimal number of threads S in ij -parallelization, and

4) utilizing new functions provided by hardware vendors or com-

ilers such as operations in the half precision. 
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Listing 1. Implementation of Peano–Hilbert key encoder. 
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Appendix A. Space-filling curves 

Listings 1 and 2 are implementations of the Peano–Hilbert key

encoder and decoder, respectively, written in C. The algorithm is

an extension to 3D space of the implementation in 2D space by

Lam and Shapiro (1994) . The generation of Peano–Hilbert keys

boils down to the rotation and/or inversion of the fundamen-

tal block. Since the rotation and inversion in the 3D space are

non-commutative operations, level-by-level encoding/decoding is

necessary. The number of logical operations is minimized using

the Karnaugh map. The data type PHint is unsigned int or

unsigned long int depending on whether the bit length of

the key is less than or equal to 30 (the maximum size that fits

in a 32-bit integer), respectively. 

For comparison, Listing 3 shows how the Morton key generator

works up to 63 bit keys. Bédorf et al. (2012) provided Morton key

generator in 30 bits based on Raman and Wise (2008) . Listing 3 is

simply an extension of this to 63 bits. It is much simpler than

the Peano–Hilbert key generator; however, it does not have a one-

stroke sketch nature. 

Appendix B. Comparison of enclosing balls 

We have implemented 5 kinds of enclosing ball generators: (1)

the smallest enclosing ball (SEB) given by the algorithm proposed
y Fischer et al. (2003) , (2) the efficient bounding sphere (EBS)

roposed by Ritter (1990) , (3) the sphere centered on the geo-

etric center of the enclosing rectangular cuboid (GEO), (4) the

phere centered on the center-of-mass of particles (COM), and (5)

he smaller of the spheres generated by GEO and COM (CMP). The

maller radius of the enclosing ball mitigates the increase of the

umber of interactions especially in the low density regions and

educe the elapsed time. From this point of view, the best choice

s the SEB, which has the minimum radius. On the other hand,

he precise determination of the SEB is a time-consuming process.

herefore, the optimal choice for the generator should be deter-

ined by comparing the elapsed times of the code with the vari-

us generators. In this section, we summarize the performance of

he enclosing ball generators. 

First, we compared the radii of each enclosing ball, r ball .

ig. B.10 shows amount of radius over-estimation, r ball / r SEB , as a

unction of the radius of the smallest enclosing ball, r SEB . After SEB,

he EBS method results in the smallest radii; its over-estimation is

% in most cases and ∼ 10% in the worst case as originally claimed

y Ritter (1990) . The GEO gives somewhat little bigger radii; how-

ver, it is smaller than 1.15 r SEB in most cases. On the other hand,

 ball in the COM is much bigger, and it exceeds 1.4 r SEB in the low

ensity regions (i.e., the region with large r SEB ); hence, the number

f operations executed in the gravity calculations become much

reater than other enclosing ball models. The CMP resembles the

EO because the COM predicts larger radii than the GEO in most

ases. 

Table B.4 lists the costs to generate each enclosing ball on dif-

erent GPUs. The cost is measured by calling the clock64() func-

ion within the _global_ function in the CUDA code and trans-

ated into the elapsed time by dividing by the number of concur-

ent warps and the clock cycle frequency. The elapsed time to gen-

rate enclosing balls is always negligibly small compared to that to

alculate gravity. The dependence of the elapsed time on the par-

icle distribution is much weaker compared to that of the gravity

alculation. 
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Listing 2. Implementation of Peano–Hilbert key decoder. 

Listing 3. Implementation of Morton key generator. 

Table B.4 

Computing cost to generate various enclosing balls. 

GPU a Model b SEB c EBS d GEO e COM 

f CMP g 

M2090 NFW 2 . 13 × 10 −2 s 1 . 07 × 10 −2 s 5 . 34 × 10 −3 s 3 . 27 × 10 −3 s 7 . 86 × 10 −3 s 

M2090 M31 2 . 13 × 10 −2 s 1 . 06 × 10 −2 s 5 . 33 × 10 −3 s 3 . 27 × 10 −3 s 7 . 86 × 10 −3 s 

K20X NFW 1 . 02 × 10 −2 s 3 . 05 × 10 −3 s 1 . 27 × 10 −3 s 9 . 08 × 10 −4 s 2 . 05 × 10 −3 s 

K20X M31 1 . 02 × 10 −2 s 3 . 01 × 10 −3 s 1 . 27 × 10 −3 s 9 . 08 × 10 −4 s 2 . 06 × 10 −3 s 

TITAN X NFW 1 . 06 × 10 −2 s 2 . 04 × 10 −3 s 5 . 09 × 10 −6 s 7 . 45 × 10 −4 s 8 . 43 × 10 −4 s 

TITAN X M31 1 . 06 × 10 −2 s 2 . 00 × 10 −3 s 5 . 09 × 10 −6 s 7 . 49 × 10 −4 s 8 . 69 × 10 −4 s 

a Name of GPU. 
b Particle distribution models. 
c Cost to generate the smallest enclosing ball based on Fischer et al. (2003) . 
d Cost to generate the efficient bounding sphere based on Ritter (1990) . 
e Cost to generate the sphere centered on the geometric center of the enclosing rectangular cuboid. 
f Cost to generate the sphere centered on the center-of-mass of particles. 
g Cost to generate the smaller sphere of GEO and COM. 



80 Y. Miki, M. Umemura / New Astronomy 52 (2017) 65–81 

Fig. B.10. Radii of enclosing balls. The horizontal and the vertical axes are the radii 

of the smallest enclosing ball r SEB and that of an enclosing ball r ball normalized by 

r SEB , respectively. The color map on each panel displays the normalized frequency 

for different definitions of the pseudo i -particles: (a) the efficient bounding sphere 

( Ritter, 1990 ), (b) the sphere centered on the geometric center of the enclosing rect- 

angular cuboid, (c) the sphere centered on the center-of-mass of particles, and (d) 

the smaller sphere of (b) and (c). The particle distribution is that representing M31 

by 2 23 = 8,388,608 particles, and the total number of enclosing balls generated on 

K20X is 262,144. 
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Appendix C. Modeling the interval of tree rebuild 

In the power-law growth model, the required time to calculate

gravity at the i th step is assumed to grow as 

 

(i ) 
walk 

= r i −1 t 1 , (C.1)

where t 1 and r are the scale factor and the common ratio, respec-

tively. The total elapsed time after n steps is given by 

 tot = t make + 

r n − 1 

r − 1 

t 1 . (C.2)

The first and the second derivatives of t mean = t tot /n with respect

to n are calculated as 

d 

dn 

t tot 

n 

= − t make 

n 

2 
+ 

(n ln r − 1) r n + 1 

n 

2 (r − 1) 
t 1 , (C.3)

d 2 

dn 

2 

t tot 

n 

= 

2 t make 

n 

3 
+ 

{ 1 + (n ln r − 1) 2 } r n − 2 

n 

3 (r − 1) 
t 1 . (C.4)

Therefore, the desired condition for rebuilding the tree becomes 

(n ln r − 1) r n = (r − 1) 
t make 

t 1 
− 1 , (C.5)

if the right hand side of (C.4) is positive. Substituting (C.5) into

(C.4) yields the equation 

d 2 

dn 

2 

t tot 

n 

= 

1 

n 

( ln r ) 2 r n 

r − 1 

t 1 , (C.6)

which implies that r > 1 is the necessary condition to minimize

t mean . 

In the parabolic growth model, we assume 

 

(i ) 
walk 

= t 1 + (i − 1) b + (i − 1) 2 a, (C.7)

where t 1 , a , and b are fitting parameters determined by the least

squared method. The total elapsed time after n steps is written

as 

 tot = t make + nt 1 + 

n (n − 1) 
b + 

n (n − 1)(2 n − 1) 
a. (C.8)
2 6 
he first and the second derivatives of t mean = t tot /n with respect

o n are calculated as 

d 

dn 

t tot 

n 

= − t make 

n 

2 
+ 

b 

2 

+ 

4 n − 3 

6 

a, (C.9)

d 2 

dn 

2 

t tot 

n 

= 

2 t make 

n 

3 
+ 

2 a 

3 

. (C.10)

quating (C.9) to zero yields the optimal choice as 

 

2 = 

{
b 

2 

+ 

4 n − 3 

6 

a 

}−1 

t make . (C.11)

utting (C.11) into (C.10) gives the expression of the second deriva-

ive at the extremum: 

d 2 

dn 

2 

t tot 

n 

= 

b 

n 

+ 

2 n − 1 

n 

a = 

b + (2 n − 1) a 

n 

. (C.12)

herefore, 

(2 n − 1) a + b ≥ 0 (C.13)

s the necessary condition to get the shortest time-to-solution. 
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