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Abstract

Background: Loosening of screws is a common problem in orthopedic and maxillofacial surgery. Modifying the implant
surface to improve the mechanical strength of screws has been tried and reported. We developed screws coated with
fibroblast growth factor-2 (FGF-2)−apatite composite layers. We then showed, in a percutaneous external fixation model,
that this composite layer had the ability to hold and release FGF-2 slowly, thereby reducing the risk of pin tract infection
of the percutaneous external fixation. The objective of the current study was to clarify the effect of FGF-2−apatite
composite layers on titanium screws on bone formation around the screw.

Methods: We analyzed samples of previously performed animal experiments. The screws were coated with FGF-2
−apatite composite layers by immersing them in supersaturated calcium phosphate solutions containing FGF-2. Then, the
uncoated, apatite-coated, and FGF-2−apatite composite layer-coated screws were implanted percutaneously in rabbits.
Finally, using inflammation-free histological sections, we histomorphometrically assessed them for the presence of bone
formation. Weibull plot analysis was then applied to the data.

Results: On average, screws coated with FGF-2−apatite composite layers showed a significantly higher bone apposition
rate than the uncoated or apatite-coated screws. Although the difference in the average bone apposition rate
was small, the FGF-2−apatite composite layers produced a significant, marked reduction in the incidence of
impaired bone formation around the screw compared with the incidence in the absence of FGF-2 (uncoated
and apatite-coated screws). The probability of resulting in a bone apposition rate equal to or less than 63.
75%, for example, is 3.5 × 10-4 for screws coated with the FGF-2−apatite composite layers versus 0.05 for
screws in the absence of FGF-2.

Conclusions: FGF-2-apatite composite layer coating significantly reduced the risk of impaired bone apposition to the
screw. Thus, it is feasible to use titanium screws coated with FGF-2−apatite composite layers as internal fixation screws
to decrease the risk of loosening.
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Background
Loosening of screws is a severe clinical problem in ortho-
pedic and maxillofacial surgery, and it could be exacer-
bated in patients with compromised bone quality [1–3].
Screw loosening leads to unfavorable clinical results, in-
cluding incomplete healing of a bone fracture and delayed
union of spinal fusion. To prevent screw loosening, a var-
iety of improvements and developments have been
achieved in the surgical techniques for screw insertion
and in the screw materials, design, and surface [4, 5].
The improved screw surface is considered a promising so-

lution strategy. Such improvement includes surface modifica-
tions to enhance biocompatibility and osteoconductivity with
the use of calcium phosphates, TiO2−strontium−CaSiO3

−biopolymer composite, acid-etching, zinc-modified Ca−Si
ceramic, and CaTiSiO5 ceramic [5–12]. Moreover, bio-
logically active molecules such as fibroblast growth
factor-2 (FGF-2), bone morphogenetic proteins (BMP),
collagen, fibronectin, 1,25-vitamin D3, semaphorin 3A,
and bisphosphonate are combined with the surface or
incorporated into osteoconductive coatings [11, 13–20].
Screws coated with FGF-2−apatite composite layers

are promising. FGF-2 regulates the proliferation and dif-
ferentiation of osteoblasts and fibroblasts, and it pro-
motes bone formation in appropriate doses [21–24].
Apatite is an osteoconductive material that is widely
used in orthopedic and maxillofacial surgery [5–7]. The
FGF-2−apatite composite layers form during immersion
of the screws in infusion fluid-based supersaturated cal-
cium phosphate solutions containing FGF-2 [13, 25, 26].
FGF-2 co-precipitates with calcium phosphate and con-
sequently can be incorporated into the apatite layer. The
FGF-2-apatite composite layer retains FGF-2 molecules,
which are detectable by the enzyme-linked immunosorb-
ent assay, in the layer for 16 days in Dulbecco’s modified
Eagle’s medium at 37 °C [23]. Titanium external fixation
screws coated with an FGF-2−apatite composite layer
showed significantly higher bone−screw interface
strength than those without the composite layer, owing
to the osteoconductive nature of apatite in a percutan-
eous implantation model [25]. The FGF-2−apatite com-
posite layer reduced the screw-tract infection rate
through enhanced skin tissue healing [25]. Screw-tract
infection greatly contributes to titanium screw loosening
because an infection at the screw−skin interface evokes
inflammation that, in turn, causes impaired bone forma-
tion around, and bone apposition to, the screws. In the
case of internal fixation, however, infection-mediated
loosening is hardly plausible because the entire fixation
screw is present underneath the skin. Loosening of the
internal screws depends solely on bone formation and
apposition. Although we showed in a previous study that
an FGF-2−apatite composite layer with a low dose of
FGF-2 resulted in increased bone formation over an

apatite layer in a rat cranial bone defect model, this re-
sult is insufficiently relevant to the feasibility of internal
fixation screws coated with an FGF-2−apatite composite
layer [23].
The purpose of the present study was to evaluate the

feasibility of applying the FGF-2−apatite composite layer
to internal fixation screws by evaluating bone formation
around the screws. We retrospectively analyzed bone for-
mation around the screws on all of the inflammation-free
histological sections obtained previously by percutaneous
implantation of titanium external fixation screws coated
with FGF-2−apatite composite layers. Bone apposition to
the screw and the comparative risk of impaired bone for-
mation were assessed.
The risk of impaired bone formation was evaluated

using the Weibull plot analysis, which is used to analyze
the lifetime, failure probability, and/or reliability of in-
dustrial products [27]. In the present study, impaired
bone formation around the screw was regarded as fail-
ure of the treatment. The Weibull plot analysis was
therefore used to determine the probability of failure.
Theoretically, the Weibull plot provides a straight line.
The greater the slope of the line, the more constant is
the outcome of the treatment and the lower the prob-
ability of failure.

Methods
Preparation of implants
The screws employed in the present study were com-
mercially available. Composed of gamma ray-sterilized
titanium (4.0 mm diameter, 30 mm long), they were can-
cellous screws (#407-030; Synthes Inc., West Chester,
PA, USA) with an anodically oxidized surface. Under
sterile conditions, the screws were immersed in 10 mL
of infusion fluid-based supersaturated calcium phos-
phate solutions containing FGF-2, as described else-
where [24, 25, 28, 29].
Briefly, supersaturated calcium phosphate solutions

were prepared by mixing clinically available infusions and
injection fluids. A Ca solution (Ca2+ 8.92 mM) was pre-
pared from Ringer’s solution (Ca2+ 2.25 mM) (Otsuka
Pharmaceuticals Co., Ltd., Tokyo, Japan) and calcium
chloride corrective injection 1 mEq/mL (Ca2+ 500 mM)
(Otsuka Pharmaceuticals). A phosphate solution (PO4

3−

2.97 mM) was prepared from Klinisalz® (PO4
3− 10 mM)

(I’rom Pharmaceuticals Co., Ltd., Tokyo, Japan) and dipo-
tassium phosphate corrective injection (1 mEq/mL, PO4

3−

500 mM) (Otsuka Pharmaceuticals). An FGF-2 solution
(100 μg/mL) was prepared by dissolving FGF-2 (Fiblast®;
Kaken Pharmaceutical Co., Ltd., Tokyo, Japan) in the Ca
solution. Meylon® (NaHCO3 833 mM) (Otsuka Pharma-
ceuticals) was used as an alkalizer. Supersaturated calcium
phosphate solutions containing FGF-2 (0, 0.5, 1.0, or
2.0 μg/mL) were prepared from these four solutions.
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The titanium screws were immersed in the supersaturated
calcium phosphate solutions containing FGF-2 at 25 °C for
1 day to co-precipitate apatite with FGF-2. The prepared ti-
tanium screws coated with FGF-2−apatite composite layers
were abbreviated as 25F0, 25F0.5, 25F1, and 25F2.
Another supersaturated calcium phosphate solution

containing FGF-2 (4.0 μg/mL) was prepared in the same
manner for immersing titanium screws at 37 °C for 2 days
[25]. Instead of Meylon, Bifil® (NaHCO3 166 mM) (Ajino-
moto Pharmaceuticals Co., Ltd., Tokyo, Japan) was used
as an alkalizer. The obtained titanium screws coated with
FGF-2−apatite composite layers are abbreviated as 37F4.
Uncoated titanium screws are labeled as Ti. The combin-
ation of 25F0.5, 25F1, 25F2, and 37F4 is abbreviated as
FGF(+), and that of the Ti and 25F0 is abbreviated as
FGF(−). The chemical compositions of the supersaturated
calcium phosphate solutions are summarized in Table 1.
Characteristics of the FGF-2−apatite composite layers

are summarized in Table 2 [24, 29]. The apatite phases
of all the layers, which are poorly crystallized, have simi-
lar chemical compositions except for the significantly
higher Ca/P molar ratio associated with 37F4. The
amounts of FGF-2 in the layers obtained by the Bradford
method are similar, except for a significantly lower value
associated with 25F0.5. The mitogenic activity of the
loaded FGF-2 measured by NIH3T3 cell proliferation is
also similar, except for a significantly lower value associ-
ated with 25F0.5. A typical value of the layer thickness
25F0 was estimated to be 2.9 μm using a CCD laser
micrometer.

Animal experiments
All of the inflammation-free histological sections were
selected from those obtained previously by percutaneous
implantation of 25F0 (n = 20), 25F0.5 (n = 20), 25F1
(n = 20), 25F2 (n = 20), 37F4 (n = 20), and uncoated titan-
ium (Ti, n = 40) screws for 4 weeks in 70 male, 14-week-
old Japanese white rabbits (weight range 2.5–3.0 kg)
[24, 25, 28]. Wet and rinsed 25F0, 25F0.5, 25F1, 25F2,
and 37F4 screws immediately after finishing the
immersion were used for the animal experiments. A
single physician, who was blinded to the screw identifi-
cation, performed the operations. After intravenous in-
jection of barbiturate (40 mg/kg body weight), the
screws were implanted in both medial proximal tibiae
in a direction perpendicular to the tibial shaft axis.
First, a small incision (10 mm) was made on the skin,
and a perforation 2.5 mm in diameter in both tibial
metaphyses. After implantation, the skin was sutured
bilaterally to the screw. Postoperatively, each rabbit was
allowed to behave freely in its own cage. The rabbits
did not receive any antibiotics or treatment for their
wounds and were sacrificed 4 weeks after the operation.
The screws were then extracted. The proximal tibial

metaphyses were fixed in 10% neutral-buffered formalin
for 7 days and then separated into soft-tissue and hard-
tissue parts. The hard-tissue parts were decalcified in an
ethylenediaminetetraacetic acid solution and embedded
in paraffin. The embedded samples were sliced in 5-μm-
thick sections that were perpendicular to the tibial longi-
tudinal axis and parallel to the screw hole. The sections
were stained with hematoxylin-eosin.

Histomorphological measurements
The histological sections were randomized and blinded
to the screw identification. Two other physicians ana-
lyzed the sections independently. Sections with poor
conditions as a result of deformation and damage were
eliminated from the analysis. A section was considered
inflammation-free when both physicians judged that no
sign of inflammation was visible. A total of 67 sections
from 50 rabbits were identified as inflammation-free.
The numbers of inflammation-free sections were 22, 10,
5, 7, 11, and 12 for titanium screws Ti, 25F0, 25F0.5,
25F1, 25F2, and 37F4, respectively.
Using the inflammation-free sections, the length of

bone−screw interface line where the bone is in direct
contact with the screw, the length of the peripheral line
of the screw, and the bone apposition to the screw were
determined in the cortex and medullary cavity. The bone
apposition rate (%) was defined as follows (Fig. 1):
Bone apposition rate (%) = (total length of the bone

−screw interface line where the bone is in direct contact
with the screw)/(full-length of the peripheral line of the
screw in the section).

Table 1 Chemical compositions of the supersaturated calcium
phosphate solutions

Titanium screws

25F0, 25F0.5,
25F1, 25F2

37F4

Immersing condition

Temperature 25 °C 37 °C

Duration 1 day 2 days

Ionic concentration (mM)

Na+ 147.23 138.87

K+ 9.92 7.39

Ca2+ 8.92 3.67

Mg2+ 0.24 0.22

Cl− 153.46 134.39

H2PO4
- 0.95 0.90

HPO42- 2.02 0.94

HCO3− 15.09 15.09

CH3COO
− 1.90 1.80

Xylitol 31.65 29.93

FGF-2 concentration (μg/mL) 0, 0.5, 1.0, and 2.0 4.0
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The length of the bone−screw interface line and the
screw’s peripheral line was determined at a magnifica-
tion of × 12.5 using a Vanox-T microscope (Olympus
Optical Co., Ltd., Tokyo, Japan) equipped with a CCD
video camera system (DP80; Olympus Optical Co., Ltd.,
Tokyo, Japan) with the use of Image J software (National
Institutes of Health, Bethesda, MD, USA).

Weibull plot analysis
The bone apposition rate was analyzed using the Weibull
plot analysis [27], according to the following Weibull
equation:

lnln 1= 1‐Sð Þ½ � ¼ m ln σ‐m ln ξ;

where S, m, σ, and ξ indicate the failure probability,
Weibull parameter, a measure that gives the failure
probability, and a scale parameter, respectively. Thus,
the plot of ln σ against lnln [1/(1 − S)] gives a straight
line with a slope of m. In this study, σ is the bone appos-
ition rate, and S is the probability of resulting in a bone
apposition rate at or less than σ. The measured σ values

were arranged in ascending order. S was derived from
the average rank method using Sj = j/(N + 1), where j is
an order number of an individual σ value, and N is the
total number of measured σ values.

Statistical analysis
Student’s t test was used to test statistically significant
differences in the length of the bone−screw interface
line, the screw’s peripheral line, the bone apposition rate
and the slope of the regression line of the Weibull plot.
The F test was used to test a statistically significant dif-
ference in dispersion in the frequency histogram. A value
of p < 0.05 was considered to indicate statistical signifi-
cance for each analysis.

Results
The bone apposition rate was significantly higher for
FGF(+) (88.6 ± 4.4%) than for FGF(−) (83.0 ± 9.5%) (p =
0.017) (Fig. 2). The bone-screw interface line was signifi-
cantly longer for FGF(+) (43.5 ± 7.8 mm) than for
FGF(−) (38.9 ± 9.2 mm) (p = 0.03) while there was no
significant difference in the length of screw’s peripheral
line between FGF(+) (49.2 ± 9.4 mm) and FGF(−) (46.8
± 10.1 mm) (p = 0.30) (Table 3). The frequency distribu-
tion of the bone apposition rate for FGF(+) was very
narrow and nearly symmetrical, with all of the values be-
ing >75% (Fig. 3). In contrast, the frequency distribution
of the bone apposition rate for FGF(−) was broad and
apparently asymmetrical, with one-fourth of the values
being <75%. The frequency distribution was significantly
broader for FGF(−) than for FGF(+) (p < 0.0001). Thus,
qualitatively, the FGF(+) group resulted in a lower inci-
dence of impaired bone formation around screws than
the FGF(−) group.
We used Weibull plot analysis to analyze the risk of

impaired bone formation quantitatively (Fig. 4). The
Weibull plot was linear for both FGF(+) and FGF(−).
The slope of the regression line was significantly
higher for FGF(+) (22.6) than for FGF(−) (9.42) (p =
7.3 × 10−34). Using the regression lines, the risk of im-
paired bone formation was calculated at some threshold
vales of bone apposition rate which were selected in an ar-
bitrary manner (Table 4). For example, if impaired bone

Table 2 Characteristics of the FGF-2-apatite composite layers

25F0 25F0.5 25F1 25F2 37F4

Ca (μg/screw) 137.7 ± 6.1 114.5 ± 17.2 149.3 ± 22.7 166.2 ± 35.9 143.4 ± 60.9

P (μg/screw) 73.9 ± 3.1 57.3 ± 8.6 73.9 ± 11.0 82.0 ± 17.4 65.2 ± 25.6

Ca/P molar ratio 1.40-1.44 1.55 ± 0.02 1.56 ± 0.01 1.56 ± 0.02 1.67 ± 0.11*

Calcium phosphate phase Poorly crystallized apatite

FGF-2 (μg/screw) – 2.04 ± 1.18* 3.97 ± 1.14 4.62 ± 0.86 4.72 ± 1.91

FGF-2 activity (×103 cells) – 16.3 ± 2.0* 23.8 ± 4.7 37.2 ± 7.4 31.1 ± 13.2

*p < 0.05

Fig. 1 Example of a bone apposition rate measurement. The yellow
and blue lines represent the bone−screw interface line where the
bone is in direct contact with the screw and the peripheral line of
the screw, respectively
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formation is defined as a state at ≤63.75% of the bone ap-
position rate, the probabilities of impaired bone formation
are 3.5 × 10−4 and 0.05 for FGF(+) and FGF(−), respect-
ively. In the same manner, if impaired bone formation is
defined as a state at ≤68.82% of the bone apposition rate,
the probabilities of impaired bone formation are 0.002 and
0.1 for FGF(+) and FGF(−), respectively. Thus, the risk of
impaired bone formation is remarkably lower for FGF(+)
than for FGF(−).

Discussion
FGF(+) had a significantly higher bone apposition rate
and lower incidence of impaired bone formation around
the screws than FGF(−) in inflammation-free histological
sections obtained by percutaneous implantation of exter-
nal fixation screws. Because there were individual differ-
ences in bone-forming ability among the animals with
an implanted screw, we recorded and compared the
ranges of the bone apposition rates for the FGF(+) and
FGF(−) groups (Fig. 3).
The average bone apposition rate was only slightly

higher for FGF(+) than for FGF(−), with significant differ-
ence (p = 0.017) (Fig. 2a). The difference in the frequency
distribution of the bone apposition rate, however, was
more marked and significant between the FGF(+) and
FGF(−) groups (Fig. 3). The frequency distribution for
FGF(+) was very narrow, whereas that for FGF(−) was
broad. The broader distribution for FGF(−) was a result of
the presence of low values of the bone apposition rate,
which caused an asymmetrical frequency distribution.
The sharp contrast in the broadness of the frequency

distribution suggested that a small number of animals

with less-strong bone-forming ability were randomly
assigned to both the FGF(+) and FGF(−) groups. In
addition, FGF-2 enhanced the bone formation of only
those animals with less-strong bone-forming ability in
the FGF(+) group. FGF-2 is known to exhibit a bell-
shaped dose response, where an excess of FGF-2 has less
or no enhancement effect on bone formation [10, 14].
Animals having a sufficient level of endogenous FGF-2
in the FGF(+) group would not have responded to ex-
ogenous FGF-2. As a result, there was a lower incidence
of impaired bone formation around the FGF(+) screw
than the FGF(−) screw.
The risk of impaired bone formation was remarkably

lower for FGF(+) than for FGF(−), as revealed by the
Weibull plot analysis (Table 4). The Weibull plot was
linear for both FGF(+) and FGF(−). Thus, the present
analysis meets the theoretical prerequisites of the Wei-
bull plot analysis. The fact that the slope of the regres-
sion line was noticeably greater for FGF(+) than for
FGF(−) proved that there is significantly less risk of im-
paired bone formation around the screw with the
FGF(+) condition than that with the FGF(−) condition.
The risk is expressed as a probability (S) of resulting in a
bone apposition rate equal to or less than a specific
value of σ. For example, if the specific values are set at
68.82, 63.75, and 50%, the probabilities of resulting in a
bone apposition rate equal to or less than 68.82, 63.75,
and 50% are 0.1, 0.05, and 0.005, respectively, for
FGF(−). For FGF(+), the probabilities for the same spe-
cific values are 0.002, 3.5 × 10−4, and 1.4 × 10−6 (Table 4).
Note that the difference between FGF(−) and FGF(+) in
terms of the risk probabilities (e.g., 0.1:0.002 at 68.82%,
0.05:3.5 × 10−4 at 63.75%, and 0.005:1.4 × 10−6 at 50%)
increases when the specific value of the bone apposition
rate decreases. The thresholds of ≤68.82%, ≤63.75%, and
≤50% correspond to bottom 0.5%, 5%, and 10%, respect-
ively, of FGF(−) samples in the rank of bone apposition
rate. Thus, FGF(+) was more reliable than FGF(−) in
terms of preventing impaired bone apposition regardless

Fig. 2 Bone apposition rate for FGF(+) and FGF(−) (a), and for titanium screws Ti, 25F0, 25F0.5, 25F1, 25F2, and 37F4 (b). The data shown are means ±
SD. The combination of 25F0.5, 25F1, 25F2, and 37F4 is abbreviated as FGF(+), and the combination of Ti and 25F0 is abbreviated as FGF(−)

Table 3 Lengths of bone-screw interface line and screw’s
peripheral line in FGF(−) and FGF(+) groups

FGF(−) (mm) FGF(+) (mm) P value*

Bone-screw interface line 38.9 ± 9.2 43.5 ± 7.8 0.03

Screw’s peripheral line 46.8 ± 10.1 49.2 ± 9.4 0.30

* Student’s t test
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of the individual’s bone-forming ability. The decreased
risk is not a result of the apatite, but rather the presence
of FGF-2 in the FGF-2−apatite composite layer, as the
slopes for Ti and 25F0 (apatite-coated Ti) were similar
and significantly lower than those for 25F0.5, 25F1,
25F2, and 37F4 (Fig. 5).
It is feasible to apply the FGF-2−apatite composite

layer to internal fixation screws, which have varied sta-
bility at the screw–bone interface depending on the
quantity, quality, and regeneration of bone surrounding
the screw [30–32]. The stability of the screw−bone inter-
face is characterized by the extraction torque and pull-
out resistance [33]. There was higher fixation strength of
the screws coated with hydroxyapatite than the uncoated
screws owing to direct bone formation on hydroxyapa-
tite [34]. Hydroxyapatite coated with an FGF-2−apatite
composite layer at an optimized dose produced more
bone formation than that with uncoated hydroxyapatite
[23]. Enhanced bone formation associated with other
FGF-2-coated implants resulted in greater mechanical
stability at the implant–bone interface [35, 36]. In the
present study, the screws coated with an FGF-2−apatite

composite layer showed significantly less risk of im-
paired bone formation than the uncoated and apatite-
coated screws. Such a decreased risk of impaired bone
formation would result in a decrease in the risk of im-
paired pull-out resistance. Thus, use of an FGF-2−apatite
composite layer to coat internal fixation screws is feas-
ible in that it could decrease the risk of screw loosening.
This characteristic is clinically useful because screw
loosening leads to severe complications.
In the present study, the use of the Weibull plot ana-

lysis provided new insights into the effect of FGF-2 on
bone formation. The previously reported effects of FGF-
2 on increasing bone formation were equivocal. Some
authors reported increased effects, whereas others re-
ported no effect or only a limited effect [37–40]. All of
these studies compared the average amount of bone for-
mation or osteogenic differentiation. As shown in Fig. 2,
a comparison of the average values is not efficient for
detecting the difference in frequency of outlier values
when the frequency is low. The Weibull plot analysis en-
abled such low probability events to be detected. As a
result, it revealed a restorative effect of FGF-2 on the

Fig. 3 Frequency histograms of bone apposition rates for FGF(−) (a) and FGF(+) (b). The combination of 25F0.5, 25F1, 25F2, and 37F4 is
abbreviated as FGF(+), and the combination of Ti and 25F0 is abbreviated as FGF(−)

Fig. 4 Weibull plots of the bone apposition rates for FGF(−) (a) and FGF(+) (b) that show the probability (S) of resulting in a bone apposition rate
in the range of 0 to σ (%). The y and x of the regression lines represent lnln [1/(1 − S)] and ln σ, respectively. The combination of 25F0.5, 25F1,
25F2, and 37F4 is abbreviated as FGF(+), and the combination of Ti and 25F0 is abbreviated as FGF(−)

Fujii et al. Journal of Orthopaedic Surgery and Research  (2017) 12:1 Page 6 of 9



impaired bone-forming ability. However, the mechanism
that underlies the restoring effect remains unclear.
Limitations of the present study are that (i) the FGF-2

−apatite composite layers that were prepared under dif-
ferent conditions are involved in the analysis, (ii) the

number of inflammation-free histological sections in
each group was small and varied greatly, and (iii) no
pull-out strength data are presented.

Conclusions
Histomorphometrical analysis of inflammation-free histo-
logical sections obtained using percutaneous implant-
ation of external fixation screws revealed that, on
average, screws coated with FGF-2−apatite composite
layers showed a slightly higher bone apposition rate,
with a significant difference from the uncoated and
apatite-coated screws. However, FGF-2−apatite com-
posite layers have a much more marked effect on

Table 4 Probability of impaired bone formation in different
setting of threshold of bone apposition rate

Threshhold setting
in bone apposition rate

Probability of impaired bone formation

FGF(−) FGF(+)

≤68.82% 0.1 0.002

≤63.75% 0.05 3.5 × 10−4

≤50% 0.005 1.4 × 10−6

Fig. 5 Weibull plots of the bone apposition rates for the six titanium screw groups. Weibull plots of bone apposition rate for Ti (a), 25F0 (b),
25F0.5 (c), 25F1 (d), 25F2 (e), and 37F4 (f) show the probabilities (S) of resulting in a bone apposition rate in the range of 0 to σ (%). The y and x
of regression lines represent lnln [1/(1 − S)] and ln σ, respectively
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reducing the incidence of impaired bone apposition than
on enhancing the bone apposition rate. The Weibull plot
analysis revealed that the risk of resulting in less than
63.75%, for example, in bone apposition rate was reduced
by 1/142 times (3.5 × 10−4/0.05) with the use of FGF
−apatite composite layer coating compared with uncoated
and apatite-coated screws. Therefore, FGF-2−apatite com-
posite layers are feasible for coating internal fixation
screws, as it is known that bone quality, quantity, and for-
mation around the screw is crucial to prevent loosening of
internal fixation screws. Further study is required.

Future study
Animal studies that include implanting internal fixation
screws, measuring local bone formation, and determin-
ing the pull-out strength of the screw are required in
combination with the Weibull plot analysis. These stud-
ies could further clarify whether the FGF-2−apatite com-
posite layers reduce the risk of screw loosening.
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