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Abstract: We consider the problem of recovering a low-rank signal ma-
trix in high-dimensional situations. The main issue is how to estimate the
signal matrix in the presence of huge noise. We introduce the power spiked
model to describe the structure of singular values of a huge data matrix. We
first consider the conventional PCA to recover the signal matrix and show
that the estimation of the signal matrix holds consistency properties under
severe conditions. The conventional PCA is heavily subjected to the noise.
In order to reduce the noise we apply the noise-reduction (NR) methodol-
ogy and propose a new estimation of the signal matrix. We show that the
proposed estimation by the NR method holds the consistency properties
under mild conditions and improves the error rate of the conventional PCA
effectively. Finally, we demonstrate the reconstruction procedures by using
a microarray data set.
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1. Introduction

In this paper, we address the problem of recovering an unknown d x n low-rank
matrix, A = [a1,...,a,]. A is called the signal matrix. Let r = rank(A), where
r is unknown. We assume r (< min{d,n}) is fixed. For high-dimensional data,
the estimation of the low-rank matrix is quite important in many fields such as
genomics, image denoising, recommendation systems and so on. Negahban and
Wainwright [5] and Rohde and Tsybakov [6] considered the problem for high-
dimensional regression models. Shabalin and Nobel [7] considered the estimation
of A when observations have a Gaussian noise. In this paper, we consider the
problem of recovering A when observations have a non-Gaussian noise.

Suppose we have a d x n data matrix, X = [x1,...,x,], where
X =yVnA+W. (1.1)
Here, W = [w1,...,w,] is a d x n noise matrix, where w;, j = 1,...,n, are

independent and identically distributed (i.i.d.) as a d-dimensional distribution
with mean zero and covariance matrix 3w (# O). Note that ; — /na;, j =
1,...,n, are i.i.d. Let ¥4 = AA”. Then, it holds that E(XXT)/n = X4 +
Yw (= X, say). Shabalin and Nobel [7] considered (1.1) in a high-dimensional
setting, where the data dimension d and the sample size n increase at the same
rate, i.e. n/d — ¢ > 0. They assumed that the elements of W are i.i.d. normal
random variables. We note that the conditions such as “n/d — ¢ > 0” and the
Gaussianity of the noise are often strict in real high-dimensional analyses. In this
paper, we consider (1.1) in high-dimensional settings without assuming those
conditions. We assume the divergence condition for d and n such as d — oo
either when n is fixed or n — oco. The divergence condition includes both high-
dimension, low-sample-size (HDLSS) settings such as “n/d — 0” and high-
dimension, large-sample-size settings such as “n/d — ¢ > 0”7 or “n/d — oo as
d— o0”.

The eigen-decomposition of Xy is given by 3y = UWAWU%, where Ay
is a diagonal matrix of eigenvalues, A (yy > -+ > Agaw) (= 0), and Uw is an or-
thogonal matrix of the corresponding eigenvectors. Let W = UWA‘%QZ . Then,
Z is a d xn sphered data matrix from a distribution with the identity covariance
matrix. Here, we write Z = [z1,...,24]7 and z; = (2j1,...,2;n) 7, 1=1,...,d.
Note that E(zjrzjk) = 0 (j # j') and Var(z;) = I,, where I, is the n-
dimensional identity matrix. We assume that the fourth moments of each vari-
able in Z are uniformly bounded. The singular value decomposition of A is given
by A = 22:1 )\;(/i)uj(A)'vJT(A), where )\}{i) > > )\71,{31) (> 0) are singular
values of A and w;(4) (or vj(4)) denotes a unit left- (or right-) singular vector
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corresponding to /\jl,(/i) (j =1,...,r). Note that 34 = Z;Zl )\j(A)uj(A)ujT(A).
Also, note that \;4)s depend not only on d but also on n. When r > 2, we
assume that \;4)s are distinct in the sense that

s
lim inf 294

>1 when n is fixed or n — oo for all j < j' (< 7).
d—o0 >\j’(A)

In this paper, we consider the problem of recovering the signal matrix A in
high-dimensional settings such as d — oo either when n is fixed or n — oco. In
Section 2, we introduce the power spiked model to describe the structure of the
eigenvalues of 3. In Section 3, we consider using the conventional PCA to recover
A and show that the estimation of A holds consistency properties under severe
conditions. In Section 4, we consider the noise reduction (NR) methodology by
Yata and Aoshima [11] in (1.1) and apply it to recovering A. We show that the
estimation of A by the NR method holds the consistency properties under mild
conditions and improves the error rate of the conventional PCA. In Section 5,
we discuss the choice of unknown rank r by using the consistency properties. In
Section 6, we give several simulation results to recover signal matrices. Finally,
in Section 7, we give an application of (1.1) and demonstrate reconstruction
procedures by using a microarray data set.

2. PCA consistency for the power spiked model

In this section, we assume A = Oy ,, in (1.1), where Og j, is the d xn zero matrix.
The sample covariance matrix is given by § = n~ X X”. We consider the dual
sample covariance matrix defined by Sp = n ' X7 X. Let m = min{d, n}. Note
that Sp and S share non-zero eigenvalues and rank(S) = rank(Sp) < m. Let
)\1 > > )\ > 0 be the elgenvalues of Sp. The eigen- decompos1t10ns of S
and S’D are glven by S = Z )\ uju and Sp = Z : )\ j0;0; T where @; (or

¥;) denotes a unit left- (or rlght ) singular vector of X /n'/? correspondmg to

5\;/2. Note that i; can be calculated by 4t; = (n);)~*/2X %, from the fact that
X /2 = A a0l

Jung and Marron [3] and Yata and Aoshima [10] investigated consistency
properties of the conventional PCA for HDLSS data. Yata and Aoshima [11]
gave consistent estimators both of the eigenvalues and eigenvectors together with
the principal component (PC) scores by a method called the noise-reduction
methodology. Shen et al. [8] gave a consistent estimator of the first eigenvector
under a sparsity assumption. Zhou and Marron [13] investigated consistency
properties of some estimators for the first eigenvector in outlier contaminated
data.

Now, we consider the power spiked model in 3. The eigen-decomposition
of 3 is written as ¥ = UAU?T, where A is a diagonal matrix of eigenvalues,
Al > oo > M(>0), and U = [ug,...,uy] is an orthogonal matrix of the
corresponding eigenvectors. Let 3 = 3(y) + X3y, where (1) = Z:il AlululT

and 2(2) = Zd

T . oy .
imro+1 Nittiw; with some unknown and positive fixed integer
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ro (< d). Here, ¥y is regarded as an intrinsic part and X, is regarded as a
noise part. Then, if there exists a positive fixed integer k,, such that

k.
tr(X.59)
lim — G~ — 0, (2.1)
d— o0 )\T(';'o
the eigenvalues are called the power spiked model. See Section 2 in Yata and
Aoshima [12] for the details. When ¢ > 2, we assume that lim infg_, o (A;j /A7) >

1 for all j < 5/ (< 1p). They gave the following results.

Theorem 2.1 ([12]). When limg_, tr(E%Q))/)\? =0 for some j (< rg), it holds
that as m — oo

)\.
A—?:1+op(1), [aluj] =1+0,(1) and |9]z;/n'/? =1+0,(1) (2:2)
J
under the conditions:
S i AAE{(23, — 1)(23, — 1)} t1(S2)
L =o(1 d ——~~ =0o(1). 2.3
n2 o(1) an Y o(1). (23)

When limsup,_, tr(E%Q))/)\§ > 0 for some j (< 19), (2.2) holds as m — oo
under the conditions in (2.3) and

d
Zp#q,s¢t2r0+l /\p)‘q/\s/\t{E(Zkaqusthk)}Q —o(1) and tf(z%z))2 —o(1)
n2\j B n)\? B '

Remark 2.1. A simple power spiked model is
)\j :ajdo‘-f (j = 1,...,7‘0) and )\j =Cy (j :To—i-l,...,d),

where a;s, ¢;s and ajs are positive (fixed) constants. It should be noted that
limd<_>1072tr(2é))/)\? = 0 when o; > 1/2 and limsup,_, ., tr(E%Q))/)\? > 0 when
Q5 = .

See [12] or Remark 3.1 for the details of Theorem 2.1. In (1.1), X 4 is regarded
as X1y and Xy is regarded as 32 in the power spiked model.

3. Reconstruction of the signal matrix by conventional PCA

In this section, we consider recovering the signal matrix A by using the conven-
tional PCA in high-dimensional settings such as d — oo either when n is fixed or
n — oo. We reconstruct A by using 5\js, u;s and ¥;5. We assume '&JTuj(A) >0
and ff)jT'vj( 4y > 0 for all j (< r) without loss of generality.

We assume the power spiked model for (1.1) as follows: There exists a positive
fixed integer k, such that

=0 either when n is fixed or n — oo. (3.1)
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Under (3.1), it holds that
Arw)

=o0(1),
o = ol

so that A;(4)s are much larger than any eigenvalues of 3y,. We consider (3.1)
for j (< r) either when n is fixed or n — oo in the following two cases:

tr (X3 tr(=7
(I) lim M) =0 and (II) limsup r(2 w) > 0.
o A a0 Aj(a)

We note that Aj4) in (I) is larger than that in (II). See Remark 2.1 for the
detail. Also, Murayama et al. [4] considered the estimation of A for a special
case of (I). We consider the following conditions when d — oo while n is fixed
or n — oo:

d
e i1 Ao A E{ (22, — )25 — 1)}

(C-i) 5 = o(1);
) AT ()
o Dpraszt ) Aam) Asw) Aew) {E (2przqnzsnzen) }
(c-i g —otn
5 s i(A4)
b 3
(C-iit) TEWS ) and (Ceiv) EEW) .
A4 A
A 4) nA;(A)
Remark 3.1. We note that z1p,...,2qx (kK = 1,...,n) are independent when
W is Gaussian. Then, it holds that
d
Ny L — 1D — D} = Ofex(S3,)} and (32)
s,t=1
d

Y X gy dsom e LE (zpkzanzsnzen) } = O{tr(Si)%),
pP#q,s#t
so that (C-i) and (C-ii) hold under (C-iii) when W is Gaussian or 21, . .., 24k
(k=1,...,n) are independent.

Note that (C-iii) does not hold for (II) when n is fixed. If (3.2) holds, (C-i)
is met even when n is fixed for j (< r) in (I). Let x; = tr(Zw)/(nA;(a)) for
j=1,...,r. We have the following results.

Theorem 3.1. For j (<), under (C-i) in (I) or under (C-i) to (C-iii) in (II),
it holds that

by ) _

)\AJ =1+k;+o0p(1), ufuj(A) = (1+ ;) 1/2—1—017(1)
7 (A)

and i)ijJ(A) =1+0,(1)

as d — oo either when n is fivred or n — oo.

Remark 3.2. If (3.2) holds, Theorem 3.1 is claimed even when n is fixed for
J (< r)in (I).
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Corollary 3.1. For j (< r), under (C-i) and (C-iv) in (I) or under (C-i) to
(C-iv) in (II), it holds that

14 op(l) and ﬂjTuj(A) =14 o0,(1)

Aj(4)

as d — oo either when n is fired or n — oo.

Note that ;s hold the consistency property without (C-iv) contrary to S\js
and @;s. Based on the theoretical background, we consider recovering the signal

matrix A by A, = Sy 5\11/211113? In Section 5.1, we discuss the choice of r in
A,. We define a loss function by

L(A|A) =|A, - All%
where || - || denotes the Frobenius norm. Let ¢ = tr(Xyw)/n. Then, we have
the following results.
Theorem 3.2. Under (C-i) in (I) with j = r or under (C-i) to (C-iii) in (II)
with 5 = r, it holds that
L(A|4) = 1 + 0y (A
as d — oo either when n is fixed or n — oo.
Remark 3.3. If (3.2) holds, Theorem 3.2 is claimed even when n is fixed under
tr(E%,V)/)\E(A) =o(1).
Corollary 3.2. Under (C-i) and (C-iv) in (I) with j = r or under (C-i) to
(C-iv) in (II) with j = r, it holds that
L(Ar|A) = 0p(Ar(a))
as d — oo either when n is fired or n — oo.

From Theorem 3.2, if (C-iv) does not hold, the loss of A, becomes rtr(Zy)/n
asymptotically. In order to reduce the noise, we apply the NR method to recov-
ering the signal matrix in Section 4.

4. Reconstruction of the signal matrix by NR method

We consider applying the noise-reduction (NR) methodology by Yata and
Aoshima [11] to recover the signal matrix A. By using the NR method, we
obtain an estimator of \;(4) as

BRIV
A=A - tr(Sp) g A

n—j

(G=1,....n—1). (4.1)

Note that the second term in (4.1) is an estimator of ¢. See Lemma 5.1 in
Section 5.1 for the details. Then, we have the following result.
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Theorem 4.1. For j (<), under (C-i) in (I) or under (C-i) to (C-iii) in (II),
it holds that

Aj Aj+1(4)
— 140, (SN L,
Aj(a) p(&'(m”) o)

as d — oo either when n is fived or n — oo, where A\, 1) = 0.

From Theorem 4.1, when n — 00 or Ajica)/Aja) = o(1), S\j holds the

consistency property without (C-iv). Remember that ;\j requires (C-iv) to hold
the consistency property.

Remark 4.1. For estimating eigenvalues, the NR method can improve the
conventional PCA even when d is not sufficiently large (e.g. d is about 10). See
Figure 1 in Ishii et al. [2] for example.

Now, we consider an adjustment of S\js as follows:

~ o tI‘(SD) — Z:: 5\1
Ajry = Aj — ==

G=1,...,7). (4.2)

Then, we have the following result.

Corollary 4.1. For j (< r), under (C-i) in (I) or under (C-i) to (C-iii) in
(II), it holds that

Nicr
10 1+ O:D(l)
Aj(a)

as d — oo either when n is fivred or n — oo.

Remark 4.2. If (3.2) holds, Theorem 4.1 and Corollary 4.1 are claimed even
when n is fixed for j (< r) in (I).
We consider recovering A by A, = . 5\11(/3 @;d! . In Section 5.2, we discuss

the choice of r in ;17«. Let
0; = ung)in(A)/(n)\i(A))l/z fori=1,...,r.

For the loss function by L(A,|A) = ||A, — AJ|%, we have the following results.

Theorem 4.2. Under (C-i) in (I) with j = r or under (C-i) to (C-iii) in (II)
with j =, it holds that

L(A|A4) =23 Aay(1+6) (1

i=1
and §; = op{()\r(A)/)\i(A))l/2} fori=1,...,r

149;
(1+r + 25i)1/2> o))

as d — oo either when n is fivred or n — oo.

Remark 4.3. If (3.2) holds, Theorem 4.2 is claimed even when n is fixed under
tr(3f) /A2 4y = o(1).



902 K. Yata and M. Aoshima

Corollary 4.2. Under (C-i) and (C-w) in (I) with j = r or under (C-i) to
(C-iv) in (II) with j = r, it holds that

L(A/|A) = 0y(Ar(a))
as d — oo either when n is fired or n — oo.

From Theorems 3.2 and 4.2, we compare 2X;(4){1 —1/(14;)'/?} with ¢ (=
Ai(a)ki) by noting &; = o, (1). It holds that 2{1—1/(14£;)'/?} < k; (i=1,...,7)

for any x; > 0, so that L(A,|A) is smaller than L(;L,|A) asymptotically. Thus,
A, improves the loss of A,.

5. Choice of the rank r

In this section, we discuss the choice of r in ET and ;L.

5.1. Choice of r in ;1,,

Let 7. (> 0) be a candidate (fixed) integer for r, where r, < min{d,n}. We
write that :ﬁ\lm =5 5\1/2111-13?. Then, we have the following result.

i=1"
Proposition 5.1. Under (C-i) in (I) with j = r or under (C-i) to (C-iii) in
(II) with j = r, it holds that

) + Z Aicay + 0p(Ar(a)) when Ty < T
i=r.+1
7 4+ 0p(Ar(a)) when e > 1

L(A,.|A) =

as d — oo either when n is fived or n — oo.

From Proposition 5.1, it is not always true that r. = r gives the smallest
L(A,,|A). In fact, for a power spiked model such as (Aj(ay, Ao(a)) = (d, d?/3),
r =2 and tr(Sy) = d, L(A;|A) is smaller than L(A,|A) as d — oo when n
is fixed. From Proposition 5.1, one may choose r, as the first integer i (= 1,
say) satisfying v > Xj110a) (i.e. Ki41 > 1). Then, r. = 71 gives the smallest
L(:&,«* |A) asymptotically for candidate integers. Note that r1 < r.

Now, we consider estimating v by

g, (Sp) =3 A

j forj=1,...,n—1.

n—j
Then, we have the following result.

Lemma 5.1. Under (C-i) in (I) or under (C-i) to (C-iii) in (II), it holds that

A b+ ZZ:j-'rl >‘i(A)
Y = n—j
Y+ 0p(Ar(a)) when j =r

+0p(Nj(a)) when j < r;

as d — oo either when n is fixed or n — oco.
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Let 7y be the first integer 7 satisfying 1%41 > 5\i+1. Then, from Lemma 5.1
we have the following result.

Proposition 5.2. Assume

lim sup ’ir_ll+1 <1 whenmr <r; liminfk, >0 whenr; =r;

d—s 00 d—oo

: r—r

and limsupk, <1-—2
d— o0 n—ra

either when n is fivzed or n — oco. Then, it holds that P(¥1 =r1) = 1 as d — oo
either when n is fived or n — oo under (C-i) in (I) with j = r or under (C-i)
to (C-iii) in (II) with j = r.

If (C-iv) with j = r holds, 1/31/5\z becomes small for a large integer 4, that is,
71 becomes a large integer as #; = O(n). Hence, if one has an upper bound for r,
as r, < ry, with integer r, (< 00), one may use 7'1,, = min{#y, r,} instead of 7.

5.2. Choice of T in A,

We write that A,., = 320 5\1/2)111»{;?. Lety; = 1—1/(14#;)/2 fori=1,...,r.

i=1"Yi(r.

We have the following result.

Proposition 5.3. Assume A\, 1(4)/(A.(ayn) = o(1) whenr, < r. Then, under
(C-i) in (1) with j = r or under (C-i) to (C-iii) in (II) with j = r, it holds that

L(A,,

A)

Z)‘i(“‘) (2%‘ + op(l)) + Z Aica) + Op()\T(A)) when r, < T;
i=1 i=r 1

Z Ai(a) (2% + Op(1)> +0p(Ar(a)) when ry > 1
i=1

as d — oo either when n is fired or n — oco.

It holds that A, 11(4)/(Ar,(ayn) = o(1) when n — oo or A, y1(a)/Ar,(a) =
o(1). From Propositions 5.1 and 5.3, one may use Zim with r, = 71, because
L(;&r* |A) with r, = 71, is smaller than L(?lr* A) with r, = 7, asymptotically.

On the other hand, similar to Section 5.1, from Proposition 5.3, one may
choose r, as the first integer ¢ (= ro, say) satisfying 2,11 > 1 (i.e. ki41 > 3).
Note that r; < ro < 7. Let 72 be the first integer ¢ satisfying 1/Aji+1 > 35\¢+1.
Note that 7*; < #3. Then, from Lemma 5.1, we have the following result.

Proposition 5.4. Assume

lim sup H;Erl <1/3 whenry <r; liminfk,., >0 whenro=r;
d—oo 2 d—o0

T —"T9

and limsupk,, <3 —4
d—o00 n—r
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either when n is fized or n — oo. Then, it holds that P(fo =13) — 1 as d — o0
either when n is fivzed or n — oo under (C-i) in (I) with j = r or under (C-i)
to (C-iii) in (1I) with j = r.

Hence, one may use E,ﬂ* with r, = 73. Here, one should note that 7y tends
to be large if (C-iv) with j = r holds. Also, note that ro — r if (C-iv) with
j = r holds. From Proposition 5.3, for the loss function, Er* with r, > r
is asymptotically equivalent to A,. Hence, when r = ry, one may choose a
relatively large r. in A, as r. > r. On the other hand, from Proposition 5.1,
the loss of ;4,.* with r, > 7 is larger than that of ;4,. asymptotically, so that one
should not choose a relatively large r, in 21”. Let 79, = min{rs, r,, }, where r,,
is given in Section 5.1. When r = rp and r < ry, 7« = 72, gives the smallest
L(A, |A) for candidate integers. Hence, for a relatively large r,,, we recommend
to use ry = r9, instead of 79 in ET*.

6. Simulations

We used computer simulations to compare the performance of ;1,,* with ﬁr*.
We set r, = 5. We set r, = 7y, for A, and r, = 7y, for A, . See Section
5 for the details. We set r = 3, 34 = diag(Ai(a), A2(a), A34),0,...,0) and
Yw = (0.3|i_j|1/3). Note that tr(2yw) = d. We considered two cases:

(a) wygs are i.i.d. as d-variate normal distribution with mean zero and covari-
ance matrix By, (A1(a), A2a), As(a)) = (d/4,d/12,d/36), d = 2, t =
7,...,13 and n=29;

(b) zsk = (v —2)/2 (s = 1,...,d) in which vgs are i.i.d. as the chi-squared
distribution with 2 degree of freedom, (A1(ay, A2(a), Ag(a)) = (d3/*, d?/3,
d'/?), n = 3[d"/?/6] and d = 2, t = 7,...,13, where [2] denotes the
smallest integer > x.

We considered the case when d — oo while n is fixed in (a) and the case when
n — oo but n/d — 0 in (b). Note that (r1,72) = (1,2) in (a) and (r1,72) = (2, 3)
in (b). From Remark 3.1, both in (a) and (b), (C-i) to (C-iii) with j = r hold,
but (C-iv) with j = r does not hold.

Let F(B) = L(B|A) /v for any d x n matrix, B, and M(b;) = |bj/\j(a)— 1]?
(j = 1,...,r) for any constant, b;. The findings were obtained by averaging
the outcomes from 2000 independent replications. Figure 1 shows the averages
of (i) F(A,), (ii) F(A,), (i) F(A,,) with r, = 7, and (iv) F(A,,) with
T« = 79, in (a) and (b). The dashed lines denote the simulation results. We
gave the corresponding theoretical values by (i) 7, (i) Y_i_; 2X;(4)%i/®, (iii)
T+ D 1 Nicay/Y and (iv) (3252 2Xia) i + Doy, 11 Aiga)) /1, Which were
denoted by the solid lines in (a) and (b). See Theorems 3.2, 4.2, Propositions 5.1
and 5.3 for the details. The theoretical value by (iv) was not described for (b)
because it is same as that of (iii). We also calculated the variances of simulation
results by the 2000 replications. The variances of (i) to (iv) in (a) and (b) were
quite small especially when d is large. For example, when d = 2¢ for ¢ > 11,
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F(4,) F(4,)
40F%_ 40F
\\‘\ . .
35k =S S - (i) 35t -»- (1)
30f™ R ] N BEL: -8
N - (iii) - (iii)
FR N o - .
25(R Ny )| ¥ = (iv)
S5
2_0_ s e 2»0
Sas,
Ls Ao g UE p
7 8 9 10 1 12 1B - 7 8 9 10 1 12 1B .
(a) d = oo while n is fixed (b) d - o0 and n — oo, but n/d — 0

Fic 1. The averages of (i) F(A,), (i) F(Ay), (iii) F(Ay,) with r« = f1, and (iv) F(A,,)
with T« = 9, which are denoted by the dashed lines. The corresponding theoretical values are
denoted by the solid lines. For (b), the theoretical value of (iv) was not described because it
is same as that of (1i).

M@y M) M(is)
02sf .. 258 25fe
.~ - % S o
020 *e-ao.a oA | 20f Meee . o1 |20 T -
~ R N s g k.
0.15 ki ‘%1 15 A | s —Rcaatees [ ;
X B o
0.10 e B “ 10 =
005 05 5
1SS, = 7R
LSS logad Zine logad o S logad
5% 9 10 1 12 13 . 578 9 10 11 12 13 G A N ) =
(a) d — oo while n is fixed
M(iy) M(i;) M(is)
05k 08 ..
\ X 4fp-e TN a-e
04 ry X ry s r A  §
Y oA | o6} N\l N | G T TN -
03f Y st e P s 4
N N\ Xy 4 \\\‘ v Ny 2 = A
\\ il
4 g 02 B 1
b bt e logad  {Eimdsaree iogad
7 8 9 10 11 12 13 7 8 9 10 11 12 13 7 8 9 10 i1 12 13

(b) d = oo and n — oo, but n/d — 0

F1G 2. The averages of M(j\]‘), M(X;) and M(S\j(r)) which are denoted by the dashed lines.
The_ corresponding theoretical values are denoted by the solid lines. For the right panels,
M (A3(r)) was not described because A3 = Ag(yy-

all the variances in (a) were smaller than 0.006. Figure 2 shows the averages
of M(X;), M()\;) and M()j(y) in (a) and (b). The dashed lines denote the

simulation results. For j = 3 both in (a) and (b), the average of M(\;(,y) was

not described because A3 is same as 5\3(T). Note that the average of M(A;) is
an estimated value of the mean square error (MSE), E(|5\j/)\j(A) —1/?). The

averages of M();) and M ();(,)) are also the same as in M (A;). From Theorem

3.1, we gave the corresponding theoretical value, /@?, for the MSE of M (5\]) The
theoretical values were denoted by the solid lines.
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The simulation results appeared close to the theoretical values and it seemed
to be good approximations when d is large. As expected theoretically, we ob-
served that A, and A, with r, = 75, give more preferable performances com-
pared to Ié\lr and 21“ with 7, = 71, even when n is fixed. The main reason
must be due to x; which is the bias of \;. See Sections 4 and 5.2 for the details.
In fact, from Figure 2, the MSE of ;\js were quite large especially when n is
small because «;s are large for the HDLSS settings. In contrast, the estimators
by the NR method gave excellent performances even when n is small. For the
estimation of A by the conventional PCA, A, with r, = 71, gave a better
performance compared to Zir because 1 < r. See Section 5.1 for the details.

7. Example

In this section, we consider an application of (1.1) to a mixture model. We
demonstrate the reconstruction procedures for the mixture model by using a
microarray data set.

7.1. Application

We suppose that there are [ classes, II;, ¢ = 1,...,l, each having unknown
mean vector, p,. We assume that an observation is sampled from one of Il;s
and the label of the class is missing. Let n;, = #{j|x; € I, for j =1,...,n} for
i =1,...,k, where #S denotes the number of elements in a set S. We define
that p(;) = p,; according to x; € II; for j = 1,...,n. We consider the following
mixture model.

xj=pg ) tw; forj=1...n (7.1)

Then, we can write that
A= [”(1)7 s 7l'l'(n)]/n1/2

Note that >0 | Nya) = [|A]|F = Zizl(nz/n)HuZH?, where || - || denotes the
Euclidean norm. If y,,..., u; are linearly independent and n; > 0 for all 4, the
rank of A becomes just [ (i.e., 7 = [). Also, it is likely that A\.(4) — 0o as d — oo
if ||p;|] = oo as d — oo for all s.

7.2. Demonstration

We analyzed gene expression data by Bhattacharjee et al. [1] in which the data
set consisted of five lung carcinomas types having 3312 genes (d = 3312). The
data set is given in Yang et al. [9]. See [1] and [9] for details of the data set. We
used four classes as II; : adenocarcinomas (139 samples), II5 : normal lung (17
samples), I3 : squamous cell lung carcinomas (21 samples) and II, : pulmonary
carcinoids (20 samples). We consider the cases when r, = 1,...,7 and | =
1,...,4. Here, from Section 7.1, [ can be regarded as the rank, r. Note that
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TABLE 1
Values of (L(Ar,|A), L(A,,|A)) as estimates of (L(Ar,|A), L(A,,|A)) for the microarray
data set given by [1]. For each l, the values of (F1u,724) are also given in the bottom line.
When v« > n for Ay, orr« >n—1 for A, _, those values were not available because \; or

Aj is not available when j >mn or j >n — 1.

(aA)ni=---=n; =5
75\l 1 2 3 4
1 (51.08, 51.12) (71.26, 71.24) (96.22, 96.23) (167.99, 167.95)
2 (106.08, 79.63) (53.11, 48.12) (50.27, 48.1) (88.97, 87.8)
3 (135.68, 85.94) (81.06, 64.67) (54.81, 47.64) (55.35, 52.71)
4 (162.74, 94.51) (99.24, 73.86) (74.68, 58.78) (62.61, 55.65)
5 (185.46, N/A) (113.67, 79.75) (91.44, 68.32) (78.18, 65.01)
6 (N/A, N/A) (127.08, 86.55) (104.89, 75.24) (92.13, 73.09)
7 (N/A, N/A) (138.69, 93.16) (116.21, 80.87) (104.07, 80.15)
(7:1u7 7:2u) (27 2) (37 5) (47 5) (57 5)
®b)ni=---=n; =10
7\l 1 2 3 4
1 (41.16, 41.09) (76.88, 76.82) (106.79, 106.75) (178.17,178.13)
2 (74.66, 60.23) (45.84, 44.15) (53.52, 52.98) (99.81, 99.17)
3 (98.76, 72.74) (63.74, 55.89) (51.16, 48.51) (60.9, 59.94)
4 (115.46, 78.36) (78.11, 64.98) (64.39, 57.19) (60.55, 57.88)
5 (130.09, 82.46) (89.18, 71.14) (76.87, 65.62) (71.66, 65.69)
6 (143.66, 86.21) (99.01, 76.84) (85.99, 71.1) (82.5, 73.44)
7 (156.49, 90.28) (107.43, 81.11) (94.31, 76.04) (90.81, 78.86)
(F1u, T2u) (2, 4) (4, 5) (5, 5) (5, 5)

K(jy = pq for all j in (7.1) when [ = 1. We considered two cases: (a) ny = -+ =
n; =5 and (b) ny = -+ =n; = 10. Note that n = 5/ in (a) and n = 10/ in (b).
We set r, = 5. R _

For each r, and [, we constructed A,, and A, by using the first 5 samples
in (a) or 10 samples in (b) from each class. We investigated their accuracies
by using the remaining samples of each class as a test data set. We defined
that f1.;) = f1; according to @; € II; for j = 1,...,n, where fi; is the sample
mean vector of the test data set for each i. For each r, and [, we constructed
A= [i(1)s - - - fa(ny]/m'/? as an estimator of A when the labels of the data set
are known. Hence, L(A,,|A) = ||A,, — A||2 and L(A,.|A) = ||A,, — A||2 can
be regarded as estimators of L(:&r* A) and L(A, |A). We gave the values of
(L(A,.|A), L(A, |A)) for r, =1,...,7and [ = 1,...,4 in Table 1. We also
gave the values of (71, 72,) for each .

As expected theoretically, we observed that Ar* gave more preferable per-
formances than A, for most cases of (ry,1) in (a) and (b). Also, for each r,
and [, when r, > [ (= r), most values in (b) are smaller than those in (a).
This is probably because the sample size in (b) is larger than that in (a). See
Propositions 5.1 and 5.3 for the details. On the other hand, we observed that
71 and 7y, were larger than r. However, A, gave adequate performances even
when 7, > 7. See Section 5.2 for the theoretical reason. Hence, we recommend
to use A,., with r, = 71, or 7g,.
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Appendix A

In this section, we give several lemmas, proofs of the lemmas, and proof of
Lemma 5.1.
Throughout, let e;, = (ei1,...,em)?, i = 1,2, be arbitrary unit random
vectors.
Lemma A.1. For j (<), under (C-i) in (I) or under (C-i) to (C-iii) in (II),
it holds that .
W'wW
{nTe% = "ije{ne% +0p(1)
nAj(A)

as d — oo either when n is fired or n — oo.
Proof. We write that

e{nTe2n = e’{n — # _eln Z

€2n
n

+ welneQn’

When n — oo, from Lemma 5 given in Yata and Aoshima [12], it holds that as
d— oo
T Zs 1 W)(z ZT In)
TL)\J(

€y = Op(l) (Al)

for j (<) under (C-i) in (I) or under (C-i) to (C-iii) in (II). On the other hand,
when n is fixed, (C-iii) does not hold in (II). Hence, we consider only the case
of (I) when n is fixed. By using Markov’s inequality, for any 7 > 0 and j (< r),
under (C-i) in (I), we have that

—1))2 LA don B{GE — D& - 1)
Z {(Z n)\ i(A) ) ZT}S Z S TTL)\?IZA) :

and ZP{(ZM) >} < B _ o)

k#k’ n)\J (A)

as d — oo when n is fixed, so that (A.1) holds in (I) when n is fixed. Thus it
concludes the result. O

Lemma A.2. It holds that under (3.1)

uﬂA) Wein,

172\ .
Y zop()\/ ), i=1,...,r

r(A)

as d — oo either when n is fixed or n — oo.
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Proof. We write that uiT(A)Weln = > h_; e1ew; u;ay. Note that Ay =
0(Ar(a)) under (3.1). Also, note that uﬂA)Ewui(A) <Ay fori=1,...,r. By

using Markov’s inequality, for any 7 > 0 and ¢ = 1,...,r, under (3.1), we have
that
- B{Y 0 (wluia)?)  wiaySwiia)
( wkul(A) /n>7—)\r(A) = —
; ) 7-n)‘r(A) TAT(A)
A
< W) _ o(1)
T)\T(A)

as d — oo either when n is fixed or n — oo, so that > ) (wlu;4))?/n =
0p(Ar(4))- Then, by noting that

‘Zelk wkuz(A) )/n 1/2 ‘ < {Zelk} {Z wkuz(A)) /n}1/2
k=1 k=1
{Zn: }1/2

k=1
we can conclude the result. O
Lemma A.3. Forj (<), under (C-i) in (I) or under (C-i) to (C-iii) in (II),
it holds that

5.
L= 1+kj+0p(1) and ¥ v =1+ o0p(1);

Aj(4)

U?(A)@i = op{(Nja)/Nir(a) W2 fori < j<i; and

o] ATWaoy /n'/? = o, {(\eyAja)'/2} fori>jii'=1,....r
as d — oo either when n is fixed or n — oco.

Proof. We write that

5 Sp (A W/nUATA W)
Ny | g 2T Aj(a) !
AT ATw wiw
~T ~ ~T ~ ~T N
=v; —— '+2’U47'U v, ——v A2
TNy T T a2y T T (4.2)

When j = 1, we note that |&; ATWo,| < 327_, )\i(/i)|U5T(A)Wf’i’| for all 4,7’
From Lemma A.2, under (3.1), it holds that for all 4,4’

o] ATWaoy /n'/? = op{(Ar(ayhia)/?} (A.3)

as d — oo either when n is fixed or n — co. By combining (A.2) with Lemma
A.1 and (A.3), it holds that

A _ i As(4)Vs(4)V5(a)
— Y1

U1+ K1+ 0p(1) =1+ k1 +0p,(1)

A1(4) A1(4)



910 K. Yata and M. Aoshima

under (C-i) in (I) or under (C-i) to (C-iii) in (II). Thus, we have that 'f)lTvl(A) =
1+ 0p(1) from the assumption that A;4)s are distinct.

When j = 2, we note that f)?vi(A) =o,(1) fori =2,...,r, because 'f;f’ul(A) =
1+ 0,(1). From Lemma A.1 and (A.3), we have that for ¢ > 2

7Sp . Aia T ATW +wTA |

0=10, —; 1 T o ; 1

v e v Na() {1+ 0p(1) vy a0 + 0y nt2 Xy a) i +0p(1)
A1(A) N

= Saca 0+ oI+ o acay Aac) 2} + (1)

under (C-i) in (I) or under (C-i) to (C-iii) in (II). Thus, it follows that for ¢ > 2

o] 4y 0i = 0p{(Aa(a) /A1) /?} (A.4)
It holds that for ¢ > 2

r

. 1/2 . 1/2
Av; = Z)\ u](A)v a0 = ZAJ‘(/A)UJ'(A)”JT(A)”%‘ + )\Q{A)ul(A) X 0p(1),

Jj=2

" \1/2 . 1/2 N
so that [0 ATWay| < > o j(/A)|uf(A)in/| + )\Q{A)\ulT(A)in/ X 0p(1)] for

¢/ =1,...,r. Hence, from Lemma A.2 it holds that
o ATWo, /n'? = 0,{(\ayha(a))/?} fori>2 i/ =1,...,r (A.5)

under (C-i) in (I) or under (C-i) to (C-iii) in (II). By combining (A.2) with
Lemma A.1, (A.4) and (A.5), we have that

Ao 7 2sm As(A)Vs(A) VL a) .
2

I
(o3

9+ Kg + 0,(1
A2 () Az () 2+ op(l)
e 2/\6<A>” (V) .

)
2
Az(4

Do+ Ko+ 0p(1) =1+ ko +0p(1)  (A6)

under (C-i) in (I) or under (C-i) to (C-iii) in (II). Thus, we have that f;QTvQ(A) =
14 0,(1).

When j = 3, we note that 'i)iT/vi(A) =op(l) fori=4¢+1,...,m i =12,
because @Z:vi/(A) =14 0,(1), i = 1,2. From Lemma A.1, (A.3), (A.4) and
(A.5), we have that for ¢ > 3

Sp. A

0= vlT)\—svl :m{l + Op(l)}'v?(A)f;i + ”g(A)f’i x 0p{(A2(a)/A3a))}

+ 0p{ (M1(ay/As(a) %} + 0p(1);
Sp . Ay
S hS vt O LR P AL AR HEEON)

+ 0p{(Aaa)/A3(4)) 2} + 0p(1)
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under (C-i) in (I) or under (C-i) to (C-iii) in (II). Thus, it follows that 'uiT,(A)f)i =
op{(A3(ay/Nir(a))/?} for i/ = 1,2; i > 3. Similar to (A.5) and (A.6), it holds
that 5\3/)\3(,4) =1+ k3 +0,(1) and

’lA);TFATW’IA)i//TLl/Q = Op{()\r(A))\g(A))l/2} for 4 > 3; i = ]., cee, T

under (C-i) in (I) or under (C-i) to (C-iii) in (II). Hence, we have that o2 v3(A) =
1+0,(1). In a way similar to the case of A3(4), we have the results for j = 4,...,r,
as well. It concludes the results. O

Lemma A.4. For j (<), under (C-i) in (I) or under (C-i) to (C-iii) in (II),
it holds that
iy ujia) = (1+65) 72 +0(1)

as d — oo either when n is fized or n — oo.
Proof. Note that 4; = (nj\j)_lmX'ij. From Lemmas A.2 and A.3, under (C-i)
in (I) or under (C-i) to (C-iii) in (II), it holds that for j (< r)
1/241/2 S . _
(A)'UJJ = )\ / AL (/A) j(A)U] (n)\ ) 1/2 ‘?(A)W/UJ = (1 + KJJ) 1/2 +Op(1)
as d — oo either when n is fixed or n — oo. It concludes the result. O

Lemma A.5. For j (<), under (C-i) in (I) or under (C-i) to (C-iii) in (II),
it holds that

)\;\(;) =1+ Ky +26; +op{(:\\z((j)>)}

s
and @?vi(A)zl—i—op( j(A)) fori=1,...,7;
Ai(A)

ff)iT’Ui'(A) = Op{( Aita) .,(A)})1/2} for alli £ (<)

max{)\i(A) A

as d — oo either when n is fixred or n — oo.
Proof. From Lemma A.1, under (C-i) in (I) or under (C-i) to (C-iii) in (IT), it
holds that for j (< r)

efn(WTW/n)egn = e{n€2nw + Op(/\j(A)) (A7)

as d — oo either when n is fixed or n — oco. Then, from Lemmas A.2 and A.3,
we have that for all i # ' (< )

B (Sp/Ni(a))Virca) = N/ Xiga))0F vircay = {1+ ki + 0, (1)}0] wira)  (A8)
= (Nir [ Xi()) 0] vir(a) + iy viray + 0p(Ajay/Aica))
1/2 1 2 1 2
+OP{)‘T(/A)( z(/A) '/(A))/)‘ )} (A.9)
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By combining (A.8) and (A.9), we can claim that for all i # ' (< j5)
o] vy = 0p (A3, /max{A 3 A D (A.10)

Let A = )\:(/j)u,;(A)vzzA) fori=1,...,7. From Lemmas A.2, A.3, (A.2), (A.7)
and (A.10), we have that for i =1,...,j

Ai ~T T ATW rwTA
— i =(0; v — i A
Nen ki =(0; vi(a))° + 0, TS WS D + 0p(Nj(a)/ M)

A(Z)W‘i'W A(’L),\
Vi +op(Njay/Niay) (A1)

T
=(v; v; + 'v
( ! (A)> nl/QAz(A)

under (C-i) in (I) or under (C-i) to (C-iii) in (II). Here, there exist a random
variable ¢; € [—1, 1] and a random unit vector y, such that

=(1-¢; )1/21; i(A) +eiy; and UZEA)yi =0.

Note that &; = o0,(1) from &} ’UZ(A) = 1+ 0,(1). By combining (A.11) with
Lemma A.2, we have that fori=1,...,j

ES T
AT, AnW
Ni(4) v i(A )n1/2)\ (A) Vi(a)
AW +WTA AW
2, om0 @ oyt AW N
=1-el+9, — o i iy S vien T oo i)
AL W +WT A
=1 -2+ 0y(e?) + 2eiy] — ETe Diiay + 0p sy Aic)
=1 —e2{1+ 0p(1)} + 0p{ei(Areay/Niga) 2} + 0p(Nj(a)/Nicay)
=14 0p(Xjcay/Ai(a)) (A12)

under (C 1) (I) or under (C-i) to (C-iii) in (IT). Thus, it follows that for
1=1,.

ei = 0p{(Nj(ay/Xicay) /2 (A.13)
Hence, from o; = (1 — 2)"/%v;4) + €;y;, it holds that for i =1,...,j
0] vica) = (1= )% =14 0, (Nj(a)/Ai(a))-

On the other hand, from (A.12), fori = 1,..., 7, it holds j\i/)\i(A) =1+4k;+20;+
0p(Aj(a)/Nicay) under (C-i) in (I) or under (C-i) to (C-iii) in (II). It concludes
the results. O

Lemma A.6. For j (<), under (C-i) in (I) or under (C-i) to (C-iii) in (II),
it holds that

uTuz(A) (1 + K + 26; ) 1/2{1 + 6; + Op()\j(A)/)\i(A))} fori=1,...,4;
uiTui,(A) =(1+4r;+ 251-)71/2 X op{(/\j(A)/)\i(A))l/Z} for alli #£ 4" (<)

as d — oo either when n is fized or n — oo.
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Proof. Note that @; = (n\;)~/2X®;. From (A.13), Lemmas A.2 and A.5, under
(C-i) in (I) or under (C-i) to (C-iii) in (II), we have that for j (< r)

A2 T T uiT(A)W@i

— U 4 U = V40

172 i(A) T i(A) ™ 1/2

AiCa) A4

=149; +0p()\j(A)//\i(A)) fore=1,...,7;

A2 )‘3//(2/1) “iT/(A) Wo,
NG Wy Bi = R Vi i+ — N

i(A) i(A) n i(A)

= 0p{(Nj(a)/Nica)) 2} forall i # 4’ (< j)
as d — oo either when n is fixed or n — co. From Lemma A.5, we can conclude
the results. O

Proof of Lemma 5.1. We write that tr(W'W /n) = Zle As(wy Dopeq (22 —
1)/n+ tr(Ew). Under (C-i), it holds that for j (< r)

E{te(WTW/n) — r(Su)}] = Ay hew) B{(z% — 1)(23, — 1
[{tx( Aé(j) fr( w>}}:;1 (W) M) i&?;) W = DY _

as d — oo either when n is fixed or n — oco. By using Chebyshev’s inequality,
for any 7 > 0, it holds that

E[{te(W" W /n) — tr(Zw))?)

= T2)\2

J

P<|tr(WTW/n)—tr(EW)| > TAj(A)) — o(1)

(4)
for j (< 7). It follows that tr(W' W /n) = tr(Zw) + 0,(\j(a)). We write that
tI‘(SD)

B T tr(ATW)  a(WW) tr(WTW)
_tr(A A)+2 nl/2 n = ;)\z(A)(1+261)+ T
Since tr(WW /n) = tr(Zw) + 0p(Aj(4)), it holds that for j (< r)
tr(Sp) = > Niay(1+26;) + tr(Zw) + 0p(Aj(a)) (A.14)

i=1
under (C-i). Note that
0; ZOP{()\T(A)//\Z-(A))UQ} fori=1,...,r (A.15)
from Lemma A.2. Then, from Lemma A.5 and (A.14), it holds that for j (< r)

tr(Sp) — Zzzl N _ U+ ZZ:]‘H Xicay/(n = j) +0p(Xja))  when j <r;
n—j Y+ 0p(Ar(a)) when j =7

under (C-i) in (I) or under (C-i), (C-iii) and (C-iv) in (II). It concludes the
result. |
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Appendix B

In this section, we give proofs of the theorems, corollaries and propositions in
Sections 3 to 5.

Proofs of Theorem 3.1 and Corollary 3.1. By noting that x; = o(1) for j (< r)
under (C-iv), the results are obtained straightforwardly from Lemmas A.3 and
A4 U

Proofs of Theorem 8.2 and Corollary 3.2. Note that 6; = 0,(1) fori =1,...,r,
from Lemma A.2. Then, from Lemmas A.5 and A.6, under (C-i) in (I) or under
(C-1) to (C-iii) in (IT), we have that for j (< r)

1/2 ~ « 1/2
1A 2as0] — N/ 3 iy ol |3

1/2\1/2 «
= Xi + Aica) — 20N AT iy {1+ 0p (g a)/Niga)}
=1 +op(Nja)) fori=1,....7
M2adTY A2 v aul )} = op(A for alli £ (<j) (B.1
tr{ (A 70 )Ny iy i a))} = 0p(Njeay) foralli 4" (<) (B.1)

as d — oo either when n is fixed or n — oco. Thus, it holds that
2
1 2A ~ 2
L(A,|4) = HZ "a, o — A (/A)ui(A)'UZEA))HF =1+ 0p(Ar(a))

under (C-i) in (I) with j = r or under (C-i) to (C-iii) in (II) with 7 = r.
It concludes the result of Theorem 3.2. By noting that ¥ = o(\,) under (C-
iv) with j = r, the result of Corollary 3.2 is obtained straightforwardly from
Theorem 3.2. (i

Proof of Theorem 4.1. By combining Lemma A.3 with Lemma 5.1, under (C-i)
in (I) or under (C-i) to (C-iii) in (II), it holds that for j (< r)

SO RO Yimjii Niay/(n—4) +op(Njay)  when j <r; (B.2)
)\r(A) + Op(/\r(A)) when j =7

as d — oo either when n is fixed or n — oo. It concludes the result. O

Proof of Corollary 4.1. For j (< r), we first consider the case when lim inf;_, o,
Aicay/Ajcay > 0 for i > j either when n is fixed or n — oco. From Lemma A.3,
under (C-i) in (I) or under (C-i) to (C-iii) in (II), we can claim that

Ai iy
Ajay  Aja)

+ K5 +op(1) (B.3)

as d — oo either when n is fixed or n — oo.
Next, we consider the case when X;(4)/A;j(4) = o(1) for i > j. From Lemma
A3, we obtain that for j (< r)

vl 0i = 0p{(Ajeay /X)) P} for i =1,... 55 i > (B.4)
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under (C-i) in (I) or under (C-i) to (C-iii) in (IT). Then, from Lemmas A.1, A.2
and (A.2), we have that for j (< r) and ¢ > j

5. AT A AT T

As =l 1)1—1—2'8?127“/131-4—6?“/ w
Aj(a) Aj(a) 12X nAj(a)

v; = Kj + Op(l) (B5)

because A;4)/Aj(a) = o(1). By using the convergent subsequence of A;(4)/Aja)
for i > j, from Lemma A.5, (A.14), (A.15), (B.3) and (B.5), it holds that for
j(<r)

ir = ¢ + OP()‘]'(A)> (B'6)
under (C-i) in (I) or under (C-i) to (C-iii) in (IT). Hence, from Lemma A.3, we
can conclude the result. O

Proofs of Theorem 4.2 and Corollary 4.2. From Lemma A.5 and (B.6), under
(C-i) in (I) or under (C-i) to (C-iii) in (II), it holds that for j (< r)

= =142 + 0p(Njay/Ni(a)) fori=1,...,]
Ai(4)

as d — oo either when n is fixed or n — co. Then, from Lemmas A.5, A.6 and
(A.15), we have that

1/2 ~ B 2
NG ] = N i vl

= 2 {1+ 6 — (1+20) %0 wiga)} + 0p(N)

= 2Xja)(1 +6;)(1 — ] wia)) + op(Nj(ay) fori=1,...,7;

tr{(\! 1/2 i) )(\; /(2 iy )} = 0p(Nja))  forall i £’ (< ).
Hence, it holds that

L(A,|A) =23 Ay (L + 51-)(1 -

i=1
under (C-i) in (I) with 57 = 7 or under (C-i) to (C-iii) in (II) with j = r.
From (A.15) and (B.7), it concludes the results of Theorem 4.2. By noting that
1 = o(A,) under (C-iv) with j = r, the result of Corollary 4.2 is obtained
straightforwardly from Theorem 4.2. O

149;
T posyye) Foln) (B9

Proof of Proposition 5.1. We first consider the case when r, < r. From (B.1),
under (C-i) in (I) with j = r or under (C-i) to (C-iii) in (II) with j = r, it holds
that

A) = T*w + Z )\i(A) + Op()\r(A))
1=r.+1

L(A,.

as d — oo either when n is fixed or n — oco.
Next, we consider the case when r, > r. From (B.5), it holds that

N =1+ 0p(Ar(ay) fori>r (B.8)
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under (C-i) in (I) with j = r or under (C-i) to (C-iii) in (IT) with j = r. Note
that @; = (n)\;)~Y/2X ;. From Lemma A.2 and (B.4), it holds that for i > r
and ¢ =1,...,7
N N 1/2

/\ 1/2 ,(A)ul =\ /( )v;fF,(A)vi + u;?C(A)in/nl/2 = op()\T{A)) (B.9)
under (C-i) in (I) with j = r or under (C-i) to (C-iii) in (II) with j = r. By
combining Theorem 3.2 with (B.4), (B.8) and (B.9), it holds that L(A,, |A) =
74 4+ 0p(Ar(a))- It concludes the result. O

Proof of Proposition 5.3. We first consider the case when r, > r. From Lemma
A5, (A.14) and (B.5), under (C-i) in (I) with j = r or under (C-i) to (C-iii) in
(IT) with j = r, we can claim that for ¢ > r

bi =¥ + 0p(Ar(a)) (B.10)
as d — oo either when n is fixed or n — oo. Thus, from (B.5) and (B.10), it
follows that ~

Xitr)/ Aray = 0p(1)  forr <i <y (B.11)
under (C-i) in (I) with j = r or under (C-i) to (C-iii) in (IT) with j = r. Note
that )\ )uJ:(A)ﬁl = op(/\i{i)) for i > r and i = 1,...,r, from (B.9) and
Ai itr) < A; for all 7. Then, by combining Theorem 4.2 with (A.15), (B.4) and
(B.11), it holds that

A |A) = Z/\ (Q*yi—i—op(l)) + 0p(Ar(a))-

It concludes the result when r, > r.

Next, we consider the case when r, < 7. Assume A, _y1(4)/(Ar,a)n) = o(1).
In a way similar to (B.2), we obtain that 5\,;(7,*) = Ai(a) — Z:,:“_H Aircay/(n —
) + 0p(Nica)) = Aiay{l + 0p(1)} for i < r, under (C-i) in (I) with j = r
or under (C-i) to (C-iii) in (IT) with j = r. Then, from Lemmas A.5, A.6 and
(A.15), we have that for i =1,..., 7,

1/2 ~ « 1/2
I iy — A wicay vl |13

= 2XNiay {1 — @] wica) + 0p(1)} = 2Ny {7 + 0p (1) };
and tr{(A 1/2) AZﬁ?)(A;’/(i)vi’(A)uz;(A))} = 0p(Apay) fori'(#i)=1,...,r

Hence, we can conclude the result when r, < r. It concludes the results of
Proposition 5.3. 4

Proofs of Propositions 5.2 and 5.4. Note that Z::jﬂ Xy /{(n = )Xt <
(r—34)/(n—3j) for j < r. From Lemma 5.1, (B.2), (B.10) and (B.11), we can
conclude the results. O
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