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Abstract: We consider the problem of recovering a low-rank signal ma-
trix in high-dimensional situations. The main issue is how to estimate the
signal matrix in the presence of huge noise. We introduce the power spiked
model to describe the structure of singular values of a huge data matrix. We
first consider the conventional PCA to recover the signal matrix and show
that the estimation of the signal matrix holds consistency properties under
severe conditions. The conventional PCA is heavily subjected to the noise.
In order to reduce the noise we apply the noise-reduction (NR) methodol-
ogy and propose a new estimation of the signal matrix. We show that the
proposed estimation by the NR method holds the consistency properties
under mild conditions and improves the error rate of the conventional PCA
effectively. Finally, we demonstrate the reconstruction procedures by using
a microarray data set.
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1. Introduction

In this paper, we address the problem of recovering an unknown d×n low-rank
matrix, A = [a1, . . . ,an]. A is called the signal matrix. Let r = rank(A), where
r is unknown. We assume r (< min{d, n}) is fixed. For high-dimensional data,
the estimation of the low-rank matrix is quite important in many fields such as
genomics, image denoising, recommendation systems and so on. Negahban and
Wainwright [5] and Rohde and Tsybakov [6] considered the problem for high-
dimensional regression models. Shabalin and Nobel [7] considered the estimation
of A when observations have a Gaussian noise. In this paper, we consider the
problem of recovering A when observations have a non-Gaussian noise.

Suppose we have a d× n data matrix, X = [x1, . . . ,xn], where

X =
√
nA+W . (1.1)

Here, W = [w1, . . . ,wn] is a d × n noise matrix, where wj , j = 1, . . . , n, are
independent and identically distributed (i.i.d.) as a d-dimensional distribution
with mean zero and covariance matrix ΣW ( �= O). Note that xj −

√
naj , j =

1, . . . , n, are i.i.d. Let ΣA = AAT . Then, it holds that E(XXT )/n = ΣA +
ΣW (= Σ, say). Shabalin and Nobel [7] considered (1.1) in a high-dimensional
setting, where the data dimension d and the sample size n increase at the same
rate, i.e. n/d → c > 0. They assumed that the elements of W are i.i.d. normal
random variables. We note that the conditions such as “n/d → c > 0” and the
Gaussianity of the noise are often strict in real high-dimensional analyses. In this
paper, we consider (1.1) in high-dimensional settings without assuming those
conditions. We assume the divergence condition for d and n such as d → ∞
either when n is fixed or n → ∞. The divergence condition includes both high-
dimension, low-sample-size (HDLSS) settings such as “n/d → 0” and high-
dimension, large-sample-size settings such as “n/d → c > 0” or “n/d → ∞ as
d → ∞”.

The eigen-decomposition of ΣW is given by ΣW = UWΛWUT
W , where ΛW

is a diagonal matrix of eigenvalues, λ1(W ) ≥ · · · ≥ λd(W )(≥ 0), and UW is an or-

thogonal matrix of the corresponding eigenvectors. Let W = UWΛ
1/2
W Z. Then,

Z is a d×n sphered data matrix from a distribution with the identity covariance
matrix. Here, we write Z = [z1, . . . , zd]

T and zj = (zj1, . . . , zjn)
T , j = 1, . . . , d.

Note that E(zjkzj′k) = 0 (j �= j′) and Var(zj) = In, where In is the n-
dimensional identity matrix. We assume that the fourth moments of each vari-
able in Z are uniformly bounded. The singular value decomposition ofA is given

by A =
∑r

j=1 λ
1/2
j(A)uj(A)v

T
j(A), where λ

1/2
1(A) ≥ · · · ≥ λ

1/2
r(A) (> 0) are singular

values of A and uj(A) (or vj(A)) denotes a unit left- (or right-) singular vector
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corresponding to λ
1/2
j(A) (j = 1, . . . , r). Note that ΣA =

∑r
j=1 λj(A)uj(A)u

T
j(A).

Also, note that λj(A)s depend not only on d but also on n. When r ≥ 2, we
assume that λj(A)s are distinct in the sense that

lim inf
d→∞

λj(A)

λj′(A)
> 1 when n is fixed or n → ∞ for all j < j′ (≤ r).

In this paper, we consider the problem of recovering the signal matrix A in
high-dimensional settings such as d → ∞ either when n is fixed or n → ∞. In
Section 2, we introduce the power spiked model to describe the structure of the
eigenvalues ofΣ. In Section 3, we consider using the conventional PCA to recover
A and show that the estimation of A holds consistency properties under severe
conditions. In Section 4, we consider the noise reduction (NR) methodology by
Yata and Aoshima [11] in (1.1) and apply it to recovering A. We show that the
estimation of A by the NR method holds the consistency properties under mild
conditions and improves the error rate of the conventional PCA. In Section 5,
we discuss the choice of unknown rank r by using the consistency properties. In
Section 6, we give several simulation results to recover signal matrices. Finally,
in Section 7, we give an application of (1.1) and demonstrate reconstruction
procedures by using a microarray data set.

2. PCA consistency for the power spiked model

In this section, we assumeA = Od,n in (1.1), whereOd,n is the d×n zero matrix.

The sample covariance matrix is given by S = n−1XXT . We consider the dual
sample covariance matrix defined by SD = n−1XTX. Let m = min{d, n}. Note
that SD and S share non-zero eigenvalues and rank(S) = rank(SD) ≤ m. Let

λ̂1 ≥ · · · ≥ λ̂m ≥ 0 be the eigenvalues of SD. The eigen-decompositions of S
and SD are given by S =

∑m
j=1 λ̂jûjû

T
j and SD =

∑m
j=1 λ̂j v̂j v̂

T
j , where ûj (or

v̂j) denotes a unit left- (or right-) singular vector of X/n1/2 corresponding to

λ̂
1/2
j . Note that ûj can be calculated by ûj = (nλ̂j)

−1/2Xv̂j from the fact that

X/n1/2 =
∑m

j=1 λ̂
1/2
j ûj v̂

T
j .

Jung and Marron [3] and Yata and Aoshima [10] investigated consistency
properties of the conventional PCA for HDLSS data. Yata and Aoshima [11]
gave consistent estimators both of the eigenvalues and eigenvectors together with
the principal component (PC) scores by a method called the noise-reduction
methodology. Shen et al. [8] gave a consistent estimator of the first eigenvector
under a sparsity assumption. Zhou and Marron [13] investigated consistency
properties of some estimators for the first eigenvector in outlier contaminated
data.

Now, we consider the power spiked model in Σ. The eigen-decomposition
of Σ is written as Σ = UΛUT , where Λ is a diagonal matrix of eigenvalues,
λ1 ≥ · · · ≥ λd(≥ 0), and U = [u1, . . . ,ud] is an orthogonal matrix of the
corresponding eigenvectors. Let Σ = Σ(1) + Σ(2), where Σ(1) =

∑r0
i=1 λiuiu

T
i

and Σ(2) =
∑d

i=r0+1 λiuiu
T
i with some unknown and positive fixed integer
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r0 (< d). Here, Σ(1) is regarded as an intrinsic part and Σ(2) is regarded as a
noise part. Then, if there exists a positive fixed integer kr0 such that

lim
d→∞

tr(Σ
kr0

(2) )

λ
kr0
r0

= 0, (2.1)

the eigenvalues are called the power spiked model. See Section 2 in Yata and
Aoshima [12] for the details. When r0 ≥ 2, we assume that lim infd→∞(λj/λj′) >
1 for all j < j′ (≤ r0). They gave the following results.

Theorem 2.1 ([12]). When limd→∞ tr(Σ2
(2))/λ

2
j = 0 for some j (≤ r0), it holds

that as m → ∞

λ̂j

λj
= 1 + op(1), |ûT

j uj | = 1 + op(1) and |v̂T
j zj/n

1/2| = 1 + op(1) (2.2)

under the conditions:∑d
s,t=r0+1 λsλtE{(z2sk − 1)(z2tk − 1)}

nλ2
j

= o(1) and
tr(Σ(2))

nλj
= o(1). (2.3)

When lim supd→∞ tr(Σ2
(2))/λ

2
j > 0 for some j (≤ r0), (2.2) holds as m → ∞

under the conditions in (2.3) and∑d
p �=q,s �=t≥r0+1 λpλqλsλt{E(zpkzqkzskztk)}2

n2λ4
j

= o(1) and
tr(Σ2

(2))
2

nλ4
j

= o(1).

Remark 2.1. A simple power spiked model is

λj = ajd
αj (j = 1, . . . , r0) and λj = cj (j = r0 + 1, . . . , d),

where ajs, cjs and αjs are positive (fixed) constants. It should be noted that
limd→∞ tr(Σ2

(2))/λ
2
j = 0 when αj > 1/2 and lim supd→∞ tr(Σ2

(2))/λ
2
j > 0 when

αj ≤ 1/2.

See [12] or Remark 3.1 for the details of Theorem 2.1. In (1.1), ΣA is regarded
as Σ(1) and ΣW is regarded as Σ(2) in the power spiked model.

3. Reconstruction of the signal matrix by conventional PCA

In this section, we consider recovering the signal matrix A by using the conven-
tional PCA in high-dimensional settings such as d → ∞ either when n is fixed or
n → ∞. We reconstruct A by using λ̂js, ûjs and v̂js. We assume ûT

j uj(A) ≥ 0

and v̂T
j vj(A) ≥ 0 for all j (≤ r) without loss of generality.

We assume the power spiked model for (1.1) as follows: There exists a positive
fixed integer kr such that

lim
d→∞

tr(Σkr

W )

λkr

r(A)

= 0 either when n is fixed or n → ∞. (3.1)
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Under (3.1), it holds that
λ1(W )

λr(A)
= o(1),

so that λj(A)s are much larger than any eigenvalues of ΣW . We consider (3.1)
for j (≤ r) either when n is fixed or n → ∞ in the following two cases:

(I) lim
d→∞

tr(Σ2
W )

λ2
j(A)

= 0 and (II) lim sup
d→∞

tr(Σ2
W )

λ2
j(A)

> 0.

We note that λj(A) in (I) is larger than that in (II). See Remark 2.1 for the
detail. Also, Murayama et al. [4] considered the estimation of A for a special
case of (I). We consider the following conditions when d → ∞ while n is fixed
or n → ∞:

(C-i)

∑d
s,t=1 λs(W )λt(W )E{(z2sk − 1)(z2tk − 1)}

nλ2
j(A)

= o(1);

(C-ii)

∑d
p �=q,s �=t λp(W )λq(W )λs(W )λt(W ){E(zpkzqkzskztk)}2

n2λ4
j(A)

= o(1);

(C-iii)
tr(Σ2

W )2

nλ4
j(A)

= o(1); and (C-iv)
tr(ΣW )

nλj(A)
= o(1).

Remark 3.1. We note that z1k, . . . , zdk (k = 1, . . . , n) are independent when
W is Gaussian. Then, it holds that

d∑
s,t=1

λs(W )λt(W )E{(z2sk − 1)(z2tk − 1)} = O{tr(Σ2
W )} and (3.2)

d∑
p �=q,s �=t

λp(W )λq(W )λs(W )λt(W ){E(zpkzqkzskztk)}2 = O{tr(Σ2
W )2},

so that (C-i) and (C-ii) hold under (C-iii) when W is Gaussian or z1k, . . . , zdk
(k = 1, . . . , n) are independent.

Note that (C-iii) does not hold for (II) when n is fixed. If (3.2) holds, (C-i)
is met even when n is fixed for j (≤ r) in (I). Let κj = tr(ΣW )/(nλj(A)) for
j = 1, . . . , r. We have the following results.

Theorem 3.1. For j (≤ r), under (C-i) in (I) or under (C-i) to (C-iii) in (II),
it holds that

λ̂j

λj(A)
= 1 + κj + op(1), ûT

j uj(A) = (1 + κj)
−1/2 + op(1)

and v̂T
j vj(A) = 1 + op(1)

as d → ∞ either when n is fixed or n → ∞.

Remark 3.2. If (3.2) holds, Theorem 3.1 is claimed even when n is fixed for
j (≤ r) in (I).



900 K. Yata and M. Aoshima

Corollary 3.1. For j (≤ r), under (C-i) and (C-iv) in (I) or under (C-i) to
(C-iv) in (II), it holds that

λ̂j

λj(A)
= 1 + op(1) and ûT

j uj(A) = 1 + op(1)

as d → ∞ either when n is fixed or n → ∞.

Note that v̂js hold the consistency property without (C-iv) contrary to λ̂js
and ûjs. Based on the theoretical background, we consider recovering the signal

matrix A by Âr =
∑r

i=1 λ̂
1/2
i ûiv̂

T
i . In Section 5.1, we discuss the choice of r in

Âr. We define a loss function by

L(Âr|A) = ||Âr −A||2F ,

where || · ||F denotes the Frobenius norm. Let ψ = tr(ΣW )/n. Then, we have
the following results.

Theorem 3.2. Under (C-i) in (I) with j = r or under (C-i) to (C-iii) in (II)
with j = r, it holds that

L(Âr|A) = rψ + op(λr(A))

as d → ∞ either when n is fixed or n → ∞.

Remark 3.3. If (3.2) holds, Theorem 3.2 is claimed even when n is fixed under
tr(Σ2

W )/λ2
r(A) = o(1).

Corollary 3.2. Under (C-i) and (C-iv) in (I) with j = r or under (C-i) to
(C-iv) in (II) with j = r, it holds that

L(Âr|A) = op(λr(A))

as d → ∞ either when n is fixed or n → ∞.

From Theorem 3.2, if (C-iv) does not hold, the loss of Âr becomes rtr(ΣW )/n
asymptotically. In order to reduce the noise, we apply the NR method to recov-
ering the signal matrix in Section 4.

4. Reconstruction of the signal matrix by NR method

We consider applying the noise-reduction (NR) methodology by Yata and
Aoshima [11] to recover the signal matrix A. By using the NR method, we
obtain an estimator of λj(A) as

λ̃j = λ̂j −
tr(SD)−

∑j
i=1 λ̂i

n− j
(j = 1, . . . , n− 1). (4.1)

Note that the second term in (4.1) is an estimator of ψ. See Lemma 5.1 in
Section 5.1 for the details. Then, we have the following result.
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Theorem 4.1. For j (≤ r), under (C-i) in (I) or under (C-i) to (C-iii) in (II),
it holds that

λ̃j

λj(A)
= 1 +Op

(λj+1(A)

λj(A)n

)
+ op(1)

as d → ∞ either when n is fixed or n → ∞, where λr+1(A) = 0.

From Theorem 4.1, when n → ∞ or λj+1(A)/λj(A) = o(1), λ̃j holds the

consistency property without (C-iv). Remember that λ̂j requires (C-iv) to hold
the consistency property.

Remark 4.1. For estimating eigenvalues, the NR method can improve the
conventional PCA even when d is not sufficiently large (e.g. d is about 10). See
Figure 1 in Ishii et al. [2] for example.

Now, we consider an adjustment of λ̃js as follows:

λ̃j(r) = λ̂j −
tr(SD)−

∑r
i=1 λ̂i

n− r
(j = 1, . . . , r). (4.2)

Then, we have the following result.

Corollary 4.1. For j (≤ r), under (C-i) in (I) or under (C-i) to (C-iii) in
(II), it holds that

λ̃j(r)

λj(A)
= 1 + op(1)

as d → ∞ either when n is fixed or n → ∞.

Remark 4.2. If (3.2) holds, Theorem 4.1 and Corollary 4.1 are claimed even
when n is fixed for j (≤ r) in (I).

We consider recovering A by Ãr =
∑r

i=1 λ̃
1/2
i(r)ûiv̂

T
i . In Section 5.2, we discuss

the choice of r in Ãr. Let

δi = uT
i(A)Wvi(A)/(nλi(A))

1/2 for i = 1, . . . , r.

For the loss function by L(Ãr|A) = ||Ãr −A||2F , we have the following results.

Theorem 4.2. Under (C-i) in (I) with j = r or under (C-i) to (C-iii) in (II)
with j = r, it holds that

L(Ãr|A) = 2

r∑
i=1

λi(A)(1 + δi)
(
1− 1 + δi

(1 + κi + 2δi)1/2

)
+ op(λr(A))

and δi = op{(λr(A)/λi(A))
1/2} for i = 1, . . . , r

as d → ∞ either when n is fixed or n → ∞.

Remark 4.3. If (3.2) holds, Theorem 4.2 is claimed even when n is fixed under
tr(Σ2

W )/λ2
r(A) = o(1).
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Corollary 4.2. Under (C-i) and (C-iv) in (I) with j = r or under (C-i) to
(C-iv) in (II) with j = r, it holds that

L(Ãr|A) = op(λr(A))

as d → ∞ either when n is fixed or n → ∞.

From Theorems 3.2 and 4.2, we compare 2λi(A){1−1/(1+κi)
1/2} with ψ (=

λi(A)κi) by noting δi = op(1). It holds that 2{1−1/(1+κi)
1/2} < κi (i = 1, . . . , r)

for any κi > 0, so that L(Ãr|A) is smaller than L(Âr|A) asymptotically. Thus,

Ãr improves the loss of Âr.

5. Choice of the rank r

In this section, we discuss the choice of r in Âr and Ãr.

5.1. Choice of r in Âr

Let r∗ (> 0) be a candidate (fixed) integer for r, where r∗ < min{d, n}. We

write that Âr∗ =
∑r∗

i=1 λ̂
1/2
i ûiv̂

T
i . Then, we have the following result.

Proposition 5.1. Under (C-i) in (I) with j = r or under (C-i) to (C-iii) in
(II) with j = r, it holds that

L(Âr∗ |A) =

⎧⎪⎨⎪⎩r∗ψ +

r∑
i=r∗+1

λi(A) + op(λr(A)) when r∗ < r;

r∗ψ + op(λr(A)) when r∗ ≥ r

as d → ∞ either when n is fixed or n → ∞.

From Proposition 5.1, it is not always true that r∗ = r gives the smallest
L(Âr∗ |A). In fact, for a power spiked model such as (λ1(A), λ2(A)) = (d, d2/3),

r = 2 and tr(ΣW ) = d, L(Â1|A) is smaller than L(Â2|A) as d → ∞ when n
is fixed. From Proposition 5.1, one may choose r∗ as the first integer i (= r1,
say) satisfying ψ > λi+1(A) (i.e. κi+1 > 1). Then, r∗ = r1 gives the smallest

L(Âr∗ |A) asymptotically for candidate integers. Note that r1 ≤ r.
Now, we consider estimating ψ by

ψ̂j =
tr(SD)−

∑j
i=1 λ̂i

n− j
for j = 1, . . . , n− 1.

Then, we have the following result.

Lemma 5.1. Under (C-i) in (I) or under (C-i) to (C-iii) in (II), it holds that

ψ̂j =

⎧⎨⎩ψ +

∑r
i=j+1 λi(A)

n− j
+ op(λj(A)) when j < r;

ψ + op(λr(A)) when j = r

as d → ∞ either when n is fixed or n → ∞.
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Let ŕ1 be the first integer i satisfying ψ̂i+1 > λ̃i+1. Then, from Lemma 5.1
we have the following result.

Proposition 5.2. Assume

lim sup
d→∞

κ−1
r1+1 < 1 when r1 < r; lim inf

d→∞
κr1 > 0 when r1 = r;

and lim sup
d→∞

κr1 < 1− 2
r − r1
n− r1

either when n is fixed or n → ∞. Then, it holds that P (ŕ1 = r1) → 1 as d → ∞
either when n is fixed or n → ∞ under (C-i) in (I) with j = r or under (C-i)
to (C-iii) in (II) with j = r.

If (C-iv) with j = r holds, ψ̂i/λ̃i becomes small for a large integer i, that is,
ŕ1 becomes a large integer as ŕ1 = O(n). Hence, if one has an upper bound for r∗
as r∗ ≤ ru with integer ru (< ∞), one may use ŕ1u = min{ŕ1, ru} instead of ŕ1.

5.2. Choice of r in Ãr

We write that Ãr∗ =
∑r∗

i=1 λ̃
1/2
i(r∗)

ûiv̂
T
i . Let γi = 1−1/(1+κi)

1/2 for i = 1, . . . , r.

We have the following result.

Proposition 5.3. Assume λr∗+1(A)/(λr∗(A)n) = o(1) when r∗ < r. Then, under
(C-i) in (I) with j = r or under (C-i) to (C-iii) in (II) with j = r, it holds that

L(Ãr∗ |A)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r∗∑
i=1

λi(A)

(
2γi + op(1)

)
+

r∑
i=r∗+1

λi(A) + op(λr(A)) when r∗ < r;

r∑
i=1

λi(A)

(
2γi + op(1)

)
+ op(λr(A)) when r∗ ≥ r

as d → ∞ either when n is fixed or n → ∞.

It holds that λr∗+1(A)/(λr∗(A)n) = o(1) when n → ∞ or λr∗+1(A)/λr∗(A) =

o(1). From Propositions 5.1 and 5.3, one may use Ãr∗ with r∗ = ŕ1u because

L(Ãr∗ |A) with r∗ = ŕ1u is smaller than L(Âr∗ |A) with r∗ = ŕ1u asymptotically.
On the other hand, similar to Section 5.1, from Proposition 5.3, one may

choose r∗ as the first integer i (= r2, say) satisfying 2γi+1 > 1 (i.e. κi+1 > 3).

Note that r1 ≤ r2 ≤ r. Let ŕ2 be the first integer i satisfying ψ̂i+1 > 3λ̃i+1.
Note that ŕ1 ≤ ŕ2. Then, from Lemma 5.1, we have the following result.

Proposition 5.4. Assume

lim sup
d→∞

κ−1
r2+1 < 1/3 when r2 < r; lim inf

d→∞
κr2 > 0 when r2 = r;

and lim sup
d→∞

κr2 < 3− 4
r − r2
n− r2
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either when n is fixed or n → ∞. Then, it holds that P (ŕ2 = r2) → 1 as d → ∞
either when n is fixed or n → ∞ under (C-i) in (I) with j = r or under (C-i)
to (C-iii) in (II) with j = r.

Hence, one may use Ãr∗ with r∗ = ŕ2. Here, one should note that ŕ2 tends
to be large if (C-iv) with j = r holds. Also, note that r2 → r if (C-iv) with

j = r holds. From Proposition 5.3, for the loss function, Ãr∗ with r∗ > r

is asymptotically equivalent to Ãr. Hence, when r = r2, one may choose a
relatively large r∗ in Ãr∗ as r∗ > r. On the other hand, from Proposition 5.1,

the loss of Âr∗ with r∗ > r is larger than that of Âr asymptotically, so that one

should not choose a relatively large r∗ in Âr∗ . Let ŕ2u = min{ŕ2, ru}, where ru
is given in Section 5.1. When r = r2 and r ≤ ru, r∗ = ŕ2u gives the smallest
L(Ãr∗ |A) for candidate integers. Hence, for a relatively large ru, we recommend

to use r∗ = ŕ2u instead of ŕ2 in Ãr∗ .

6. Simulations

We used computer simulations to compare the performance of Ãr∗ with Âr∗ .

We set ru = 5. We set r∗ = ŕ1u for Âr∗ and r∗ = ŕ2u for Ãr∗ . See Section
5 for the details. We set r = 3, ΣA = diag(λ1(A), λ2(A), λ3(A), 0, . . . , 0) and

ΣW = (0.3|i−j|1/3). Note that tr(ΣW ) = d. We considered two cases:

(a) wks are i.i.d. as d-variate normal distribution with mean zero and covari-
ance matrix ΣW , (λ1(A), λ2(A), λ3(A)) = (d/4, d/12, d/36), d = 2t, t =
7, . . . , 13 and n = 9;

(b) zsk = (vsk − 2)/2 (s = 1, . . . , d) in which vsks are i.i.d. as the chi-squared
distribution with 2 degree of freedom, (λ1(A), λ2(A), λ3(A)) = (d3/4, d2/3,

d1/2), n = 3�d1/2/6	 and d = 2t, t = 7, . . . , 13, where �x	 denotes the
smallest integer ≥ x.

We considered the case when d → ∞ while n is fixed in (a) and the case when
n → ∞ but n/d → 0 in (b). Note that (r1, r2) = (1, 2) in (a) and (r1, r2) = (2, 3)
in (b). From Remark 3.1, both in (a) and (b), (C-i) to (C-iii) with j = r hold,
but (C-iv) with j = r does not hold.

Let F (B) = L(B|A)/ψ for any d×n matrix, B, and M(bj) = |bj/λj(A)−1|2
(j = 1, . . . , r) for any constant, bj . The findings were obtained by averaging
the outcomes from 2000 independent replications. Figure 1 shows the averages
of (i) F (Âr), (ii) F (Ãr), (iii) F (Âr∗) with r∗ = ŕ1u and (iv) F (Ãr∗) with
r∗ = ŕ2u in (a) and (b). The dashed lines denote the simulation results. We
gave the corresponding theoretical values by (i) r, (ii)

∑r
i=1 2λi(A)γi/ψ, (iii)

r1 +
∑r

i=r1+1 λi(A)/ψ and (iv) (
∑r2

i=1 2λi(A)γi +
∑r

i=r2+1 λi(A))/ψ, which were
denoted by the solid lines in (a) and (b). See Theorems 3.2, 4.2, Propositions 5.1
and 5.3 for the details. The theoretical value by (iv) was not described for (b)
because it is same as that of (iii). We also calculated the variances of simulation
results by the 2000 replications. The variances of (i) to (iv) in (a) and (b) were
quite small especially when d is large. For example, when d = 2t for t ≥ 11,
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Fig 1. The averages of (i) F (Âr), (ii) F (Ãr), (iii) F (Âr∗) with r∗ = ŕ1u and (iv) F (Ãr∗)
with r∗ = ŕ2u which are denoted by the dashed lines. The corresponding theoretical values are
denoted by the solid lines. For (b), the theoretical value of (iv) was not described because it
is same as that of (iii).

Fig 2. The averages of M(λ̂j), M(λ̃j) and M(λ̃j(r)) which are denoted by the dashed lines.
The corresponding theoretical values are denoted by the solid lines. For the right panels,
M(λ̃3(r)) was not described because λ̃3 = λ̃3(r).

all the variances in (a) were smaller than 0.006. Figure 2 shows the averages

of M(λ̂j), M(λ̃j) and M(λ̃j(r)) in (a) and (b). The dashed lines denote the

simulation results. For j = 3 both in (a) and (b), the average of M(λ̃j(r)) was

not described because λ̃3 is same as λ̃3(r). Note that the average of M(λ̂j) is

an estimated value of the mean square error (MSE), E(|λ̂j/λj(A) − 1|2). The
averages of M(λ̃j) and M(λ̃j(r)) are also the same as in M(λ̂j). From Theorem

3.1, we gave the corresponding theoretical value, κ2
j , for the MSE of M(λ̂j). The

theoretical values were denoted by the solid lines.
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The simulation results appeared close to the theoretical values and it seemed
to be good approximations when d is large. As expected theoretically, we ob-
served that Ãr and Ãr∗ with r∗ = ŕ2u give more preferable performances com-

pared to Âr and Âr∗ with r∗ = ŕ1u even when n is fixed. The main reason

must be due to κj which is the bias of λ̂j . See Sections 4 and 5.2 for the details.

In fact, from Figure 2, the MSE of λ̂js were quite large especially when n is
small because κjs are large for the HDLSS settings. In contrast, the estimators
by the NR method gave excellent performances even when n is small. For the
estimation of A by the conventional PCA, Âr∗ with r∗ = ŕ1u gave a better

performance compared to Âr because r1 < r. See Section 5.1 for the details.

7. Example

In this section, we consider an application of (1.1) to a mixture model. We
demonstrate the reconstruction procedures for the mixture model by using a
microarray data set.

7.1. Application

We suppose that there are l classes, Πi, i = 1, . . . , l, each having unknown
mean vector, μi. We assume that an observation is sampled from one of Πis
and the label of the class is missing. Let ni = #{j|xj ∈ Πi for j = 1, . . . , n} for
i = 1, . . . , k, where #S denotes the number of elements in a set S. We define
that μ(j) = μi according to xj ∈ Πi for j = 1, . . . , n. We consider the following
mixture model.

xj = μ(j) +wj for j = 1, . . . , n. (7.1)

Then, we can write that

A = [μ(1), . . . ,μ(n)]/n
1/2.

Note that
∑r

i=1 λi(A) = ||A||2F =
∑l

i=1(ni/n)||μi||2, where || · || denotes the
Euclidean norm. If μ1, . . . ,μl are linearly independent and ni > 0 for all i, the
rank of A becomes just l (i.e., r = l). Also, it is likely that λr(A) → ∞ as d → ∞
if ||μi|| → ∞ as d → ∞ for all i.

7.2. Demonstration

We analyzed gene expression data by Bhattacharjee et al. [1] in which the data
set consisted of five lung carcinomas types having 3312 genes (d = 3312). The
data set is given in Yang et al. [9]. See [1] and [9] for details of the data set. We
used four classes as Π1 : adenocarcinomas (139 samples), Π2 : normal lung (17
samples), Π3 : squamous cell lung carcinomas (21 samples) and Π4 : pulmonary
carcinoids (20 samples). We consider the cases when r∗ = 1, . . . , 7 and l =
1, . . . , 4. Here, from Section 7.1, l can be regarded as the rank, r. Note that
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Table 1

Values of (L(Âr∗ |Ă), L(Ãr∗ |Ă)) as estimates of (L(Âr∗ |A), L(Ãr∗ |A)) for the microarray
data set given by [1]. For each l, the values of (ŕ1u, ŕ2u) are also given in the bottom line.

When r∗ > n for Âr∗ or r∗ > n− 1 for Ãr∗ , those values were not available because λ̂j or

λ̃j is not available when j > n or j > n− 1.

(a) n1 = · · · = nl = 5

r∗\l 1 2 3 4

1 (51.08, 51.12) (71.26, 71.24) (96.22, 96.23) (167.99, 167.95)
2 (106.08, 79.63) (53.11, 48.12) (50.27, 48.1) (88.97, 87.8)
3 (135.68, 85.94) (81.06, 64.67) (54.81, 47.64) (55.35, 52.71)
4 (162.74, 94.51) (99.24, 73.86) (74.68, 58.78) (62.61, 55.65)
5 (185.46, N/A) (113.67, 79.75) (91.44, 68.32) (78.18, 65.01)
6 (N/A, N/A) (127.08, 86.55) (104.89, 75.24) (92.13, 73.09)
7 (N/A, N/A) (138.69, 93.16) (116.21, 80.87) (104.07, 80.15)

(ŕ1u, ŕ2u) (2, 2) (3, 5) (4, 5) (5, 5)

(b) n1 = · · · = nl = 10

r∗\l 1 2 3 4

1 (41.16, 41.09) (76.88, 76.82) (106.79, 106.75) (178.17,178.13)
2 (74.66, 60.23) (45.84, 44.15) (53.52, 52.98) (99.81, 99.17)
3 (98.76, 72.74) (63.74, 55.89) (51.16, 48.51) (60.9, 59.94)
4 (115.46, 78.36) (78.11, 64.98) (64.39, 57.19) (60.55, 57.88)
5 (130.09, 82.46) (89.18, 71.14) (76.87, 65.62) (71.66, 65.69)
6 (143.66, 86.21) (99.01, 76.84) (85.99, 71.1) (82.5, 73.44)
7 (156.49, 90.28) (107.43, 81.11) (94.31, 76.04) (90.81, 78.86)

(ŕ1u, ŕ2u) (2, 4) (4, 5) (5, 5) (5, 5)

μ(j) = μ1 for all j in (7.1) when l = 1. We considered two cases: (a) n1 = · · · =
nl = 5 and (b) n1 = · · · = nl = 10. Note that n = 5l in (a) and n = 10l in (b).
We set ru = 5.

For each r∗ and l, we constructed Âr∗ and Ãr∗ by using the first 5 samples
in (a) or 10 samples in (b) from each class. We investigated their accuracies
by using the remaining samples of each class as a test data set. We defined
that μ̆(j) = μ̆i according to xj ∈ Πi for j = 1, . . . , n, where μ̆i is the sample
mean vector of the test data set for each i. For each r∗ and l, we constructed
Ă = [μ̆(1), . . . , μ̆(n)]/n

1/2 as an estimator of A when the labels of the data set

are known. Hence, L(Âr∗ |Ă) = ||Âr∗ − Ă||2F and L(Ãr∗ |Ă) = ||Ãr∗ − Ă||2F can

be regarded as estimators of L(Âr∗ |A) and L(Ãr∗ |A). We gave the values of

(L(Âr∗ |Ă), L(Ãr∗ |Ă)) for r∗ = 1, . . . , 7 and l = 1, . . . , 4 in Table 1. We also
gave the values of (ŕ1u, ŕ2u) for each l.

As expected theoretically, we observed that Ãr∗ gave more preferable per-

formances than Âr∗ for most cases of (r∗, l) in (a) and (b). Also, for each r∗
and l, when r∗ ≥ l (= r), most values in (b) are smaller than those in (a).
This is probably because the sample size in (b) is larger than that in (a). See
Propositions 5.1 and 5.3 for the details. On the other hand, we observed that
ŕ1u and ŕ2u were larger than r. However, Ãr∗ gave adequate performances even
when r∗ > r. See Section 5.2 for the theoretical reason. Hence, we recommend
to use Ãr∗ with r∗ = ŕ1u or ŕ2u.
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Appendix A

In this section, we give several lemmas, proofs of the lemmas, and proof of
Lemma 5.1.

Throughout, let ein = (ei1, . . . , ein)
T , i = 1, 2, be arbitrary unit random

vectors.

Lemma A.1. For j (≤ r), under (C-i) in (I) or under (C-i) to (C-iii) in (II),
it holds that

eT1n
W TW

nλj(A)
e2n = κje

T
1ne2n + op(1)

as d → ∞ either when n is fixed or n → ∞.

Proof. We write that

eT1n
W TW

n
e2n = eT1n

d∑
s=1

λs(W )zsz
T
s

n
e2n =eT1n

d∑
s=1

λs(W )(zsz
T
s − In)

n
e2n

+ ψeT1ne2n.

When n → ∞, from Lemma 5 given in Yata and Aoshima [12], it holds that as
d → ∞

eT1n

∑d
s=1 λs(W )(zsz

T
s − In)

nλj(A)
e2n = op(1) (A.1)

for j (≤ r) under (C-i) in (I) or under (C-i) to (C-iii) in (II). On the other hand,
when n is fixed, (C-iii) does not hold in (II). Hence, we consider only the case
of (I) when n is fixed. By using Markov’s inequality, for any τ > 0 and j (≤ r),
under (C-i) in (I), we have that

n∑
k=1

P
{( d∑

s=1

λs(W )(z
2
sk − 1)

nλj(A)

)2

≥ τ
}
≤

d∑
s,t=1

λs(W )λt(W )E{(z2sk − 1)(z2tk − 1)}
τnλ2

j(A)

= o(1)

and

n∑
k �=k′

P
{( d∑

s=1

λs(W )zskzsk′

nλj(A)

)2

≥ τ
}
≤ tr(Σ2

W )

τλ2
j(A)

= o(1)

as d → ∞ when n is fixed, so that (A.1) holds in (I) when n is fixed. Thus it
concludes the result.

Lemma A.2. It holds that under (3.1)

uT
i(A)We1n

n1/2
= op(λ

1/2
r(A)), i = 1, . . . , r

as d → ∞ either when n is fixed or n → ∞.
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Proof. We write that uT
i(A)We1n =

∑n
k=1 e1kw

T
kui(A). Note that λ1(W ) =

o(λr(A)) under (3.1). Also, note that uT
i(A)ΣWui(A) ≤ λ1(W ) for i = 1, . . . , r. By

using Markov’s inequality, for any τ > 0 and i = 1, . . . , r, under (3.1), we have
that

P
( n∑

k=1

(wT
k ui(A))

2/n ≥ τλr(A)

)
≤

E{
∑n

k=1(w
T
kui(A))

2}
τnλr(A)

=
uT
i(A)ΣWui(A)

τλr(A)

≤
λ1(W )

τλr(A)
= o(1)

as d → ∞ either when n is fixed or n → ∞, so that
∑n

k=1(w
T
k ui(A))

2/n =
op(λr(A)). Then, by noting that∣∣∣ n∑

k=1

e1k(w
T
kui(A))/n

1/2
∣∣∣ ≤ { n∑

k=1

e21k

}1/2{ n∑
k=1

(wT
kui(A))

2/n
}1/2

=
{ n∑

k=1

(wT
kui(A))

2/n
}1/2

,

we can conclude the result.

Lemma A.3. For j (≤ r), under (C-i) in (I) or under (C-i) to (C-iii) in (II),
it holds that

λ̂j

λj(A)
= 1 + κj + op(1) and v̂T

j vj(A) = 1 + op(1);

vT
i′(A)v̂i = op{(λj(A)/λi′(A))

1/2} for i′ < j ≤ i; and

v̂T
i A

TWv̂i′/n
1/2 = op{(λr(A)λj(A))

1/2} for i ≥ j; i′ = 1, . . . , r

as d → ∞ either when n is fixed or n → ∞.

Proof. We write that

λ̂j

λj(A)
= v̂T

j

SD

λj(A)
v̂j = v̂T

j

(A+W /n1/2)T (A+W /n1/2)

λj(A)
v̂j

= v̂T
j

ATA

λj(A)
v̂j + 2v̂T

j

ATW

n1/2λj(A)

v̂j + v̂T
j

W TW

nλj(A)
v̂j . (A.2)

When j = 1, we note that |v̂T
i A

TWv̂i′ | ≤
∑r

s=1 λ
1/2
s(A)|uT

s(A)Wv̂i′ | for all i, i′.

From Lemma A.2, under (3.1), it holds that for all i, i′

v̂T
i A

TWv̂i′/n
1/2 = op{(λr(A)λ1(A))

1/2} (A.3)

as d → ∞ either when n is fixed or n → ∞. By combining (A.2) with Lemma
A.1 and (A.3), it holds that

λ̂1

λ1(A)
= v̂T

1

∑r
s=1 λs(A)vs(A)v

T
s(A)

λ1(A)
v̂1 + κ1 + op(1) = 1 + κ1 + op(1)
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under (C-i) in (I) or under (C-i) to (C-iii) in (II). Thus, we have that v̂T
1 v1(A) =

1 + op(1) from the assumption that λj(A)s are distinct.

When j = 2, we note that v̂T
1 vi(A) = op(1) for i = 2, . . . , r, because v̂T

1 v1(A) =
1 + op(1). From Lemma A.1 and (A.3), we have that for i ≥ 2

0 = v̂T
1

SD

λ2
v̂i =

λ1(A)

λ2(A)
{1 + op(1)}vT

1(A)v̂i + v̂T
1

ATW +W TA

n1/2λ2(A)

v̂i + op(1)

=
λ1(A)

λ2(A)
{1 + op(1)}vT

1(A)v̂i + op{(λ1(A)/λ2(A))
1/2}+ op(1)

under (C-i) in (I) or under (C-i) to (C-iii) in (II). Thus, it follows that for i ≥ 2

vT
1(A)v̂i = op{(λ2(A)/λ1(A))

1/2}. (A.4)

It holds that for i ≥ 2

Av̂i =

r∑
j=1

λ
1/2
j(A)uj(A)v

T
j(A)v̂i =

r∑
j=2

λ
1/2
j(A)uj(A)v

T
j(A)v̂i + λ

1/2
2(A)u1(A) × op(1),

so that |v̂T
i A

TWv̂i′ | ≤
∑r

j=2 λ
1/2
j(A)|uT

j(A)Wv̂i′ |+ λ
1/2
2(A)|uT

1(A)Wv̂i′ × op(1)| for
i′ = 1, . . . , r. Hence, from Lemma A.2 it holds that

v̂T
i A

TWv̂i′/n
1/2 = op{(λr(A)λ2(A))

1/2} for i ≥ 2; i′ = 1, . . . , r (A.5)

under (C-i) in (I) or under (C-i) to (C-iii) in (II). By combining (A.2) with
Lemma A.1, (A.4) and (A.5), we have that

λ̂2

λ2(A)
= v̂T

2

∑r
s=1 λs(A)vs(A)v

T
s(A)

λ2(A)
v̂2 + κ2 + op(1)

= v̂T
2

∑r
s=2 λs(A)vs(A)v

T
s(A)

λ2(A)
v̂2 + κ2 + op(1) = 1 + κ2 + op(1) (A.6)

under (C-i) in (I) or under (C-i) to (C-iii) in (II). Thus, we have that v̂T
2 v2(A) =

1 + op(1).

When j = 3, we note that v̂T
i′vi(A) = op(1) for i = i′ + 1, . . . , r; i′ = 1, 2,

because v̂T
i′vi′(A) = 1 + op(1), i

′ = 1, 2. From Lemma A.1, (A.3), (A.4) and
(A.5), we have that for i ≥ 3

0 = v̂T
1

SD

λ3
v̂i =

λ1(A)

λ3(A)
{1 + op(1)}vT

1(A)v̂i + vT
2(A)v̂i × op{(λ2(A)/λ3(A))}

+ op{(λ1(A)/λ3(A))
1/2}+ op(1);

0 = v̂T
2

SD

λ3
v̂i =

λ2(A)

λ3(A)
{1 + op(1)}vT

2(A)v̂i + vT
1(A)v̂i × op{(λ1/2

1(A)λ
1/2
2(A)/λ3(A))}

+ op{(λ2(A)/λ3(A))
1/2}+ op(1)
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under (C-i) in (I) or under (C-i) to (C-iii) in (II). Thus, it follows that vT
i′(A)v̂i =

op{(λ3(A)/λi′(A))
1/2} for i′ = 1, 2; i ≥ 3. Similar to (A.5) and (A.6), it holds

that λ̂3/λ3(A) = 1 + κ3 + op(1) and

v̂T
i A

TWv̂i′/n
1/2 = op{(λr(A)λ3(A))

1/2} for i ≥ 3; i′ = 1, . . . , r

under (C-i) in (I) or under (C-i) to (C-iii) in (II). Hence, we have that v̂T
3 v3(A) =

1+op(1). In a way similar to the case of λ3(A), we have the results for j = 4, . . . , r,
as well. It concludes the results.

Lemma A.4. For j (≤ r), under (C-i) in (I) or under (C-i) to (C-iii) in (II),
it holds that

ûT
j uj(A) = (1 + κj)

−1/2 + op(1)

as d → ∞ either when n is fixed or n → ∞.

Proof. Note that ûj = (nλ̂j)
−1/2Xv̂j . From Lemmas A.2 and A.3, under (C-i)

in (I) or under (C-i) to (C-iii) in (II), it holds that for j (≤ r)

uT
j(A)ûj = λ̂

−1/2
j λ

1/2
j(A)v

T
j(A)v̂j + (nλ̂j)

−1/2uT
j(A)Wv̂j = (1 + κj)

−1/2 + op(1)

as d → ∞ either when n is fixed or n → ∞. It concludes the result.

Lemma A.5. For j (≤ r), under (C-i) in (I) or under (C-i) to (C-iii) in (II),
it holds that

λ̂i

λi(A)
= 1 + κi + 2δi + op

{(λj(A)

λi(A)

)}
and v̂T

i vi(A) = 1 + op

(λj(A)

λi(A)

)
for i = 1, . . . , j;

v̂T
i vi′(A) = op

{( λj(A)

max{λi(A), λi′(A)}
)1/2}

for all i �= i′ (≤ j)

as d → ∞ either when n is fixed or n → ∞.

Proof. From Lemma A.1, under (C-i) in (I) or under (C-i) to (C-iii) in (II), it
holds that for j (≤ r)

eT1n(W
TW /n)e2n = eT1ne2nψ + op(λj(A)) (A.7)

as d → ∞ either when n is fixed or n → ∞. Then, from Lemmas A.2 and A.3,
we have that for all i �= i′ (≤ j)

v̂T
i (SD/λi(A))vi′(A) = (λ̂i/λi(A))v̂

T
i vi′(A) = {1 + κi + op(1)}v̂T

i vi′(A) (A.8)

= (λi′/λi(A))v̂
T
i vi′(A) + κiv̂

T
i vi′(A) + op(λj(A)/λi(A))

+ op{λ1/2
r(A)(λ

1/2
i(A) + λ

1/2
i′(A))/λi(A)}. (A.9)
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By combining (A.8) and (A.9), we can claim that for all i �= i′ (≤ j)

v̂T
i vi′(A) = op(λ

1/2
j(A)/max{λ1/2

i(A), λ
1/2
i′(A)}). (A.10)

Let A(i) = λ
1/2
i(A)ui(A)v

T
i(A) for i = 1, . . . , j. From Lemmas A.2, A.3, (A.2), (A.7)

and (A.10), we have that for i = 1, . . . , j

λ̂i

λi(A)
− κi =(v̂T

i vi(A))
2 + v̂T

i

ATW +W TA

n1/2λi(A)

v̂i + op(λj(A)/λi(A))

=(v̂T
i vi(A))

2 + v̂T
i

AT
(i)W +W TA(i)

n1/2λi(A)

v̂i + op(λj(A)/λi(A)) (A.11)

under (C-i) in (I) or under (C-i) to (C-iii) in (II). Here, there exist a random
variable εi ∈ [−1, 1] and a random unit vector yi such that

v̂i = (1− ε2i )
1/2vi(A) + εiyi and vT

i(A)yi = 0.

Note that εi = op(1) from v̂T
i vi(A) = 1 + op(1). By combining (A.11) with

Lemma A.2, we have that for i = 1, . . . , j

λ̂i

λi(A)
− κi − 2vT

i(A)

AT
(i)W

n1/2λi(A)

vi(A)

= 1− ε2i + v̂T
i

AT
(i)W +W TA(i)

n1/2λi(A)

v̂i − 2vT
i(A)

AT
(i)W

n1/2λi(A)

vi(A) + op(λj(A)/λi(A))

= 1− ε2i + op(ε
2
i ) + 2εiy

T
i

AT
(i)W +W TA(i)

n1/2λi(A)

vi(A) + op(λj(A)/λi(A))

= 1− ε2i {1 + op(1)}+ op{εi(λr(A)/λi(A))
1/2}+ op(λj(A)/λi(A))

= 1 + op(λj(A)/λi(A)) (A.12)

under (C-i) in (I) or under (C-i) to (C-iii) in (II). Thus, it follows that for
i = 1, . . . , j

εi = op{(λj(A)/λi(A))
1/2}. (A.13)

Hence, from v̂i = (1− ε2i )
1/2vi(A) + εiyi, it holds that for i = 1, . . . , j

v̂T
i vi(A) = (1− ε2i )

1/2 = 1 + op(λj(A)/λi(A)).

On the other hand, from (A.12), for i = 1, . . . , j, it holds λ̂i/λi(A) = 1+κi+2δi+
op(λj(A)/λi(A)) under (C-i) in (I) or under (C-i) to (C-iii) in (II). It concludes
the results.

Lemma A.6. For j (≤ r), under (C-i) in (I) or under (C-i) to (C-iii) in (II),
it holds that

ûT
i ui(A) = (1 + κi + 2δi)

−1/2{1 + δi + op(λj(A)/λi(A))} for i = 1, . . . , j;

ûT
i ui′(A) = (1 + κi + 2δi)

−1/2 × op{(λj(A)/λi(A))
1/2} for all i �= i′ (≤ j)

as d → ∞ either when n is fixed or n → ∞.
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Proof. Note that ûi = (nλ̂i)
−1/2Xv̂i. From (A.13), Lemmas A.2 and A.5, under

(C-i) in (I) or under (C-i) to (C-iii) in (II), we have that for j (≤ r)

λ̂
1/2
i

λ
1/2
i(A)

uT
i(A)ûi = vT

i(A)v̂i +
uT
i(A)Wv̂i

n1/2λ
1/2
i(A)

= 1 + δi + op(λj(A)/λi(A)) for i = 1, . . . , j;

λ̂
1/2
i

λ
1/2
i(A)

uT
i′(A)ûi =

λ
1/2
i′(A)

λ
1/2
i(A)

vT
i′(A)v̂i +

uT
i′(A)Wv̂i

n1/2λ
1/2
i(A)

= op{(λj(A)/λi(A))
1/2} for all i �= i′ (≤ j)

as d → ∞ either when n is fixed or n → ∞. From Lemma A.5, we can conclude
the results.

Proof of Lemma 5.1. We write that tr(W TW /n) =
∑d

s=1 λs(W )

∑n
k=1(z

2
sk −

1)/n+ tr(ΣW ). Under (C-i), it holds that for j (≤ r)

E[{tr(W TW /n)− tr(ΣW )}2]
λ2
j(A)

=

d∑
s,t=1

λs(W )λt(W )E{(z2sk − 1)(z2tk − 1)}
nλ2

j(A)

= o(1)

as d → ∞ either when n is fixed or n → ∞. By using Chebyshev’s inequality,
for any τ > 0, it holds that

P
(
|tr(W TW /n)−tr(ΣW )| ≥ τλj(A)

)
≤ E[{tr(W TW /n)− tr(ΣW )}2]

τ2λ2
j(A)

= o(1)

for j (≤ r). It follows that tr(W TW /n) = tr(ΣW ) + op(λj(A)). We write that

tr(SD)

= tr(ATA) + 2
tr(ATW )

n1/2
+

tr(W TW )

n
=

r∑
i=1

λi(A)(1 + 2δi) +
tr(W TW )

n
.

Since tr(W TW /n) = tr(ΣW ) + op(λj(A)), it holds that for j (≤ r)

tr(SD) =

r∑
i=1

λi(A)(1 + 2δi) + tr(ΣW ) + op(λj(A)) (A.14)

under (C-i). Note that

δi = op{(λr(A)/λi(A))
1/2} for i = 1, . . . , r (A.15)

from Lemma A.2. Then, from Lemma A.5 and (A.14), it holds that for j (≤ r)

tr(SD)−
∑j

i=1 λ̂i

n− j
=

{
ψ +

∑r
i=j+1 λi(A)/(n− j) + op(λj(A)) when j < r;

ψ + op(λr(A)) when j = r

under (C-i) in (I) or under (C-i), (C-iii) and (C-iv) in (II). It concludes the
result.
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Appendix B

In this section, we give proofs of the theorems, corollaries and propositions in
Sections 3 to 5.

Proofs of Theorem 3.1 and Corollary 3.1. By noting that κj = o(1) for j (≤ r)
under (C-iv), the results are obtained straightforwardly from Lemmas A.3 and
A.4.

Proofs of Theorem 3.2 and Corollary 3.2. Note that δi = op(1) for i = 1, . . . , r,
from Lemma A.2. Then, from Lemmas A.5 and A.6, under (C-i) in (I) or under
(C-i) to (C-iii) in (II), we have that for j (≤ r)

||λ̂1/2
i ûiv̂

T
i − λ

1/2
i(A)ui(A)v

T
i(A)||2F

= λ̂i + λi(A) − 2λ̂
1/2
i λ

1/2
i(A)û

T
i ui(A){1 + op(λj(A)/λi(A))}

= ψ + op(λj(A)) for i = 1, . . . , j;

tr{(λ̂1/2
i ûiv̂

T
i )(λ

1/2
i′(A)vi′(A)u

T
i′(A))} = op(λj(A)) for all i �= i′ (≤ j) (B.1)

as d → ∞ either when n is fixed or n → ∞. Thus, it holds that

L(Âr|A) =
∥∥∥ r∑

i=1

(λ̂
1/2
i ûiv̂

T
i − λ

1/2
i(A)ui(A)v

T
i(A))

∥∥∥2
F
= rψ + op(λr(A))

under (C-i) in (I) with j = r or under (C-i) to (C-iii) in (II) with j = r.
It concludes the result of Theorem 3.2. By noting that ψ = o(λr) under (C-
iv) with j = r, the result of Corollary 3.2 is obtained straightforwardly from
Theorem 3.2.

Proof of Theorem 4.1. By combining Lemma A.3 with Lemma 5.1, under (C-i)
in (I) or under (C-i) to (C-iii) in (II), it holds that for j (≤ r)

λ̃j =

{
λj(A) −

∑r
i=j+1 λi(A)/(n− j) + op(λj(A)) when j < r;

λr(A) + op(λr(A)) when j = r
(B.2)

as d → ∞ either when n is fixed or n → ∞. It concludes the result.

Proof of Corollary 4.1. For j (< r), we first consider the case when lim infd→∞
λi(A)/λj(A) > 0 for i > j either when n is fixed or n → ∞. From Lemma A.3,
under (C-i) in (I) or under (C-i) to (C-iii) in (II), we can claim that

λ̂i

λj(A)
=

λi(A)

λj(A)
+ κj + op(1) (B.3)

as d → ∞ either when n is fixed or n → ∞.

Next, we consider the case when λi(A)/λj(A) = o(1) for i > j. From Lemma
A.3, we obtain that for j (≤ r)

vT
i′(A)v̂i = op{(λj(A)/λi′(A))

1/2} for i′ = 1, . . . , j; i > j (B.4)
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under (C-i) in (I) or under (C-i) to (C-iii) in (II). Then, from Lemmas A.1, A.2
and (A.2), we have that for j (≤ r) and i > j

λ̂i

λj(A)
= v̂T

i

ATA

λj(A)
v̂i + 2v̂T

i

ATW

n1/2λj(A)

v̂i + v̂T
i

W TW

nλj(A)
v̂i = κj + op(1) (B.5)

because λi(A)/λj(A) = o(1). By using the convergent subsequence of λi(A)/λj(A)

for i > j, from Lemma A.5, (A.14), (A.15), (B.3) and (B.5), it holds that for
j (≤ r)

ψ̂r = ψ + op(λj(A)) (B.6)

under (C-i) in (I) or under (C-i) to (C-iii) in (II). Hence, from Lemma A.3, we
can conclude the result.

Proofs of Theorem 4.2 and Corollary 4.2. From Lemma A.5 and (B.6), under
(C-i) in (I) or under (C-i) to (C-iii) in (II), it holds that for j (≤ r)

λ̃i(r)

λi(A)
= 1 + 2δi + op(λj(A)/λi(A)) for i = 1, . . . , j

as d → ∞ either when n is fixed or n → ∞. Then, from Lemmas A.5, A.6 and
(A.15), we have that

||λ̃1/2
i(r)ûiv̂

T
i − λ

1/2
i(A)ui(A)v

T
i(A)||2F

= 2λi(A){1 + δi − (1 + 2δi)
1/2ûT

i ui(A)}+ op(λj(A))

= 2λi(A)(1 + δi)(1− ûT
i ui(A)) + op(λj(A)) for i = 1, . . . , j;

tr{(λ̃1/2
i(r)ûiv̂

T
i )(λ

1/2
i′(A)vi′(A)u

T
i′(A))} = op(λj(A)) for all i �= i′ (≤ j).

Hence, it holds that

L(Ãr|A) = 2

r∑
i=1

λi(A)(1 + δi)
(
1− 1 + δi

(1 + κi + 2δi)1/2

)
+ op(λr(A)) (B.7)

under (C-i) in (I) with j = r or under (C-i) to (C-iii) in (II) with j = r.
From (A.15) and (B.7), it concludes the results of Theorem 4.2. By noting that
ψ = o(λr) under (C-iv) with j = r, the result of Corollary 4.2 is obtained
straightforwardly from Theorem 4.2.

Proof of Proposition 5.1. We first consider the case when r∗ < r. From (B.1),
under (C-i) in (I) with j = r or under (C-i) to (C-iii) in (II) with j = r, it holds
that

L(Âr∗ |A) = r∗ψ +

r∑
i=r∗+1

λi(A) + op(λr(A))

as d → ∞ either when n is fixed or n → ∞.

Next, we consider the case when r∗ > r. From (B.5), it holds that

λ̂i = ψ + op(λr(A)) for i > r (B.8)
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under (C-i) in (I) with j = r or under (C-i) to (C-iii) in (II) with j = r. Note

that ûi = (nλ̂i)
−1/2Xv̂i. From Lemma A.2 and (B.4), it holds that for i > r

and i′ = 1, . . . , r

λ̂
1/2
i uT

i′(A)ûi = λ
1/2
i′(A)v

T
i′(A)v̂i + uT

i′(A)Wv̂i/n
1/2 = op(λ

1/2
r(A)) (B.9)

under (C-i) in (I) with j = r or under (C-i) to (C-iii) in (II) with j = r. By

combining Theorem 3.2 with (B.4), (B.8) and (B.9), it holds that L(Âr∗ |A) =
r∗ψ + op(λr(A)). It concludes the result.

Proof of Proposition 5.3. We first consider the case when r∗ ≥ r. From Lemma
A.5, (A.14) and (B.5), under (C-i) in (I) with j = r or under (C-i) to (C-iii) in
(II) with j = r, we can claim that for i > r

ψ̂i = ψ + op(λr(A)) (B.10)

as d → ∞ either when n is fixed or n → ∞. Thus, from (B.5) and (B.10), it
follows that

λ̃i(r∗)/λr(A) = op(1) for r < i ≤ r∗ (B.11)

under (C-i) in (I) with j = r or under (C-i) to (C-iii) in (II) with j = r. Note

that λ̃i(r∗)u
T
i′(A)ûi = op(λ

1/2
r(A)) for i > r and i′ = 1, . . . , r, from (B.9) and

λ̃i(r∗) ≤ λ̂i for all i. Then, by combining Theorem 4.2 with (A.15), (B.4) and
(B.11), it holds that

L(Âr∗ |A) =

r∑
i=1

λi(A)

(
2γi + op(1)

)
+ op(λr(A)).

It concludes the result when r∗ ≥ r.
Next, we consider the case when r∗ < r. Assume λr∗+1(A)/(λr∗(A)n) = o(1).

In a way similar to (B.2), we obtain that λ̃i(r∗) = λi(A) −
∑r

i′=r∗+1 λi′(A)/(n−
r∗) + op(λi(A)) = λi(A){1 + op(1)} for i ≤ r∗ under (C-i) in (I) with j = r
or under (C-i) to (C-iii) in (II) with j = r. Then, from Lemmas A.5, A.6 and
(A.15), we have that for i = 1, . . . , r∗

||λ̃1/2
i(r∗)

ûiv̂
T
i − λ

1/2
i(A)ui(A)v

T
i(A)||2F

= 2λi(A){1− ûT
i ui(A) + op(1)} = 2λi(A){γi + op(1)};

and tr{(λ̃1/2
i(r∗)

ûiv̂
T
i )(λ

1/2
i′(A)vi′(A)u

T
i′(A))} = op(λr(A)) for i′( �= i) = 1, . . . , r.

Hence, we can conclude the result when r∗ < r. It concludes the results of
Proposition 5.3.

Proofs of Propositions 5.2 and 5.4. Note that
∑r

i=j+1 λi(A)/{(n − j)λj(A)} ≤
(r − j)/(n − j) for j < r. From Lemma 5.1, (B.2), (B.10) and (B.11), we can
conclude the results.
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