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Abstract Rapid eye movement (REM) sleep loss is associated with increased consumption of

weight-promoting foods. The prefrontal cortex (PFC) is thought to mediate reward anticipation.

However, the precise role of the PFC in mediating reward responses to highly palatable foods

(HPF) after REM sleep deprivation is unclear. We selectively reduced REM sleep in mice over a 25–

48 hr period and chemogenetically inhibited the medial PFC (mPFC) by using an altered glutamate-

gated and ivermectin-gated chloride channel that facilitated neuronal inhibition through

hyperpolarizing infected neurons. HPF consumption was measured while the mPFC was inactivated

and REM sleep loss was induced. We found that REM sleep loss increased HPF consumption

compared to control animals. However, mPFC inactivation reversed the effect of REM sleep loss on

sucrose consumption without affecting fat consumption. Our findings provide, for the first time, a

causal link between REM sleep, mPFC function and HPF consumption.

DOI: 10.7554/eLife.20269.001

Introduction
A strong link exists between insufficient sleep and weight gain. A study of more than 30,000 partici-

pants found that those who slept less than 6 hr per night were more likely to gain weight over a 1-

year period compared to people who slept 7 to 8 hr per night (Watanabe et al., 2010). Moreover,

when healthy adults obtain insufficient sleep (i.e., 5 hr per night) they are more likely to consume

weight-promoting foods compared to persons who obtain sufficient sleep (i.e., 9 hr per night;

Markwald et al., 2013). Rapid eye movement (REM) sleep loss itself may be sufficient to increase

consumption of weight promoting, highly palatable foods (HPF). Shechter et al. (2012) found that

REM sleep loss in humans, over a period of 5 d, was inversely associated with hunger ratings and fat

consumption. Indeed, increased intake of weight promoting, highly palatable foods may, over time,

lead to adverse health outcomes such as obesity, diabetes and cardiovascular diseases.

Several studies have attempted to uncover the underlying neural mechanisms responsible for

mediating an increased desire to consume HPF in response to sleep deprivation. Healthy adults who

were subjected to one night of total sleep loss reported an increased desire to consume high-calorie

foods compared to non-sleep deprived controls (Greer et al., 2013). In addition, sleep deprivation

decreased activation, assessed by fMRI scans, in areas of the brain thought to mediate reward antici-

pation and inhibitory control, namely the anterior cingulate and orbitofrontal cortex, respectively

(Greer et al., 2013; Liu et al., 2011; Stuss, 2011). However, the relationship between brain function

and sleep loss are not consistent. For example, presentation of HPF to sleep deprived healthy adults

was not associated with anterior cingulate activation (St. Onge et al., 2014) while in other instances

a positive association was found between appetite for HPF and anterior cingulate function

(Benedict et al., 2012).
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Therefore, the current investigation sought to determine the role of the medial prefrontal cortex

(medial PFC, mPFC) in mediating appetite for highly palatable foods in mice experiencing REM

sleep loss. To achieve this aim, we used a well-validated chemogenetic method (Lerchner et al.,

2007) to produce a modified invertebrate chloride channel (GluClab) that when activated by the

drug ivermectin (IVM) facilitates neuronal inhibition in the mPFC over several days. We then exam-

ined the effect of mPFC inactivation and REM sleep loss on appetite for HPF in mice.

Results

Wire-mesh-grid device exposure produced REM sleep loss
During the dark period, mice exposed to a wire-mesh-grid device (WMGD) in their housing cage

(Figure 1A) over a 72-hr period showed significantly less REM sleep after device introduction com-

pared to baseline polygraphic recordings obtained without the device (F3,6 = 23.835, p = 0.001;

Figure 1B and C, McEown et al., 2016). There was a significant REM sleep reduction of 58%

observed between baseline and the 25–48 hr dark time period (p = 0.026) and a 56% REM sleep

reduction observed between baseline and the 49–72 hr dark time period (p = 0.020). In addition, a

46% REM sleep reduction was found when comparing the 0–24 hr and 25–48 hr dark time periods

(p = 0.009). Moreover, we did not observe any rebound in REM sleep during the first 3 hr of the 25–

48 hr light period (all comparisons p > 0.05; Figure 1—figure supplement 1). A significant increase

in wakefulness was also produced by the device during the dark period (F3,6 = 6.886, p = 0.023).

Specifically, a 23% increase in wakefulness during the dark period was observed between baseline

and the 49–72 hr time period (p = 0.042). No differences were observed between time periods, dur-

ing the dark phase, for slow-wave sleep (SWS)—also known as non-REM sleep—(F3,6 = 4.605,

p = 0.053). In addition, differences between time periods, during the light phase, for wake (F3,6 =

1.608, p = 0.284), REM (F3,6 = 1.103, 0.418) and SWS (F3,6 = 1.434, p = 0.323) were also non-

significant.

Exposing mice to the WMGD significantly affected sleep episode numbers during the 25–48 hr

light and dark periods (Figure 2A). Specifically, WMGD exposure increased the number of SWS epi-

sodes during the light period, lasting 120 to 239 s, by 44% compared to baseline measures taken

without the WMGD (t2 = �18.898, p = 0.003). Furthermore, WMGD exposure decreased the number

of REM episodes during the dark period, lasting 60 to 119 s, by 69% compared to baseline

(t2 = 9.430, p=0.011). On the other hand, WMGD exposure increased the number of wake episodes

during the light period, lasting 30 to 59 s, by 42% compared to baseline (t2 = �4.355, p = 0.049).

The mean duration of SWS, REM sleep and wake episodes was not significantly different after

WMGD exposure (Figure 2B).

SWS electroencephalogram (EEG) power density was also affected by WMGD exposure during

the 25–48 hr light and dark periods (Figure 2C). That is, we observed increases in SWS EEG power

density, of 12% to 14%, after exposure to the WMGD during the light period at 2.5 Hz

(t2 = �51.786, p = 0.000), 22 Hz (t2 = �49.829, p = 0.000) and 24 Hz (t2 = �31.982, p = 0.001) com-

pared to baseline. We also observed increases in SWS EEG power density, of 12% to 14%, after

WMGD exposure during the dark period at 2.5 Hz (t2 = �42.819, p = 0.001), 3 Hz (t2 = �27.978,

p = 0.001), 10.5 Hz (t2 = �121.636, p = 0.000) and 11 Hz (t2 = �46.198, p = 0.000) compared to

baseline. On the other hand, we did not observe significant differences in REM EEG power density

during the 25–48 hr light or dark period (all comparisons p > 0.05; Figure 2, Panel C).

These results suggest that REM sleep is specifically reduced during the dark period in mice after

WMGD exposure for the 25–48 hr time period, or longer, and thus the WMGD may be useful to elu-

cidate the role of REM sleep loss on HPF consumption.

GluClab-mPFC neuronal inhibition reverses the effect REM sleep loss on
HPF consumption
Next, we investigated the effect of REM sleep loss on HPF consumption and whether changes in the

latter one depend on the mPFC. Therefore, we used a chemogenetic system that involves a Caeno-

rhabditis elegans glutamate-gated and IVM-gated chloride channel that was mutagenically modified

to abolish sensitivity to glutamate while retaining sensitivity to IVM (Lerchner et al., 2007). The
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Figure 1. A wire-mesh-grid device (WMGD) produced REM sleep loss during the dark period in mice. (A) A pictorial representation of the WMGD (left)

and the housing cage in which the WMGD was placed (right). (B and C) Time-courses (25–48 hr) of slow wave sleep (SWS), REM sleep and wake (B) and

time spent in each sleep stage (C). Black and white bars in (B) indicate dark and light period, respectively. *p < 0.05 and **p < 0.01 indicate significant

differences between baseline and WMGD exposure (n = 3).

Figure 1 continued on next page
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altered heteromeric channel, which is made up of an a-subunit and b-subunit, prevents the firing of

action potentials by hyperpolarizing the cell membrane for several days after administration of IVM.

Two adeno-associated viruses (AAV) carrying the a-subunit or b-subunit of the IVM-gated

GluClab channel (AAV-GluCla-IVM and AAV-GluClb-IVM) were stereotaxically co-injected bilaterally

into the mPFC of wild-type mice (Figure 3A and B). To detect expression of the GluClab channel,

we labeled neurons with anti-green fluorescent protein (GFP) antibodies to stain the fusion proteins

of the GluCla-subunit and GluClb-subunit with yellow and cyan fluorescent proteins, respectively.

Heat maps depicting AAV location and spread within the mPFC are displayed in Figures 3B and

4A. The virus successfully targeted the mPFC, for mice used in all experiments, including the cingu-

late, prelimbic and infralimbic cortices (Figure 3B). IVM-injected mice had markedly attenuated Fos

expression in the mPFC compared to mice injected with propylene glycol, indicating that the

GluClab successfully inhibited neuronal activity in the mPFC (Figure 3C). SWS, REM and wakefulness

amounts were non-significant when comparing the light and dark phases during the 25–48 hr time

period for mPFC inactivated mice to the light and dark phases of the baseline day before the IVM

injection (Figure 3D; all comparisons p>0.05).

We then examined the effect of REM sleep loss on sucrose consumption and whether changes in

sucrose consumption depend on the mPFC (F3,16 = 3.206, p = 0.051; see Figure 4, Panel B). We

compared non-sleep deprived mPFC inactivated mice to non-sleep deprived control mice and found

no difference between these groups in sucrose (propylene glycol injected mice: p = 0.391; saline

injected mice: p = 0.350) or fat consumption (propylene glycol injected mice: p = 0.575; saline

injected mice: p = 0.434); indicating that mPFC inactivation, alone, did not affect sucrose or fat con-

sumption in mice (Figure 4—figure supplement 1, Panel A). Moreover, we found that REM sleep

loss increased sucrose consumption by 27% compared to non-sleep deprived saline injected controls

(p = 0.039) and 35% compared to non-sleep deprived propylene glycol injected controls (p = 0.033).

On the other hand, mPFC neuronal inhibition reversed the effect of REM sleep loss on sucrose con-

sumption. Specifically, mPFC inactivated, REM sleep deprived mice consumed 49% less sucrose

compared to REM sleep deprived controls (p = 0.004). Whereas sucrose consumption was non-sig-

nificant between mPFC inactivated, REM sleep deprived mice and non-sleep deprived propylene

glycol injected (p = 0.205) and saline injected controls (p=0.060).

Furthermore, the effect of REM sleep loss on fat consumption was also examined and whether

changes in fat consumption depend on the mPFC (F3,16 = 7.778, p = 0.002; see Figure 4, Panel B).

We found that REM sleep loss increased fat consumption by 26% compared to non-sleep deprived

saline injected controls (p = 0.001) and 35% compared to non-sleep deprived propylene glycol

injected controls (p = 0.000). However, mPFC inhibition paired with REM sleep loss did not affect fat

consumption compared to sleep deprived controls (p = 0.199).

Baseline and follow-up weights of mice in the non-sleep deprived saline injected, non-sleep

deprived propylene glycol injected, REM sleep reduced and mPFC inactivated groups were non-sig-

nificant (Baseline: F3,16 = 0.414, p = 0.745; Follow-up: F3,16 = 0.538, p = 0.663). In addition, body

weight did not significantly change between baseline and follow-up time points for the non-sleep

deprived saline injected mice (t8 = 0.468, p = 0.652), non-sleep deprived propylene glycol injected

mice (t2 = 0.756, p = 0.529), REM sleep reduced (t3 = 0.157, p = 0.885) or PFC inactivated groups

(t3 = 0.001, p = 0.999). Finally, the amounts of sucrose (r = �0.175, p = 0.400) and fat (r = 0.246,

p =0.240) consumed were not associated with baseline body weight (Figure 4—figure supplement

1, Panel B).

Discussion
We were successfully able to mitigate the increased consumption of sucrose that resulted from REM

sleep loss. We achieved this aim by chemogenetically inhibiting mPFC function. These results are the

Figure 1 continued

DOI: 10.7554/eLife.20269.002

The following figure supplement is available for figure 1:

Figure supplement 1. REM sleep does not rebound during the light phase in mice exposed to the WMGD for 25–48 hr compared to baseline.

DOI: 10.7554/eLife.20269.003
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Figure 2. Sleep-wake profiles under baseline and wire-mesh-grid device (WMGD) conditions in mice for a 25–48 hr period, assessed by EEG/EMG

recordings. (A and B) Effect of the WMGD on episode number (A) and duration (B) of slow wave sleep (SWS), REM sleep and wake during the light and

dark phases. *p < 0.05 and **p < 0.01, indicates significant differences between baseline and WMGD exposure (n = 3). (C) EEG power density of SWS

Figure 2 continued on next page
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first to demonstrate a clear, causative link between mPFC function, REM sleep and HPF consump-

tion. Specifically, REM sleep loss increased consumption of two highly palatable foods, namely

sucrose and fat. Whereas, mPFC inhibition completely reversed increased sucrose intake by attenu-

ating the effect of REM sleep loss on sucrose consumption. On the other hand, mPFC inhibition did

not attenuate the effect of REM sleep loss on fat consumption.

The PFC appears to play a role in mediating goal directed behavior toward highly appetitive

food stimuli. Brain circuits responsible for judging the palatability of foods such as taste, texture and

smell are mediated by areas of the PFC including the orbitofrontal and anterior cingulate cortex

(Rolls, 2015). More specifically, the anterior cingulate appears to mediate taste for glucose in pri-

mates as feeding fruit juice (i.e., a high-glucose food) to satiety decreased neuronal firing in the

anterior cingulate cortex using single cell recordings, whereas initial juice feeding increased neuronal

firing in these animals (Rolls, 2008). Chocolate flavor also increases activation, as measured by fMRI,

in the anterior cingulate cortex in humans (Rolls and McCabe, 2007). In addition, obese patients dis-

play increased PFC activity in response to high-calorie visual food stimuli; specifically, increased

activity in the orbitofrontal and anterior cingulate cortex (Stoeckel et al., 2008; Rothemund et al.,

2007). Alterations in PFC brain activity may, over time, result in the inability of these persons to

inhibit salient food cues leading to excess high calorie food consumption and weight gain. Our

results support these data by directly manipulating mPFC function in mice, which resulted in a sub-

stantial decrease in sucrose consumption, but had no effect on fat consumption. On the other hand,

it is unknown whether consumption of other highly palatable foods may be effected by mPFC inacti-

vation and/or REM disruption (e.g., foods high in salt content). Future research is needed to explore

this possibility. The mPFC contains heterogeneous neurons that include some inhibitory GABAergic

interneurons (approximately 20%) and excitatory pyramidal neurons (approximately 80%;

(Riga et al., 2014). Moreover, mPFC neurons expressing dopamine D1 receptors mediate food con-

sumption (Land et al., 2014); however, it is currently unknown what role this neuronal subtype may

play in controlling highly palatable food consumption in response to REM sleep disruption.

Furthermore, in humans REM sleep loss adversely affects dietary behavior which may lead to

weight gain. For example, REM sleep loss in humans enhances the desire to consume food and

increases food consumption (Gonnissen et al., 2013; Shechter et al., 2012). In addition, REM sleep

loss in children and adolescents, of 1 hr per night measured over three nights, was associated with a

marked increase in the likelihood of these children being overweight (Liu et al., 2008). In agreement

with these findings, we observed that reducing REM sleep, over a 25–48 hr period, during the dark

phase resulted in increased HPF consumption. On the other hand, it should be noted that, in the cur-

rent investigation, REM sleep was not effected during the light phase. It is unknown why our

observed reduction in REM sleep was restricted to the dark phase and not during the light phase.

Indeed, sleep pressure is greater during the light phase compared to the dark phase in mice; there-

fore, it is possible that our device was only able to produce REM reduction during the dark phase

when sleep pressure was weaker. In addition, the REM sleep disruption observed in the current

investigation did not occur during the first 24 hr after WMGD introduction. A plausible explanation

is that the sleep reducing effect of our device requires time to build-up and thus produce disturban-

ces in sleep.

In conclusion, our results demonstrated that mPFC inhibition reduced sucrose consumption in

REM sleep deprived mice. Our results clearly indicate that increased HPF consumption, resulting

from REM sleep loss, is mediated by mPFC function thereby providing clear findings that elucidate

the role of the mPFC and REM sleep loss in mediating unhealthy dietary behavior, which may lead

to adverse health outcomes.

Figure 2 continued

and REM sleep episodes in the light and dark phases. # and * symbols indicate significant differences (p < 0.01) between baseline and WMGD

exposure during light (#) and dark phases (*).

DOI: 10.7554/eLife.20269.004
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Figure 3. Chemogenetic inhibition of medial prefrontal cortex (mPFC) neurons in mice. (A) Wild-type mice were injected with GluCla-IVM and GluClb-

IVM adeno-associated viruses (AAV; left) into the mPFC and implanted with somnographic electrodes (right). (B) Brain sections were stained against

fluorescent protein (GFP) to confirm that GluCla and GluClb proteins were expressed in the mPFC. Scale bar: 500 mm (left). Drawings of superimposed

AAV injection sites in the mPFC are shown on the right (n = 3). (C) GFP (brown) and Fos (black) expression in two mice injected with AAV-GluCla-IVM

Figure 3 continued on next page
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Materials and methods

Subjects and chemicals
A male mouse line on a C57BL/6 background, which was maintained at the International Institute of

Integrative Sleep Medicine and weighed between 23 and 34 g (9–10 weeks old) at the beginning of

the experiments, was used for all experiments. The animals were individually housed in insulated

sound-proof chambers maintained at an ambient room temperature of 22˚C ± 1˚C with a relative

humidity of 60 ± 2% in an automatically controlled 12 hr light/dark cycle (lights on at 8:00, lights off

at 20:00). Food and water were available ad libitum. No method of blinding or randomization was

used for any of the experiments. This study was performed in strict accordance with the recommen-

dations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.

All animals were handled according to approved institutional animal care and use committee

(IACUC) protocols (#16–359) of the University of Tsukuba. All protocols aimed to reduce the number

of animals used for each experiment and to minimize pain or discomfort. IVM was obtained from

Merial Company.

AAV vector generation
The AAV of serotype rh10 for AAV10-a-GluCl-IVM-EYFP (AAV-GluCla-IVM) and AAV10-b-GluCl-

IVM-ECFP (AAV-GluClb-IVM) were generated by tripartite transfection (AAV-rep2/caprh10 expres-

sion plasmid, adenovirus helper plasmid, and pAAV-GluCla-IVM or pAAV-GluClb-IVM plasmid) into

293A cells. After 3 days, 293A cells were resuspended in artificial cerebrospinal fluid (aCSF), freeze-

thawed four times, and treated with benzonase nuclease (Millipore) to degrade all forms of DNA

and RNA. Subsequently, the cell debris was removed by centrifugation and the virus titre in the

supernatant was determined using an AAVpro Titration Kit for Real Time PCR (Takara) (See Figure 3,

Panel A).

Stereotaxic AAV injection and placement of EEG/EMG electrodes
Surgeries for AAV injections were conducted under pentobarbital anaesthesia (50 mg/kg, intraperi-

toneal [i.p.]). Using aseptic techniques, mice were injected stereotaxically into the mPFC (n = 14)

with recombinant GluCla-AAV and GluClb-AAV (250 nl/injection, 1.1 � 1011 particles/ml), with a

glass micropipette and an air pressure injector system (Chamberlin et al., 1998). The following coor-

dinates were used for injections into the mPFC of C57BL/6 mice according to the atlas of

Paxinos and Franklin (2001). Bilateral injections were made at 1.7 mm anterior and 0.4 mm lateral

to bregma, and 2.0 mm below the dural surface.

Mice were also chronically implanted with EEG and electromyogram (EMG) electrodes for poly-

somnography (n = 6) as previously outlined (Oishi et al., 2016). Briefly, the implant comprised two

stainless steel screws (1 mm diameter) serving as EEG electrodes, one of which was placed epidurally

over the right frontal cortex (1.0 mm anterior and 1.5 mm lateral to bregma) and the other over the

right parietal cortex (1.0 mm anterior and 1.5 mm lateral to lambda). Two insulated Teflon-coated,

silver wires (0.2 mm in diameter), which were placed bilaterally into the trapezius muscles, served as

EMG electrodes. Both EEG and EMG electrodes were connected to a microconnector, and the

whole assembly was then fixed to the skull with self-curing dental acrylic resin. Animals were allowed

one week for postoperative recovery before being placed in experimental housing cages (Figure 1,

Panel A) for a 24 hr habituation period and connected with recording leads.

Figure 3 continued

and AAV-GluClb-IVM into the mPFC and treated with propylene glycol (PG) or ivermectin (IVM). Scale bars: 20 mm. Blue and black arrows indicate

neurons expressing GFP and Fos, respectively. (D) Time spent in slow wave sleep (SWS), REM sleep and wake between 25–48 hr after IVM treatment in

mice injected with AAV-GluCla-IVM/AAV-GluClb-IVM into the mPFC. Other abbreviations: ITR, inverted terminal repeat; CMV, cytomegalovirus; SV40,

simian virus 40; EYFP, enhanced yellow fluorescent protein; ECFP, enhanced cyan fluorescent protein; Cg1, cingulate cortex; PrL, prelimbic cortex; IL,

infralimbic cortex; DP, dorsal peduncular cortex.

DOI: 10.7554/eLife.20269.005
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Figure 4. Chemogenetic inhibition of medial prefrontal cortex (mPFC) neurons reverses the effect of REM sleep loss on highly-palatable-foods

consumption. (A) Drawings of superimposed adeno-associated viruses (AAV) injection sites in the mPFC of mice used for baseline (n = 3; left panel) or

wire-mesh-grid device (WMGD) experiments [n = 4 in the propylene glycol (PG), middle panel, or ivermectin (IVM), right panel, treated group]. (B)

Grams of sucrose or fat consumed over a 25–48 hr period under baseline (nine wild-type mice treated with saline and three AAV-injected mice treated

with PG) and WMGD [AAV-injected mice treated with PG (n = 4) or IVM (n = 4)] conditions. *p < 0.05, **p < 0.01 and ***p < 0.001 indicates significant

differences between mice groups (one-tailed).

DOI: 10.7554/eLife.20269.006

The following figure supplement is available for figure 4:

Figure supplement 1. Control experiments for highly palatable foods consumption in mice.

DOI: 10.7554/eLife.20269.007
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EEG/EMG recording
After the 24-hr habituation period, mice were injected with vehicle (propylene glycol, i.p.) at 16:30.

Baseline polygraphic recording commenced at 17:00 and terminated at 16:00 the following day.

After baseline recordings were obtained, mice (n = 3) were injected with IVM (10 mg/kg; i.p.) at

16:30 on the following day to initiate virus activation. Polygraphic recordings subsequently com-

menced at 17:00 for a period of 72 hr.

A separate group of EEG/EMG implanted mice (n = 3) were tested using the preceding methods

with the exception that mice did not receive AAV infusions and did not receive i.p. injections.

Instead, a wire-mesh-grid cage bottom (purchased from Oriental Yeast Company, Tokyo, Japan) was

introduced, at 16:30 the day after baseline polygraphic recording, for a period of 72 hr. The wire-

mesh-grid cage bottom was constructed from stainless steel and measured: 22 cm (length) � 19.5

cm (width) � 2.5 cm (height) with the grid consisting of 1 cm2 openings (see Figure 1, Panel A).

Vigilance state assessment based on EEG/EMG/locomotor activity
recordings
The EEG/EMG signals were amplified and filtered (EEG: 0.5–64 Hz, EMG: 16–64 Hz), then digitised

at a sampling rate of 128 Hz, and recorded using SLEEPSIGN software (Kohtoh et al., 2008) (Kissei

Comtec). In addition, locomotor activity was recorded with an infrared photocell sensor (Biotex). The

vigilance states were scored offline by 10 s epochs into three stages, including waking, SWS, and

REM sleep, according to standard criteria (Oishi et al., 2016). As a final step, defined vigilance

stages were examined visually, and corrected when necessary.

HPF data collection
HPF consumption measurements were obtained from mice that did not receive EEG/EMG electrode

implantation (n = 24). After AAV infusion, mice were singly placed into testing cages without the

wire-mesh-grid-cage bottoms for 7 days. During these seven days mice had free access to laboratory

chow. On day 8, mice were injected with IVM (10 mg/kg, i.p.; n = 4) or vehicle (propylene glycol;

n = 4) at 16:30 and singly placed back into their housing cages with the addition of the wire-mesh-

grid cage bottoms at 17:00 (Figure 1, Panel A). The highly palatable foods were introduced on day

8 and food consumption was subsequently measured every 24 hr at 17:00 over a total period of 72

hr. In addition, three controls groups were used in which one group of mice did not receive AAV

infusions and were injected with saline (n = 9), one group of mice received AAV infusions and were

injected with propylene glycol (n = 3), and one group of mice received AAV infusions and were

injected with IVM (n = 4). All three groups were not exposed to the wire-mesh-grid cage bottom (i.

e., the non-sleep deprived groups). During the 72 hr test period, all mice had free access to white

chocolate (DARS brand, Morinaga Company, Tokyo, Japan), a high-fat diet (HFD-60, Oriental Yeast

Company, Tokyo, Japan) and standard laboratory chow (see Supplementary file 1 for the composi-

tion of each highly palatable diet). Total amounts of sucrose and fat consumption were calculated

from each food type (i.e., sucrose and fat amounts from the white chocolate and from the high-fat

diet) 25–48 hr after initial food exposure.

Immunohistochemistry for GFP and Fos immunoreactive cell expression
When data collection, outlined above, was complete mice were deeply anesthetized using chloral

hydrate (500 mg/kg, i.p.) and perfused through the left ventricle of the heart with saline and subse-

quently perfused with neutral buffered 10% formalin solution. Brains were then removed and placed

into vials containing 10% formalin solution for 1 week. Brains were subsequently transferred to vials

containing 20% sucrose in phosphate-buffered saline (PBS) for 24 hr at 4˚C to reduce freezing arti-

facts. Brains were then frozen using dry ice, placed on a freezing microtome and sectioned at 40

mm. Immunohistochemistry was undertaken on free floating brain sections as previously described

(Lazarus et al., 2011). In brief, sections were rinsed in PBS, incubated in 0.3% hydrogen peroxide in

0.25% Triton X-100 in PBS (PBT) for 30 min at room temperature, rinsed in PBS and incubated, over-

night at room temperature, in rabbit GFP primary antibody (Molecular Probes, RRID:AB_221569, lot

number 1293114) at a dilution of 1:20,000 or rabbit Fos primary antibody (Millipore, RRID:AB_

2106755, lot number D00058535) at a dilution of 1:20,000 in PBT with 0.02% sodium azide. After

overnight incubation, brain sections were rinsed in PBS for 1 hr and then incubated for 90 min in
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biotinylated anti-rabbit antibody (Jackson ImmunoResearch) at a dilution of 1:1000. These sections

were then treated with avidin-biotin complex (1:1000; Vectastain ABC Elite kit, Vector Labs) for 1 hr

and immunoreactive cells were visualised by reaction with 3,3’-diaminobenzidine and 0.01% hydro-

gen peroxide. Tissue sections mounted on glass slides were scanned with a Hamamatsu Nano-

Zoomer-XR Digital slide scanner (Hamamatsu Photonics), and digital photomicrographs were

analyzed with Hamamatsu NDPView software v2.4.26.

AAV location was assessed by visualizing GFP expression in brain sections using Hamamatsu

NDPView software v2.4.26. Virus location figures (see Figure 3, Panel B and Figure 4, Panel A) were

produced by using the following procedure: (a) observing virus location and spread within brain sec-

tions; (b) transforming digital photomicrographs images to color-scale images; and (c) superimpos-

ing these color-scale images to obtain a summation of AAV location for all mice.

Furthermore, Fos immunoreactive cell expression was measured using two AAV infused mice that

were injected with either propylene glycol or IVM, exposed to the WMGD for 48 hr and fed a diet of

white chocolate, HFD and chow. After WMGD exposure, mice were sacrificed during the dark period

(i.e. at 21:00). Immunohistochemistry procedures were then undertaken as outlined above. Fos

immunoreactive cell imaging, at 20 times magnification, was produced using Hamamatsu NDPView

software v2.4.26 (see Panel C, Figure 3) by focusing on an area of interest located within the mPFC

at 1.7 mm anterior and 0.4 mm lateral to bregma, and 2.0 mm below the dural surface.

Statistical analyses
Means and ± S.E.M. are expressed for all statistical comparisons. For comparisons between two

groups, two-tailed paired samples Student’s t-tests were used followed by Bonferroni corrections. In

addition, Pearson correlations were used to compare associations between two groups. Repeated

measures ANOVA or one-way ANOVA were used when comparing groups of three or more fol-

lowed by Fisher’s Probable Least-Squares Difference (PLSD) post hoc tests. For comparisons

between independent samples, the Levene’s test was used to assess homogeneity of variance and

for paired sample comparisons the Mauchly’s test was used to assess sphericity. All comparisons

were considered statistically significant at p < 0.05. Statistics for all data are reported in

Supplementary file 2.
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Broman JE, Larsson EM, Schiöth HB, O’Daly OG. 2012. Acute sleep deprivation enhances the brain’s response
to hedonic food stimuli: an fMRI study. The Journal of Clinical Endocrinology & Metabolism 97:E443–E447.
doi: 10.1210/jc.2011-2759, PMID: 22259064

Chamberlin NL, Du B, de Lacalle S, Saper CB. 1998. Recombinant adeno-associated virus vector: use for
transgene expression and anterograde tract tracing in the CNS. Brain Research 793:169–175. doi: 10.1016/
S0006-8993(98)00169-3, PMID: 9630611

Gonnissen HK, Hursel R, Rutters F, Martens EA, Westerterp-Plantenga MS. 2013. Effects of sleep fragmentation
on appetite and related hormone concentrations over 24 h in healthy men. British Journal of Nutrition 109:
748–756. doi: 10.1017/S0007114512001894, PMID: 22682471

Greer SM, Goldstein AN, Walker MP. 2013. The impact of sleep deprivation on food desire in the human brain.
Nature Communications 4:1–7. doi: 10.1038/ncomms3259

Kohtoh S, Taguchi Y, Matsumoto N, Wada M, Huang ZL, Urade Y. 2008. Algorithm for sleep scoring in
experimental animals based on fast Fourier transform power spectrum analysis of the electroencephalogram.
Sleep and Biological Rhythms 6:163–171. doi: 10.1111/j.1479-8425.2008.00355.x

Land BB, Narayanan NS, Liu RJ, Gianessi CA, Brayton CE, Grimaldi DM, Sarhan M, Guarnieri DJ, Deisseroth K,
Aghajanian GK, DiLeone RJ, Lui R-J. 2014. Medial prefrontal D1 dopamine neurons control food intake. Nature
Neuroscience 17:248–253. doi: 10.1038/nn.3625, PMID: 24441680

Lazarus M, Shen HY, Cherasse Y, Qu WM, Huang ZL, Bass CE, Winsky-Sommerer R, Semba K, Fredholm BB,
Boison D, Hayaishi O, Urade Y, Chen JF. 2011. Arousal effect of caffeine depends on adenosine A2A receptors
in the shell of the nucleus accumbens. Journal of Neuroscience 31:10067–10075. doi: 10.1523/JNEUROSCI.
6730-10.2011, PMID: 21734299

McEown et al. eLife 2016;5:e20269. DOI: 10.7554/eLife.20269 12 of 13

Short report Neuroscience

http://dx.doi.org/10.7554/eLife.20269.008
http://dx.doi.org/10.7554/eLife.20269.009
http://dx.doi.org/10.5061/dryad.4v58b
http://dx.doi.org/10.5061/dryad.4v58b
http://dx.doi.org/10.1210/jc.2011-2759
http://www.ncbi.nlm.nih.gov/pubmed/22259064
http://dx.doi.org/10.1016/S0006-8993(98)00169-3
http://dx.doi.org/10.1016/S0006-8993(98)00169-3
http://www.ncbi.nlm.nih.gov/pubmed/9630611
http://dx.doi.org/10.1017/S0007114512001894
http://www.ncbi.nlm.nih.gov/pubmed/22682471
http://dx.doi.org/10.1038/ncomms3259
http://dx.doi.org/10.1111/j.1479-8425.2008.00355.x
http://dx.doi.org/10.1038/nn.3625
http://www.ncbi.nlm.nih.gov/pubmed/24441680
http://dx.doi.org/10.1523/JNEUROSCI.6730-10.2011
http://dx.doi.org/10.1523/JNEUROSCI.6730-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21734299
http://dx.doi.org/10.7554/eLife.20269


Lerchner W, Xiao C, Nashmi R, Slimko EM, van Trigt L, Lester HA, Anderson DJ. 2007. Reversible silencing of
neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl- channel. Neuron 54:35–
49. doi: 10.1016/j.neuron.2007.02.030, PMID: 17408576

Liu X, Forbes EE, Ryan ND, Rofey D, Hannon TS, Dahl RE. 2008. Rapid eye movement sleep in relation to
overweight in children and adolescents. Archives of General Psychiatry 65:924–932. doi: 10.1001/archpsyc.65.
8.924, PMID: 18678797

Liu X, Hairston J, Schrier M, Fan J. 2011. Common and distinct networks underlying reward valence and
processing stages: a meta-analysis of functional neuroimaging studies. Neuroscience & Biobehavioral Reviews
35:1219–1236. doi: 10.1016/j.neubiorev.2010.12.012, PMID: 21185861

Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH, Wright KP. 2013. Impact of insufficient
sleep on total daily energy expenditure, food intake, and weight gain. PNAS 110:5695–5700. doi: 10.1073/
pnas.1216951110, PMID: 23479616

McEown K, Takata Y, Cherasse Y, Nagata N, Aritake K, Lazarus M. 2016. Data from: Chemogenetic inhibition of
the medial prefrontal cortex reverses the effects of REM sleep loss on sucrose consumption. Dryad Digital
Repository. doi: 10.5061/dryad.4v58b

Oishi Y, Takata Y, Taguchi Y, Kohtoh S, Urade Y, Lazarus M. 2016. Polygraphic recording procedure for
measuring sleep in mice. Journal of Visualized Experiments 107:e53678. doi: 10.3791/53678

Paxinos G, Franklin K. 2001. The Mouse Brain in Stereotaxic Coordinates. 2nd edn. Academic Press.
Riga D, Matos MR, Glas A, Smit AB, Spijker S, Van den Oever MC. 2014. Optogenetic dissection of medial
prefrontal cortex circuitry. Frontiers in Systems Neuroscience 8:1–19. doi: 10.3389/fnsys.2014.00230,
PMID: 25538574

Rolls ET, McCabe C. 2007. Enhanced affective brain representations of chocolate in cravers vs. non-cravers.
European Journal of Neuroscience 26:1067–1076. doi: 10.1111/j.1460-9568.2007.05724.x, PMID: 17714197

Rolls ET. 2008. Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and
emotion. Acta Physiologica Hungarica 95:131–164. doi: 10.1556/APhysiol.95.2008.2.1, PMID: 18642756

Rolls ET. 2015. Taste, olfactory, and food reward value processing in the brain. Progress in Neurobiology 127-
128:64–90. doi: 10.1016/j.pneurobio.2015.03.002, PMID: 25812933

Rothemund Y, Preuschhof C, Bohner G, Bauknecht HC, Klingebiel R, Flor H, Klapp BF. 2007. Differential
activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. NeuroImage 37:410–
421. doi: 10.1016/j.neuroimage.2007.05.008, PMID: 17566768

Shechter A, O’Keeffe M, Roberts AL, Zammit GK, RoyChoudhury A, St-Onge MP. 2012. Alterations in sleep
architecture in response to experimental sleep curtailment are associated with signs of positive energy balance.
AJP: Regulatory, Integrative and Comparative Physiology 303:R883–R889. doi: 10.1152/ajpregu.00222.2012,
PMID: 22972835

St-Onge M-P, Wolfe S, Sy M, Shechter A, Hirsch J. 2014. Sleep restriction increases the neuronal response to
unhealthy food in normal-weight individuals. International Journal of Obesity 38:411–416. doi: 10.1038/ijo.
2013.114

Stoeckel LE, Weller RE, Cook EW, Twieg DB, Knowlton RC, Cox JE. 2008. Widespread reward-system activation
in obese women in response to pictures of high-calorie foods. NeuroImage 41:636–647. doi: 10.1016/j.
neuroimage.2008.02.031, PMID: 18413289

Stuss DT. 2011. Functions of the frontal lobes: relation to executive functions. Journal of the International
Neuropsychological Society 17:759–765. doi: 10.1017/S1355617711000695, PMID: 21729406

Watanabe M, Kikuchi H, Tanaka K, Takahashi M, Katsutoshi T. 2010. Association of short sleep duration with
weight gain and obesity at 1-year follow-up: a large-scale prospective study. Sleep 33:161–167. PMID: 201753
99

McEown et al. eLife 2016;5:e20269. DOI: 10.7554/eLife.20269 13 of 13

Short report Neuroscience

http://dx.doi.org/10.1016/j.neuron.2007.02.030
http://www.ncbi.nlm.nih.gov/pubmed/17408576
http://dx.doi.org/10.1001/archpsyc.65.8.924
http://dx.doi.org/10.1001/archpsyc.65.8.924
http://www.ncbi.nlm.nih.gov/pubmed/18678797
http://dx.doi.org/10.1016/j.neubiorev.2010.12.012
http://www.ncbi.nlm.nih.gov/pubmed/21185861
http://dx.doi.org/10.1073/pnas.1216951110
http://dx.doi.org/10.1073/pnas.1216951110
http://www.ncbi.nlm.nih.gov/pubmed/23479616
http://dx.doi.org/10.5061/dryad.4v58b
http://dx.doi.org/10.3791/53678
http://dx.doi.org/10.3389/fnsys.2014.00230
http://www.ncbi.nlm.nih.gov/pubmed/25538574
http://dx.doi.org/10.1111/j.1460-9568.2007.05724.x
http://www.ncbi.nlm.nih.gov/pubmed/17714197
http://dx.doi.org/10.1556/APhysiol.95.2008.2.1
http://www.ncbi.nlm.nih.gov/pubmed/18642756
http://dx.doi.org/10.1016/j.pneurobio.2015.03.002
http://www.ncbi.nlm.nih.gov/pubmed/25812933
http://dx.doi.org/10.1016/j.neuroimage.2007.05.008
http://www.ncbi.nlm.nih.gov/pubmed/17566768
http://dx.doi.org/10.1152/ajpregu.00222.2012
http://www.ncbi.nlm.nih.gov/pubmed/22972835
http://dx.doi.org/10.1038/ijo.2013.114
http://dx.doi.org/10.1038/ijo.2013.114
http://dx.doi.org/10.1016/j.neuroimage.2008.02.031
http://dx.doi.org/10.1016/j.neuroimage.2008.02.031
http://www.ncbi.nlm.nih.gov/pubmed/18413289
http://dx.doi.org/10.1017/S1355617711000695
http://www.ncbi.nlm.nih.gov/pubmed/21729406
http://www.ncbi.nlm.nih.gov/pubmed/20175399
http://www.ncbi.nlm.nih.gov/pubmed/20175399
http://dx.doi.org/10.7554/eLife.20269

