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In 2009, Staerk et al. identified the novel quinolinone 
alkaloids haplacutines A–F (Figure 1)1 together with several 
known related compounds from a crude extract of Haplophyllum 
acutifolium by their original method, viz., direct hyphenation of 
analytical-scale high-performance liquid chromatography, photo-
diode array detection, mass spectrometry, solid-phase extraction 
and nuclear magnetic resonance spectroscopy (HPLC–PDA–
MS–SPE–NMR). H. actifolium is distributed from the 
Mediterranean parts of Europe and Africa to Eastern parts of 
Siberia, and in general, known as a rich source of quinolinone 
alkaloids. The extracts are widely used in traditional medicine 
because of their estrogenic, antifungal, antibacterial, and 
antiparasitic activity.2 In fact, the extract including the 
haplacutines also showed antiplasmodial activity with IC50 < 12 
µg/mL in vitro (chloroquine-sensitive Plasmodium falciparum 
3D7 strain).1 We therefore initiated the synthesis of the series of 
haplacutines A–F, with the exception of the isolated haplacutine 
E, because of our interest in the bioactivity of each of the 
quinolinone alkaloids. We describe herein the synthesis of 
haplacutine C (1) (Figure 1). 

 

Figure 1. Structure of haplacutines A–F from H. acutifolium. 

First, we prepared the aldol cyclization precursor 3 by 
amidation of 2’-aminoacetophenone with the known carboxylic 
acid (±)-23 using 1-(3-dimethylaminopropyl)-3-
ethylcarbodiimide hydrochloride (EDCI•HCl) (Scheme 1). Then, 
the intramolecular aldol condensation of 3 in the presence of t-
BuOK4 under optimized conditions5 gave the desired 4-
quinolinone derivative 4 in 66% yield together with the undesired 
2-quinolinone derivative 5 in 30% yield. After separation of both 
isomers by column chromatography on silica gel, we attempted a 
bromine addition of the terminal double bond of the side-chain in 
4 to transform a prerequisite terminal triple bond at the following 
step by utilizing the method of double HBr-elimination.6 
Unfortunately, this approach under any conditions was 
unsuccessful, resulting in the formation of an undesired 3-bromo-
4-quinolinone derivative 7 in quantitative yield. 
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A total synthesis of haplacutine C has been achieved. The synthetic key features were the 
intramolecular aldol condensation for construction of the 4-quinolinone skeleton and the Stille 
coupling for elongation of the dienol side chain. In addition, the 4-O-protected-quinolines were 
also utilized as the synthetic equivalents of 4-quinolinone at the stage of side chain 
transformation.  

2009 Elsevier Ltd. All rights reserved.
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Scheme 1. Reagents and conditions: (a) EDCI•HCl (2.0 equiv), N,N-
dimethyl-4-aminopyridine (2.0 equiv), CH2Cl2, rt, 5.0 d (65%); (b) t-
BuOK (3.0 equiv), toluene, reflux, 8 h (4: 66%, 5: 30%); (c) Pyr.-
HBr3 (1.1 equiv), DMF, rt, 30 min (100%). 

After we had converted the 4-quinolinone derivative 4 into the 
4-(4-methoxybenzyloxy)quinoline 8 to avoid the generation of 
the undesired 7, the alkene 8 was successfully transformed into 
the desired alkyne 10 by way of the double HBr-elimination from 
vicinal dibromide 9 (Scheme 2).6 Hydrostannation of 10 using 2 
mol% of Pd2(dba)3 with 8 mol% of t-Bu3P gave (E)-1-
tributylstannyl-1-alkene 11 with high regioselectivity (>95/5).7 
Finally, the important intermediate (E)-alkenyl iodide 12 was 
obtained in quantitative yield from 11.8  
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Scheme 2. Reagents and conditions: (a) NaH (2.0 equiv), PMBCl 
(1.0 equiv), DMF, rt, 12 h (93%); (b) Pyr.-HBr3 (1.1 equiv), CH2Cl2, 
rt, 2 h (84%); (c) tetrabutylammonium hydroxide (10% in MeOH, 
5.0 equiv), molecular sieves 13X (10 times the mass of 9), DMSO, 
60 °C, 2 h (92%); (d) n-Bu3SnH (1.5 equiv), Pd2(dba)3 (2 mol%), t-
Bu3P (8 mol%), toluene, rt, 30 min (80%); (e) I2 (1.1 equiv), CH2Cl2, 
rt, 30 min (97%).  

At the final synthetic stage, we first prepared (E)-but-1-enyl-
tributylstannane (14)9 from the known 13,10 then attempted the 
Stille coupling of 12 with 14, followed by the deprotection of 
both PMB groups to achieve the first synthesis of 1 (Scheme 3). 
However, the expected PMB-deprotection step of the coupling 
product 15 gave complex mixtures under any reaction conditions 
(TFA11, CAN, 1 M HCl aq., or DDQ), though the carbon 
elongation proceeded smoothly. This outcome is probably 

because of the rapid decomposition of the diene moiety of 15 
under the PMB cleavage conditions. Therefore, the PMB groups 
of 12 were replaced with acetyl groups by TFA hydrolysis11 and 
subsequent acetylation. Finally, the Stille coupling12 of 17 with 
14 gave diene 18 with high stereoselectivity (E-form, >99/1) 
albeit in moderate yield, and then the deprotection of both acetyl 
groups under mild basic condition succeeded to give haplacutine 
C (1) in quantitative yield, which was identical spectroscopically 
to that reported by Staerk et al.1,13 

 

Scheme 3. Reagents and conditions: (a) LiAlH4 (2.5 equiv), THF, rt, 
2 h (98%); (b) 14 (3.0 equiv), PdCl2(PPh3)2 (10 mol%), DMF, 55 °C, 
5.5 h (53%); (c) TFA–CH2Cl2, rt, 1 h (99%); (d) t-BuOK (2.1 equiv), 
AcCl (5.0 equiv), Et3N (6.0 equiv), THF, rt, 1 h (84%); (e) 14 (3.0 
equiv), Pd(CH3CN)2Cl2 (30 mol%), DMF, rt, 2 h (61%); (f) K2CO3 
(4.0 equiv), MeOH, rt, 1.5 h (99%). 

In conclusion, we achieved the total synthesis of haplacutine 
C (1) for the first time, by a method that ensured the structure 1, 
which was proposed previously.1 In our synthesis, the 
intramolecular aldol condensation was used for the formation of 
4-quinolinone skeleton and the Stille coupling was used for the 
carbon side-chain elongation. This synthetic method can be 
utilized for other haplacutines and related compounds. Further 
investigation is in progress. 
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