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SUMMARY This study presents a two-stage spoken term detection
(STD) method that uses the same STD engine twice and a support vec-
tor machine (SVM)-based classifier to verify detected terms from the STD
engine’s output. In a front-end process, the STD engine is used to pre-
index target spoken documents from a keyword list built from an automatic
speech recognition result. The STD result includes a set of keywords and
their detection intervals (positions) in the spoken documents. For keywords
having competitive intervals, we rank them based on the STD matching
cost and select the one having the longest duration among competitive de-
tections. The selected keywords are registered in the pre-index. They are
then used to train an SVM-based classifier. In a query term search pro-
cess, a query term is searched by the same STD engine, and the output
candidates are verified by the SVM-based classifier. Our proposed two-
stage STD method with pre-indexing was evaluated using the NTCIR-10
SpokenDoc-2 STD task and it drastically outperformed the traditional STD
method based on dynamic time warping and a confusion network-based
index.
key words: decision process, pre-indexing, spoken term detection, support
vector machine, verification

1. Introduction

Spoken term detection (STD) is one of the core technolo-
gies in spoken language processing. STD enables us to
search for a specified word from recorded speech, and its
effectiveness has been demonstrated through an electronic
note-taking system [1]. However, STD is difficult to use
when searching for terms within a vocabulary-free frame-
work because search terms are not known by the STD pro-
cess prior to implementing a large vocabulary continuous
speech recognition (LVCSR) system. Several studies have
proposed methods to address this issue with STD [2], [3].

For example, STD techniques that use lattice- [4], [5]
or confusion network (CN)-formed [6], [7] transcriptions
to handle automatic speech recognition (ASR) errors and
subword-based transcriptions for a vocabulary-free frame-
work [8], [9] have been studied, and they improved STD per-
formance. In contrast to these ASR-based approaches, Prab-

Manuscript received February 5, 2016.
Manuscript revised May 17, 2016.
Manuscript publicized July 19, 2016.
†The authors are with the Graduate School of Systems and In-

formation Engineering, University of Tsukuba, Tsukuba-shi, 305–
8573 Japan.
††The authors are with the Integrated Graduate School of

Medicine, Engineering, and Agricultural Sciences, University of
Yamanashi, Kofu-shi, 400–8511 Japan.

∗Presently, with NTT DATA CORPORATION.
a) E-mail: utsuro@iit.tsukuba.ac.jp (Corresponding author)

DOI: 10.1587/transinf.2016SLP0017

havalkar et al. [10] proposed articulatory models that in-
cluded discriminative training for STD under low-resource
settings. They challenged an STD framework without any
ASR system, and their models could directly detect a query
term from acoustic feature vectors.

In ASR-based approaches, STD using lattice- or CN-
formed phoneme sequences that have more rich informa-
tion than probable (1-best) phoneme sequences from an
ASR system’s output were very robust against ASR er-
rors [11], [12]. However, diverse information hinders STD
performance because it contains significant amounts of
redundant information. For example, for phoneme-level
matching between a query term and CN-formed transcrip-
tions in a dynamic time warping (DTW)-based framework,
a query term falsely matches the incorrect phoneme paths
on the CNs [12]. As a result, several false term detections
(false alarms) are output. In particular, a short query term
composed of fewer syllables is likely to be falsely detected.
Therefore, preventing such false detections by an STD en-
gine is important.

As a result, an increasing number of machine learn-
ing approaches for STD have been proposed. For example,
deep learning, multiple linear regression, support vector ma-
chines (SVMs), and multilayer perceptrons have been used
to estimate the confidence level of detected candidates in
decision [13]–[15] and re-ranking processes [16], [17].

In this study, we also employ a decision process for
detected candidates using a machine learning approach.
Our approach, which is two-stage STD with a pre-indexing
framework, uses an STD engine twice and an SVM-based
classifier. Figure 1 and Fig. 2 show an example of the pro-
cess of the proposed two-stage STD with a pre-indexing
framework. As shown in Fig. 1, a keyword list is built from
the result of an ASR process on spoken documents. Then,
each keyword in the list is searched for using a DTW-based
STD engine [18]. Note that a detected keyword candidate
has a matching cost and an occurrence position. Therefore,
different keywords are detected at the same position (com-
petitive position). In that case, we select one keyword from
a competitive position. The selected keyword is registered
as the pre-indexed keyword. This is a front-end process of
the whole framework.

The STD process is illustrated in Fig. 2. In the STD
process, which is divided into two stages, a query term is
first input to the same STD engine used for pre-indexing
and is then searched for. Then, detection candidates are ob-
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Fig. 1 Pre-indexing for SVM classifier to verify candidates in Fig. 3; selection of the best matched
keyword from a competitive interval position.

Fig. 2 STD using SVM verification in Fig. 3.

tained. In the second stage of STD, the detection candidates
are verified to determine whether they are confident using
an SVM-based classifier. Figure 2 shows two verification
cases using the SVM-based classifier. For case (a) in Fig. 2,
the query term is preferred to competitive keywords, and for
case (b) in Fig. 2, some competitive keywords are preferred
to the query term. Case (b) in Fig. 2 can be considered a typ-
ical example of avoiding over-detection with the proposed
framework.

Our two-stage approach is similar to previous meth-
ods that have focused on a decision process. However, the
proposed framework differs from previous studies in that
features derived from a pre-index of spoken documents are
used to train a classifier. Most previous studies used acous-
tic features [19], [20], ASR-related information [21], lattice-
based information [22], [23], and similar approaches. In
contrast, we demonstrate the effectiveness of the proposed
decision process, wherein STD outputs are verified using an
SVM-based classifier trained with pre-indexed best match
keyword-based features. This is quite novel in that an SVM-

based classifier trained with features that are completely dif-
ferent from those proposed previously is used in a decision
process. Incidentally, our approach does not depend on a
specific STD engine as studied in [18]. We have already re-
ported an SVM-based classification method [24]. However,
this paper provides more detailed discussion about the types
of features used for SVM training and the length of query
terms.

We have evaluated the proposed framework using aca-
demic lecture speeches as spoken documents for the STD
task. The proposed framework verified the detected can-
didates effectively because the precision rate drastically im-
proved in the lower 60% of the recall rate compared to tradi-
tional baseline STD. In particular, the proposed framework
elicited a beneficial effect on verification for the detection
candidates of short query terms.

The remainder of this paper is organized as follows.
DTW-based STD using multiple ASR systems is described
in Sect. 2. Section 3 discusses the two-stage STD method,
which includes a pre-indexing method prior to an STD pro-
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Fig. 3 Overview of the proposed two-stage STD framework with SVM verification.

cess and the decision process using an SVM-based classifier.
Evaluation results are given in Sect. 4, and conclusions are
presented in Sect. 5.

2. DTW-Based STD Engine and ASR

We have employed an STD engine [18] that uses subword-
based CNs. We used a phoneme transition network (PTN)-
formed index derived from one-best hypotheses of multiple
ASR systems and an edit distance-based DTW framework to
detect a query term. We employed 10 types of ASR systems,
and the same decoder was used for all ASR systems. Two
types of acoustic models and five types of language mod-
els were prepared. The multiple ASR systems can gener-
ate a PTN-formed index by combining subword (phoneme)
sequences from the output of the ASR systems into a sin-
gle CN. The details of the STD engine are explained in the
literature [18]. The STD engine includes some parameters
for DTW. In addition, we used an STD engine with false-
detection parameters of “Voting” and “AcwWith,” which
achieved the best STD performance on the evaluation set
of the 9th NII Testbeds and Community for Information Ac-
cess Research (NTCIR-9) SpokenDoc-1 STD task [25].

Julius ver. 4.1.3 [26], which is an open-source decoder
for ASR, was used in all systems. The acoustic mod-
els were triphone- and syllable-based hidden Markov mod-
els (HMMs), wherein each state uses a Gaussian mixture
model (GMM). The acoustic and language models were
trained with spoken lectures from the Corpus of Sponta-
neous Japanese (CSJ) [27]. All language models were word-
and character-based trigrams as follows:

WBC: Word-based trigram where words are represented by

a mix of Chinese characters and Japanese Hiragana and
Katakana.

WBH: Word-based trigram where all words are repre-
sented by only Japanese Hiragana. Words compris-
ing Chinese characters and Japanese Katakana are con-
verted to Hiragana sequences.

CB: Character-based trigram where all characters are rep-
resented by Japanese Hiragana.

BM: Character-sequence-based trigram where the unit of
language modeling comprises two Japanese Hiragana
characters.

None: No language model is used. Speech recognition
without any language model is equivalent to phoneme
(or syllable) recognition.

Each model except for “None” was trained using the CSJ
transcriptions. The training conditions for all acoustic and
language models and the ASR dictionary are the same
as the STD/SDR test collections used in the NTCIR-10
SpokenDoc-2 moderate size task [28]. The DTW-based
STD engine outputs detections with matching costs that are
normalized with the phoneme length of the query term and
are scaled from 0 to 1.

3. Two-Stage STD with Pre-Indexing

3.1 Overview

Figure 3 shows an outline of the proposed two-stage STD
framework, which uses the same STD engine in both the
pre-indexing and STD processes, and an SVM-based clas-
sifier. Our STD framework is primarily divided into three
processes: (1) a pre-indexing (front-end) process using an
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STD engine, (2) the first term search process for an input
query term using the same STD engine, and (3) a verifica-
tion process in which the candidates detected in the STD
phase are either accepted or rejected as final output using an
SVM-based classifier.

The pre-indexing process includes building PTNs from
search target spoken documents and creating pre-indexed
keywords. First, the 10 types of ASR systems were ap-
plied to the spoken documents to create PTNs. Note that we
used the DTW-based STD engine with the PTN described in
Sect. 2; however, our framework is independent of specific
STD methods†. Next, all keywords other than those with
one morae are extracted from the transcription of the spo-
ken documents by the ASR system, wherein the word-based
trigram and triphone-based GMM-HMM models are used,
and are collected into the keyword list††. All keywords in
the keyword list are searched for by the STD engine, and
all detected candidates are merged using the interval infor-
mation of each candidate. Finally, one keyword is selected
from a competitive detection group and registered in the pre-
index of the spoken documents.

In the term search process, when a query is input to the
same STD engine as the pre-indexing process, it outputs de-
tection candidates. Finally, the candidates are verified using
an SVM-based classifier trained with features related to the
competitive keywords in the verification process. Finally,
only confident candidates are the final STD results.

3.2 Pre-Indexing Process

Figure 1 shows the pre-indexing method used for the target
spoken documents. The method indexes the keywords with
a matching cost that is less than the threshold at the com-
petitive position. We explain the details of the pre-indexing
method in the following paragraphs.

First, we define a quadruplet, which comprises a key-
word w, the start time t of its detection interval, its end

†Although the proposed framework is independent of specific
STD methods, the employed pre-indexing based on the PTN ap-
proach is advantageous compared to other approaches, such as the
word-graph based approach. This is primarily because a subword
based STD [18], where query terms are matched against lattices of
subwords (phonemes), outperforms [18] word-graph based STD,
where query terms are matched against lattices of words.
††As discussed in Sect. 4.1, the keywords to be used in the pre-

indexing process are collected from the spoken documents tran-
scribed by the ASR system with a vocabulary of 27,000 words. For
example, for spoken documents with a total duration of 28.6 hours
used in our evaluation, the number of keywords collected and used
in the pre-indexing process was 6,575. Thus, the number of the
keywords used in the pre-indexing process is constant in propor-
tion to the size of the evaluation speech documents, which implies
that the computational complexity of generating the keyword list
to be used in the pre-indexing process is linear in proportion to
the size of the evaluation speech documents. In addition, since the
number of the keywords used in the pre-indexing process is con-
stant in proportion to the size of the evaluation speech documents,
the computational complexity of the pre-indexing process is linear
in proportion to the size of the evaluation speech documents.

time t′, and the STD matching cost of the keyword cost.
The competitive detection set C comprising N quadruplets
〈w, t, t′, cost〉 is defined as follows:

C =
{
〈w1, t1, t

′
1, cost1〉, . . . , 〈wN , tN , t

′
N , costN〉

}

where a time interval [ti, t′i ] must overlap at least one other
time interval [t j, t′j] (i � j) in the competitive detection set.
C in the case shown in Fig. 1 is represented as follows:

C =
{
〈“spectrum”, t1, t3, 0.06〉,
〈“spectrum area”, t1, t4, 0.22〉,
〈“spectrum parameter”, t1, t5, 0.12〉,
〈“feature parameter”, t2, t5, 0.28〉,
〈“parameter”, t3, t5, 0.10〉

}
.

Here, t1 < t2 < t3 < t4 < t5. In this method, we first find the
quadruplet with the smallest matching cost from C:

〈wmin, t, t
′, costmin〉.

In the case shown in Fig. 1, the following quadruplet is se-
lected:

〈“spectrum”, t1, t3, 0.06〉.
Next, the candidate set C(Δ) for pre-indexing is created

by filtering quadruplets in C based on cost-range Δ because
quadruplets whose matching cost are out of range for the
quadruplet with smallest cost are unlikely to be incorrect
candidates. Note that the quadruplets in C(Δ) have an STD
cost less than (costmin + Δ):

C(Δ) =
{
〈w, t, t′, cost〉 ∈ C | cost ≤ (costmin + Δ)

}
.

For example, in Fig. 1, if Δ = 0.10, then C(Δ = 0.10) is
represented as follows:

C(Δ = 0.10) =
{
〈“spectrum”, t1, t3, 0.06〉,
〈“spectrum parameter”, t1, t5, 0.12〉,
〈“parameter”, t3, t5, 0.10〉

}
.

Finally, we select the quadruple 〈wld, t, t′, costld〉 from
C(Δ) that has the longest duration (ld)†††, where the duration
of a detected keyword is defined as t′ − t. The keyword wld

is output as the STD result and used as a pre-indexing word
for spoken documents. In the example shown in Fig. 1, the
following quadruple is the final output:

〈“spectrum parameter”, t1, t5, 0.12〉.
This is a pre-indexed keyword in the interval [t1, t5]. Note
that the same pre-indexing process is performed for the other
intervals of the spoken documents. As a result, each interval
†††The preliminary evaluation includes an examination of key-

word selection based on the shortest duration criterion as well as
random selection, where the longest duration criterion performed
the best.
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Table 1 Features used for training SVM-based classifier (the asterisk (∗) next to each feature ID
indicates that the feature is optimal)

Type ID Feature Definition

Competitive
set

f c
1 ∗ The detected query does or does not have maximum duration Whether the interval t′q − tq of the detected query q =

〈wq, tq, t′q, costq〉 is the maximum duration in the compet-
itive detection set Cq.

f c
2 ∗ The number of competitive keywords |Cq |

f c
3 ∗ The minimum cost value at the competitive position The minimum cost value cost of 〈w, t, t′, cost〉 within the

competitive detection set Cq.

Query

f q
1 ∗ The number of morae of the query The number of morae of the query

f q
2 The query is out-of-vocabulary (OOV) or in-vocabulary

(INV) Set to 1 if the query is INV; otherwise, set to 0

f q
3 ∗ The matching cost of the query costq

f q
4 The duration time of the query t′q − tq

Competitive
keyword wk

f wk
1 The number of morae of a competitive keyword The number of morae of a competitive keyword

f wk
2 Character type of a competitive keyword For each of the five character types of Kanji, Hi-

ragana, Katakana, mixture of Kanji and Hiragana,
and alphanumeric characters, add a binary feature
indicating the character type of the competitive key-
word.

f wk
3 Part-of-speech (POS) of a competitive keyword For each of 14 POS types, add a binary feature indicating

the POS of the competitive keyword.

f wk
4 The DTW-based matching cost of a competitive keyword cost

f wk
5 ∗ The duration time of a competitive keyword t′ − t

f wk
6 ∗ The overlapped duration between a competitive keyword and

the query min(t′q, t′) − max(tq, t)

f wk
7 ∗ The overlapped rate between a competitive keyword and the

query

(
min(t′q ,t′)−max(tq ,t)

)

(t′q−tq)

f wk
8 The difference between the matching costs of a competitive

keyword and the query costq − cost

f wk
9 The distance between a competitive keyword and the query An edit distance at the phoneme level

has one pre-indexed keyword†. The pre-indexed keyword-
based features are used to train an SVM-based classifier that
verifies the term detection candidates of a search query term.

3.3 Term Search Process

In the term search process, the same STD engine is used to
detect query terms. As a query term is input to the STD
engine, the query is searched for, and the detection candi-
dates are output. This is the same as the traditional STD pro-
cess [18], which is used as a baseline system in this study. In
addition, we create competitive detection sets using the de-
tection candidates for the verification process. Each detec-
tion of a query term denoted as 〈wq, tq, t′q, costq〉 is included
in one competitive detection set, where all keywords in the
competitive detection set overlap with the query. Details are
given in the following.

The pre-indexed keywords can be represented as a se-
quence of quadruples 〈w, t, t′, cost〉 as follows:

〈w, t, t′, cost〉l, . . . , 〈w, t, t′, cost〉m. (1)

†Here, rather than selecting a single keyword from a competi-
tive keyword set of an interval, we compare selecting two or three
keywords from a competitive keyword set of an interval. The result
shows that selecting only a single keyword performs the best.

Note that the intervals ([t, t′]l, . . . , [t, t′]m) do not overlap††.
When a query term wq is input to the same STD engine as
that used to create the pre-index, the STD engine outputs de-
tected candidates. We define a detection candidate denoted
q as a quadruple as follows.

q = 〈wq, tq, t
′
q, costq〉

Here, the interval [tq, t′q] of q overlaps one or more pre-
indexed keywords out of the sequence of competitive key-
words of Eq. (1) as follows:

〈w, t, t′, cost〉u, . . . , 〈w, t, t′, cost〉v.
In this case, we can represent the competitive detection set
C as Cq as follows:

Cq =
{
〈w, t, t′, cost〉u, . . . , 〈w, t, t′, cost〉v, (2)

〈wq, tq, t
′
q, costq〉

}
.

The final STD decision process verifies whether q is confi-
dent using an SVM-based classifier. Note that this process
is performed for all detected candidates q.

††In our evaluation, for each interval of a query term, at least
one pre-indexed keyword overlaps with the query term interval.
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3.4 Verification Process Using SVM-Based Classifier

For each competitive detection set Cq from Eq. (2), we pre-
pared 16 types of features to train the SVM-based classifier.
Table 1 shows a list of these features. All of the features
listed in Table 1 are represented as the set Fall:

Fall ={
f c
1 , f c

2 , f c
3 , (competitive set feature)

f q
1 , f q

2 , f q
3 , f q

4 , (query feature)
f w1
1 , . . . , f w1

9 , (feature for the competitive
keyword w1)

...
...

f wk
1 , . . . , f wk

9 (feature for the competitive
keyword wk)

...
...

f wMmax

1 , . . . , f wMmax

9 (feature for the competitive
keyword wMmax )}

Note that all features are related to a competitive set, com-
petitive keywords registered in a pre-index, and a query.
“Competitive set” and “Characteristics of the competitive
keyword set” in Table 1 are obtained by the pre-indexing
process. In addition, for each competitive keyword wk, we
use nine features f wk

1 , . . . , f wk
9 as shown in Table 1. Here,

among all competitive detection sets Cq in the training data,
let Mmax be the maximum number of competitive keywords
as follows:

Mmax = max
Cq

|Cq| − 1

Then, we define the set Fall of features for a competitive
keyword set Cq as having features for the maximum number
of competitive keywords w1, . . . ,wMmax

† †† †††.
†In the evaluation in Sect. 4, more than 96% of the competitive

detection set Cq had less than or equal to three competitive key-
words, and the maximum number Mmax of competitive keywords
was seven. When assigning feature numbers to those competitive
keywords within a competitive detection set Cq, we ordered them
in ascending order of cost.
††For nearly all of the competitive detection sets Cq, for com-

petitive keywords w1, . . . ,wM , their number M was less than Mmax,
and we assigned the values of the features of competitive keywords
wM+1, . . . ,wMmax , which are actually not included in the competi-
tive detection set Cq, to 0.
†††For the number of competitive keywords included in the fea-

ture set Fall, we compared the following four approaches in a pre-
liminary evaluation:

(1) only the competitive keyword with minimum STD matching
cost is included;

(2) only competitive keywords with the minimum and second
minimum STD matching costs are included;

(3) only competitive keywords with the minimum, second mini-
mum, and third minimum STD matching costs are included;

(4) all competitive keywords w1, . . . ,wMmax are included

In our preliminary evaluation, the approach (4) achieved the best
performance.

As shown in Table 1, the eight types of features with
IDs with an asterisk (∗) are the optimal features selected by
a backward elimination method [29]. First, we define F as
the feature set for SVM training and F−1

f indicates a feature
set where only one feature f is removed from F. For all
L features, L of the SVM-based classifiers are trained us-
ing F−1

1 , . . . , F
−1
L and are evaluated through 100-fold cross-

validation (Sect. 4.1). Then, F−1
f , which yields the best STD

performance among F−1
1 , . . . , F

−1
L , is identified and the fea-

ture f is then removed from F. Repeating this procedure
to remove a feature one-by-one, we obtained eight features
that achieved the best performance compared to other fea-
ture sets.

4. Evaluation

4.1 Experimental Setup

We used the moderate-size STD NTCIR-10 SpokenDoc-2
task [28] as the STD task for our evaluation. The evalu-
ation speech data were obtained from the Corpus of Spo-
ken Document Processing Workshop. It consisted of record-
ings of the first to sixth annual Spoken Document Process-
ing Workshop, comprising 104 real oral presentations (to-
tal duration is 28.6 hours). The ASR system, wherein the
word-based trigram with a vocabulary of 27,000 words and
triphone-based GMM-HMM models are used, was used to
create word-based transcriptions of the evaluation speech
data. Next, all keywords other than those with one morae
were extracted from the transcription. The number of key-
words collected from the transcription of the spoken docu-
ments that were used in the pre-indexing process was 6,575.
The number of query terms was 100, where 47 of all query
terms were INV (in vocabulary) queries included in the ASR
vocabulary of the word-based trigram model. The other 53
queries were OOV (out of vocabulary). The number of INV
and OOV query occurrences in all speech data was 444 and
456, respectively. The word error rate was 36.9% when
the WBC language model and triphone-based GMM-HMM
were used. The STD cost range Δ was determined as 0.20
by examining Δ at 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30
through 100-fold cross-validation.

We used the LIBSVM tool [30] as the SVM-based clas-
sifier with the radial basis function (RBF) kernel. A cost
parameter and a gamma parameter of the RBF kernel were
set from the results of a grid search using a five-fold cross-
validation framework using the target speech data. All fea-
ture values were scaled from 0 to 1 using LIBSVM’s svm-
scale tool. Note that the SVM-based classifier can output
a result with a confidence score. The detected candidates,
which are determined as “confident,” were sorted in de-
scending order of confidence scores. We can draw a recall-
precision curve by changing the threshold for the confidence
score.

An SVM-based classifier is generally influenced by the
balance of the numbers of positive (query is uttered) and
negative (query is not uttered) examples in the training data.
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Of the total number of positions where a query term was
detected by the DTW-based STD engine, the number of
negative (query is not uttered) examples was approximately
3,800 times greater than that of positive (query is uttered)
examples. Therefore, we removed negative examples whose
matching costs were over an upper bound of 0.35, where
the number of negative examples is approximately 10 times
greater than that of positive examples†.

In the training and testing of the SVM classifier, we
trained the SVM classifier using 90% of the speech data and
90% of the query terms, and we tested the SVM classifier
using the remaining speech data and query terms. We re-
peated this procedure 100 times by varying the combina-
tion of 90% and 10% decomposition of the speech data and
query terms. Finally, we concatenated the results of the 100
procedures and obtained an evaluation result against 100%
of the speech data and 100% of the query terms.

We compared the results of the baseline and three
types of STD systems, depending on the type of feature sets,
to demonstrate the effectiveness of the proposed STD sys-
tem. Here, “baseline” was used as the DTW-based STD en-
gine (Sect. 2). We used the following three types of feature
sets:

“all features:” All 16 types of features in Table 1 were
used for training;

“selected features:” Only the eight types of effective fea-
tures were used;

“query features only:” Only the four types of features
( f q

1 , f q
2 , f q

3 , and f q
4 ) related to a query term were used.

Note that these features not arise from the pre-indexing
process. The goal of using this feature set was to inves-
tigate the effectiveness of the pre-indexed features. The
preparation of these features does not require the pre-
indexing process; therefore, we can compare the veri-
fication abilities of a classifier trained with and without
pre-indexed keywords-related features.

4.2 Evaluation Metrics

The evaluation metrics used in this study were recall, pre-
cision, and F-measure. These measurements are frequently
used to evaluate information retrieval performance and are
defined as follows.

Recall =
Ncorr

Ntrue
(3)

Precision =
Ncorr

Ncorr + Nspurious
(4)

†When we set the upper bound of matching costs to greater
than 0.35, the SVM training procedure did not converge. In addi-
tion, when we set the upper bound to less than 0.35, more negative
and more positive examples were removed from both the training
and test data, and we obtained significantly reduced recall com-
pared to when the upper bound was set to 0.35.

Fig. 4 Recall-precision curves and Max. F-measure values for each STD
system (numbers in parentheses show Max. F-measure values)

F − measure =
2 · Recall · Precision
Recall + Precision

(5)

Here Ncorr and Nspurious are the total number of correct and
spurious (false) term detections, respectively, and Ntrue is
the total number of true term occurrences in the speech data.
The F-measure values for the optimal balance of Recall and
Precision values are denoted by “Max. F-measure.”

4.3 Evaluation Results

Figure 4 shows the results of the baseline and three types of
feature sets used to train the SVM-based classifiers.

As shown in Fig. 4, the proposed STD system (the se-
lected feature set) achieved better STD performance com-
pared to the baseline STD system. The proposed method
drastically improved the precision rates in the range below
60% recall rate (with a 1% level of significance in the range
10% to 60% recall). Max. F-measure value of the curve
generated by the proposed STD system also improved. This
shows that the verification process of the SVM-based clas-
sifier is effective to filter out false detections output by the
baseline STD engine.

Next, we discuss the three types of feature sets for
SVM-based classifier training, i.e., all features, selected fea-
tures, and only query features. As shown in Fig. 4, the se-
lected feature set prevailed against the all feature set. The
optimal feature set made the classifier better.

On the other hand, the SVM-based classifier trained
with query features only did not outperform the others al-
though it won the baseline. Note that this SVM-based
decision process does not necessarily require pre-indexed
keywords. However, further analysis showed that the
pre-indexed keyword-based features worked well with this
SVM-based decision process. This result is shown in Fig. 4
where “Proposed Method (selected features)” outperformed
“Proposed Method (query features only)” for precision at a
1% level of significance in the range 10% to 30% recall and
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Fig. 5 Recall-precision curves and Max. F-measure values for long
query terms with more than six syllables (50 of the total 100 query terms;
numbers in parentheses show Max. F-measure values)

at a 5% level of significance in the range 10% to 60% recall.
Therefore, it can be said that it effectively prepared the pre-
index with richer information when using the STD engine†.

Figure 5 and Fig. 6 show the effectiveness of the pro-
posed framework for two types of query sets. The average
number of syllables consisting of a query term in the evalua-
tion set was 6.6. We divided the query set into two sets, i.e.,
a long query term set, where the query terms had more than
six syllables (50 query terms of the total 100), and a short
query term set, where the query terms had less than seven
syllables (50 query terms of the total 100). Figure 5 and
Fig. 6 show the recall-precision curves of the baseline sys-
tem and the SVM-based classifier with the two query sets.
As can be seen in these figures, the SVM-based classifier
had significant influence on the short query terms. To exam-
ine the reason for this result, we observed the relation of the
length of the query terms and the confidence assigned by the
SVM-based classifier. Here, we discovered that most long
query terms were assigned higher confidence even if they
were actually not uttered in the speech data. On the other

†We also compared the MAP (mean average precision) val-
ues [25] of the four plots in Fig. 4, i.e., the baseline and three types
of feature sets, where their MAP values are 0.594 for the baseline,
0.547 for all the feature set, 0.572 for the selected feature set, and
0.548 for the query features only. Among these results, it is most
important to note that the proposed method with the selected fea-
ture set significantly outperforms the proposed methods with the
other two feature sets, which agrees with the results of the recall-
precision curves shown in Fig. 4, where the proposed method with
the selected feature set clearly outperforms the other methods. In
addition, the baseline outperforms the proposed methods simply
because it outputs more candidates for detecting query terms than
the proposed methods, thereby resulting in a recall-precision curve
in the range greater than 60% recall but less than 10% precision.
On the other hand, for the three plots of the proposed methods,
the proposed method carefully selects candidates to detect query
terms, thereby resulting in recall-precision curves that end within
the range greater than 10% precision but less than 60% recall.

Fig. 6 Recall-precision curves and Max. F-measure values for short
query terms with less than seven syllables (50 of the total 100 query terms;
numbers in parentheses show Max. F-measure values)

Fig. 7 Recall-precision curves and Max. F-measure values for INV
query terms (numbers in parentheses show Max. F-measure values)

hand, for short query terms, most were assigned much lower
confidence and thus contributed to avoiding over-detection.
This is primarily because we trained a single SVM-based
classifier for both the long and short query terms. If we
train two SVM-based classifiers separately, i.e., one for long
query terms and another for short query terms, then it is ex-
pected that we could achieve much higher performance for
the long query terms.

Furthermore, we divided the total 100 query terms into
47 INV query terms and 53 OOV query terms. We com-
pare their performance in Fig. 7 and Fig. 8, respectively.
As shown by the results, the proposed framework outper-
formed the baseline for both INV and OOV query terms.
This result is quite remarkable considering the fact that the
pre-indexing process of the proposed framework utilizes the
keyword list collected from only an ASR transcription. Sim-
ilarly, from the 47 INV query terms, we extracted 26 query
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Fig. 8 Recall-precision curves and Max. F-measure values for OOV
query terms (numbers in parentheses show Max. F-measure values)

Fig. 9 Recall-precision curves and Max. F-measure values for the 26
query terms included in the 6,575 pre-indexing keywords (numbers in
parentheses show Max. F-measure values)

terms that were among the 6,575 keywords used in the pre-
indexing process. We then compared the performance of
those 26 query terms among the 6,575 pre-indexing key-
words and the remaining 74 query terms not in the 6,575
pre-indexing keywords to those of the baseline, as shown
in Fig. 9 and Fig. 10, respectively. As can be seen, the pro-
posed framework outperformed the baseline for the 26 query
terms among the 6,575 pre-indexing keywords. However,
it only slightly outperformed the baseline for the remain-
ing 74 query terms. This result clearly indicates that the
proposed framework is definitely applicable to query terms
that are among the pre-indexing keywords. On the other
hand, the remaining 74 query terms consisted of 53 OOV
query terms (Fig. 8 shows a comparison to the baseline) and
21 INV query terms that were not correctly recognized by
the ASR engine. A comparison of the evaluation results in
Fig. 8 and Fig. 10 indicates that, for the 21 INV query terms
not correctly recognized by the ASR engine, the proposed
method probably underperforms compared to the baseline.

In summary, our results indicate that the two-stage

Fig. 10 Recall-precision curves and Max. F-measure values for the 74
query terms not included in the 6,575 pre-indexing keywords (numbers in
parentheses show Max. F-measure values)

STD method with pre-indexing works well. The method in-
volves pre-indexing of the target spoken documents from the
keyword set collected from the ASR result using the STD
engine and the SVM-based classifier trained by the features
related to the pre-index.

5. Conclusion

This paper has described a two-stage STD framework that
uses the same STD engine twice. First, an STD process with
a keyword list from an ASR result generates a pre-indexed
keyword list of spoken documents in a front-end process. In
the query term search process, the STD engine searches for
an input query from the target documents and outputs detec-
tion candidates. These detected candidates are then verified
by an SVM-based classifier trained with features related to
pre-index and query information.

The experimental results show that the proposed STD
framework is very effective in drastically reducing the num-
ber of falsely detected candidates in the range less than
60% of recall in the verification process. The best SVM-
based classifier, which was trained with the selected fea-
ture set including the pre-index-related features, improved
the Max. F-measure value on the recall-precision curve by
up to 49.3% compared to the baseline (44.6%). In particu-
lar, it worked better with short query terms (less than seven
syllables) compared to long query terms.

In future, we plan to evaluate the proposed STD system
with the test collection-free framework, wherein the classi-
fier is trained with features from another dataset. We also
plan to integrate SVM features from all of the keywords in
a competitive interval.
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