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systems.

Keywords: Conformal field theory; sine-square deformation.

PACS number: 11.25.Hf

This is an Open Access article published by World Scientific Publishing Company. It is distributed
under the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution
of this work is permitted, provided the original work is properly cited.
∗Corresponding author.

1650170-1

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
6.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

SU
K

U
B

A
 o

n 
01

/1
6/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0217751X16501700
mailto:ishibash@het.ph.tsukuba.ac.jp
mailto:tada@riken.jp
https://creativecommons.org/licenses/by/4.0


November 14, 2016 11:50 IJMPA S0217751X16501700 page 2

N. Ishibashi & T. Tada

1. Introduction

Quantum field theory represents undoubtedly one of the greatest pinnacles of

human knowledge. Although its profoundness and versatility have nurtured a

number of novel and important concepts along its nearly a century-long history,1 it

continues to reveal marvelous features and to produce many new findings. In many

of these discoveries, the idea of symmetry has played an essential and exceptional

role. In particular, focusing on the proper symmetry and delving into its meaning

has been proven to be the most fruitful strategy. A recent example is the role played

by SO(2, 4) symmetry in AdS/CFT correspondence.2

In this paper, we offer another example of quantum field theory where sym-

metry plays a central role and reveals interesting phenomena, expanding on our

preceding presentation.3 Our focal point here is the global conformal symmetry

in two-dimensional conformal field theory (2d CFT), which is homomorphic to

SL(2,R).a

The Virasoro algebra, which is an infinite-dimensional Lie algebra, dictates the

symmetry of 2d CFT. A notable subalgebra of the Virasoro algebra is the one that

generates the global conformal transformation on the two-dimensional worldsheet

where the CFT resides. The transformation consists of L0, L1 and L−1 generators,

and their antiholomorphic counterparts, which we omit for the sake of simplicity.

Then, it turns out to be isomorphic to sl(2,R).

It would now be helpful to establish the relationship between sl(2,R) and the

aforementioned subalgebra of the Virasoro algebra, by introducing the following

new linear combination of the generators:

L+ =
L1 + L−1

2
, L− =

L1 − L−1

2i
. (1.1)

The Casimir operator of the subalgebra can be expressed in a more familiar manner

C2 = L2
0 − L2

+ − L2
− . (1.2)

The global conformal transformation can be represented naturally as the adjoint

action over the space spanned by L0, L+ and L−

x0L0 + x+L+ + x−L− . (1.3)

The adjoint action alters the coefficients x0, x+ and x−, while retaining

x2
0 − x2

+ − x2
− (1.4)

invariant, and it generates the corresponding change in the worldsheet coordinates

due to the global conformal transformation. Different sets of x0, x+ and x− are

connected through the global conformal transformation or SL(2,R). For example,

any point on the hyperboloid depicted in Fig. 1 can be converted to the bottom

of the hyperboloid, (x0, x+, x−) = (1, 0, 0) with an appropriate transformation, as

aSee Refs. 4–6 for recent attempt to exploit SL(2,R) symmetry in the context of AdS3/CFT2

correspondence. Reference 7 and references therein also offer enthralling perspectives on the role
played by SL(2,C) ∼ SL(2,R)× SL(2,R).
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Fig. 1. The upper half of a hyperboloid and a surrounding (light-)cone are rendered in the
(x0, x+, x−) space. Any point on the hyperboloid is SL(2,R)-equivalent to an arbitrary point on

the hyperboloid, particularly to the lowest point on the hyperboloid.

is clear from the invariance of the expression (1.4). The significance of the point

represented by (1, 0, 0) is its correspondence with the generator L0, which is the

Hamiltonian of the theory. Thus, the Hamiltonian L0 is stable against perturbations

caused by adding a small amount of L+ or L−, in the sense that small x+ and x−
coefficients can be annihilated by the SL(2,R) action, as explained above, and then

x0 can also be rescaled to unity if desired.

From this perspective on SL(2,R) symmetry, Fig. 1 reveals that in the param-

eter space of (x0, x+, x−), there exist two other disconnected regions that should

have their own physical significance. The first is the meshed cone to which the

hyperboloid asymptotes, and to which we refer hereafter as the “light-cone” in

comparison with the three-dimensional (3d) Lorentz geometry. The light-cone is

represented by the point (x0, x+, x−) = (1,−1, 0), or the generator L0−L+. Outside

of the light-cone is the second region where the other type of hyperboloids can

be placed. The second region is represented by (x0, x+, x−) = (0, 1, 0), or L+ =

(L1 +L−1)/2. Since the representative generator L0 plays a central role in CFT as

a Hamiltonian, the representatives of the other two distinct regions, L0 − L+ and

L+, may play important roles as well.

From a symmetry viewpoint, the Hilbert space of a quantum system is the

representation vector space of the symmetry. To construct the entire representation

vector space of a large symmetry algebra, it is often useful to first investigate

its smaller subalgebra. Once we know the subalgebra’s irreducible representations,

which can be classified by the value of the Casimir operator, the representation

space for the whole symmetry algebra can be constructed from the direct sum of

these irreducible representations (of the subalgebra). Although the action of the sub-

algebra remains within each irreducible representations, the rest of the generators of

the entire symmetry algebra are generally represented by the transitions between

the various irreducible representation sectors of the subalgebra. In this way, the

structure of the representation of the subalgebra is reflected into the Hilbert space

of the quantum system. Thus, the considerations in the previous paragraph should
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certainly shed light on the structure of the Hilbert space such as the spectrum

of CFT.

In fact, the spectrum of L0 fits nicely in the discrete representation of sl(2,R).

Although the lack of translational symmetry renders the analogy with the 3d

Poincaré representation imperfect, it is natural to note it as a “massive” spectrum.

In this case, another region including L0 − L+ could be called a “massless” repre-

sentation. Because the mass scale stems from the size of the system, or the finite

scale of a CFT,8,9 space is implied to be infinite in size. In addition, the continuous

nature of the massless representation suggests the emergence of a continuous index

of the symmetry algebra. As a matter of fact, continuous representations of sl(2,R)

do exist,10 and we will uncover the continuous Virasoro algebra in this report. The

situation here may be compared with the light-front quantization,11 or the infinite

momentum frame.12

Changing the Hamiltonian also affects the structure of the Hilbert space; hence,

we will be dealing with an entirely different Hilbert space. The most graphical

change would be the feature of the time-translational vector, which was radial for

time translation generated by L0. The time-translational fields radiate from the

origin just as electrical flux does from a positive charge. These fluxes then converge

to a (fictitious) negative charge at infinity. The origin and infinity correspond to

t → −∞ and t → ∞, respectively. On the other hand, L0 − L+ produces a vector

field that is similar to the dipolar electric field. We thus named the present procedure

“dipolar quantization.” In this case, the infinite past t→ −∞ and the infinite future

t → ∞ are both located at z = 1 with the (supposedly) infinitesimal separation,

just as a dipole consists of the negative and positive charges at the same point.

Therefore, in analogy with the terminology of “radial quantization,” we name the

present procedure dipolar quantization.3 While conformal symmetry dictates the

behavior of T (z) and the primary operators φ(z) in the z coordinate, a different

time translation or a different equal-time contour affects the Hilbert space structure.

This effect stems from the salient connection between space–time and the operators

in quantum field theories.

The reader might be curious how the analysis presented here relates to the study

of tensionless strings. Although tensionless strings naturally tend to spread freely,

the symmetry that tensionless strings exhibit is a (2d) Galilean conformal algebra,

which differs from the continuous Virasoro algebra that we find here. For recent

research on tensionless strings, see Ref. 13 and references therein.b

The present research is partially motivated by the phenomenon known as the

sine-square deformation (SSD).14 Reference 14 and subsequent studies15–19 revealed

that (i) if we consider the vacuum of a certain class of (one-dimensional) quan-

tum systems of size L with the closed boundary condition and (ii) construct the

vacuum of the same system with the open boundary condition and an additional

bAs a matter of fact, the relationship between tensionless closed and open strings was discussed
in Ref. 13, and so we also seem to share a common motivation.
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space-dependent (x-dependent) modulation of the coupling constant as

g sin2

(
2π
x

L

)
, (1.5)

then these two vacua are identical. Note that in Eq. (1.5), the coupling constant

goes to zero at the both ends of the system, which leads to the open boundary.

If SSD were employed for string theory, this coincidence implies that the closed

string vacuum is identical to the open string vacuum in a certain (worldsheet)

“background.” In fact, it was shown that SSD is also applicable to CFTs.20 When

applied to CFT, the modulation (1.5) amounts to changing the Hamiltonian to

L0 −
L1 + L−1

2
+ L̄0 −

L̄1 + L̄−1

2
. (1.6)

The holomorphic part of the above is nothing but L0 − L+, which we introduced

earlier. The implications of SSD to string theory were discussed in Refs. 21 and 22.

To date, studies of SSD have been limited to studying the ground states with

apparently different boundary conditions. However, the ground state contains essen-

tial information on the quantum system. For example, one can read off the central

charge of a CFT from the ground-state entanglement23–25 (see also Ref. 26 for recent

work). Therefore, one might expect that the significance of SSD extends beyond

the ground states to the excited states. By clarifying the structure of the excited

states under SSD, this report justifies this expectation

Conversely, it is mystifying that systems with different boundary conditions

have a common vacuum state. Intuitively, the lowest-energy state should be the

most vulnerable to the influence of the global structure of the system, such as the

boundary conditions. To clarify this conundrum, note that SSD systems possess

continuum spectra, which implies that such systems have an infinitely large space.

Then, the distinction between the open- and closed-conditions at the ends that

located infinitely far away becomes irrelevant. It would be interesting to see if this

explanation applies to other SSD systems besides the CFT systems considered here.

In fact, Ref. 27 suggests that there are other systems that also show continuous

spectra.

The composition of the paper is as follows. Section 2 is devoted to geometrical

analysis, where we determine the differential operator that corresponds to the time

translation driven by the new Hamiltonian. By using this differential operator, we

establish the equal-time contour for this time translation. Section 3, investigates

the quantum aspects of the system based on the geometric knowledge discussed in

Sec. 2. Comprehension of the equal-time contour enables us to define the conserved

charges. By calculating the commutation relations between these charges, we obtain

the continuous Virasoro algebra and, in particular, the central extension term.

In Sec. 4, we further discuss the structure of the Hilbert space, mainly from the

viewpoint of Hermitian conjugation. We conclude and summarize the results in

Sec. 5 and raise several points worth discussing. We also supplement the main text

with three appendices. In App. A, we assemble various formulas in regard to the
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relevant differential operators. A keen reader might have noticed that we could

have chosen a set {Ln, L0, L−n} as the generators of the SL(2,R) subalgebra of

the Virasoro algebra: this case is explored in App. B. Our investigation here is

restricted to CFT that resides strictly on a Riemann sphere which possess a unique

spin structure. Although this fact is not explicitly exploited in the main text, we

describe how the present formalism can be applied to superconformal field theories

(SCFT) in App. C, where only one fermionic mode appears.

2. Geometrical Analysis

2.1. The Witt algebra

To clarify our notation, we briefly recapitulate the standard argument of the con-

formal transformation in two dimensions. For any field theory, a constant translation

xν → x′ν = xν + εν , (2.1)

evokes the associated Noether current that is called the energy–momentum tensor

J (ν)
µ (x) = Tµν(x) , (2.2)

where the extra index ν indicates the direction of the translation. Assuming in-

variance under translation, the Noether current J
(ν)
µ is, subject to the equation of

conservation

∂µJ (ν)
µ = ∂µTµν = 0 . (2.3)

Furthermore, the energy–momentum tensor is known to be symmetric and traceless

for conformal field theories

Tµν = Tνµ , Tµµ = 0 . (2.4)

The (infinitesimal) conformal transformation is the space-dependent (infinite-

simal) translation

xµ → x′µ = xµ + εµ(x) , (2.5)

that keeps conformal flatness

gµν(x)→ e2ω(x)gµν(x) . (2.6)

This is achieved if the following conformal Killing equation is satisfied

∇µεν +∇νεµ = 2ω(x)gµν(x) . (2.7)

A vector field εµ that satisfies the conformal Killing equation (2.7) is called the

conformal Killing vector. Conserved currents associated with the conformal trans-

formation can be constructed by using the conformal Killing vector εµ and the

energy–momentum tensor as follows:

Jεµ(x) = εν(x)Tµν(x) . (2.8)
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If space–time is 2d Euclidean, the conformal Killing equation reads

∂aεb + ∂bεa = 2ω(x)δab , a, b = 0, 1 . (2.9)

The above equation retains the same structure as the Cauchy–Riemann relation;

hence, the conformal transformation in two dimensions can be expressed in terms

of the analytic coordinate transformation

z → ε(z) , z̄ → ε̄(z̄) , (2.10)

if we adopt the complex coordinate system z = x1 + ix2. The conserved (Noether)

current can also be expressed in terms of the complex coordinate as

Jε0 = Tzz(z)ε(z) + T̄z̄z̄(z̄)ε̄(z̄) , Jε1 = i(Tzz(z)ε(z)− T̄z̄z̄(z̄)ε̄(z̄)) . (2.11)

In particular, upon introducing the specific set of infinitesimal transformations

z → z′ = z − εnzn+1 , z̄ → z̄′ = z̄ − ε̄nz̄n+1 , (2.12)

the generators for the transformations at issue can be written as

ln = −zn+1 ∂

∂z
, l̄n = −z̄n+1 ∂

∂z̄
. (2.13)

Note that despite of their benign appearance, the expressions in Eq. (2.13) contain

divergent poles for n ≤ −2. However, including these divergent terms is critical for

the generators ln and l̄n to form the Witt algebras or the Virasoro algebras without

the central extension

[ln, lm] = (n−m)ln+m , [l̄n, l̄m] = (n−m)l̄n+m . (2.14)

2.2. Generalization

At this point, it would be beneficial to take note of the fact that the choice of

the specific transformations in Eq. (2.12) was, though it is in accordance with

the Laurent series and certainly stands as a natural one, completely arbitrary.

Therefore, we would like to re-examine the above procedure by introducing the

following (holomorphic) differential operators, which is more general than those in

Eq. (2.13):

lκ = −g(z)fκ(z)
∂

∂z
, (2.15)

where g(z) and fκ(z) are both holomorphic functions on z, and κ is the index that

specifies the holomorphic function fκ(z). We see in the following that for certain

choices of g(z), fκ(z) and the algebra formed by lκ are consistently derived. In

particular, choosing g(z) = z reproduces the above argument that leads to the

Witt algebra (the classical Virasoro).
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First, we impose the following relation on fκ(z):

l0fκ(z) = −κfκ(z) . (2.16)

As we shall shortly see, we can assume without inconsistency

l0 = −g(z)
∂

∂z
(2.17)

or

f0(z) = 1 ; (2.18)

hence, Eq. (2.16) reads

g(z)
∂

∂z
fκ(z) = κfκ(z) . (2.19)

One can readily solve Eq. (2.19) as

fκ(z) = Aκe
κ
∫ z dz

g(z) , (2.20)

where Aκ is a constant of integration. Note that Eq. (2.20) yields f0(z) = 1 if we

take A0 to be unity, which we do for the rest of the paper.

The commutation relation between lκ is

[lκ, lκ′ ] = (κ′ − κ)g(z)fκ(z)fκ′(z)
∂

∂z
, (2.21)

where we utilized Eq. (2.19) in the following form:

∂

∂z
fκ(z) =

κ

g(z)
fκ(z) . (2.22)

Noting that

fκ(z)fκ′(z) = AκAκ′e
(κ+κ′)

∫ z dz
g =

AκAκ′

Aκ+κ′
fκ+κ′(z) (2.23)

from Eq. (2.20), we arrive at the Witt algebra

[lκ, lκ′ ] = (κ− κ′)lκ+κ′ , (2.24)

if we impose AκAκ′ = Aκ+κ′ , which is obviously satisfied by

Ak = econstκ . (2.25)

Although we have introduced fκ(z) simply as a means to define lκ, the action

of lκ on fκ(z) is of some interest. To see this, we derive

lκfκ′(z) = fκ(z)l0fκ′(z) = −κ′fκ(z)fκ′(z) = −κ′fκ+κ′(z) . (2.26)

The action of lκ on fκ′(z) alters the eigenvalue of fκ′(z) by the amount of κ and

multiplies by −κ′ to obtain −κ′fκ+κ′(z). Therefore, the Witt algebra (2.24) can be

represented over the linear space spanned by fκ(z)’s.
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The analysis presented above can be repeated for the other set of differential

operators, which are characterized by

l̄0 ≡ −g(z̄)
∂

∂z̄
, (2.27)

where z̄ stands for the complex conjugate of z. It is apparent then that fκ(z̄) serves

as a basis for the space over which the Witt algebra for l̄κ is represented. Thus, we

have constructed two independent sets of the Witt algebra and the representation

space.

So far, we imposed no restriction on the nature of the index κ, which can take

either discrete or continuous values, or even complex values. It turns out that the

domain of κ depends on our choice of g(z). Because κ is the index for the basis

that spans the representation space, the consideration of the representation imposes

restrictions on κ.

For the choice of g(z), three cases are particularly interesting, each of which

corresponds to one of three representative points of SL(2,R) parameter space

respectively, as explained in the introduction. The first one is

g(z) = z . (2.28)

This choice results in

l0 = −z ∂
∂z

= l0 (2.29)

and

fκ = exp

(
κ

∫ z dz

z

)
eκ · const = zκeκ · const , (2.30)

thus

lκ = −zκ+1 ∂

∂z
(2.31)

up to the constant factor eκ · const. Therefore, if we demand that the basis of the

representation fκ be single-valued, κ must take integer values; otherwise, fκ would

produce cuts on the complex plane and fκ(z) would be determined only up to some

phase factor.c With this restriction on κ, the differential operators ln (n ∈ Z) are

nothing but the generators ln in Eq. (2.13). Here, we have simply established the

usual set of the generators of the conformal transformation in two dimensions in the

form of the differential operators and made the connection with the corresponding

(classical) Virasoro algebra.

For the other choices, we encounter a novel situation. Choosing

g(z) = −1

2
(z − 1)2 , (2.32)

cThis feature can be exploited to accommodate fermions on the worldsheet.
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yields

l0 = −
{
−1

2
(z − 1)2

}
∂

∂z
=

(
−z +

z2 + 1

2

)
∂

∂z
= l0 −

l1 + l−1

2
(2.33)

and

fκ = exp

(
κ

∫ z 2dz

(z − 1)2

)
eκ · const = exp

(
− 2κ

z − 1

)
eκ · const . (2.34)

Equation (2.33) corresponds to the “light-cone” or “massless representation,” as

observed in the introduction. Note that, unlike Eq. (2.30), fκ in Eq. (2.34) takes a

single definite value everywhere save for at z = 1, for any real κ. Thus, provided κ

is real, there is no restriction on κ, as expected from the reasoning presented in the

introduction. The generators are now continuously indexed and take the form

lκ = −1

2
(z − 1)2 exp

(
− 2κ

z − 1

)
∂

∂z
(2.35)

up to the κ-wise constant multiplication eκ · const, which turns out to be irrelevant

and is thus neglected by choosing the const to be nil.

For the rest of the presentation, we mostly treat these two generators and the

corresponding conserved charges. However, in passing, the following third and last

choice is worth mentioning

g(z) = z2 + 1 . (2.36)

This choice corresponds to

l0 ≡ l1 + l−1 , (2.37)

and yields

fκ = exp

(
κ

∫ z dz

z2 + 1

)
eκ · const

=

(
i+ z

i− z

)− i
2κ

eκ · const = eκ arctan zeκ · const . (2.38)

Thus,

lκ = −(z2 + 1)eκ arctan z ∂

∂z
(2.39)

up to the κ-wise constant multiplication eκ · const.

Note that arctan z is a function that yields multiple values that differ by

πn(n ∈ Z). Demanding fκ, which spans the representation space, to be single-

valued would then restrict the value of κ to be

κ = 2Zi (2.40)

from the expression of fκ. Then, after proper redefinition, the Witt algebra which

is defined by [l′p, l
′
q] = (p − q)l′p+q(p, q ∈ Z) emerges for this case. The result here,

particularly the appearance of the imaginary number in Eq. (2.40), seems consistent

with the intuition presented in the introduction because Eq. (2.37) can be related

to a “space-like” representation.
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2.3. Dipolar quantization

In the analysis that established the generators lκ, the l0 generator, among others,

was treated singularly. This is justified by the fact that L0 generator, which is l0
for the choice of g(z) = z, actually corresponds to the time and space translation

and plays a singular role. In this subsection, we would like to generalize this feature

to general l0. We should then be able to adopt, for example, L0 − L+ as (the

holomorphic part of) the Hamiltonian.

Following the case for L0 (and L̄0), let us define the time coordinate t by

− ∂

∂t
≡ l0 + l̄0 (2.41)

and the space coordinate s by

− ∂

∂s
≡ i(l0 − l̄0) . (2.42)

By using Eqs. (2.17) and (2.27), these two equations can be summarized in the

following matrix form:
∂

∂t

∂

∂s

 =

(
g(z) g(z̄)

ig(z) −ig(z̄)

)
∂

∂z

∂

∂z̄

 . (2.43)

The inverse of the matrix in Eq. (2.43) can be read as the Jacobian matrix for

t(z, z̄) and s(z, z̄)

(
g(z) g(z̄)

ig(z) −ig(z̄)

)−1

=


∂t

∂z

∂s

∂z

∂t

∂z̄

∂s

∂z̄

 . (2.44)

Thus, the following sets of equations are obtained:
∂t

∂z
=

1

2g(z)
,

∂s

∂z
=

1

2ig(z)
,

(2.45)

and 
∂t

∂z̄
=

1

2g(z̄)
,

∂s

∂z̄
= − 1

2ig(z̄)
.

(2.46)
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Each equation can be readily integrated as
t =

1

2

∫ z dz

g(z)
+ v̄(z̄) ,

is =
1

2

∫ z dz

g(z)
+ v̄′(z̄) ,

(2.47)

and 
t =

1

2

∫ z̄ dz̄

g(z̄)
+ v′(z) ,

is = −1

2

∫ z̄ dz̄

g(z̄)
+ v(z) ,

(2.48)

where v, v′ (v̄, v̄′) can be any holomorphic (antiholomorphic) functions. Combining

Eqs. (2.47) and (2.48), it is apparent that

t =
1

2

(∫ z dz

g(z)
+

∫ z̄ dz̄

g(z̄)

)
, (2.49)

is =
1

2

(∫ z dz

g(z)
−
∫ z̄ dz̄

g(z̄)

)
. (2.50)

Note that the following combination yields a particularly simple expression as

t+ is =

∫ z dz

g(z)
; (2.51)

hence, we denote the combination t + is as a single complex variable w, which is

used in the latter part of the paper.

Let us be specific with the case g(z) = z. Then∫ z dz

g(z)
= ln z , (2.52)

so

t =
1

2
(ln z + ln z̄) =

1

2
ln(zz̄) , (2.53)

is =
1

2
(ln z − ln z̄) =

1

2
ln
z

z̄
. (2.54)

These two equations can be concisely summarized as

t+ is = ln z . (2.55)

Thus, in the radial coordinate z = reiφ,

t = ln r , is = iφ , (2.56)

as is well known. This relationship between time translation and radial translation

is the origin of the term “radial quantization.”28
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Let us now examine the case of interest: g(z) = − 1
2 (z − 1)2. Starting from∫ z dz

g(z)
=

2

z − 1
, (2.57)

we obtain

t =
1

2

(
2

z − 1
+

2

z̄ − 1

)
, (2.58)

is =
1

2

(
2

z − 1
− 2

z̄ − 1

)
; (2.59)

hence, it would be useful to consider the combination

t+ is =
2

z − 1
. (2.60)

Reciprocally,

z = 1 +
2

t+ is
(2.61)

and, if we introduce the Cartesian coordinate for z = x+ iy, we obtain

z = x+ iy = 1 +
2

t+ is
= 1 +

2(t− is)
t2 + s2

, (2.62)

thus arriving at 
x = 1 +

2t

t2 + s2
,

y = − 2s

t2 + s2
.

(2.63)

From Eq. (2.63), the following combination produces the simple expression:(
x− 1− 1

t

)2

+ y2 =
(t2 − s2)2

t2(t2 + s2)2
+

(4s2)2

t2(t2 + s2)2
=

1

t2
, (2.64)

which is nothing but a circle of radius 1
|t| . Therefore, the contour of the constant t

depicts a circle of radius 1
|t| with the center located at

(
1 + 1

t

)
. While these circles

have different radii for different values of t, they always go through the point z = 1,

as illustrated in Fig. 2. In particular, the contours for t = −∞ and t = ∞ are

degenerate at the point z = 1. If we increase t starting from t = −∞, we have

circles on the left of z = 1 until we reach t = 0. At that point, the contour becomes

the great circle that evenly intersects the entire Riemann sphere. This great circle

renders a straight line in the complex plane. For t > 0, the contour circles are on

the right of z = 1 and converge to z = 1 as t→∞.

Along each contour circle of the constant t, the parameter s increases from

s = −∞ at z = 1 as it covers the lower half of the circle and reaches s = 0
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Fig. 2. Vector field of time translation generated by Eq. (2.65) is depicted along with the equal-
time contours for t = −1, 0, 1

2
. All the equal-time contours contact each other at z = 1, where a

fictitious dipole is located.

at the crossing with the real axis. Increasing s further sweeps the upper half of

the circle and eventually encircles back to z = 1 as s → ∞. This is contrasted

with the ordinary CFT analysis where the spatial parameter s has a finite range,

as is apparent from Eq. (2.56). The emergence of the infinite range in the space

parametrization is consistent with the continuous index for the classical Virasoro

algebra and also suggests the continuous spectrum.

If we formulate the time-translational vector field in Cartesian coordinates,

we find

∂

∂t
=
−(x− 1)2 + y2

2

∂

∂x
− (x− 1)y

∂

∂y
. (2.65)

The above vector field produces the dipole field whose origin is located at z = 1

and points along the real axis (Fig. 2). In contrast with radial quantization,28 we

regard this translation generated by Eq. (2.65) as the time translation associated

with the “dipolar” quantization,3 after the configuration of the time-translational

vector field.d

The differential operator (2.65) can also be written in the form

D̂ − K̂1 + P̂1

2
, (2.66)

dOther than radial quantization, there is another quantization called NS (North–South pole)
quantization, found in the literature.29,30
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by using the generators D̂, P̂µ and K̂µ, which correspond to dilation, translation

and special conformal translation, respectively

[dilation] D̂ = xµ∂µ ,

[translation] P̂µ = ∂µ ,

[SCT] K̂µ = 2xµx
ν∂ν − (x · x)∂µ .

Equation (2.66) is especially useful when we extend the current result to other

dimensions. In addition, it is easy to see that another direction exits where we can

consider a similar differential operator D̂ − (K̂2 + P̂2)/2. This would generate a

vector field that is simply the ninety degree rotation of the vector field (2.65).

To conclude our geometrical analysis, we comment on the significance of the

result. To study the corresponding quantum system based on the aforementioned

geometrical analysis, we need to examine the conserved charges generated by the

conformal transformation

Qε =

∫
dx Jε0 . (2.67)

The integral in the equation above should be performed along a loop on which

“time” is constant. Conservation of the current Jε ensures that the integral does

not depend on the choice of the loop or the value of the time on the loop. Thus,

identifying the time translation is crucial.

3. Quantum Analysis

3.1. The Virasoro algebra

In the previous section, we systematically analyzed the time translation evoked by a

class of Hamiltonians that includes the ordinary [L0] and the SSD [L0−(L1+L−1)/2]

Hamiltonians. Now that we understand the nature of these time translations, let

us proceed to study the conserved charges associated with each of them. Consider

a conserved charge, which is the integration of a current that is associated with a

certain coordinate transformation ε [Eq. (2.10)], as shown in Eq. (2.67). Observing

the relationship between the current and the energy–momentum tensor [Eq. (2.11)],

we arrive at the following:

Qε =

∫
dx Jε0 =

1

2πi

∮
t dz ε(z)Tzz(z) , (3.1)

where t is attached to the sign of the integral as a reminder of the fact that the

integral should be performed along a path with the constant t and a natural normal-

ization factor 2πi is included. In the analysis of the previous section, ε(z) was further

divided into the product of g(z) and fκ [see Eq. (2.15)]. In this case, the conserved

charges labeled by κ are determined in the following way:

Lκ ≡
1

2πi

∮
t dz g(z)fκ(z)T (z) , (3.2)
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(a) (b)

Fig. 3. Equal-time paths are depicted for (a) radial quantization and (b) dipolar quantization.

The apparent direction of the contour depends on the sign of t for dipolar quantization.

where T (z) = Tzz(z) is the holomorphic part of the energy–momentum tensor of the

original CFT. In particular, for κ = 0, we have the expression for the Hamiltonian

for each set of g(z) and fκ(z) corresponding to either the case for radial quantization

or for dipolar quantization:

L0 =
1

2πi

∮
t dz g(z)T (z)

=


L0 for g(z) = z [radial] ,

L0 −
L1 + L−1

2
for g(z) = − (z − 1)2

2
[dipolar] ,

(3.3)

keeping Eq. (2.18) in mind.

We now clarify a point that has not been made specific. When the integral

along the path of constant time was introduced in Eq. (3.1), we did not specify the

direction of the integral along the path, which can be in one of two directions. The

first direction is for ordinary radial quantization, in which case the contour integral

is done in the counterclockwise direction [Fig. 3(a)]. In terms of the parameters t

and s, this integral is done from s = 0 to s = 2π:

Q =
1

2πi

∮ s=2π

s=0

t dz q(z) . (3.4)

The second case requires more caution. For this case, we integrate in the counter-

clockwise direction, if t < 0, but in the clockwise for t > 0 [Fig. 3(b)]. Although these

two contours in Fig. 3(b) imply the integrations in opposite directions, they yield

the same value. This fact can be understood by deforming the contour continuously

from t < 0 to t > 0. During this deformation, the contour passes through the infinity

point, which is located at the antipode of the origin on the Riemann sphere (Fig. 4).

In terms of the t, s parameters, the integration is done from s = −∞ to s = ∞,

though it may look awkward

Q =
1

2πi

∮ s=−∞

s=∞

t dz q(z) . (3.5)
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Fig. 4. Contour integral for t < 0 is converted to the integral for t > 0, switching the apparent

directions of the integration.

(a) t = −1 (b) t = 0 (c) t = 1

Fig. 5. Equal-time paths for (a) t = −1, (b) t = 0 and (c) t = 1.

Figure 5 shows the equal-time paths on the complex plane for t = −1, 0, 1. Setting

t = −1 gives the integral over the unit circle just as for the case of t = 0 in radial

quantization (2.56). The case for t = 0, as in Fig. 5(b), is particularly interesting

because the path apparently becomes a straight line, which facilitates calculations

as we will see shortly.

We now calculate the commutation relations between the following more general

quantities:

Q(i) =
1

2π

∮
ti dzi q

(i)(zi) . (3.6)

Assuming q(i)(zi) is an operator in quantum field theory, we introduce the symbol

for the time-ordered product T as

T
(
q(1)(z1)q(2)(z2)

)
=

{
q(1)(z1)q(2)(z2) for t1 > t2 ,

q(2)(z2)q(1)(z1) for t1 < t2 .
(3.7)
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(a) (t1 > 0 > t2)− (0 > t2 > t1) (b) (t1 > t2 > 0)− (t2 > 0 > t1)

Fig. 6. The subtractions between two integrals explained pictorially. Different choices of t1 and

t2 amount to the same contour integral around z2.

Then

[
Q(1), Q(2)

]
=

[
1

2πi

∮
t1 dz1 q

(1)(z1),
1

2πi

∮
t2 dz2 q

(2)(z2)

]

=
1

2πi

∮
t2 dz2

 1

2πi

∫
dz1 q

(1)(z1)q(2)(z2)

− 1

2πi

∫
dz1 q

(2)(z2)q(1)(z1)



=
1

2πi

∮
t2 dz2


 1

2πi

∫
dz1 −

∫
dz1

T
(
q(1)(z1)q(2)(z2)

)
=

1

2πi

∮
t2 dz2

∫
dz1 T

(
q(1)(z1)q(2)(z2)

)
. (3.8)

Here, we understand that t1 is set to be −1 for dipolar quantization and to be 0 for

radial quantization so that the contour for z1 becomes the unit circle. The value t2
is also chosen appropriately in each term. The contour for z1 is shown pictorially in

Eq. (3.8). One could choose different values for t1 and t2 and yet obtain the same

result (Fig. 6).

The commutation relations between the above-defined conserved charges can be

derived straightforwardly by using the following operator product expansion of the
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energy–momentum tensor:

T(T (z1)T (z2)) ∼ c/2

(z1 − z2)4
+

2T (z2)

(z1 − z2)2
+
∂zT (z)|z=z2
z1 − z2

+ · · · , (3.9)

where c is the central charge of the CFT. From Eqs. (3.2) and (3.8), we have

[Lκ,Lκ′ ] =
1

2πi

∮
t2 dz2 g(z2)fκ′(z2)

∫
dz1 g(z1)fκ(z1)T

(
T (z1)T (z2)

)
=

1

2πi

∮
t2 dz2 g(z2)fκ′(z2)

∫
dz1 g(z1)fκ(z1)

×
(

c/2

(z1 − z2)4
+

2T (z2)

(z1 − z2)2
+
∂zT (z)|z=z2
z1 − z2

)
. (3.10)

After using the residue theorem and partial integrals, we arrive at

[Lκ,Lκ′ ] =
c

12

∮
t2
dz2

2πi

{
g
∂3g

∂z3
+ κ

(
2
∂2g

∂z2
− 1

g

(
∂g

∂z

)2)
+
κ3

g

}
fκ+κ′(z2)

+ (κ− κ′)
∮
t2
dz2

2πi
g(z2)fκ+κ′(z2)T (z2)

=
c

12

∮
t2
dz2

2πi

{
g
∂3g

∂z3
+ κ

(
2
∂2g

∂z2
− 1

g

(
∂g

∂z

)2)
+
κ3

g

}
fκ+κ′(z2)

+ (κ− κ′)Lκ+κ′ . (3.11)

This derivation also took advantage of Eq. (2.22).

Let us now evaluate the term proportional to the central charge c. For further

evaluation, we need the explicit form of g(z). The explicit expression for g(z) readily

yields

c

12

∮
t2
dz2

2πi

{
g
∂3g

∂z3
+ κ

(
2
∂2g

∂z2
− 1

g

(
∂g

∂z

)
2
)

+
κ3

g

}
fκ+κ′(z2)

=


c

12

∮
t2
dz2

2πi

{
κ3

g
− κ

g

}
fκ+κ′(z2) for g(z) = z [radial] ,

c

12

∮
t2
dz2

2πi

κ3

g
fκ+κ′(z2) for g(z) = − (z − 1)2

2
[dipolar] .

(3.12)

Besides the difference shown above, and that is caused by the explicit form of g(z),

note that fκ or the nature of κ need not be specified until this point.

We now introduce a formula that shall prove useful for the further evaluation

of Eq. (3.12)

∮
t dz

2πi

fκ(z)

g(z)
=


δκ,0 for g(z) = z ,

δ(κ) for g(z) = −1

2
(z − 1)2 ,

(3.13)
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where δκ,0 is the Kronecker delta and δ(κ) is the Dirac delta function. The proof of

this formula for g(z) = z amounts to a simple residue integral. However, the case

g(z) = − 1
2 (z − 1)2 deserves an additional expounder. To facilitate the calculation,

we set t = 0 [see Fig. 5(b) for the integration path]. The equal-time path can then

be parametrized as z = 1 + iu, −∞ < u <∞. Noting that fκ = exp
(

2
z−1κ

)
for this

case, we obtain ∮
t dz

2πi

fκ(z)

g(z)
=

∫ ∞
−∞

idu

2πi

exp
(
−i 2κ

u

)
u2

. (3.14)

Changing variables to x = − 2
u , the above integral yields

1

2π

∫ ∞
−∞

dx eiκx , (3.15)

which is nothing but the Dirac delta function; quod erat demonstrandum.

Combining all these calculations together, the result may be summarized as

[Lκ,Lκ′ ] = (κ− κ′)Lκ+κ′ +


c

12
(κ3 − κ)δκ+κ′,0 for g(z) = z ,

c

12
κ3δ(κ+ κ′) for g(z) = −1

2
(z − 1)2 .

(3.16)

For g(z) = z, κ is restricted to an integer if we demand that fκ be single valued

in (2.30); thus, the algebra generated by Lκ’s becomes isomorphic to the ordi-

nary Virasoro algebra generated by Ln’s. For dipolar quantization, where g(z) =

− 1
2 (z − 1)2, there is no such restriction applies to κ; it can be any real number.

Note that the κ coefficients that immediately follow c/12 appear to differ be-

tween the radial and dipolar treatment in Eq. (3.16); two comments on this fact are

in order. First, the term c
12κ

3δ(κ + κ′) can be transformed to c
12 (κ3 − κ)δ(κ + κ′)

by shifting Lκ as follows:

Lκ → Lκ +
c

24
δ(κ) . (3.17)

The additional shift factor c
24δ(κ) can also be derived in the following way: Consider

the Schwarzian derivative term

c

12

1

(∂zu)2

{
(∂zu)(∂3

zu)− 3

2

(
∂2
zu
)2}

= − 2

(z − 1)4
· c

12
, (3.18)

which is associated with the nontrivial coordinate transformatione

z → u = e
2
z−1 . (3.19)

Then integrate the result (3.18) along with g(z) and fκ, obtaining

c

12

∮
t dz

2πi
g(z)fκ(z)

2

(z − 1)4
=

c

24
δ(κ) . (3.20)

eThe significance of this transformation is recognized in Ref. 21 (see also App. A).
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Therefore, the apparent dissimilarity between the κ coefficients can be understood

by the nontrivial difference between the coordinate systems. Second, the expression
c
12 (κ3−κ)δκ+κ′,0 suggests that the choice of values κ = −1, 0, 1 plays a special role.

In fact, L−1, L0 and L1 all annihilate the vacuum |0〉 in the case of the ordinary

Virasoro algebra, as is well known. However, save for κ = 0, there is no signifi-

cant peculiarity at the values κ = −1, 1 in the continuous Virasoro algebra; thus,
c
12κ

3δ(κ + κ′) appears to be more natural expression for the continuous Virasoro

algebra.

One can also express Lκ in terms of the coordinate w(= t + is). First, by

combining Eqs. (2.20) and (2.51), the following useful formulae can be obtained:

∂w

∂z
=

1

g(z)
, (3.21)

fκ(z) = eκw . (3.22)

It is then straightforward to rewrite Eq. (3.2) in terms of w

Lκ =
1

2πi

∫
dw eκw

(
T ′(w) +

c

24

)∣∣∣∣
t=const

, (3.23)

where T ′ represents the energy–momentum tensor in the w coordinate and the term

c/24 arises from the Schwarzian derivative.

3.2. Expansion of primary fields and the inverse

The analysis just presented in Subsec. 3.1 can be summarized as a clarification of

the algebraic structure vis-à-vis a specific (quasi-)primary field T (z) by integrating

over the equal-time path. In this subsection, we try to extend this analysis to involve

the general primary fields of CFT.

By definition, a (chiral) primary field of CFT with the conformal dimension h

is subject to the following operator-product expansion (OPE):

T (z1)φ(z2) =
h

(z1 − z2)2
φ(z2) +

1

z1 − z2

∂φ(z2)

∂z2
+ · · · . (3.24)

Based on this OPE, if we integrate φ(z) along with g(z) and fκ as follows:

φκ =
1

2πi

∮
t dz gh−1(z)fκ(z)φ(z) , (3.25)

then we can show that the adjoint action of the Virasoro generator Lκ on φκ’s

amounts to

[Lκ, φκ′ ] = ((h− 1)κ− κ′)φκ+κ′ . (3.26)
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Therefore, by Eq. (3.25), one can properly define the expansion of a primary field

in terms of κ. To prove Eq. (3.26), simply insert the integral expressions for Lκ and

φκ, which gives

[Lκ, φκ′ ] =

∮
t dz2

2πi
gh−1(z2)fκ′(z2)

∫
dz1 g(z1)fκ(z1)

×
(

h

(z1 − z2)2
φ(z2) +

1

z1 − z2

∂φ(z2)

∂z2

)
(3.27)

and similarly with Eq. (3.10). The residue integral and the additional partial integral

yields ∮
t dz2

2πi
gh−1(z2)fκ′(z2)

∂

∂z1
(g(z1)fκ′(z1))

∣∣∣∣
z1=z2

hφ(z2)

−
∮
t dz2

2πi

∂

∂z2

(
gh(z2)fκ(z2)fκ′(z2)

)
φ(z2) . (3.28)

With the help of Eq. (2.22), simple arithmetic tells us that the above expression

equals ∮
t dz2

2πi
((h− 1)κ− κ′)gh−1(z2)fκ+κ′(z2)φ(z2) , (3.29)

which is the right-hand side of Eq. (3.26). Note that the above derivation is valid

regardless of the form of g(z) or fκ.

We expect that the above analysis can be extended to the general case involving

(the modes of) two chiral primary fields. However, because demonstrating this

requires somewhat meticulous calculations, we defer the effort to a future study.

For now, we would rather consider the reciprocal process of what we have just

performed. We claim that the following reciprocal expression holds:

φ(z) = g−h(z)

∫
dκ f−1

κ (z)φκ . (3.30)

Here, the integral over κ should be understood as a summation when κ takes on dis-

crete values. This relationship is also valid for the quasi-primary energy–momentum

tensor T (z) with h = 2

T (z) = g−2(z)

∫
dκ f−1

κ (z)Lκ . (3.31)

For g(z) = z, Eq. (3.30) takes the simple form

φ(z) =
∑
κ

z−κ−hφκ , (3.32)

which is the well-known Laurent expansion of primary fields. For g(z) = −(z−1)2/2,

Eq. (3.30) becomes

φ(z) =
1(

− 1
2 (z − 1)2

)h ∫ dκ e
2κ
z−1φκ . (3.33)
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The explicit form of Eq. (3.25) is

φκ =
1

2πi

∮
t dz′

(
−1

2
(z′ − 1)2

)h−1

e−
2κ
z′−1φ(z′) . (3.34)

Let us take the integral path of z′ at t = 0 and, with the help of Eq. (2.60), express

Eq. (3.34) in terms of the integral over s

φκ =
1

2π

∫ −∞
∞

ds

(
2

s2

)h
e−iκsφ

(
1 +

2

is

)
. (3.35)

Inserting the above into the right-hand side of Eq. (3.33) yields(
−1

2
(z − 1)2

)−h
1

2π

∫
dκ

∫ −∞
∞

ds eiκ(
2

i(z−1)
−s)
(

2

s2

)h
φ

(
1 +

2

is

)
. (3.36)

Formally integrating over κ yields a delta function; hence(
−1

2
(z − 1)2

)−h ∫ −∞
∞

ds

(
2

s2

)h
φ

(
1 +

2

is

)
δ

(
2

i(z − 1)
− s
)
. (3.37)

Integrating over s yields(
−1

2
(z − 1)2

)−h(
−1

2
(z − 1)2

)h
φ(z) = φ(z) , (3.38)

which shows that Eq. (3.30) is valid for dipolar quantization.

3.3. Continuum spectrum

One immediate consequence of the Virasoro algebra with a continuous index is the

continuum spectrum of the system. Consider an eigenstate of L0 with an eigenvalue

α and with an additional index σ denoting a possible degeneracy

|α, σ〉 (3.39)

so that

L0|α, σ〉 = α|α, σ〉 . (3.40)

In this case, operating on |α, σ〉 with Lκ yields

Lκ|α, σ〉 = |α− κ, σ〉 . (3.41)

This result is based on the commutation relation (3.16). Thus, starting from the

vacuum or any other energy eigenstate, we can construct an eigenstate for L0 with

an arbitrary eigenvalue because κ can assume any real value. One way to construct

the state |α, σ〉 for nonzero α is to consider

φ−α|0〉 , (3.42)

where φ−α is the expansion of a primary field at κ = −α. For the additional

degeneracy σ, one can consider

φ0|0〉 , (3.43)
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which is a state with zero energy and is orthogonal to the vacuum, provided

〈0|φ0|0〉 = 0 . (3.44)

We now recall that, for the case of ordinary 2d CFTs, the equation

Ln|0〉 = 0 for n ≥ −1 , (3.45)

assures that the energy spectrum of the 2d CFT is bounded below at |0〉. The

argument leading to Eq. (3.45) is based on the regularity of the product of the

vacuum and the energy–momentum tensor that is placed at t = −∞ (z = 0)

lim
t→−∞

T (z)|0〉 = lim
z→0

∑
Lnz

−n−2|0〉 . (3.46)

Were it not for Eq. (3.45), Eq. (3.46) would be divergent. Let us examine a suitable

variant of (3.46) for the case of dipolar quantization.

The reciprocal expression (3.31) yields

lim
t→−∞

T (z)|0〉 = lim
t→−∞

∫ ∞
−∞

dκ
(t+ is)4

4
e−κ(t+is)Lκ|0〉 . (3.47)

A divergence arises from the factor e−κt because we take t to be −∞ for any positive

κ. Thus, for Eq. (3.47) to be regular at t→ −∞, we are led to

Lκ|0〉 = 0 for κ > 0 . (3.48)

If we apply the same argument to a primary field φ(z) with the conformal weight

h and note that

lim
t→−∞

φ(z)|0〉 = lim
t→−∞

∫ ∞
−∞

dκ
(t+ is)2h

(−2)h
e−κ(t+is)φκ|0〉 , (3.49)

we also must demand

φκ|0〉 = 0 for κ > 0 . (3.50)

However, the exponential factor e−κt suppresses any contribution from κ < 0 in

Eq. (3.49), which suggests

lim
t→−∞

φ(z)|0〉 = φ(1)|0〉 = φ0|0〉 . (3.51)

This expression should be compared with that for the highest-weight state for radial

quantization case

φ(0)|0〉 = φ−h|0〉 . (3.52)

Equation (3.48) implies that the spectrum of the system is bounded below by

|0〉, at least for the states derived from the multiplication of Lκ, starting from either

the vacuum |0〉 or the states (3.42). Therefore, the Hamiltonian

H = L0 + L̄0 (3.53)
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possesses a continuous spectrum. The expectation expressed in the introduction is

thus verified. This result is also consistent with the observation that the variable s

takes values from −∞ to ∞.

The general structure of the Hilbert space for dipolar quantization is expected to

be complex because it has a continuous index. In particular, in the above construc-

tion, there are many ways to multiply Lκ to obtain a given eigenvalue, implying

that each eigenstate is heavily degenerate. Although a complete analysis of the

Hilbert space is beyond the scope of this paper, we do discuss some aspects of the

Hermitian conjugate to clarify the structure of the Hilbert space in Sec. 4.

4. Hermitian Conjugate and Hilbert Space

In the previous section, we considered a set of vectors such as

|κ〉0 ≡ L−κ|0〉 , κ > 0 , (4.1)

which provide the basis of the continuous spectrum for the dipolar-quantized sys-

tem. It would be desirable if they form an orthonormal set of vectors. In fact, if we

assume the Hermitian conjugate takes the following form for dipolar quantization:

L†κ = L−κ , (4.2)

the inner product of the vectors mentioned above

0〈κ′|κ〉0 = 〈0|Lκ′L−κ|0〉 = 〈0|[Lκ′ ,L−κ]|0〉 , (4.3)

amounts to

0〈κ′|κ〉0 =
c

12
κ3δ(κ′ − κ)〈0|0〉 , (4.4)

owing to Eq. (3.16). Therefore, the above assumption (4.2) seems natural and also

implies the Hermiticity of L0. We justify the assumption (4.2) in the following.

First, let us reflect upon Hermitian conjugationf in general. The analysis of

Hermitian conjugation is simpler in terms of t and s coordinates rather than that of

z. Because we are considering a field theory in Euclidean space, the time coordinate

is actually imaginary

t = iτ , (4.5)

where τ is Minkowski time. This extra i stems from the difference between the time

development of an operator in the Euclidean time, φ(t) = eHtφ(0)e−Ht, and that

in the Minkowski time, φ(τ) = eiHτφ(0)e−iHτ . Thus, when applying the Hermi-

tian conjugate in terms of the corresponding Hilbert space to a field operator, the

imaginary unit i in Eq. (4.5) should be properly taken into account.

fBy slight abuse of terminology, Hermitian conjugation (†) that we refer here is actually

[conjugation] × [time-reversal] when the operator depends on Euclidean time. In Ref. 31, this
is termed Euclidean adjoint in order to avoid confusion.
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As just mentioned, the operator for arbitrary τ is derived from the time trans-

lation generated by the Hamiltonian H

φ(τ) = eiHτφ(0)e−iHτ , (4.6)

where H is assumed to be Hermitian. In addition, we are only concerned with field

operators that are real fields in Minkowski space. This means that each operator

on a certain space–time point is Hermitian

(φ(0))† = φ(0) . (4.7)

Then, the corresponding Heisenberg operator for τ is also Hermitian

(φ(τ))† =
(
eiHτφ(0)e−iHτ

)†
= eiHτφ(0)e−iHτ = φ(τ) . (4.8)

However, if we repeat the above procedure in Euclidean time, the Heisenberg op-

erator is no longer Hermitian; since

(φ(t))† =
(
eHtφ(0)e−Ht

)†
= e−Htφ(0)eHt = φ(−t) . (4.9)

In order for the Heisenberg operator φ(t) to be Hermitian, Hermitian conjugation

must be accompanied by reversal of Euclidean time t

t 7→ −t . (4.10)

There is another way to understand the requirement of time-reversal for Eucli-

dean time. For the time development to be unitary, the following must hold:(
eHt
)†

= e−Ht , (4.11)

which shows that Hermitian conjugation has to be accompanied with the change of

the sign of t, t → −t, otherwise the time-development operator eHt would not be

unitary. In terms of the complex coordinate w

w = t+ is , (4.12)

the change in the sign of t [see Eq. (4.10)] is understood as

w 7→ −w̄ . (4.13)

Therefore, Hermitian conjugation eventuate in complex conjugation of the vari-

able, which is rather desirable because complex conjugation is usually associated

with Hermitian conjugation and z̄ is expected to emerge upon Hermitian conjuga-

tion on z plane.

We now exploit the simplicity of the above definition of Hermitian conjugation

on the w plane and apply it to the z plane. Putting aside the Schwarzian derivative

term for the case of the energy–momentum tensor, the change of the coordinates

between z and w (z ↔ w) evokes the following relationship for the operator with

conformal weight h:

φ′(w) =

(
∂w

∂z

)−h
φ(z) . (4.14)
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Hermitian 
Conjugate

Hermitian 
Conjugate

Coordinate 
Change

Coordinate 
Change

Fig. 7. Illustration of definition of Hermitian conjugation on z plane. The simplicity of the
procedure on w plane can be exploited to transport it to the z plane by way of the coordinate

change. The notion ∗ denotes complex conjugation.

For ordinary radial quantization

z = ew , w = ln z (4.15)

and Eq. (4.14) becomes

φ′(w) = zhφ(z) . (4.16)

Taking the Hermitian conjugate on the w plane yields

(φ′(w))† = φ′(−w̄) . (4.17)

By using Eq. (4.16), the left-hand side of Eq. (4.17) becomes

(φ′(w))† = (zhφ(z))† = (z̄)h(φ(z))† . (4.18)

The right-hand side of Eq. (4.17) can be estimated by replacing w with −w̄ in

Eq. (4.16)

φ′(−w̄) = e−hw̄φ
(
e−w̄

)
= z̄−hφ

(
1

z̄

)
. (4.19)

Equating the results of Eqs. (4.18) and (4.19) leads to the natural definition of

Hermitian conjugation that affirms the unitary time development in Minkowski

space–time

(φ(z))† = (z̄)−2hφ

(
1

z̄

)
. (4.20)

The argument presented above is summarized in Fig. 7. Equation (4.20) holds

for the energy–momentum tensor T (z) with h = 2, because the extra Schwarzian

derivative that would appear in Eq. (4.14) cancels out in the subsequent comparison.

The above argument can be repeated for dipolar quantization. From Eq. (2.60)

z = 1 +
2

w
, w =

2

z − 1
(4.21)

and

∂w

∂z
= − 2

(z − 1)2
= −w

2

2
. (4.22)
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Equation (4.14) can be written explicitly as

φ′(w) =

(
− 2

(z − 1)2

)−h
φ(z) =

(
−w

2

2

)−h
φ

(
1 +

2

w

)
. (4.23)

The left-hand side of Eq. (4.17) for dipolar quantization then becomes

(φ′(w))† =

((
− 2

(z − 1)2

)−h
φ(z)

)†
=

(
− 2

(z̄ − 1)2

)−h
(φ(z))† (4.24)

and the right-hand side of Eq. (4.17) is

φ′(−w̄) =

(
− (−w̄)2

2

)−h
φ

(
1− 2

w̄

)
=

(
− 2

(z̄ − 1)2

)−h
φ(2− z̄) . (4.25)

Comparing Eqs. (4.24) and (4.25), we conclude that

(φ(z))† = φ(2− z̄) , (4.26)

for dipolar quantization. In particular, if applied to the energy–momentum tensor

(T (z))† = T (2− z̄) . (4.27)

Let us now reflect on the above result based on physical intuition. One of the

physical implications of Hermitian conjugation on the Hilbert space in which we

construct quantum theory is the exchange of the states at t → −∞ and t → ∞.

For radial quantization, the state for t→ −∞ is located at z = 0, whereas z →∞
accommodates the state for t → ∞. This result is consistent with the expression

(4.20), because it relates the variables at z = 0 and ∞ by way of 1/z̄. Now, for

dipolar quantization, both t → −∞ and t → ∞ drive a state to the same point

z = 1. Putting z = 1 in Eq. (4.26) gives (φ(1))† = φ(1), which confirms the validity

of the Hermitian conjugation derived above.

Based on Eq. (3.2), the Virasoro generators for radial quantization are written as

Ln = Ln =
1

2πi

∮
dz zn+1T (z) (4.28)

and the Hermitian conjugate is

L†n = − 1

2πi

∮
dz̄ z̄n+1(T (z))† = − 1

2πi

∮
dz̄ z̄n+1z̄−4T

(
1

z̄

)
. (4.29)

Rewriting z̄ with a new variable z′ and considering the direction of the contour

with care yields

L†n =
1

2πi

∮
dz′ (z′)

n−3
T

(
1

z′

)
. (4.30)

By further changing the variables from z′ to z′′ = 1/z′, we arrive at

L†n =
1

2πi

∮
dz′′ (z′′)

−n+1
T (z′′) = L−n = L−n . (4.31)

The above result simply confirms the well-known fact.
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Fig. 8. Contour is altered by the change of the variables from z′ to z′′ = 2− z′. Comparing the

contour on the right with the contour depicted in Fig. 5(c) explains how the additional negative

sign appears.

The point here is that exactly the same argument applies to dipolar quantiza-

tion. In this case, the Virasoro generators are

Lκ =

∫
dz

(
−1

2
(z − 1)2

)
e

2κ
z−1T (z) , (4.32)

where we take an integration path such that time t is negative; for example, t = −1

(see Fig. 5). The Hermitian conjugate is

L†κ = − 1

2πi

∫
dz̄

(
−1

2
(z̄ − 1)2

)
e

2κ
z̄−1 (T (z))†

= − 1

2πi

∫
dz̄

(
−1

2
(z̄ − 1)2

)
e

2κ
z̄−1T (2− z̄) . (4.33)

Rewriting z̄ with a new variable z′ yields

L†κ =
1

2πi

∫
dz′
(
−1

2
(z′ − 1)2

)
e

2κ
z′−1T (2− z′) , (4.34)

where the direction of the contour was inverted once because of the change of vari-

ables from an antiholomorphic variable to a holomorphic variable, but the absorp-

tion of the extra −1 that appeared in front of the integral in Eq. (4.33) inverted

the contour back to the original direction. By further changing variables from z′ to

z′′ = 2− z′, we arrive at

L†κ =
1

2πi

∫
dz′′
(
−1

2
(z′′ − 1)2

)
e−

2κ
z′′−1T (z′′) = L−κ . (4.35)

In the above derivation leading to Eq. (4.35), the negative sign from the change of

variables was canceled by another negative sign from the change in the direction of

the contour, as explained in Fig. 8.

Thus, we have established Hermitian conjugation in the form of Eq. (4.2) and

the subsequent expression of orthogonality (4.4) among the vectors, at least in the

form of Eq. (4.1).
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In the framework of dipolar quantization, we can still consider the following

operators as the contour integrals of the energy–momentum tensor over the path

where time is set to −1

1

2πi

∫
dz zn+1T (z) . (4.36)

This expression is apparently identical to the definition of Ln in radial quantization.

We also denote this expression as Ln and apply Hermitian conjugation as defined

above, which yields

(Ln)† =
1

2πi

∫
dz′′(2− z′′)n+1T (z′′) . (4.37)

The cases of n = −1, 0, 1 produce a particularly interesting result. From Eq. (4.37)

(L−1)† = L−1 ,

(L0)† = 2L−1 − L0 ,

(L1)† = L1 − 4L0 + 4L−1 .

(4.38)

Equation (4.38) shows that the operations of the Hermitian conjugation operations

in dipolar quantization on L−1, L0 and L1 are closed among themselves. In addition,

they definitely take a different form from those of radial quantization. Nonetheless,

if we compute the Hermitian conjugate for the combination L0 − (L1 + L−1)/2,

which is the Hamiltonian for dipolar quantization, it proves to be Hermitian (in the

sense of dipolar quantization)(
L0 −

L1 + L−1

2

)†
= 2L−1 − L0 −

L1 − 4L0 + 4L−1 + L−1

2

= L0 −
L1 + L−1

2
. (4.39)

Since the definition of the Hermitian conjugation is straightforward in the w

coordinate, one can also prove Eq. (4.2) by using Eq. (3.23), which has a particularly

simple expression if we choose t = 0

Lκ =
1

2π

∫
ds eiκs

(
T ′(is) +

c

24

)
. (4.40)

In the w coordinate, the effect of the Hermitian conjugation is reversal of Euclidean

time as in Eq. (4.10); however, setting t = 0 negates this effect. Therefore, applying

the Hermitian conjugation on Eq. (4.40) yields

L†κ =
1

2π

∫
ds e−iκs

(
T ′(is) +

c

24

)
= L−κ . (4.41)

5. Summary and Discussion

We have shown in this report that 2d CFT admits an alternative quantization other

than usual radial quantization and that we call dipolar quantization. Although
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the conformal symmetry quite determines the nature of the energy–momentum

tensor and other (primary) operators, choosing different time-translations remains

possible. This possibility is suggested by consideration of the sl(2,R) subalgebra of

the conformal symmetry.

One salient result is that the different quantization procedures yield different

space–time: finite space for radial quantization and infinite space for dipolar quanti-

zation. Usually the study of the quantum field theory starts by defining the space–

time where the field is situated. Here, we first obtain the quantum system and

its analysis reveals the nature of space–time. In this sense, the quantum system

may be considered more fundamental than the classical notion of space–time. This

viewpoint is in accordance with the efforts to consider space–time as emergent phe-

nomenon from the fundamental quantum system; for example, matrix models.32

Although we reveal several key facts, such as the difference of the Hilbert space

structure, the emergence of the continuous spectrum and the vacuum degeneracy

(3.43), this study is limited and many aspects remain to be clarified. Nonethe-

less, these aforementioned facts might provide sufficient motivation to revisit some

basic features of CFT in the context of dipolar quantization; for example, the

Zamoldchikov–Polchinski Theorem.33,34

As just mentioned, SL(2,R) symmetry plays a crucial role in our analysis. In

fact, SL(2,R) or SL(2,C) ∼ SL(2,R)⊗ SL(2,R) invariance holds for CFT in any

dimension. Therefore, one may be tempted to imagine that for dimensions other

than two, the procedure of dipolar quantization can also be employed with suitable

differential operators such as D̂ − (K̂µ + P̂µ)/2.

Another interesting aspect to be explored is supersymmetry. Applying dipolar

quantization to 2d SCFT turns out to be rather straightforward, as summarized in

App. C. However, it is conceivable that supersymmetry may play much more impor-

tant roles in future study of dipolar quantization. In fact, a recent finding35 reveals

an intriguing relationship between supersymmetry and SSD. It would be interesting

to see if this is related to the supersymmetric representation of SL(2,R).36

The present formulation was also partially guided by previous approaches in the

study of string field theory (SFT).37,38 It would be interesting if one can find more

direct connections between the present result and SFT treatment, especially in the

context of understanding the transition between open and closed strings.39

We have emphasized the distinction between the present formulation and the

tensionless string in the introduction. However, it would still be interesting to

explore a connection or physical implication from the study of long strings.40–42

Finally, one of the present authors encountered a severe divergence in Ref. 21

when he tried to find the Lagrangian that corresponds to the SSD Hamiltonian.

The analysis presented in this report suggests that the divergence stems from the

apparent innocuous assumption that the Lagrangian can be obtained from the

integration over the finite space. It would be interesting to see if the Lagrangian

can be constructed on an infinitely large space that corresponds to the current

formulation.
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Appendix A. Holomorphic Transformation of Differential Operator

In this appendix, we note some effects of a holomorphic transformation on a class of

differential operators. In particular, we consider the following type of the differential

operator:

p(z)
∂

∂z
, (A.1)

where p(z) is assumed to be a polynomial in z. The holomorphic transformation in

which we are interested in is z′(z), such that

−p(z) ∂
∂z

= −z′ ∂
∂z′

. (A.2)

The above condition can be written as

−p(z) ∂
∂z

=
∂z′

∂z

∂

∂z′
= −z′ ∂

∂z′
; (A.3)

hence, we arrive at

p(z)
dz′

dz
= z′ (A.4)

or

dz′

z′
=

dz

p(z)
, (A.5)

which can be easily integrated to obtain

z′(z) = exp

(∫ z dz

p(z)

)
. (A.6)

For the sake of simplicity, we consider p(z) in the following form by introducing

the parameter α:

p(z) = z − α(z2 + 1) . (A.7)

Taking α = 0 yields a trivial transformation, whereas α = 1
2 corresponds to the case

we have investigated with dipolar quantization. It would be thus suffice to consider
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α > 0. The integration formulas for the inverse of a quadratic polynomial can be

summarized in the following compact form:43

∫
dx

A+ 2Bx+ Cx2
=



AC > B2 1√
AC −B2

arctan
Cx+B√
AC −B2

,

AC = B2 − 1

C
(
x+ B|C|

|B|C

√
A
C

) ,
AC < B2 1

2
√
B2 −AC

ln

∣∣∣∣Cx+B −
√
B2 −AC

Cx+B +
√
B2 −AC

∣∣∣∣ .
(A.8)

Using the above formula, we obtain

∫
dz

−αz2 + z − α
=



α >
1

2

2√
4α2 − 1

arctan
2αz − 1√
4α2 − 1

,

α =
1

2

2

z − 1
,

0 < α <
1

2

1√
1− 4α2

ln
2αz +

√
1− 4α2 − 1

2αz −
√

1− 4α2 − 1
.

(A.9)

For 0 < α < 1
2 , we drop the absolute-value restriction | · | in the logarithm. The

idiosyncrasy of the case α = 1
2 is apparent in the above result. In addition, for this

case, the holomorphic transformation takes the following particularly simple form:

z′(z) = exp

(
2

z − 1

)
. (A.10)

Note that this transformation is the same as that in Eq. (3.19). With this z′ coor-

dinate, the usual correspondence between the z and w coordinates holds

w = ln z′ =
2

z − 1
. (A.11)

Also quadratic but with a different parametrization, consider

p(z) = acz2 + (ad+ bc)z + bd , (A.12)

where ad− bc is set to unity. This integrates to yield∫
z

p(z)
= ln

az + b

cz + d
+ ln

c

d
. (A.13)

By omitting the constant part in the above equation, we arrive at

z′(z) =
az + b

cz + d
, (A.14)

which is the sl(2,R) transformation on the worldsheet. Note that the two

parametrizations above are totally incompatible: if we equate the coefficient ad+bc

of z in Eq. (A.12) with that of Eq. (A.7), which is unity, this contradicts the pre-

condition ad− bc = 1.
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Appendix B. Zn-Symmetric Equal-time Contours

In this appendix, we explore another set of (differential) operators that generate

interesting “time-translations.” First, note that the following generators also form

sl(2,R): [
ln
n
,
l0
n

]
=
ln
n
, (B.1)

[
l0
n
,
l−n
n

]
=
l−n
n

, (B.2)

[
ln
n
,
l−n
n

]
= 2

l0
n
, (B.3)

where n is an integer larger than unity. If we replace {l0/n, ln/n, l−n/n} with

{l0, l1, l−1} in the analysis that leads to Eq. (2.32), we obtain

g(z) =
1

n

(
z − zn+1 + z−n+1

2

)
= − 1

2n

(zn − 1)2

zn−1
, (B.4)

instead. Repeating the analysis of Subsec. 2.2, the expression for the worldsheet

parameters t and s can also be obtained by a simple integration as

t+ is =

∫
z

dz

g(z)
=

2

zn − 1
. (B.5)

Using the polar coordinates z = reiθ is convenient for the following analysis:

t =
2rn cosnθ − 2

r2n − 2rn cosnθ + 1
, (B.6)

s =
−2 sinnθ

rn + r−n − 2 cosnθ
. (B.7)

We focus now on some special values of θ by introducing θm ∼ 0 as follows:

θ =
2π

n
m+ θm , m = 0, . . . , n− 1 . (B.8)

The parameter s can then be expanded in terms of θm as

s ∼ − 2nθm
rn + r−n − 2 + n2θ2

m

. (B.9)

This expression yields simply

θm → 0⇒ s→ 0 , (B.10)

unless r = 1. At r = 1

θm → ±0⇒ s ∼ − 2

nθm
→ ∓∞ . (B.11)
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-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1

-0.5

0.5

1

1.5

2

2.5

-0.5 0 0.5 1

0.5

1

(a) (b)

Fig. B.1. Equal-time contours for various values of t are depicted for the n = 3. The contour
starts to grow toward the inside of the unit circle from three points in the Z3-symmetric way.

The contour eventually reaches the origin and forms a single connected contour for −2 < t < 0

(grey lines). For t > 0, the contour is again divided into three disconnected parts (broken lines).
(a) Z3 symmetry is apparent. (b) The parameter s covers R three times for both connected and

disconnected contours.

This indicates that the idiosyncratic role played by the point z = 1 is also adopted

by the other n− 1 points on the unit circle

z = e2πmn , m = 1, . . . , n− 1 . (B.12)

Thus, as t → −∞, the contour converges into n points on the unit circle z =

e2πmn . Each separated contours then grows in a Zn-symmetric way, as can be seen

in Fig. B.1. At t = −2, the contours reach the origin z = 0 and all the separated

parts of the contour connects at the origin. In fact, if we set r = 0 in Eq. (B.6), we

obtain t = −2. Another interesting value for r is unity. For which Eq. (B.6) gives

t = −1, the unit circle. For t > 0, the contour again separates into n parts.

Note also that s goes to zero not only for θ = 2πmn but also for θ = πmn .

Thus, for the time −2 < t < 0, each segment of the contour connects smoothly at

θ = 2πm−1
n , where s = 0, whereas at θ = 2πmn , s goes to either positive or negative

infinity depending on the direction of the approach. For the connected contour,

s also covers all real numbers m times, which also trivially holds for the contour

disconnected into m parts.

Appendix C. Superconformal Field Theory

Within the realm of the analysis presented in the main text, there are interesting

additions that extend the structure of conformal field theory: the superconformal

field theories. These add extra fermionic current G(z) for N = 1 and fermionic

currents G±(z) and U(1) current J(z) for N = 2. Applying the present analysis

explicitly to these special cases is of interest. For this purpose, we derive the relevant

algebra in terms of our analysis by assuming the OPE’s.
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The OPE for N = 1 SCFT consists of the following set of equations:

T (z1)T (z2) ∼
1
2c

(z1 − z2)4
+

2T (z2)

(z1 − z2)2
+
∂z2T (z2)

z1 − z2
, (C.1)

T (z1)G(z2) ∼
3
2G(z2)

(z1 − z2)2
+
∂z2G(z2)

z1 − z2
, (C.2)

G(z1)G(z2) ∼
2
3c

(z1 − z2)3
+

2T (z2)

z1 − z2
. (C.3)

The first OPE (C.1) is the same as for the bosonic case; thus, it yields the

Virasoro algebra, continuous or discrete depending on the choice of the Hamilto-

nian. The second OPE (C.2) means that G(z) is a (chiral-)primary field with the

dimension h = 3
2 . Therefore, with the expansion

Gκ ≡
1

2πi

∮
t dz g

3
2−1(z)fκ(z)G(z) , (C.4)

the commutation relation

[Lκ, Gκ′ ] =

(
1

2
κ− κ′

)
Gκ+κ′ (C.5)

follows directly from Eq. (3.26).

The last OPE (C.3) poses an additional issue because both operators are

fermionic. For fermionic operators r(j)(z), the time-ordered product is

T
(
r(1)(z1)r(2)(z2)

)
=

{
r(1)(z1)r(2)(z2) for t1 > t2 ,

−r(2)(z2)r(1)(z1) for t1 < t2 .
(C.6)

The anticommutation relations between the integrals of r(j)(z)’s along the equal-

time contour R(j) can be calculated by ordering t1 and t2 according to the operator

order. The calculation can be represented in the following with the contour shown

pictorially:

{
R(1), R(2)

}
=

{
1

2πi

∮
t1 dz1 r

(1)(z1),
1

2πi

∮
t2 dz2 r

(2)(z2)

}

=
1

2πi

∮
t2 dz2

 1

2πi

∫
dz1 r

(1)(z1)r(2)(z2)

+
1

2πi

∫
dz1 r

(2)(z2)r(1)(z1)


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=
1

2πi

∮
t2 dz2


 1

2πi

∫
dz1 −

∫
dz1

T
(
r(1)(z1)r(2)(z2)

)
=

1

2πi

∮
t2 dz2

∫
dz1 T

(
r(1)(z1)r(2)(z2)

)
. (C.7)

Despite the special reference to the point z = 1, which may infer dipolar quantiza-

tion, the above description is also valid for ordinary radial quantization.

Because the time-ordered product can be directly related to the OPE, the anti-

commutation relation of Gκ’s leads to

{Gκ, Gκ′} =
1

2πi

∮
t2 dz2 g

1
2 (z2)fκ′(z2)

∮
z2

dz1

2πi
g

1
2 (z1)fκ(z1)

×
( 2

3c

(z1 − z2)3
+

2T (z2)

z1 − z2
+ · · ·

)
. (C.8)

While it is straightforward to see that the second term in the parentheses above

simply amounts to 2Lκ+κ′ , the first term yields the more involved expression:

c

3
· κ2 · 1

2πi

∮
t dz

fκ+κ′

g
+
c

3
· 1

2πi

∮
t dz fκ+κ′

[
1

2

d2g

dz2
− 1

4

(
dg

dz

)
2 1

g

]
, (C.9)

where the integration variable changes to z from z2 and the variable dependences

of the functions are omitted. The first term in Eq. (C.9) is either the Kronecker

delta or the Dirac delta function [see Eq. (3.13)]. For the second term, a separate

treatment is necessary. First, we assume g(z) = z. Next, 1
2
d2g
dz2 − 1

4

(
dg
dz

)2 1
g amounts

to − 1
4g . From Eq. (3.13), this term produces − 1

4δκ+κ′,0. On the other hand, if we

assume g(z) = − 1
2 (z − 1)2, then this term vanishes. In summary, we obtain

{Gκ, Gκ′} =


2Lκ+κ′ +

c

3

(
κ2 − 1

4

)
δκ+κ′,0 for g(z) = z ,

2Lκ+κ′ +
c

3
κ2δ(κ+ κ′) for g(z) = −1

2
(z − 1)2 .

(C.10)

Note that we see no distinction between Neveu–Schwarz and Ramond fermions

for dipolar quantization, g(z) = − 1
2 (z−1)2. This fact is consistent with the premise

that we are dealing with the Riemann sphere which only possesses a unique spin

structure.

For N = 2 SCFT, let us write the OPEs and the corresponding (anti-

)commutation relations without further elaboration because the calculations needed

to derive them are rather straightforward. The OPEs we adopt here are

T (z1)T (z2) ∼
1
2c

(z1 − z2)4
+

2T (z2)

(z1 − z2)2
+
∂z2T (z2)

z1 − z2
, (C.11)

T (z1)G±(z2) ∼
3
2G
±(z2)

(z1 − z2)2
+
∂z2G

±(z2)

z1 − z2
, (C.12)
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T (z1)J(z2) ∼ J(z2)

(z1 − z2)2
+
∂z2J(z2)

z1 − z2
, (C.13)

J(z1)G±(z2) ∼ ±G
±(z2)

z1 − z2
, (C.14)

G+(z1)G−(z2) ∼
2
3c

(z1 − z2)3
+

2J(z2)

(z1 − z2)2
+

2T (z2)

z1 − z2
+
∂z2J(z2)

z1 − z2
, (C.15)

G+(z1)G+(z2) ∼ G−(z1)G−(z2) ∼ 0 , (C.16)

J(z1)J(z2) ∼
1
3c

(z1 − z2)2
. (C.17)

We obtain the following (anti-)commutation relations:

[Lκ,Lκ′ ] = (κ− κ′)Lκ+κ′ +
c

12
κ3δ(κ+ κ′) , (C.18)

[
Lκ, G±κ′

]
=

(
1

2
κ− κ′

)
G±κ+κ′ , (C.19)

[Lκ, Jκ′ ] = −κ′Jκ+κ′ , (C.20)[
Jκ, G

±
κ′

]
= ±G±κ+κ′ , (C.21){

G+
κ , G

−
κ′

}
= 2Lκ+κ′ + (κ− κ′)Jκ+κ′ +

c

3
κ2δ(κ+ κ′) , (C.22)

[Jκ, Jκ′ ] =
c

3
κδ(κ+ κ′) . (C.23)

In these equations, we only describe the case of dipolar quantization.
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