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We review a series of first-principles studies on the defect generation mechanism and electronic structures

of the Ge/GeO2 interface. Several experimental and theoretical studies proved that Si atoms at the Si/SiO2

interface are emitted to release interface stress. In contrast, total-energy calculation reveals that Ge atoms

at the Ge/GeO2 interface are hardly emitted, resulting in the low trap density. Even if defects are generated,

those at the Ge/GeO2 interface are found to behave differently from those at the Si/SiO2 interface. The

states attributed to the dangling bonds at the Ge/GeO2 interface lie below the valence-band maximum of

Ge, while those at the Si/SiO2 interface generate the defect state within the band gap of Si. First-principles

electron-transport calculation elucidates that this characteristic behavior of the defect states is relevant to

the difference in the leakage current through the Si/SiO2 and Ge/GeO2 interfaces.

1. Introduction

The impressive increase in the performance of microelectronic devices has been achieved

by the continuous decrease in the length scale, which is approaching its technological and

physical limits. However, it is becoming increasingly difficult to enhance the performance

of complementary metal-oxide-semiconductor (MOS) devices through scaling based on con-

ventional Si-based techniques. A considerable number of studies have been conducted to find

alternative materials to further increase the performance of MOS field-effect transistors. Ge

is considered as one of the best channel materials owing to its high intrinsic carrier mobility.

Although the first bipolar transistor developed by Bardeen, Brattain, and Shockley consists of

Ge/GeO2, interest on Ge-based devices has decreased with the advancement of Si/SiO2-based

transistors. This is because Ge/GeO2 interfaces have generally been considered to include

more defects than Si/SiO2 interfaces, wherein the interface trap density typically lies in the

range of the latter half of 1011 − 1012cm−2eV−1.1) It is a general consensus that the formation
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of MOS interfaces with superior properties is the key issue to be resolved, and the interface

properties are closely relevant to interface trap density. Thus, the understanding and control

of the defects at the Ge/GeO2 interface are important to enhance the performance of Ge-based

devices because the Ge/GeO2 interface exists even in Ge/high-k oxide interfaces.

In the last decade, a considerable number of studies have been made on the fabrication of

high-quality Ge/GeO2 interfaces, and the low interface trap density in the Ge/GeO2 interface

can be achieved using a cap layer,2) high-pressure thermal oxidation,3, 4) or ozone oxidation.5)

In 2008, Matsubara et al.6) reported that the minimum interface trap density of lower than

1011cm−2eV−1, which is lower than that in typical Si/SiO2 interfaces without any hydrogen

forming gas annealings, can be obtained for the Ge/GeO2 interface fabricated by the dry

oxidation without any hydrogen passivation treatment. In the following year, Hosoi et al.7)

fabricated a high-quality Ge/GeO2 interface by the conventional thermal treatment of Ge sub-

strates. In addition, Lee et al.4) also reported that the electrical properties of metal/GeO2/Ge

capacitors fabricated by the high-pressure oxidation of Ge are improved and the interface

state density is reduced to 2 × 1011cm−2eV−1 near the middle of the valence-band maximum

(VBM) and conduction-band minimum (CBM) of Ge even when post-deposition annealing is

carried out. On the theoretical side, the structural and electronic properties of the Ge/GeO2 in-

terface have been investigated by first-principles calculations based on the density functional

theory8, 9) and/or other methods avoiding the band gap problem in the local density approxi-

mation in the density functional theory. Houssa et al.10) simulated the density of Ge-DBs at

the Ge/GeO2 interface as a function of oxidation temperature, by combining the viscoelastic

data of GeO2 and the modified Maxwell’s model, and claimed that the density of Ge-DBs

is less than that of Si-DBs. The present authors found that hardly any defects are generated

at the Ge/GeO2 interface compared with the number generated at the Si/SiO2 interface from

the formation energy of defects at the Ge/GeO2 interface.11) In addition, Weber et al.12) and

Broqvist et al.13) investigated the electronic structure of the defects in Ge bulk, which are ex-

pected to affect the interface properties, by the G0W0 approximation14) and the hybrid func-

tional method,15) respectively. They reported the different behaviors of the dangling bonds

(DBs) at the Ge/GeO2 interface from those at the Si/SiO2 interface.

In this article, we review the first-principles studies on the oxidation of Ge and its interface

electronic structures together with relevant experimental results. In Sect. 2, studies on the

interface atomic structures as well as defects are introduced in comparison with the case of

Si. The simulations for the interface electronic structure and gate leakage current are reported

in Sect. 3. Finally, our summary is given in Sect. 4.
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Fig. 1. (Color online) Atomic configurations of models. (a) Surface model where no Ge atom is emitted

from the structure that includes three O atoms, (b) surface model where one Ge atom per unit cell is emitted

from the structure including three O atoms, and (c) surface model where one Ge atom per unit cell is emitted

from the structure including six O atoms. Interface models in which three additional O atoms are inserted into

the Ge/GeO2 interface (d) before emission and (e) after emission. The gray (light small), blue (dark large), and

pink (light middle) balls are H, Ge, and O atoms, respectively. The hatched circles are the Ge atom being

emitted and the broken circles indicate the position where the Ge atom is emitted.

Fig. 2. (Color online) Energy advantage of Ge- and Si-emitting structures compared with nonemitting

structures, as a function of the number of O atoms per unit cell n. Reprinted with modification with permission

from Ref. 11. Copyright 2009 AIP Publishing LLC.

2. Interface atomic structure

2.1 Atom emission from the interface

The structural and electronic properties of Ge/GeO2 interfaces have been investigated by sev-

eral groups.10, 11, 16–24) Although the residual order at Si/SiO2 interfaces has been observed by

transmission electron microscopy,25) that at Ge/GeO2 interfaces has not. Some studies18, 23)
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Fig. 3. (Color online) Energy advantage of Ge- and Si-emitting structures compared with nonemitting

structures in the case of interface.

use the models in which amorphous GeO2 is attached to the Ge substrate to investigate

electronic structures; however, it is not easy to derive definite conclusions using the models

employing amorphous GeO2 because the model size treated by first-principles calculations

is small to eliminate the effect of artificial periodic boundary conditions. Therefore, many

studies10, 11, 16, 17, 19–22, 24) adopt the interface atomic structures based on their Si/SiO2 counter-

parts,26) where crystalline GeO2 is attached to a Ge substrate.

Houssa et al.10) simulated the density of Ge-DBs at the Ge/GeO2 interface as a func-

tion of oxidation temperature, by combining the viscoelastic data of GeO2 and the modi-

fied Maxwell’s model, and claimed that the density of Ge-DBs is less than that of Si-DBs.

Their results are in good agreement with the experimental results.4, 6, 7) However, the forma-

tion mechanism of defects in the Ge/GeO2 interface region during the oxidation is not well

known.

The oxidation of the Si/SiO2 interface was simulated by Kageshima and Shiraishi27, 28) us-

ing first-principles calculations and they found that a quartz phase can be obtained if Si atoms

are kicked out from the interface during oxidation. Later, using the larger model, Yamasaki

et al.29) also demonstrated that the Si-atom emission from the Si/SiO2 interface occurs and

Pb-type defects are formed during oxidation. Moreover, the experiment using high-resolution

Rutherford backscattering spectroscopy assured the Si-atom emission.30) In the case of the

oxidation of Ge, it is reported that the volatilization of GeO from Ge atoms driven by the

reaction at the Ge/GeO2 interface is the origin of the deterioration of the interface.2) In addi-

tion, the interface quality can be improved by suppressing the out-diffusion of GeO to the air
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using a cap layer on the top of GeO2. Therefore, the Ge-atom emission from the interface is

strongly relevant to realize the low trap density in the Ge/GeO2 interface.

The probability of the Ge-atom emission from the Ge/GeO2 interface is compared with

that from the Si/SiO2 interface in terms of the total-energy calculation.11) The calculations

are performed on the basis of the density functional theory using the RSPACE code.31–34)

Figure 1 shows examples of the Ge(100) surface models. O atoms are sequentially inserted

between Ge-Ge bonds from the surface, assuming atomic layer-by-layer oxide growth, and

finally six O atoms are introduced into the unit cell. In the case of the oxidation of Si, the

first-principles calculations revealed that the Si atom in the second layer will be emitted to

release the interface stress.27, 28) The example for the case of n = 3 is illustrated in Figs. 1(a)

and 1(b), where n is the number of inserted O atoms. The hatched atom is emitted and goes

elsewhere. The emission generates DBs at the interface when n is smaller than 5. When six

O atoms are introduced, these DBs are perfectly terminated by the formation of a Si-O-Si or

Ge-O-Ge bond, as shown in Fig. 1(c). By comparing the total-energy difference between the

atomic configurations before and after the emission, the energy advantage can be defined as

Enon(n)− [Eemi(n)+ µ], where Enon(n) and Eemi(n) are the total energies of the nonemitted and

emitted structures with n O atoms inserted, respectively, and µ is the chemical potential of Ge

or Si in the bulk phase. The energy advantages of Ge and Si as a function of the number of

inserted O atoms are shown in Fig. 2. When the number of inserted O atoms is 1, the energy

advantage of Si for the atom emission is smaller than that of Ge because the formation energy

of a monovacancy is significantly larger in Si (∼3.3 eV)35) than in Ge (∼1.9 eV).36) However,

the energy advantage of Si-atom emission increases more rapidly as the number of inserted

O atoms increases and becomes greater than that of Ge. The Si-atom emission from the

surface model is preferred when n is larger than 3, while the Ge atom is not emitted until the

number of inserted O atoms becomes 6. As a further oxidation model, Figs. 1(d) and 1(e)

show examples of the interface models. The energy advantages for the atom emission from

the interface are shown in Fig. 3, indicating the lower energy advantage of Ge than that of Si.

These results indicate that the Ge atom preferentially remains in the substrate during the

oxidation. In addition, the emitted atoms might be the source of self-interstitials, resulting in

the creation of these interstitials at the interface or in the substrate. These interstitials cause

the degradation of the MOS device, such as leakage current and scattering centers of inversion

carriers. Because the formation energy of the Si self-interstitials (∼3.5 eV) is almost equal to

that of Ge self-interstitials,37, 38) the high energy advantage of the Si-atom emission causes the

generation of the self-interstitials at the interface. Moreover, the trap density of the Ge/GeO2
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Fig. 4. (Color online) Unit cells of (a) quartz, (b) cristobalite, and (c) rutile. Pink (light) and blue (dark)

balls are O and Ge (Si) atoms, respectively.

Table I. Calculated and experimental lattice constants (in Å).

a c

q-GeO2 4.897 5.636

c-GeO2 4.818 7.128

r-GeO2 4.418 2.886

q-SiO2 4.850 5.348

c-SiO2 4.925 6.828

r-SiO2 4.147 2.662

interface becomes lower than that of the Si/SiO2 interface, since the events creating volatile

GeOs, the DBs, and self-interstitials at the interface rarely occur.

2.2 Atomic structure of oxides under interface stress

It is of interest to explore the reason why the emission probability from the Ge/GeO2 interface

is smaller than that from the Si/SiO2 interface. One of the intuitive possibilities is the differ-

ence in the lattice-constant mismatch between the substrate and the oxide. When O atoms are

simply inserted between Ge-Ge bonding networks, cristobalite GeO2 is formed. However, the

bonding networks attain a lattice-constant mismatch of 21%, which is almost the same as that

between Si and SiO2.

In view of the chemical trend of materials, SiO2 prefers the quartz phase, in which a
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Fig. 5. Total energy per molecular unit (m.u.) as a function of volume for all polymorphs of (a) GeO2 and

(b) SiO2. The zeros of energies are the rutile phase for GeO2 and the quartz phase for SiO2. Reprinted from

Ref. 40.

Table II. Bond lengths li (in Å), bond angles θ j, and tilt angles δ (in deg) of GeO2 and SiO2 polymorphs. θ1,

θ2, θ3, and θ4 are the O-x-O angles, where x represents a Ge or Si atom. li and θ j are assigned according to

magnitude.

l1 l2 θ1 θ2 θ3 θ4 δ

q-GeO2 1.763 1.755 114.13 110.69 107.28 105.39 29.66

c-GeO2 1.760 1.760 120.69 111.39 109.95 101.72 35.64

r-GeO2 1.918 1.887 80.25

q-SiO2 1.608 1.603 110.58 109.37 109.23 108.55 17.85

c-SiO2 1.604 1.603 111.46 110.02 109.01 108.15 25.41

r-SiO2 1.786 1.751 81.02

Si atom shows fourfold coordination, while rutile GeO2, in which a Ge atom shows sixfold

coordination, has the lowest energy among GeO2 polymorphs.39) Detailed analyses of the

structural variations of three GeO2 and SiO2 polymorphs, α-quartz, α-cristobalite, and rutile,

under compression and expansion pressure are conducted.40) Here and hereafter, we abbre-
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Fig. 6. Variations of x-O bond lengths ∆li in (a) quartz, (b) cristobalite, and (c) rutile phases from their

equilibrium points. ∆l1 and ∆l2 correspond to squares and circles, respectively. Variations of O-x-O bond

angles ∆θ j in (d) quartz, (e) cristobalite, and (f) rutile phases. ∆θ1, ∆θ2, ∆θ3, and ∆θ4 correspond to squares,

circles, upper triangles, and lower triangles, respectively. Variations of x-O-x bond angles ∆δ in (g) quartz and

(h) cristobalite phases. Variations of x-O-x bond angles ∆φ in (i) rutile phase. x represents a Ge or Si atom.

Black (white) symbols are the results of GeO2 (SiO2) and lines are only eye guides. Reprinted with

modification from Ref. 40.

viate α-quartz GeO2, α-cristobalite GeO2, and rutile GeO2 as q-GeO2, c-GeO2, and r-GeO2,

respectively. The same abbreviations are applied for SiO2 polymorphs. Ge or Si atoms in the

quartz and cristobalite phases are surrounded by four O atoms while those in the rutile phase

is surrounded by six O atoms with distorted octahedral coordination, as shown in Fig. 4. The

total energies per molecular unit as a function of volume for the three phases are shown in

Fig. 5, in which the zeros of energy are the rutile phase for GeO2 and the quartz phase for

SiO2. In the periodic table, Ge is between Si and Sn, which is also a group IV element and is

a metal. In addition, under ambient conditions, SnO2 crystallizes in the rutile phase,41) where

d bands of metal atoms lie below the Fermi level.42) Since 3d orbitals of Ge are occupied,

GeO2 forms the sixfold rutile phase more preferentially than SiO2.

The calculated lattice constants, bond lengths li, bond angles θ j, and tilt angles δ of GeO2

8/22



Jpn. J. Appl. Phys. REVIEW PAPER

and SiO2 are listed in Tables I and II. From the viewpoint of atomic geometry, there are two

distinct Ge-O (Si-O) bond lengths in the GeO4 (SiO4) tetrahedron. In addition, θ j are the O-

Ge-O (O-Si-O) bond angle,43, 44) and the tilt angle is related to the Ge-O-Ge (Si-O-Si) bond

angle. The deviations of the O-Ge-O bond angles from the ideal tetrahedral angle (109.5◦)

are found to be larger than those for O-Si-O, which results in a distorted GeO4 tetrahedron.

The lattice-constant mismatch between Ge (Si) and its oxide induces the compressive

in-plane stress at the Ge/GeO2 (Si/SiO2) interface. Since it is found by X-ray photoelectron

spectroscopy that the thermal oxidation mainly generates the fourfold structure,45, 46) the bond

structures of crystalline quartz and cristobalite phases are examined under the assumption that

the oxidation mechanism of Ge is the same as that of Si. The variations of the Ge-O (Si-O)

bond lengths, the O-Ge-O (O-Si-O) bond angles, and the tilt angles with respect to the volume

are shown in Fig. 6. The variation of the tilt angles in the rutile phase is expressed as ∆φ

because there are no tetrahedrons in the rutile phase. It is found that the variations of the bond

lengths are quite small and less than ∼0.1% even when the lattice constants are increased by

1%. This result indicates that the bond angles are important properties in the compression or

expansion of the fourfold structure. When GeO2 is compared with SiO2, the variations of the

bond angles θ j in GeO2 are larger than those in SiO2 [Figs. 6(d) and 6(e)], while the tilt angles

δ in SiO2 vary more significantly than those in GeO2 [Figs. 6(g) and 6(h)]. When the stiffness

of the tilt angle around the O atom is assumed to be comparable between SiO2 and GeO2, this

result implies that the O-Si-O bonds are more rigid than the O-Ge-O bonds. The experimental

study also reported that the O-Ge-O bond angles markedly change in q-GeO2, while the tilt

angle in q-SiO2 varies significantly as the pressure increases.47) These structural properties

under compression or expansion agree well with the experimental result. Such chemical trend

of Ge in the periodic table is also attributed to the distorted GeO4 tetrahedron and the variation

of the O-Ge-O bond angles from the ideal tetrahedral angle. These structural properties of the

O-Ge-O bonds contribute to the reduction in the interface stress during oxidation compared

with its Si counterpart, resulting in the low emission probability from the Ge/GeO2 interface.

2.3 Atomic structure of oxides above the substrate

Although the stress at the Ge/GeO2 interface is expected to be small, it has to be released

somewhere from the macroscopic viewpoint. Then, the atomic structures of GeO2 and SiO2

bulks in the cristobalite phases (c-GeO2 and c-SiO2) under pressure along the a-axis are in-

vestigated because these structures correspond to the directions parallel to the interface when

the oxides are piled on the (001) surface.20) Figure 7(a) shows the initial atomic configuration,
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in which the c-GeO2 (c-SiO2) structure illustrated is tetragonal. The length of the a-axis from

the equilibrium lattice constants, aGeO2
0 (=4.818 Å) and aS iO2

0 (=4.925 Å) for GeO2 and SiO2,

respectively, is compressed. The total energies of c-GeO2 and c-SiO2 per molecular unit as

a function of volume are shown in Figs. 8(a) and 8(b), respectively. The zeros of energy are

the rutile phase for GeO2 and the quartz phase for SiO2. For comparison, the energy minima

of other phases (quartz, cristobalite, tridymite, and rutile) without any constraints are also

plotted. The c-GeO2 shows a local minimum at about 0.78aGeO2
0 . The c-GeO2 under a certain

pressure transforms into a sixfold structure as shown in Fig. 7(b), which is distinct from the

rutile phase, by rotating O atoms around the Ge atoms. The energy minimum of sixfold GeO2

is lower than that of fourfold GeO2 since the zero-temperature phase of GeO2 has a sixfold

rutile phase as discussed in Sect. 2.2. The arrow on the upper horizontal axis corresponds to

the lateral length of the Ge(001)-(1 × 1) surface. Note that GeO2 forms a sixfold structure

when the length of the a-axis is equal to that of the (1 × 1) surface, while the c-SiO2 still

maintains a fourfold structure.

Since the lattice-constant mismatch between the sixfold GeO2 and Ge(001) surfaces is

small (∼5%), the interface stress may be released by partially forming r-GeO2 at the inter-

face. Therefore, it is of interest to compare the energetic stability of the sixfold GeO2/Ge(001)

interface with the fourfold one. Computational models are shown in Fig. 9. To set up the inter-

face models, O atoms are sequentially inserted between Ge-Ge (Si-Si) bonds from the (001)

surface as we assumed the layer-by-layer oxide growth in Sect. 2.1. The sixfold structure is

formed by rotating the four O atoms around one Ge atom in a Ge(001)-(1 × 1) surface unit.

The sixfold GeO2/Ge interface is more stable by 1.92 eV per Ge(001)-(
√

2 ×
√

2) than the

fourfold one, while the fourfold c-SiO2/Si interface model is preferable by 1.02 eV compared

with the sixfold one. The interface stress between GeO2 and Ge is released by the phase

transition into the dense sixfold structure. These results indicate that the sixfold structure

contributes to the release of interface stress due to the lattice-constant mismatch between the

c-GeO2 and Ge(001) surfaces as well as the small possibility of the Ge-atom emission from

the interface during oxidation.

Since the lateral length of the Ge(001)-(1 × 1) surface is longer than that of the sixfold

GeO2 surface but shorter than that of the fourfold c-GeO2 surface in Fig. 8(a), c-GeO2 on

the Ge(001) surface might be composed of a mixed fourfold and sixfold structure. Figure 10

shows the computational model, in which the supercell is the doubling of the Ge(001)-(
√

2×
√

2) surface unit in two directions. One and five neighboring (1 × 1) Ge surface units are

replaced by the sixfold structure so that 12.5 and 62.5%, respectively, of the Ge(001)-(1 ×
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Fig. 7. (Color online) Unit cells of (a) fourfold and (b) sixfold c-GeO2. The solid cube represents the

unit-cell volume, and the blue (dark) and pink (light) balls are Ge and O atoms, respectively.

1) units are composed of the sixfold structure. The mixed interface with the 12.5% sixfold

structure is even more unstable than the fully fourfold GeO2/Ge interface by 0.92 eV, although

that with the 62.5% sixfold structure is more stable by 0.49 eV. The domain boundary causes

the instabilities of the mixed structures; the c-axis of the fourfold-structure region is more

than 5% longer than that of the sixfold one. Therefore, the sixfold-structure region can exist

as a large domain at the GeO2/Ge interface so that the domain boundary is minimized.

3. Electronic structure of the defects at the interface and its contribution to

leakage current

3.1 Dangling bond states at the interface

Since several experimental and theoretical studies have proved that the interface trap density

in the Ge/GeO2 interface is smaller than that at the Si/SiO2 interface without any annealing,

the future development of passivation technologies to deactivate interface defects by intro-

ducing terminators will make it possible to decrease the interface trap density in the Ge/GeO2

interface further. However, experimental and theoretical studies revealed that the defects are

not passivated by H2 annealing in contrast to Si technology.19, 48, 49) Thus, understanding the

morphology and electronic structure of interface defects is one of the key issues to develop

passivation technologies.

It is well known that the DB states at the Si/SiO2 interface can be detected by electron

spin-resonance (ESR) because the defect states lie between the VBM and the CBM of Si.50)

Afanas’ev et al.48) found that interfacial DB defects at the Ge/GeO2 interface play a different
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Fig. 8. (Color online) Total energy per molecular unit (m.u.) as a function of lengths of a-axis for (a)

c-GeO2 and (b) c-SiO2. The horizontal axes correspond to the lateral lengths of Ge and Si(001)-(1 × 1)

surfaces in aGeO2
0 and aS iO2

0 . Total energies of quartz [red (black) dashed line], cristobalite (black solid line),

tridymite [green (black) dotted line], and rutile [blue (black) long dashed short dashed line] are also shown for

comparison. The zeros of energies are rutile for GeO2 and quartz for SiO2. Vertical arrows indicate lattice

constants of Ge (aGe
0 ) and Si (aS i

0 ) bulks, respectively. Reprinted with permission from Ref. 20. Copyright 2011

Amreican Physical Society.

role from those at the Si/SiO2 interface using ESR; a measurable density of DBs of the semi-

conductor surface atoms is not found at Ge/GeO2 interfaces, and the defects characterized by

an isotropic signal with g∼2.002−2.004 are observed instead. However, there remains a cer-

tain amount of interface defects because the interface trap density shown in Ref. 48 was still

higher than that of typical Si/SiO2 interfaces after hydrogen annealing. This result implies the

ESR inactivity of the Ge-DBs at Ge/GeO2 interfaces.

From the viewpoint of the electronic structure of the DBs, the position of the DB states

in Ge bulk is investigated by the G0W0 approximation12) and the hybrid functional method.13)

The former claimed that the DBs in Ge bulk have energy levels below the VBM of Ge and are
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(a) (b)

Fig. 9. (Color online) Top views and side views of (a) fourfold and (b) sixfold GeO2/Ge(001) interfaces.

The blue (dark large), pink (light middle), and grey (light small) balls are Ge, O, and H atoms, respectively.

The dotted square in the top views represents a Ge(001)-(
√

2 ×
√

2) surface unit and the arrows indicate

rotational directions to transform into sixfold structures.

(a)

(b)

Fig. 10. (Color online) Top views of mixed fourfold and sixfold structures. (a) 12.5 and (b) 62.5% of

Ge(001)-(1 × 1) surface units are composed of the sixfold structures. The blue (dark) and pink (light) balls are

Ge and O atoms, respectively.
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 Jellium electrode
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x

z

Fig. 11. (Color online) Schematic image of computational model for interface. The rectangle enclosed by

broken lines represents the scattering region when the leakage current is calculated. Blue (dark large), pink

(light middle), and gray (light small) balls represent Ge (Si), O, and H atoms, respectively.

therefore negatively charged. In contrast, the latter reported that the DBs in Ge bulk induce

two very close defect levels lying just above the VBM within the certain range of the empirical

mixing parameter of the hybrid functional method. Although these studies derive the opposite

conclusions, they raised questions about the difference in the electronic structure between the

Ge-DBs in Ge bulk and the Si-DBs in Si bulk, and the contribution of the interface stress

caused by the lattice-constant mismatch between the semiconductor and the oxide to the

position of the DB states. Here, we introduce first-principles study on the difference in the

electronic structure between two interfaces21) using the RSPACE code. The interface atomic

structure, consisting of an α-quartz crystalline oxide layer on a (001) substrate, is shown in

Fig. 11. The DBs at the interface are generated by removing one O atom from the interface

and terminating one DB by H atom.

The lattice-constant mismatch between Ge (Si) and GeO2 (SiO2) induces the interface

reconstruction, which is not taken into account in the Ge (Si) bulk model.12, 13) The c-axis is

slightly longer than the axis of the bulk (less than 1%) in both the Ge and Si cases, whereas

the a-axis of the α-quartz oxide is 11% (9%) longer than the corresponding axis of the Ge

(Si) bulk. Thus, the stress acting on the interface atoms is similar for both GeO2 and SiO2.

Figure 12 shows the interface atomic structure after structural optimization. The interface Ge

atom with the DB is raised up while the Si atom is pulled down so that the π electron forms

a Pb-type defect in the Si substrate.

The density of states (DOS) of interfaces with the DBs is shown in Fig. 13 for further
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(a) (b)

highlow density

Fig. 12. (Color online) Atomic structures of interfaces and contour plots of charge density distributions of

DB states. The planes shown are along the cross section in the (110) plane including DBs. (a) Si-DB state at

EF and (b) Ge-DB state at EF − 0.3 eV. The lowest contours are 6.75 × 10−3 e/Å3 and the subsequent contour

lines represent values larger than 6.75 × 10−3 e/Å3. The symbol meanings are the same as those in Fig. 11.

Reprinted from Ref. 21.

investigation of the relationship between the atomic configuration and the electronic structure.

Figure 13 is plotted by integrating the DOS along the plane parallel to the interface, ρ(z, E) =∫
|ψ(⃗r, E)|2dr⃗||, where r⃗ = (x, y, z), r⃗|| = (x, y), ψ is the wave function, and E is the energy

of the states. Note that the energy band gap of Si and Ge substrates is underestimated owing

to the usage of the local density approximation.51) The states accumulating at EF − 1.0 eV

and indicated by the red downward arrows in Fig. 13(c) [Fig. 13(a)] are attributed to the Ge-

(Si-) O bonds, where EF is the Fermi level, since the charge density distributions accumulate

between the Ge- (Si-) and O-atom layers. In the case of Si, when the DB is introduced in

the Si/SiO2 interface, the DOS at EF − 1.0 eV decreases and the state appears in the energy

band gap, indicated by the white downward arrows in Fig. 13(b). On the other hand, the peak

of the DOS at EF − 1.0 eV related to the Ge-O bonds becomes shallow, and the DOS at

EF − 0.3 eV, denoted by the white downward arrows in Fig. 13(d), increases in the case of

the Ge/GeO2 interface. In the periodic table, Ge exists between Si and Sn, the latter being

metallic. The Ge-O bonds at the interface do not have a strongly preferential sp3-bonding

direction.11) Thus, the bonding network of Ge/GeO2 is easily deformed from the sp3 structure

and exhibits more metallic properties than that of Si/SiO2. In addition, the band gap of the

diamond structure of group IV elements is formed by the energy difference between sp3

bonding and antibonding states, and the energy gain due to the formation of covalent bonds

in Ge is smaller than those in Si. These characteristics of Ge and the larger offset of the VBM

than that of the CBM at the interface20, 26) contribute to keeping the DB states below the

VBM of Ge. Moreover, Haneman52) reported that the sp3 DB on the Si surface is stabilized

owing to the strong contribution of the s electron when the atom with a DB is raised up. The
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Ge (w/o DBs)

Si (w/o DBs)

Si (w/ DBs)

Ge (w/ DBs)

z
z

z
z

highlow density

Fig. 13. (Color online) Distributions of DOS integrated on a plane parallel to the interface as functions of

relative energy from the Fermi level. (a) Si/SiO2 without DBs, (b) Si/SiO2 with DBs, (c) Ge/GeO2 without

DBs, and (d) Ge/GeO2 with DBs. The zeros of energies are chosen to be the Fermi level. Each contour

represents twice or half the density of the adjacent contour lines, and the lowest contour is 1.45 ×10−4 e/eV/Å.

The solid and dashed lines represent the vertical positions of Si (Ge) and O atomic layers, respectively. The

right arrows denote the positions of the Si and Ge atoms forming DBs. Reprinted from Ref. 21.

relationship between the position of the DB states and the atomic configuration in this study

is consistent with the model proposed by Heneman. Therefore, the significant difference in

the ESR signal from Ge-DBs48) is caused by the difference in the electronic structures and

atomic configurations from Si-DBs.

Later, Houssa et al.49) claimed that the ESR signal observed at Ge/GeO2 interfaces could

be assigned to a DB at a Ge atom backbonded to two Ge atoms and one O atom, which does

not contradict the results obtained by the above-mentioned electronic-structure calculation.
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Chang et al.22) also investigated the Ge-DBs with different O backbonds at Ge/GeO2 inter-

faces and reported, on the basis of the hybrid functional method, that the state of the Pb-type

defect with the Ge atom backbonded to three Ge atoms lies above the VBM. However, the

mixing parameter of the hybrid functional method, which significantly affects the position of

the DB state,18) is large so that the state appears above the VBM, and thus the effect of the

mixing parameter on the position of interface DB states is still controversial in the hybrid

functional method.

3.2 Gate leakage property of the metal-oxide-semiconductor structure

In the case of the Si/SiO2 interface, the Pb-type defect increases the leakage current.53) Since

the state attributed to the Ge-DB does not lie inside the band gap of Ge, it is interest-

ing to determine whether the leakage current is increased by the presence of the Ge-DBs

at the interface. The recent evolution of the computational technique of the first-principles

electron-transport calculation enables us to investigate the relationship between the interface

defects and the leakage current.54, 55) Applicability to first-principles electron-transport calcu-

lation31, 56, 57) is one of the advantages of the real-space finite-difference method31, 58, 59) over

the other first-principles calculation methods, e.g., plane-wave expansion60) or linear com-

bination of atomic orbitals.61, 62) The computational model for the transport calculation is

illustrated in Fig. 11. The MOS interface is sandwiched between the metallic electrodes, and

the conductance for the electrons coming from the lower electrodes to the upper one is calcu-

lated, assuming that electrons accumulate at the interface by gate bias.55) Figure 14 shows the

conductance spectra of the interface with and without the DBs. The conductance spectrum

corresponds to the differentiation of the amount of leakage current with respect to the bias

voltage. Although the Fermi level is determined by the work function of the electrodes, the

overall feature of the local DOS at the interfaces does not change; the states of the Ge-DBs

are under the VBM while those of the Si-DB lie between the VBM and the CBM. The tun-

neling probability for the leakage current exponentially increases with respect to the energy

difference between the incident electron and the conduction band, which is the barrier height.

Because the band gap of GeO2 is smaller than that of SiO2, the conductance of the Ge/GeO2

interface is larger than that of the Si/SiO2 interface. When the DB is introduced to the Si/SiO2

interface, the sharp peak due to the contribution of the DB appears in the conductance spec-

trum. On the other hand, the significant contribution of the Ge-DB states is not observed in

the case of the Ge/GeO2 interface. This is because the Ge-DB states spread energetically and

are coupled with the states of the substrates, resulting in the shallow peak in the conductance
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(a)

(b)

Fig. 14. (Color online) Conductance of the Si/SiO2 and Ge/GeO2 interfaces (a) without and (b) with DBs as

a function of incident electron energy measured from the VBM of the substrates. The (red) circles and (black)

squares represent conductance spectra of the Si/SiO2 and Ge/GeO2 interfaces, respectively. The VBM and

CBM of the Si (Ge) substrate are indicated by dashed (dotted) vertical lines. Reprinted with permission from

Ref. 55. Copyright 2015 Amreican Physical Society

spectrum. Therefore, it can be concluded that the contribution of the Ge-DBs at the interface

to the leakage current as well as electronic structure is different from those of the Si-DB.

4. Summary

We have reviewed a series of first-principles studies on the atomic and electronic structures

of the Ge/GeO2 interface. First-principles total-energy calculation for the interface atomic

structures revealed that Ge atoms at the Ge/GeO2 interface are more hardly emitted from the

oxidation front than Si atoms at the Si/SiO2 interface. This result supports the experimental

result that a lower interface trap density will be realizable in the Ge/GeO2 interface. Since
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Ge exists between the semiconductor Si and the metal Sn in the periodic table, Ge exhibits

more metallic property than Si. Indeed, the sixfold rutile phase is the most stable among the

phases of GeO2 while SiO2 preferentially forms the fourfold quartz structure, which is inter-

preted on the basis of the chemical trend because SnO2 prefers a sixfold structure. The small

lattice constant of the stable sixfold structure of GeO2 suppresses the increase in the interface

stress, resulting in the small probability of atom emission and the low interface trap density

of the Ge/GeO2 interface. The electronic-structure calculation for the defects at the Ge/GeO2

interface found that the Ge-DB states lie below the VBM of Ge, indicating the ESR inactivity

of the Ge-DB defects. First-principles electron-transport calculation elucidated that the states

do not increase the leakage current. Therefore, even if they are created, their contribution to

the leakage current is smaller than that of Si-DB. Thus, we can conclude that the Ge-DBs

behave differently from the Si-DBs. These results from the first-principles calculation imply

that Ge is the promising candidate for the channel material in next-generation devices owing

to the low trap density in its interface as well as the high carrier mobility, although effective

passivation techniques have to be developed to decrease the interface trap density further.

From the viewpoint of the computational investigation for device sciences, the atom emis-

sion from the oxidation front in SiC/SiO2 interfaces has recently been discussed, which can

be used for high-temperature and power electronic devices, under conditions where the tra-

ditionally used Si fails; first-principles calculation revealed that C atoms are emitted as CO

molecules from the oxidation front.63) Moreover, the interface defects that appear during ox-

idation significantly affect the electronic structure at the interface,64) and the first-principles

electron-transport calculation revealed that the carriers are scattered by the modified elec-

tronic structure at the interface.65) Work in progress is to examine the carrier scattering at the

Ge/GeO2 or Ge/high-k interface for a fuller understanding of how the scattering properties of

the interface change with interface defects.
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35) M. J. Puska, S. Pöykkö, M. Pesola, and R. M. Nieminen, Phys. Rev. B 58, 1318 (1998).

36) A. Fazzio, A. Janotti, A. J. R. da Silva, and R. Mota, Phys. Rev. B 61, R2401 (2000).

37) M. D. Moreira, R. H. Miwa, and P. Venezuela, Phys. Rev. B 70, 115215 (2004).

38) R. J. Needs, J. Phys.: Condens. Matter 11, 10437 (1999).

39) D. M. Christie and J. R. Chelikowsky, Phys. Rev. B 62, 14703 (2000).

40) S. Saito and T. Ono, Jpn. J. Appl. Phys. 50, 021503 (2011).

41) R. W. G. Wyckoff, Crystal Structures (Wiley, New York, 1965) Vol. 1.

42) C. E. Ekuma and D. Bagayoko, Jpn. J. Appl. Phys. 50, 101103 (2011).

43) H. Grimm and B. Dorner, J. Phys. Chem. Solids 36, 407 (1975).

44) M. O’Keefee and B. G. Hyde, Acta Crystallogr., Sect. B 32, 2923 (1976).

45) A. Molle, Md. N. K. Bhuiyan, G. Tallarida, and M. Fanciulli, Appl. Phys. Lett. 89,

083504 (2006).

46) T. Hattori and T. Suzuki, Appl. Phys. Lett. 43, 470 (1983).

47) J. D. Jorgensen, J. Appl. Phys. 49, 5473 (1978).

21/22



Jpn. J. Appl. Phys. REVIEW PAPER

48) V. V. Afanas’ev, Y. G. Fedorenko, and A. Stesmans, Appl. Phys. Lett. 87, 032107 (2005).

49) M. Houssa, G. Pourtois, V. V. Afanas’ev, and A. Stesmans, Appl. Phys. Lett. 99, 212103

(2011).

50) A. Stesmans and V. V. Afanas’ev, Appl. Phys. Lett. 77, 1469 (2000).

51) J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

52) D. Haneman, Phys. Rev. 121, 1093 (1961).

53) T. Ono, Phys. Rev. B 79, 195326 (2009).

54) S. Iwase, T. Hoshi, and T. Ono, Phys. Rev. E 91, 063305 (2015).

55) Y. Egami, S. Iwase, S. Tsukamoto, T. Ono and K. Hirose, Phys. Rev. E 92, 033301

(2015).

56) Y. Fujimoto and K. Hirose, Phys. Rev. B 67, 195315 (2003).

57) T. Ono and K. Hirose, Phys. Rev. B 70, 033403 (2004).

58) J. R. Chelikowsky, N. Troullier, and Y. Saad, Phys. Rev. Lett. 72, 1240 (1994).

59) J. R. Chelikowsky, N. Troullier, K. Wu, and Y. Saad, Phys. Rev. B 50, 11355 (1994).

60) M. C. Payne, M. P. Teter, D. C. Ailan, T. A. Arias and J. D. Joannopouios, Rev. Mod.

Phys. 64, 1045 (1992).

61) A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced

Electronic Structure Theory (Dover, New York, 1996)

62) F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, U. K., 2006)

2nd ed.

63) T. Ono and S. Saito, Appl. Phys. Lett. 106, 081601 (2015).

64) C. Kirkham and T. Ono, J. Phys. Soc. Jpn. 85, 024701 (2016).

65) S. Iwase, C. Kirkham and T. Ono, in preparation for publication.

22/22


