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COVERING INTERSECTING BI-SET FAMILIES UNDER MATROID
CONSTRAINTS∗
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Abstract. Edmonds’s fundamental theorem on arborescences in [J. Edmonds, Edge-disjoint
branchings, in Combinatorial Algorithms, Courant Comput. Sci. Sympos. 9, Algorithmics Press, New
York, 1973, pp. 91–96] characterizes the existence of k pairwise arc-disjoint spanning arborescences
with the same root in a directed graph. In [L. Lovász, J. Combinatorial Theory Ser. B, 21 (1976),
pp. 96–103], Lovász gave an elegant alternative proof which became the basis of many extensions of
Edmonds’s result. In this paper, we use a modification of Lovász’s method to prove a theorem on
covering intersecting bi-set families under matroid constraints. Our result can be considered as an
extension of previous results on packing arborescences. We also investigate the algorithmic aspects
of the problem and present a polynomial-time algorithm for solving the corresponding optimization
problem.
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1. Introduction. Let D = (V,A) be a directed graph (or digraph, for short).
For disjoint sets X,Y ⊆ V , we say that Y is reachable from X if there is a directed
path from a node of X to a node of Y . For some root-node r0 ∈ V , an arborescence
rooted at r0 or an r0-arborescence (U, F ) is a directed tree in which each node in U
is reachable from r0. An arborescence is spanning if its node-set is V . We sometimes
identify an arborescence (U, F ) with its arc-set F and say that F spans U . The node-
set of an r-arborescence F is denoted by V (F ). It is possible that an r0-arborescence
has no arcs, in which case V (F ) = {r0}.

Let �(X) denote the in-degree of a set X . In [5], Edmonds gave the following
characterization of the existence of k pairwise arc-disjoint spanning r0-arborescences.

Theorem 1.1 (Edmonds). Let D = (V,A) be a digraph with r0 ∈ V . There are
k pairwise arc-disjoint spanning r0-arborescences in D if and only if

(1.1) �(X) ≥ k for every ∅ �= X ⊆ V − r0.

In the last couple of years, several extensions of Theorem 1.1 have been proved
[2, 4, 9, 13]. In [14], Katoh and Tanigawa considered the problem of packing rooted-
trees in undirected graphs with additional matroid constraints. Durand de Gevi-
gney, Nguyen, and Szigeti [4] later provided a directed counterpart of this result by
characterizing digraphs having a packing of arborescences with matroid constraints.
Recently, Király [15] gave the following generalization.
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Let D = (V,A) be a digraph, and let t be a positive integer that specifies the
number of arborescences to pack. The set of integers from 1 to t is denoted by [t]. We
are also given a matroid M = ([t], r) with rank function r and a mapping π : [t] → V
that specifies the roots of the arborescences. The triple (D,M, π) is called an M-
rooted digraph. For a set X ⊆ V , let π−1(X) = {i ∈ [t] : π(i) ∈ X}. The mapping π
is M-independent if π−1(v) is independent in M for every v ∈ V . The set of nodes
from which a given set X ⊆ V is reachable (including the nodes of X themselves) is
denoted by PredX .

If an M-rooted digraph (D,M, π) is given, we call a set of pairwise arc-disjoint
arborescences F1, . . . , Ft a maximal M-independent packing of arborescences if Fi is
a π(i)-arborescence for every i, {i : v ∈ V (Fi)} is independent in M for every v ∈ V ,
and r({i : v ∈ V (Fi)}) = r(π−1(Predv)) for every v ∈ V .

Theorem 1.2 (Király [15]). Let (D,M, π) be an M-rooted digraph. There exists
a maximal M-independent packing of arborescences if and only if π is M-independent
and

(1.2) �(X) ≥ r(π−1(PredX))− r(π−1(X)) for every X ⊆ V.

The proof in [15] is algorithmic, but it does not imply an algorithm for the follow-
ing optimization problem: Given an M-rooted digraph (D,M, π) and a cost function
c : A → R, find a maximal M-independent packing of arborescences that has mini-
mum total cost. We will give a polynomial-time algorithm for this problem by solving
a more general covering problem, related to another line of research on extensions of
Edmonds’s theorem. To describe these extensions, we need to introduce some notions
concerning set families and bi-sets.

A family F ⊆ 2V of subsets of a ground set V is called intersecting if X,Y ∈
F , X ∩ Y �= ∅ implies X ∩ Y,X ∪ Y ∈ F . Given a directed graph D = (V,A), we say
that an arc a ∈ A covers a set X ∈ F if a enters X , that is, the tail of a is outside
of X while the head of a is inside X . A subset of arcs A′ ⊆ A covers an intersecting
family F if each member of F is covered by at least one arc from A′.

Frank [6] and Szegő [19] observed that Edmonds’s theorem can be reformulated
in terms of covering intersecting set families and thus gave abstract extensions of
Edmonds’s result. A bi-set counterpart of Szegő’s theorem was proved in [2] by Frank
and the first author of the present paper. A bi-set is a pair X = (XI , XO) such
that XI ⊆ XO ⊆ V , where XI and XO are called the inner set and the outer set of
X , respectively. We will identify a bi-set X = (XI , XO) for which XO = XI with
the set XI , and hence the following notation can also be interpreted for sets. The
set of all bi-sets on ground-set V is denoted by P2(V ) = P2. The intersection and
union of bi-sets can be defined in a straightforward manner: for bi-sets X and Y ,
we define X ∩ Y = (XI ∩ YI , XO ∩ YO) and X ∪ Y = (XI ∪ YI , XO ∪ YO). The
notation X ⊆ Y means that XI ⊆ YI and XO ⊆ YO. Two bi-sets are intersecting if
XI ∩ YI �= ∅. A family F of bi-sets is called intersecting if X,Y ∈ F , XI ∩ YI �= ∅
implies X ∩ Y,X ∪ Y ∈ F .

A bi-set function is a function p : P2 → R. A bi-set function p is fully supermod-
ular (respectively, intersecting supermodular) if

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y )

for every X,Y ∈ P2 (respectively, for every intersecting X,Y ∈ P2). If the reverse
inequality holds, then p is fully submodular. We call p positively intersecting super-
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modular or positively intersecting submodular if the corresponding inequality holds
whenever X and Y are intersecting and p(X), p(Y ) > 0.

Given a digraph D = (V,A), an arc a ∈ A enters or covers a bi-set X if its
head is in XI and its tail is outside XO. A subset of arcs A′ ⊆ A covers a bi-set
family F if each member of F is covered by at least one arc from A′. The set of
arcs entering a bi-set X is denoted by Δin(X), while the number of arcs entering X
is denoted by �(X). The in-degree function � is a basic example for a submodular
bi-set function. An arc is induced by bi-set X if its tail is in XO and its head is in
XI . We say that the bi-set families F1, . . . ,Ft satisfy the mixed intersection property
if X ∈ Fi, Y ∈ Fj , XI ∩ YI �= ∅ implies X ∩ Y ∈ Fi ∩ Fj . The following theorem
extends the result of Szegő to bi-set families.

Theorem 1.3 (Bérczi and Frank [2]). Let D = (V,A) be a digraph, and let
F1, . . . ,Ft be intersecting bi-set families satisfying the mixed intersection property.
Then there exist pairwise disjoint arc-sets A1, . . . , At ⊆ A such that Ai covers Fi if
and only if

�(X) ≥ |IX | for every X ∈ P2,

where IX = {i : X ∈ Fi}.
Note that by using IX , the mixed integer property can be rewritten as follows:

(MIP) IX ⊆ IX∩Y whenever X,Y ∈ F and XI ∩ YI �= ∅,

where F :=
⋃t

i=1 Fi. Up to this point, we have two completely different general-
izations of Edmonds’s theorem. Theorem 1.2 is an extension of previous results on
packing arborescences and characterizes the existence of maximal M-independent ar-
borescence packings. Meanwhile, Theorem 1.3 states the existence of disjoint covers
of intersecting bi-set families and gives an abstract generalization of previous results.
Our motivation was to find a common extension of these two results.

The rest of the paper is organized as follows. In section 2, we prove our main
result: a characterization of arc-covers of intersecting bi-set families under matroid
constraints. Section 3 presents some observations that follow from the proof. We
also show how Theorems 1.2 and 1.3 can be derived from our results. In section 4, a
polynomial-time algorithm is given for finding an arc-cover. In section 5, we show that
a minimum cost arc-cover can also be found in polynomial time using the ellipsoid
method; moreover, if F is an intersecting family, then there is a strongly polynomial
algorithm by reduction to submodular flows. Section 6 concludes the paper with a
list of open problems related to packing arborescences.

2. Characterization of valid arc-covers.

2.1. Definitions and main theorem. As in Theorem 1.3, we consider a di-
graph D = (V,A) and intersecting bi-set families F1, . . . ,Ft on the ground set V , and
our aim is to find pairwise disjoint arc-sets A1, . . . , At ⊆ A satisfying certain condi-
tions. However, these conditions will be more subtle than the condition in Theorem
1.3 that Ai must cover Fi. Let F denote the family of bi-sets that appears in at least
one Fi, and for a bi-set X ∈ F , let IX = {i : X ∈ Fi}. In addition, we are given a
matroid M = ([t], r), and a subset of indices JX ⊆ [t] \ IX for every X ∈ F . We want
to find a family of pairwise disjoint arc-sets A1, . . . , At of A that satisfies

(2.1) r(JX ∪ {i ∈ IX : �Ai(X) ≥ 1}) = r(JX ∪ IX) for every X ∈ F ,
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where �Ai = |Δin(X) ∩ Ai|. A family of disjoint arc-sets A1, . . . , At ⊆ A satisfying
(2.1) is called a valid arc-cover. Intuitively, we may think of [t] as a set of colors, the
set IX as the colors required by bi-set X , and the set JX as the colors that X already
owns. The task is to color the arcs in such a way that for every bi-set X , the colors
owned by X and the required colors that enter X together span the set of required
colors in the matroid M.

Finding a valid arc-cover in general is difficult (see the end of this subsection
for hardness results), so we need to add additional conditions on the set families,
analogously to the mixed intersection property in Theorem 1.3. The closure of a set
J ⊆ [t] in M is denoted by Span(J), that is, Span(J) = {i : r(J + i) = r(J)}. A set
J ⊆ [t] is closed if Span(J) = J . We introduce the following bi-set function defined
on P2:

(2.2) p(X) =

{
r(IX ∪ JX)− r(JX) if X ∈ F ,

0 otherwise.

A bi-set X is said to be active if p(X) > 0, which is equivalent to IX \ Span(JX) �= ∅.
We denote the set IX \ Span(JX) by IactX and say that X is active for i if i ∈ IactX .
Note that all active bi-sets are in F . We say that the active intersection property is
satisfied if

(AIP) IactX ⊆ IactX∩Y whenever X,Y ∈ F and XI ∩ YI �= ∅.

Note that if M is the free matroid on [t], then IactX = IX , which means that (AIP)
coincides with (MIP). In this sense, we can say that (AIP) is a matroidal extension
of (MIP).

Our first result is the following characterization of valid arc-covers for the case
when IX ∪ JX = [t] for every X ∈ F .

Theorem 2.1. Let M = ([t], r) be a matroid and D = (V,A) be a digraph. Let
F1, . . . ,Ft be intersecting bi-set families on ground set V , let F =

⋃t
i=1 Fi, and let

JX := [t] \ IX for every X ∈ F , satisfying (AIP). Then a valid arc-cover exists if
and only if

(2.3) �(X) ≥ r([t]) − r(JX) for every X ∈ F .

As we will see in section 3, this theorem generalizes Theorem 1.3. However, we
cannot derive Theorem 1.2 from this theorem, which motivates us to consider a further
generalization. Indeed, we generalize the condition IX∪JX = [t] to the following index
union property.

(IUP) IX′ ∪ JX′ = IX ∪ JX whenever X,X ′ ∈ F and X ′ ⊆ X.

Our main result is stated as follows.

Theorem 2.2. Let M = ([t], r) be a matroid and D = (V,A) be a digraph. Let
F1, . . . ,Ft be intersecting bi-set families on ground set V , let F =

⋃t
i=1 Fi, and let

JX ⊆ [t] \ IX for every X ∈ F , satisfying (AIP) and (IUP). Then a valid arc-cover
exists if and only if

(2.4) �(X) ≥ r(IX ∪ JX)− r(JX) for every X ∈ F .
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Since Theorem 2.1 is a special case of this theorem, it suffices to prove Theo-
rem 2.2. The proof is presented in sections 2.2 and 2.3.

To explain the need for property (IUP), we show that NP-hard problems are
obtained if equality is replaced by “⊆” or “⊇” in (IUP). First, let us consider the case
when (IUP) is replaced by the condition that IX′∪JX′ ⊆ IX∪JX wheneverX,X ′ ∈ F
andX ′ ⊆ X . Let D = (V,A) be a directed graph, let t = 4, andM = ([4], r) let be the
matroid with cycles {1, 3} and {2, 4}. Define F1 = F2 = 2V \ {∅} and F3 = F4 = ∅.
Finally, let JV = {3, 4}, and let JX be empty otherwise. It is easy to check that
(AIP) and the relaxed version of (IUP) are satisfied. By definition, an arc-cover is
valid if and only if A1 and A2 are both strongly connected spanning subdigraphs; but
it is NP-complete to decide whether a digraph can be decomposed into two strongly
connected spanning subdigraphs [1, Theorem 13.10.1].

What if (IUP) is replaced by IX′ ∪ JX′ ⊇ IX ∪ JX? Let D = (V,A) be a
directed graph with a root node r0 and a terminal set T ⊆ V − r0. The problem of
deciding whether D can be decomposed into two subdigraphs so that every terminal
is reachable from r0 in both of them is NP-complete, since the two disjoint dipaths
problem can be reduced to it. To formulate this problem in our setting, set t = 3 and
let M = ([3], r) be the matroid with cycle {1, 2, 3}. Define F1 = F2 = 2V−r0 \{∅} and
F3 = ∅. Let JX = {3} if X ∩ T = ∅, and JX = ∅ otherwise. With these definitions
(AIP) holds because IactX = {1, 2} for every X ∈ F , and also the relaxed version
of (IUP) holds. An arc-cover is valid if and only if A1 ∪ A2 contains a spanning
arborescence rooted at r0, and every v ∈ T is reachable from r0 in both A1 and
A2. This is equivalent to the original problem, since we can assume without loss of
generality that D contains a spanning arborescence rooted at r0.

2.2. Preliminary observations. Assume that (AIP) and (IUP) hold. We
start with an easy observation on the properties of JX .

Proposition 2.3. If X,X ′ ∈ F and X ′ ⊆ X, then JX′ ⊆ Span(JX).

Proof. Property (IUP) implies that IX′ ∪JX′ = IX ∪JX . If X is not active, then
Span(JX) ⊇ IX ∪JX ⊇ JX′ , so we are done. If X is active, then by (AIP) for X and
X ′ we have IX′\Span(JX′) ⊇ IX\Span(JX), which, together with IX′∪JX′ = IX∪JX ,
implies that JX′ ⊆ Span(JX).

From this observation we can derive the positively intersecting supermodularity
of the bi-set function p defined in (2.2).

Proposition 2.4. The bi-set function p is positively intersecting supermodular.

Proof. Let X,Y be intersecting bi-sets with p(X) > 0, p(Y ) > 0. Both X and
Y are active, and so X ∩ Y ∈ F by (AIP). Note that Proposition 2.3 implies
JX∩Y ⊆ Span(JX) ∩ Span(JY ).

Assume first that X∪Y ∈ F . As the Fi’s are intersecting, IX∪Y ⊇ IX ∩IY holds.
This, together with (IUP) and the disjointness of IZ and JZ for every Z ∈ F , implies
JX∪Y ⊆ JX ∪ JY . Thus we have, by the submodularity of r,

r(JX) + r(JY ) = r(Span(JX)) + r(Span(JY ))

≥ r(Span(JX) ∩ Span(JY )) + r(Span(JX) ∪ Span(JY ))

≥ r(JX∩Y ) + r(JX∪Y ).
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Using this and (IUP), we obtain

p(X) + p(Y ) = r(IX ∪ JX)− r(JX ) + r(IY ∪ JY )− r(JY )

≤ r(IX∩Y ∪ JX∩Y )− r(JX∩Y ) + r(IX∪Y ∪ JX∪Y )− r(JX∪Y )

= p(X ∩ Y ) + p(X ∪ Y ).

Now assume that X ∪ Y /∈ F . By (IUP), IX ∪ JX = IX∩Y ∪ JX∩Y = IY ∪ JY ;
let q denote the rank of this set. As the Fi’s are intersecting, we have IX ∩ IY = ∅,
which implies IX ⊆ JY . Hence we have, by the submodularity of r and X ∪ Y /∈ F ,

p(X) + p(Y ) = 2q − r(JX)− r(JY )

= 2q − r(Span(JX))− r(Span(JY ))

≤ 2q − r(Span(JX) ∩ Span(JY ))− r(Span(JX) ∪ Span(JY ))

≤ q − r(Span(JX) ∩ Span(JY ))

≤ q − r(JX∩Y )

= p(X ∩ Y ) + p(X ∪ Y ).

2.3. Proof of Theorem 2.2. Observe that (2.4) is equivalent to �(X) ≥ p(X)
for every X ∈ F . A bi-set X is called tight if �(X) = p(X) > 0. A bi-set is tight for i
if it is tight and i /∈ IactX . By definition, tight bi-sets are in F . The core of the proof
is the following reduction step.

Definition 2.5 (reduction on (X, a, i)). Suppose that X ∈ F , i ∈ IactX , and
a ∈ Δin(X) are such that a is not induced by any bi-set active for i and does not
enter any bi-set tight for i. Then the triple (X, a, i) is called reducible. A reduction
on (X, a, i) consists of

• adding a to Ai and removing it from A;
• adding i to JZ for every bi-set Z covered by a; and
• removing bi-sets covered by a from Fi.

We usually use the notation D′, F ′
i, I

′
Z , and J ′

Z for the state after the reduction.

Lemma 2.6. A reduction step on (X, a, i) preserves the conditions of the theorem.

Proof. Let F ′ denote the family of bi-sets in F that have not been removed, and
let �′ be the in-degree function of the digraph obtained by deleting arc a. The family
F ′

i is intersecting because if U ∈ Fi and W ∈ Fi are not covered by a, then neither
are their intersection U ∩W and their union U ∪W .

The validity of (AIP) can be seen as follows. Assume that U ∈ F ′
i with i ∈ IactU

and W ∈ F . As only Fi changes during this step, it suffices to show that if U and W
are intersecting and U remains active for i after the reduction, then so does U ∩W .
If this does not hold, then a covers U ∩ W but does not cover U , and hence it is
induced by U . However, we assumed that a is not induced by a bi-set active for i, a
contradiction.

Note that IZ ∪ JZ does not change during the reduction for any bi-set Z ∈ F ,
and hence (IUP) remains valid. Finally, �′(Z) ≥ r(I ′Z ∪ J ′

Z) − r(J ′
Z) holds for each

Z ∈ F ′, as we assumed that a enters no bi-set that is tight for i.

We prove the theorem by induction on
∑

Z∈F p(Z). If F = ∅ or p(Z) = 0 for each
Z ∈ F , then (2.1) is clearly satisfied and we are done. Otherwise, take an inclusionwise
maximal bi-set X in F with p(X) ≥ 1. From now on, our aim is to show that there
exists a triple (X, a, i) satisfying the conditions of Definition 2.5. This would prove
the theorem by induction.
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The following can be derived using the maximality of X .

Proposition 2.7. There is no bi-set Z intersecting X such that Z is active for
every i ∈ IactX and X ∪ Z is strictly larger than X.

Proof. Suppose for contradiction that such a Z exists. As IactX ∩ IactZ �= ∅ and
the Fi’s are intersecting, X ∪ Z ∈ F . Moreover, IactX ⊆ IactZ , so, by Fi’s being
intersecting, IX \Span(JX) ⊆ IX∪Z . By (IUP), IX ∪JX = IX∪Z ∪JX∪Z , so JX∪Z =
(IX ∪ JX) \ IX∪Z ⊆ Span(JX). Hence we have

p(X ∪ Z) = r(IX∪Z ∪ JX∪Z)− r(JX∪Z)

≥ r(IX ∪ JX)− r(JX)

≥ 1,

contradicting the maximality of X .

In what follows, we distinguish two cases.
Case 1. There is a tight bi-set Y ∈ F intersecting X with IactX \ IactY �= ∅.
Let Y ∈ F be inclusionwise minimal among these tight bi-sets.

Proposition 2.8. There is an arc in Δin(X ∩ Y ) \Δin(Y ).

Proof. Take any index i ∈ IactX \ IactY . As X is active for i, (AIP) implies that
X ∩ Y is also active for i, and thus i ∈ IactX∩Y = IX∩Y \ Span(JX∩Y ). Property (IUP)
shows that i ∈ IY ∪ JY . But i /∈ IactY , so i ∈ Span(JY ) \ Span(JX∩Y ). This, together
with Proposition 2.3, gives r(JY ) > r(JX∩Y ).

By tightness of Y , the definition of p, (IUP), the above, and (2.4), we have

�(Y ) = p(Y )

= r(JY ∪ IY )− r(JY )

< r(JX∩Y ∪ IX∩Y )− r(JX∩Y )

≤ �(X ∩ Y );

therefore there is an arc a ∈ Δin(X ∩ Y ) \Δin(Y ).

Choose an arc a provided by Proposition 2.8.

Proposition 2.9. There is no bi-set W such that a ∈ Δin(W ) and W is tight
for some index in IactX \ IactY .

Proof. Suppose for contradiction that there is a bi-set W that is tight for some
i ∈ IactX \ IactY . Since a enters W , it is a tight bi-set that intersects Y . By tightness of
Y and W , Proposition 2.4, and (2.4), we have

�(Y ) + �(W ) = p(Y ) + p(W )

≤ p(Y ∩W ) + p(Y ∪W )

≤ �(Y ∩W ) + �(Y ∪W ).

As the in-degree function � is submodular, we have equality throughout, which has
two important consequences. First, p(X ∩ Y ) = �(X ∩ Y ) and also �(X ∩ Y ) ≥ 1 due
to arc a. Second, the proof of Proposition 2.4 shows that r(JY ∩W ) = r(Span(JY ) ∩
Span(JW )) must hold, which, together with Proposition 2.3, implies Span(JY ∩W ) =
Span(JY )∩Span(JW ). We know by (IUP) that IY ∪JY = IY ∩W ∪JY ∩W = IW ∪JW .
These together give IY ∩W \ Span(JY ∩W ) = (IY \ Span(JY )) ∪ (IW \ Span(JW )), i.e.,
IactY ∩W = IactY ∪ IactW . We assumed that there is an index i in IactX \ (IactY ∪ IactW ), so
there is an index i ∈ IactX for which Y ∩W is tight, contradicting the choice of Y .
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Proposition 2.10. There is an index i ∈ IactX such that (X, a, i) is reducible.

Proof. We know by Proposition 2.9 that a does not enter any bi-set tight for any
i ∈ IactX \ IactY . Suppose that for each i ∈ IactX \ IactY there is a bi-set Zi active for i that
induces a. Then, by (AIP), Z ′ =

⋂
Zi is a bi-set that is active for every i ∈ IactX \IactY .

On the other hand, Y is active for every i ∈ IactY and the tail of a is in Z = Y ∩Z ′, so,
by (AIP), Z is active for every i ∈ IactX , Z intersects X , and X ∪ Z is strictly larger
than X , contradicting Proposition 2.7.

We have proved the existence of a reducible triple (X, a, i), so Case 1 is settled.
Case 2. There is no tight bi-set Y ∈ F with IactX \ IactY �= ∅ intersecting X .
Take an arbitrary arc a entering X . Such an arc exists by (2.4) and p(X) ≥ 1.

Suppose that for each i ∈ IactX there is a bi-set Zi which is active for i and induces a.
By (AIP), Z =

⋂
Zi is active for each i ∈ IactX , Z intersects X , and X ∪Z is strictly

larger than X , contradicting Proposition 2.7. Thus there is an index i ∈ IactX such
that (X, a, i) is reducible, concluding the proof.

3. Consequences and special cases. From the proof in the previous section
we can derive the following strengthening of Theorem 2.2.

Corollary 3.1. The valid arc-cover A1, . . . , At provided by the proof of Theo-
rem 2.2 satisfies the following for each minimal M ∈ F :

1. �Ai(M) ≤ 1 for 1 ≤ i ≤ t.
2. If JM is independent, then JM ∪ {i : �Ai(M) ≥ 1} is also independent.

Proof. Consider the addition of an arc a to an arc set Aj . According to the proof,
a enters a bi-set X ∈ Fj which is active for j and inclusionwise maximal. If M is a
minimal set in F entered by a, then, by (AIP), M ∩X ∈ Fj , so, by the minimality
of M , M ⊆ X . If M was already covered by an arc a′ ∈ Aj at this point, then a′

is induced by X as X is active for j, in contradiction to the way we chose a′. Thus
item 1 indeed holds. Furthermore, the rank of JM ∪ {i : �Ai(M) ≥ 1} increases by
1 due to the addition of index j, since M is active for j. Therefore at the end of the
algorithm JM ∪ {i : �Ai(M) ≥ 1} is independent unless JM itself was dependent.

As was mentioned earlier, previous results on packing arborescences can be de-
rived from Theorem 2.2. First we show that it is an extension of Theorem 1.3.

Proof of Theorem 1.3. The “only if” part can be seen easily, and hence it suffices
to prove the “if” part. For X ∈ P2, let JX = [t] \ IX ; property (IUP) is obviously
satisfied. That is, we consider the case as in Theorem 2.1.

Let M = ([t], r) be the free matroid on [t]. For a bi-set X ∈ P2 we have r(IX ∪
JX) − r(JX) = |{i : X ∈ Fi}|, and thus condition (2.4) of Theorem 2.2 holds. Note
that IactX = IX in this case and r(S) = |S| for each S ⊆ [t]. Moreover, (MIP) implies
that property (AIP) is also satisfied.

By the above, Theorem 2.2 ensures the existence of pairwise disjoint arc-sets such
that

|JX |+ |{i : X ∈ Fi, �Ai(X) ≥ 1}| = r(JX ∪ {i ∈ IactX : �Ai(X) ≥ 1})
= r(IX ∪ JX)

= |JX |+ |{i : X ∈ Fi}|.
That is, Fi is covered by Ai, as required.

It would be natural to expect that Theorem 2.2 generalizes Theorem 1.2 similarly
to the way Theorem 1.3 did for the results of Kamiyama, Katoh, and Takizawa [13]
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and Fujishige [9]. However, the presence of matroidal constraints calls for caution.
The problem is that a valid arc-cover does not necessarily consist of arborescences.
For example, if the matroid has two parallel elements i and j, then we can move arcs
between Ai and Aj without affecting the validity of the arc-cover, so the algorithm
described in the previous section does not distinguish between Ai and Aj . Therefore
we need to refine the choice of the reduction step in the proof of Theorem 2.2 in order
to obtain arborescences.

Proof of Theorem 1.2. The “only if” part can be seen easily, and hence it suffices
to show the “if” part. Let (D = (V,A),M = ([t], r), π) be an M-rooted digraph; we
assume that π is M-independent and (1.2) holds. Let ri = π(i), and let Ui be the set
of nodes reachable from ri in D. The sets Ui define a partition of V into atoms : two
nodes u and v belong to the same atom if there is no Ui with |{u, v} ∩ Ui| = 1. A
subset of an atom is called a subatom. Let

P̄2 = {X ∈ P2 : XI is a nonempty subatom,

XO \XI does not intersect the atom containing XI}.

Define the bi-set families F1, . . . ,Ft as follows:

Fi = {X ∈ P̄2 : XI ⊆ Ui − ri, XO ∩ Ui = XI}.

For X ∈ P̄2, let JX = {i : XI ⊆ Ui, X /∈ Fi}. Note that bi-sets of the form (W,W ),
where W ⊆ Ui− ri is a subatom, are contained in Fi. In this case we use IW and JW
for denoting the corresponding sets of indices. Clearly, IW = {i : W ⊆ Ui, ri /∈ W}
and JW = {i : W ⊆ Ui, ri ∈ W}.

It is easy to check that the Fi’s are intersecting bi-set families. For a bi-set
X ∈ F =

⋃t
i=1 Fi, IX ∪ JX = {i : XI ⊆ Ui}, so (IUP) in Theorem 2.2 is clearly

satisfied. Assume that X,X ′ ∈ F and X ′ ⊆ X . By the definition of JX , we have
JX′ ⊆ JX . This, together with (IUP), implies IactX ⊆ IactX′ , and hence (AIP) also
holds.

We claim that condition (2.4) in Theorem 2.2 is also satisfied. Indeed, for a given
bi-set X ∈ F let Y be the bi-set with

YI = XI ,

YO \ YI = V \
( ⋃

i∈IX∪JX

Ui

)
.

Then IY ∪ JY = IX ∪ JX , JY ⊆ JX , and Δin(Y ) ⊆ Δin(X) (although XO ⊆ YO does
not necessarily hold). Note that each arc entering YO enters YI , and hence we have

r(IX ∪ JX)− r(JX) ≤ r(IY ∪ JY )− r(JY )

= r(π−1(PredYO ))− r(π−1(YO))

≤ �(YO) = �(Y ) ≤ �(X),

proving (2.4).
The above means that the conditions of Theorem 2.2 hold, so there are pairwise

disjoint arc-sets A1, . . . , At such that

(3.1) r(JX ∪ {i : �Ai(X) ≥ 1}) = r(IX ∪ JX)
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for every X ∈ F . We claim that these arc-sets can be chosen such that Ai is an
arborescence rooted at ri. In order to prove this, we have to choose the reducible
triples (X, a, i) more carefully than in the proof of Theorem 2.2.

Consider a general step of the proof, and assume that the sets of arcs that were
already added to A1, . . . , At form arborescences. At this point, the sets IX , JX ,
Fi, and F have already been modified. We distinguish the modified sets from their
original versions by adding a bar above the usual notation. Thus

ĪX = {i : XI ⊆ Ui \ V (Ai), XO ∩ Ui = XI},
J̄X = {i : XI ⊆ Ui, i /∈ ĪX}.

In particular, for a subatom W ⊆ V we have ĪW = {i : W ⊆ Ui, W ∩ V (Ai) = ∅}
and J̄W = {i : W ∩ V (Ai) �= ∅}.

Proposition 3.2. If V (Ai) ∩ XO �= ∅ for a bi-set X ∈ F̄ , then X is not active
for i.

Proof. Since XI is a subatom, either XI ∩Ui = ∅ or XI ⊆ Ui holds. We consider
the following three cases:

• If XI ∩ Ui = ∅, then i �∈ ĪX ∪ J̄X .
• If XI ⊆ Ui and V (Ai) ∩XI �= ∅, then i ∈ J̄X .
• If XI ⊆ Ui and V (Ai) ∩ XI = ∅, then, by V (Ai) ∩XO �= ∅, XO ∩ Ui �= XI ,

which implies that i ∈ J̄X .
In each case, by definition, the proposition follows.

To select a reducible triple (X, a, i), first we choose an active bi-set X that is
inclusionwise maximal among those for which |ĪX ∪ J̄X | is minimal.

Proposition 3.3. For every arc uv ∈ Δ(X), node u is reached in some Aj for
which j ∈ ĪactX .

Proof. We distinguish two cases based on whether u and v are in the same atom.
Case 1. Nodes u and v are in the same atom.
Consider the bi-setX ′ = (XI+u,XO+u). Note that ĪX∪J̄X = ĪX′∪J̄X′ = Īu∪J̄u

and we have ĪX′ = ĪX \ J̄u and J̄X′ = J̄X ∪ J̄u. If there is an index j ∈ ĪactX ∩ J̄u,
then u is reached in Aj , and we are done. Otherwise, J̄u \ Span(J̄X) = ∅, implying
ĪactX′ = ĪactX �= ∅, which contradicts the maximality of X .

Case 2. Nodes u and v lie in different atoms.
In this case Īu ∪ J̄u ⊂ ĪX ∪ J̄X because of the arc uv. By the choice of X ,

the biset (u, u) is not active, so Īu ⊆ Span(J̄u). The bi-set X ′′ = (XI , XO + u)
is also inactive because of the maximality of X . We have J̄X′′ = J̄X ∪ Īu ∪ J̄u,
and thus Span(J̄X′′) = Span(J̄X ∪ J̄u). If there is an index j ∈ ĪactX ∩ J̄u, then u
is reached in Aj and we are done. Otherwise, we have J̄u ⊆ Span(J̄X), and hence
Span(J̄X′′ ) = Span(J̄X ∪ J̄u) = Span(J̄X), which contradicts that X is active and X ′′

is inactive.

As in the proof of Theorem 2.2, we consider two cases. Assume first that there is
a tight bi-set Y ∈ F̄ intersecting X with ĪactX \ ĪactY �= ∅, and choose a minimal tight
bi-set Y with this property. By Proposition 2.8, there is an arc uv = a ∈ Δin(X)
induced by Y . By Proposition 3.3, u is reached in some Aj such that j ∈ ĪactX . By
Proposition 3.2, we have v /∈ V (Aj), j ∈ ĪactX \ ĪactY and that a is not induced by a
bi-set Z active for j.

If there is no such tight bi-set, then we can choose an arc uv = a ∈ Δin(X)
arbitrarily. By Proposition 3.3, u is reached in some Aj such that j ∈ ĪactX and by
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Proposition 3.2, uv is not induced by a bi-set active for j.
By the above, (X, a, j) is a reducible triple. Moreover, u ∈ V (Aj), v /∈ V (Aj), so

we can extend the jth arborescence by adding a to it.
At the end of the algorithm, we get arborescences A1, . . . , At satisfying (3.1)

and Ai is rooted at π(i). We claim that these arborescences give a maximal M-
independent packing of arborescences. At the beginning Jv is independent for every
v ∈ V by the M-independence of π, so, by Corollary 3.1, Jv ∪ {i : �Ai(v) ≥ 1} = {i :
v ∈ V (Ai)} is independent. By (3.1),

r({i : v ∈ V (Ai)}) = r(Jv ∪ {i : �Ai(v) ≥ 1}) = r(Iv ∪ Jv) = r(π−1(Predv)),

as required.

4. Finding a valid arc-cover. Recall that a family of pairwise disjoint arc-sets
A1, . . . , At of A that satisfies (2.1) is a valid arc-cover. In what follows, we show that
a valid arc-cover can be found in polynomial time in an appropriate oracle model.

Let V ′ be a copy of V , and identify (XI , XO) ∈ P2(V ) with XI ∪ X ′
O ∈ 2V ∪V ′

,
where X ′

O ⊆ V ′ is the counterpart of XO ⊆ V . Note that the union and intersection
operations are consistent with this correspondence. Therefore, Fi ⊆ P2(V ) can be
regarded as an intersecting family of 2V ∪V ′

. In what follows in this section, we regard
each bi-set in P2(V ) as a subset of V ∪ V ′. The definitions of F , p, and active sets
are the same as before.

To discuss polynomiality of the algorithm, we need a compact representation of
each intersecting family Fi ⊆ 2V ∪V ′

. For v ∈ V , let Fv
i := {X : v ∈ X ∈ Fi}.

Since Fv
i is closed under the union and intersection operations, it is a ring family

(or a distributed lattice), which can be represented by a digraph whose vertex set is
a subset of V ∪ V ′ by Birkhoff’s representation theorem [3] (see also [17]). In what
follows, we assume that we are given a digraph representation of Fv

i ⊆ 2V ∪V ′
for

v ∈ V , and Fi is given as
⋃

v∈V Fv
i . Note that the size of this representation is

polynomial in |V |. We also assume the following:
1. JX is given by a membership oracle; i.e., for X ⊆ V ∪ V ′ and i ∈ [t], we can

check whether i ∈ JX .
2. The rank function r of the matroid is given as an oracle. That is, for given

S ⊆ [t], we can compute r(S).
With these assumptions, we show the following.

Proposition 4.1. In the statement of Theorem 2.2, suppose that Fi, JX , and r
are given as above, and conditions (AIP) and (IUP) are satisfied. Then, we can
check whether condition (2.4) holds or not in polynomial time.

Proof. Let F+ ⊆ F be the set of all active sets, and for v ∈ V , let Fv
+ := {⋃Xi :

v ∈ Xi ∈ F+ for each i}.
Claim 4.2. For each v ∈ V , Fv

+ is a ring family; i.e., it is closed under the union
and intersection operations. Furthermore, the digraph representation of Fv

+ can be
computed in polynomial time.

Proof. It is obvious that Fv
+ is closed under the union operation. For X,Y ∈ Fv

+,
suppose that X =

⋃
Xi and Y =

⋃
Yj , where v ∈ Xi ∈ F+ and v ∈ Yj ∈ F+. By

(AIP) (or Proposition 2.3), Xi ∩ Yj ∈ F+ for each i, j. Therefore,

X ∩ Y =
⋃
i,j

(Xi ∩ Yj) ∈ Fv
+,
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which shows that Fv
+ is closed under the intersection operation.

In order to construct the digraph representation of Fv
+, it suffices to compute

all irreducible elements in Fv
+, where X ∈ Fv

+ is irreducible if there is no pair of sets
Y, Z ∈ Fv

+−X such that X = Y ∪Z. By the definition of Fv
+, each irreducible element

X ∈ Fv
+ is active; i.e., X ∈ Fv

i for some i ∈ IactX . Furthermore, X is irreducible in
Fv

i by the irreducibility in Fv
+, because if Y, Z ∈ Fv

i − X and X = Y ∪ Z, then
Y, Z ∈ Fv

+ −X . By this argument,

{X : ∃i ∈ [t] such that X is an irreducible element in Fv
i and i ∈ IactX }

is a subfamily of Fv
+ containing all irreducible elements. Note that this family can

be computed in polynomial time by checking whether each irreducible element in
Fv

i is active or not for every i ∈ [t]. By using this family, we obtain the digraph
representation of Fv

+.

Claim 4.3. For each v ∈ V , p is supermodular on the ring family Fv
+.

Proof. Let X,Y ∈ Fv
+. We distinguish three cases:

1. If p(X) > 0 and p(Y ) > 0, then p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ) by
Proposition 2.4.

2. If p(X) = p(Y ) = 0, then it is obvious that p(X) + p(Y ) = 0 ≤ p(X ∩ Y ) +
p(X ∪ Y ).

3. Suppose that p(X) > 0 and p(Y ) = 0. Since X ∩ Y ∈ Fv
+ by Claim 4.2,

X ∩ Y can be represented as
⋃
Zj , where v ∈ Zj ∈ F+. By (AIP), Zj is

active for any i ∈ IactX , which implies that X ∩Y =
⋃
Zj ∈ Fi ⊆ F . Then, by

Proposition 2.3 and (IUP), we obtain p(X) ≤ p(X ∩ Y ). By combining this
with p(Y ) = 0 ≤ p(X ∪ Y ), we have p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ).

This completes the proof.

The digraph D can also be regarded as a bipartite digraph on node set V ∪ V ′,
where every arc has its head in V and its tail in V ′. It is easy to check that this
is consistent with the notion of covering. Condition (2.4) holds if and only if the
condition

�(X)− p(X) ≥ 0 for every X ∈ Fv
+

holds for every v ∈ V , and this is equivalent to minX∈Fv
+
{�(X) − p(X)} ≥ 0 for

every v ∈ V . Since � − p is a submodular function on Fv
+, we can compute this

minimum value in polynomial time by submodular function minimization algorithms
(see [12, 17, 18]). Therefore, condition (2.4) can be checked in polynomial time.

Corollary 4.4. In the statement of Theorem 2.2, suppose that Fi, JX , and r
are given as above, and conditions (AIP), (IUP), and (2.4) are satisfied. Then we
can find a valid arc-cover in polynomial time.

Proof. For any arc a = uv ∈ A and for any index i ∈ [t], we can check using the
digraph representation of Fv

i whether the unique smallest bi-set in Fi that induces a
is active for i. If it is not, then we try the following procedure:

• adding a to Ai and removing it from A;
• adding i to JX for every bi-set X ∈ Fi covered by a; and
• removing bi-sets covered by a from Fi.

The new instance obtained by this procedure still satisfies (AIP), because a is not
induced by any bi-set active for i. The new digraph representations for Fi and the
oracle for JX are easy to construct using the original ones.
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It is possible that the new instance does not satisfy condition (2.4). However,
we know that there exists a pair (a, i) such that condition (2.4) still holds after this
procedure, and by Proposition 4.1 we can check whether it holds in polynomial time.
Thus we can check all pairs (a, i) and choose one where condition (2.4) is satisfied in
the new instance. By repeating this procedure, A becomes empty and the obtained
arc sets A1, . . . At form a valid arc-cover.

5. Finding a minimum cost arc-cover. The main tool used in this section is
the following theorem of Frank [7]; see also [8, Theorem 17.1.11].

Theorem 5.1 (Frank). Let D = (V,A) be a digraph, q be a positively intersecting
supermodular bi-set function on V , and g ∈ Z

A
+ be a nonnegative upper bound on the

arcs. Then the system

{x ∈ R
A : 0 ≤ xa ≤ ga ∀a ∈ A, �x(Z) ≥ q(Z) ∀Z ∈ P2(V )}

is total dual integral, where �x(Z) =
∑

a∈Δin(Z) xa. If q is the nonnegative part of an
intersecting supermodular bi-set function, then the system defines a submodular flow
polyhedron.

We first describe a polynomial algorithm that uses the ellipsoid method.

Theorem 5.2. Let D = (V,A) be a digraph, let c : A → R be a cost function,
and suppose that Fi, JX , and r are given as in section 4, so that (AIP) and (IUP)
are satisfied. We can find a minimum cost arc set A′ ⊆ A that satisfies

(5.1) �A′(X) ≥ p(X) for every X ∈ F

in polynomial time.

Proof. Let

P = {x ∈ R
A : 0 ≤ xa ≤ 1 ∀a ∈ A, �x(Z) ≥ p(Z) ∀Z ∈ F}.

The set function p is positively intersecting supermodular by Proposition 2.4, so by
Theorem 5.1 the system of inequalities defining P is total dual integral. As a con-
sequence, the polyhedron P is integer, so finding a minimum cost valid arc-cover
amounts to optimization over P . By Proposition 4.1, there is a polynomial-time sep-
aration algorithm for the linear system defining P , and therefore we can optimize on
P in polynomial time using the ellipsoid method by the results of Grötschel, Lovász,
and Schrijver [11].

It is left as an open question whether there is a strongly polynomial combinatorial
algorithm for finding the minimum cost valid arc-cover. However, in the special case
when F is an intersecting family, this is possible using submodular flows.

Theorem 5.3. Let D = (V,A) be a digraph, and let c : A → R be a cost function.
Let F be an intersecting family over P2, and suppose that Fi, JX , and r are given as
in section 4, so that (AIP) and (IUP) are satisfied, and each Fi is a subfamily of
F . Then we can find a minimum cost arc set A′ ⊆ A that satisfies

(5.2) �A′(X) ≥ p(X) for every X ∈ F

in strongly polynomial time.
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Proof. Let

p′(X) =

{
r(IX ∪ JX)− r(JX ) if X ∈ F ,

−∞ otherwise.

The main advantage of F being intersecting is that it implies the intersecting super-
modularity of p′.

Proposition 5.4. The bi-set function p′ is intersecting supermodular on P2(V ).

Proof. Let X and Y be intersecting bi-sets. If p′(X) or p′(Y ) is −∞, then the
supermodular inequality trivially holds.

If p′(X), p′(Y ) ≥ 0, then X,Y ∈ F . As F is intersecting, X ∩ Y and X ∪ Y are
also in F . Note that Proposition 2.3 implies JX∩Y ⊆ Span(JX) ∩ Span(JY ). As the
families Fi are also intersecting, we have IX∪Y ⊇ IX ∩IY . This, together with (IUP),
implies JX∪Y ⊆ JX ∪ JY . Thus

r(JX) + r(JY ) = r(Span(JX)) + r(Span(JY ))

≥ r(Span(JX) ∩ Span(JY )) + r(Span(JX) ∪ Span(JY ))

≥ r(JX∩Y ) + r(JX∪Y ).

Using this and (IUP), we get

p′(X) + p′(Y ) = r(IX ∪ JX)− r(JX) + r(IY ∪ JY )− r(JY )

≤ r(IX∩Y ∪ JX∩Y )− r(JX∩Y ) + r(IX∪Y ∪ JX∪Y )− r(JX∪Y )

= p′(X ∩ Y ) + p′(X ∪ Y ).

As p is the nonnegative part of p′, Theorem 5.1 of Frank implies that the system

{x ∈ R
A : 0 ≤ xa ≤ 1 ∀a ∈ A, �x(Z) ≥ p(Z) ∀Z ∈ P2(V )}

describes a submodular flow polyhedron. Moreover, the proof of Frank gives a con-
struction of a corresponding submodular flow problem that in our case can be solved
in strongly polynomial time, since the support of p′ is given by the digraph represen-
tations.

6. Open questions. Let D = (V + r0, A ∪ S) be a directed graph, where S =
{a1, . . . , at} = Δout(r0). For an r0-arborescence F ⊆ A ∪ S and node v ∈ V , the
unique r0 − v path in F is denoted by F (r0, v), and the index of the first arc of
F (r0, v) is denoted by iFv . In other words, iFv = j if and only if F (r0, v) ∩ S = aj .
For a subset X ⊆ V , let PX = {i : there is a path from r0 to X through ai}, and let
Δin

S (X) = Δin(X) ∩ S.
The main result of [4] can be reformulated as follows.

Theorem 6.1. Let D = (V + r0, A ∪ S) be a digraph, where S = {a1, . . . , at} =
Δout(r0). Let M = ([t], r) be a matroid of rank k. There exist t pairwise arc-disjoint
r0-arborescences F1, . . . , Ft such that ai ∈ Fi for i = 1, . . . , t and {i : v ∈ V (Fi)}
forms a base of M for each v ∈ V if and only if Δin

S (v) is independent for every v ∈ V
and

�A(X) ≥ k − r(Δin
S (X)) for every ∅ �= X ⊆ V.

However, a direct extension of Edmonds’s theorem would be the following.
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Conjecture 6.2. Let D = (V +r0, A∪S) be a digraph, where S = {a1, . . . , at} =
Δout(r0). Let M = ([t], r) be a matroid of rank k. There exist k pairwise arc-disjoint

spanning r0-arborescences F1, . . . , Fk such that {iFj
v : j = 1, . . . , k} forms a base of

M for each v ∈ V if and only if

(6.1) �A(X) ≥ k − r(Δin
S (X)) for every ∅ �= X ⊆ V.

It can be verified that, if true, Conjecture 6.2 would imply Theorem 6.1. Also, it
is worth mentioning the following analogy. In the case of Edmonds’s theorem, (1.1)
is equivalent to the rooted k-arc-connectivity of D, that is, when there are k pairwise
arc-disjoint directed paths from r0 to v for each v ∈ V − r0. In Conjecture 6.2, (6.1)
is equivalent to a matroidal version of rooted connectivity. We call a set of directed
r0−v paths M-independent if they are pairwise arc-disjoint and the first arcs of these
paths form an independent set of M. It can be shown that (6.1) is equivalent to the
existence of k M-independent r0 − v paths for every v ∈ V .

A similar reformulation of Theorem 1.2 is as follows.

Theorem 6.3. Let D = (V + r0, A ∪ S) be a digraph, where S = {a1, . . . , at} =
Δout(r0). Let M = ([t], r) be a matroid. There exist t pairwise arc-disjoint r0-
arborescences F1, . . . , Ft such that ai ∈ Fi for i = 1, . . . , t , {i : v ∈ V (Fi)} is
independent in M, and r({i : v ∈ V (Fi)}) = r(Pv) for each v ∈ V if and only if
Δin

S (v) is independent for every v ∈ V and

�A(X) ≥ r(PX)− r(Δin
S (X)) for every ∅ �= X ⊆ V.

A strengthening of Conjecture 6.2 would be the following.

Conjecture 6.4. Let D = (V + r0, A) be a digraph, where S = {a1, . . . , at} =
Δout(r0). Let M = ([t], r) be a matroid of rank k. There exist k pairwise arc-disjoint

r0-arborescences F1, . . . , Fk such that {iFj
v : v ∈ V (Fj)} is independent in M and

r({iFj
v : v ∈ V (Fj)}) = r(Pv) for each v ∈ V if and only if

�A(X) ≥ r(PX)− r(Δin
S (X)) for every ∅ �= X ⊆ V.

Conjectures 6.2 and 6.4 basically state that the t arborescences appearing in
Theorems 6.1 and 6.3 can be chosen in a very special way: they can be divided into
k groups such that the node-sets of arborescences corresponding to the same group
are disjoint apart from the root-node. Besides the validity of the above conjectures,
their connection to Theorem 2.2 is also of interest.

Another possible strengthening of these theorems would be to put some restric-
tions on the node-sets spanned by the arborescences in question. A natural candidate
for a restriction is convexity, introduced in [9]. Given a digraph D = (V,A), a subset
U of nodes is convex if there is no node v ∈ V − U such that v is reachable from U
and U is reachable from v. This would suggest the following variant of Theorem 6.3.

Conjecture 6.5. Let D = (V +r0, A∪S) be a digraph, where S = {a1, . . . , at} =
Δout(r0), and let M = ([t], r) be a matroid. There exist t pairwise arc-disjoint r0-
arborescences F1, . . . , Ft such that V (Fi) is a convex set and ai ∈ Fi for i = 1, . . . , t,
{i : v ∈ V (Fi)} is independent in M, and r({i : v ∈ V (Fi)}) = r(Pv) for each v ∈ V
if and only if Δin

S (v) is independent for every v ∈ V and

(6.2) �A(X) ≥ r(PX)− r(Δin
S (X)) for every ∅ �= X ⊆ V.
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However, it turns out that Conjecture 6.5 is false. A counterexample can be
constructed as follows. Let V = {v1, v2, v3}, S = {r0v1, r0v2, r0v3}, and A = {v1v2,
v2v3, v3v1}. Let M = (S, r) be the uniform matroid on S of rank 2. It is not difficult
to see that D and r satisfy (6.2), but there is no solution in which each arborescence
spans a convex set.

Finally, we show that a further extension of Conjecture 6.4 to root-sets results
in an NP-complete problem. We call a collection of node-disjoint arborescences a
branching. Equivalently, a branching (U,B) is a directed forest in which each node
has in-degree at most one. The set of nodes having in-degree zero is called the root-set
of the branching. For a digraph D = (V,A) and ∅ �= R ⊆ V , a branching (V,B) is
called a spanning R-branching if its root-set is exactly R.

Let D = (V,A) be a digraph, and let R = {R1, . . . , Rk} be a list of root-sets. Let
t =

∑ |Ri|, let M = ([t], r) be a matroid of rank k, and let f be a bijection from the
multiset R1 + · · · + Rk to [t]. If B is a branching, v is in V (B), and r0 is the root
of the arborescence in B that contains v, then we use the notation iBv = f(r0). Let
Pv = {f(u) : u ∈ R1 + · · ·+Rk, v is reachable from u}.

Problem 6.6. Can we decide in polynomial time the existence of k pairwise arc-

disjoint branchings B1, . . . , Bk such that Bi is rooted at Ri, {iBj
v : v ∈ V (Bj)} is

independent in M, and r({iBj
v : v ∈ V (Bj)}) = r(Pv) for each v ∈ V ?

Theorem 6.7. Problem 6.6 is NP-complete, even with the restriction that M is
a partition matroid.

Proof. Let R be a ground set and M1,M2, and M3 be partition matroids on
R with ri(R) = k for i = 1, 2, 3. Deciding the existence of a common base of three
partition matroids in general is NP-complete, as the three-dimensional matching prob-
lem [10, Problem SP1] can be reduced to it easily.

Let R1, . . . , Rk denote the partition classes of M1; that is, a set X ⊆ R is in-
dependent in M1 if and only if |X ∩ Ri| ≤ 1 for each i = 1, . . . , k. As partition
matroids are special cases of gammoids, there is a digraph D = (R+ T,A) such that
R is a stable set with �(R) = 0 and a set X ⊆ R is independent in M2 if and only if
there exist |X | directed paths—node-disjoint apart from v0—from X to a fixed node
v0 ∈ T .

Note that M3 is also defined in R; hence let f be the identity function. For
each v ∈ T − v0, add k directed arcs going from v0 to v to the digraph. Then the
existence of k pairwise arc-disjoint branchings B1, . . . , Bk satisfying the conditions
of Problem 6.6 with the above f and M = M3 is equivalent to the existence of a
common base of the Mi’s.
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Egerváry Research Group, Eötvös University, Budapest, Hungary, 2013.

[16] L. Lovász, On two minimax theorems in graph, J. Combinatorial Theory Ser. B, 21 (1976),
pp. 96–103, doi:10.1016/0095-8956(76)90049-6.

[17] S. T. McCormick, Submodular function minimization, in Handbooks in Operations Re-
search and Management Science, Elsevier, Amsterdam, 2006, pp. 321–391, doi:10.1016/
S0927-0507(05)12007-6.

[18] A. Schrijver, A combinatorial algorithm minimizing submodular functions in strongly poly-
nomial time, J. Combin. Theory Ser. B, 80 (2000), pp. 346–355, doi:10.1006/jctb.2000.
1989.
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