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Abstract

We consider a type of stochastic Newton equations, with single-well potential func-
tions, and study the limiting behaviors of their solution processes when the coefficients
of the potentials diverge to infinity. We prove that for dimension 1, the stochastic so-
lution processes converge. The explicit descriptions of the limiting processes are also
given. Especially, the limiting processes are deterministic for special initial conditions.
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1 Introduction

We consider the motion of a particle with its position Xλ
t and velocity V λ

t at time t given
by the following stochastic differential equation:

dXλ
t = V λ

t dt
dV λ

t = −bV λ
t dt− λ∇g(Xλ

t )dt+ σ(Xλ
t )dBt,

(Xλ
0 , V

λ
0 ) = (X0, V0).

(1.1)

Considering the Hamiltonian H(x, v) = 1
2 |v|

2 + λg(x), (1.1) can be seen as a randomized
and damped Hamiltonian system. b > 0 is the damping parameter, B is a one dimensional
Brownian motion, and we assume that σ ∈ C∞(R,R) is bounded and positive uniformly.
λ ≥ 1 is a parameter (later on the limit λ → ∞ will be taken), and the function g is a
potential. In this paper, we consider the case where g is a single-well function (see below
for details).

We are interested in the behavior of the particle described by (1.1) when λ → ∞.
This type of problem – add some perturbation given by Brownian motion to a Newton
mechanical system, and consider the limit of the solution – has been studied by many
authors, for example, Kesten-Papanicolaou [4] considered the limit of the distribution
of the solution, when the force converges to 0, and Albeverio-Smii [1] considered the
asymptotic expansion of the solution. However, in the literature, to the best knowledge
of the author, there are not so many papers concerning with our problem of taking the
potential to infinity. (Some references in this line will be given later in this section). Same
as in the relation between [7] and [8], this problem, which is interesting in itself, is also
closely related to the problem of “mechanical models of Brownian motions” with negative
resulting-potentials between the massive particles and with the massive particles evolving
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classically (instead of relativistically, as in [8]). The limit λ → ∞ corresponds to the fact
that the mass of the environmental light particles converges to 0 in that model (see [6,
(3.30)] and [8, (3.4)] for details).

In this paper, we consider the simplest case where the system has dimension d = 1, so
Xλ

t , V
λ
t ∈ R. Also, we concentrate ourselves to the case where g ∈ C∞

0 (R;R) is a single
well potential. Precisely, we assume that g satisfies the following conditions (see Figure 1
below).

(A1) There exist constants r3 > r2 > r1 > 0 such that g(x) = 0 if x ≥ r3 or x = r1,
g′(r1) < 0 and g(x) > 0 if x < r1. Also, g(x) is strictly monotone decreasing in
x ∈ (r1, r2) and is strictly monotone increasing in x ∈ (r2, r3).

Also, we assume the following.

(A2) There exists a constant a0 > 0 such that g′ is monotone decreasing in (r3 − a0, r3)

and C1 := infy∈[r3−a0,r3)
g′(y)
|g(y)| > 0.

The single-well assumption of (A1) is necessary for our function a(·) (see (1.3) below for
its definition) to be well-defined, which is necessary for the statement of our result. We
also remark that by (A1), r2 is the unique minimum point of g. The growth condition
(A2) is a technical condition, and is used in this paper to estimate the sojourn time of the
particle at its right-end when it is near to r3 (see Remark 5 below). By considering the
balance between its time spent for and its energy loss during each round-trip, this ensures
that the particle stays in (r1, r3) as soon as it enters this interval (see the paragraph before
(1.2) and Proposition 3.7 for details).

Figure 1: A sketch of the function g

The same question for the case with d ≥ 2 (with g spherical symmetric) will be studied
in a forthcoming paper, with the help of the results of this paper. Heuristically, as λ → ∞,
the potential force −λ∇g, which accelerates the particle, becomes stronger and stronger,
so it is not so strange to expect that randomness vanishes in the limit. Our result of
this paper shows that this is the case for dimension 1 under our assumption, and gives
a precise description of the limiting process (see Theorem 1.1 below). However, it seems
that the situation is different for d ≥ 2: although |Xt|, the distance of the particle from
the origin, has the same limit behavior (i.e., oscillates in a certain subinterval of (r1, r3)),
the direction of the particle keeps random – the strong potential force restrains only the
distribution of the absolute value |Xt|, and cannot stick the direction of the particle.
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Kusuoka [5] considered a similar question in Rd, in the case where g is positive in an
inner neighborhood of ∂(supp(g)), the boundary of its support, with the initial position

X0 ∈ supp(g)
C
, and got a limiting process given as a diffusion process reflecting at the

boundary of supp(g). The idea is that, in this case, as soon as the particle arrives the
boundary of supp(g) and attempts to enter this region, when λ → ∞, the potential force
−λ∇g is so strong that it pushes the particle back to the region supp(g) in an instant. We
notice that we have a totally different situation in this paper: in this paper, g is negative
in an inner neighborhood of ∂(supp(g)), so as soon as the particle enters supp(g), the
potential force −λ∇g accelerates the particle in an instant.

Also, [7] considered a similar question in Rd in the case where g has a negative region
as same as in this paper, but with the particle evolving relativistically, precisely, [7] con-
sidered a randomized and damped Hamiltonian system with H(p, q) =

√
1 + p2 + λg(q),

or equivalently, the position Qλ
t and the momentum P λ

t of the particle at time t are given

by dQλ
t =

Pλ
t√

1+|Pλ
t |2

dt, dP λ
t = −b

Pλ
t√

1+|Pλ
t |2

dt−λ∇g(Qλ
t )dt+σ(Qλ

t )dBt, (Q
λ
0 , P

λ
0 ) = (q0, p0).

As explained, since g is negative in an inner neighborhood of ∂(supp(g)), when λ → ∞,
one gets that |P λ

t | → ∞ in this region. However, since we are interested in the limit of

V λ
t =

Pλ
t√

1+|Pλ
t |2

instead of P λ
t , and |V λ

t | is always dominated by 1, it is still possible to con-

sider the limit of {(Qt, Vt); t ≥ 0}. Indeed, by introducing several new stochastic processes,
[7] proved that the evolution of the particle converges to a stochastic process with two
phases, called diffusion phase and uniform motion phase (corresponding to {x : g(x) < 0}
and (supp(g))C , respectively). This is, again, not the case for our present model, since in
our model, the velocity V λ

t itself diverges to ∞.
In this paper, we consider the behavior of the particle described by (1.1) with X0 > r3

when λ → ∞. Notice that until the first time τ0 that the particle hits Xt < r3, we
have that g = 0, which means that the behavior of the particle does not depend on λ.

Therefore, it is trivial that the distribution of
{
(Xλ

t∧τ0 , V
λ
t∧τ0); t ≥ 0

}
is equal to, hence

certainly converges to, the distribution of the τ0-stopped diffusion process given by
dXt = Vtdt
dVt = −bVtdt+ σ(Xt)dBt,
(X0, V0) = (X0, V0).

So we could concentrate ourselves to the behavior of the particle after τ0. i.e., by time-
shifting, we assume from now on that

X0 = r3, V0 < 0.

In our present model, as claimed, the potential force −λ∇g is an attractive force right
after the particle enters Xt < r3, which means that when λ → ∞, Vt becomes infinity in
an instant. So it is meaningless to consider the limit behavior of Xλ

t itself when λ → ∞.

Instead, we consider the limit behavior of
{
Y f,λ
t ; t ≥ 0

}
given by

Y f,λ
t :=

∫ t

0
f(Xλ

s )ds

for any f ∈ Cb(R).
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Choose and fix any f ∈ Cb(R). Since f is bounded, it is easy to see (see Corollary 2.4)

that
{

the distribution of
{
Y f,λ
t ; t ≥ 0

}
;λ ≥ 1

}
is tight in the meaning described below.

However, it is not so easy to give the precise expression of the limiting process. We answer
this problem in this paper.

Before formulating our result of this paper, let us first explain the situation heuristi-
cally. As claimed, for large λ, |V λ

t | is also very large as soon as the particle enters the
range (r1, r3). So by the virtue of the damping force, the total energy (Hλ

t defined by (1.2)
below) becomes negative. Therefore, in the limit λ → ∞, we have with probability 1 that
the particle could not leave from [r1, r3], the closure of the domain where g is negative.
Indeed, we will prove that it could not even reach the boundary r1 and r3 (see Proposition
3.7). On the other hand, the total energy of the particle also suggests that the limiting
process does not stop at r2, the unique minimum point of the potential function, either,
in any finite time (see Remark 2 and Lemma 2.16 (1)). So in the limit, the particle keeps
on oscillating in a certain range that is contained in (r1, r3), with its velocity very large.
Therefore, the problem is to find the range of the particle in the limiting process around
any given time. As we prove in this paper, this “range of the particle” depends on time.

In order to formulate our result, let us first define several notations. First, for any
λ > 0, let

Hλ
t :=

1

2
|V λ

t |2 + λg(Xλ
t ), (1.2)

Jλ
t := λ−1Hλ

t .

As explained, the limit of Jλ
t as λ → ∞ plays an important role as an index of “the range

of the particle” at time t.

By assumption (A1), both g
∣∣∣
[r1,r2)

and g
∣∣∣
(r2,r3]

are strictly monotone with the same

range (g(r2), 0], so both of them have inverse functions on (g(r2), 0]. Write their inverse
functions as g−1,1 and g−1,2, respectively. For any f ∈ Cb(R), let

Sf (j) := Sg
f (j) :=

√
2

∫ g−1,2(j)

g−1,1(j)

f(y)√
j − g(y)

dy,

and let

Agf(j) :=
Sf (j)

S1(j)
, j ∈ (g(r2), 0).

Remark 1 The intuitive meanings of Sf (j) and Agf(j) are as follows: consider the case
where b = 0 = σ (i.e., the Hamiltonian system without randomizing or damping), then
λ−1/2Sf (j) represents the line integral of the function f along the orbit lj : H(x, v) = λj
with respect to the Liouville measure of the system, and λ−1/2S1(j) is the time period of
the same orbit lj. So Agf(j) is nothing but the mean value of f along the same orbit lj.

Let

a(j) = 2
√
2

∫ g−1,2(j)

g−1,1(j)

√
j − g(y)dy, j ∈ (g(r2), 0]. (1.3)

Then a(·) is continuous on j ∈ (g(r2), 0], and

a′(j) =
√
2

∫ g−1,2(j)

g−1,1(j)

1√
j − g(y)

dy = S1(j) > 0, j ∈ (g(r2), 0).
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So a(·) is bijective on (g(r2), 0]. Write the inverse function of a as a−1. Let

jt = a−1
(
2
√
2e−bt

∫ r3

r1

√
−g(y)dy

)
, (1.4)

and let

yft =

∫ t

0
Agf(js)ds, t ≥ 0.

Finally, let W = C([0,∞);R2), and let

dist(w1, w2) =
∞∑
n=1

2−n
(
1 ∧

[
max
t∈[0,n]

|w1(t)− w2(t)|
])

, w1, w2 ∈ W.

Our main result of this paper is the following.

THEOREM 1.1 Under the above assumptions, for any f ∈ C1
b (R), we have that when

λ → ∞,
{
(Jλ

t , Y
f,λ
t ); t ∈ [0,∞)

}
converge to {(jt, yft ); t ∈ [0,∞)} in probability in

(W,dist).

Remark 2 We remark the following observations with respect to the behavior of jt:

1. For any t ∈ (0,∞), we have by the definition of jt that jt ∈ (g(r2), 0), so Theorem
1.1 implies that in the limit λ → ∞, the particle keeps on oscillating in any finite
time, with its range around time t given by (1.4).

2. We have that limt→∞ jt = a−1(0) = g(r2), the minimum value of g, so Theorem
1.1 implies that in the limit t → ∞, the particle of the limiting process seems to
concentrate around the minimum point of the potential – the damping is the stronger.

Finally, let us notice several observations with respect to a(·) and jt. First, by a simply
calculation, we get that

a(0) = 2
√
2

∫ r3

r1

√
−g(y)dy, (1.5)

j −Agg(j) =

∫ g−1,2(j)
g−1,1(j)

√
j − g(y)dy∫ g−1,2(j)

g−1,1(j)
1√

j−g(y)
dy

=
1

2

a(j)

a′(j)
, j ∈ (g(r2), 0). (1.6)

In Remark 3, we use these to get an ordinary differential equation for jt.

Remark 3 Consider the following ordinary differential equation with respect to {jt; t ≥
0}: 

djt = −2b
(
jt −Agg(jt)

)
dt,

jt < 0 for all t > 0,
j0 = 0.

(1.7)
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We notice that jt defined by (1.4) is the unique solution of (1.7). Indeed, as long as

jt < 0, we have by (1.6) that d
dtjt = −2b

(
jt −Agg(jt)

)
⇔ d

dta(jt) = −ba(jt). Since a(·) is
bijective, this combined with (1.5) implies that

{jt; t ≥ 0} satisfies (1.7)

⇔ {a(jt); t ≥ 0} satisfies
d

dt
a(jt) = −ba(jt), a(j0) = 2

√
2

∫ r3

r1

√
−g(y)dy. (1.8)

It is trivial that (1.8) has a unique solution a(jt) = 2
√
2e−bt

∫ r3
r1

√
−g(y)dy, t ≥ 0. Since

a(·) is bijective on (g(r2), 0], we get our assertion.

Remark 4 Intuitive meaning of (1.7): Same as in Remark 1, if one consider the Hamil-
tonian system without randomizing or damping, then λ1/2a(j) represents the line integral
of |v|2 along the orbit lj : H(x, v) = λj with respect to Liouville measure of the system,
and λ−1/2a′(j) is the period of the same orbit, so by (1.6), 2λ(j − Agg(j)) is the mean
value of |v|2 along the same orbit. For our model (i.e., with randomizing and damping),
although this does not hold rigidly, is still a good approximation. Since −bλ−1|V λ

t |2 is the
strongest term in the “derivative” of Jλ

t (see, for example, (2.6)), we get heuristically that
−2b(Jt −Agg(Jt)) is a good approximation of the “derivative” of Jλ

t .

Remark 5 As noticed, a′(j) is not well-defined at j = 0, due to the divergence of

I(j) :=

∫ g−1,2(j)

r3−a0

1√
j − g(x)

dx

as j → 0− (the remainder a′(j) − I(j) is bounded as j → 0−). However, assumption
(A2) implies that there exists a constant C such that I(j) ≤ C|j|−1/2 as j → 0−. Indeed,
for any j ∈ (g(r3 − a0), 0), we have by (A2) that j − g(x) ≥ g′(g−1,2(j))(g−1,2(j) − x) ≥
C1|g(g−1,2(j))|(g−1,2(j)− x) = C1|j|(g−1,2(j)− x) for any x ∈ (r3 − a0, g

−1,2(j)), so

I(j) ≤
∫ g−1,2(j)

r3−a0

1√
C1|j|(g−1,2(j)− x)

dx =
1√
C1|j|

2
√

g−1,2(j)− (r3 − a0) ≤ 2

√
a0
C1

|j|−1/2.

This computation is also used, for example, in the proof of Proposition 2.7 (see Section 5
for the proof).

Remark 6 Our convergence in probability of Theorem 1.1 is equivalent to the convergence
in distribution by Lemma 2.2 below. In this paper, we prove this convergence in distribution
by proving that the considered family of distributions is tight, and each of its cluster points
as λ → ∞ satisfies (1.7). We want to emphasize that as a′(j) is not well-defined at j = 0,
the condition jt < 0 for all t > 0 in (1.7) could not be omitted.

We prove Theorem 1.1 in the rest of this paper. The basic idea is as follows. We first
consider the deterministic case, especially we count the number of times that it oscillates
during any time interval, by estimating the sojourn time of the particle near its right-
end during each oscillation (see Subsection 2.3). We then convert our problem for the
random case to the deterministic case, by loosing the initial velocity condition a little bit
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for each oscillation (see, e.g., Lemma 2.15). We do so by introducing sets F λ
1 ∼ F λ

11,c,
the probabilities of which are proven to be asymptotically 1 (see Subsection 2.5). Well-
known properties of Brownian motion, such as the law of the iterated logarithm and Levy’s
modulus continuity, are used.

The rest of this paper is organized as follows. In Section 2, we give some preparations:
we prove a useful estimate of the velocity V λ

t in Subsection 2.1, which ensures that |V λ
t |

could not be too large; in Subsection 2.2, we notice that it suffices to prove the convergence
in distribution, and prove the tightness of the considered family of distributions; we sum-
marize several useful results for the deterministic case in Subsection 2.3, with the proofs
given in Section 5; in Subsection 2.4, we recall some necessary properties of Brownian
motion; and in Subsection 2.5, we define the mentioned sets F λ

1 ∼ F λ
11,c and prove that

they do have asymptotically full probabilities. So the conditions in the definitions of these
sets could be used freely, when we consider the limit λ → ∞ in Sections 3 and 4. We prove
Theorem 1.1 by proving that all cluster points when λ → ∞ satisfy (1.7). This is done in
Sections 3 and 4: We prove in Section 3 that under any cluster probability, Jt is strictly
negative for any t > 0, so the particle could never hit the boundary {r1, r3} except when
t = 0; and in Section 4, we prove that under any cluster probability, the process satisfies
the claimed ordinary differential equation.

2 Preparations

We make several preparations in this section. First notice that under our assumption,
there exist constants a1, a2 > 0 such that

g′(x) < −a2 if x ∈ [r1, r1 + a1). (2.1)

Also, by re-choosing a0 > 0 if necessary, we can assume without loss of generality that
r1 + a1 < r3 − a0 and

g(x) <
1

3
g(r3 − a0) if x ∈ (r1 + a1, r3 − a0). (2.2)

Notice that in order to prove Theorem 1.1, a result with respect to t ∈ [0,∞), it suffices
to prove our assertion with respect to t ∈ [0, T ] for any T > 0. Choose any T > 0 and fix
it from now on.

2.1 An essential estimate

We have the following estimation with respect to V λ
t . This estimation plays an essential

role in this paper.

Lemma 2.1 There exists a constant C2 > 0 such that

E
[

sup
t∈[0,T ]

|V λ
t |4

]1/4
≤ C2λ

1
2 , λ ≥ 1.

Proof. We have by the definition of Hλ
t and Ito’s formula that

dHλ
t = −b|V λ

t |2dt+ V λ
t σ(Xλ

t )dBt +
1

2
σ(Xλ

t )
2dt,
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so for any t ∈ [0, T ], we have that

|V λ
t |2 = 2Hλ

t − 2λg(Xλ
t )

= 2H0 − 2b

∫ t

0
|V λ

s |2ds+ 2

∫ t

0
V λ
s σ(Xλ

s )dBs +

∫ t

0
σ(Xλ

s )
2ds− 2λg(Xλ

t )

≤ 2H0 + 2

∫ t

0
V λ
s σ(Xλ

s )dBs + T∥σ∥2∞ + 2λ∥g∥∞.

Here ∥g∥∞ := maxx∈R |g(x)|. Therefore, by Doob’s inequality, we get that

E
[

sup
t∈[0,T ]

|V λ
t |4

]
≤ 2

(
2H0 + T∥σ∥2∞ + 2λ∥g∥∞

)2
+ 2E

[
sup

t∈[0,T ]

(
2

∫ t

0
V λ
s σ(Xλ

s )dBs

)2]
≤ 2

(
2H0 + T∥σ∥2∞ + 2λ∥g∥∞

)2
+ 32E

[( ∫ T

0
V λ
s σ(Xλ

s )dBs

)2]
≤ 2

(
2H0 + T∥σ∥2∞ + 2λ∥g∥∞

)2
+ 32∥σ∥2∞TE

[
sup

t∈[0,T ]
|V λ

t |4
]1/2

.

In general, for any c1, c2 ∈ R+, we have that

x2 ≤ c1 + c2x ⇒ x ≤ c2 +
√

c22 + 4c1
2

≤ c2 + c2 +
√
4c1

2
= c2 +

√
c1.

Therefore, we get that

E
[

sup
t∈[0,T ]

|V λ
t |4

]1/2
≤ 32∥σ∥2∞T +

√
2
(
2H0 + T∥σ∥2∞

)
+ 2

√
2∥g∥∞λ

for any λ ≥ 1, which implies our assertion.

2.2 The tightness

Choose and fix any f ∈ Cb(R). First recall that our expected limit {(jt, yft )}t∈[0,T ] is deter-
ministic. As well-known (see Lemma 2.2 below), when the expected limit is deterministic,
the convergence in probability is equivalent to the convergence in distribution.

Lemma 2.2 Let (S, ρ) be any complete separable metric space. Let Xn, n ∈ N be a
sequence of S-valued random variables and let x0 ∈ S. Then Xn → x0 in probability ⇔
Xn → x0 in distribution.

Proof. The “⇒” part is trivial. We prove the “⇐” part. For any ε > 0, let

h(y) =
(
1 − ρ(y,x0)

ε

)+
. Then h is bounded and continuous, and 1{y∈S:ρ(y,x0)≥ε} ≤ 1 − h.

Therefore, P ({ρ(Xn, x0) ≥ ε}) ≤ E[1− h(Xn)] → 1− h(x0) = 0.

Let Pλ denote the distribution of {(Jλ
t , Y

f,λ
t )}t∈[0,T ]. By Lemma 2.2, in order to prove

Theorem 1.1, it suffices to prove that Pλ converges to δ{(jt,yft )}t∈[0,T ]
as λ → ∞. We do so
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by prove that {Pλ;λ ≥ 1} is tight, and that any of its cluster points has probability one

on {(jt, yft )}t∈[0,T ]. We prove the tightness of {Pλ;λ ≥ 1} in this subsection.
First, as an easy result of Billingsley [2, Theorem 7.3] (or see Karatzas-Shreve [3,

Theorem 1.4.10]), we have the following general result with respect to the tightness of
probability measures on C([0, T ];R):

Lemma 2.3 Let Zλ
t be any stochastic process given by

dZλ
t = σZ,λ(t)dBt + bZ,λ(t)dt.

If Zλ
0 is bounded for λ ≥ 1, and

sup
λ≥1

(
sup

t∈[0,T ]
E
[
|bZ,λ(t)|2

]
+ E

[
sup

t∈[0,T ]
|σZ,λ(t)|2

])
< ∞, (2.3)

then we have that
{

the distribution of
{
Zλ
t

}
t∈[0,T ]

;λ ≥ 1
}

is tight in ℘(C([0, T ],R)).

Proof. We prove this lemma by proving that all conditions of [2, Theorem 7.3] are
satisfied.

Since Zλ
0 is bounded for λ ≥ 1, it is trivial that the first condition of [2, Billingsley,

Theorem 7.3] is satisfied. We prove that the second condition there is also satisfied, in
words, for any ε > 0, we prove that

lim
δ→0

P ( sup
s,t∈[0,T ],|s−t|≤δ

|Zλ
t − Zλ

s | > ε) = 0.

It suffices to prove that

lim
δ→0

P
(

sup
s,t∈[0,T ],|s−t|≤δ

|
∫ t

s
σZ,λ(u)dBu| > ε/2

)
= 0, (2.4)

lim
δ→0

P
(

sup
s,t∈[0,T ],|s−t|≤δ

|
∫ t

s
bZ,λ(u)du| > ε/2

)
= 0. (2.5)

For (2.5), we have by Markov’s inequality and Schwartz’s inequality that

P
(

sup
s,t∈[0,T ],|s−t|≤δ

|
∫ t

s
bZ,λ(u)du| > ε/2

)
≤ (ε/2)−1E

[
sup

s,t∈[0,T ],|s−t|≤δ
|
∫ t

s
bZ,λ(u)du|

]
≤ (ε/2)−1E

[
sup

s,t∈[0,T ],|s−t|≤δ
|t− s|1/2

∣∣∣ ∫ t

s
|bZ,λ(u)|2du

∣∣∣1/2]
≤ (ε/2)−1δ1/2E

[ ∫ T

0
|bZ,λ(u)|2du

]1/2
≤ (ε/2)−1δ1/2T 1/2 sup

t∈[0,T ]
E
[
|bZ,λ(t)|2

]
.

So we get (2.5).
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We next prove (2.4). Since {
∫ t
0 σ

Z,λ(u)dBu; t ≥ 0} is a continuous martingale, we have
(see, for example, [3, Theorem 3.4.6 and Problem 3.4.7]) that there exists a Brownian
motion {W (t); t ≥ 0} such that

∫ t
0 σ

Z,λ(u)dBu = W (
∫ t
0 |σ

Z,λ(u)|2du). So for any T , η > 0,
we have by Markov’s inequality that

P
(

sup
s,t∈[0,T ],|s−t|≤δ

|
∫ t

s
σZ,λ(u)dBu| > ε/2

)
≤ P

(∫ T

0
|σZ,λ(u)|2du > T

)
+ P

(
sup

s,t∈[0,T ],|s−t|≤δ

∫ t

s
|σZ,λ(u)|2du > η

)
+P

(
sup

0≤s≤t≤T ,|s−t|≤η

|W (s)−W (t)| > ε/2
)

≤ T
−1

T sup
u∈[0,T ]

E[|σZ,λ(u)|2] + η−2E
[
δ sup
u∈[0,T ]

|σZ,λ(u)|2
]

+P
(

sup
0≤s≤t≤T ,|s−t|≤η

|W (s)−W (t)| > ε/2
)
.

By the Lévy’s modulus of continuity of Brownian motion (see, for example, [9, page 30,
Theorem 2.7], which is also quoted in this paper as Lemma 2.9 (3) below), the last term
on the right hand side above converges to 0 as η → 0 for any T > 0. Therefore, taking
first T → ∞, then η → 0 and finally δ → 0, we get (2.4).

This completes the proof of our assertion.
As a direct consequence of Lemmas 2.1 and 2.3, we get the following.

COROLLARY 2.4 We have that {Pλ;λ ≥ 1} is tight in ℘(C([0, T ];R)× C([0, T ];R)).

Proof. By definition and Ito’s formula, we have that

dY f,λ
t = f(Xλ

t )dt,

dJλ
t = λ−1V λ

t σ(Xλ
t )dBt − bλ−1|V λ

t |2dt+ 1

2
λ−1σ(Xλ

t )
2dt. (2.6)

This combined with Lemmas 2.1 and 2.3 implies our assertion.
Let P∞ be any cluster point of {Pλ} as λ → ∞. So there exists a sequence λn → ∞

(n → ∞) such that Pλn → P∞. We prove in Sections 3 and 4 that P∞ has probability 1

on {(jt, yft )}t≥0.

2.3 Several facts for deterministic case

We present several facts with respect to the deterministic case in this subsection. The
proofs are given in Appendix.

For any (x, v) ∈ [r1, r3]×R and λ ≥ 1, let (xλt (x, v), v
λ
t (x, v)) be the solution of

dxt = vtdt,
dvt = −bvtdt− λg′(xt)dt,
(x0(x, v), v0(x, v)) = (x, v),

(2.7)

let

hλt (x, v) :=
1

2
|vλt (x, v)|2 + λg(xλt (x, v)), jλt (x, v) := λ−1hλt (x, v),

10



and let
tλ1(x, v) = inf

{
t > 0;xλt (x, v) = r3 − a0

}
. (2.8)

Also, we sometimes write xλt (x, v), v
λ
t (x, v), h

λ
t (x, v) as xt, vt, ht, respectively, when there

is no risk of confusion.
First notice that dhλt (x, v) = −b|vλt (x, v)|2dt by definition. So we get the following

result, which is almost trivial, but will be used several times in this paper:

Lemma 2.5 hλt (x, v) and jλt (x, v) are monotone non-increasing with respect to t.

The following lemma claims that, after departing from r3, the particle hits r3 − a0 in
a very short time, and if λ is large enough such that the damping is strong enough, the
particle will never leave the domain (r1, r3).

Lemma 2.6 Assume that x0 = r3 and v0 < 0. Then we have the followings:

1. limλ→∞ tλ1(x0, v0) = 0,

2. There exists a λ0 ≥ 1 such that for any λ ≥ λ0, we have that xλt (x0, v0) ∈ (r1, r3)
for all t > 0.

Our next result is with respect to the k-th sojourn time of the particle near its right-
end.

PROPOSITION 2.7 For any c > 0, there exist constants C3(c) > 0 and λ1(c) ≥ 1 such
that for any k ∈ N,

λ ≥ λ1(c), x0 = r3 − a0, v0 > 0,
1

2
|v0|2 + λg(x0) ≤ −cλ1/2k

⇒ tλ1(x0, v0) ≤ C3(c)λ
−1/4k−1/2.

Remark 7 Roughly speaking, each oscillation decreases the total energy with an order of
λ1/2 (see Lemma 3.3 for the random case. The calculation for the deterministic case is
even easier). So for any k ∈ N, when considering the k-th round trip with initial energy of
order 1, the total energy is bounded above by −cλ1/2k with some proper constant c. This
is the meaning of the condition 1

2 |v0|
2 + λg(x0) ≤ −cλ1/2k in Proposition 2.7. Also, by a

trivial time shift, in Proposition 2.7, we wrote the time of the k-th left-to-right-crossing of
the particle over the point r3 − a0 as 0.

Let Sf and Agf be as defined in Section 1. Notice that Sf is continuous, and that
Sf (j) ̸= 0 for any j ∈ (g(r2), 0). So Agf is also continuous.

For any δ1, δ2 ∈ (0,−g(r2)) satisfying δ1 + δ2 ≤ −g(r2), let

bλ1,δ1,δ2,f := sup
(x,v): 1

2
λ−1|v|2+g(x)∈(g(r2)+δ1,−δ2)∣∣∣λ1/2

∫ S1(
1
2
λ−1|v|2+g(x))λ−1/2

0
f(xλu(x, v))du− Sf

(1
2
λ−1|v|2 + g(x)

)∣∣∣.(2.9)
Then we have the following:
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PROPOSITION 2.8 For any δ1, δ2 ∈ (0,−g(r2)) satisfying δ1 + δ2 ≤ −g(r2), we have
that

lim
λ→∞

bλ1,δ1,δ2,f = 0.

Heuristic meaning of Proposition 2.8: as noticed in Remark 1, λ−1/2Sf (j) is the line
integral of the function f along the orbit lj for the case where b = 0 = σ. Proposition
2.8 claims that the approximation error of this approximation is of order o(λ−1/2), locally
uniformly with respect to the initial energy.

2.4 Several basic properties of Brownian motion

In this subsection, we prepare several basic properties of Brownian motion that will be
used later.

Lemma 2.9 Let
{
Bt

}
t≥0

be any standard Brownian motion. Then we have the follow-

ings:

1. lima→∞ P
({

infu≥0(εu+Bt) < −a
})

= 0 for any ε > 0,

2. lima→∞ P
({

Bs − εs ≥ 0 for some s ≥ a
})

= 0 for any ε > 0,

3. P
(
lim supε→0

{
sup0≤s≤t+s≤T,t≤ε

|Bt+s−Bs|√
2ε log 1

ε

}
= 1

)
= 1.

Proof. For the first assertion, notice that for any ε > 0, we have that

lim inf
s→∞

Bs√
2s log log s

= −1 ⇒ lim inf
s→∞

(εs+Bs) = ∞

⇒ inf
s≥0

(εs+Bs) > −∞.

So

lim
a→∞

P
({

inf
u≥0

(εu+Bt) < −a
})

= P
( ∩

a∈N

{
inf
u≥0

(εu+Bt) < −a
})

= P
({

inf
u≥0

(εu+Bt) = −∞
})

≤ P
({

lim inf
s→∞

Bs√
2s log log s

= −1
}C)

= 0,

where when passing to the last line, we used the law of the iterated logarithm (see, e.g.,
Revue-Yor [9, page 58]).

We next prove the second assertion. Notice that for any a > 0, we have that

there exists a s ≥ a such that Bs − εs ≥ 0

⇒ there exists a s ≥ a such that
Bs√

2s log log s
≥ εs√

2s log log s

⇒ sup
s≥a

Bs√
2s log log s

≥ inf
s≥a

εs√
2s log log s

12



Also, since εs√
2s log log s

→ ∞ as s → ∞, there exists a constantA > 0 such that infs≥a
εs√

2s log log s
≥

2 for any a ≥ A. So∩
a≥A

{
∃s ≥ a such that Bs − εs ≥ 0

}
⊂

∩
a≥A

{
sup
s≥a

Bs√
2s log log s

≥ 2
}
⊂

{
lim sup
s→∞

Bs√
2s log log s

≥ 2
}
.

Therefore,

lim
a→∞

P
({

Bs − εs ≥ 0 for some s ≥ a
})

= P
( ∩

a≥A

{
Bs − εs ≥ 0 for some s ≥ a

})
≤ P

({
lim sup
s→∞

Bs√
2s log log s

≥ 2
})

= 0,

where when passing to the last line, again, we used the law of the iterated logarithm.
The last assertion is nothing but Lévy’s modulus of continuity (see, for example, [9,

page 30, Theorem 2.7]).

2.5 Several useful sets

In this subsection, we define several useful sets (see F λ
1 ∼ F λ

11,c below), and prove that
they are asymptotically of full probabilities. These sets will be used in Sections 3 and
4. Precisely, since we are interested in the limit distribution as λ → ∞, we can always
ignore those sets with asymptotically null measures. So by assuming that we are on
these (asymptotically-full-probability) sets, we can assume freely that the conditions in
the definitions of these sets hold.

Let us first define several constants. Choose x0 ∈ (r3 − a0, r3) such that

g(x) <
1

3
g(r3 − a0) for any x ∈ (r3 − a0, x0), (2.10)

and let C4 :=
(
− 1

6g(r3−a0)
)1/2

(x0−(r3−a0)). Also, choose and fix a constant T0 ∈ (0, T )

such that −g(r2)
(
1 − e−2(b+1)T0

)
< −1

8g(r3 − a0), and choose and fix a constant ε0 > 0

such that −b+ ε0∥σ∥2∞ < 0. Let

C5 :=
b− ε0∥σ∥2∞√

6
|g(r3 − a0)|1/2(r3 − a0 − r1 − a1), (2.11)

C6 :=
C5

4

(
− 2g(r2)

)−1/2
, (2.12)

and let C7 = C3(
C5
2 ), where C3(·) is given by Proposition 2.7.
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Also, we define the following notations.

τλ0 = 0,

τλk = inf{t > τλk−1;X
λ
t = r3 − a0}, k ≥ 1. (2.13)

Now we are ready to give the definitions of our announced sets F λ
1 ∼ F λ

11,c. Let

F λ
1 :=

{
sup

t∈[0,T ]

∣∣∣ ∫ t

0
V λ
s σ(Xλ

s )dBs

∣∣∣ ≤ λ3/4
}
,

F λ
2 :=

{
sup

0≤s≤s+t≤T

∣∣∣ ∫ s+t

s
e2buV λ

u σ(Xλ
u )dBu

∣∣∣ ≤ λ3/4
}
,

F λ
3 :=

{
sup

t∈[0,T ]

∣∣∣ ∫ t

0
σ(Xλ

s )dBs

∣∣∣ ≤ λ1/2
}
,

F λ
4 :=

{
sup

s∈[0,tλ1 (X0,
V0
2
)]

∫ s

0
ebuσ(Xλ

u )dBu < −V0

4

}
,

F λ
5 :=

{
inf

t∈[0,T ]

(∫ t

0
e2(b+1)s|V λ

s |2ds+
∫ t

0
e2(b+1)sV λ

s σ(Xλ
s )dBs

)
≥ −λ

1
2

}
,

F λ
6 :=

{
sup

0≤s≤s+t≤T,t≤C7λ−1/4

∣∣∣ ∫ s+t

s
ebuσ(Xλ

u )dBu

∣∣∣ ≤ C6

}
,

F λ
7,t0 := {τλ1 ≤ t0},

F λ
8 :=

{∫ τλ1

0
|V λ

s |2ds ≥ C4λ
1
2

}
,

F λ
9 := {

∫ t

0
V λ
s σ(Xλ

s )dBs − ε0

∫ t

0
|V λ

s |2σ(Xλ
s )

2ds ≤ 0 for all t ≥ τλ1 },

F λ
10 :=

{
Hλ

t < 0 for all t ∈ [τλ1 , T ]
}
.

F λ
11,c :=

{
sup

0≤s≤s+t≤T,t≤cλ−1/2

(
|Xλ

s+t − xλt (X
λ
s , V

λ
s )|+ λ− 1

2 |V λ
s+t − vλt (X

λ
s , V

λ
s )|

)
< λ−1/4

}
.

Here t0, c > 0 are arbitrary constants. Finally, let F
λ
t0,c be the intersection of these sets,

i.e., F
λ
t0,c := F λ

1 ∩ · · · ∩ F λ
11,c.

We prove that all these sets have probability 1 asymptotically as λ → ∞. See the
explanations before each Lemma below for their meanings and heuristic reasons. Our
main result of this section is the following.

PROPOSITION 2.10 For any t0, c > 0, we have that

lim
λ→∞

P (F
λ
t0,c) = 1.

We prove Proposition 2.10 in the rest of this subsection, by proving that each of the
sets F λ

1 ∼ F λ
11,c has probability 1 asymptotically as λ → ∞.

We first deal with F λ
1 ∼ F λ

3 . Since V λ
t is of order at most λ1/2 by Lemma 2.1 and σ is

bounded, it is heuristically clear that the three integrals in the definitions of F λ
1 ∼ F λ

3 are
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of orders at most λ1/2, λ1/2 and 1, respectively. So it is not strange that these three sets
are asymptotically of probability 1. These sets are used to prove that the diffusion terms
in the corresponding expressions could not be too large (see, for example, the proofs of
Lemma 3.1 and Proposition 4.7 for the usage of F λ

1 , Lemma 4.3 for F λ
2 and (3.2) in the

proof of Lemma 3.4 for F λ
3 ).

Lemma 2.11 For j ∈ {1, 2, 3}, we have that limλ→∞ P (F λ
j ) = 1.

Proof. By Doob’s inequality and Lemma 2.1, we have that

E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0
V λ
s σ(Xλ

s )dBs

∣∣∣2]
≤ 4E

[∣∣∣ ∫ T

0
V λ
s σ(Xλ

s )dBs

∣∣∣2] = 4

∫ T

0
E
[
|V λ

s |2σ(Xλ
s )

2
]
ds

≤ 4T∥σ∥2∞E
[

sup
s∈[0,T ]

|V λ
s |2

]
≤ 4T∥σ∥2∞C2

2λ.

Therefore, by Chebyshev’s inequality,

P
(
(F λ

1 )
C
)

= P
(

sup
t∈[0,T ]

∣∣∣ ∫ t

0
V λ
s σ(Xλ

s )dBs

∣∣∣ > λ3/4
)

≤
(
λ3/4

)−2
E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0
V λ
s σ(Xλ

s )dBs

∣∣∣2]
≤ λ−1/24T∥σ∥2∞C2

2 .

This implies our assertion with j = 1.
The proof of the assertion with j = 2 is almost the same. By Doob’s inequality and

Lemma 2.1, we have that

E
[

sup
0≤s≤s+t≤[0,T ]

∣∣∣ ∫ t+s

s
e2buV λ

u σ(Xλ
u )dBu

∣∣∣2]
≤ 4E

[
sup

r∈[0,T ]

∣∣∣ ∫ r

0
e2buV λ

u σ(Xλ
u )dBu

∣∣∣2] ≤ 16E
[∣∣∣ ∫ T

0
e2buV λ

u σ(Xλ
u )dBu

∣∣∣2]
≤ 16e4bT ∥σ∥2∞TE

[
sup

t∈[0,T ]
|V λ

u |2
]
≤ 16e4bT ∥σ∥2∞TC2

2λ,

so by Chebyshev’s inequality,

P
(
(F λ

2 )
C
)
≤ λ−1/216e4bT ∥σ∥2∞TC2

2 .

This implies our assertion with j = 2.
The proof of the assertion with j = 3 is even more simple. Indeed, by Doob’s inequality,

we have that

E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0
σ(Xλ

s )dBs

∣∣∣2] ≤ 4E
[∣∣∣ ∫ T

0
σ(Xλ

s )dBs

∣∣∣2] ≤ 4T∥σ∥2∞,
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so by Chebyshev’s inequality,

P
(
(F λ

3 )
C
)
≤ λ−1E

[
sup

t∈[0,T ]

∣∣∣ ∫ t

0
σ(Xλ

s )dBs

∣∣∣2] ≤ 4T∥σ∥2∞λ−1,

which converges to 0 as λ → ∞.
We next prove that F λ

4 is asymptotically of probability 1. This is heuristically clear
since the integrand is bounded and the length of the time period converges to 0 by Lemma
2.6 (1). This set is used to prove that F λ

7,t0
and F λ

8 are asymptotically of probability 1.

Lemma 2.12 We have that limλ→∞ P (F λ
4 ) = 1.

Proof. By Lemma 2.6, we have that limλ→∞ tλ1(X0, V0/2) = 0. Therefore, by Cheby-
shev’s inequality and Doob’s inequality, we get that

P
(
(F λ

4 )
C
)

= P
({

sup
s∈[0,tλ1 (X0,V0/2)]

∫ s

0
ebuσ(Xλ

u )dBu ≥ −V0

4

})
≤

(
− V0

4

)2
4E

[∣∣∣ ∫ tλ1 (X0,V0/2)

0
ebuσ(Xλ

u )dBu

∣∣∣2]
≤

(
− V0

4

)2
4e2bT ∥σ∥2∞tλ1(X0, V0/2)

→ 0, λ → ∞.

We next deal with F λ
5 and F λ

6 . They are also used to control the diffusion terms in the
corresponding expressions (see, for example, the proof of Lemma 2.16 for the usage of F λ

5

and the proof of Claim 1 in the proof of Lemma 3.4 for F λ
6 ). The basic idea is the well-

known fact that a continuous martingale can be expressed as a time-changed Brownian
motion.

Lemma 2.13 We have that limλ→∞ P (F λ
5 ) = 1.

Proof. For any λ ≥ 1, let Mλ
1 (t) :=

∫ t
0 e

2(b+1)sV λ
s σ(Xλ

s )dBs. Then {Mλ
1 (t)}t≥0 is a

continuous martingale. So same as in the proof of Lemma 2.3, there exists a Brownian

motion {W λ
1 (t)}t≥0 such that Mλ

1 (t) = W λ
1

(
⟨Mλ

1 ,M
λ
1 ⟩t

)
.

Also, let C8 := ∥σ∥2∞e2(b+1)T . Then we have that

⟨Mλ
1 ,M

λ
1 ⟩t =

∫ t

0
e4(b+1)s|V λ

s |2σ(Xλ
s )

2ds ≤ C8

∫ t

0
e2(b+1)s|V λ

s |2ds.

So

inf
t∈[0,T ]

(∫ t

0
e2(b+1)s|V λ

s |2ds+
∫ t

0
e2(b+1)sV λ

s σ(Xλ
s )dBs

)
≥ inf

t∈[0,T ]

{ 1

C8
⟨Mλ

1 ,M
λ
1 ⟩t +W λ

1

(
⟨Mλ

1 ,M
λ
1 ⟩t

)}
≥ inf

s≥0

{ 1

C8
s+W λ

1 (s)
}
.
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Therefore, by Lemma 2.9 (1), we get that

P
(
(F λ

5 )
C
)
≤ P

(
inf
s≥0

{ 1

C8
s+W λ

1 (s)
}
< −λ1/2

)
→ 0, λ → ∞.

Lemma 2.14 We have that limλ→∞ P (F λ
6 ) = 1.

Proof. For any λ ≥ 1, let Mλ
2 (t) :=

∫ t
0 e

buσ(Xλ
u )dBu. Then Mλ

2 is a continuous mar-

tingale, so there exists a Brownian motion {W λ
2 (·)} such that Mλ

2 (t) = W λ
2

(
⟨Mλ

2 ,M
λ
2 ⟩t

)
.

Notice that

0 ≤ s ≤ t+ s ≤ T ⇒ 0 ≤ ⟨Mλ
2 ,M

λ
2 ⟩s ≤ ⟨Mλ

2 ,M
λ
2 ⟩t+s ≤ e2bT ∥σ∥2∞T,

t ≤ C7λ
−1/4 ⇒ ⟨Mλ

2 ,M
λ
2 ⟩t+s − ⟨Mλ

2 ,M
λ
2 ⟩s ≤ e2bT ∥σ∥2∞C7λ

−1/4.

Therefore, with T1 := e2bT ∥σ∥2∞T and C9 := e2bT ∥σ∥2∞C7, we have that

sup
0≤s≤s+t≤T,t≤C7λ−1/4

∣∣∣ ∫ s+t

s
ebuσ(Xλ

u )dBu

∣∣∣
= sup

0≤s≤s+t≤T,t≤C7λ−1/4

∣∣∣W λ
2

(
⟨Mλ

2 ,M
λ
2 ⟩t+s

)
−W λ

2

(
⟨Mλ

2 ,M
λ
2 ⟩s

)∣∣∣
≤ sup

0≤s≤t+s≤T1,t≤C9λ−1/4

∣∣∣W λ
2 (t+ s)−W λ

2 (s)
∣∣∣.

So
P
(
(F λ

6 )
C
)
≤ P

(
sup

0≤s≤s+t≤T1,t≤C9λ−1/4

|Bt+s −Bs| > C6

)
.

By Lemma 2.9 (3), the right hand side above converges to 0 as λ → ∞.
We next prove that the particle hits r3−a0 very quickly for λ large enough (see Lemma

2.15 below), which is heuristically clear since the potential attractive force is extremely
strong.

Lemma 2.15 1. We have on the set F λ
4 that τλ1 ≤ tλ1(X0, V0/2) and that Xλ

t ∈ (r3 −
a0, r3) for any t ∈ (0, τλ1 ),

2. for any t0 > 0, there exists a λ2(t0) ≥ 1 such that for any λ ≥ λ2(t0), we have that
F λ
4 ⊂ F λ

7,t0
,

3. for any t0 > 0, we have that limλ→0 P (F λ
7,t0

) = 1.

Proof. We have by definition that d(ebtV λ
t ) = −ebtλg′(Xλ

t )dt+ ebtσ(Xλ
t )dBt, hence

ebtV λ
t = V0 − λ

∫ t

0
ebug′(Xλ

u )du+

∫ t

0
ebuσ(Xλ

u )dBu. (2.14)

Similarly,

ebtvλt (X0, V0/2) = V0/2− λ

∫ t

0
ebug′(xλu(X0, V0/2))du. (2.15)
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These two equations will be used later.

Let σλ
0 := inf

{
t > 0;Xλ

t ≥ xλt (X0, V0/2)
}
. We first notice that

g′(Xλ
u ) ≥ g′(xλu(X0, V0/2)), for any u ≤ σλ

0 ∧ τλ1 ∧ tλ1(X0, V0/2). (2.16)

Indeed, u ≤ σλ
0 implies that Xλ

u < xλu(X0, V0/2), u ≤ τλ1 implies that Xλ
u > r3 − a0, and

u ≤ tλ1(X0, V0/2) implies that xλu(X0, V0/2) > r3 − a0. On the other hand, we have by
assumptions (A1) and (A2) that g′(·) is monotone non-increasing on (r3 − a0,∞). These
imply (2.16).

Assume that ω ∈ F λ
4 . Then by (2.16), for any s ≤ σλ

0 ∧ τλ1 ∧ tλ1(X0, V0/2), we have by
(2.14) and (2.15) that

ebsV λ
s = V0 − λ

∫ s

0
ebug′(Xλ

u )du+

∫ s

0
ebuσ(Xλ

u )dBu

≤ V0 − λ

∫ s

0
ebug′(xλu(X0, V0/2))du− V0/4

= ebsvλs (X0, V0/2) + V0/4,

therefore,

V λ
s ≤ vλs (X0, V0/2) + e−bsV0/4, for any s ≤ σλ

0 ∧ τλ1 ∧ tλ1(X0, V0/2),

hence

Xλ
s ≤ xλs (X0, V0/2) +

∫ s

0
e−buV0

4
du, for any s ∈ (0, σλ

0 ∧ τλ1 ∧ tλ1(X0, V0/2)].

Therefore, we get that σλ
0 ∧ τλ1 ∧ tλ1(X0, V0/2) < σλ

0 on F λ
4 , hence

τλ1 ∧ tλ1(X0, V0/2) < σλ
0 , on F λ

4 . (2.17)

Now, suppose that τλ1 > tλ1(X0, V0/2). Notice that Xλ
· ≥ r3 − a0 until τλ1 , so our

assumption implies that Xλ
tλ1 (X0,V0/2)

≥ r3−a0 = xλ
tλ1 (X0,V0/2)

, therefore, tλ1(X0, V0/2) ≥ σλ
0 ,

hence τλ1 ∧ tλ1(X0, V0/2) = tλ1(X0, V0/2) ≥ σλ
0 . This contradicts (2.17). Therefore, we have

that τλ1 ≤ tλ1(X0, V0/2) on F λ
4 . This completes the proof of our first assertion.

Notice that by Lemma 2.6, we have that limλ→∞ tλ1(X0, V0/2) = 0. This combined
with the first assertion implies our second assertion.

The third assertion is a direct consequence of the second assertion and Lemma 2.12.
We define two more notations. Let

g̃ := g − g(r2),

H̃λ
t := Hλ

t − λg(r2) =
1

2
|V λ

t |2 + λg̃(Xλ
t ). (2.18)

Lemma 2.16 1. The followings hold on the set F λ
5 for any t ∈ [0, T ]:

(a)
Hλ

t ≥ e−2(b+1)t(H0 − λ1/2) + g(r2)λ(1− e−2(b+1)t), (2.19)
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(b)

|V λ
t |2 ≥ −2λ1/2 − 2λ

(
− g(r2)[1− e−2(b+1)t] + g(Xλ

t )
)
. (2.20)

2. For any t ∈ (0, T0] and any λ ≥ λ3 :=
(
− 1

8g(r3 − a0)
)−2

∨ 1, we have that the

followings hold on the set F λ
5 :

(a)

Hλ
t ≥ 1

4
g(r3 − a0)λ, (2.21)

(b) if Xλ
t ∈ (r1 + a1, x0) in addition, then

|V λ
t |2 ≥ −1

6
g(r3 − a0)λ. (2.22)

Proof. Assume that ω ∈ F λ
5 . We first prove the first assertion. By definition, we

have that

d
(
e2(b+1)tH̃λ

t

)
= e2(b+1)t

(
|V λ

t |2dt+ V λ
t σ(Xλ

t )dBt + 2(b+ 1)λg̃(Xλ
t )dt+

1

2
σ(Xλ

t )
2dt

)
.

Since ω ∈ F λ
5 and g̃ ≥ 0, this implies that

e2(b+1)tH̃λ
t ≥ H̃λ

0 +

∫ t

0
e2(b+1)s|V λ

s |2ds+
∫ t

0
e2(b+1)sV λ

s σ(Xλ
s )dBs

≥ H̃λ
0 − λ1/2.

This implies (2.19). (2.20) is a direct consequence of (2.19) since H0 > 0 and |V λ
t |2 =

2Hλ
t − 2λg(Xλ

t ).

For the second assertion, notice that e−2(b+1)t ∈ (0, 1]; λ ≥
(
− 1

8g(r3 − a0)
)−2

implies

−λ−1/2 ≥ 1
8g(r3 − a0)λ; and t ∈ (0, T0] implies −g(r2)[1 − e−2(b+1)t] ≤ −1

8g(r3 − a0).
Substituting these into (2.19), we get that

Hλ
t ≥ e−2(b+1)t(H0 − λ1/2) + g(r2)λ(1− e−2(b+1)t)

≥ 1

8
g(r3 − a0)λ+

1

8
g(r3 − a0)λ =

1

4
g(r3 − a0)λ.

So (2.21) holds under the present setting. Finally, if Xλ
t ∈ (r1 + a1, x0), then g(Xλ

t ) <
1
3g(r3 − a0) by (2.2) and (2.10). Combining this with (2.21), we get that

|V λ
t |2 = 2Hλ

t − 2g(Xλ
t )λ

≥ 1

2
g(r3 − a0)λ− 2 · 1

3
g(r3 − a0)λ = −1

6
g(r3 − a0)λ.

The next lemma claims that the energy loss until τλ1 is already large enough. This is
heuristically clear since |V λ

t | is of order λ1/2 around r3−a0. This helps us to prove (see the
proof of Lemma 2.20) that with asymptotically full probability, the particle could never
leave the interval [r1, r3] after τ

λ
1 .
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Lemma 2.17 1. There exists a λ4 ≥ 1 such that for any λ ≥ λ4, we have that

F λ
5 ∩ F λ

4 ⊂ F λ
8 ∩ F λ

7,T0
,

2. we have that limλ→∞ P (F λ
8 ) = 1.

Proof. By Lemma 2.15 (2), for any λ ≥ λ2(T0), we have that F λ
4 ⊂ F λ

7,T0
= {τλ1 ≤

T0}, hence we have that

t ≤ τλ1 ⇒ t ≤ T0, on the set F λ
4 . (2.23)

Let λ4 := λ2(T0)∨
(
− 1

8g(r3 − a0)
)−2

. Then by (2.23) and Lemma 2.16 (2b), we get that

for any λ ≥ λ4, we have on the set F λ
5 ∩ F λ

4 that if t ≤ τλ1 and Xλ
t ∈ (r3 − a0, x0), then

|V λ
t |2 ≥ −1

6g(r3 − a0)λ.
On the other hand, since {Xλ

t }t is continuous and Xλ
0 = r3, we have that until it

arrives r3 − a0 at time τλ1 , it must passes through x0 at least once. Let ηx0 := sup{t <
τλ1 ;X

λ
t ≥ x0}. Then t ∈ (ηx0 , τ

λ
1 ) ⇒ Xλ

t ∈ (r3 − a0, x0).
Therefore, for any λ ≥ λ4, we have on the set F λ

5 ∩ F λ
4 that∫ τλ1

0
|V λ

s |2ds ≥
∫ τλ1

ηx0

|V λ
s |2ds ≥

∫ x0

r3−a0

(
− 1

6
g(r3 − a0)λ

)1/2
dx

=
(
− 1

6
g(r3 − a0)

)1/2
(x0 − (r3 − a0))λ

1/2 = C4λ
1/2.

So F λ
5 ∩ F λ

4 ⊂ F λ
8 . This implies our first assertion.

The second assertion is now easy by Lemmas 2.12 and 2.13.
For any λ ≥ 1, let

Mλ
3 (t) :=

∫ t

0
V λ
s σ(Xλ

s )dBs, t ≥ 0.

This notation is used in the proofs of Lemmas 2.18 and 2.19.
F λ
9 is useful for the discussion with respect to the diffusion term of Hλ

t after the first
hit time of the particle to r3 − a0. Precisely, on F λ

9 , the diffusion term is dominated by
a small part of the drift part (see Lemma 2.19 and the proof of Lemma 2.20). We prove
in the following that it is also asymptotically of probability 1. The basic idea is that, by
restricting on the set F λ

8 , the quadratic variation of its diffusion term is large enough after
τλ1 . So by re-expressing the diffusion term as a time-changed Brownian motion, we get
our assertion as a direct result of Brownian motion’s property.

Lemma 2.18 We have that limλ→∞ P (F λ
9 ) = 1.

Proof. For any λ ≥ 1, notice that Mλ
3 is a continuous martingale. So there exists a

Brownian motion W λ
3 (·) such that Mλ

3 (t) = W λ
3

(
⟨Mλ

3 ,M
λ
3 ⟩t

)
, t ≥ 0. On the other hand,

let C10 > 0 be a constant such that σ2 ≥ C10. Then on the set F λ
8 , we have that

⟨Mλ
3 ,M

λ
3 ⟩τλ1 =

∫ τλ1

0
|V λ

s |2σ(Xλ
s )

2ds ≥ C10

∫ τλ1

0
|V λ

s |2ds ≥ C10C4λ
1/2,
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hence
sup
t≥τλ1

(
Mλ

3 (t)− ε0⟨Mλ
3 ,M

λ
3 ⟩t

)
≤ sup

s≥C10C4λ1/2

(
W λ

3 (s)− ε0s
)
.

Therefore,

P
(
(F λ

9 )
C ∩ F λ

8

)
≤ P

({
sup

s≥C10C4λ1/2

(
W λ

3 (s)− ε0s
)
≥ 0

})
,

which, by Lemma 2.9 (2), converges to 0 as λ → ∞. This combined with Lemma 2.17 (2)
completes the proof of our assertion.

Lemma 2.19 We have that the following holds on the set F λ
9 :

Hλ
t ≤

(
− b+ ε0∥σ∥2∞

)∫ t

0
|V λ

s |2ds+H0 +
T

2
∥σ∥2∞, for any t ∈ [τλ1 , T ].

Proof. By the definition of Mλ
3 (·), we have that

⟨Mλ
3 ,M

λ
3 ⟩t =

∫ t

0
|V λ

s |2σ(Xλ
s )

2ds ≤ ∥σ∥2∞
∫ t

0
|V λ

s |2ds.

So on the set F λ
9 , we have for any t ∈ [τλ1 , T ] that

Hλ
t = H0 − b

∫ t

0
|V λ

s |2ds+Mλ
3 (t) +

1

2

∫ t

0
σ(Xλ

s )
2ds

≤ Mλ
3 (t)− ε0⟨Mλ

3 ,M
λ
3 ⟩t + (−b+ ε0∥σ∥2∞)

∫ t

0
|V λ

s |2ds+H0 +
T

2
∥σ∥2∞

≤ (−b+ ε0∥σ∥2∞)

∫ t

0
|V λ

s |2ds+H0 +
T

2
∥σ∥2∞. (2.24)

With the help of F λ
8 and F λ

9 , we prove that limλ→∞ P (F λ
10) = 1. This is heuristically

clear since after the first hitting time to r3 − a0, we have on F λ
8 ∩ F λ

9 that the drift term
of the energy loss is large enough, and the random part is much weaker compared with
the drift term.

Lemma 2.20 We have that limλ→∞ P (F λ
10) = 1.

Proof. Choose λ5 ≥ 1 large enough such that
(
− b + ε0∥σ∥2∞

)
C4λ

1/2 + H0 +

T∥σ∥2∞ < 0 for all λ ≥ λ5. Notice that if t ≥ τλ1 , then on the set F λ
8 , we have that∫ t

0 |V
λ
s |2ds ≥

∫ τλ1
0 |V λ

s |2ds ≥ C4λ
1/2. So by Lemma 2.19, for any λ ≥ λ5, we have on the

set F λ
9 ∩ F λ

8 that Hλ
t < 0 for any t ∈ [τλ1 , T ]. So

λ ≥ λ5 ⇒ F λ
9 ∩ F λ

8 ⊂ F λ
10.

This combined with Lemmas 2.17 (2) and 2.18 implies our assertion.
Finally, we prove that when λ → ∞, P (F λ

11,c) → 1. In other words, we prove that
asymptotically, the solution (position and velocity) of the stochastic differential equation
(1.1) could be approximated by that of the ordinary differential equation (2.7) with the
same initial condition, for time short enough. This fact is heuristically almost trivial, since
the involved processes are continuous. This is used in the proof of Lemma 4.2.
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Lemma 2.21 1. There exists a constant C11 > 0 such that for any λ ≥ 1 and any
t0 ∈ [0, T ], the following holds:

E
[

sup
0≤s≤s+t≤T,t≤t0

(
|Xλ

s+t − xλt (X
λ
s , V

λ
s )|+ λ−1/2|V λ

s+t − vλt (X
λ
s , V

λ
s )|

)2]1/2
≤ λ−1/2∥σ∥∞4

√
T exp

(
C11λ

1/2t0

)
.

2. For any c > 0, we have that limλ→∞ P
(
F λ
11,c

)
= 1.

Proof. The second assertion is a direct consequence of the first assertion by Cheby-
shev’s inequality. We prove the first assertion in the following.

We have by definition that

|Xλ
s+t − xλt (X

λ
s , V

λ
s )|+ λ−1/2|V λ

s+t − vλt (X
λ
s , V

λ
s )|

≤
∫ t

0

∣∣∣V λ
s+u − vλu(X

λ
s , V

λ
s )

∣∣∣du+ b

∫ t

0
λ−1/2

∣∣∣V λ
s+u − vλu(X

λ
s , V

λ
s )

∣∣∣du
+λ1/2∥g′′∥∞

∫ t

0

∣∣∣Xλ
s+u − xλu(X

λ
s , V

λ
s )

∣∣∣du+ λ−1/2
∣∣∣ ∫ s+t

s
σ(Xλ

u )dBu

∣∣∣
≤

(
λ1/2(∥g′′∥∞ + 1) + b

)∫ t

0

{
|Xλ

s+u − xλu(X
λ
s , V

λ
s )|

+λ−1/2|V λ
s+u − vλu(X

λ
s , V

λ
s )|

}
du+ λ−1/2

∣∣∣ ∫ s+t

s
σ(Xλ

u )dBu

∣∣∣.
Let C11 := ∥g′′∥∞ + 1 + b, and let

r(u) := |Xλ
s+u − xλu(X

λ
s , V

λ
s )|+ λ−1/2|V λ

s+u − vλu(X
λ
s , V

λ
s )|.

Then the calculation above implies that

r(t) ≤ λ1/2C11

∫ t

0
r(u)du+ λ−1/2

∣∣∣ ∫ s+t

s
σ(Xλ

u )dBu

∣∣∣, for all t ≥ 0.

So by Gronwall’s Lemma, we get that

r(t) ≤ λ−1/2
∣∣∣ ∫ s+t

s
σ(Xλ

u )dBu

∣∣∣ exp(λ1/2C11t
)
, for all t ≥ 0.

We have by Doob’s inequality that

E
[

sup
0≤s≤s+t≤T,t≤t0

∣∣∣ ∫ s+t

s
σ(Xλ

u )dBu

∣∣∣2]1/2
≤ 2E

[
sup

0≤t≤T

∣∣∣ ∫ t

0
σ(Xλ

u )dBu

∣∣∣2]1/2 ≤ 4E
[∣∣∣ ∫ T

0
σ(Xλ

u )dBu

∣∣∣2]1/2
≤ 4

√
T∥σ∥∞.
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Therefore,

E
[

sup
0≤s≤s+t≤T,t≤t0

(
|Xλ

s+t − xλt (X
λ
s , V

λ
s )|+ λ−1/2|V λ

s+t − vλt (X
λ
s , V

λ
s )|

)2]1/2
≤ λ−1/2 exp

(
C11λ

1/2t0

)
E
[

sup
0≤s≤s+t≤T,t≤t0

∣∣∣ ∫ s+t

s
σ(Xλ

u )dBu

∣∣∣2]1/2
≤ λ−1/2 exp

(
C11λ

1/2t0

)
4
√
T∥σ∥∞.

We close this section by emphasizing again that for any t0, c > 0, by Proposition 2.10,

F
λ
t0,c has probability 1 asymptotically, so all the conditions in the definitions of the sets

F λ
1 ∼ F λ

11,c hold “asymptotically”.

3 {Jt}t>0 is non-increasing and negative under P∞

We prove in this section that after taking λ → ∞, the particle stays in the domain (r1, r3)
for t > 0, with its oscillating range non-increasing.

We first have the following.

Lemma 3.1 1. For any λ ≥ 1, we have on the set F λ
1 that

Hλ
t ≤ Hλ

s + 2λ3/4 +
t− s

2
∥σ∥2∞, if 0 ≤ s < t ≤ T,

2. for any δ > 0, we have that

lim
λ→∞

P
(
Jλ
t ≤ Jλ

s + δ for any 0 ≤ s < t ≤ T
)
= 1.

Proof. For any 0 ≤ s < t ≤ T , we have that

Hλ
t −Hλ

s

=

∫ t

s
V λ
u σ(Xλ

u )dBu − b

∫ t

s
|V λ

u |2du+
1

2

∫ t

s
σ(Xλ

u )
2du

≤
∣∣∣ ∫ t

0
V λ
u σ(Xλ

u )dBu

∣∣∣+ ∣∣∣ ∫ s

0
V λ
u σ(Xλ

u )dBu

∣∣∣+ t− s

2
∥σ∥2∞.

This combined with the definition of F λ
1 gives us our first assertion.

For any δ > 0, let λ6(δ) :=
(
T∥σ∥2∞δ−1

)
∨ (4δ−1)4 ∨ 1. Then for any λ ≥ λ6(δ), we

have that 2λ3/4+ T
2 ∥σ∥

2
∞ ≤ λδ, hence by our first assertion, we have for any 0 ≤ s < t ≤ T

that Hλ
t ≤ Hλ

s + δλ on the set F λ
1 . So

P
(
Jλ
t ≤ Jλ

s + δ for any 0 ≤ s < t ≤ T
)
≥ P

(
F λ
1

)
, λ ≥ λ6(δ).

This combined with Lemma 2.11 implies our second assertion.
The following is our first main result of this section:
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PROPOSITION 3.2 We have that

P∞

(
J· is monotone non-increasing and continuous

)
= 1.

Proof. Since {w ∈ C([0, T ];R) : ∃s, t ∈ [0, T ], s.t. s < t and w(s) < w(t) − δ} is
open in C([0, T ];R) for any δ > 0, Lemma 3.1 (2) implies that J· under P∞ is monotone
non-increasing. The continuity is trivial by the definition of P∞.

As noticed in Remark 6, we need to confirm that Jt (t > 0) of the limiting process
is strictly negative with probability 1. We prove this in the rest of this section (see
Proposition 3.7).

To simplify notations, from now on, when there are more than one λ in one notation,
we write λ only once and omit the others. So we write Hλ

τλ2k
as Hλ

τ2k
, and so on.

Lemma 3.3 There exists a constant λ7 ≥ 1 such that for any λ ≥ λ7, we have that the
following holds on the set F λ

5 ∩ F λ
9 :

k ≥ 1, τλ2k ≤ T0 ⇒ Hλ
τ2k

≤ −C5λ
1/2k.

Here C5 is as defined in (2.11), and τλk is as defined in (2.13).

Proof. By Lemma 2.16 (2b), for any λ ≥ λ3 and t ∈ (0, T0], we have on the set F λ
5

that

Xλ
t ∈ [r1 + a1, r3 − a0] ⇒ |V λ

t |2 ≥ −1

6
g(r3 − a0)λ > 0.

In particular, |V λ
t | ̸= 0 in this domain. Since V λ

t is continuous, this means that the particle
could not stop or turn back between r1+a1 and r3−a0. In other words, during the period
[τλ2k−1, τ

λ
2k], the particle passes through [r1 + a1, r3 − a0] exactly twice. Therefore,∫ τλ2k

τλ2k−1

|V λ
s |2ds ≥ 2

∫ r3−a0

r1+a1

√
−1

6
g(r3 − a0)λ dx

=

√
2

3
|g(r3 − a0)|1/2(r3 − a0 − r1 − a1)λ

1/2, if τλ2k ≤ T0,

hence ∫ τλ2k

0
|V λ

t |2ds ≥
√

2

3
|g(r3 − a0)|1/2(r3 − a0 − r1 − a1)λ

1/2k, if τλ2k ≤ T0.

Since τλ2k ≥ τλ1 , this combinded with Lemma 2.19 implies that on the set F λ
5 ∩ F λ

9 , if
τλ2k ≤ T0, then

Hλ
τ2k

≤ (−b+ ε0∥σ∥2∞)

∫ τλ2k

0
|V λ

s |2ds+H0 +
T

2
∥σ∥2∞

≤ (−b+ ε0∥σ∥2∞)

√
2

3
|g(r3 − a0)|1/2(r3 − a0 − r1 − a1)λ

1/2k +H0 +
T

2
∥σ∥2∞.

So we get our assertion with λ7 := λ3 ∨
(
(H0 + T∥σ∥2∞/2)C−1

5

)2
.
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Lemma 3.4 There exist constants C12 > 0 and λ8 ≥ 1 such that for any λ ≥ λ8, the
followings hold:

1. on the set F λ
5 ∩ F λ

10 ∩ F λ
3 , we have that

k ≥ 1, τλ2k ≤ T0 ⇒ τλ2k − τλ2k−1 ≤ C12λ
−1/2,

2. on the set F λ
5 ∩ F λ

9 ∩ F λ
10 ∩ F λ

6 , we have that

k ≥ 1, τλ2k ≤ T0, τ
λ
2k+1 ≤ T ⇒ τλ2k+1 − τλ2k ≤ C12λ

−1/4k−1/2.

Proof. Let us first prove the first assertion. By Lemma 2.16 (2b), for any λ ≥ λ3,
we have on the set F λ

5 that

t ∈ (0, T0], X
λ
t ∈ [r1 + a1, r3 − a0] ⇒ |V λ

t |2 ≥ −1

6
g(r3 − a0)λ > 0.

In particular, since V λ
t is continuous, we get that the particle could not stop or turn back

in this domain. So if τλ2k ≤ T0, then during the period [τλ2k−1, τ
λ
2k], the particle passes

through r1 + a1 exactly twice. Write them as ξ1, ξ2. Then

(ξ1 − τλ2k−1) + (τλ2k − ξ2)

≤ 2

∫ r3−a0

r1+a1

1√
−1

6g(r3 − a0)λ
dx

= 2
(
− 1

6
g(r3 − a0)

)−1/2
(r3 − a0 − r1 − a1)λ

−1/2, if τλ2k ≤ T0. (3.1)

For the period [ξ1, ξ2], notice that on the set F λ
10, we have for any t ∈ [ξ1, ξ2] ⊂ [τλ1 , T ]

that Hλ
t < 0, hence |V λ

t |2 = 2Hλ
t − 2λg(Xλ

t ) < −2λg(r2). Also, by (2.1), we have that
x ∈ [r1, r1 + a1] ⇒ g′(x) < −a2. So if λ ≥ −8b2a−2

2 g(r2) in addition, then we have that
−bV λ

s − λg′(Xλ
s ) ≥ −b

√
−2g(r2)λ

1/2 + λa2 ≥ 1
2λa2. Therefore, on the set F λ

10 ∩ F λ
3 , we

have that

2
√

−2g(r2)λ
1/2

≥ V λ
ξ2 − V λ

ξ1 =

∫ ξ2

ξ1

(
− bV λ

s − λg′(Xλ
s )
)
ds+

∫ ξ2

ξ1

σ(Xλ
s )dBs

≥ 1

2
λa2(ξ2 − ξ1)− 2 sup

t∈[0,T ]

∣∣∣ ∫ t

0
σ(Xλ

s )dBs

∣∣∣
≥ 1

2
λa2(ξ2 − ξ1)− 2λ1/2, (3.2)

hence

ξ2 − ξ1 ≤
2(
√

−2g(r2) + 1)λ1/2

1
2λa2

=
4(
√

−2g(r2) + 1)

a2
λ−1/2.

This combined with (3.1) implies our first assertion.
We next prove the second assertion. Let C5 and C6 be as in (2.11) and (2.12). For

any λ ≥
(
C−1
5 2C2

6

)2
∨ 1, we have that C6

√
−2g(r2)λ

1/2 + 1
2C

2
6 ≤ C5

2 λ1/2, hence on the
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set F λ
10, we have that C6V

λ
τ2k

+ 1
2C

2
6 ≤ C6

√
−2g(r2)λ

1/2 + 1
2C

2
6 ≤ C5

2 λ1/2. So for any

λ ≥ λ7 ∨
(
C−1
5 2C2

6

)2
∨ λ1(

C5
2 ), by Lemma 3.3, we have on the set F λ

5 ∩ F λ
9 ∩ F λ

10 that if

k ≥ 1 and τλ2k ≤ T0, then

λg(Xλ
τ2k

) +
1

2
(V λ

τ2k
+ C6)

2 = Hλ
τ2k

+ C6V
λ
τ2k

+
1

2
C2
6

≤ −C5λ
1/2k +

C5

2
λ1/2 ≤ −C5

2
λ1/2k.

Also, Xλ
τ2k

= r3 − a0 and V λ
τ2k

+ C6 > 0. Therefore, by Proposition 2.7 and the definition
of C7, we get that

tλ1(X
λ
τ2k

, V λ
τ2k

+ C6) ≤ C7λ
−1/4k−1/2. (3.3)

Notice that we did not use the condition τλ2k+1 ≤ T to get (3.3). This result will also be
used in the proof of Lemma 3.5 later.

So in order to prove our second assertion, it suffices to prove that

τλ2k+1 − τλ2k ≤ tλ1(X
λ
τ2k

, V λ
τ2k

+ C6). (3.4)

The proof of (3.4) is similar to that of Lemma 2.15 (1). Let

σk := inf
{
t > 0;Xλ

τ2k+t ≥ xλt (X
λ
τ2k

, V λ
τ2k

+ C6)
}
.

Claim 1. For any λ ≥ λ7 ∨
(
C−1
5 2C2

6

)2
, we have that the following holds on the set

F λ
5 ∩ F λ

9 ∩ F λ
10 ∩ F λ

6 :

k ≥ 1, τλ2k ≤ T0, τ
λ
2k+1 ≤ T ⇒ σk ∧

(
τλ2k+1 − τλ2k

)
∧ tλ1(X

λ
τ2k

, V λ
τ2k

+ C6) < σk.

Proof of Claim 1. Choose and fix any t ∈ (0, σk∧
(
τλ2k+1−τλ2k

)
∧tλ1(Xλ

τ2k
, V λ

τ2k
+C6)].

By (3.3), we have that t ≤ C7λ
−1/4, so on the set F λ

6 , we get that∫ t+τλ2k

τλ2k

eb(s−τλ2k)σ(Xλ
s )dBs = e−bτλ2k

∫ t+τλ2k

τλ2k

ebsσ(Xλ
s )dBs ≤ e−bτλ2kC6 ≤ C6. (3.5)

Also, for any s ∈ (0, t), since τλ2k < s+τλ2k < t+τλ2k ≤ τλ2k+1, we have that X
λ
s+τ2k

> r3−a0;

since s < t ≤ tλ1(X
λ
τ2k

, V λ
τ2k

+ C6), we have that xλs (X
λ
τ2k

, V λ
τ2k

+ C6) ∈ (r3 − a0, r3); finally,

since s < t ≤ σk, we have that Xλ
s+τ2k

< xλs (X
λ
τ2k

, V λ
τ2k

+ C6). Therefore, by assumption

(A2), g′(Xλ
s+τ2k

) > g′(xλs (X
λ
τ2k

, V λ
τ2k

+ C6)). So∫ t+τλ2k

τλ2k

eb(s−τλ2k)g′(Xλ
s )ds =

∫ t

0
ebsg′(Xλ

s+τ2k
)ds >

∫ t

0
ebsg′(xλs (X

λ
τ2k

, V λ
τ2k

+ C6))ds.

Combining this with (3.5), we get that

ebtV λ
t+τ2k

= V λ
τ2k

− λ

∫ t+τλ2k

τλ2k

eb(s−τλ2k)g′(Xλ
s )ds+

∫ t+τλ2k

τλ2k

eb(s−τλ2k)σ(Xλ
s )dBs

< V λ
τ2k

− λ

∫ t

0
ebsg′(xλs (X

λ
τ2k

, V λ
τ2k

+ C6))ds+ C6

= ebtvλt (X
λ
τ2k

, V λ
τ2k

+ C6).
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So V λ
t+τ2k

< vλt (X
λ
τ2k

, V λ
τ2k

+C6). This is true for any t ∈ (0, σk∧
(
τλ2k+1−τλ2k

)
∧tλ1(Xλ

τ2k
, V λ

τ2k
+

C6)]. Therefore, Xλ
t+τ2k

< xλt (X
λ
τ2k

, V λ
τ2k

+ C6). So t < σk. This completes the proof of
Claim 1.

Assume that ω ∈ F λ
5 ∩ F λ

9 ∩ F λ
10 ∩ F λ

6 , and that k ≥ 1, τλ2k ≤ T0, τ
λ
2k+1 ≤ T . Then by

Claim 1, we get that (
τλ2k+1 − τλ2k

)
∧ tλ1(X

λ
τ2k

, V λ
τ2k

+ C6) < σk. (3.6)

Assume that (3.4) were not the case. Then since Xλ
·+τ2k

> r3 − a0 until τλ2k+1 − τλ2k,

we get that Xλ
τ2k+t1(Xτ2k

,Vτ2k
+C6)

> r3 − a0 = xλt1(Xτ2k
,Vτ2k

+C6)
(Xλ

τ2k
, V λ

τ2k
+ C6), hence

tλ1(X
λ
τ2k

, V λ
τ2k

+C6) ≥ σk. This combined with our assumption that τλ2k+1−τλ2k > tλ1(X
λ
τ2k

, V λ
τ2k

+
C6) contradicts (3.6). Therefore, (3.4) holds. This combined with (3.3) implies our second
assertion.

We prepare one more estimate before going further.

Lemma 3.5 There exists a λ9 ≥ 1 such that the followings hold for any λ ≥ λ9:

1. we have on the set F λ
3 ∩ F λ

5 ∩ F λ
10 that

k ≥ 1, τλ2k−1 ≤
3

4
T0 ⇒ τλ2k ≤ T0,

2. we have on the set F λ
5 ∩ F λ

6 ∩ F λ
9 ∩ F λ

10 that

k ≥ 1, τλ2k ≤ T0

2
⇒ τλ2k+1 ≤

3

4
T0,

3. we have on the set F λ
3 ∩ F λ

5 ∩ F λ
6 ∩ F λ

9 ∩ F λ
10 that

k ≥ 1, τλ2k ≤ T0

2
⇒ τλ2(k+1) ≤ T0.

Proof. (3) is obviously a direct consequence of the first two assertions. We prove (1)
and (2). The calculation is similar to that of Lemma 3.4.

We prove the first assertion first. Recall that Xλ
τ2k−1

= r3−a0 and V λ
τ2k−1

< 0. Suppose

that we are on the given set, and that λ ≥ λ3 ∨ 6(12(r3−a0−r1−a1))2

|g(r3−a0)|T 2
0

∨
(
− 8b2a−2

2 g(r2)
)
∨(

48(
√

−2g(r2)+1)

T0a2

)2
. As same as in the proof of Lemma 3.4, let

ξ1 := inf{t > τλ2k−1;X
λ
t = r1 + a1}, ξ2 := inf{t > ξ1, X

λ
t = r1 + a1}.

It suffice to prove (3.7) ∼ (3.9) below:

ξ1 − τλ2k−1 ≤
T0

12
, (3.7)

ξ2 − ξ1 ≤
T0

12
, (3.8)

τλ2k − ξ2 ≤
T0

12
. (3.9)
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We first prove that (3.7) holds. Suppose not. Then for any s ∈ (τλ2k−1, τ
λ
2k−1 +

T0
12 ),

we have that Xs ∈ (r1 + a1, r3 − a0). Also, since τλ2k−1 ≤ 3
4T0 by assumption, we have

that s ∈ (0, T0]. So by Lemma 2.16 (2b), we have that |V λ
s |2 ≥ −1

6g(r3 − a0)λ > 0, in

particular, since V λ
· is continuous, we get that {V λ

s ; s ∈ (τλ2k−1, τ
λ
2k−1+

T0
12 )} stays negative.

So

r1 + a1 < Xλ

τ2k−1+
T0
12

= Xλ
τ2k−1

+

∫ τλ2k−1+
T0
12

τλ2k−1

V λ
s ds ≤ r3 − a0 −

√
−1

6
g(r3 − a0)λ · T0

12
.

This contradicts the fact that λ ≥ 6(12(r3−a0−r1−a1))2

|g(r3−a0)|T 2
0

. Therefore, (3.7) holds.

We next prove (3.8). Suppose it were not the case. Then for any s ∈ (ξ1, ξ1 +
T0
12 ), we

have that s ∈ (ξ1, ξ2), so Xλ
s ∈ (r1, r1 + a1), hence g′(Xλ

s ) < −a2 by (2.1). Also, since
s ≥ ξ1 ≥ τλ1 , we have that Hλ

s < 0, hence |V λ
s | <

√
−2λg(r2). Since λ ≥ −8b2a−2

2 g(r2),
these imply that −bV λ

s − λg′(Xλ
s ) ≥ −b

√
−2g(r2)λ

1/2 + λa2 ≥ 1
2λa2. Therefore,

2
√

−2g(r2)λ
1/2 > V λ

ξ1+
T0
12

− V λ
ξ1 =

∫ ξ1+
T0
12

ξ1

(
− bV λ

s − λg′(Xλ
s )
)
ds+

∫ ξ1+
T0
12

ξ1

σ(Xλ
s )dBs

≥ 1

2
λa2 ·

T0

12
− 2λ1/2,

hence 2(
√

−2g(r2)+1) > T0a2
24 λ1/2. This contradicts the assumption that λ ≥

(
48(

√
−2g(r2)+1)

T0a2

)2
.

Therefore, (3.8) also holds.
Finally, we prove (3.9) by a similar method as that of (3.7). Suppose that τλ2k−ξ2 >

T0
12 .

Then for any s ∈ (ξ2, ξ2 + T0
12 ), we have that Xλ

s ∈ (r1 + a1, r3 − a0). Also, with the
help of (3.7) and (3.8), we have that s ∈ (0, T0]. So by Lemma 2.16 (2b), we have
that |V λ

s |2 ≥ −1
6g(r3 − a0)λ > 0, in particular, since V λ

· is continuous, we get that

{V λ
s ; s ∈ (ξ2, ξ2 +

T0
12 )} stays positive. So

r3 − a0 > Xλ

ξ2+
T0
12

= Xλ
ξ2 +

∫ ξ2+
T0
12

ξ2

V λ
s ds ≥ r1 + a1 +

√
−1

6
g(r3 − a0)λ · T0

12
.

This contradicts the fact that λ ≥ 6(12(r3−a0−r1−a1))2

|g(r3−a0)|T 2
0

. Therefore, (3.9) holds.

We next prove the second assertion of our lemma. Restrict ourselves on the given set.
It suffices to prove that

τλ2k+1 − τλ2k ≤ T0

4
. (3.10)

Suppose not. Recall that Xλ
τ2k

= r3 − a0 and V λ
τ2k

> 0. So for any s ∈ (τλ2k, τ
λ
2k +

T0
4 ), we

have that Xλ
s ∈ (r3 − a0, r3). As in the proof of Lemma 3.4, let σk := inf

{
t > 0;Xλ

τ2k+t ≥

xλt (X
λ
τ2k

, V λ
τ2k

+ C6)
}
. Then by exactly the same method as we used to prove Claim 1 in

the proof of Lemma 3.4, we have that

T0

4
∧ tλ1(X

λ
τ2k

, V λ
τ2k

+ C6) ∧ (τλ2k+1 − τλ2k) < σk. (3.11)
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On the other hand, as claimed in the proof of Lemma 3.4, we have that (3.3) holds in our
present setting, too. So if λ ≥ (4C7/T0)

4, then

tλ1(X
λ
τ2k

, V λ
τ2k

+ C6) ≤ C7λ
−1/4k−1/2 ≤ C7λ

−1/4 ≤ T0/4. (3.12)

This combined with (3.11) implies that

tλ1(X
λ
τ2k

, V λ
τ2k

+ C6) ∧ (τλ2k+1 − τλ2k) < σk. (3.13)

The rest is, again, the same as in the proof of Lemma 3.4. Precisely, if we assume that
τλ2k+1− τλ2k > tλ1(X

λ
τ2k

, V λ
τ2k

+C6), then since Xλ
·+τ2k

> r3−a0 until τλ2k+1− τλ2k, we get that

Xλ
τ2k+t1(Xτ2k

,Vτ2k
+C6)

> r3 − a0 = xλt1(Xτ2k
,Vτ2k

+C6)
(Xλ

τ2k
, V λ

τ2k
+ C6), hence tλ1(X

λ
τ2k

, V λ
τ2k

+

C6) ≥ σk. So t
λ
1(X

λ
τ2k

, V λ
τ2k

+C6)∧(τλ2k+1−τλ2k) = tλ1(X
λ
τ2k

, V λ
τ2k

+C6) ≥ σk. This contradicts

(3.13). So τλ2k+1 − τλ2k ≤ tλ1(X
λ
τ2k

, V λ
τ2k

+ C6). This combined with (3.12) implies (3.10).

Lemma 3.6 For any t ∈ (0, T0/2], there exist constants C13(t) ∈ (0,−g(r2)) and λ10(t) ≥
1 such that for any λ ≥ λ10(t), we have on the set F λ

1 ∩ F λ
3 ∩ F λ

5 ∩ F λ
6 ∩ F λ

7,t/4 ∩ F λ
9 ∩ F λ

10

that
Hλ

s ≤ −C13(t)λ, for any s ∈ [t, T ].

Proof. Restrict ourselves on the given set. Let Kλ
t := inf{k ∈ N; τλ2k ≥ t}. Since

ω ∈ F λ
7,t/4, we have that τλ1 ≤ t/4 ≤ 3

4T0, so by Lemma 3.5 (1), we get that τλ2 ≤ T0.

Therefore, by Lemma 3.4 (1), we get that τλ2 − τλ1 ≤ C12λ
−1/2. So if λ ≥

(
4C12
t

)2
, then

τλ2 − τλ1 ≤ t
4 , hence τλ2 ≤ t

4 + t
4 = t

2 . Therefore, we get by the definition of Kλ
t that∑Kλ

t
k=2

(
τλ2k − τλ2(k−1)

)
= τλ2Kt

− τλ2 ≥ t− t
2 = t

2 .

On the other hand, we have that τλ2(Kt−1) < t ≤ T0/2, so by Lemma 3.5 (3), we have

that τλ2Kt
≤ T0, hence by Lemma 3.4 (1) (2), we get that τλ2k − τλ2(k−1) ≤ C12(λ

−1/2 +

λ−1/4k−1/2) for any k ∈ {2, · · · ,Kλ
t }.

Combining the above, we get that if λ ≥
(
4C12
t

)2
, then

t

2
≤

Kλ
t∑

k=2

(
τλ2k − τλ2(k−1)

)
≤

Kλ
t∑

k=2

C12(λ
−1/2 + λ−1/4k−1/2). (3.14)

Solving (3.14), we get that there exists a C14(t) > 0 such that

Kλ
t ≥ C14(t)λ

1/2.

Indeed, first notice that in general, we have
∑m

k=2 k
−1/2 ≤ 2

√
m for any m ≥ 2, so (3.14)

implies that t
2C12

≤ λ−1/2Kλ
t + 2λ−1/4

√
Kλ

t . This combined with λ−1/4
√

Kλ
t ≥ 0 implies

that λ−1/4
√
Kλ

t ≥
√

t
2C12

+ 1− 1.

So with C13(t) :=
1
2C5C14(t), we have by Lemma 3.3 that

Hλ
τ2(Kt−1)

≤ −C5λ
1/2C14(t)λ

1/2 = −2C13(t)λ+ C5λ
1/2.
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We have t ≥ τλ2(Kt−1). So if λ is large enough such that 2λ3/4+ T
2 ∥σ∥

2
∞+C5λ

1/2 ≤ C13(t)λ

in addition, then by Lemma 3.1 (1) and ω ∈ F λ
1 , we have that the following holds for any

s ∈ [t, T ]:

Hλ
s ≤ Hλ

τ2(Kt−1)
+ 2λ3/4 +

T

2
∥σ∥2∞

≤ −2C13(t)λ+ C13(t)λ = −C13(t)λ.

Our second main result of this section is the following.

PROPOSITION 3.7 We have that

P∞

(
Jt < 0 for any t ∈ (0, T ]

)
= 1.

Proof. Choose any t ∈ (0, T0/2] and fix it for a while. By Lemma 3.6 we have that

Pλ(Jt > −C13(t)) ≤ P
((

F λ
1 ∩ F λ

3 ∩ F λ
5 ∩ F λ

6 ∩ F λ
7,t/4 ∩ F λ

9 ∩ F λ
10

)C)
for any λ ≥ λ10(t). So by Proposition 2.10, limλ→∞ Pλ(Jt > −C13(t)) = 0. Since {J ∈
C([0, T ];R); Jt > −C13(t)} is open in C([0, T ];R), this implies that P∞(Jt > −C13(t)) =
0. In particular, P∞(Jt < 0) = 1 for any t ∈ (0, T0/2]. Since by Proposition 3.2, J· is
monotone non-increasing and continuous under P∞, this implies our assertion.

4 Proof of the main theorem

We give the proof of Theorem 1.1 in this section.
We first estimate the corresponding expression before taking limit λ → ∞ (see Lemma

4.5 for the result). Let us first make several preparations.

Lemma 4.1 1. For any λ ≥ (−1
2g(r2))

−2 and t ∈ (0, T ], we have on the set F λ
5 ∩ F λ

7,t

that Jλ
t ≥ (1 − 1

2e
−2(b+1)T )g(r2) and S1(J

λ
t ) ≥ C15 with C15 := inf

{
S1(j); j ∈

[(1− 1
2e

−2(b+1)T )g(r2), 0)
}
,

2. if λ ≥ λ10(t) in addition, then we have on the set F λ
1 ∩F λ

3 ∩F λ
5 ∩F λ

6 ∩F λ
7,t/4∩F

λ
9 ∩F λ

10

that Jλ
s ∈ [(1− 1

2e
−2(b+1)T )g(r2),−C13(

T0
2 ∧ t)] and

S1(J
λ
s ) ∈ [C15, C16(t)], for any s ∈ [t, T ],

with C16(t) := sup
j∈[(1− 1

2
e−2(b+1)T )g(r2),−C13(

T0
2
∧t)] S1(j). Here λ10(t) and C13(t) are

given by Lemma 3.6.

Proof. Since λ ≥ (−1
2g(r2))

−2, we get from Lemma 2.16 (1a) that Jλ
t ≥ (1 −

1
2e

−2(b+1)T )g(r2). Our assertions are now trivial by Lemma 3.6.

For any t ∈ (0, T ], let C17(t) := C13(
T0
2 ∧ t).
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Lemma 4.2 For any t0, t1 ∈ (0, T ) with t0 < t1, there exists a constant λ11(t0, t1) ≥ 1

such that for any λ ≥ λ11(t0, t1), the following holds on the set F
λ
t0/4,C16(t0) for any t ∈

[t0, t1]: ∣∣∣λ1/2

∫ t+S1(Jλ
t )λ

−1/2

t
f(Xλ

u )du− Sf (J
λ
t )
∣∣∣

≤ bλ
1,− 1

2
g(r2)e−2(b+1)T ,C17(t0),f

+ ∥f ′∥∞C16(t0)λ
−1/4.

Here bλ1,∗,∗,f is as defined in (2.9).

Proof. Assume that λ ≥ (−1
2g(r2))

−2 ∨ λ10(t0) and ω ∈ F
λ
t0/4,C16(t0). Then for any

t ∈ [t0, t1], we have by Lemma 4.1 (2) that S1(J
λ
t ) ≤ C16(t0). Assume λ ≥

(
C16(t0)
T−t1

)2
in

addition. Then C16(t0)λ
−1/2 ≤ T−t1, so for any t ∈ [t0, t1], we have that t+S1(J

λ
t )λ

−1/2 ≤
t1 + C16(t0)λ

−1/2 ≤ T . Therefore, by the definition of F λ
11,C16(t0)

, we have that

∣∣∣λ1/2

∫ t+S1(Jλ
t )λ

−1/2

t
f(Xλ

u )du− λ1/2

∫ S1(Jλ
t )λ

−1/2

0
f(xλu(X

λ
t , V

λ
t ))du

∣∣∣
≤ λ1/2∥f ′∥∞

∫ S1(Jλ
t )λ

−1/2

0

∣∣∣Xλ
u+t − xλu(X

λ
t , V

λ
t )

∣∣∣du
≤ λ1/2∥f ′∥∞C16(t0)λ

−1/2λ−1/4 = ∥f ′∥∞C16(t0)λ
−1/4.

This combined with the definition of bλ1,∗,∗ implies our assertion.

Lemma 4.3 For any λ ≥ 1, we have on the set F λ
2 that

Jλ
t+s ≥ e−2btJλ

s + (1− e−2bt)g(r2)− λ−1/4

as long as 0 ≤ s ≤ s+ t ≤ T .

Proof. Let H̃λ
t be as defined in (2.18). Then we get that e2b(t+s)H̃λ

t+s ≥ e2bsH̃λ
s +∫ t+s

s e2buV λ
u σ(Xλ

u )dBu. So on the set F λ
2 , we have that e

2b(t+s)H̃λ
t+s ≥ e2bsH̃λ

s −λ3/4, hence

Hλ
t+s ≥ e−2btHλ

s + (1− e−2bt)g(r2)λ− λ3/4. This implies our assertion.
We define two more notations. For any s ∈ (0, T ], let

bλ2,s,f :=
1

C15

(
bλ
1,− 1

2
g(r2)e−2(b+1)T ,C17(s),f

+ ∥f ′∥∞C16(s)λ
−1/4

)
.

Then by Proposition 2.8, it is trivial that

lim
λ→∞

bλ2,s,f = 0. (4.1)

Also, for any c ∈ (0,−g(r2)) and any ε > 0, let

b3,c,ε,f := sup
x,y∈((1− 1

2
e−2(b+1)T )g(r2),−c],|x−y|≤ε

∣∣∣Agf(x)−Agf(y)
∣∣∣.

Then by the continuity of Ag claimed before, we have that

lim
ε→0

b3,c,ε,f = 0. (4.2)
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Lemma 4.4 For any s1 ∈ (0, T ] and any θ ∈ (0,−g(r2)), there exist constants t0(θ) ∈
(0, T ] and λ12(θ, s1) ≥ 1 such that for any λ ≥ λ12(θ, s1), we have on the set F

λ
s1/4,C16(s1)

that the following holds for any s ∈ [s1, T ] and t ∈ (0, t0(θ)] satisfying s+ t ≤ T :∣∣∣Agf(Jλ
t+s)−Agf(Jλ

s )
∣∣∣ ≤ b3,C17(s1),2θ,f .

Proof. Assume that ω ∈ F
λ
s1/4,C16(s1). Then for any s ≥ s1, we have that Hλ

s < 0,

hence (e−2bt − 1)Hλ
s > 0. Therefore, by Lemma 4.3, we have that

Jλ
t+s − Jλ

s ≥ (1− e−2bt)g(r2)− λ−1/4, if s1 ≤ s ≤ s+ t ≤ T. (4.3)

Let t0(θ) :=
1
2b

∣∣∣ log(1 + θ
g(r2)

)
∣∣∣ ∧ (

2θ∥σ∥−2
∞

)
∧ T . Then t0(θ) > 0, and we have that

t < t0(θ) ⇒ t <
1

2b

∣∣∣ log(1 + θ

g(r2)
)
∣∣∣

⇒ (1− e−2bt)g(r2) > −θ.

So if λ ≥ (16θ−4) ∨ 1, then (4.3) implies that Jλ
t+s − Jλ

s ≥ −2θ for any s ∈ [s1, T ] and
t ∈ (0, t0(θ)] satisfying s+ t ≤ T .

On the other hand, we have by Lemma 3.1 (1) that Jλ
t+s−Jλ

s ≤ 2λ−1/4+ t
2∥σ∥

2
∞λ−1 ≤

θ + θ = 2θ.
In conclusion, with λ12(θ, s1) := 1 ∨ (16θ−4) ∨ λ10(s1) ∨ (−1

2g(r2))
−2, we have for any

λ ≥ λ12(θ, s1) that
∣∣∣Jλ

t+s − Jλ
s

∣∣∣ ≤ 2θ if s ∈ [s1, T ], t ∈ (0, t0(θ)] and s+ t ≤ T .

Also, since s, s+ t ∈ [s1, T ], we have by Lemma 4.1 (2) that

Jλ
t+s, J

λ
s ∈ [(1− 1

2
e−2(b+1)T )g(r2),−C17(s1)].

Combining the above, we get our assertion by the definition of b3,C17(s1),2θ,f .

Lemma 4.5 For any s1 ∈ (0, T/3] and any θ ∈ (0,−g(r2)), there exist constants t1(θ, s1) >

0 and λ13(θ, s1) ≥ 1 such that for any λ ≥ λ13(θ, s1), we have on the set F
λ
s1/4,C16(s1) that

the following holds for any s ∈ [s1, T − s1] and any t ∈ (0, t1(θ, s1)]:∣∣∣1
t

∫ s+t

s
f(Xλ

u )du−Agf(Jλ
s )
∣∣∣ ≤ bλ2,s1,f + b3,C17(s1),2θ,f + 2∥f∥∞

C16(s1)

t
λ−1/2.

Proof. Let t1(θ, s1) := s0
2 ∧ t0(θ). Choose and fix any s ∈ [s1, T − s1] and t ∈

(0, t1(θ, s1)], and define

tλ0 := s,

tλj := tλj−1 + S1(J
λ
tj−1

)λ−1/2,

K := Ks,t,λ := inf{k ∈ N; tλk ≥ s+ t} − 1.

Then ∣∣∣1
t

∫ s+t

s
f(Xλ

u )du−Agf(Jλ
s )
∣∣∣

≤
∣∣∣ 1

tλK − s

∫ tλK

s
f(Xλ

u )du−Agf(Jλ
s )
∣∣∣+ ∣∣∣1

t

∫ s+t

s
f(Xλ

u )du− 1

tλK − s

∫ tλK

s
f(Xλ

u )du
∣∣∣.
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We first deal with the first term on the right hand side above. By Lemmas 4.2, 4.1 (1)

and 4.4, for any λ ≥ λ11(s1, T − s1
2 )∨H2

0 ∨λ12(θ, s1)∨(−1
2g(r2))

−2, on the set F
λ
s1/4,C16(s1),

we have for any u ∈ [s, s+ t] ⊂ [s1, T − s1
2 ] that∣∣∣ λ1/2

S1(Jλ
u )

∫ u+S1(Jλ
u )λ

−1/2

u
f(Xλ

r )dr −Agf(Jλ
u )
∣∣∣

≤ 1

S1(Jλ
u )

(
bλ
1,− 1

2
g(r2)e−2(b+1)T ,C17(s1),f

+ ∥f ′∥∞C16(s1)λ
−1/4

)
≤ 1

C15

(
bλ
1,− 1

2
g(r2)e−2(b+1)T ,C17(s1),f

+ ∥f ′∥∞C16(s1)λ
−1/4

)
= bλ2,s1,f ,

and
∣∣∣Agf(Jλ

u )−Agf(Jλ
s )
∣∣∣ ≤ b3,C17(s1),2θ,f . Therefore,

∣∣∣ λ1/2

S1(Jλ
u )

∫ u+S1(Jλ
u )λ

−1/2

u
f(Xλ

r )dr −Agf(Jλ
s )
∣∣∣

≤
∣∣∣ 1

Sf (Jλ
u )

∫ u+Sf (J
λ
u )λ

−1/2

u
f(Xλ

r )dr −Agf(Jλ
u )
∣∣∣+ ∣∣∣Agf(Jλ

u )−Agf(Jλ
s )
∣∣∣

≤ bλ2,s1,f + b3,C17(s1),2θ,f . (4.4)

Notice that in general, if |xi−c| ≤ b for any i ∈ {1, · · · , n}, then for any a1, · · · , an > 0,

we have that
∣∣∣a1x1+···+anxn

a1+···+an
−c

∣∣∣ ≤ b. We have by definition that tλK−s =
∑K

j=1 S1(J
λ
tj−1

)λ−1/2.

Therefore, (4.4) implies that

∣∣∣ 1

tλK − s

∫ tλK

s
f(Xλ

u )du−Agf(Jλ
s )
∣∣∣ ≤ bλ2,s1,f + b3,C17(s1),2θ,f .

Now, it suffices to prove that∣∣∣1
t

∫ s+t

s
f(Xλ

u )du− 1

tλK − s

∫ tλK

s
f(Xλ

u )du
∣∣∣ ≤ 2∥f∥∞

C16(s1)

t
λ−1/2.

Notice that in general, for any A,B,C,D ∈ R, we have that∣∣∣A+B

C +D
− A

C

∣∣∣ ≤ ∣∣∣ B

C +D

∣∣∣+ ∣∣∣A
C

∣∣∣ · ∣∣∣ D

C +D

∣∣∣.
Also notice that

∣∣∣ ∫ s+t
tλK

f(Xλ
u )du

∣∣∣ ≤ (s+t−tλK)∥f∥∞ and
∣∣∣∫ tλK

s f(Xλ
u )du

tλK−s

∣∣∣ ≤ ∥f∥∞. Therefore,

∣∣∣1
t

∫ s+t

s
f(Xλ

u )du− 1

tλK − s

∫ tλK

s
f(Xλ

u )du
∣∣∣

≤
∣∣∣1
t

∫ s+t

tλK

f(Xλ
u )du

∣∣∣+ ∣∣∣∫ tλK
s f(Xλ

u )du

tλK − s

∣∣∣ · ∣∣∣ t+ s− tλK
t

∣∣∣
≤ 2∥f∥∞

s+ t− tλK
t

.
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If λ ≥ λ10(s1) in addition, then by Lemma 4.1 (2), we have on F
λ
s1/4,C16(s1) that s+t−tλK ≤

λ−1/2S1(J
λ
tK
) ≤ λ−1/2C16(s1). This completes the proof of our assertion.

Now we are ready to prove Theorem 1.1. By Proposition 3.7, it is obviously a direct
consequence of Propositions 4.6 and 4.7 given below.

PROPOSITION 4.6 1. For any s0 ∈ (0, T3 ], we have that the following holds P∞-
almost surely:

lim sup
t→0

sup
s∈[s0,T−s0]

∣∣∣1
t

(
Y f
s+t − Y f

s

)
−Agf(Js)

∣∣∣ = 0.

2. For any s > 0, we have P∞-almost surely that

d

ds
Y f
s = Agf(Js).

Proof. The second assertion is trivial by the first assertion. We prove the first one
in the following.

Choose and fix any θ > 0 and t2 ∈ (0, t1(θ, s0)). For any ε > 0, since

lim
λ→∞

(
bλ2,s0,f + 2∥f∥∞

C16(s0)

t2
λ−1/2

)
= 0,

we have that there exists a λ14(ε, θ, s0, t2) ≥ λ13(θ, s0) such that for any λ ≥ λ14(ε, θ, s0, t2)

and any t ≥ t2, we have that bλ2,s0,f + 2∥f∥∞C16(s0)
t2

λ−1/2 < ε, hence by Lemma 4.5 and
Proposition 2.10, we get that

lim
λ→∞

Pλ

(
∃(s, t) ∈ (s0, T − s0)× (t2, t1(θ, s0))s.t.

Js < 0 and
∣∣∣1
t
(Y f

s+t − Y f
s )−Agf(Js)

∣∣∣ > b3,C17(s0),2θ,f + ε
)
= 0.

Since {(Y, J) ∈ C([0, T ];R)×C([0, T ];R)
∣∣∣Js < 0 and

∣∣∣1t (Yt+s−Ys)−Agf(Js)
∣∣∣ > δ for some

(s, t) ∈ (s1, s2)× (t1, t2)} is open in C([0, T ];R)× C([0, T ];R), this implies that

P∞

(
∃(s, t) ∈ (s0, T − s0)× (t2, t1(θ, s0))s.t.

Js < 0 and
∣∣∣1
t
(Y f

s+t − Y f
s )−Agf(Js)

∣∣∣ > b3,C17(s0),2θ,f + ε
)
= 0.

So by Proposition 3.7, we get that

P∞

(
∃(s, t) ∈ (s0, T−s0)×(t2, t1(θ, s0))s.t.

∣∣∣1
t
(Y f

s+t−Y f
s )−Agf(Js)

∣∣∣ > b3,C17(s0),2θ,f+ε
)
= 0.

This is true for any ε > 0, any θ > 0 and any t2 > 0.
Taking ε → 0+, we get that

P∞

(
sup

(s,t)∈(s0,T−s0)×(t2,t1(θ,s0))

∣∣∣1
t
(Y f

s+t − Y f
s )−Agf(Js)

∣∣∣ ≤ b3,C17(s0),2θ,f

)
= 1. (4.5)
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Now take t2 → 0, hence we get that

P∞

(
sup

(s,t)∈(s0,T−s0)×(0,t1(θ,s0))

∣∣∣1
t
(Y f

s+t − Y f
s )−Agf(Js)

∣∣∣ ≤ b3,C17(s0),2θ,f

)
= 1.

Finally take θ → 0, so by (4.2), we get that

P∞

(
lim sup
t→0+

sup
s∈(s0,T−s0)

∣∣∣1
t
(Y f

s+t − Y f
s )−Agf(Js)

∣∣∣ = 0
)
= 1.

The assertion for t → 0− is proved in the same way. Indeed, by exactly the same method
as we used up to now, we get the following modification of (4.5):

P∞

(
∃(s, t) ∈ (s0, T−s0)×(t2, t1(θ, s0))s.t.

∣∣∣1
t
(Y f

s+t−Y f
s )−Agf(Jt+s)

∣∣∣ > b3,C17(s0),2θ,f+ε
)
= 0

for any ε > 0, any θ > 0 and any t2 > 0. Without loss of generality, assume that
t1(θ, s0) ≤ s0. Write s̃ := s+ t. Therefore,

P∞

(
sup

(s̃,t)∈(2s0,T−s0)×(t2,t1(θ,s0))

∣∣∣1
t
(Y f

s̃ − Y f
s̃−t)−Agf(Js̃)

∣∣∣ ≤ b3,C17(s1),2θ,f

)
= 1.

Now we get our assertion for t → 0− by the same method as that for t → 0+.

PROPOSITION 4.7 For any s ∈ (0, T ), we have P∞-almost surely that

d

ds
Js = −2b(Js −Agg(Js)).

Proof. Fix any s0 ∈ (0, T ) and let s ∈ (s0, T − s0). Since

dJλ
t = −2bJλ

t dt+ 2bg(Xλ
t )dt+ λ−1V λ

t σ(Xλ
t )dBt +

1

2λ
σ(Xλ

t )
2dt,

we have that

Jλ
t+s−Jλ

s = −2b

∫ t+s

s
Jλ
udu+2b

∫ t+s

s
g(Xλ

u )du+λ−1

∫ t+s

s
V λ
u σ(Xλ

u )dBu+
1

2λ

∫ t+s

s
σ(Xλ

u )
2du.

Therefore, ∣∣∣1
t
(Jλ

t+s − Jλ
s ) + 2b(Js −Agg(Js))

∣∣∣
≤ 2b

1

t

∫ t+s

s
|Jλ

u − Jλ
s |du+ 2b

∣∣∣1
t

∫ t+s

s
g(Xλ

u )du−Agg(Jλ
s )
∣∣∣

+λ−1
∣∣∣1
t

∫ t+s

s
V λ
u σ(Xλ

u )dBu|+
1

2λ

∣∣∣1
t

∫ t+s

s
σ(Xλ

u )
2du

∣∣∣. (4.6)

We have on the set F λ
1 that

λ−1
∣∣∣1
t

∫ t+s

s
V λ
u σ(Xλ

u )dBu| ≤ λ−1 1

t
2λ3/4 =

2

t
λ−1/4. (4.7)
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Also, we have that

(2λ)−1
∣∣∣1
t

∫ t+s

s
σ(Xλ

u )
2du

∣∣∣ ≤ (2λ)−1∥σ∥2∞. (4.8)

We next deal with the first term on the right hand side of (4.6). For any ε > 0, there
exists a t3(ε) ∈ (0, s0) such that −g(r2)(1 − e−2bt) < ε

4b for any t ≤ t3(ε). Notice that
s+t3(ε) ≤ T . Also, Jλ

s < 0 on F λ
7,s0/4

∩F λ
10. Therefore, by Lemma 4.3, for any λ ≥ (4b/ε)4,

we have on the set F λ
2 ∩ F λ

7,s0/4
∩ F λ

10 that the following holds for any u ∈ (s, s+ t3(ε)):

Jλ
u − Jλ

s ≥ −(1− e−2b(u−s))(Jλ
s − g(r2))− λ−1/4

≥ (1− e−2b(u−s))g(r2)− λ−1/4 ≥ − ε

4b
− ε

4b
= − ε

2b
.

On the other hand, choose λ15(ε) ≥ 1 such that λ ≥ λ15(ε) ⇒ 2λ−1/4+(2λ)−1∥σ∥2∞T ≤ ε
2b ,

then for any λ ≥ λ15(ε), we have on the set F λ
1 that

Jλ
u − Jλ

s

= −b

∫ u

s
λ−1|V λ

r |2dr +
∫ u

s
λ−1V λ

r σ(Xλ
r )dBr +

∫ u

s
(2λ)−1σ(Xλ

r )
2dr

≤ 0 + 2λ−1/4 + (2λ)−1∥σ∥2∞T ≤ ε

2b
.

Let λ16(ε) := (4b/ε)4 ∨ λ15(ε). Then our calculation implies that, for any λ ≥ λ16(ε), we
have on the set F λ

1 ∩ F λ
2 ∩ F λ

7,s0/4
∩ F λ

10 that

|Jλ
u − Jλ

s | ≤
ε

2b
. (4.9)

Combining (4.6), (4.7), (4.8) and (4.9) with Lemma 4.5, we get for any λ ≥ λ16(ε), any

t0 > 0 and any t ∈ (t0, t3(ε) ∧ t1(θ, s0)) that the following holds on the set F
λ
s1/4,C16(s0):∣∣∣1

t
(Jλ

t+s − Jλ
s ) + 2b(Js −Agg(Js))

∣∣∣
≤ 2b · ε

2b
+ 2b

(
bλ2,s0,g + b3,C17(s0),2ε,g + 2∥g∥∞

C16(s0)

t0
λ−1/2

)
+

2

t0
λ−1/4 + (2λ)−1∥σ∥2∞.

Combining this with (4.1), we get the following: for any ε > 0 and any t0 > 0, there
exists a λ17(ε, s0, ε, t0) ≥ 1 such that for any λ ≥ λ17(ε, s0, ε, t0), we have that

Pλ

(
∃(s, t) ∈ (s0, T − s0)× (t0, t3(ε) ∧ t1(θ, s0))s.t.

Js < 0 and
∣∣∣1
t
(Js+t − Js) + 2b(Js −Agg(Js))

∣∣∣ > ε+ 2bb3,C17(s0),2ε,f + ε
)

≤ P
(
(F

λ
s1/4,C16(s0))

C
)
.

The right hand side above converges to 0 as λ → ∞ by Proposition 2.10. Since {J ∈
C([0, T ];R)

∣∣∣Js < 0 and
∣∣∣1t (Jt+s − Js) + 2b(Js − Agg(Js))

∣∣∣ > δ for some (s, t) ∈ (s1, s2) ×
(t1, t2)} is open in C([0, T ];R), this implies that

P∞

(
∃(s, t) ∈ (s0, T − s0)× (t0, t3(ε) ∧ t1(θ, s0))s.t.

Js < 0 and
∣∣∣1
t
(Js+t − Js) + 2b(Js −Agg(Js))

∣∣∣ > ε+ 2bb3,C17(s0),2ε,f + ε
)
= 0.
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Taking ε → 0, t0 → 0 and ε → 0 in turn, we get that

P∞

(
lim sup
t→0+

sup
s∈(s0,T−s0)

∣∣∣1
t
(Js+t − Js) + 2b(Js −Agg(Js)

∣∣∣ = 0
)
= 1.

The assertion for t → 0− is proved in the same way.

5 Appendix

This appendix provides the proofs of our results respect to the deterministic case presented
in Subsection 2.3. We omit the superscript λ when there is no risk of confusion.

Proof of Lemma 2.6. Choose any ε ∈ (0, a0 ∨ (−v0
b )), and let ξε := inf{t > 0;xt =

r3 − ε}. Then for any t ∈ [0, ξε], we have that d
dt

(
ebtvt

)
= −λebtg′(xt) ≤ 0. So

vt ≤ e−btv0, for any t ∈ [0, ξε].

Therefore, for any t ∈ [0, ξε], we have that

xt = x0 +

∫ t

0
vsds ≤ x0 +

∫ t

0
e−bsv0ds = x0 −

v0
b
(e−bt − 1).

In particular, r3 − ε = xξε ≤ r3 − v0
b (e

−bξε − 1). Solving this, we get that

ξε ≤ −b−1 log
(
1 + (bε)/v0

)
. (5.1)

We next estimate tλ1(x0, v0)− ξε. First notice that by assumption (A2), we have that

t ∈ [ξε, t
λ
1(x0, v0)] ⇒ xt ∈ [r3 − a0, r3 − ε] ⇒ g′(xt) ≥ g′(r3 − ε).

Also, for any t ≥ 0, we have by Lemma 2.5 that 1
2 |vt|

2 + λg(xt) = ht ≤ h0, hence

|vt| ≤
√

2(h0 − λg(xt)) ≤
√

2(h0 − λg(r2)). Therefore, for any λ ≥ 1 large enough such
that b

√
2(h0 − λg(r2)) ≤ λ

2g
′(r3 − ε), we have for any t ∈ [ξε, t

λ
1(x0, v0)] that

d

dt
vt = −λg′(xt)− bvt ≤ −λg′(r3 − ε) + b

√
2(h0 − λg(r2)) ≤ −λ

2
g′(r3 − ε).

Since vξε ≤ 0, this implies that

vt ≤ −λ

2
g′(r3 − ε)(t− ξε), for any t ∈ [ξε, t

λ
1(x0, v0)].

Therefore, we get that

r3 − a0 = xξε +

∫ tλ1 (x0,v0)

ξε

vsds

≤ r3 − ε− λ

2
g′(r3 − ε)

∫ tλ1 (x0,v0)

ξε

(s− ξε)ds

= r3 − ε− λ

2
g′(r3 − ε) · 1

2

(
tλ1(x0, v0)− ξε

)2
.
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Solving this, we get that tλ1(x0, v0)−ξε ≤
√

4(a0−ε)
λg′(r3−ε) . Combining this with (5.1), by taking

first ε > 0 small enough and then λ ≥ 1 large enough, we get our first assertion.
The second assertion is proved by the same method as the random case (see the proofs

of Lemmas 2.16 and 2.17), and we omit the proof.
Proof of Proposition 2.7. Since h0 < 0 by assumption, we get by Lemma 2.5

that ht < 0 for any t ≥ 0, hence the particle stays in the domain xt ∈ (r1, r3). Let

ξ1 := inf
{
t > 0; vt = 0

}
. We remark that xξ1 < r3.

Let us first make a preparation. Notice that since xξ1 ∈ (r3 − a0, r3), we have by
assumption (A2) that g′(xξ1) ≥ C1|g(xξ1)|. Also, by assumption, we have that |g(xξ1)| =
λ−1|hξ1 | ≥ λ−1|h0| ≥ cλ−1/2k. Therefore, g′(xξ1) ≥ C1cλ

−1/2k. On the other hand, by
(A2) and the mean value theorem, we have for any y ∈ (r3 − a0, xξ1) that g(xξ1)− g(y) ≥
g′(xξ1)(xξ1 − y), so∫ xξ1

r3−a0

1√
g(xξ1)− g(y)

dy ≤ 1√
g′(xξ1)

∫ xξ1

r3−a0

1
√
xξ1 − y

dy

=
1√

g′(xξ1)
· 2

√
xξ1 − (r3 − a0) ≤

2
√
a0√

g′(xξ1)

≤ 2
√

a0/(C1c)λ
1/4k−1/2. (5.2)

Now we are ready to estimate ξ1. For any s ∈ (0, ξ1), we have that hs ≥ hξ1 = λg(xξ1),
so |vs| =

√
2
√

hs − λg(xs) ≥
√
2
√

λg(xξ1)− λg(xs). Combining this with (5.2), we get
that

ξ1 =

∫ ξ1

0
ds ≤

∫ ξ1

0

|vs|√
2
√

λg(xξ1)− λg(xs)
ds

=

∫ xξ1

r3−a0

1√
2λ1/2

√
g(xξ1)− g(y)

dy ≤
√

2a0/(C1c)λ
−1/4k−1/2. (5.3)

We next estimate tλ1(x0, v0)− ξ1. Let λ1(c) :=
(
64b4C−4

1 c−2
)
∨ 1.

Claim 2. Suppose that λ ≥ λ1(c), r ≥ 0, hr ≤ −cλ1/2, vr ≤ 0, t > r and
xu ∈ [r3 − a0, r3) for any u ∈ (r, t), then |vu|2 + λg(xu) is monotone non-decreasing with
respect to u ∈ (r, t).

Proof of Claim 2. For any u ∈ (r, t), we have by assumption and Lemma 2.5 that

λ|g(xu)| = −λg(xu) = −hu +
1

2
|vu|2 ≥ −hu ≥ −hr ≥ cλ1/2.

Also, since xu ∈ [r3 − a0, r3), we have by (A2) that |g(xu)|
|g′(xu)| ≤ C−1

1 . So

|vu|
λ|g′(xu)|

≤
√

2λ|g(xu)|
λ|g′(xu)|

=
√
2 · |g(xu)|

|g′(xu)|
· 1√

λ|g(xu)|
≤

√
2C−1

1 (cλ1/2)−1/2.

Therefore, 2bvu + λg′(xu) ≥ λg′(xu)
(
1 − 2b

√
2C−1

1 c−1/2λ−1/4
)
. Notice that λ ≥ λ1(c)

implies that 1 − 2b
√
2C−1

1 c−1/2λ−1/4 ≥ 0. So for any u ∈ (r, t), since g′(xu) > 0 and
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vu < 0 by assumption, we get that d
du

(
|vu|2 + λg(xu)

)
= −

(
2bvu + λg′(xu)

)
vu ≥ 0. So

|vu|2 + λg(xu) is monotone non-decreasing with respect to u ∈ (r, t).
Let us come back to the proof of Proposition 2.7. We have that all the assumptions of

Claim 2 are satisfied with r = ξ1, and vr = 0 in further. Therefore, by Claim 2, for any u ∈
(r, tλ1(x0, v0)), we have that |vu|2 + λg(xu) ≥ λg(xξ1), hence |vu| ≥ λ1/2

√
g(xξ1)− g(xu).

Combining this with (5.2), we get that

tλ1(x0, v0)− ξ1 =

∫ tλ1 (x0,v0)

ξ1

du ≤
∫ tλ1 (x0,v0)

ξ1

|vu|
λ1/2

√
g(xξ1)− g(xu)

du

= λ−1/2

∫ xξ1

r3−a0

1√
g(xξ1)− g(y)

dy

≤ 2
√

a0/(C1c)λ
−1/4k−1/2.

This combined with (5.3) implies our assertion with C3(c) := (2 +
√
2)
√

a0/(C1c).

Lemma 5.1 Assume that j0 < 0 and let η > 0 be any constant. Also, assume that either
g(x0) = j0− η and v0 · (x0− r2) < 0 or g(x0) < j0− η. Let ξ := inf{t > 0; g(xt) = j0− η}.
Then for any λ ≥ (−4bg(r2)(r3 − r1))

2η−3, we have the followings:

1. ξ ≤ (r3 − r1)η
−1/2λ−1/2,

2. |ju − j0| ≤ −2bg(r2)(r3 − r1)η
−1/2λ−1/2 for any u ∈ (0, ξ),

3. ju − g(xu) ≥ η/2 for any u ∈ (0, ξ).

Proof of Lemma 5.1. First, since jt is monotone non-increasing with respect to
t by Lemma 2.5, we have that jt ≤ j0 < 0, hence {xt} stays in (r1, r3). Also, since
d
dtjt = −bλ−1|vt|2 ≥ 2bg(r2), we have that

jt − j0 ≥ 2bg(r2)t, for any t ≥ 0. (5.4)

For any u ∈ (0, ξ), we have that g(xu) ≤ j0 − η, hence by (5.4), we have that

1

2
λ−1|vu|2 = ju − g(xu) ≥ ju − (j0 − η) ≥ 2bg(r2)u+ η, for any u ∈ (0, ξ). (5.5)

Now, choose and fix any s0 ≤ η(−4bg(r2))
−1 for a while. Then for any u ∈ (0, s0 ∧ ξ),

we have by (5.5) that 1
2λ

−1|vu|2 ≥ 2bg(r2)u + η ≥ η/2, hence |vu| ≥ η1/2λ1/2 for any
u ∈ (0, s0 ∧ ξ). In particular, since v· is continuous, this implies that vu has the same sign
for all u ∈ (0, s0 ∧ ξ).

Therefore, if ξ ≥ s0, then

r3 − r1 ≥ |xs0 − x0| =
∫ s0

0
|vu|du ≥ η1/2λ1/2s0,

hence s0 ≤ (r3 − r1)η
−1/2λ−1/2. In conclusion, we have proved that

s0 ≤ η(−4bg(r2))
−1, s0 ≤ ξ ⇒ s0 ≤ (r3 − r1)η

−1/2λ−1/2.
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So η(−4bg(r2))
−1 ∧ ξ ≤ (r3 − r1)η

−1/2λ−1/2. Since

η(−4bg(r2))
−1 ≥ (r3 − r1)η

−1/2λ−1/2 (5.6)

by assumption, we get that ξ ≤ (r3 − r1)η
−1/2λ−1/2. This completes the proof of our first

assertion.
The second assertion is now easy by (5.4) and Lemma 2.5. The third assertion is

nothing but a combination of the first assertion, (5.5) and (5.6).
Proof of Proposition 2.8. Let

C18(δ1, δ2) := sup
j∈[g(r2)+ 1

4
δ1,−δ2]

S1(j),

C19(δ1, δ2) := inf
y∈[g−1,2(g(r2)+

δ1
4
),g−1,2(−δ2)]

g′(y),

C20(δ1, δ2) := inf
y∈[g−1,1(−δ2),g−1,1(g(r2)+

δ1
4
)]

|g′(y)|.

Then C18(δ1, δ2), C19(δ1, δ2), C20(δ1, δ2) ∈ (0,∞).
Choose any j ∈ (g(r2)+δ1,−δ2) and assume that j0 =

1
2λ

−1|v0|2+g(x0) = j. Since jt is
monotone non-increasing with respect to t by Lemma 2.5, we have that 1

2λ
−1|vt|2+g(xt) =

jt ≤ j0 = j < 0, hence 1
2λ

−1|vt|2 ≤ −g(r2). Therefore,
d
dtjt ≥ 2bg(r2), so

t ∈ (0, 2S1(j)λ
−1/2) ⇒ jt ∈ (j + 4bg(r2)C18(δ1, δ2)λ

−1/2, j). (5.7)

In particular, if λ ≥
(
− 8bg(r2)C18(δ1, δ2)δ

−1
1

)2
, then we have that jt ∈ (g(r2)+

1
2δ1,−δ2)

as long as t ∈ (0, 2S1(j)λ
−1/2).

Choose and fix any j ∈ (g(r2) + δ1,−δ2) and any η ∈ (0, δ14 ) for a while. Divide the

period (0, S1(j)λ
−1/2) into the periods that xt stays in (g−1,1(j), g−1,1(j − η)), (g−1,1(j −

η), g−1,2(j − η)) and (g−1,2(j − η), g−1,2(j)), respectively. In the following, we prove our
assertion by considering each of these sojourn times. We shift the time such that each
period starts from time 0 (hence (x0, v0) is different from the one up to now).

By first taking λ → ∞ with η fixed, then taking η → 0, our assertion is a direct conse-
quence of Claim 3 given below. (For the sake of simplicity, we write (xλu(x0, v0), v

λ
u(x0, v0))

as (xt, vt)). Precisely, assertions (1) ∼ (4) of Claim 3 estimate the sojourn time of the
particle in A := {y : g(y) > j − η}, which combined with the boundedness of f gives us
an estimate of the integral of f(xu(x, v)) on [0, S1(

1
2λ

−1|v|2 + g(x))] ∩ {u : xu(x, v) ∈ A};
(5) deals with the corresponding term for the case with b = 0 = σ; and (6) estimates the
difference of these two integrals on {u : xu(x, v) ∈ AC}.

Claim 3. Assume that j0 ∈ [j−η
2 , j]. Also, assume that λ ≥

(
−8bg(r2)C18(δ1, δ2)δ

−1
1

)2
∨(

− 32b2g(r2)C19(δ1, δ2)
−2

)
∨
(
− 32b2g(r2)C20(δ1, δ2)

−2
)
∨ (−4bg(r2)(r3 − r1)

)2
η−3. Let

ξ1 := inf{t > 0; vt = 0} and ξ2 := inf{t > 0; g(xt) = j − η}. Then we have the following:

(1) Assume that v0 > 0, x0 ∈ (r2, r3) and g(x0) ≥ j − η. Then

ξ1 ≤
√
2C19(δ1, δ2)

−1/2λ−1/2
√

g−1,2(j)− g−1,2(j − η).
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(2) Assume that v0 = 0 and x0 ∈ (r2, r3). Then

ξ2 ≤ 2C19(δ1, δ2)
−1/2λ−1/2

√
g−1,2(j)− g−1,2(j − η).

(3) Assume that v0 < 0, x0 ∈ (r1, r2) and g(x0) ≥ j − η. Then

ξ1 ≤
√
2C20(δ1, δ2)

−1/2λ−1/2
√

g−1,1(j − η)− g−1,1(j).

(4) Assume that v0 = 0 and x0 ∈ (r1, r2). Then

ξ2 ≤ 2C20(δ1, δ2)
−1/2λ−1/2

√
g−1,1(j − η)− g−1,1(j).

(5) We have that ∫ g−1,1(j−η)

g−1,1(j)

|f(y)|√
j − g(y)

dy +

∫ g−1,2(j)

g−1,2(j−η)

|f(y)|√
j − g(y)

dy

≤ 2∥f∥∞
(
C19(δ1, δ2)

−1/2
√

g−1,2(j)− g−1,2(j − η)

+C20(δ1, δ2)
−1/2

√
g−1,1(j − η)− g−1,1(j)

)
.

(6) For any x0, z ∈ [g−1,1(j − η), g−1,2(j − η)], let ξz = inf{t > 0;xt = z}, and let |x0, z|
denote the interval [x0, z] if x0 < z, or the interval [z, x0] if z < x0. Then

sup
x0,z∈[g−1,1(j−η),g−1,2(j−η)],

v0·(z−x0)>0

∣∣∣λ1/2

∫ ξz

0
f(xu)du−

∫
|x0,z|

f(y)√
2
√

j − g(y)
dy

∣∣∣
≤ η−3/2∥f∥∞(r3 − r1)

(
− 2bg(r2)(r3 − r1)η

−1/2λ−1/2 + |j0 − j|
)
.

Proof of Claim 3. Since λ ≥
(
− 8bg(r2)C18(δ1, δ2)δ

−1
1

)2
, by the same method

as in the beginning of the proof of this proposition, we have that u ∈ (0, 2S1(j)λ
−1/2) ⇒

ju ∈ (g(r2) +
1
4δ1,−δ2). Indeed, we have that j0 ≥ j − η/2 ≥ j − δ1/8, so for any

t ∈ (0, 2S1(j)λ
−1/2), we have by (5.7) that jt ≥ j−δ1/8+4bg(r2)C18(δ1, δ2)λ

−1/2 ≥ j− 5
8δ1.

This combined with j ≥ g(r2) + δ1 implies that jt ≥ g(r2) +
1
4δ1.

The proofs of (1) and (2) given in the following are almost the same as that of Propo-
sition 2.7.

(1) Since jt is monotone non-increasing by Lemma 2.5, we have that g(xξ1) = jξ1 ≤
j0 ≤ j, hence xξ1 ≤ g−1,2(j). Also, for any u ∈ (0, ξ1), we have that 1

2λ
−1|vu|2 + g(xu) =

ju ≥ jξ1 = g(xξ1), hence |vu| ≥
√
2λ

√
g(xξ1)− g(xu). Moreover, we have by the mean-

value theorem that g(xξ1)− g(y) ≥ C19(δ1, δ2)(xξ1 − y) for any y ∈ [g−1,2(g(r2)+
δ1
4 ), xξ1 ].

41



Therefore,

ξ1 =

∫ ξ1

0
du ≤

∫ ξ1

0

vu√
2λ

√
g(xξ1)− g(xu)

du

≤
∫ xξ1

g−1,2(j−η)

1√
2λ

√
g(xξ1)− g(y)

dy

≤ 1√
2λC19(δ1, δ2)

∫ xξ1

g−1,2(j−η)

1
√
xξ1 − y

dy

=
1√

2λC19(δ1, δ2)
2
√
xξ1 − g−1,2(j − η)

≤
√
2C19(δ1, δ2)

−1/2λ−1/2
√

g−1,2(j)− g−1,2(j − η).

(2) We have that λ ≥ −32b2g(r2)C19(δ1, δ2)
−2. So for any u ∈ (0, ξ2), 2bvu + λg′(xu)

has the same sign as g′(xu). Indeed, we have that
∣∣∣2bvuλ−1/2

g′(xu)

∣∣∣ ≤ 2b
√
−2g(r2)C19(δ1, δ2)

−1,

hence 2bvu+λg′(xu)
λg′(xu)

= 1 + 2bvuλ−1/2

g′(xu)
λ−1/2 ≥ 1− 2b

√
−2g(r2)C19(δ1, δ2)

−1λ−1/2 ≥ 1
2 .

So in the present case, we have for any u ∈ (0, ξ2) that 2bvu + λg′(xu) > 0. Also, vu is
negative in the present case for u ∈ (0, ξ2). So

d

du

(
|vu|2 + λg(xu)

)
= −vu

(
2bvu + λg′(xu)

)
> 0, u ∈ (0, ξ2).

Therefore, |vu|2 + λg(xu) is monotone non-decreasing with respect to u ∈ (0, ξ2). So for
any u ∈ (0, ξ2), we have that |vu|2 + λg(xu) ≥ λg(x0), hence |vu| ≥ λ1/2

√
g(x0)− g(xu).

Also, we have that x0 ≤ g−1,2(j), and that g(x0) − g(y) ≥ C19(δ1, δ2)(x0 − y) for any
y ∈ (g−1,2(j − η), x0). Therefore,

ξ2 =

∫ ξ2

0
du ≤

∫ ξ2

0

|vu|
λ1/2

√
g(x0)− g(xu)

du

≤
∫ x0

g−1,2(j−η)

1

λ1/2
√

g(x0)− g(y)
dy

≤ λ−1/2 1√
C19(δ1, δ2)

∫ x0

g−1,2(j−η)

1√
x0 − y

dy

= λ−1/2C19(δ1, δ2)
−1/22

√
x0 − g−1,2(j − η)

≤ λ−1/2C19(δ1, δ2)
−1/22

√
g−1,2(j)− g−1,2(j − η).

(3) is proved in exactly the same way as that for (1), and (4) is proved in exactly the
same way as that for (3). (5) is proved similarly, and we omit the proof here.

(6)Assume that v0 > 0 and z > x0. First notice that∫
[x0,z]

f(y)√
2
√

j − g(y)
dy =

∫ ξz

0

f(xu)√
2
√

j − g(xu)
vudu.
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Also, since ju ≤ j, we have that∣∣∣(ju − g(xu))
−1/2 − (j − g(xu))

−1/2
∣∣∣

≤ 1

2
(ju − g(xu))

−3/2|ju − j|

≤ 1

2
(ju − g(xu))

−3/2
(
|ju − j0|+ |j0 − j|

)
.

Since λ ≥ (−4bg(r2)(r3 − r1))
2η−3, this combined with Lemma 5.1 implies that for any

u ∈ [0, ξz], we have that∣∣∣(ju−g(xu))
−1/2− (j−g(xu))

−1/2
∣∣∣ ≤ 1

2
(η/2)−3/2

(
−2bg(r2)(r3−r1)η

−1/2λ−1/2+ |j0−j|
)
.

Therefore, ∣∣∣λ1/2

∫ ξz

0
f(xu)du−

∫
|x0,z|

f(y)√
2
√

j − g(y)
dy

∣∣∣
=

∣∣∣ ∫ ξz

0
vuf(xu)

1√
2

( 1√
ju − g(xu)

− 1√
j − g(xu)

)
du

∣∣∣
≤ 1√

2

∫ ξz

0
|vu||f(xu)|

∣∣∣ 1√
ju − g(xu)

− 1√
j − g(xu)

∣∣∣du
≤ η−3/2

(
− 2bg(r2)(r3 − r1)η

−1/2λ−1/2 + |j0 − j|
)∫ ξz

0
|vu||f(xu)|du.

Since v0 · (z − x0) > 0, we have that
∫ ξz
0 |vu||f(xu)|du =

∫
|x0,z| |f(y)|dy ≤ ∥f∥∞(r3 − r1),

this completes the proof of our assertion.
As explained, this completes the proof of Proposition 2.8.
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