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ABSTRACT 

 
One of the important ways for a female to obtain high reproductive success is to increase the 

survivability and/or reproduction of her offspring. Then, the quality of sperm used for 

fertilizing eggs must be critical for female perspective. In swallowtail butterflies, because 

females have a specially adapted sperm storage organ for fertilization, spermatheca, and 

because female multiple mating is common, sperm from different males could have a chance 

to coexist within a female. To increase the reproductive success, multiple mated females 

should choose sperm derived from different males for fertilization. This is a so-called cryptic 

female choice. To clarify the mechanisms of cryptic female choice in a polyandrous 

swallowtail butterfly, Papilio xuthus, sperm storage process and the paternity of twice-mated 

females were examined. Re-mated females ejected first male’s sperm from the spermatheca 

when the second male transferred a lager spermatophore than that of first male, resulting in 

the biased paternity for the male that had transferred a larger spermatophore. In addition, the 

significant effect of male dorsal hindwing coloration on their mating success was 

demonstrated in a wild population of monandrous swallowtail butterfly, Battus philenor, in 

which the color of male dorsal hindwing significantly predicted the spermatophore mass. 

Since male wing color does not affect competitiveness among males, correlation between 

male wing color and mating success must be caused by the female choice. Therefore, females 

in both polyandrous and monandrous species might exercise choice for obtaining sperm of 

males that can produce a large spermatophore, though the timing of female choice was 

different between species.  

 

Keywords: cryptic female choice; P2 value; pre-copulatory mate choice; simplex; 

spermatophore; sperm ejection; swallowtail butterflies; wing coloration 
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GENERAL INTRODUCTION 

 

Sexual selection is an evolutionary process that arises from individual variation of fitness, 

mainly due to the reproductive success rather than its survival (Andersson 1994). A traditional 

example is the evolution of the long tail in the male guppy, which seemed to be a 

disadvantage in survival because of the unskillful for swimming to escape from their 

predators. However, since females prefer to mate with males with longer and more brilliant 

tail, males with such a long tail must take high mating success resulting in production of 

many offspring (Bischoff et al. 1985). Recently, it has been widely accepted that the sexual 

selection plays an important role in shaping traits including secondary sexual traits, sexual 

dimorphism, reproductive behavior and so on (e.g. Simmons 2001).  

Males and females have different behavioral role in sexual selection, due to the 

limiting factor of reproductive success in respective sex. Bateman (1948) reported a strong 

relationship between mating and the reproductive success in male fruit flies comparing with 

females, because of the difference in energetic investment of each sex for their gametes. A 

single spermatozoon is less costly to be produced than a single ova. Then, a male can produce 

vastly more gametes than the female, and accordingly, a male can potentially fertilize all the 

eggs from many females. Therefore, reproductive success of a male is limited by the number 

of females he can successfully mate with. The ratio of males that are ready to mate to 

available females to mate (the operational sex ratio) is assumed to be male-biased (Trivers 

1972). These situation let males to compete each other. 

 On the contrary to male perspective, the relationship between mating and the 



 

 

- 3 - 

reproductive success in female is relatively weak due to the limited number of eggs, resulting 

in little benefit from increase in the number of matings. Instead, one of the most important 

way for a female to obtain high reproductive success is to increase the quality of each of her 

offspring for survival. Then, quality of sperm used for fertilization must have great influence 

on female’s reproductive success (e.g. Kirkpatrick 1982). An egg fertilized by sperm 

transferred from an attractive male must be an expert at reproduction in the next generations 

(e.g. Iwasa et al. 1991). 

In general, females in most species mate multiply throughout their lifespan, and 

morphology and physiology of sperm storage organs have been so widespread that sperm 

from different males could frequently coexist within the females (e.g. Parker 1970). Thus, 

females must have opportunity to choose sperm derived from different males for fertilization. 

In order to inhibit the automatically mixed sperm in the sperm storage organs, females might 

have to develop specialized behaviors, features or mechanisms, resulting in the biased 

paternity for preferred male. This post-copulatory process inducing biased paternity is 

so-called cryptic female choice (Thornhill 1983). Eberhard (1996) proposed many kinds of 

potential mechanisms for the cryptic female choice such as premature interruption of 

copulation, lack of sperm transport to storage, the ejection of sperm in storage, lack of 

ovulation, selective abortion, and so on, though most of them remained unproved due to the 

technical difficulty for each species (e.g. Albo et al. 2013). 

On the other hand, pre-copulatory mate choice might also increase female 

reproductive success, as suggested by Andersson (1994). Refusing unpreferred males before 

copulation might be one of the factors for females to use sperm of good males. However, 
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there seems to be some cost on the pre-copulatory mate choice. For example, female mate 

refusal sometimes induced a strong harassment by the courting males (Huchard et al. 2012). 

In addition, for both sexes, pre-copulatory mate choice is often time-consuming, and may 

increase the risk of predation (Pomiankowski 1987). Therefore, the pre-copulatory mate 

choice by females have evolved where the benefit outweighes such cost. That is, when 

females do not choose males after mating, the pre-copulatory mate choice must be only the 

chance for those females to improve their reproductive success. Accordingly, females in 

monandrous species are expected to develop mate choice behavior before the mating, rather 

than that in polyandrous species.  

Butterflies are one of the most commonly-used organisms for studying sexual 

selection. During the mating, a spermatophore that contains various kinds of nutrients is 

transferred from males to females. Since these nutrients are used for egg production and 

somatic maintenance (Boggs and Gilbert 1979), the fecundity of mated females positively 

correlates with spermatophore mass (e.g. Oberhauser 1997; Torres-Vila and Jennions 2005) as 

well as the number of spermatophores transferred (e.g. Watanabe 1988). On the other hand, 

the large spermatophore could induce the female refusal behavior and increase the refractory 

period (Sugawara, 1979), resulting in more eggs being fertilized by the male’s sperm. As a 

consequence, males that can produce a larger spermatophore may have higher reproductive 

success, and the females might be able to produce sons that have ability to produce a larger 

spermatophore if they use sperm of such males for fertilization.  

It has been recognized that there is excessive sexual dimorphism of wing coloration 

in butterflies; while males of many species have brilliant colored wings, female are cryptic or 
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mimetic on usual. The selective forces generating this difference have been discussed over a 

century (Allen et al. 2011), and the major selective force for female cryptic coloration is 

sex-specific natural selection, such as intense predation on females (Ohsaki 1995). On the 

other hand, adaptive significance of male-limited brilliant wing coloration have been still 

ongoing debate, though it has been believed that brilliant color of males evolved in the 

context of female choice (e.g. Wiklund 2003).  

The aim of the present thesis is to investigate the behavioral significance of pre- and 

post-copulatory female choice on the butterfly sexual selection. Firstly, to clarify the 

mechanism of cryptic female choice and female preference at post-copulatory, sperm storage 

process after multiple mating of female and its effect on paternity was examined by using the 

Asian swallowtail butterfly, Papilio xuthus (Chapter 1 and 2). Secondly, the effect of 

iridescent blue color found on the dorsal hindwing of male pipevine swallowtail butterfly, 

Battus philenor, on their mating success was examined (Chapter 3). Then, the effect of pre- 

and post- copulatory female choice on male reproductive success was discussed. 
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GENERAL DISCUSSION 
 

Paternity pattern of eggs laid by multiple mated females was reported for a number of 

lepidopteran species, such as Bicyclus anynana (Brakefield et al. 2001), Colias erytheme 

(Boggs and Watt 1981), Danaus plexippus (Solensky and Oberhauser 2009), Papilio dardanus 

(Clark and Shepard 1962), Pieris rapae (Wedell and Cook 1998), P. napi (Bissoondath and 

Wiklund 1997), Pseudaletia separate (He et al. 1995), Utetheisa ornatrix (LaMunyon and 

Eisner 1994), and so on. Since high mean P2 value (i.e. Proportion of eggs sired by the second 

of two males to mate with the same female) has been observed in those species, last male 

sperm precedence seemed to be a rule for sperm utilization pattern in Lepidoptera 

(Drummond 1984), as well as the majority of other insect species (e.g. Birkhead and Møller 

1998). On the other hand, studies on the intraspecific variation of paternity have pointed out 

that, in Lepidoptera, P2 value sometimes shows bimodal distribution with peaks of 0 and 1 

(Simmons 2001). Consequently, while the most females lay eggs fertilized by the last male’s 

sperm, the rest of females lay eggs fertilized by the first male’s sperm (e.g. Cook et al. 1997; 

Solensky and Oberhauser 2009). Therefore, lepidopteran species have two modes of sperm 

utilization, the first male sperm precedence and the last male sperm precedence. In the present 

study, P2 value was higher when the sperm ejection occurred (Chapter 1 and Chapter 2), 

though the possibility that the number of second male’s sperm have some effect on paternity 

seems to be remained. Since males do not have an opportunity for access directly to rival 

sperm in the spermatheca, the results indicated that lepidopteran females exercise cryptic 

sperm choice after multiple mating.  

 In P. xuthus, P2 value was different between females to which larger spermatophores 
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had been transferred from the second than from the first male, and females to which larger 

spermatophores had been transferred from the first than the second male (Chapter 2). To 

evaluate the effect of relative spermatophore size in detail, re-analysis was conducted. P2 

value was higher when the second male transferred a larger spermatophore (U=26.5, p=0.013, 

Fig. 1). Thus, P. xuthus females biased paternity toward males that had transferred a larger 

spermatophore. The effect of spermatophore size on P2 value was also observed for D. 

plexippus (Solensky and Oberhauser 2009), Pieris napi (Bissoondath and Wiklund 1997), 

Plodia interpunctella (Cook et al. 1997) and U. ornatrix (LaMunyon and Eisner 1993). Then, 

females choose males on the basis of spermatophore size, that transferred must be a good 

indicator for not only the production ability of the spermatophore but also the condition of the 

male, such as the mating history and age. Since the spermatophore size is affected by the 

nutrition accumulated during larval stage (Delisle and Hardy 1997) and foraged throughout 

adult stage (Watanabe and Hirota 1999; Watanabe and Kamikubo 2005), an egg fertilized by 

sperm transferred from a male that transferred a large spermatophore must be an expert at 

surviving. In addition, due to the arrangement of the reproductive organs in male body, males 

do not alter the size of spermatophore during the mating (Chapter 3), indicating that 

spermatophore size might act as an honest signal (but see Arnqvist and Nilsson 2000). 

 Mating success of male Battus philenor in relation to their dorsal hindwing 

coloration and their age must be under pre-copulatory sexual selection (Chapter 3). It has 

been considered that the brilliant coloration of male dorsal hindwings is a sexual signal (e.g. 

Rutowski et al. 1989). In captive situations, males that dorsal hindwing was artificially 

blackened showed a significantly lower mating success than control males, though males did 

not use the coloration for mate recognition (Rutowski and Rajyaguru 2013). Therefore, male 
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dorsal hindwing coloration has to be used by females for mate choice. Rutowski et al. (2010) 

reported that during aerial courtship maneuvers, the male positions himself below the female 

and flies up in front of her repeatedly, clearly displaying his dorsal wing surfaces to her. On 

the other hand, the reason for old male mating advantage in B. philenor is remained unclear, 

while higher competitive ability of older males have been clarified in other lepidopteran 

species (Kemp 2002; Karl et al. 2013).  

There might be a possibility that B. philenor females exercise pre-copulatory mate 

choice to be offered a larger spermatophore. In this species, one of the color parameter, 

chroma, of male dorsal hindwing significantly predicted the spermatophore mass in the field 

males (Rajyaguru et al. 2013). Generally, the size of spermatophore offered affects the 

number of offspring (e.g Oberhauser 1997). Therefore, females mated with males with 

particular wing color must be offered a large spermatophore, resulting in high reproductive 

success.  

 In the present study, females of both P. xuthus and B. philenor exercised female 

choice, while timing of choice was different. P. xuthus exercised cryptic female choice, while 

B. philenor exercised pre-copulatory mate choice, probably because the difference of mating 

system (i.e. degree of polyandry). Polyandrous P. xuthus females can exercise cryptic female 

choice after multiple mating, without incurring various cost associated with pre-copulatory 

mate choice. On the other hand, monandrous B. philenor females cannot exercise mate choice 

after mating, so that they have to choose males before the mating. While pre-copulatory mate 

choice would incur such cost for females, and multiple mating provides extensive benefit for 

lepidopteran females, monandry is still maintained in definite proportions of species (e.g 

Drummond 1984). Because females in monandrous species do not mate multiply even when 
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experimentally given continuous access to virgin males (Kaitala and Wiklund 1994), the lack 

of opportunity must not be a cause of monandry. Further studies for clarifying the evolution of 

monandry must be required to comprehensive understanding for mating system of 

Lepidoptera.  

 Either pre- or post-copulatory mate choice has a huge impact on male reproductive 

success. Since most lepidopteran females have a right to decide to begin copulation (e.g. 

Obara 1982), unpreferred males have little chance to transfer his sperm to females. In addition, 

even when copulate was succeeded, sperm of some males do not be used for fertilization at all 

(Chapter 2). The cue for mate choice was similar between P. xuthus and B. philenor: 

spermatophore mass. Furthermore, the effect of spermatophore size on P2 value in some 

species (e.g. Bissoondath and Wiklund 1997; Solensky and Oberhauser 2009) suggests that 

the females prefer the males being able to produce a larger spermatophore. Thus, female 

preference might be one of general driving forces of evolution for males on large 

spermatophore size.  
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Fig. 1. The P2 value of females to which larger spermatophores had been transferred from the 

first than from the second male, and those females to which larger spermatophores had been 

transferred from the second than the first male (±S.E.).  

 



 - 89 - 

ACKNOWLEDGEMENT 

 

I wish to express my sincere thanks to Prof. Mamoru Watanabe of University of Tsukuba as a 

supervisor with excellent advice. I am also deeply grateful to Dr. Yooichi Kainoh, Dr. 

Yukihiko Toquenaga and Dr. Tomoyuki Yokoi of University of Tsukuba for critical comments 

and constructive suggestion on the draft of the manuscript. Supports from Dr. Setsuko 

Todoriki of National Agriculture and Food Research Organization were invaluable. I would 

like to express the deepest appreciation to Prof. Ronald L. Rutowski of Arizona State 

University who gave me the tremendous support and meticulous comments. Dr. Rieko 

Fujinami, Dr. Masaru Hasegawa, Mr. Taihei Kobayashi, Dr. Yuma Takahashi, Dr. Yusuke 

Tajima, Mr. Takayosi Higashi, Ms. Yuko Teramoto, Ms. Wakana Taki, Mr. Hiroki Iwasaki, Ms. 

Shuko Irie, Mr. Sunao Niihara, Mr. Mikio Sasaki, Mr. Daisuke Suda, Mr. Yuta Onda, Ms. 

Nanako Horimoto, Mr. Kenta Kato, Mr. Hiroaki Takahashi, Mr. Kakeru Hori, Mr. Naoki 

Mutoh, Mr. Tatsuro Konagaya, Mr. Yuta Ichikawa, Ms. Naoko Tokuda, Mr. Gen Takahashi, 

Mr. Jun Utoh, Mr. Haruta Morizuka, Ms. Mizuho Suzuki, Mr. Kohsuke Sakamoto, Mr. Naoto 

Idogawa, Mr. Naoto Wabiko, Ms. Chisato Tanaka and Mr. Yuma Yoshihasi of Conservation 

Biology Laboratory of University of Tsukuba provided enormous help and insightful 

comments. I thank Ms. Kim Pegram, Mr. Brett Seymoure, Mr. Nikos Lessions, Ms. Hanh Han, 

Mr. Parth Rajyaguru and Mr. Sean Hannam of Arizona State University for assistance in the 

field and laboratory work as well as for valuable discussions. Finally, I would like to thank my 

parents and sister for encouraging me to do whatever I want to do. 

 


