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Abstract 

 
To verify what kind of chemical component is transported onto the coastal land, and how long such 

a geochemical component is lasting, samples of the 2011 Tohoku-oki tsunami deposit and underlying 

and overlying soil were collected at Sendai, Odaka, Hasunuma, and Yamamoto, East Japan. I mainly 

focused on biomarkers and water-leachable ions as geochemical proxies which they represent organic 

matter and seawater component, respectively. 

Characteristic biomarkers were detected at samples of Sendai, Miyagi Prefecture, and of Odaka, 

Fukushima Prefecture. Short-chain n-alkanes (C16, C17, C18, and C19) mainly elaborated from algae and 

fish were occurred at soil 2 cm deep from surface sandy tsunami deposit at Sendai. In addition to the 

short-chain n-alkanes, at Odaka, pristane and phytane that are elaborated from zooplankton, benthos, 

and fish were detected at soil immediately below sandy tsunami deposit. Moreover, diosterol that is 

derived from marine dinoflagellate was observed at tsunamigenic mud. No aquatic biomarker was 

presented further deep soil layer in both Sendai and Odaka and modern soil overlying tsunami deposit 

in Odaka, it is highly possible that these biomarkers were transported by the 2011 tsunami. Because 

they were detected at organic-rich soil layer not at tsunamigenic sand layer, transported aquatic 

biomarkers seems to adsorb to fine mineral particles and organic-rich matter but not to large, 

sand-sized particles. Moreover, according to the results of Sendai and Odaka, transported biomarkers 

seem to be preserved at least 2 years because sediment samples were collected more than 2 years after 

the 2011 tsunami. At Hasunuma, Chiba Prefecture, on the other hand, biomarkers were not detected in 

sand layer samples taken in June and August 2011, and October 2014, and no aquatic biomarkers were 

observed at both sandy tsunami deposit and pre-tsunami soil layer. Soil at Hasunuma contains sand 

probably from beach by wind because sampling locations were close to beach. The soil scattering sand 

might enrich permeability of allochthonous organic carbon. Therefore, transported biomarkers might 

pass through the soil layer by groundwater movement at Hasunuma. 

At Hasunuma, tsunami-derived water-leachable ions showed highest concentrations at soil layer 

immediately below the sandy tsunami deposit from the samples taken in 2011 and then they were 

gradually decreased with depth. Soil can possess an amount of water rather than sand. Therefore, these 
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ions probably penetrate sand layer and concentrated at soil underlying sand layer. However, 

water-leachable ions recorded entirely low values not only at sand layer but also soil layer from 

samples taken in 2014. They probably diluted by post-tsunami rainfall, seepage, and seasonal changes 

in groundwater. 

Suijin-numa, a small coastal lake, is located in Yamamoto, Miyagi Prefecture. Based on the 

comparison between pre- and post-tsunami lake bottom sediments, the 2011 tsunami eroded a 

significant thickness of the geological record over 1100 years including the paleotsunami deposit and 

volcanic tephra layer. It suggests that tsunami history in the coastal lake might not always be complete 

and the influence of tsunami erosion cannot be overlooked. Moreover, reworked thick muddy tsunami 

deposit can confuse estimation of the depositional age of event deposits. In order to reconstruct 

tsunami history accurately, we must be noted that the presence of erosion and reworking by tsunami 

inundation. 

From the analysis of the 2011 tsunami deposit, I proposed that marine biomarkers and sea-water 

origin water-leachable ions were transported by tsunami inundation. Moreover, they seem to be easily 

preserved in organic silty mud rather than sand. Biomarkers have a possibility that it can be preserved 

for long time. It suggests that biomarkers have the potential as proxies for identifying 

marine-originated deposits on coastal land both tsunamigenic sand and reworked mud. Moreover, it 

may be utilized for prediction of precise tsunami inundation area. For further applications (e.g., 

research into paleotsunami), more case studies of modern and past tsunamis are required. 

 

Keywords: 2011 Tohoku-oki tsunami, Tsunami deposit, East Japan, Geochemical analysis, Biomarker, 

Water-leachable ions, Erosion, Redeposition. 
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Chapter 1. Introduction 

 

1.1 Background 

A correct understanding of tsunami event is important to predict its magnitude, frequency, and 

timing. Because tsunami occur infrequently, current observational data for modern tsunamis and even 

though ancient document are not sufficient for a comprehensive understanding of tsunami event. 

Analysis of historical and prehistoric tsunamis (paleotsunami) using geological evidence is therefore 

required. 

Tsunami deposit (Fig. 1-1) that is formed by tsunami flow is generally used for estimating 

paleotsunami event (e.g. Atwater, 1987; Dawson et al., 1988, 1995). To find tsunami deposit 

efficiently, geologists usually select lowland areas where sediments typically settle out of calm water 

(e.g., lakes, lagoons, ponds, marshes, and swamps) because these environments are assumed to be sites 

of continuous and uninterrupted sedimentation that are unlikely to be affected by erosion. As such an 

environment, many studies had been conducted in inter-ridge swales of strand plains (e.g., Nanayama 

et al., 2003; Jankaew et al., 2008; Sawai et al., 2012) or coastal lakes and lagoons (e.g., Minoura et al., 

1994; Kelsey et al., 2005; Jackson et al., 2014). 

Tsunami deposits form in various grain size, such as mud, sand, and boulder. Sandy tsunami deposit 

is especially used for paleotsunami research because it is easily identified from geological layer 

compared with mud, and it is easily formed at coastal area rather than boulder. Sandy tsunami deposit 

is mainly identified on the basis of geological, chemical, biological, archaeological, anthropological, 

geomorphological, and contextual feathers (Goff et al., 2012; Sawai, 2012). Especially, geological and 

biological features such as lateral changes in thickness and grain size of deposit (e.g. Minoura et al., 

1996; Nanayama et al., 2007), presence of marine-origin microfossils (e.g. Hemphill-Haley, 1996; 

Sawai et al., 2008; Sawai, 2014) and others have been frequently utilized as identifying proxies. 

However, these characteristics do not always get preserved, in which case it is difficult to identify 

paleotsunami deposit. Moreover, sandy tsunami deposits do not seem to distribute up to the limit of 

tsunami inundation (Goto et al., 2011; Abe et al., 2012; Chagué-Goff et al., 2015). Therefore, 
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inundation distance estimated from the distribution of sandy tsunami deposits might result in 

underestimation (Fig. 1-2). In order to identify paleotsunami deposit or estimate precise tsunami 

inundation area, confirmation of new proxy is required. 

Tsunami inundation causes salinization and soil pollution around coastal area that damages 

influence human activity (e.g., Szczuciński et al., 2005; Komai et al., 2012). The environmental 

damages means that evidences of tsunami inundation are preserved not only visible (boulder and sand) 

but also less-visible or invisible (mud and seawater) forms. If evidence of seawater inundation could be 

detected, it would be a good criterion for determining that sandy deposits have a marine source. 

Geochemical characteristic, such as major chemical components of seawater (e.g., sodium, chloride, 

and calcium) and biomarker that is molecular fossils originated from living organism, can remain for a 

while within inundation area after tsunami inundation (Fig. 1-3). If they are preserved as geologic 

evidence for long time, they can allow us to identify tsunami deposit, moreover, they can be utilized 

for accurate estimation of the inundation area. However, there is still little known about such 

geochemical characteristic; how much chemical components will be transported onto the coastal land, 

and how long such a chemical component will be lasting. 

Analyzing a modern tsunami that have much and correct information leads to a better understanding 

of the behavior of geochemical characteristics associated with tsunami inundation. The 2011 

Tohoku-oki tsunami is just such case study. The tsunami caused by the Tohoku earthquake (Mw 9.0) 

struck coastal areas in East Japan on March 11, 2011. After the tsunami, a number of research groups 

conducted urgent surveys based on sedimentological (e.g., Goto et al., 2011, 2012a, 2012b; Richmond 

et al., 2012; Szczuciński et al., 2012), micropaleontological (e.g., Pilarczyk et al., 2012; Tanaka et al., 

2012), mineralogical (e.g., Jagodziński et al., 2012), and geomorphological (e.g., Tappin et al., 2012; 

Tanaka et al., 2014) approaches as well as geochemical (e.g., Chagué-Goff et al., 2012a, 2012b, 2014; 

Yoshii et al., 2013) approach. A lot of geochemical proxies have been utilized for tsunami research. In 

this thesis, I focused on stable carbon isotope ratio, biomarkers, and water-leachable ions as 

geochemical proxies. Water-leachable ions are one of standard geochemical proxy in tsunami research 

(e.g., Minoura and Nakaya, 1991), while biomarkers are new one in tsunami research. 
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Fig. 1-1. Tsunami deposit formed by the 2011 Tohoku-oki tsunami. Photo taken at Minamisoma city, 

Fukushima Prefecture, Japan. 
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Fig. 1-2. Conceptual model of tsunami inundation. 

 
 
 
 
 
 
 
 
 

 
Fig. 1-3. Illustration showing geochemical characteristics transported by tsunami inundation. 
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1.2 Previous study 

Minoura et al. (1987) in Japanese paper and Minoura and Nakaya (1991) in English paper were the 

first to report chemical evidence of a paleotsunami from lake sediment. They found high 

concentrations of Ca2+ and Mg2+ that were attributed to the reaction of seawater with the carbonic acid 

in lake water and to the skeletal carbonate associated with sandy layers. Then, geochemical analysis is 

applied for identifying historical and prehistoric tsunami deposit (e.g., Minoura et al., 1994; 

Chagué-Goff et al., 2002, 2012c; Goff et al., 2004, 2010; Nichol et al., 2010; Sawai et al., 2015b). 

Moreover, to get better understand geochemical behavior by tsunami inundation, numerous researchers 

applied geochemical analysis for modern tsunami, such as the 2004 Indian Ocean tsunami (e.g. 

Szczuciński et al., 2005; Srinivasalu et al., 2008; Raja et al., 2009), the 2009 South Pacific tsunami 

(Chagué-Goff et al., 2011), the 2010 Chile tsunami (Yoshii et al., 2013; Chagué-Goff et al., 2015), and 

the 2011 Tohoku-oki tsunami (Goto et al., 2011; Chagué-Goff et al., 2012a, 2012b, 2014; Yoshii et al., 

2013). 

Water-leachable ion is one of geochemical proxy. Immediately after the 2011 tsunami, high 

concentrations of water-leachable cations (e.g., Na+, Mg2+, Ca2+, K+) and anions (e.g., Cl–, Br–, SO4
2–) 

were observed in the area inundated by the 2011 tsunami at Miyagi (Chagué-Goff et al., 2012b; Yoshii 

et al., 2013) and Fukushima Prefectures (Fujikawa et al., 2011). High concentrations of 

water-leachable ion were recorded at silty or muddy soil layer underlying thick (ca. >5 cm) sandy 

tsunami deposit and/or thin (<2 cm) sandy tsunami deposit. The concentrations were decreased with 

depth, suggesting downward penetration. Similar trend was observed from electrical conductivity 

(Fujikawa et al., 2011). Therefore, it is highly possible that saltwater flooded together with or after 

sand deposition penetrates the thick sand layer and reached the soil or concentrated muddy tsunami 

deposit. Because the finer textured and organic rich soil can hold more water than the sand, many 

seawater components likely became concentrated in the soil below the surface sand layer. Moreover, 

Yoshii et al. (2013) reported that the ratios of Na+, Mg2+, Br–, and SO4
2– to Cl– are nearly the same in 

the tsunami deposits and in the tsunami inundated soil. It indicates that these characteristic of ions 

contaminated by tsunami inundation do not depend on whether or not tsunami deposits exist. 
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Chagué-Goff et al. (2012b, 2014) reported about the time variation of the concentration of 

water-leachable ions. Chagué-Goff et al. (2014) collected samples at the Sendai coastal plain 2, 5, and 

11 months after the 2011 tsunami. Sulfate concentrations were even higher in February 2012 than they 

were in August 2011 in the soil at on site (site WP327 in the work of Chagué-Goff et al., 2014). 

However, concentrations generally decreased with time, particularly where the tsunami deposits and 

underlying soil were sandy (sites WP325 and WP326). The reports suggests that the concentration of 

water-leachable ions could generally decrease over time, most likely because it can easily be diluted by 

meteoric water such as precipitation and groundwater movement. 

Goto et al. (2011) reported that >0.5 cm-thick sandy tsunami deposits were distributed over only 

62% of the inundation distance at a shore-perpendicular transect on a coastal plain close to Sendai 

Airport. The deposit continued as a mud layer to the inundation limit, and they found these mud 

deposit contained high concentrations of water-leachable chloride. It suggests that geochemical 

analysis may be useful to estimate tsunami inundation area correctly. 

Recently, biomarkers have just started to be utilized for tsunami research. Biomarkers are molecular 

fossil originating from living organisms. In general, biomarkers are used to reconstruct 

paleoenvironments and paleoclimates in geosciences (e.g. Brassell, 1993; Ohkouchi et al., 1997; 

Eglinton and Eglinton, 2008). Biomarkers have two advantages. One is their highly preservation 

potential. They have been confirmed to be stable on a geological time scale. For example, Abelson 

(1954) found that amino acids had been preserved in fossil shells for 360 million years. Another is the 

difference between terrigenous and marine biomarkers. For example, lower n-alkane homologs, 

notably C15, C17, and C19 n-alkanes, tend to be predominant in many algae, whereas higher n-alkane 

homologs, such as C27, C29, and C31, tend to be predominant in leaf waxes of higher plants (Peters et al., 

2007c). By using this characteristic, the variability of terrigenous organic carbon input by rivers into 

the ocean has been reconstructed by examining variations in long-chain n-alkanes in marine sediments 

(e.g. Yamamoto and Polyak, 2009). In that case, a terrestrial event was reconstructed from marine 

sediment by using biomarkers; in the study of tsunami research, it is proposed the opposite: that is, to 

attempt to reconstruct a marine event from terrestrial sediments by using biomarkers. 
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Alpar et al. (2012) firstly applied biomarkers to identify paleotsunami event using samples collected 

at southwest Turkey. They measured normal and branched alkanes, fatty acids, and sterols in three 

sand layers and two mud layers. They reported that marine-sourced biomarkers were present in at least 

one of the sand layers and concluded that this sand layer was most likely a tsunami deposit. However, 

marine-sourced biomarkers were not detected in the other two sand layers. Ünlü et al. (2012) 

conducted a biomarker analysis of semi-dry lagoon sediments in southwest Turkey. They reported that 

it was difficult to identify possible tsunami deposits from biochemical data. However, the results 

indicate some influxes of marine water in a freshwater environment. They reported characteristics of 

biomarker from event deposit, however, there is no report applying biomarker analysis for modern 

tsunami. 

 

1.3 Objective and the organization of this thesis 

To verify how and what kind of geochemical proxies are transported and preserved at coastal area 

by tsunami, geochemical analyses, especially water-leachable ions and biomarkers, were conducted for 

the samples of the 2011 Tohoku-oki tsunami deposit and underlying and overlying soil. Samples were 

collected at four sites (Sendai, Odaka, Hasunuma, and Yamamoto) where is affected by the tsunami. 

The reason why samples were collected at several site is to eliminate local effect. Moreover, samples 

were collected more than 2 years after the tsunami at Sendai and Odaka to confirm the preservation 

potential of geochemical characteristics. In Hasunuma, samples were collected in both 2011 (June or 

August) and October 2014 to discuss the time variation of geochemical characteristics. In Yamamoto, I 

firstly thought to verify what kind of geochemical characteristics were preserved for lake bottom. 

However, it seems that the lake at Yamamoto seems to be caught a severe lake bottom erosion and 

reworking from the comparison of lake bottom sediment between before and after the tsunami. 

Therefore, I mainly discussed about erosion and reworking from lake bottom sediment collected at 

Yamamoto. 

This thesis is divided into 6 chapters: Chapter 1 gave introduction. Chapter 2 gave a description of 

the study area. Chapter 3 showed the methods of each analytical procedure. Chapter 4 showed the 
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results in each study area. Chapter 5 showed a discussion of behavior of geochemical characteristics 

and erosive action by the tsunami. Finally, chapter 6 summarized general conclusions. Parts of this 

doctoral thesis have published or submitted to the peer-reviewed journals (Shinozaki et al., 2015a, 

2015b, submitted). 
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Chapter 2. Geological setting 

 

2.1 Outline of study area 

Study area was set up at four sites where is affected by the 2011 Tohoku-oki tsunami (Fig. 2-1). 

Samples were collected at three coastal lands (Sendai, Odaka, and Hasunuma) and one lake 

(Yamamoto) (Fig. 2-1). Study area, sample name, and sample collection date were summarized in 

Table 2-1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

Fig. 2-1. Location maps. (a) Map of Japan. 

(b) Eastern Honshu; the epicenter of the main 

shock of the 2011 magnitude-9 Tohoku-oki 

earthquake (black star) and the coseismic slip 

distribution (dashed lines) are shown (Ozawa 

et al. 2011).   
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Table 2-1. Study area and collected sample name and date. 

 

Study area Sample name Sample collected date
Sendai SND-14 March 2013
Sendai B-18 June 2011
Odaka ODA-2 October 2013

Hasunuma A5, A10, A13 August 2011, October 2014
Hasunuma C1, C7, C10 June 2011, October 2014
Yamamoto Slice 1–6 April 2014
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2.2 Study area 

2.2.1 Sendai 

The Sendai Plain is alluvial lowland characterized by beach ridges formed parallel to the coast, 

natural levees, and back marshes (Fig. 2-2). The area has experienced several tsunami disasters before, 

with evidence of them preserved as sandy tsunami deposits (Abe et al., 1990; Minoura and Nakaya, 

1991; Minoura et al., 2001; Sawai et al., 2008, 2012, 2015a). 

The 2011 tsunami caused inundation to a distance of about 3.5–5.0 km inland around the study area 

(Geospatial Information Authority of Japan) (Fig. 2-2). The inundation height that is the tsunami 

vertical height above sea level was about 3.0–9.8 m around the study area (The 2011 Tohoku 

Earthquake Tsunami Joint Survey Group, 2011) (Fig. 2-2). Very coarse to medium sand was mainly 

transported from beach and dune sand (Szczuciński et al., 2012; Putra et al., 2013), and they covered 

rice paddies (Abe et al., 2012; Goto et al., 2012a). The more than 0.5 cm thick sand layer extended to 

57–76% of the inundation distance where the tsunami inundated more than 2.5 km inland (Abe et al., 

2012). 

A 1.3-m-long sediment sample (SND-14) collected in March 2013 by the Geological Survey of 

Japan was used for analysis and discussion (Fig. 2-2 and Table 2-1). The sampling location was about 

1.6 km inland from the shoreline and 0.2 m above sea level (Fig. 2-2). Before the tsunami, this site had 

been used as a rice paddy field, but after the tsunami it was still uncultivated in March 2013 when the 

sample was collected. In addition to the SND-14 samples, samples of sandy tsunami deposits and the 

overlying tsunamigenic mud deposit collected in June 2011 by Abe et al. (2012) was used for analysis 

and discussion (Transect B-18 in the work of Abe et al., 2012; Fig. 2-2 and Table 2-1). The sampling 

point of B-18 was about 1.7 km inland from the shoreline and about 2.1 km northeast of SND-14 (Fig. 

2-2). These samples were also analyzed to examine when the geochemical characteristics had 

deposited.  

 

2.2.2 Odaka 
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Odaka, Minamisoma city, Fukushima Prefecture, is located about 75 km south of Sendai (Fig. 2-1b). 

The lowland areas (<10 m a.s.l.) are surrounded by hills about 50 m high (Fig. 2-3). This area was also 

studied about historical and prehistric tsunami deposit (Sawai et al., 2012). 

The 2011 tsunami caused inundation to a distance of about 2.6 km inland around the wide valley of 

study area (Geospatial Information Authority of Japan) (Fig. 2-3). The inundation heights around the 

study area were about 4.9–12.5 m (The 2011 Tohoku Earthquake Tsunami Joint Survey Group, 2011) 

(Fig. 2-3). 

A 1.5-m-long sample (ODA-2) was obtained in October 2013 (Fig. 2-3 and Table 2-1). The 

sampling location was about 1.8 km inland and 1.1 m above sea level (Fig. 2-3). The location had been 

used for rice paddies before the tsunami, but after the tsunami it was still uncultivated in October 2013 

when sample was collected. 

 

2.2.3 Hasunuma 

The Kujukuri strand plain is located on the eastern side of the Boso Peninsula, southern East Japan 

(Fig. 2-1b). The straight to slightly arcuate shoreline of the strand plain extends 60 km in a NE-SW 

direction. Hasunuma, Sanmu city, Chiba Prefecture, is located midway along this stretch of shoreline 

(Fig. 2-1b). Hasunuma area has a sandy beach (150–200 m wide), a foredune ridges (500–1000 m wide, 

up to 5 m in elevation), and an inter-ridge swale (Tamura et al., 2010). 

Tide-gauge data recorded during the 2011 tsunami at Choshi, about 35 km northeast of Hasunuma, 

show that sea level began to rise 24 minutes after the main shock (Japan Meteorological Agency). It 

reached a first peak within 30 minutes. After that, sea-level repeatedly rose and fell. These data are 

consistent with both a video taken during the tsunami and an eyewitness account at Hasunuma. The 

second wave was higher than the first wave and inundated a greater area (Okazaki and Ohki, 2012). 

The 2011 tsunami caused inundation to a distance of about 1 km inland around Hasunuma (Geospatial 

Information Authority of Japan). The inundation height was about 2.3 m around sampling locations 

(The 2011 Tohoku Earthquake Tsunami Joint Survey Group, 2011). 
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Samples were collected at six locations (A5, A10, A13, C1, C7 and C10) from two transects 

(Transect A and C) in both 2011 (June or August) and October 2014 (Figs. 2-4 and Table 2-1). 

Sediment samples of 2011 analyzed in this study were provided from a part of sample collected in 

urgent survey conducted by the Geological Survey of Japan. The names of sampling locations agree 

with those presented by Matsumoto et al. (submitted). The study area is separated from the sea by a 

foredune and is dominanted by coniferous trees (Pinus) (Fig. 2-4a). 

 

2.2.4 Yamamoto 

Suijin-numa, a small coastal lake (about 200 × 100 m, 2.6 m maximum water depth), is located in 

Yamamoto town, southern edge of the Sendai Plain (Fig. 2-1b). The lake is situated about 600 m inland 

from the shoreline (Fig. 2-5a). The lake does not receive major river input but it does have narrow 

drainage (Fig. 2-5a and 2-5b). Lowland areas around the lake (about 2 m a.s.l.) are surrounded by hills, 

about 30 m high, of Pliocene sandstone (Fig. 2-5a). 

Before the 2011 tsunami, Sawai et al. (2008) conducted paleotsunami research using lake bottom 

sediments at five locations. From the 1.5–2.0-m-long sediment samples, they found the 915 Towada-a 

(To-a) tephra layer, and two sand units that were formed by the historically documented 1611 Keicho 

and the 869 Jogan tsunamis. Suijin-numa was in a marine condition and became isolated from the sea 

by a beach-ridge plain between 3200 and 1100 cal yr BP (Sawai et al., 2008). Then peat was deposited. 

It contains more mud above the 1611 Keicho tsunami sand (Sawai et al., 2008). Thick peat and mud 

(ca. 60–180 cm thick) have been deposited continuously above the To-a layer. 

About three years after the report of Sawai et al. (2008), the 2011 tsunami struck this area. 

Approximately 20–30 cm subsidence around this area was reported by the Geospatial Information 

Authority of Japan. The tsunami inundated about 1.9 km inland in this narrow valley (Geospatial 

Information Authority of Japan) (Fig. 2-5a). The inundation and run-up heights, the tsunami vertical 

height above sea level at the furthest point inland, were, respectively, up to 13.8 m and 9.8 m around 

this valley (The 2011 Tohoku Earthquake Tsunami Joint Survey Group, 2011) (Fig. 2-5b). Sandy and 

muddy tsunami deposits of ca. 30 cm thickness were formed over the valley floor (Abe et al., 2014; 
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Goto et al., 2014), which had been used mainly as a residential area along the coast and paddy fields. 

Immediately after the 2011 event, the lake water was pumped out. Then heavy machinery was moved 

onto the lake floor to remove rubble and to search for missing persons. However, according to a local 

administrator, the work was done in a limited area around the northeastern edge of the lake (Fig. 2-5b) 

because thick and very soft mud covered the central to west side of the lake, preventing machinery 

from reaching the area. Lake water naturally returned via the precipitation and ground water. 

In April 2014, total six lake bottom sediments (Slice 1–6) were collected at four locations near the 

sampling locations used by Sawai et al. (2008) (Fig. 2-5b and Table 2-1). The sampling locations did 

not overlap the area where heavy machinery accessed. 

 

 

 

 

Fig. 2-2. Sendai study area. The study area has extensive flat lowlands (<3 m a.s.l.). The yellow circles 

show the sampling locations. The red dashed lines show the inundation limits of the 2011 tsunami, as 

obtained from the Geospatial Information Authority of Japan. Inundation height is the tsunami vertical 

height above sea level at an arbitrary point. The inundation height (m) is from The 2011 Tohoku 

Earthquake Tsunami Joint Survey Group (2011). Distance above sea level is expressed in meter units 

as m a.s.l. 
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Fig. 2-3. Odaka study area. The yellow circle shows the sampling location. The red dashed lines show 

the inundation limits of the 2011 tsunami, as obtained from the Geospatial Information Authority of 

Japan. The inundation height (m) is from The 2011 Tohoku Earthquake Tsunami Joint Survey Group 

(2011). Distance above sea level is expressed in meter units as m a.s.l. 
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Fig. 2-4. Hasunuma study area. (a) Aerial photograph of the Hasunuma site (Geospatial Information 

Authority of Japan: CKT-2011-4-C27-1, 2). (b, c) Aerial photographs of the area around transects A 

and C showing the sampling locations (yellow circles). All photographs were taken on 11 February 

2012.  
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Fig. 2-5. Yamamoto study area. (a) The inundation limit is from the Geospatial Information Authority 

of Japan. Run-up height is the tsunami vertical height above sea level at the furthest point inland. The 

inundation and run-up heights (m) are from The 2011 Tohoku Earthquake Tsunami Joint Survey Group 

(2011). Distance above sea level is expressed in meter units as m a.s.l. (b) Six sediment samples were 

collected at four locations (yellow circles). Names of sample locations collected by Sawai et al. (2008) 

are written in parentheses. Heavy machinery that accessed the northeastern edge of the lake is shown as 

a shaded area. 
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Chapter 3. General methods 
 

3.1 Sample collection and analytical procedures 

Sediment samples were collected using handy geoslicer, consisting of a sample tray and a shutter 

plate (Fig. 3-1: Nakata and Shimazaki, 1997; Takada et al., 2002), or directly from walls of excavated 

pits. Collected samples were analyzed after pretreatment (See subsection 3.2.1). Analytical procedures 

were summarized in Fig. 3-2. Sample collecting methods and conducted analyses in each area were 

summarized in Table 3-1. 

 

 
Fig. 3-1. Sample collection. (a) Collection of sediment sample using handy geoslicer. (b) Observation 

of sediment sample collected by handy geoslicer.  

a

b
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Fig. 3-2. Process flow scheme for sediment treatment. 

 

 

 

 

 

Table 3-1. List of methods conducted in each study area. 

 
 

 

Sample description, photo, and CT

Subsampling
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�6XEVHF�������)

Stable carbon isotope
�6XEVHF�������)

Biomarker
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Water-leachable ion
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Archive

Methods Sendai Odaka Hasunuma Yamamoto

Sample collection 2-m-long geoslicer 2-m-long geoslicer 1-m-long geoslicer and
directly from wall pit 3-m-long geoslicer

Loss on ignition � � �
Total carbon and

Total nitrogen � � �

δ13C � �

Biomarker � � �

Water-leachable ion �
14C dating �

Tephra �

Diatom �
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3.2 Methods 

3.2.1 Pretreatment 

After sample description, taking photo, and X-ray computed tomography (CT), collected samples 

were kept at 4°C or –20°C until subsampling. The deposits were subsampled at vertical intervals of 1 

or several cm. A part of each subsample was kept for archival purposes, and the remainder was used 

for analysis. For the analyses of loss on ignition (LOI), total carbon (TC), total nitrogen (TN), stable 

carbon isotope ratio (δ13C), biomarker, and water-leachable ions, subsamples were dried at 60°C for 2 

days. Water content (%) was calculated from the sample weights before and after drying. The dried 

sample was then homogenized with an agate mortar and pestle. For the analyses of radiocarbon (14C) 

dating, tephra, and diatom, subsamples were used without drying and homogenizing. 

 

3.2.2 Loss on ignition, total carbon, and total nitrogen 

LOI550 and LOI950 are respectively indicators of organic carbon and inorganic carbon (calcite) 

(Dean, 1974; Santisteban et al. 2004). About 1–2 g homogenized sample was weighed and ashed at 

550°C for 4 h. LOI550 was calculated from the sample weights before and after ignition. Then it was 

further weighed and ashed at 950°C for 2 h. LOI950 was calculated from the sample weights before 

and after ignition at 950°C. 

The homogenized sample was weighed in a tin cup, and TC and TN measurements were performed 

with an Elemental Analyzer (Flash EA 1112; ThermoFinnigan, Waltham, USA). 

 

3.2.3 Stable carbon isotope ratio 

δ13C was determined for bulk (δ13Cbulk) and decalcified (δ13Corg) samples. An acid treatment is as 

follows: The homogenized sample weighed in a silver cup was decalcified with 300 µL of 3 N HCl for 

3 days with sodium hydroxide and phosphorus(V) oxide. δ13C was measured with an EA/IRMS 

(FlashEA 1112/DeltaPlus Advantage; Thermo Fisher Scientific). L-Alanine (δ13C = –19.6±0.2‰; SI 

Science Co., LTD., Japan) was used as the standard for drift corrections. 
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3.2.4 Biomarker 

Analytical procedure of biomarker analysis is as follows (Fig. 3-3): Lipids were extracted from the 

homogenized sediment samples to which 5α-cholestane and cholesterol had been added as internal 

standards. For extraction, an Accelerated Solvent Extractor (ASE200 system, Dionex, Sunnyvale, 

USA) was used at 100°C and 1000 psi for 15 min with about 40 mL dichloromethane/methanol (95:5). 

The extract was saponified with 1.0 M KOH/methanol for 2 h at 70°C. The neutral fraction was 

separated by extraction with hexane/dichloromethane (10:1). Column chromatography (Silica gel 60; 

Merck, Frankfurt, Germany; 0.040–0.063 mm) was then used to further separate the neutral fraction 

into four fractions: N1 (hydrocarbons), N2 (aromatic hydrocarbons), N3 (ketones), and N4 (alcohols 

and sterols). These fractions were separated with 2 mL hexane, 2 mL hexane/dichloromethane (2:1), 3 

mL dichloromethane, and 4 mL dichloromethane/methanol (95:5), respectively. N4 fractions were 

converted to trimethylsilyl ether (TMS-ether) derivatives by using bis(trimethylsilyl)trifluoroacetamide 

(BSTFA) before analysis. 

Gas chromatography with flame ionization detection (GC-FID, Agilent 6890N; Agilent 

Technologies Inc., USA) was used to analyze each hydrocarbon (N1), ketone (N3), and alcohol and 

sterol (N4). A Chrompack Capillary Column CP-Sil5CB column (60 m, 0.32 mm internal diameter, 

Agilent Technologies) was used. The oven temperature was increased from 50 to 120°C at 30 °C/min, 

and from 120 to 310°C (hold time: 35 min) at 6 °C/min. Each compound was identified by using 

GC-mass spectrometry (GC-MS, Agilent 5973 Network MSD; Agilent Technologies Inc., USA). 

 

3.2.5 Water-leachable ion 

Pretreatment of water-leachable ions was referred as the following methods outlined in 

Chagué-Goff et al. (2012b) (Fig. 3-4): 30 mL ultrapure water (18.2 MΩ cm) was added to 3 g 

homogenized sample. It was put on a shaker at 125 rpm for 24 hours. The supernatant was then filtered 

using a 0.45 µm disposable filter and split for cations and anions analyses. The subsamples for cation 

analysis (15 mL) were added nitric acid and made a final concentration of 1% volume per volume (v/v) 

of sample.  
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Water-leachable cations (Na+, Mg2+, Ca2+, K+, Mn2+, and Sr2+) were determined by inductively 

coupled plasma–atomic emission spectroscopy (ICP-AES, SPS3500DD; Seiko Instruments Inc., Japan), 

and water-leachable anions (Cl–, SO4
2–, Br–, NO3

–, F–, and PO4
3–) were determined by ion 

chromatography (IC-2001; TOSOH CO., Japan). 

 

3.2.6 Radiocarbon dating 

Organic sediment that had been passed through a 180-µm sieve or leaf were used for 14C dating. 

Radiocarbon dating was conducted using accelerator mass spectrometry (AMS) by the Beta Analytic 

Inc., USA. The measured 14C age was calibrated to calendar age using the IntCal13 calibration curve 

(Reimer et al., 2013) and software (Calib 7.1). Radiocarbon and calendar ages were expressed 

respectively as yr BP and cal yr BP. 

 

3.2.7 Tephra 

Volcanic glass contents, refractive-index of volcanic glass and orthopyroxene, and glass shard 

major element compositions were analyzed as tephra analysis by the Institute of Tephrochronology for 

Nature and History Co. Ltd., Japan. For volcanic glass contents, mud fraction was removed from 

subsample (6 g) using ultrasonic bath. Sample was dried at 80°C. Tephra particles were picked up 

under stereomicroscope. They were then filtered range from 1/4 to 1/8 mm or 1/8 to 1/16 mm. 250 

particles range from 1/4 to 1/8 mm were counted and then volcanic glass contents, light and heavy 

minerals were calculated. Refractive-index of volcanic glass and orthopyroxene were measured with a 

Refractometer (RIM2000; Kyoto Fission-Trach Ltd., Japan). Glass shard major element composition 

was measured by Electron Probe MicroAnalyser (EPMA) using JXA8600 (JEOL Ltd., Tokyo, Japan). 

 

3.2.8 Diatom 

After the subsample was pretreated with 15% H2O2, it was mounted on slides with Pleurax medium 

(Mount Media; Wako Pure Chemical Inds. Ltd., Japan). The prepared slide was examined under a light 
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microscope at ×1000 magnification with oil immersion. At least 300 diatoms were counted in each 

sample. 

 
 
 
 
 
 
 
 

 
 

Fig. 3-3. Analytical procedure for biomarker analysis. 
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Fig. 3-4. Analytical procedure for water-leachable ions analysis. 
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Chapter 4. Results 
 

4.1 Sendai 

4.1.1 Stratigraphy 

The SND-14 sample was collected using a 2-m-long geoslicer by the Geological Survey of Japan. 

The uppermost 12 cm was used for analysis. A 3-cm-thick fine sand deposit was observed at the top of 

the SND-14 sample (Fig. 4-1). Rice paddy soil (organic-rich mud) was beneath the sandy deposits. An 

approximately 2-cm-thick mud overlay was observed 1 month after the tsunami in this area, but it 

could have been removed by erosion or anthropogenic factors by the time sediment sample was 

collected 2 years later. 

The B-18 sample was collected from walls of excavated pit in June 2011 by the work of Abe et al. 

(2012). The 2011 tsunami deposit was consisted of upper 1-cm-thick muddy and lower 3 to 5-cm-thick 

medium sand (Fig. 4-2). The sand contained mud clasts in lower part (Fig. 4-2). 

 

4.1.2 Oraganic and inorganic contents and δ13C 

 Water content, LOI, TC, and TN were lower at the sand and higher at the soil in SND-14 sample 

(Fig. 4-1). TC and TN values were relatively low at a depth of 10–11 cm, as compared to those at the 

other soil depths (Fig. 4-1). The values of δ13C were heavier in the sand layer (ca. –26‰) and lighter in 

the soil (–28 to –27‰) (Fig. 4-1). δ13Cbulk and δ13Corg were almost same values at the same layers. 

 

4.1.3 Biomarkers 

Biomarkers were measured in one layer in the sand (1–3 cm depth) and seven layers in the soil (3–4, 

4–5, 5–6, 6–7, 7–8, 8–9, and 11–12 cm depth) from sample SND-14 (Fig. 4-1). N-alkanes occur as 

major components of the N1 fraction (hydrocarbons). They generally had a distribution with a 

maximum at C29 and other larger peaks at the odd-numbered n-alkanes (C23, C25, C27, C31, and C33), 

whereas lesser peaks occurred at the even-numbered n-alkanes (C24, C26, C28, C30, and C32) in every 

layer (Fig. 4-3a). Short-chain n-alkanes (C16, C17, C18, and C19) were observed only at a depth of 5–6 
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cm (Fig. 4-3b). Alkenones (see subsection 5.2.1), which occur as a component of the N3 fraction 

(ketones), were not detected in any layer, including at a depth of 5–6 cm. Sterols were observed as a 

component of the N4 fraction. Cholesterol and phytosterols, such as stigmasterol and β-sitosterol, were 

detected in every layer. 

Figure 4-4 shows the hydrocarbon distribution of B-18 sample. Tsunamigenic mud (0–1 cm depth) 

contained short-chain n-alkanes and pristane as well as long-chain n-alkanes (Fig. 4-4a). While, there 

were long-chain n-alkanes (C21–C33) in the tsunamigenic sand but no characteristic hydrocarbons such 

as short-chain n-alkanes (Fig. 4-4b). 

 

 

 

 

 

 

 

Fig. 4-1. Sediment sample photographs and lithology, depth profile of water content (%), loss on 

ignition (%), total carbon (%), total nitrogen (%), δ13Cbulk (‰), and δ13Corg (‰) in the SND-14 sample. 

Yellow band indicates tsunamigenic sand layer. Black arrowheads indicate sampling intervals for 

biomarkers. 
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Fig. 4-2. Photograph of B-18 sample. Photo taken by Dr. Tomoya Abe. 
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Fig. 4-3. Gas chromatographs of hydrocarbons (N1 fraction) obtained from sample SND-14. (a) 

Results for the layer at 1–12 cm depth. Gray and orange lines show the results for sand and soil, 

respectively. Numbers indicate carbon numbers of hydrocarbon, and IS represents the 5α-cholestane 

internal standards. (b) Expanded detail of the layer at 5–6 cm depth. Flame ionization detector (FID) 

response is a measure of the intensity of the signal, and retention time is the elapsed time at which the 

compound was detected. 
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Fig. 4-4. Gas chromatographs of the hydrocarbon fraction obtained from samples at transect B-18: (a) 

mud and (b) sand. Numbers indicate carbon numbers of hydrocarbon, and IS represents the 

5α-cholestane internal standards. 
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4.2 Odaka 

4.2.1 Stratigraphy and organic content 

The ODA-2 sample was collected using a 2-m-long geoslicer. The uppermost 35 cm was used for 

analysis. Sandy deposits were observed at depths of 8–15 and 18–20 cm (Fig. 4-5). A 4-cm-thick 

massive mud layer (4–8 cm depth) covered the upper sandy deposits. An organic-rich mud deposit was 

intercalated between the two sand deposits at 15–18 cm depth. The combination of sand and mud 

between 4 and 20 cm depth must have been deposited by the 2011 tsunami, because sand would not 

naturally have been present at this location. The uppermost 4 cm of soil appeared to have accumulated 

naturally after the tsunami. 

Water content, LOI, TC, and TN were lower in the sand and they were higher in the mud, especially 

at depths of 1–8 and 15–18 cm (Fig. 4-5). Upper sand deposit (8–15 cm depth) was organic-poor than 

lower sand deposit (18–20 cm depth). 

 

4.2.2 Biomarkers 

Biomarkers were measured in three layers in the surface soil (1–2, 2–3, and 3–4 cm depth), 16 

layers in the 2011 tsunami deposits (at 1-cm intervals from 4 to 20 cm depth), and three layers in the 

underlying soil (20–21, 21–22, and 22–23 cm depth) (Fig. 4-5). N-alkanes had a unimodal distribution 

with a maximum at C29, with the exception of the layer at 20–21 cm depth (Fig. 4-6). There was a 

distinct distribution pattern in the 20 to 21 cm depth layer in which short-chain n-alkanes (C15, C16, C17, 

C18, and C19), pristane (2,6,10,14-tetramethylpentadecane, C19H40, MW268), and phytane 

(2,6,10,14-tetramethylhexadecane, C20H42, MW282) were detected with a high baseline (Fig. 4-6). No 

alkenones were observed in any layers. Cholesterol, stigmasterol, and β-sitosterol were detected in 

every layer. In addition to these sterols, dinosterol (see subsection 5.2.1) was confirmed only in the 5 to 

6 cm depth tsunamigenic mud layer (Figs. 4-7 and 4-8). 
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Fig. 4-5. Sediment sample photographs and lithology, depth profile of water content (%), loss on 

ignition (%), total carbon (%), and total nitrogen (%) in the ODA-2 sample. Yellow and gray bands 

indicate tsunamigenic sand and mud layers. Black arrowheads indicate sampling intervals for 

biomarkers. 
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Fig. 4-6. Gas chromatographs of hydrocarbons obtained from sample ODA-2. Gray and orange lines 

show the results of tsunami deposits and soil, respectively. Numbers indicate carbon numbers of 

hydrocarbons, and IS represents the 5α-cholestane internal standards. UCM shows the existence of 

unresolved complex mixture.  
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Fig. 4-7. Gas chromatograph results of the N4 fraction from sample ODA-2 at the 5–6 cm depth mud 

layer. 
 

 

 

 

 

 

 

 
 

Fig. 4-8. Mass spectrum of dinosterol identified from sample ODA-2 at the 5–6 cm depth mud layer. 

Numbers are m/z values (mass-to-charge ratios). 
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4.3 Hasunuma 

4.3.1 Stratigraphy 

Transect A 

In June and August 2011, 13 to 37 cm-long sediment samples were collected directly from wall pits 

by the Geological Survey of Japan. At location A13, it has collected only sand layer because it reached 

to the pavement. The tsunami deposit consisted of a very fine to medium sand layer (Fig. 4-9). The 

sand layer was 31 cm thick at location A5, and it overlaid an organic-rich soil with an erosive boundary. 

It was 20 cm and 13 cm thick at locations A10 and A13, respectively. Parallel lamination was observed 

in some parts of sand layer (Fig. 4-9). The sand contained much shell fragments. Mud clasts were 

observed in the sand at locations A5 and A13. 

In 2014, 47 to 50 cm-long sediment samples were collected using 1-m-long geoslicer. The thickness 

of the sandy tsunami deposit at location A5 had changed from 31 cm to 24 cm (Figs. 4-9). The sand 

layer was capped by a modern 1–2 cm thick soil (Fig. 4-9). The contact between the sand and the 

overlying soil was gradual. The sandy tsunami deposit contained many fine roots and shell fragments 

concentrated layers. Difference of thickness of sand layer between 2011 and 2014 was caused by minor 

gap (a few meters) of sampling position. 

 

Transect C 

In 2011, 18 to 18.5 cm-long sediment samples were collected directly from wall pits by the 

Geological Survey of Japan. The tsunami deposit along transect C was composed of 12 to 13 cm thick 

very fine to fine sand (Fig. 4-10). At all three locations, the tsunami deposit overlay an organic-rich 

soil with an erosive boundary. Parallel lamination was observed in some part of sand layer at locations 

C7 and C10. Wavy lamination represented ripple cross-lamination was observed at location C7. The 

sand at location C10 contained plant fragments and shell fragments. 

In 2014, 25 to 30 cm-long sediment samples were collected by using 1-m-long geoslicer. the 

tsunami deposits along transect C were capped by a modern 0.5–2 cm thick deposit (Fig. 4-10). The 

stratigraphic contact between the sand layer and overlying soil was gradual. The sandy tsunami deposit 
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contained many fine roots, but it could not be identified shell fragments at any of the three locations. 

Difference of thickness of sand layer between 2011 and 2014 was caused by minor gap (a few meters) 

of sampling position. 

 

4.3.2 Organic and inorganic contents and δ13C 

Transect A 

At locations A5, A10, and A13, water content, LOI550, and TC and TN contents were 

approximately constant throughout the sand layer (Fig. 4-11). At location A5, they increased in the soil 

immediately beneath the sand layer and then decreased with depth. Soil was entirely poor in organic 

matter according to the low LOI550 (3.4–9.4%). LOI950 showed a prominent peak in 16–19 cm depth 

at location A5. δ13Cbulk was heavier than δ13Corg in the sand layer at every locations, but they were 

almost same in the underlying soil at location A5. 

 

Transect C 

Water content, LOI550, and TC and TN contents were approximately constant throughout the sand 

layer and relatively high in the soil beneath the sand layer and then decreased with depth (Fig. 4-12). 

Soil was entirely organic-poor according to the low LOI550 (2.1–14.8%). At location C7, δ13Cbulk was 

heavier than δ13Corg in the sand layer, but they were almost same in the underlying soil. 

 

4.3.3 Biomarkers 

Transect A 

At location A5 collected in 2011, biomarkers were measured in three layers in the sand (16–19, 27–

29, and 29–31 cm depth) and three layers in the soil (31–33, 33–35, and 35–37 cm depth). No 

hydrocarbons (N1 fraction) were detected in the sandy tsunami deposit, but long-chain n-alkanes (C21–

C35) were generally detected in two soil samples (31–33 cm and 33–35 cm depth) (Fig. 4-13). The 

peaks of odd-numbered n-alkanes (C21, C23, C25, C27, C29, C31, C33, and C35) were larger than those of 

even-numbered n-alkanes (C22, C24, C26, C28, C30, C32, and C34). Short-chain n-alkanes (C15–C19) were 
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absent in every layer (Fig. 4-13). Alkenones were not detected in either the tsunami deposit or the soil. 

Cholesterol and phytosterols such as stigmasterol and β-sitosterol were detected in every measuring 

layer. 

At location A5 collected in 2014, biomarkers were measured in one modern soil layer (0–1 cm 

depth), four layers in the sand (1–3, 9–11, 17–19, and 23–25 cm depth), three layers in the underlying 

soil (25–27, 27–29, and 29–31 cm depth), and two layers in the bottom sand layers (31–33 and 37–39 

cm depth). Long-chain n-alkanes (C23–C33) were generally detected, mainly in low concentrations, in 

soil samples (0–1 cm, 25–27 cm, 27–29 cm, and 29–31 cm depth) and in the sand layers immediately 

above and below the soil layers (1–3 cm, 23–25 cm, and 31–33 cm depth) (Fig. 4-14). No short-chain 

n-alkanes (C15–C19) or alkenones were detected. Cholesterol and phytosterols were detected in layer 

that was analyzed. 

 

Transect C 

At location C10 collected in 2011, biomarkers were measured in two layers in the sand (6–11 and 

12–13 cm depth) and three layers in the soil (13–15, 15–17, and 17–18.5 cm depth). Long-chain 

n-alkanes (C29–C33) were detected only in the soil layer at 15–17 cm depth (Fig. 4-15). The 

odd-numbered n-alkane peaks were larger than the even-numbered peaks. In the sand layer at 6–11 cm 

depth, the C25 peak was highest, and peak height gradually decreased for hydrocarbons with both lower 

and higher carbon numbers (Fig. 4-15). No alkenones were detected. Cholesterol and phytosterols were 

detected in layer that was analyzed. 

 

4.3.4 Water-leachable ions 

Transect A 

In 2011, at location A5, sodium, magnesium, calcium, potassium, and phosphate had little 

fluctuations in the sand layer, but their concentrations were abruptly increased in the soil immediately 

below the sand layer and gradually decreased with depth (Figs. 4-16 and 4-17). Bromide showed a 

similar trend, but it reached a maximum in a further deep soil layer (33–35 cm depth). Fluoride and 
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chloride contents were slightly higher in the sand layer than in the soil. Sulfate was higher in sand layer 

than underlying soil, however, it was represented the maximum value at the bottom of sample. 

Although nitrate was stable in sand layer, it was increased in the bottom of sand and decreased at soil 

layer. Maximum value of nitrate represents at the bottom of sample. At locations A10 and A13, most 

water-leachable ions had little fluctuations (Figs. 4-16 and 4-17). Sulfate gradually increased with 

depth at location A13. 

In 2014, sodium was low at every location, but it was higher in the soil than in the sand layer (Fig. 

4-16). Magnesium was mainly below the detection limit in the sandy tsunami deposit. Calcium and 

potassium were low in the sand layer and relatively high in the soil at locations A5 and A10. Calcium 

in the sand layer at locations A5 and A13 was higher than the sand layer collected in 2011. 

Water-leachable anions were mainly low in the sand layer at each location, but chloride, sulfate, and 

nitrate concentrations were relatively high both modern soil and soil just below the sand deposit, 

especially at locations A5 and A10 (Fig. 4-17). Water-leachable ions at modern soil were higher than 

or almost same with soil underlying sand layer (Figs. 4-16 and 4-17). It was probably caused by sea 

spray because sampling locations were up to 350 m away from the coastline. 

 

Transect C 

In 2011 along transect C, concentrations of water-leachable cations, sulfate, nitrate, fluoride and 

phosphate were low in the sand layer (Figs. 4-18 and 4-19). Their concentrations increased in the 

bottom of sand or soil just below the sand layer, and then they gradually decreased with depth (Figs. 

4-18 and 4-19). Chloride was low in both the sand layer and the soil. Bromide was low in the sand 

layer and high in the soil. 

In 2014, water-leachable cations were low in sand layer and they were higher in the soil than in the 

sand layer (Fig. 4-18). Magnesium was below the detection limit in most sand layer samples. 

Water-leachable anions were mainly low in the sand layer at every location, but concentrations of 

chloride, sulfate, nitrate, and phosphate were relatively high both overlying and underlying soil, 

especially at locations C1 and C7 (Fig. 4-19). Bromide was below the detection limit in most sand 
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layer. Water-leachable ions were higher at modern soil than sand layer (Figs. 4-18 and 4-19), resulting 

from sea spray. 

 

 

 
 

Fig. 4-9. Sediment sample lithology in the transect A at Hasunuma collected in 2011 and 2014. X-axis 

shows the distance (m) of sampling locations from coastline. At location A10, samples were collected 

just only from the sand layer in 2011. Sampling reached to pavement at location A13. 
 

 

 
 

Fig. 4-10. Sediment sample lithology in the transect C at Hasunuma collected in 2011 and 2014. X-axis 

shows the distance (m) of sampling locations from coastline.  

2011

A5

De
pt

h 
(c

m
) f

ro
m

 g
ro

un
d 

su
rfa

ce

Distance (m) from coastline
350 300 200 150250

Gravel

Sand

Organic soil

Parallel lamination

Plant fragment

Mud clast

s
m

f
vf

Silt
Very fine sand

Fine sand
Medium sand

s
m

f
vf s

m
f

vf

s
m

f
vf

Shell fragment

Wavy lamination

Pavement

10

0

20

30

40

50

A10

2014

A13

Rootlet

Wood

10

0

20

30

40

50

10

0

20

30

40

50
s

m
f

vf
s

m
f

vf

s
m

f
vf

2011 2014 2011 2014

Gravel

Sand

Organic soil

Parallel lamination

Plant fragment

Mud clast

s f
vf

Silt
Very fine sand

Fine sand

Shell fragment

Wavy lamination

Rootlet

C1C7C10

2011 20142011 20142011 2014

350 300 200 150250
Distance (m) from coastline

s f
vf

s f
vf

s f
vf

De
pt

h 
(c

m
) f

ro
m

 g
ro

un
d 

su
rfa

ce

10

0

20

30

10

0

20

30

10

0

20

30
s f
vf

s f
vf

s f
vf



 

 39 

 

 
 

Fig. 4-11. Depth profiles of water content, LOI550, LOI950, total carbon, total nitrogen, δ13Cbulk, and 

δ13Corg along transect A in 2011. Missing data shown in total nitrogen and stable carbon isotope both 

δ13Cbulk and δ13Corg indicates values below the detection limit.  
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Fig. 4-12. Depth profiles of water content, LOI550, LOI950, total carbon, total nitrogen, δ13Cbulk, and 

δ13Corg along transect C in 2011. Missing data shown in total nitrogen and stable carbon isotope both 

δ13Cbulk and δ13Corg indicates values below the detection limit.  
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Fig. 4-13. Gas chromatographs of hydrocarbons (N1 fraction) at location A5 in 2011. Black and gray 

lines of chromatograph show the results of sand and soil, respectively. Numbers indicate carbon 

numbers of hydrocarbons, and IS is 5α-cholestane, used as an internal standard.  
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Fig. 4-14. Gas chromatographs of hydrocarbons at location A5 in 2014. Black and gray lines of 

chromatograph show the results of sand and soil, respectively. Numbers indicate carbon numbers of 

hydrocarbons, and IS is 5α-cholestane, used as an internal standard.  

FI
D 

re
sp

on
se

2015 30
Retention time (min.)

4025 35 45 50

0–1 cm depth
Soil

25–27 cm depth
Soil

27–29 cm depth
Soil

29–31 cm depth
Soil

31–33 cm depth
Sand

37–39 cm depth
Sand

1–3 cm depth
Sand

9–11 cm depth
Sand

17–19 cm depth
Sand

23–25 cm depth
Sand

Transect A   Location A5 (2014)

10

0

20

30

40

50

De
pt

h 
(c

m
) f

ro
m

 g
ro

un
d 

su
rfa

ce

Rootlet

Shell fragment

Wood

Sand

Organic soil

27
25232122 24 26 28 30 32

IS
31

33
29

s
m
f

vf



 

 43 

 

 
 

Fig. 4-15. Gas chromatographs of hydrocarbons at location C10 in 2011. Black and gray lines of 

chromatograph show the results of sand and soil, respectively. Numbers indicate carbon numbers of 

hydrocarbons, and IS is 5α-cholestane, used as an internal standard. 
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Fig. 4-16. Depth profiles of water-leachable cations (Na+, Mg2+, Ca2+, and K+) along transect A in 2011 

and 2014. Black squares indicate values below the detection limit. The graphs of manganese and 

strontium were not posted because they were below the ICP-AES detection limit in every sample.  
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Fig. 4-17. Depth profiles of water-leachable anions (Cl–, SO4
2–, Br–, NO3–, F– and PO4

3–) along transect 

A in 2011 and 2014. Black squares indicate values below the detection limit.  
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Fig. 4-18. Depth profiles of water-leachable cations (Na+, Mg2+, Ca2+, and K+) along transect C in 2011 

and 2014. Black squares indicate values below the detection limit. The graphs of manganese and 

strontium were not posted because they were below the ICP-AES detection limit in every sample.  
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Fig. 4-19. Depth profiles of water-leachable anions (Cl–, SO4
2–, Br–, NO3–, F– and PO4

3–) along transect 

C in 2011 and 2014. Black squares indicate values below the detection limit. 
 

 

Location C1

Location C7

Location C10

Soil

Sand

Soil

Sand

Soil

Sand

Soil

Sand

Soil

Sand

Soil

Sand

0

10

20

30

De
pt

h 
(c

m
) f

ro
m

 g
ro

un
d 

su
rfa

ce

0

10

20

30

De
pt

h 
(c

m
) f

ro
m

 g
ro

un
d 

su
rfa

ce

0

10

20

30

De
pt

h 
(c

m
) f

ro
m

 g
ro

un
d 

su
rfa

ce
F- (mg/L)

2011 2014
0 0.5 1.0 0 0.5 1.0

Cl- (mg/L)
2011 2014

0 15 30 0 15 30
2011 2014

0 8 16 0 8 16
2011 2014

0 15 0 15
2011 2014

0 3 6 0 3 6

Br- (mg/L)
2011 2014

0 0.5 0 0.5

NO3 (mg/L)SO4 (mg/L) PO4 (mg/L)2- 3--

F- (mg/L)
2011 2014

0 0.5 1.0 0 0.5 1.0

Cl- (mg/L)
2011 2014

0 15 30 0 15 30
2011 2014

0 8 16 0 8 16
2011 2014

0 15 0 15
2011 2014

0 3 6 0 3 6

Br- (mg/L)
2011 2014

0 0.5 0 0.5

NO3 (mg/L)SO4 (mg/L) PO4 (mg/L)2- 3--

F- (mg/L)
2011 2014

0 0.5 1.0 0 0.5 1.0

Cl- (mg/L)
2011 2014

0 15 30 0 15 30
2011 2014

0 8 16 0 8 16
2011 2014

0 15 0 15
2011 2014

0 3 6 0 3 6

Br- (mg/L)
2011 2014

0 0.5 0 0.5

NO3 (mg/L)SO4 (mg/L) PO4 (mg/L)2- 3--



 

 48 

4.4 Yamamoto 

4.4.1 Sample information 

All lake bottom sediments were collected at April 2014 using 3-m-long geoslicer on boat. Slices 1, 

2, and 3 were taken at the same location (Fig. 2-5b). Because their stratigraphy was similar, Slice 3 was 

adopted as a representative of these three samples. Detail analyses, such as CT image, 14C dating, 

tephra analysis, and diatom analysis, were only conducted for Slice 3 because the stratigraphy of the 

surface unit was similar among Slices 3, 4, and 5 and sediment below surface unit was organic-rich in 

Slice 3 compared with the other slices. All ‘depth’ used in the samples of Suijin-numa was expressed 

as depth from the lake floor. 

 

4.4.2 Stratigraphy 

Deposit beneath the lake floor was 20–60-cm-thick black mud in every sampling locations, and 7–

15-cm-thick sand was deposited immediately below the black mud in Slice 3, 4, and 5 (Fig. 4-20). 

Sediments below the sand were, respectively, sandy deposits, peat, and gray silt seaward (Slices 5 and 

6), central (Slice 3), and landward (Slice 4) of the lake (Fig. 4-20). 

In Slice 3, 50-cm-thick black mud was deposited on top of the sediment samples. A 7-cm-thick very 

fine to medium sand layer (Sand 1) was observed immediately below the mud. It has a clear erosional 

base, as shown in the CT image (Fig. 4-20). Sand 1 contained angular gravels, rounded gravels, and 

granitic rocks (Fig. 4-21) at its lower part. Organic rich peat was observed below Sand 1. Two sand 

layers (Sands 2 and 3) were intercalated to the peat. Stratigraphy of the Slice 4 generally resembles that 

of the Slice 3, although it contains only one sand layer below Sand 1. Gray silt was dominant below 

Sand 1. Slice 5 was taken at the shallowest point (80 cm water depth). The black mud at the top was 

the thinnest (19-cm-thick) among the samples. A 6-cm-thick medium sand (=Sand 1) was observed 

immediately below the mud, but the contact between the black mud and sand was unclear. A fine to 

medium sand (39–54 cm depth) was intercalated by brown sandy mud. Coarse sand was present at the 

base of this sediment sample. Slice 6 was collected at the most seaward among the other sampling 

locations (Fig. 2-5b). Also, 45-cm-thick black mud was found at the top. The layer equivalent to Sand 
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1 was not observed from Slice 6. Thick medium sand found at the base of this sample (66–93 cm 

depth) contains abundant shell fragments. 

 

4.4.3 Radiocarbon dating 

From 14C dating of organic sediment picked up from Slice 3, calendar age below Sand 3 was about 

2900 cal yr BP, although it was about 2400 cal yr BP above the Sand 3 (Fig. 4-22 and Table 4-1). 

Calendar ages below and above Sand 2 were, respectively, about 2300 cal yr BP and 1100 cal yr BP. 

Extremely old age (ca. 11,000 cal yr BP) inferred from a sample just below Sand 2 is apparently 

reworked old organic materials because the age is too old to compare with below and above sediment. 

The age of peat between Sands 1 and 2 (57 and 67 cm depth) was about 700–1100 cal yr BP. Ages of 

the surface black mud ranged from modern to 200 cal yr BP (Fig. 4-22 and Table 4-1). Calendar ages 

obtained from leaves were, respectively, ca. 400 and 700 years younger than the age obtained from the 

same layer organic sediment at 65–66 and 81–82 cm depth. 

 

4.4.4 Tephra 

No remarkable tephra concentrated layer, a so-called visible tephra layer, was found in any sample 

obtained through this survey. Volcanic glass contents were measured in six layers (57–59, 59–61, 61–

63, 63–65, 65–67, and 67–69 cm depth) from the sample of Slice 3. Moreover, the refractive-index of 

volcanic glass and orthopyroxene, and glass shard major element compositions were measured in three 

layers (57–59, 61–63, and 65–67 cm depth). 

In Slice 3, although no visible tephra layer exists at peat between 57 and 67 cm depth (Fig. 4-20), 

characteristic features were found at 57–59, 61–63, and 65–67 cm depth based on the analysis of 

volcanic glass content (Fig. 4-23). Contents of heavy minerals were high (17.6%) at 57–59 cm depth. 

A peak of volcanic glass (4.4%), although not noticeable, was found at 61–63 cm depth. Heavy 

minerals were more concentrated, from 4.2% at 67–69 cm depth to 6.8% at 65–67 cm depth. Especially, 

orthopyroxene concentrations were higher, but the amphibole contents were decreased. 
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Refractive-indices of volcanic glass and orthopyroxene (Table 4-2), and glass shard major element 

compositions (Table 4-3) were measured in three layers (57–59, 61–63, and 65–67 cm depth). Results 

showed refractive-index and major element compositions for 57–59, 61–63, and 65–67 cm depth, 

probably indicating a mixture of volcanic glasses that originate from Hr-FA and Hr-FP (two 

sixth-century eruptions of Haruna volcano, central Japan: Soda, 1989). That inference is supported by 

the presence of amphibole. In addition to these tephra, volcanic glasses origin from A.D. 915 To-a 

might be mixed at these three layers, as inferred from the results of the color and shape of volcanic 

glass, and the refractive-index of orthopyroxene. 

 

4.4.5 Diatom 

Diatom analysis was conducted at five layers (0–3, 8–13, 18–23, 28–33, and 38–43 cm depth) from 

the surface black mud in Slice 3 (Fig. 4-24). Total 115 taxa was identified. Staurosira construens var. 

binodis, Staurosirella pinnata, and Pseudostaurosira brevistriata showed a high percentage in every 

layer. Although Suijin-numa was freshwater environment before the 2011 tsunami judging from the 

diatom data obtained by Sawai et al. (2008), brackish-marine and marine diatoms were mixed from top 

to bottom of the surface black mud (Fig. 4-24). 
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Fig. 4-20. Stratigraphy of sediment below the lake floor of Suijin-numa. 

 
 

 
Fig. 4-21. Photograph of granitic pebble contained at bottom of Sand 1 from Slice 3.  
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Table 4-1. Radiocarbon data for organic sediments and leaves from sample Slice 3. 

 
 
  

Sample ID Depth (cm) Material
14C age
(yr BP)

δ13C
(‰)

Calendar age
(2σ)(cal yr BP) Lab. code

Slice 3 8–13 Organic sediments 170±30 -27.2 130–230 Beta-412363
Slice 3 18–23 Organic sediments 90±30 -26.9 20–140 Beta-412364
Slice 3 28–33 Organic sediments 60±30 -27.0 Modern Beta-412365
Slice 3 38–43 Organic sediments 130±30 -26.9 60–150 Beta-412366
Slice 3 57–58 Organic sediments 890±30 -26.6 730–830 Beta-387433
Slice 3 58–59 Organic sediments 920±30 -26.1 780–920 Beta-380294
Slice 3 59–60 Organic sediments 860±30 -26.4 700–800 Beta-387434
Slice 3 60–61 Organic sediments 1220±30 -26.5 1060–1190 Beta-387435
Slice 3 61–62 Organic sediments 910±30 -26.3 760–920 Beta-378684
Slice 3 62–63 Organic sediments 890±30 -27.0 730–830 Beta-387436
Slice 3 63–64 Organic sediments 940±30 -26.0 790–920 Beta-387437
Slice 3 64–65 Organic sediments 890±30 -26.5 730–830 Beta-387438
Slice 3 65–66 Organic sediments 1140±30 -25.3 970–1100 Beta-378685
Slice 3 65–66 Leaves 590±30 -29.2 580–650 Beta-413685
Slice 3 66–67 Organic sediments 930±30 -26.7 790–920 Beta-387439
Slice 3 69–70 Organic sediments 9950±30 -26.2 11250–11410 Beta-387440
Slice 3 70–71 Organic sediments 2270±30 -25.9 2300–2350 Beta-378686
Slice 3 71–72 Organic sediments 2330±30 -25.9 2310–2390 Beta-387441
Slice 3 78–79 Organic sediments 2900±30 -24.1 2950–3080 Beta-387442
Slice 3 79–80 Organic sediments 2980±30 -24.6 3060–3250 Beta-387443
Slice 3 80–81 Organic sediments 2850±30 -24.2 2880–3060 Beta-378687
Slice 3 81–82 Organic sediments 2930±30 -24.4 2980–3170 Beta-387444
Slice 3 81–82 Leaves 2270±30 -29.6 2300–2350 Beta-413686
Slice 3 82–83 Organic sediments 2940±30 -24.0 2990–3180 Beta-387445

The radiocarbon ages were converted to calendar ages by using the INTCAL13 database (Reimer et al.,
2013) and the Calib 7.1 program (http://calib.qub.ac.uk/calib/). Radiocarbon and calendar ages are
expressed as yr BP and cal yr BP, respectively.
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Fig. 4-22. Results of 14C dating for Slice 3. 14C data show 2 σ range and are presented in Table 4-1. 14C 

age measured by organic sediment and leaves are indicated respectively in white and black bars. White 

circles represent modern values obtained from organic sediment.  
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Fig. 4-23. Diagram of volcanic glass content for Slice 3. Percentages of different types volcanic glass, 

light, and heavy minerals were estimated from observations of 250 particles ranging from 1/4 to 1/8 

mm. 
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Table 4-2. Refractive-indices of glass and orthopyroxene in Slice 3 and marker tephra around the 

Miyagi-Fukushima Pacific coast for last 30 ka. 

 
 
 
 
 
Table 4-3. Glass shard major element compositions of Slice 3 and marker tephra for about 30 ka; n.d., 

no data. 

 

Refractive index (n) Counted particle Refractive index (γ) Counted particle
57–59 cm depth 1.496–1.508 34 1.705–1.726 33 This study
61–63 cm depth 1.498–1.510 31 1.708–1.727 30 This study
65–57 cm depth 1.497–1.505 34 1.708–1.724 31 This study

Refractive index (n) Refractive index (γ)
As–A: A.D.1783 1.507–1.512 1.707–1.712 1)
As–Kk: A.D.1128 1.706–1.710 2)
B–Tm: 10th century 1.511–1.522 1)
To–a: A.D.915 1.503–1.507 1.706–1.708 1)
Hr–FP: middle 6th century 1.501–1.504 1.707–1.711 1)
Hr–FA: early 6th century 1.498–1.505 1.707–1.711 1)
Nm–N: 5 ka 1.500–1.505 1.706–1.708 1)
To–Cu: 6 ka 1.508–1.512 1.703–1.709 1)
K–Ah: 7.3 ka 1.508–1.516 1)
Hj–O: 11–12 ka 1.499–1.504 1.712–1.715 1)
To–H: 15 ka 1.505–1.509 1.708–1.712 1)
As–K: 15–16.5 ka 1.501–1.503 1.708–1.712 1)
As–YP: 15–16.5 ka 1.501–1.505 1.707–1.712 1)
AT: 28–30 ka 1.499–1.501 1)
To–Of: �32ka 1.505–1.511 1.707–1.711 1)
1) Machida and Arai (2011), 2) Soda (1996).

Marker tephra Volcanic glass Orthopyroxene Reference

Sample ID Volcanic glass Orthopyroxene Reference

SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Counted particle
type 1-1 78.49 0.07 12.52 1.08 0.06 0.04 0.64 2.24 4.83 0.04 4
type 1-2 79.85 0.06 12.41 1.06 0.03 0.04 0.51 3.26 2.76 0.03 2
type 1-3 79.09 0.11 12.41 1.25 0.06 0.07 0.84 2.86 3.33 0.04 4
type 2-1 79.34 0.20 12.66 1.73 0.09 0.22 1.51 2.61 1.61 0.05 5
type 2-2 79.62 0.09 12.39 1.02 0.07 0.05 0.63 2.99 3.1 0.03 4
type 2-3 78.47 0.06 12.83 0.98 0.06 0.03 0.72 2.40 4.42 0.03 2
type 3-1 78.54 0.19 12.38 1.54 0.03 0.2 1.59 2.97 2.55 0.01 3
type 3-2 80.18 0.17 12.35 1.51 0.07 0.14 1.30 2.32 1.91 0.04 7
type 3-3 79.58 0.06 12.52 1.23 0.08 0.03 0.41 2.88 3.2 0.02 1

SiO2 TiO Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Reference
To-a 77.87 0.37 12.81 1.75 0.1 0.42 2.00 3.29 1.34 1)
Nm-N 78.10 0.24 12.10 1.14 0.09 0.19 1.34 3.35 3.45 2)
To-Cu 75.08 0.44 13.28 2.46 0.08 0.63 2.63 4.04 1.29 1)
K-Ah 75.24 0.53 12.85 2.42 0.08 0.47 2.02 3.32 3.00 1)
Hj-O 77.79 0.16 12.76 1.05 n.d. 0.44 1.09 3.61 3.10 2)

78.30 0.29 12.67 1.52 0.06 0.29 1.73 3.84 1.30 2)
76.38 0.40 13.43 1.90 0.11 0.44 2.22 3.88 1.24 2)

As-YP 78.15 0.27 11.99 1.33 0.04 0.26 1.30 3.72 2.89 1)
Nr-KU 77.98 0.22 12.28 1.22 n.d. 1.01 1.59 4.23 1.47 2)
AT 78.25 0.13 12.14 1.26 0.04 0.11 1.09 3.41 3.56 0.02 1)
To-Of (pfl) 77.82 0.36 12.45 1.88 0.08 0.33 1.87 3.97 1.25 2)
Volatile-free compositions normalized to 100% were listed in table.
1) Yagi (unpublished data), 2) Aoki and Arai (2000).
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57–59 cm
depth

61–63 cm
depth

65–67 cm
depth

Marker tephra

To-H (pfl) upper
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Fig. 4-24. Results of diatom analysis for Slice 3. (a) Vertical changes in diatom assemblages in Slice 3 

(exceeding 2% relative to counted total diatom valves). (b) Relative abundance of diatom assemblages 

classified into four salinity groups (freshwater, freshwater-brackish, brackish-marine, and marine). 

Black mud

Slice 3

a

bD
ep

th
 (c

m
) f

ro
m

 th
e 

la
ke

 b
ot

to
m

0

10

20

30

40

50

60
Peat

Sand

Freshwater Freshwater-Brackish Brackish-Marine Marine

Freshwater

Freshwater-Brackish

Marine

Brackish-Marine

0

0–3 cm depth

8–13 cm depth

18–23 cm depth

38–43 cm depth

28–33 cm depth

50 100 (%)

0 5 (%)

Am
ph

or
a 

co
pu

la
ta

En
cy

on
em

a 
lu

na
tu

m
G

om
ph

on
em

a 
ac

id
oc

lin
at

um
 

St
au

ro
si

ra
 c

on
st

ru
en

s 
va

r. 
bi

no
di

s

St
au

ro
si

ra
 c

on
st

ru
en

s

St
au

ro
si

re
lla

 p
in

na
ta

Au
la

co
se

ira
 p

fa
ffi

an
a

Au
la

co
se

ira
 p

us
illa

Au
la

co
se

ira
 v

al
id

a

N
av

ic
ul

a 
cr

yp
to

te
ne

lla
M

el
os

ira
 u

nd
ul

at
a

N
av

ic
ul

a 
gr

eg
ar

ia

N
av

ic
ul

a 
pe

re
gr

in
a

N
av

ic
ul

a 
pe

re
gr

in
a?

N
av

ic
ul

a 
sa

lin
ar

um

Ps
eu

do
st

au
ro

si
ra

 b
re

vi
st

ria
ta

N
av

ic
ul

a 
w

itk
ow

sk
ii

Ps
eu

do
st

au
ro

si
ra

 s
ub

sa
lin

a

Tr
yb

lio
ne

lla
 a

pi
cu

la
ta

Tr
yb

lio
ne

lla
 le

vi
de

ns
is

Se
lla

ph
or

a 
pu

pu
la

re
st

in
g 

sp
or

e 
of

 C
ha

et
oc

er
os

C
yc

lo
te

lla
 s

p.
Ta

bu
la

ria
 fa

sc
ic

ul
at

a

H
ip

po
do

nt
a 

ca
pi

ta
ta

N
itz

sc
hi

a 
si

gm
a

G
yr

os
ig

m
a 

sc
al

pr
oi

de
s

Ba
ci

lla
ria

 p
ax

illi
fe

r

70

80



 

 57 

Chapter 5. Discussion 
 

5.1 Stable carbon isotope ratio 

In Hasunuma, δ13Cbulk in the sand was about 15‰ higher than δ13Corg in the sand layer, on the 

other hand, δ13Cbulk and δ13Corg were almost identical in the soil (Figs. 4-11 and 4-12). The LOI550 of 

samples collected in 2011 shows that the organic carbon content was very low in the sandy tsunami 

deposit (Figs. 4-11 and 4-12). In contrast, LOI950 was high in the sand at locations A5, C1, C7, and 

C10, which indicates the presence of carbonate: shell fragments that were also visible to the naked eye. 

Shell fragments were contained at sand layer but they were absent in the soil. Therefore, the difference 

between δ13Cbulk and δ13Corg in the sand layer strongly suggests the presence of shell fragments. δ13Corg 

ranged from –22‰ to –31‰ in both sand and soil layers, indicating that most of the organic carbon 

originates from C3 terrestrial plants (Lamb et al. 2006). 

The δ13Corg values in SND-14 were, respectively, –26.3‰ and –27.9‰ to –27.0‰ in the sand and 

soil (Fig. 4-1). While, the δ13Corg values in samples of Hasunuma were, respectively, –29.7‰ to –

22.9‰ and –29.8‰ to –27.7‰ in the sand and soil (Figs. 4-11 and 4-12). Chagué-Goff et al. (2012a) 

also reported δ13C from the sample of tsunamigenic sand, and soil both within and beyond tsunami 

inundation limit at the Sendai Plain. These δ13C values were almost same with both sand and soil from 

SND-14 and soil from Hasunuma samples. However, a part of δ13C at sand layer was ca. 3‰ heavier 

than the samples of the Sendai Plain: SND-14 and samples reported by Chagué-Goff et al. (2012a). It 

is possible that the difference represents contribution of marine organic matter. It was not analyzed 

δ13C of original soil (unaffected by tsunami), seawater particle organic carbon, or marine sediment. 

However, δ13C of marine organic carbon (dissolved organic carbon, particle organic carbon, and algae) 

is typically in the range of –25 to –16‰, whereas δ13C of terrestrial C3 and C4 plants, respectively, are 

–32 to –21‰ and –17 to –10‰ (Lamb et al. 2006). The heaviest value of sand layer δ13Corg (–22.9‰) 

recorded from sand deposit collected at Hasunuma might represent a mixture of terrestrial C3 plant and 

marine organic matter. Anyhow, the values (–22.9‰) were within the range of δ13C of marine organic 

matter and terrestrial C3 plant (Lamb et al. 2006). 
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It is difficult to distinguish marine organic carbon using merely δ13C because the ranges of δ13C of 

terrestrial C3 plant and marine organic matter were partly overlapped. Moreover, marine organic 

matter transported by tsunami inundation might be mixed with terrestrial organic matter. In that case, 

obtained δ13C value apparently shifts to the value of terrestrial organic carbon, and we cannot identify 

the source of organic matter. It is important to know endmember of background level of original soil 

unaffected by tsunami, seawater particle organic carbon, and sea-bottom sediment. On that base, we 

might be able to estimate how much amount of marine-source organic matter is supplied to coastal 

land. 

 

5.2 Allogenic biomarkers 

5.2.1 Source of biomarkers 

Living organisms produce specific organic compound. The distribution of hydrocarbons had a 

maximum at C29 with other larger peaks at the odd-numbered n-alkanes (C23, C25, C27, C31, and C33), 

whereas lesser peaks occurred at the even-numbered n-alkanes (C24, C26, C28, C30, and C32) in most of 

the layers measured at Sendai, Odaka, and Hasunuma (Figs. 4-3, 4-4, 4-6, 4-13, 4-14, and 4-15). This 

distribution pattern primarily indicates a contribution by higher plants (Eglinton and Hamilton, 1963). 

On the other hand, short-chain (C17, C18, and C19) n-alkanes, pristane, and phytane are originated from 

marine and/or aquatic organism. C17 and C19 n-alkanes are predominant in algae (Gelpi et al., 1970), 

and C18 n-alkane is derived from fish (Mackie et al., 1974). Pristane is predominately derived from 

zooplankton (Blumer et al., 1963), benthos, and fish (Mackie et al., 1974). Phytane is derived 

predominately from zooplankton (Blumer and Thomas, 1965) or sediment itself by biological activity 

(Ikan et al., 1975). 

Long-chain C37–C39 unsaturated methyl and ethyl ketones, namely alkenones, are derived from 

several species of haptophytes, including the widely distributed coccolithophorids Emiliania huxleyi 

and Gephyrocapsa oceanica (Volkman et al., 1980; Marlowe et al., 1984; Conte et al., 1994). 

Alkenones are also one of good indicator for marine sources. 
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Cholesterol, stigmasterol, and β-sitosterol were detected at every measured layer from all study sites. 

Animals tend to make cholesterol, whereas higher plants typically produce stigmasterol and β-sitosterol 

(Peters et al., 2007a). Dinosterol originated from marine dinoflagellates (e.g. Boon et al., 1979) and is 

considered to be a good indicator as a marine biomarker. 

Unresolved complex mixture (UCM) is an evidence for contamination of biodegraded or 

low-maturity petroleum in sediment or water sample (Meyers and Takeuchi, 1981; Gough and 

Rowland, 1990). If UCM is contained in sample, it represents the broad and pronounced rise of the 

baseline on gas chromatograms (Peter et al., 2007b). 

 

5.2.2 Biomarkers deposited by the 2011 tsunami 

Characteristic hydrocarbons, such as short-chain n-alkanes, pristane, and phytane, were detected in 

the soil layer underlying the tsunami deposits in both the Sendai (SND-14) and Odaka (ODA-2) 

sediment samples (Figs. 4-3 and 4-6). Additionally, dinosterol originated from marine dinoflagellates 

was detected in the tsunamigenic mud layer (5–6 cm depth) at Odaka (Figs. 4-7 and 4-8). Because 

these aquatic hydrocarbons and marine-source dinosterol were absent in the deeper soil layer in each 

location and surface modern soil layer in Odaka, these biomarkers are likely to have been transported 

by abrupt event. Both sampling locations were sufficiently far from the shoreline (1.6 km inland in 

Sendai and 2.6 km inland in Odaka) and Tohoku region does not receive severe typhoon damage in 

recent years. Moreover, these biomarkers found from the layer associated with the 2011 tsunami 

deposit although they were not at sandy tsunami deposit itself. Therefore, these aquatic biomarkers 

(short-chain n-alkanes, pristine, phytane, and dinosterol) seem to have been transported from the ocean 

by the 2011 tsunami. 

In addition to the presence of aquatic biomarkers, another notable feature was observed from 

sample of Odaka. There was a broad and marked rise of the baseline (Fig. 4-6) at the 20–21 cm depth 

that the layer was contained aquatic biomarker. It is probably as a result of contamination with UCM 

(see subsection 5.2.1). Because there is no evidence for UCM in either terrigenous or marine organic 

matter under natural condition, their presence in this layer indicates that they were contaminated by the 
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tsunami as well as the aquatic biomarkers. The UCM contamination might have originated from 

low-maturity oil deposited on the seafloor or oil spilled from broken vehicles and ships. Although there 

is no conclusive evidence of the source of UCM contamination, an important point is that UCM is 

never derived from recent organic matter. The presence indicates that it was provided by abrupt 

event—in this case, the tsunami. 

From the results at Hasunuma, on the other hand, aquatic biomarkers were absent both the sandy 

tsunami deposit and in the soil in either 2011 and or 2014 (Figs. 4-13, 4-14, and 4-15). One possibility 

is that aquatic biomarkers were transported but they were not preserved at both sand and soil layers. 

They might be disappeared by external force, for example groundwater movement. Another possibility 

is that contributions of marine source organic matter were too low. Aquatic biomarkers might be 

transported by the tsunami inundation, however, it was too low to detect by GC. Although aquatic 

biomarkers were found at Sendai and Odaka, no aquatic biomarkers were found at Hasunuma. The 

difference whether transported biomarkers were detected or not may be attributable to specific 

environmental attributes of the study area, i.e., difference of original soil and organic content both sand 

and soil. 

Transported (aquatic) biomarkers seem to adsorb to fine mineral particles and organic matter but 

not to large, sand-sized particles because they were detected from only soil layer or tsunamigenic mud. 

Allogenic biomarkers were transported together with sand by the tsunami. They might leach out of the 

sand layer due to sand possess much porosity, and then they concentrated in the soil below the sand 

layer. Or, aquatic biomarkers adsorbed and deposited to surface tsunamigenic mud like the results of 

Odaka. Organic content at overlying and underlying mud represented by LOI550 was similar among 

Sendai, Odaka, and Hasunuma. However, soil at Hasunuma contains sand-sized particle from beach by 

wind because sampling locations were close to beach (within ca. 350 m; Fig. 2-4). The soil scattering 

sand might enrich permeability of allochthonous organic carbon. Therefore, transported biomarkers, at 

Hasunuma, might pass through the soil layer by groundwater movement. 

Marine-sourced biomarkers were not detected in the sand layer of the B-18 sample collected 3 

months after the tsunami (Fig. 4-4). It cannot be speculated on whether characteristic hydrocarbons had 

penetrated the underlying soil because there were no soil samples available from the time shortly after 
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the tsunami. The data suggests that detectable amounts of marine-sourced biomarkers were not 

preserved in the sand layer at least 3 months after the tsunami. 

In Odaka, allogenic biomarkers were not observed in the mud layer (15–18 cm depth) intercalated 

between the two sand layers (8–15 cm and 18–20 cm depth). One possibility is that the mud layer did 

not originate from the sea-bottom but from another source, such as paddy soil. Results of detailed 

analyses of grain size distributions and diatom (Szczucinski et al., 2012) at the Sendai Plain imply that 

the main sources of muddy tsunami deposits were local land soil although sampling location at Odaka 

is not the Sendai Plain and is located between narrow valley. If it can be adapt to the case of Odaka, 

mud drape intercalated between the sands is consisted of terrestrial organic matter. However, even 

freshwater mud transported by seawater could contain marine organisms. Another possibility is that 

marine-sourced organic materials were diluted by terrestrial organic materials. Therefore, 

marine-sourced biomarkers were apparently absent in detectable amounts. A large contribution of 

terrestrial organic matter may blind a presence of marine-sourced biomarkers. Actually, LOI in the 

mud drape was higher than the underlying soil (Fig. 4-5). 

In the same reason, alkenones and marine-source sterols were absent or not detected in almost 

layers analyzed at three sites. It seems quite probable that terrestrial organic matter is largely contained 

in geological layer compared with marine one. Removal of plant materials, for example picking of 

large terrestrial plant or sieving, before biomarker analysis may effective to detect marine-source 

biomarkers more accurately. 

Marine-source biomarkers seem to be generally transported on land by tsunami inundation. From 

the results of Sendai and Odaka, the conceptual process of deposition of marine-source biomarkers is 

considered as below (Fig. 5-1): (1) Marine organisms, such as zoo- and phytoplankton, fish, benthos, 

and algae, composed of organic molecular structural materials are contained at seawater. The partly 

degraded marine organism is deposited at the bottom of the sea. (2) When tsunami occur, both marine 

organisms in seawater and degraded organic matter deposited in the sea-bottom are transported to land 

with sediment origin from sea-bottom, sand dune, and local land soil. (3) Sediments (sand and mud) 

and marine organisms are deposited on land. (4) After several days to months, marine organisms 

decompose by biodegradation or carbonate skeletons dissolve in the acidified soil. However, their 
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organic molecular structures remain in the soil and it can be detected as biomarker. Marine-sourced 

biomarkers are concentrated in the mud layer overlying the sand or in the soil underlying sandy 

deposits, or in both. 

The aquatic hydrocarbons were concentrated 2 cm below the sandy tsunami deposits in SND-14 

(Fig. 4-3), whereas they were detected immediately beneath the sandy tsunami deposits in ODA-2 (Fig. 

4-6). It is possible that seawater penetrated 2 cm downward into the soil layer via dense roots. Rice 

paddy soil contains plant materials, and the region was fallow in March when the tsunami occurred. 

However, there could be more than one possible interpretation in the case of paleotsunami deposits. If 

there is a slight gap between a sand layer and a layer containing marine-sourced biomarkers, we cannot 

necessarily differentiate whether they were formed by a single tsunami event or by multiple tsunami 

events. If there was a single tsunami event, the depositional process was likely as follows (Fig. 5-2a): 

Sand is deposited on the surface by tsunami inundation, and marine-source biomarkers are then 

concentrated in the underlying soil by seawater penetration via roots. It is similar to the case of the 

Sendai sample. If there were multiple tsunami events, the depositional process was likely as follows 

(Fig. 5-2b): (1) Marine-sourced biomarker deposition is caused by tsunami inundation without sand 

deposition. (2) Soil accumulates naturally over time. (3) Sand is deposited by another tsunami without 

deposition of marine-source biomarker. The latter case is not likely, however, because there was no 

evidence of marine-source biomarkers in the second tsunami event, even though sand was transported 

by seawater flow. From this viewpoint, even if there is a slight gap between a sand layer and the layer 

containing marine-source biomarkers, it seems quite probable that these depositions were formed by a 

single tsunami event. However, we must be noted that evidence of allogenic biomarker can a few cm 

away from event deposit. 
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Fig. 5-1. Marine biomarker depositional process: (a) before tsunami, (b) during tsunami, (c) 

immediately after tsunami, and (d) after several days to months.  
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Fig. 5-2. Illustration showing how a slight gap can be formed between a sand layer and a layer with 

concentrated marine biomarkers: (a) single event and (b) multiple events. 
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5.3 Behavior of water-leachable ions 

Concentrations of almost water-leachable ions in the 2011 samples of Hasunuma were low in the 

sandy tsunami deposit (Figs. 4-16–4-19). They were highest in the soil just below the sand layer and 

then they were gradually decreased with depth in the soil (Figs. 4-16–4-19). This distribution suggests 

that characteristics of saltwater represented by water-leachable ions easily preserved at soil not at sand. 

It is highly possible that saltwater flooded together with or after sand deposition penetrates the sand 

layer and reached the underlying soil. The pattern of gradually decrease with depth at soil probably 

represent downward penetration. Because the finer textured and organic rich soil can hold more water 

than the sand, many seawater components likely became concentrated in the soil below the surface 

sand layer. 

Chagué-Goff et al. (2012b, 2014) also reported similar trend from the analysis of samples collected 

at the Sendai Plain. They found that the concentrations of water-leachable ions (Cl–, Br–, SO4
2–, and 

Na+) were low in the 20 cm thick sandy tsunami deposit. The concentrations marked highest values at 

soil just below the sand layer and then they were decreased with depth. However, at another site in 

Chagué-Goff et al. (2014), concentrations were higher in the thin sandy tsunami deposits (1 cm 

thickness) than in the soil below the sand. At Hasunuma, thickness of sandy tsunami deposits was more 

than 10 cm, and the concentrations of water-leachable ions were generally low in every sample. It 

suggests that water-leachable ions derived from seawater may penetrate at thick (≥10 cm) sand layer 

but remain at thin sand layer. 

The concentrations of water-leachable cations decreased from 2011 to 2014 in both the tsunami 

sand layer and the underlying soil (Figs. 4-16 and 4-18). Concentrations of water-leachable anions, 

especially sulfate, bromide, and nitrate, also decreased between 2011 and 2014 (Figs. 4-17 and 4-19). 

Similar patterns that are decreasing of concentrations over time were reported for tsunami deposits and 

underlying soil on the Sendai Plain (Chagué-Goff et al. 2012b, 2014). Chagué-Goff et al. (2014) 

collected samples at paddy field from the Sendai Plain 2, 5, 9, and 11 months after the tsunami. In May 

2011 (2 months after the tsunami), they observed high concentrations of chloride, bromide, sulfate, and 

sodium just below a 20-cm-thick sandy tsunami deposits. At least up to one year after tsunami 



 

 66 

inundation, the concentrations generally decreased with time. The report and the results of Hasunuma 

suggest that decreasing of concentrations of water-leachable ions is not local event, and it can be 

occurred in anywhere.  

Although seawater origin water-leachable ions concentrated by tsunami inundation seems to be 

generally decreased with time, the behavior is actually complicated. Concentrations of calcium ion at 

locations A5 and A13 were higher in 2014 than in 2011 samples (Fig. 4-16). In general, cation is easy 

to adsorb in organic-rich sediment. Moreover, divalent cation is more adsorb than monovalent one. In 

the case of Hasunuma study area, seawater compositions were usually derived to coastal forest by sea 

spray, and they were penetrated the ground constantly. Because sandy tsunami deposits collected in 

2014 contain much fine roots (Fig. 4-9), divalent cation could be adsorbed at sand layer. Therefore, 

concentration of calcium ion might increase at sand layer from 2011 to 2014 nevertheless the other 

ions decreased. 

While, Chagué-Goff et al. (2014) reported that chloride concentration was higher in February 2012 

than in October 2011 at least at one site. The concentration had increased immediately above the 

almost hard pan that is puddled soil and reduce water loss for rice farming. The presence of the 

impermeable hard pan underneath the rice paddy soil impeded downward leaching and resulting 

downward increase in chloride concentration. In Hasunuma, samples were collected at coastal forest 

where there is no hard pan. Therefore, water-leachable ions might leach further downward and diluted 

by precipitation and groundwater movement. Thus, although water-leachable ions derived from 

tsunami inundation can be collected in high concentrations at soil below a thick sand layer, they are 

leached with time unless a low-permeability layer can halt the downward leaching, as previously 

reported by Chagué-Goff et al. (2014). 

 

5.4 Erosion of paleo-tsunami deposit 

5.4.1 Identification of the 2011 tsunami deposit 

In Suijin-numa, the 2011 tsunami likely deposited the 7–15-cm-thick sand layer (Sand 1) observed 

in slices of the lake floor (Fig. 4-20) for the following reasons: (1) no sand deposit that is equivalent to 
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the Sand 1 was observed before the 2011 event represented by Sawai et al. (2008), (2) an erosional 

unconformity underlies Sand 1, and (3) Sand 1 contained granite rock fragments (Figs. 4-20 and 4-21). 

The basement geology around this area is alluvium and the Pliocene sandstone (Fig. 2-5a). Therefore, 

the presence of granite rock fragments is unnatural. It is noteworthy that the granite rock is typically 

used for tombstones or flagstones in recent Japanese culture. Therefore, granite rock fragments were 

expected to have derived from artifacts, which were probably transported from tsunami-devastated 

residential areas. 

A 20–60-cm-thick black mud layer above Sand 1 probably settled out of suspension in the hours 

and days after the tsunami. In fact, post-tsunami satellite images showed that muddy seawater and 

debris stagnated for a few days around the pond because of the topographic lows. The tsunami, with 

abundant sand and gravel, inundated the lake. At that time, black mud deposited on lake bottom was 

stirred up and land soil was flowed in the lake. After gravel and sand were firstly deposited, the 

suspended black mud was re-settled through the water column and was deposited on the sand layer. 

The existence of brackish-marine and marine diatoms throughout the surface black mud in Slice 3 (Fig. 

4-24) proves that seawater incursion stirred the lake water and mud. The combination of lower sandy 

and upper muddy tsunami deposits was typically reported on the Sendai Plain (Abe et al., 2012) 

including the small valley surrounding Suijin-numa (Abe et al., 2014). Therefore, the results indicate 

that stratigraphically similar tsunami deposits can also be formed both on land and in the lake. 

Results of detailed analyses of grain size distributions, diatom assemblages (Szczuciński et al., 

2012), mineralogy, and foraminifera (Putra et al., 2013) at the Sendai Plain imply that the main sources 

of sandy and muddy tsunami deposits are beach and dune sand, and local soil, respectively. As true 

also for the Sendai Plain, the source of sand at the narrow valley around Suijin-numa is probably the 

beach and dune, as shown by a comparison of grain size distributions in tsunami sand, beach sand, and 

dune sand (Abe et al., 2014). The muddy tsunami deposits formed at the narrow valley were probably 

transported from the paddy field and lake bottom because mud has mainly freshwater diatoms, in 

addition, the mud thickness increased rapidly around Suijin-numa (Abe et al., 2014). If one assumes 

that the source of sandy and muddy tsunami deposits at Suijin-numa is the same as that around the 
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narrow valley, then sand was transported from beach and dune. Mud was transported from the paddy 

field and re-settled from lake bottom. 

 

5.4.2 Lake bottom erosion and reworking 

Sediment data of Sawai et al. (2008) are useful as a reference of the pre-tsunami lake bottom 

deposits. Slice 3 was collected near the location of Core 1 by Sawai et al. (2008) (Fig. 2-5b). In Core 1, 

tsunamigenic sand deposits, which were formed by the 1611 Keicho tsunami and the 869 Jogan 

tsunami, plus the 915 To-a layer were intercalated in peat and mud deposits (Sawai et al., 2008). Peat is 

predominant in lower sediments, whereas mud is contained in upper sediments. The boundary is almost 

at the depth of 1611 Keicho tsunami deposit (Sawai et al., 2008). Before the 2011 tsunami, peat and 

mud deposited above the To-a layer were about 1.4-m-thick at the center of the lake (Sawai et al., 

2008). The 1611 Keicho tsunami deposit was observed at the central to landward area, whereas the 915 

To-a tephra layer was observed throughout the lake (Sawai et al., 2008). 

After the tsunami, however, the combination of lower sandy and upper muddy deposit that is 

interpreted as the 2011 tsunami deposit (see subsection 5.4.1) was observed at upper part of lake 

bottom sediment. The surface mud layer that is interpreted as the 2011 muddy tsunami deposit was 

only 50-cm-thick in Slice 3. The 1611 Keicho tsunami sandy layer was not observed in post-tsunami 

sample not only in Slice 3 but also in other slices (Fig. 4-20). Furthermore, no tephra layer was 

observed in any post-tsunami sediment (Fig. 4-20). The results of tephra analyses (Fig. 4-23, Tables 

4-2 and 4-3) demonstrated that mixtures of volcanic glasses of Hr-FA, Hr-FP, and To-a were contained 

especially at 57–59, 61–63, and 65–67 cm depth. They were apparently reworked because the 

depositional ages of these volcanic glasses are completely different (six-century in Hr-Fa and Hr-FP; 

AD915 in To-a). Based on the evidence that (1) the 1611 Keicho tsunami sandy deposit was absent and 

(2) no tephra layer was observed from post-tsunami deposit, it is proposed that lake bottom sediments 

were strongly eroded by the 2011 tsunami. 

To estimate the erosional depth, an age-depth model might be useful. In fact, absence of the 1611 

Keicho tsunami deposit and the 915 To-a tephra layer in post-tsunami sediment is consistent with the 
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large time gap separating the period when Sand 1 was deposited (2011) and the age of the peat 

underlying Sand 1 (ca. 600–1100 yr BP) (Fig. 4-22). However, several difficulties are associated with 

the age-depth model used to estimate the erosional depth. The age-depth model established in this 

study cannot be compared directly with the age-depth model of Sawai et al. (2008) because of the 

difference between dated materials: 14C data of Slice 3 were mainly obtained from organic sediments. 

However, 14C data of Sawai et al. (2008) were obtained from plant macrofossils. Age difference 

observed between organic sediment and leaves in Slice 3 were, respectively about 400 and 700 years at 

65–66 and 81–82 cm depth. It is noteworthy that it is difficult to validate which material is better to 

ascertain the correct age of sediments. Results of Slice 3 showed that a tsunami can erode lake bottom 

sediments considerably and rework sediments on the top. Similar processes might have occurred in the 

past. If so, leaves might be reworked and bulk organic carbon might be a mixture of various reworked 

sediments. 

Considering the large variability of 14C dating results, it is inferred that absence of To-a layer in 

post-tsunami sediment is more reliable to estimate erosional depth. When one assumes that the tsunami 

eroded at least the stratigraphic level of the To-a layer, then the erosional depth of the lake bottom 

sediment reached approximately 1.4 m in the lake center. Extensive erosion might not be a local effect 

in the lake center; it might extend over the entire lake floor (Fig. 5-3). In fact, the To-a layer was found 

at all samples in pre-tsunami sediment (Sawai et al., 2008), although it was absent in post-tsunami 

sediment. The lake bottom seems to have been eroded entirely by the 2011 tsunami, at least deeper 

than the depth of the To-a layer. The eroded thickness can be estimated at least from 80 cm to 150 cm 

when it is compared the closest pre- and post-tsunami sediments. 

Strong lake floor scour at the seaward end of the lake reported in a small lake along the western 

coast of Norway was probably caused by the Storegga tsunami, which occurred between 7000 and 

7200 years BP (Bondevik et al., 1997), although no such report is tested in the case of modern 

examples. Occurrence of such selective scouring in the lake can be confirmed from Suijin-numa. High 

tsunami flow velocity at the seaward end of the lake scoured the lake bottom, but left no sandy deposit 

observed from Slice-6 (Fig. 4-20). Results of a flume experiment reproduced in the coastal lake 

environment suggest that the seaward edge of the lake is scoured strongly by a hydraulic jump because 
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of the sudden increase of the water depth in the lake (Yamaguchi and Sekiguchi, 2015). They also 

suggested that deposition was slight near the seaward edge of the lake (Yamaguchi and Sekiguchi, 

2015). Large erosion and the absence of sand deposits observed in Slice 6 (Fig. 4-20) are consistent 

with their experiment, so it is explainable by the similar scouring process near the seaward edge of the 

lake. This finding is expected to be important for future investigations of paleo-tsunami deposits at any 

lake. The preservation potential of the tsunami deposit might be high near the center to the landward 

edge of the lake rather than the seaward edge. 

 

5.4.3 Implication for paleo-tsunami study 

Coastal lakes and lagoons are considered to be promising places to reconstruct paleo-tsunami 

history. However, results in Suijin-numa imply that even the paleo-tsunami history in coastal lake and 

lagoon settings is more complex than previously thought because possible large-scale erosion and 

reworking of the lake floor by a large tsunami cannot be overlooked. The extensive erosion of lake 

bottom sediments might or might not occur depending on several factors such as cohesion of lake 

bottom sediments and bed shear stress induced by tsunami flow. In fact, soft mud in Suijin-numa was 

eroded significantly in meter-order whereas a hard peat layer, i.e. the lower To-a layer, would not have 

been eroded to such a degree. Lake bottom erosion is also expected to be related to the power of 

tsunami flow at the lake, which is controlled by several factors such as the initial wave size, 

water-depth of the lake, distance from the shoreline, and elevation. For example, Suijin-numa is 2.6 m 

in maximum water depth, which might be shallow when compared to the flow depth of the tsunami at 

the lake (approximately 10 m). Moreover, Suijin-numa is located near the shoreline (about 600 m 

inland). For that reason, the tsunami flow velocity might not have been weakened when the tsunami 

inundated the lake. Therefore, the extent of marked erosion of the paleotsunami record depends on the 

local setting and tsunami size: it should be evaluated in each survey area and for each tsunami event. 

Further hydraulic experiments must be conducted to elucidate the relations among these factors and the 

extent of lake bottom erosion.  
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Thick reworked sediment confuses estimation of the depositional age of the tsunami deposit. The 

age below Sand 1 is older than at least AD915 because the To-a layer was eroded. Black mud above 

Sand 1 contains organic matter with various ages. The age in reworked mud was recorded as the 

modern age to ca. 200 cal yr BP in Slice 3 (Fig. 4-22 and Table 4-1). It is not a medium age for past 

1100 years but shifted slightly to a younger age, i.e., modern to ca. 200 cal yr BP. This result is 

explainable that young organic carbon exists more than old organic carbon because of the 

decomposition of old carbon. Therefore, if one overlooks the fact that the mud above Sand 1 was 

deposited by the tsunami and if one estimates the depositional age of Sand 1 using organic sediments 

immediately below and above Sand 1 without knowing that the upper mud was deposited in 2011, then 

the obtained depositional age of Sand 1 might be inferred as a few hundred years older than the actual 

age (Fig. 5-4). 

Identification of muddy tsunami deposits is extremely important to ascertain an appropriate age of 

paleo-tsunami deposits. Muddy tsunami deposits were not usually identified in earlier studies for lake 

sediments because they closely resemble the mud that was deposited originally in the lake before the 

tsunami. However, an evidence of seawater incursion in reworked black mud was found based on 

diatom analysis (Fig. 4-24). Moreover, recent works have suggested that muddy tsunami deposits 

might be identified using geochemical analysis (e.g., Goto et al., 2011; Chagué-Goff, 2015). Such 

analyses are strongly sought for the careful identification of muddy tsunami deposits above the sandy 

tsunami deposit. It might engender a better understanding of an appropriate age. 

Revealing paleotsunami history at the coasts near the subduction zone such as the Pacific coast of 

Tohoku including the Sanriku coast (e.g., Sawai et al., 2012, 2015a; Goto et al., 2015; Ishimura and 

Miyauchi, 2015) has yielded important contributions of tsunami geology to future tsunami risk 

evaluation. However, tsunami history might not always be complete, even in a low-energy 

environment, because tsunami deposits are not necessarily formed; moreover, they can be disturbed by 

bioturbation (Szczuciński, 2011). The results of Suijin-numa further imply that, in some cases, it is 

insufficient to date only above and below an event deposit to clarify whether extreme erosion occurred. 

Soil deposited on the previous tsunami deposit might still be thin and soft if a large tsunami recurrence 
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interval is short (e.g., a few hundred years). Therefore, it is likely that such soil and even previous 

tsunami deposits have been eroded. 

To overcome these issues and to reconstruct paleotsunami history accurately, it is important to 

confirm the continuity of sediment among tsunami deposits. Numerous dating experiments might be 

effective to clarify the existence of erosion. Sawai et al. (2009) reported the recurrence interval of 

tsunamis based on numerous dating experiments of plant macrofossils in eastern Hokkaido, northern 

Japan, along the southern Kuril trench. Continuous 14C data confirmed that the depositional ages of 

peat were consistent with the stratigraphic order and that no severe age gap was observed. Even though 

extensive erosion and reworking occurred because of the tsunami, as in the case of Suijin-numa, they 

are distinguishable by 14C data from the entire sediment. Such confirmation of the completeness of the 

geologic record is crucially important for accurate understanding of the tsunami history. 
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Fig. 5-3. Illustration showing the lake bottom erosion and reworking caused by tsunami inundation.  
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Fig. 5-4. Conceptual model of depositional and erosional process. (a) Columnar section before the 

2011 tsunami (modified after Core 1 in Sawai et al., 2008). Linear graph shows a depositional curve. 

The accumulation rate is assumed as constant. (b) Columnar section after the 2011 tsunami (modified 

after Slice 3 in this study). Immediately after the tsunami (left panel in b), approx. 1.4 m thick mud is 

eroded, which is consistent with ca. 1100 years. A large time gap occurred below and above Sand 1. A 

few days after the 2011 tsunami (right panel in b), suspended mud was deposited on Sand 1. The mud 

contains organic materials of various ages. The age of the mud deposit became a few hundred years 

older than the actual age. Correct age of the post 2011 sediment can only be estimated if one measures 

the sediments that will be deposited above the black mud in the future. 
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5.5 Implication of geochemical analysis for paleo-tsunami research 

Preservation potential of geochemical characteristics associated with tsunami inundation is 

important for applying these features to tsunami research, for example identifying paleo-tsunami 

deposit or estimating inundation limit of paleo-tsunami. Evidence of marine-sourced biomarkers was 

detected at Sendai and Odaka although they were absent at Hasunuma either 2011 or 2014. 

Tsunami-derived water-leachable ions were concentrated at soil just below thick sandy tsunami deposit, 

and then they were decreased with time. 

One of important factor for preservation of geochemical evidence is meteoric water. Rainfall and 

seepage probably account for the decreasing or disappearance of geochemical characteristics. For 

example, salinization caused by the 2004 Indian Ocean tsunami (as indicated by electrical conductivity, 

pH, and Na+, K+, Ca2+, Mg2+, and Cl– contents) had almost disappeared just one rainy season after the 

tsunami (Szczuciński et al., 2007; Chandrasekharan et al., 2008; Kume et al., 2009; Raja et al., 2009; 

Nakaya et al., 2010). Nakaya et al. (2010) reported that soil salinity could be almost completely 

eliminated by 1000 mm or more of rainfall. In the case of the Sendai Plain, high concentration of 

water-leachable ions was detected from sample collected at May 2011 but they were generally 

decreased at February 2012 (Chagué-Goff et al., 2014). Total rainfall at Sendai was, respectively, about 

320 mm and 1220 mm between March 2011 to May 2011 and February 2012 (Japan Meteorological 

Agency). These reports suggest that the concentration of water-leachable ions could decrease over time, 

most likely because it can easily be diluted by water flow such as precipitation and groundwater 

movement. 

In the case of Hasunuma, samples were collected in June and August 2011 and in October 2014 

(Table 2-1). Precipitation between the 2011 tsunami and the 2011 sampling date (about 620 and 760 

mm from March to June and August 2011, respectively; Japan Meteorological Agency) was too low to 

eliminate soil salinity at Hasunuma. Therefore, it is not surprising that water-leachable ions were still 

measureable in the 2011 samples. Between March 2011 and October 2014, however, they may have 

been eliminated by the high amount of precipitation since the tsunami (about 5630 mm; Japan 

Meteorological Agency). 
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More than 2340 mm of precipitation was recorded between March 2011 and February 2013 in 

Sendai, and more than 3400 mm was recorded between March 2011 and September 2013 in Haramachi 

(the closest meteorological weather station to Odaka, about 10 km away; Japan Meteorological 

Agency). Even though both sites had a high level of precipitation, the marine-sourced biomarkers were 

still observed, especially it was detected at Sendai 2 years after the tsunami and at Odaka 2.5 years 

after the tsunami. It suggests that biomarkers have resistance characteristic against to water movement 

although secular change of allogenic biomarkers was not confirmed. It is important to emphasize that 

the marine-sourced biomarkers were preserved for at least 2 years. Moreover, biomarkers are utilized 

in paleoenvironmental and paleoclimate research (Eglinton and Eglinton, 2008), it is expected to be 

preserved in geological layer for long time. It suggests that biomarkers have a potential as tsunami 

deposit identifying proxy. 

Moreover, biomarkers may be useful to estimate tsunami inundation area correctly. Goto et al. 

(2011) found that high concentration of water-leachable chloride was observed at muddy tsunami 

deposit beyond sandy tsunami deposit. Inundation area of paleotsuanmi is estimated from distribution 

of sand deposit because it can be identified from geological layer compared with muddy tsunami 

deposit. However, sand deposit does not always distribute up to the inundation limit. According to the 

case of the 2011 tsunami, ≥0.5 cm thick sand layer reached 57–76% of the inundation distance where 

the tsunami inundated more than 2.5 km inland (Abe et al. 2012). It is not unique to the case of the 

2011 tsunami. Chagué-Goff et al. (2015) also reported that high concentration of water-leachable 

chloride and sulfur were observed beyond the extent of the sandy tsunami deposit associated with the 

2010 Maule earthquake and subsequent tsunami caused at Chile. If we could find an evidence of 

tsunami inundation using water-leachable ions as results of Goto et al. (2011) and Chagué-Goff et al. 

(2015), we can estimate tsunami inundation areas more precisely. Therefore, it is important to estimate 

tsunami inundation area using geochemical analysis. In this study, it was revealed that water-leachable 

ions are generally disappeared with time. While, biomarkers seem to be preserved for a long time. If 

biomarkers can be detected from tsunami inundation area where is no sedimentation, it can be estimate 

precise inundation area (Fig. 5-5). This estimation leads to better understanding of reconstruction of 

magnitude and epicenter of past earthquake. 
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Geochemical characteristics might be preserved at coastal lake as reported by Minoura and Nakaya 

(1991) and Minoura et al. (1994). However, coastal lake is sometimes incurred severe erosion and 

reworking by tsunami incursion like the result of Suijin-numa. Especially, reworked mud is incredibly 

difficult to distinguish by eye observation from geological layer. In that case, it might be able to 

identify by using geochemical analysis, such as biomarkers. However, we should take more precise 

biomarker analysis because some biomarkers, such as short-chain n-alkanes, are made by freshwater 

organism. To identify an evidence of seawater incursion, it is required using marine-sourced biomarker, 

such as dinosterol, brassicasterol mainly derived by diatom (e.g., Rubinstein and Goad, 1974), and 

alkenones. However, measurable amount of marine-source biomarkers possibly cannot be deposited by 

tsunami inundation, in fact, they were almost not detected from terrestrial samples excavated in this 

study. In order to detect such marine-source biomarkers, it is required to improve analytical technique. 

For example, visible terrestrial plant materials are removed by picking up or sieving and then sample 

amount is increased. Large amount of terrestrial organic materials seem to blind a low contribution of 

marine-source organic materials, therefore removal of visible terrestrial plants is probably effective to 

detect marine-source biomarkers. In that case, consideration of biomarker analysis for lake bottom 

sediment is valuable because it may be able to identify reworked mud deposit as well as sandy tsunami 

deposit. 
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Fig. 5-5. Illustration showing the deposition of sediment and chemical components by tsunami 

inundation. Sandy deposit does not always reach to tsunami inundation limit. Chemical component can 

be detected from inundation area even though beyond sedimentation limit. 
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Chapter 6. General conclusions 
 

In this thesis, I applied biomarker and water-leachable ion analyses for the samples of 2011 

Tohoku-oki tsunami deposit and underlying and overlying soil collected at Senadi, Odaka, and 

Hasunuma. Moreover, significant lake-bottom erosion caused by the tsunami inundation was discussed 

based on the comparison of pre- and post-tsunami lake bottom deposits at Yamamoto. Based on these 

analyses, I found the following points: 

 

1) Marine-origin biomarkers were transported and deposited in the soil below the sandy tsunami 

deposit or in the tsunamigenic mud by the 2011 tsunami. 

2) Transported biomarkers can adsorb to fine particles and organic-rich sediment not to sand-sized 

particles, and it can be preserved at least 2-years. 

3) Water-leachable ions originated from seawater compositions can be concentrated at coastal soil 

layer just below thick sand layer by tsunami inundation. However, the concentrations can be diluted 

by rainfall or groundwater movement, and the evidence of seawater incursion can be disappeared for 

several months to a year. 

4) Severe lake bottom erosion (0.8–1.5 m) including geological record, such as paleotsunami deposit 

and volcanic ash layer, was caused by the 2011 tsunami at coastal lake. 

5) Coastal lake is considered to be suitable area for tsunami research, however, these area also be 

caught a severe damage and can be lost valuable geological records. 

6) Thick (20–60 cm) mud was reworked at lake floor by the tsunami. The mud contained old organic 

materials, suggesting that identifying reworked mud is required to reconstruct tsunami history 

precisely. 

 

Geochemical characteristics seem to be preserved in organic silty mud rather than sand. Both 

water-leachable ions and biomarkers were transported on land by tsunami, and especially, biomarkers 

have a possibility that it can be preserved for long time. The findings show the potential of using 

biomarkers as proxies for identifying marine-originated deposits on coastal land. Moreover, it can be 
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utilized to estimate inundation area correctly. It leads to high-accuracy reconstruction of tsunami 

occurrence interval, inundation area, and magnitude of paleo-earthquake. In order to apply 

geochemical proxy for paleotsunami research, further case studies are required; for example gathering 

a modern analogue of geochemical features, finding geochemical characteristics from paleotsunami 

deposit that is identified as tsunami-origin based on sedimentological or paleontological features. 

Although it is required for more case studies for applying geochemical analysis to paleotsunami 

deposit, I proposed in this thesis that the possibility of geochemical analysis in the field of tsunami 

deposit research. 
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