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1. ABSTRACT 

 Malaria is an important disease which affects 200 million persons and leads 

approximately 600,000 deaths per year. Malaria parasites Plasmodium spp. belong to a 

phylum Apicomplexa, and currently Toxoplasma gondii, another apicomplexan was 

revealed to produce abscisic acid and cytokinins which are kinds of plant hormones. 

Although 7 plant hormones are specified in land plants, only 2 of them were identified 

in T. gondii and none in Plasmodium spp. In this study, I examined whether other 

hormones are present in T. gondii, P. berghei and Eimeria tenella which is a pathogen 

of chickens. In addition, three major linages of T. gondii, RH, ME49 and CTG were 

separately applied to the analyses to understand the strain-dependent differences. Since 

the three linages of T. gondii are known to be different in pathogenicity, we also 

discussed the influences of plant hormones to the pathogenicity in T. gondii. 

Plant hormones were extracted and applied to the UPLC-ESI-qMS/MS system. 

As a result, abscisic acid, cytokinins, auxin, gibellerin, jasmonic acid and salicylic acid 

were detected from 3 species. Among them salicylic acid is the most dominant plant 

hormone that accounts more than 90% of whole plant hormones detected. Cytokinins 

are divided into 4 active forms; trans-zeatin (tZ), cis-zeatin (cZ), isopentenyladenine 

(iP) and dihydrozeatin (dZ). T. gondii and E. tenella produced both iP and tZ, but P. 

berghei only produced iP, probably reflected the differences of species. All 3 species 

did not possess cZ and dZ. 

T. gondii has little genetic diversity and it is known that the major lineages can 

be classified into three clones. Since it has been shown experimentally that these clones 

differ in pathogenicity for mouse, I discussed the relationship between plant hormones 

and pathogenicity. From the result, especially, the distribution of the kinds of cytokinins 
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differed, and it could observe the relationship between the abundance of tZ and the 

virulence. As for T. gondii, tZ induces the progression of the cell cycle and it also 

increases the multiplication rate. It also suggests that the relationship between the 

presence of cytokinins and pathogenicity.  

As salicylic acid (SA) presented the most abundantly, I decided to investigate 

further. Addition of SA did not influence the proliferation of P. falciparum in vitro, 

even 100 µM of SA was added. I tried to detect the orthologues of SA-synthesis genes 

from the information of known isochorismate synthase (ICS) and benzoic acid (BA) 

pathways, but they were not identified in any apicomplexan genome databases. Then, I 

tried to generate a SA-lacking parasite by the transfection of nahG, which encodes a 

SA-degradating enzyme of Pseudomonas sp. The concentration of SA decreased 

approximately at the half comparing to the control infection, which was transfected with 

gfp. The nahG-mutant significantly decreased the concentration of parasite-synthesized 

prostaglandin E2 that potentially modulates host immunity as an adaptive evolution of 

Plasmodium parasites.  

To investigate the function of SA and prostaglandin E2 on the host immunity, 

we established P. berghei ANKA mutants expressing nahG, and confirmed a reduction 

of plasma prostaglandin E2. C57BL/6 mice infected with the nahG-transfectants 

developed symptoms of cerebral malaria as assessed by Evans-blue leakage and brain 

histological observation. The nahG-transfectant also significantly increased the 

mortality rate of mice. Prostaglandin E2 generally reduced the brain symptom, by 

induction of T helper-2 cytokines. As expected, T helper-1 cytokines including 

interferon-γ and interleukin-2 were significantly elevated by infection with the 

nahG-transfectant. Thus, SA of Plasmodium spp., which might be a new pathogenic 
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factor of this threatening parasite, can modulate immune functions via 

parasite-produced prostaglandin E2.  



 4 

2. GENERAL INTRODUCTION 

 

Endosymbiosis and Evolution 

Endosymbiosis, an event that turn different species into one, is clearly a 

dynamic shortcut of evolution (Sagan 1967). The process allows organisms to implant a 

set of metabolisms, signalings, etc. Mitochondria and chloroplasts are believed to be 

derived from the ancient endosymbiotic α-proteobacterium and cyanobacterium, 

respectively (Sagan 1967; McFadden 2001). As results of these events, major energy 

metabolisms such as aerobic respiration and beta-oxidation of eukaryotes take place 

inside mitochondria, and carbon fixation of land plants takes in the chloroplasts. 

Together with these major reactions, isoprenoids are synthesized through the 

methyl-erythritol phosphate pathway (MEP pathway) of chloroplasts in land plants 

(Rohmer 1999). The substrates of MEP pathway are pyruvic acid and glyceraldehyde 

3-phosphate, and this pathway finally synthesizes isopentenyl diphosphate or 

dimethylallyl pyrophosphate. In contrast, the synthetic pathway of isoprenoids in 

animals is called as mevalonate pathway, where synthesis starts with acetyl-CoA. 

Isoprenoids are essential molecules as precursors of steroids, cholesterols and 

prenylation of proteins, synthesized by the cytosolic mevalonate pathway in animals, 

and also involved in variety of plant life: poisonous compounds, vitamins, chlorophylls, 

and plant hormones (Holstein & Hohl 2004; Lichtenthaler et al. 1997; Siperstein1984).  

Two hundreds millions of persons are affected by malaria and it leads 

approximately 600,000 deaths per year (WHO 2013). It is counted as one of three major 

infectious diseases in the world. This disease is caused by Plasmodium spp., eukaryotic 

parasitic microorganisms which infect to red blood cells of vertebrates. Malaria 
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parasites belong to a phylum Apicomplexa. The major characteristic of this group is the 

presence of an organelle ‘apicoplast’ which is a plastid originated by the secondary 

symbiosis (Ralph et al. 2004). This endosymbiosis might alter the metabolism of the 

recipient as plant-like: currently Toxoplasma gondii, another apicomplexan was 

revealed to produce the plant hormone abscisic acid (ABA), strongly supports the 

theory (Nagamune et al. 2008). Also, T gondii is known to produce cytokinin (CK), 

other plant hormone, suggests the conservation of plant hormone-regulated signaling 

(Andrabi et al. unpublished data). Only 2 of known plant hormone species have been 

identified in T. gondii and none in Plasmodium spp., despite their potential importance.  

 

Plant Hormone (Phytohormone) 

Plant hormones, also called phytohormones, are small molecules that regulate 

the cell division, differentiation, response to both physical and biological stresses, and 

work at extremely low concentrations. Different from animal hormones, there is no 

specific organ to produce plant hormone, instead every plant cell is able to produce and 

secret them. The five major plant hormones are ABA, CKs, ethylene, gibberellin (GA), 

and auxins. In addition, salicylic acid (SA), jasmonates, brassinosteroids, and plant 

peptide hormones were recently noticed as plant hormones (Chow & MuCourt 2006). 

Some of them are released into atmosphere and transfer information to neighbor 

individuals (Farmer & Ryan 1980). The receptors of at least some out of plant hormones 

were identified as F-box related proteins, and increase the ubiquitin-dependent digestion 

of transcriptional repressor, hence increase the transcription of plant hormone-related 

gene cluster (Santner & Estelle 2010; Dharmasiri et al. 2005). SA is known to increase 

at the site of infection in land plants, and transmits the signal to the whole body (Raskin 
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1992). Although SA activity to deliver signals fit the definition of plant hormone, the 

accumulating concentration being extremely higher than other plant hormones poses a 

unique characteristic.   

 

Apicomplexa 

Apicomplexa consists of over 4,000 species, and most of them are obligately 

parasitic (Levine 1988). Apicomplexa is currently divided into 4 major groups: 

hemosporidia, coccidia, crypto-gregaline and piroplasmia (Kuo et al. 2008). 

Plasmodium spp. are infectious to erythrocytes thus classified as hemosporidia. 

Coccidia is another large group of this phylum. Toxoplasma gondii, a famous human 

and animal parasite, and Eimeria spp., major pathogen of veterinary field, are 

well-studied species in this group. The life cycle of this phylum basically consists of 3 

stages: merogony, gamogony and sporogony. Merogony, also known as schizogony, is 

an asexual stage within the host, where parasite proliferates rapidly. Gamogony is a 

stage where parasite differentiates into male and female gametes. These gametes are 

fused and formed diploid zygote. In this stage, genetic recombination takes place. 

Sporogony is a stage after fertilization, where parasites perform meiosis once. Resulting 

haploid parasite, called sporozoite, causes asexual production again. The lifecycles of 

Plasmodium spp., Eimeria spp. and T. gondii are shown in Fig. 1. 

T. gondii infects via oral or vertical route, and tissue cyst/oocyst are 

responsible for the former. Although T. gondii infection is mostly subclinical, it is 

estimated to affect one third of the world population (Tenter et al. 2000). The infection 

is long-lasting because the parasite spreads to the whole body, forms tissue cyst which 

is hard to be cleared, and it develops a clinical manifestation once the host immunity is 
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weaken by HIV/AIDS or by the use of antitumor drugs (Dubey 1998). Another route of 

infection is the vertical transmission, between mother and child. Recent years the risk of 

the congenital toxoplasmosis has been paid an attention in Japan, and the importance of 

this parasite in public health is greatly increasing. 

Eimeria spp. are the causative agents of the animal coccidian diseases, and 

forms the largest group with 1,000 named species (Long 1982). In contrast to T. gondii, 

eimerian infection is strictly limited to the gastrointestinal tract of the host in most 

species. Therefore the main clinical symptom is diarrhea, bleeding in intestine, or others 

related to the digestive organ (Hammond & Long 1973). Since the lifecycle is 

homoxenous, the infectious stage is environmental oocyst. Oocyst endures chemically 

severe conditions including many kinds of disinfectants and antibiotics, and persists 

several months in humid condition (Belli et al. 2006). Considering with the problem of 

recently increasing population of drug-resistant parasites, the development of alternative 

drugs is highly required.  

 

Aim of the study 

The aim of my study is to draw the whole map of signaling driven by plant 

hormones in apicompleans, and to find its potential role in infection. Specially, the 

influence of hormones in parasites growth, the induced chemicals which potentially 

modulates the host immunity, and the actual pathogenicity and immune response of the 

host animals are discussed. 

 

  



 19 

4. INFLUENCE OF SALICYLIC ACID TO P. FALCIPARUM IN VITRO 

 

Introduction 

I detected extremely high concentration of SA from Plasmodium, Toxoplasma 

and Eimeria cell lysates. However, the addition of SA to the culture of the parasite 

showed no effect. Further studies are required to understand the function of this 

accumulating plant hormone. 

SA originally regulates the pathogen-resistance system of land plants termed 

systemic acquired resistance (Ryals et al. 1996). Pathogen-induced SA is delivered to 

the whole plant to up-regulate the expression of pathogenesis-related (PR) genes (Ryals 

et al. 1996). Recently, the receptors for SA were identified in Arabidopsis thaliana and 

named as nonexpresser of PR genes (NPR) 3 and 4 (Fu et al. 2012). NPR3 and 4 are 

adaptors of Cullin 3 ubiquitin E3 ligase that degrades the transcription cofactor, NPR1. 

Namely, SA is a positive transcriptional factor of land plants. 

SA is synthesized by two different pathways. The major pathway is the benzoic 

acid (BA) pathway (Lee et al. 1995). The start molecule is L-phenylalanine, and the 

enzymes, phenylalanine ammonia lyase and BA 2-hydroxylase, catalyze its conversion 

to SA (Lee et al. 1995). Another pathway is the isochorismate synthase (ICS) pathway 

(Métraux 2002), which is thought to be dominant in A. thaliana, and ICS is the key 

enzyme of this catalysis. I tried to identify the corresponding genes of BA and ICS 

pathways, but none was identified from the apicomplexan genome database in silico as 

described above. Therefore I tried to establish the SA deficient parasite by transfecting a 

bacterial SA degrading enzyme, nahG.  

Because SA and its acetylated derivative, acetylsalicylic acid, inhibit 
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cyclooxygenase (COX), a prostaglandin (PG) synthetic enzyme in animals, it is used as 

non-steroidal anti-inflammatory drugs (NSAIDs) (Boynton et al. 1988). PGE2 is the 

main active molecule acting on the thermoregulatory center to cause fever and pain 

(Lazarus et al. 2007). It might also suppress the host immunity by switching cytokines 

to a T helper-2 (Th2) phenotype (Kalinski 2012). Interestingly, Kubata et al. (1998) 

demonstrated production of prostanoids in the P. falciparum lysates and culture 

supernatants in vitro. P. falciparum releases PGD2, E2, and F2α into the infecting milieu. 

This is quite interesting because the parasite actively modulates the host immunity by 

the use of the host signal molecules. Furthermore, the PG synthesizing enzyme of 

Plasmodium, whose protein or gene has not been identified, is biochemically resistant to 

members of NSAIDs including indomethacin and acetylsalicylic acid (Kubata et al. 

1998), suggesting the presence of complex interactions among SA, host and parasite 

PGs. In this chapter, I analyzed the role of Plasmodium SA in vitro. 

 

Materials & Methods 

Parasites 

P. falciparum strain 3D7 was provided by The Malaria Research and Reference 

Reagent Resource Center (MR4), and cultivated in vitro as described previously (Trager 

& Jensen 1976). Human red blood cells (RBC) and serum were provided by the Japan 

Red Cross. 

 

Addition of salicylic acid to P. falciparum culture in vitro 

 After twice synchronization with 5% (w/v) D-sorbitol in Milli-Q water (Merck 

KGaA, Darmstadt, Germany) as described (Kubata et al. 1998), P. falciparum was 
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adjusted to 0.1% parasitemia, cultivated with 100 µM of SA continuously. The same 

volume of solvent was added to the control (0 µM of SA) group. Parasitemia were 

observed every 24 hours by methanol-fixed thin blood smear stained with 10% Giemsa 

solution.  

  

Establishment of salicylic acid-deficient parasites 

P. falciparum was transfected with the SA degrading gene, nahG, by episomal 

expression system as reported previously (Zhu et al. 2013). Briefly, nahG was driven by 

P. falciparum chloroquine resistant transporter gene 5’ UTR (pCRT) and P. berghei 

dihydrofolate reductase gene 3’UTR (PbDT), fused into attR4-attR3 site of the 

destination vector pCHD43 (II) (Sakura et al. 2013), and transfected by electroporation. 

The control parasite line transfected with gfp was also made with the same way. The 

expression of NahG was confirmed by Western blotting with rabbit anti-cMyc antibody 

(Santa Cruz Biotechnology, Santa Cruz, CA, USA), and anti-HSP-90 antibody as 

control (Sigma Aldrich, St. Louis, MO, USA).  

 

Growth and cell cycle of salicylic acid-deficient parasites 

The nahG-expressing P. falciparum was monitored its growth and cell cycle 

progression, and the results were compared to those of the control (transfected with gfp). 

Experimental procedure was identical to the SA-addition experiment. Cell cycle was 

also observed by thin blood smear stained with 10% Giemsa solution, and the parasite 

stage was divided into 4 stages: ring, trophozoite, shizont and gametocyte.  
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SA and prostaglandin quantification 

SA quantification of P. falciparum was performed biochemically by a 

commercial salicylate diagnosis kit (Roche, Basel, Switzerland). The culture 

supernatants were directly applied to the quantification. 

PGE2 was measured by Prostaglandin E2 EIA Kit Monoclonal (Oxford 

Biochemical Research, Oxford, MI, USA). Culture supernatants were used for 

measurements.  

 

Statistics 

 All statistical tests were performed using R software (version 3.0.0; R 

Foundation for Statistical Computing, Vienna, Austria [http://www.R-project.org/]). A 

non-paired two-tailed Student’s t-test was used to compare the in vitro P. falciparum 

studies. 

 

Results 

Exogenous addition of SA  

Exogenous addition of SA did not alter parasite growth (Fig. 9), similar to the 

result of T. gondii in chapter 3. This is probably because the parasite already contained 

enough levels of SA, or SA does not affect the parasite growth.  

 

Establishment and analysis of SA deficient parasites 

Because the addition of SA did not have any significant phenotype, we 

transfected P. falciparum with the nahG gene, that encodes an SA-degrading enzyme 

found in a plant pathogenic bacterium, Pseudomonas putida (Gaffney et al. 1993). The 
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expression of this gene product was confirmed by Western blotting using 2× myc-tag at 

the carboxyl-terminus of nahG (Fig. 10). The SA concentration of nahG-transfectants 

was decreased compared with gfp-transfected controls, though we could find no 

statistical difference (Fig. 11).  

 

The growth kinetics and cell cycle of the SA-deficient parasites 

The growth kinetics and cell cycle progression of the nahG-transfectant was 

not different from gfp-transfected control (Fig. 12, 13). Taken together the result of 

addition of SA to the parasite culture (Fig. 9), these results indicated that the 

concentration of SA had no effect on the parasite growth and cell cycle development.  

 

Prostaglandin concentrations of SA-deficient parasites 

SA is a member of NSAIDs and modulates PGE2 levels of animals. 

Furthermore, Plasmodium produces its own PGs, of which PGE2 is predicted to interfere 

with the immune system of a host (Kubata et al. 1998). We hypothesized that malaria 

parasites could modulate the concentration of PGE2 in hosts by SA and its own 

production of PGE2. Therefore, we next quantified the concentration of parasite 

prostaglandins. Surprisingly, the PGE2 concentration decreased significantly when the 

nahG gene was transfected into parasites (Fig. 14).  

 

Discussion 

SA manipulation of P. falciparum showed no effect on growth. It was 

consistent with the result of T. gondii indicated in chapter 3. As mentioned above, SA 

accumulation is much higher than other plant hormones. This explains why we could 
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not detect the effects on growth by the exogenous addition of SA. In the case of land 

plants, such effect usually only occurs when the compound is added at excessive 

concentrations many times higher than the endogenous concentration. For example, the 

90% inhibitory concentration (IC90) of ABA to O. sativa growth was 10 µM, which was 

almost 300-fold higher than the native production of 9.2 ng/g fresh weight, 

approximately 0.03 µM (Hoffmann-Benning & Kende 1992). Nevertheless, SA 

deficiency by nahG-introduction also showed no effect on parasite proliferation. 

Considering all, SA has neither positive nor negative effects on parasites growth, rather 

than that the manipulation of SA concentration was not enough.  

Although SA has been studied for 100 years, intense studies focused only on 

the anti-inflammatory effects on animals. In contrast, there have been few studies of 

signaling pathways and biosynthesis compared with other plant hormones (Kelley & 

Estelle 2012). BA and ICS pathways were identified as the SA synthetic routes in land 

plants, but the enzymes in the BA and ICS pathways have not been identified in any of 

apicomplexan genomes. Additionally, although NPR3 and NPR4 were identified as the 

SA receptors recently (Fu et al. 2012), I also could not identify the orthologues of NPR1, 

3, or 4 in any apicomplexan genome database. Because of the large phylogenetic 

distance between land plants and Apicomplexa, apicomplexans possibly lost the 

homologs of NPR3 and NPR4, or the land plants have developed those genes after they 

diverged from the common ancestor of Apicomplexa and land plants. Similar discussion 

was previously suggested in apicomplexan ABA synthesis pathway (Nagamune et al. 

2008).  

 Because we did not detect any synthetic enzymes or receptors for SA in 

Plasmodium spp. genomes, we transfected P. falciparum with the SA degrading gene, 
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nahG, originally identified as a pathogenic factor of plant-infecting bacterium 

Pseudomonas putida, which encodes SA hydroxylase, that catalyzes SA to biologically 

inactive catechol (Gaffney et al. 1993). The nahG-transfectant decreased SA 

concentration by approximately 50%, which was relatively ineffective compared with 

the results of the plant transformants (Gaffney et al. 1993). This might reflect 

differences in the intracellular environment (e.g., ions and pH) between land plants and 

Plasmodium spp. However, the mutants of P. falciparum significantly decreased the 

endogenous production of PGE2, suggesting that the deficiency was sufficient to explain 

the role of SA in Plasmodium spp. as a signal molecule.  

 PGE2 usually functions as an active mediator of inflammation in mammals. 

The most remarkable effect of this molecule is inductions of fever and pain. PGE2 is 

greatly induced at the site of inflammation, leads pain, and if delivered to the central 

nerve system, it induces fever onset through the PGE2 receptor 3 expressed by neurons 

in the median preoptic nucleus (Lazarus et al. 2007). PGE2 also interferes innate 

acquired immunity. Considering the effect of SA and PGE2, I next analyzed the in vivo 

function of SA and PGE2 by murine malaria parasite P. berghei.  
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5. SALICYLIC ACID AFFECTS THE CEREBRAL MALARIA OUTCOME 

 

Introduction 

Within 5 Plasmodium species infectious to human, especially infection of P. 

falciparum causes the malignant complicated malaria which develops cerebrovascular 

disorder as the main mark. The severe malaria with cerebral disorder caused by the 

sequestration of infected erythrocytes leads the clinical symptoms such as abnormal 

behavior, impairment of consciousness, seizures and coma followed by rapid death, 

called cerebral malaria (CM, Idro et al. 2010). Addition to the importance, P. 

falciparum is only one malaria parasite which can be cultured in vitro continuously. By 

these reasons, extensive studies including mechanisms of invasion to the host cell, 

metabolisms and membrane trafficking, cellular division to the sexual and asexual form, 

protein transport to outside/inside of the parasite, and ultrafine structure have conducted 

on P. falciparum. However, the immunity and pathogenicity of the cerebral malaria 

were hard to study because of lacking in vivo model of P. falciparum.  

P. berghei is a rodent malaria parasite and used worldwide as a model of 

human malaria parasite (Ramos-Summerford et al. 2014). Especially, P. berghei strain 

ANKA infection on mouse C57BL/6 strain leads rapid cerebral disorder, and mouse 

died within a week even the parasitemia is not extremely high (Promeneur et al. 2013). 

The mouse shows significant neurologic symptom on behavior as the case of P. 

falciparum infection. Therefore, this model is widely accepted as a model of human 

cerebral malaria, namely experimental cerebral malaria (ECM).  

CM is caused by the sequestration of blood cells or disruption of the blood 

brain barrier (BBB) on small vessels of the brain. Furthermore, the aggravating role of 
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proinflammatory cytokines, such as Interferon (IFN) -γ, Tumor necrosis factor (TNF) -α, 

and Interleukin (IL) -12, to CM development is also widely accepted (Hunt & Grau 

2003; Idro et al. 2010). The mechanisms of CM development have been investigated by 

clinical observation of human patients as well as laboratory animal models with P. 

berghei strain ANKA. For example, the elevation of serum levels of IFN-γ was 

associated with the severity of acute malaria in Asian and African patients (Ho et al. 

1995; Ringwald et al. 1991), and both in vivo IFN-γ neutralization and knock-out of 

IFN-γ receptor enhanced resistance against ECM (Amani et al. 2000; Yañez et al. 1996). 

TNF-α also has a crucial role in the pathogenesis of CM as administration of 

anti-TNF-α antibody completely protected against P. berghei strain ANKA infection 

(Grau et al. 1987). In addition to these immune responses, Plasmodium actively 

modulates the immune system of its host. Hemozoin (malarial pigment) effectively 

suppresses the functions of dendritic cells (Keller et al. 2004). PGE2 might also 

suppress the host immunity by switching cytokines to a humoral immunity dominant 

immune status (Kalinski 2012). However, larges concerning the immune interference of 

malaria parasite are still unclear. 

PGE2 is also involved in the development and aggregation of CM. In a field 

study, an inverse relationship between the concentration of plasma PGE2 and the 

severity of disease by P. falciparum infection was reported in Gabonese children 

(Perkins et al. 2001). In mouse model, the protective role of PGE2 was also proven by 

administration of NSAIDs to infected mice, where the subscription of NSAIDs 

aggravates the ECM and mortality (Ball et al. 2004; Xiao et al. 1999). These findings 

indicate the importance of PGE2 in the development of CM, and this effect can be 

explained by the suppressive activity of PGE2 on the production of proinflammatory 
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cytokines (Kalinski 2012). 

The study of P. falciparum showed that the PGE2 concentration of parasite own 

was regulated by the level of SA (chapter 4). Together with the fact that PGE2 is known 

to regulate the outcome of CM and ECM, the effect of parasite SA to the CM outcome 

is strongly suggested. In this chapter, therefore, I established the nahG expressing P. 

berghei ANKA and examined the ECM outcome.  

 

Materials & Methods 

Parasites and animals 

Experiments including mouse survival test, ECM assessment, cytokines, and 

prostaglandin quantification were performed using the C57BL/6 mouse strain. Female 

mice, 6–9 weeks old, were purchased from Japan SLC and used for experiments. 

 

Establishment of salicylic acid-deficient parasites 

The nahG expressing vector was constructed with the pL0006 vector 

(distributed from MR4), and nahG was also driven by pCRT and PbDT as described in 

chapter 4. The vector was linearized and recombinated into the 230p gene locus, which 

has no known function (Lin et al. 2011). The P. berghei ANKA transfectants were 

cloned by limiting dilution as described previously (Janse et al. 2006). The control 

parasites transfected with gfp were made with the same way. The expression of nahG 

was confirmed by Western blotting with rabbit anti-cMyc antibody and anti-HSP-90 

antibody as control. 
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Mice mortality assay 

C57BL/6 mice received 104 parasitized red blood cells intravenously. Mouse 

survival, weight, parasitemia, and clinical signs were checked every day. After mice 

died, brain hemorrhage was observed to diagnose the cause of death. 

 

Evaluation of ECM 

 To evaluate the disruption of BBB, a dye leakage test was performed as 

previously described (Penet et al. 2008). Briefly, mice 6 days post-infection were 

intravenously injected with 100 µl of Evans blue dye (1% w/v in PBS; Sigma Aldrich). 

After 1 h, mice were anesthetized and euthanized to collect whole brains. The brains 

were photographed, weighed, and transferred into 2 ml formamide (Wako Chemicals, 

Osaka, Japan). Samples were incubated for 48 h at 37 °C and dye extravasation was 

determined by measurement of optical density (OD) at 640 nm. The values were 

normalized by tissue weight.  

To evaluate the sequestration of vessels in brains, the samples were observed 

histologically. Mice 6 days post-infection were anesthetized, perfused through the heart 

with 5 ml of PBS followed by 5 ml of ice-cold phosphate-buffered 4% 

paraformaldehyde solution (PFA; Wako Chemicals) for fixation. Brains were 

transferred into 4% PFA and fixed overnight at 4 °C. Brain slices stained with 

hematoxylin and eosin were observed by microscopy. To quantify the sequestration of 

vessels, mice cerebellums were photographed at low magnification. All vessels and 

sequestrated vessels were counted, and the sequestration ratio was calculated.  
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Prostaglandin and cytokine quantification 

PGE2 was measured by Prostaglandin E2 EIA Kit Monoclonal (Oxford 

Biochemical Research, Oxford, MI, USA). Plasma from heparin-treated whole blood 

was used for measurements. Mouse plasma cytokines from the animals 6 days 

post-infection were collected as above, analyzed by the Bio-Plex Pro Mouse Cytokine 

23-plex Assay and Th1/Th2 Assay Kit (Bio-Rad, Hercules, CA, USA). 

 

Statistics 

All statistical tests were performed using R software (version 3.0.0; R 

Foundation for Statistical Computing, Vienna, Austria [http://www.R-project.org/]). 

The Mann–Whitney U-test was used for non-parametric comparison for Evans-blue 

leakage test, plasma prostaglandins, and cytokine quantification and clinical signs 

(weight, parasitemia, and hematocrit). Bonferroni correction was used for multiple 

comparisons. The log-rank test was used to compare the survival curves of infected 

mice. Kaplan–Meier survival curves of parasite-challenged mice and box graphs of in 

vivo examinations were also depicted by R software. 

 

Results 

Influence of SA deficiency on mouse survival 

To investigate the effect of SA in vivo, we also established SA deficient P. 

berghei ANKA by transfection with nahG. First, we observed the pathogenic difference 

of the SA deficiency. C57BL/6 mice were intravenously challenged with 104 parasitized 

RBCs. As indicated in Fig. 15, mice challenged with the nahG-parasites had 

significantly increased the mortality compared with the gfp-parasite group (p < 0.05, 
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Log-lank test). We used three independent nahG-transfected clones and confirmed 

similar results (data not shown). Both nahG and gfp parasites induced ECM, resulting in 

a neurological syndrome characterized by clinical signs including ataxia, convulsions, 

and coma, followed by death. However, the onset of ECM was shortened by 1 or 2 days 

by infection with nahG-transfectant compared with the control parasites.  

 

Influence of in vivo SA deficiency to ECM 

 Since there seemed to be a difference between the nahG and gfp-parasites 

infection in the severity of ECM, we histologically analyzed the brains of infected mice 

to evaluate ECM including the sequestration of micro vessels and hemorrhage (Fig. 16). 

The cerebellum of each mouse was stained with hematoxylin and eosin, and observed 

for pathology. The cerebellum of mice infected with nahG-transfectants showed 

obvious leucocyte sequestration in small vessels (Fig. 16A). This pathological 

observation was reported as a typical symptom of ECM (White et al. 2010). Mice 

infected with gfp-transfectants showed slight hemorrhage but no sequestration of 

leukocytes, suggesting an under-developed ECM (Fig. 16B). We did not observe 

pathological changes including hemorrhage and sequestration of leucocytes in vessels in 

uninfected control mice (Fig. 16C). I quantified the sequestration ratio of vessels. I 

observed at least 500 vessels per mouse, and found that the mice infected with 

nahG-transfectants showed significant sequestration (Fig. 17). 

Next, we quantified the severity of ECM by Evans blue leakage assay (Fig. 18). 

Evans-blue leakage was significantly distinct in infected mice (p < 0.01, nahG vs. 

control and GFP vs. control; p < 0.05, nahG vs. GFP) indicating that nahG-transfectants 

severely disrupted the BBB in ECM. Mouse parasitemia and body weight kinetics were 
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also measured (Fig. 19 and 20). Parasitemia at day 6 after infection when mice infected 

with nahG-transfectant but not gfp showed ECM signs, was not significantly different 

each other, suggesting that differences in the growth capacity of parasites did not 

explain differences in clinical changes (Fig. 19). Hematocrit scores at the same day 

were also equivalent (Fig. 21). Mouse weight did not show differences, or even shifted 

higher in nahG-transfectants infection (Fig. 20). Considering all, the differences in 

mortality may be explained by the occurrence of ECM by infection with 

nahG-transfectants. 

 

Quantification of prostaglandins and cytokines in infected mouse plasma 

The ECM evaluation showed increasing the severity in nahG-transfected 

parasite, and the in vitro results by P. falciparum indicated that a deficiency in the 

production of SA affected the production of PGE2 by the parasite. So, we decided to 

investigate the concentrations of plasma PGE2 from mice and several cytokines 

influenced by PGE2. Whole blood from mice (6 days post-infection) was collected for 

quantification of PGE2 and cytokines. The day mice showed clinical signs, but no 

differences in parasitemia or hematocrit were detected as shown above (Fig. 19,21). The 

plasma PGE2 concentration of mice infected with nahG-transfected parasites were 

decreased compared with the gfp-transfectant or uninfected control, though there were 

no significance (p < 0.05, Fig. 22A). This shortage in PGE2 was consistent with the in 

vitro results.  

The concentration of proinflammatory (T helper-1, Th1) cytokines in 

nahG-transfectant-infected mice changed dramatically. IFN-γ and IL-2 increased 

significantly (p < 0.01, Fig. 22B and D, respectively). IL-1β levels were also increased 
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by infection of nahG-parasites (Fig. 22E, p < 0.05). Other major proinflammatory 

cytokines, TNF-α and IL-12, showed similar shifts although they were not statistically 

significant (Figs. 22C and F, respectively). Although the concentration of Th2 cytokine, 

IL-10, did not change significantly (Fig. 23A), IL-4 and IL-5 were significantly elevated 

in mice infected with nahG-parasites (Figs. 23B and C, respectively). An inflammatory 

chemokine Monocyte chemoatract protein (MCP)-1 was significantly decreased in 

nahG-transfectant infection (p < 0.05, Fig. 23D). 

 

 

Discussion 

 PGE2 usually functions as an active mediator of inflammation in mammals. It 

is released from the whole cells, mainly vascular endothelial cells, fibroblasts, and mast 

cells. PGE2 has complex activities in inflammation. It induces fever and pain, and has a 

suppressive activity on both innate and acquired immune reactions. During innate 

immunity, PGE2 suppresses the functions and differentiation of natural killer cells, 

macrophages, granulocytes, and mast cells (Kalinski 2012). For example, it was 

reported that the cytolytic activity of natural killer cells was suppressed by PGE2 by a 

mechanism involving the suppression of IL-2, IL-12, and IL-15 (Walker & Rotondo 

2004; Joshi et al. 2001). Furthermore, macrophage functions are directly suppressed by 

PGE2 receptor 2-dependent signaling (Aronoff et al. 2004). In acquired immunity, PGE2 

inhibits the production of IL-2 by T cells and IL-2 responsiveness (Kalinski 2012). It 

also suppresses T-cell activation and proliferation, and shifts the pattern of CD4+ T-cell 

responses from Th1 to Th2 and Th17 cells (Kalinski 2012). PGE2 directly prevents 

CD4+ T-cell production of IFN-γ but not Th2 cytokines such as IL-4 and IL-5 in mice 
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and humans (Betz & Fox 1991; Snijdewint et al. 1993). Additionally, it prevents 

differentiation of CD4+ T-cell to Th1 by suppressing monocyte and dendritic cell 

production of IL-12 (Kalinski 2012; van der Pouw Kraan et al. 1995). 

 To investigate the function of parasite SA and induced PGE2, we established 

nahG-expressing P. berghei ANKA, and found that parasite virulence was enhanced 

significantly. The nahG-expressing P. berghei killed mice in a shorter period than the 

control parasite which express gfp. The cause of death was diagnosed as ECM by the 

presence of neurological syndromes, clinical behaviors, histological observation, and 

dye leakage test. Especially the dye leakage test provided the statistical evidence that 

the severity of ECM was significantly different depending on the carrying genes (nahG 

or gfp) of infecting parasites. Also the histological observation indicated the aggregating 

sequestration of blood cells to the microvessel of the brain in nahG-expressing P. 

berghei infection. 

The early onset of ECM suggested that SA produced by the parasite affected 

the in vivo virulence of Plasmodium. The mechanism might be PGE2 dependent, 

because PGE2 protects against CM, and PGE2 significantly elevated at least the culture 

model of P. falciparum whereas any other differences, for example, parasitemia, body 

weight, and hematocrit, were not observed. The importance of PGE2 to the protection 

against CM onset was verified by both field and laboratory studies (Perkins et al. 2001; 

Ball et al. 2004; Xiao et al. 1999). These findings indicate the importance of PGE2 in 

the development of CM, and this effect can be explained by the suppressive activity of 

PGE2 on the production of proinflammatory cytokines (Kalinski 2012). Our study 

demonstrated that infection with the nahG-transfectant, (SA-deficient parasite) induced 

the up-regulation of proinflammatory cytokines including IFN-γ, IL-1β, IL-2, and IL-12, 
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while the parasitemia of the same time point were almost uniform (Fig. 19). It probably 

suggests that the SA-deficiency released the lock on the PGE2-dependent immune 

suppression, because the SA-deficiency in P. falciparum strongly connected to the 

PGE2 decrease. Another proinflammatory chemokine, MCP-1, showed an 

uncoordinated decrease, different from other proinflammatory cytokines. Generally, at 

the site of infection, MCP-1 cooperatively elevated with other inflammatory substances 

and involve in the inflammation establishment. In addition, a previous study 

demonstrated that the release of MCP-1 from mast cells was promoted by PGE2 

stimulation (Nakayama et al. 2006), and that mast cells were thought to be the dominant 

source of MCP-1 (Carollo et al. 2001). Thus the MCP-1 opposite decrease in nahG 

transfected parasite infection suggests that fewer PGE2 production of the parasite 

possibly allow other cytokines increase, whereas it might reduce MCP-1 induction. 

Enhanced IL-4 and 5 production in mouse plasma from nahG-transfectant-infected mice 

is controversial because Th2 cytokines are generally protective against CM 

development, especially IL-4. However, a previous study reported that IL-4 was not 

associated with ECM pathogenesis (Yañez et al. 1996). Furthermore, few studies have 

focused on the role of IL-5 in the complexity of severe malaria including CM. IL-5 

production was not different between ECM-susceptible and -resistant mouse strains (de 

Kossodo & Grau 1993). The present study observed the significant induction of IL-4 

and IL-5 and might reflect unknown cytokine functions in ECM development, which 

might be highlighted by the PGE2-deficient conditions. Further analyses are needed to 

understand the role of these cytokines for the pathogenesis of CM. 

The plasma PGE2 levels were not significant between the mutants of P. berghei 

ANKA in vivo. It suggests the difference of PGE2 is present only at the 
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microenvironment of infection. To investigate this possibility, the analysis using 

PGE2-receptor knock out mouse will be needed in the future study.  

 In this chapter, I observed the clinical outcome of ECM was different between 

SA-deficient and mock (gfp-expressing) parasites. These data highlighted the highly 

constructed system of parasite to modify and control the host immunity and disease 

development.  
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Fig. 1. The lifecycle of Apicomplexa.  
The lifecycles of Plasmodium spp., Eimeria spp. and T. gondii are shown. The life 
cycles of this phylum basically consists of 3 stages: merogony, gamogony and 
sporogony. The lifecycles of Plasmodium spp., Eimeria spp. and T. gondii are plotted 
onto the schematic apicomplexan lifecycle. 
 
 



Fig. 5. Identification of salicylic acid with UHPLC/HPLC/Triple TOF mass 
spectrometry system.�
Plasmodium berghei strain ANKA was purified from infected mice blood, salicylic acid was 
extracted, and analyzed by LC-triple TOF mass spectrometry. (A) Structural formula of  
SA. (B) LC chromatogram of  SA standard (control) and P. berghei ANKA sample. (C) 
Fragmentation analysis of  peaks in (B) (colored in aqua). Collision energy was 20 eV. 
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Fig. 10. Western blotting of the nahG product. �
(A) Construction of  expression vector of  nahG in P. falciparum. P. falciparum was 
transfected with the SA degrading gene, nahG, driven by P. falciparum chloroquine resistant 
transporter gene 5’ UTR (pCRT) and P. berghei dihydrofolate reductase gene 3’UTR 
(PbDT), fused into attR4-attR3 site of  the destination vector pCHD43 (II), and transfected 
by electroporation. The control parasite line transfected with gfp was also made with same 
way. (B) Western blotting of  the transfectants. The expression of  nahG was confirmed by 
Western blotting with rabbit anti-cMyc antibody, and anti-HSP-90 antibody as internal 
control.  
�

hDHFR�Rep20�

pCRT::nahG-cmyc2�

nahG-cmyc2� PbDT�pCRT�

HSP-90�

cMyc-tag 

A 

B 

63 



Fig. 11. The SA concentration of nahG-transfectants. �
The SA concentration of  nahG-transfectant was compared to that of  gfp-transfected 
control. The culture supernatants of  parasites at similar parasitemia were examined, and 
the data was normalized by parasitemia. The SA concentration of  nahG-transfectant was 
decreased compared with gfp-transfected controls, though we could not find statistical 
difference. Bar indicates SD. n=3  
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Fig. 12. The growth kinetics of the nahG-transfectant. �
The nahG and gfp-transfected parasites were cultured, and synchronized by 5% D-sorbitol 
twice. Then the parasites were adjusted to 0.1% of  parasitemia, and growth were 
calculated by counting parasites on thin blood smear. The transfection with nahG to P. 
falciparum did not show effect on growth in vitro, comparing to the gfp-transfectant control. 
Bar indicates SD. n=3�
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Fig. 13. The cell cycle progression of the nahG-transfectant. �
The nahG and gfp-transfected parasites were cultured, and synchronized by 5% D-sorbitol 
twice. Then the parasites were adjusted to 0.1% of  parasitemia, and thin blood smear was 
made to observe the parasite stage. The transfection with nahG to P. falciparum did not 
show effect on cell cycle in vitro, comparing to the gfp-transfectant control. Bar indicates 
SD. n=3  
 
�

0 

50 

100 

rin
g 

tro
ph

oz
oi

te
 

sh
iz

on
t 

ga
m

et
oc

yt
e 

rin
g 

tro
ph

oz
oi

te
 

sh
iz

on
t 

ga
m

et
oc

yt
e 

nahG GFP 

P
ar

as
ite

 s
ta

ge
s 

(%
)�

0 

50 

100 

rin
g 

tro
ph

oz
oi

te
 

sh
iz

on
t 

ga
m

et
oc

yt
e 

rin
g 

tro
ph

oz
oi

te
 

sh
iz

on
t 

ga
m

et
oc

yt
e 

nahG GFP 

P
ar

as
ite

 s
ta

ge
s 

(%
)�

72 hours�

96 hours�

66 



Fig. 14. Prostaglandin concentrations of SA-deficient parasites.�
The nahG and gfp-transfectants were cultured in vitro, and the extracellular Prostaglandin 
E2 (PGE2) was quantified from the culture supernatant. The value was normalized by 
parasitemia. The PGE2 concentration of  nahG-transfectant decreased significantly than 
gfp-transfectant. The significance was tested by two-tailed Student’s t-test. Bar: SD. n=3.�
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Fig. 15. Influence of SA deficiency on mouse survival�
SA deficient P. berghei ANKA was established by transfection with nahG. C57BL/6 mice 
were intravenously challenged with 104 parasitized RBCs. Mice challenged with nahG-
parasites significantly shortened the survival period compared with the gfp-parasite group 
(p<0.05, Log-lank test). We used three independent nahG-transfected clones and 
confirmed similar results (data not shown).�
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Fig. 16. Influence of in vivo SA deficiency to experimental cerebral malaria�
The cerebellum of  mice challenged by nahG or gfp-transfected parasites, or naïve mice 
(control) was histologically examined. The cerebellum of  each mouse was stained with 
hematoxylin and eosin and observed for pathology. (A) The cerebellum of  mice infected 
with nahG-transfectants showed significant leucocyte sequestration in small vessels. This 
pathological observation was similar to a typical symptom of  experimental cerebral 
malaria (ECM). Inset image shows a higher magnification of  the boxed portion. 
Phagocytized hemozoin is observed (arrowhead). (B) Mice infected with gfp-transfectants 
showed slight hemorrhage but no sequestration of  leukocytes, suggesting an under-
developed ECM. (C) Any pathological changes, including hemorrhage and sequestration 
of  leucocytes in vessels, was not observed in uninfected control mice. C57BL/6 mice, 
female, 6 days after infection were used. Bar: 50 µm.  
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Fig. 17. Quantification of sequestrated brain vessels 
Brains of  mice infected by nahG or gfp-transfected parasites, or uninfected (control) mice 
were perfused with PBS and fixed with 4% PFA. Sliced sections were stained by 
hematoxylin and eosin. Cerebellums of  the brains were photographed, and 5 to 10 pictures 
per mice were counted (n>100 for each picture). A Mann-Whitney U-test with the 
Bonferroni's correction was used, and significant (p<0.05) differences were denoted by 
asterisks. 



Fig. 18. Influence of in vivo SA deficiency to ECM�
Evans blue leakage analysis of  the severity of  cerebral malaria. Brains from mice infected 
with nahG- (left-upper), gfp- (left-middle) expressing parasites and uninfected controls (left-
bottom) were photographed. Dye leakage was quantified (right). Mice (n=5) were 
sacrificed at 6 days post-infection. Solid-line, p<0.01; dashed-line, p<0.05. C57BL/6 mice 
at six days post-infection were used for all experiments. Mann Whitney U test was used for 
statistics.�
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Fig. 19. Mouse parasitemia �
Each graph indicates the individual mouse infected by nahG (red) or gfp (blue)-expressing 
parasites (left). Parasitemia of  nahG or gfp-expressing parasites at day 6 post infection, 
when the clinical signs were most significant (right). The plasma PGE2 and cytokines were 
quantified at this time point. C57BL/6 mice were used for experiments. Mann Whitney U 
test was used for statistics.�
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Fig. 20. Mouse body weight kinetics�
Animal weight gain/loss are shown. Each graph indicates the individual mouse infected 
by nahG (red) or gfp (blue)-expressing parasites. C57BL/6 mice were used for experiments.�
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Fig. 21. Hematocrit scores of infected mice.�
Hematocrit scores of  infected mice at day 6 post infection, when the clinical signs were 
most significant, are shown. The hematocrit scores show no significant difference. C57BL/
6 mice were used for experiments. Mann Whitney U test was used for statistics.�
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Fig. 22. Plasma proinflammatory cytokines and prostaglandin E2 (PGE2) from infected 
mice. �
Plasma proinflammatory cytokines and PGE2 levels are shown. (A) Plasma PGE2 levels from 
infected mice. (B–F) Proinflammatory cytokines from infected mice. IFN-γ (B), TNF-α (C), 
IL-2 (D), IL-1β (E), and IL-12 (F) levels are shown. Plasma from the heparin-treated whole 
blood of the healthy mice (control), or mice infected by nahG or gfp-expressing parasites were 
used for all experiments. �
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Fig. 23. Plasma anti-inflammatory cytokines and chemokines from infected mice. �
(A-C) Anti-inflammatory cytokines from infected mice. IL-10 (A), IL-4 (B), and IL5 (C) 
levels are shown. (D) Inflammatory chemokine MCP-1 levels from infected mice. Plasma 
from the heparin-treated whole blood of  the mice infected by nahG or gfp-expressing 
parasites were used for all experiments.  
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