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The electrical properties of Ge crystals and the effective Schottky barrier height (SBH) of NiGe/Ge

diodes fabricated by P and/or chalcogen (S, Se, or Te) doping were investigated for Ge n-channel

metal–oxide–semiconductor field-effect transistors with a NiGe/nþGe junction. The electron con-

centration in Ge was increased more by co-doping with chalcogen and P than by doping with P

alone. Moreover, SBH values were decreased in NiGe/nGe diodes and increased in NiGe/pGe

diodes compared with undoped NiGe/Ge by both P doping and P and chalcogen co-doping.

Co-doping with Te and P was most effective in modifying the SBH. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4962436]

For reducing the power consumption of complementary

metal–oxide–semiconductor (CMOS) devices in the near

future, Ge has attracted much attention as an alternative to Si

for the channel material in field-effect transistors (FETs)

because of the higher electron and hole mobilities in Ge (3900

and 1900 cm2 V�1 s�1, respectively1) compared with Si (1500

and 450 cm2 V�1 s�1 (Ref. 1)). Using a higher mobility mate-

rial results in higher current drivability, leading to lower

power consumption.

However, an issue in the fabrication of Ge nMOSFETs is

the high contact resistivity (qC) of metal contacts in nþGe

source/drain junctions, which results in high power consump-

tion. The high qC is due to the large Schottky barrier height

(SBH) originating from Fermi level pinning.2,3 Because the

charge neutrality level is near the valence band maximum (EV)

of Ge, the Fermi levels of various metals with different work

functions tend to be strongly pinned near the EV. In metal/pGe

junctions, Fermi level pinning causes a small SBH for holes

(�0.1 eV), leading to low qC. In metal/nGe junctions, how-

ever, it causes a large SBH for electrons (�0.6 eV) that is

almost the same as the bandgap of Ge, leading to high qC.

One method for modifying the SBH of metal/Ge junc-

tions, such as the NiGe/Ge junction, is segregation of dop-

ants around the NiGe/Ge interface. Ohmic and rectifying

characteristics have been reported in NiGe/nGe and NiGe/

pGe junctions, respectively, fabricated by germanidation

after P ion implantation (I/I).4 The modification of the cur-

rent density–voltage (J–V) characteristics by P I/I has been

explained by segregation of P at the NiGe/Ge interface. For

NiGe/nGe junctions fabricated by germanidation after S I/I,

a low SBH of 0.15 eV has been reported, as estimated by the

Arrhenius plot (temperature dependence of current).5

We previously investigated NiGe/Ge diodes doped with

S or P or co-doped with both.6,7 In NiGe/Ge junctions, S

became segregated at the interface whereas P did not, for

both co-doping with S and P and doping with S or P alone.6,7

Consistent with our results, a recent study found no segrega-

tion of P around the NiGe/Ge interface.8 NiGe/nGe doped

with S alone exhibited a higher reverse current than did

undoped NiGe/nGe. Doping with P alone or co-doping with

S and P resulted in ohmic characteristics. The reverse current

was higher in NiGe/nGe and lower in the corresponding

NiGe/pGe for co-doping with S and P than for doping with P

alone. According to the temperature dependence of current,

the effective SBH was estimated to be �0.32 eV for doping

with S alone, but <0.01 eV for both doping with P alone and

co-doping with S and P. The effective SBH value was defined

as the value estimated by assuming the ideal Schottky current.

Thus, co-doping with S and P could decrease the effective

SBH for nGe and increase it for pGe.

Se is another chalcogen that, similarly to S, lowers the

effective SBH of NiGe/nGe junctions.9,10 However, no

reports have investigated whether the chalcogen Te has an

effect similar to that of S and Se on the SBH. Thus, more

data are needed for comparing the effects of these chalco-

gens on the electrical characteristics of NiGe/Ge junctions.

Furthermore, neither co-doping with Se and P nor co-doping

with Te and P has been investigated.

Here, we fabricated P- and/or chalcogen-doped Ge

substrates and NiGe/Ge diodes to examine their electrical

properties and investigated the effects of different chalco-

gens on the SBH. We found that, compared with doping with

P alone, co-doping with P and chalcogen increased electron

concentrations in the Ge substrates, even at low tempera-

tures, and also modified the effective SBH of NiGe/Ge junc-

tions to a greater extent.

P- and/or chalcogen-doped Ge substrates and NiGe/Ge

diodes were fabricated as previously reported.6,7 Briefly,

after SiO2 deposition and contact hole formation on Sb (Ga)-

doped n (p)-type Ge(100) substrates (0.05–0.25 X cm), the

substrates were implanted with chalcogen (5� 1014 cm�2) or
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P (1� 1015 cm�2) ions or both (5� 1014 cm�2 of chalcogen

and 1� 1015 cm�2 of P). The acceleration energies of P, S,

Se, and Te were set to 10, 10, 17, and 20 keV, respectively,

to achieve the same projected range values. Ni films

(�15 nm thickness) were deposited on the substrates by sput-

tering. Rapid thermal annealing was performed for Ni ger-

manidation at 250, 350, or 450 �C in N2 for 1 min. Unreacted

Ni on NiGe was removed using HCl solution. On the back

side of each diode, an Al layer was formed by thermal evap-

oration to reduce the back contact resistance. NiGe/Ge

diodes without doping were also fabricated as references.

Impurity concentration (N) and electron concentration (n)

profiles were examined by secondary ion mass spectrometry

(SIMS) and spreading resistance profiling, respectively. The

NiGe/Ge interface positions were defined as corresponding

to the half-maximum intensities of the Ni peaks in the SIMS

profiles. The J–V characteristics of the NiGe/Ge diodes were

measured at 223–413 K.

The SBH (U) was estimated in two ways. The first was

by theoretical fitting with an equation for Schottky current at

300 K, taking into account the series resistance (RS) and par-

allel resistance (RP) based on the following:11

J :¼ A�T2 exp � qU
kBT

� �
exp

q V � JRSð Þ
kBT

� �
� 1

� �
þ V � JRS

RP
;

(1)

where the Richardson constant A* for n-type Ge(100) (resp.,

p-type Ge) is �143 (�41) A cm�2 K�2.12 The second way

was from the temperature dependence of Eq. (1)

U ¼ �ðkB=qÞD logðjJj=T2Þ=Dð1=TÞ : (2)

If the measured current can be treated as an ideal Schottky cur-

rent, then the two SBHs should have almost the same value.

This evaluation enables confirmation of whether the current

satisfies the Schottky current conduction mechanism.

First, we investigated the profiles in P- and chalcogen-

doped Ge before NiGe formation. In the P-doped Ge (Ge:P)

and S-doped Ge (Ge:S) [Figs. 1(a) and 1(b), respectively], the

N profiles remained unchanged after annealing at 250 to

450 �C, while the n profiles in Ge:P revealed that n increased

with temperature. Electron generation (n� 2� 1016cm�3) was

also observed in Ge:S after annealing at 450 �C [Fig. 1(b)].

The electron generation in chalcogen-doped Ge (Ge:

chalcogen) can be explained by the behavior of the chalcogen

as a double donor in Ge. Chalcogens in Ge form two different

donor levels, E1 and E2, which are occupied by one and two

electrons, respectively, and are related to the respective ioniza-

tion energies: E(0/þ)¼ 2E2�E1 and E(þ/þþ)¼E1. From

the micro- or grand-canonical ensemble in statistical mechan-

ics (e.g., Ref. 13), we can derive the occupation probabilities

(f1 and f2) of double donors

f1 ¼ 2 exp ½ðE1 þ lÞ=kBT�=N; (3)

f2 ¼ exp ½2ðE2 þ lÞ=kBT�=N; (4)

where N :¼ 1þ 2 exp ½ðE1 þ lÞ=kBT� þ exp ½2ðE2 þ lÞ=kBT�
and l is the Fermi level (chemical potential). Note that the

occupation probabilities for double donors are different from

the Fermi–Dirac occupation probability for single donors,

such as for P in Ge. For example, in the case of ND¼ 1

� 1018 cm�3 for S, Se, and Te, the calculation based on Eqs.

(3) and (4) under the charge-neutrality constraint gives

n=ND � 0:02; 0:03; 0:52 and n� 2:0� 1016; 2:5� 1016; 5:2
�1017 cm�3 where ND is the donor concentration and n=ND

is the electrical activation ratio at 300K [E(þ/þþ)¼0.590,

0.512, and 0.332, E(0/þ)¼0.280, 0.268, and 0.093eV for S,

Se, and Te in Ge, respectively14]. Note that for double

donors, the maximum activation ratio n/ND under our defini-

tion is 2. The calculation indicates that Ge:Te brings about

the highest activation ratio, followed by Ge:Se and then

Ge:S.

According to the calculation described above, Ge:S acts

as a double donor with a low electrical activation ratio on the

order of 10�2 at around 300 K and ND¼ 1� 1018 cm�3.

However, the value of n� 2�1016 cm�3 in the experiments is

lower than expected for N� 1020cm�3 [Fig. 1(b)]. We attrib-

uted the low n in Ge:S to the low solid solubility of S in Ge,

not to low electrical activation. In Ge:Se and Ge:Te, no

increase in n was observed. This was probably due to the lower

solubility of Se and Te in Ge compared with that of S in Ge.

Although no increase in n was observed in Ge:Te, a

higher increase in n was observed in Ge co-doped with Te and

P (Ge:Te&P) than in Ge:P, particularly at 250 �C [Fig. 1(c)].

Figure 1(d) summarizes the relationship between annealing

temperature and maximum n in P- and/or chalcogen-doped

Ge and reveals that n in Ge co-doped with P and chalcogen

(Ge:P&chalcogen) increases with annealing temperature.

Among the chalcogens, Te most effectively increased n at

higher temperatures.

The increased n in Ge:P&chalcogen was probably due

to the chalcogen decreasing the defect density in Ge. Defects

occur in Ge due to I/I damage. Because defects such as

vacancies15 and divacancies16,17 act as acceptor-like defects,

FIG. 1. Profiles of impurity and electron concentrations in Ge. The impuri-

ties are (a) P, (b) S, and (c) both Te and P. Annealing temperatures after ion

implantation were 250, 350, and 450 �C with an annealing time of 1 min. (d)

Relationship between annealing temperature and maximum electron concen-

tration in Ge.
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they generate holes, which compensate for the electrons

from P in Ge and the decrease in n, if the density of defects

and the concentration of substitutional P in Ge are compara-

ble. Furthermore, vacancies and P tend to form electrically

neutral donor-vacancy (P2V)0 complexes,18 leading to elec-

trical deactivation of P in Ge. In the case of doping with P

alone, high-temperature annealing is necessary to repair I/I

damage. In the case of co-doping with P and chalcogen, on

the other hand, chalcogens substitute for vacancies, thereby

changing defect-related acceptor levels into occupied

(donor) levels.17 Because the electrical activation of chalco-

gens in Ge is low, the concentration of substitutional chalco-

gen is greater than n. Therefore, it seems that the chalcogen

reduced the number of defects (�1018 cm�3), even though a

low n (�1016 cm�3) was generated by doping with chalcogen

alone. Furthermore, chalcogen could substitute for the

vacancy in (P2V)0, leading to the activation of P in Ge. Thus,

co-doping with P and chalcogen increased n more than did

doping with P alone, and the difference in n between the two

is larger at lower activation temperatures.

Next, we fabricated NiGe/Ge under the same annealing

conditions applied to Ge to obtain the profiles in Fig. 1.

Figure 2 shows N profiles in Te- and P-co-doped NiGe/Ge

(Te&P-NiGe/Ge) and P-doped NiGe/Ge (P-NiGe/Ge)

diodes. A region with the same N for Te as for P exists

around the NiGe/Ge interface outside the NiGe, although N
is lower for Te than for P in the diode without NiGe [Fig.

1(c)]. This tendency also occurred in the cases of co-doping

with Se and P and co-doping with S and P, reproducing our

previous results showing that S but not P segregated around

the NiGe/Ge interface.6 This shows that Se and Te segregate

similarly to S around the interface.

We investigated the J–V characteristics of the NiGe/Ge

diodes that were analyzed to obtain the profiles in Fig. 2. We

found that J increased more for the chalcogen-doped NiGe/

nGe diodes (chalcogen-NiGe/nGe) than for the reference

diode [Fig. 3(a)]. However, the J–V characteristics still

exhibited ohmic behavior for the corresponding chalcogen-

NiGe/pGe diodes [Fig. 3(b)]. We estimated the SBH values

using the two methods described above [Fig. 3(c)], and the

results are shown in Fig. 3(d). We can reasonably expect that

the SBH estimated from the temperature dependence would

be higher than that estimated by theoretical fitting to Eq. (1).

That is, we expect the plots to lie below the solid line in

Fig. 3(d), because the temperature dependence of SBH

should be similar to that for the bandgap energy (EG) and EG

decreases with increasing temperature.1 This tends to lead to

slight overestimation of the SBH, but several SBH values

exhibited the opposite tendency and were distributed above

the solid line in Fig. 3(d). Although the difference was at

most 0.2 eV, this value is significant because even a small

decrease in the SBH dramatically increases J. For instance, a

0.06 eV decrease in the SBH increases J by an order of mag-

nitude, according to Schottky theory [Eq. (1)]. The differ-

ence between the two SBH values indicates that the J–V
characteristics of the chalcogen-NiGe/Ge diodes cannot be

explained by Schottky theory.

FIG. 2. Profiles of (a) P-doped NiGe/

Ge and (b) Te- and P-co-doped NiGe/

Ge fabricated by germanidation at

450 �C for 1 min.

FIG. 3. J–V characteristics of chalcogen (S, Se, or Te)-doped (a) NiGe/nGe

and (b) NiGe/pGe diodes. Results for an undoped NiGe/Ge diode are shown

for reference. (c) J–V characteristics fitted using Eq. (1) and Schottky plot of

current at 300 K using Eq. (2). JEXP (experimental current) fitted with

J¼ JDþ JP [Eq. (1)], where JD is the ideal Schottky current, JP [¼(V-JRS)/

RP] is the parallel current due to RP, and JS (¼V/RS) is the current due to RS

without a diode. Plots for S-doped NiGe/nGe fabricated at 450 �C are shown

as a representative example. (d) Relationship between SBH values of NiGe/

nGe estimated from Fig. 1(a) by two methods: theoretical fitting at 300 K

using Eq. (1) and Schottky plot of current using Eq. (2).
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Several mechanisms have been proposed for the reduc-

tion in the SBH of chalcogen-NiGe/nGe junctions. Two pos-

sible mechanisms are the formation of a S-Ge dipole layer

and a decrease in the interface trap density.5 However, nei-

ther mechanism can satisfactorily explain the difference

between the two SBH values that were estimated in different

ways [Fig. 3(d)]. Although this is the case for Si, it has been

proposed that S reduces the q value of NiSi/nSi through a

doping effect, rather than by reducing the SBH.19 Since S is

an n-type dopant, the band bends with an increase in the con-

centration of electrically active S, reducing the depletion

width. Thermionic field emission, which flows at an energy

level between the SBH and the Fermi level of NiSi, is then

more dominant than the Schottky current. This mechanism

may also be possible for Ge and other chalcogens (i.e., Se

and Te) if the solid solubility limit of chalcogens in Ge is

larger near the NiGe/Ge interface than in bulk Ge. If chalco-

gens are present in Ge around the interface, the currents through

the chalcogen donor levels may be dominant, which act as

assist levels for electrons,7,9,10 for example, by trap-assisted

tunneling (TAT)20 or the Poole–Frenkel effect (field-assisted

thermal ionization).21

These models, together with our previously reported

model for S-NiGe/Ge,7 suggest the following mechanism for

SBH modification in chalcogen-NiGe/Ge. In n-type diodes,

chalcogen doping reduces the effective SBH through TAT or

the Poole–Frenkel effect at low n and through thermionic

field emission at high n. Chalcogen-doped NiGe/nGe diodes

exhibited higher currents in the order of Te, Se, and S, proba-

bly because Ge:Te creates high activation ratios in the same

order as predicted by the above-mentioned calculation. It has

been proposed that the activation temperature of impurities

is lower in NiGe/Ge than in bulk Ge because of the effect of

metal (Ni)-induced crystallization,4 but they could have the

same order of the activation ratio. In p-type diodes, chalco-

gen doping forms an nGe layer around the NiGe/Ge interface

resulting in an n/p junction. This junction acts as a hole bar-

rier, thereby reducing hole current, when the width and height

of the barrier are sufficiently large. In contrast with n-type

diodes, the donor level of chalcogens in p-type diodes does

not cause the current to increase because it does not act as an

assist level for holes. The effective SBH of holes thus

increases. Here, only a slight decrease in current was observed

for chalcogen-NiGe/pGe, likely because the increase in the

effective SBH of holes was insufficient.

For P- and chalcogen-co-doped NiGe/nGe (P&chalcogen-

NiGe/nGe) diodes, the J–V characteristics exhibited ohmic

behavior similar to that of P-NiGe/nGe diodes [Fig. 4(a)]. For

the corresponding NiGe/pGe diodes, in contrast, the J–V char-

acteristics exhibited rectifying behavior [Fig. 4(b)]. In these

NiGe/pGe diodes, J decreased more than in the reference diode,

and co-doping with Te and P was the most effective for

decreasing J. Figure 4(c) shows the relationship between the

NiGe formation temperature and SBH value of the NiGe/pGe

diodes. The chalcogen-NiGe/pGe and reference diodes exhib-

ited almost ohmic characteristics [Fig. 3(b)], because the series

(substrate) resistance Rs was dominant, limiting the estimated

SBH to approximately 	0.3 eV. Therefore, the effective SBH

values of only the chalcogen-NiGe/pGe and reference diodes

were expected to be around 0.3 eV at most. In contrast, for the

P-NiGe/pGe and P&chalcogen-NiGe/pGe diodes, the SBH val-

ues were >0.3 eV. This tendency is explained by the mecha-

nism of effective SBH modification of chalcogen-NiGe/Ge

described above. Compared with doping with P or chalcogen

alone, co-doping with P and chalcogen was more effective for

increasing the SBH. Although the activation temperature level

of impurities may differ between NiGe/Ge and bulk Ge, the

effect is more likely related to the increase in n from doping

Ge:P with chalcogens (Fig. 1).

In summary, doping with P and/or chalcogen (S, Se, or

Te) in Ge substrates and NiGe/Ge diodes was investigated to

examine the electrical properties of Ge crystals and to mod-

ify the effective SBH of NiGe/Ge junctions. We found that

electrons were generated in Ge:chalcogen substrates. Despite

the low n in Ge:chalcogen, a higher n was observed in

Ge:P&chalcogen than in Ge:P. The difference in n between

Ge:P&chalcogen and Ge:P was larger, particularly at lower

temperature (250 �C). This is probably because chalcogens

substitute for defects, such as vacancies or divacancies, elim-

inating the defect levels in the bandgap. NiGe/Ge diodes

were fabricated under the same annealing conditions as for

Ge. In NiGe/nGe diodes, chalcogen and P co-doping and P

doping resulted in ohmic characteristics. In NiGe/pGe

diodes, chalcogen and P co-doping resulted in rectifying

characteristics. This suggests that the chalcogen increased

the activation ratio of P around the NiGe/Ge interface. The

high-to-low and low-to-high order of Te, Se, and then S for

currents in chalcogen-NiGe/nGe and P&chalcogen-NiGe/

pGe junctions, respectively, can be explained by the same

order for increasing activation ratios in Ge:chalcongen.
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