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Abstract

Tests of the correlation matrix between two subsets of a high-dimensional ran-

dom vector are considered. The test statistic is based on the extended cross-

data-matrix methodology (ECDM) and shown to be unbiased. The ECDM

estimator is also proved to be consistent and asymptotically Normal in high-

dimensional settings. The authors propose a test procedure based on the ECDM

estimator and evaluate its size and power, both theoretically and numerically.

They give several applications of the ECDM estimator and illustrate the per-

formance of the test procedure using microarray data.

Keywords: Correlations test; Graphical modeling; Large p, small n; Partial

correlation; Pathway analysis; RV-coefficient.

1. Introduction

Let x1, . . . ,xn be a random sample of size n ≥ 4 from a p-variate distribu-

tion. We are interested here in situations where the data dimension, p, is very

high compared to the sample size n.

For each j ∈ {1, . . . , n}, write xj = (x⊤
1j ,x

⊤
2j)

⊤, where for i ∈ {1, 2}, xij ∈

Rpi with p1 ∈ {1, . . . , p − 1} and p2 = p − p1. Assume that x1, . . . ,xn have
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unknown mean vector, µ = (µ⊤
1 ,µ

⊤
2 )⊤, and unknown covariance matrix,

Σ =

Σ1 Σ∗

Σ⊤
∗ Σ2

 ≥ 0.

In other words, for all j ∈ {1, . . . , n} and i ∈ {1, 2},

E(xij) = µi, var(xij) = Σi, cov(x1j ,x2j) = E(x1jx
⊤
2j) − µ1µ

⊤
2 = Σ∗.

For all i ∈ {1, 2} and k ∈ {1, . . . , pi}, the kth diagonal element σik of Σi is

assumed to be strictly positive. Then, for all j ∈ {1, . . . , n},

corr(x1j ,x2j) = P = diag(σ11, . . . , σ1p1)
−1/2Σ∗diag(σ21, . . . , σ2p2)

−1/2.

In this paper, we consider the problem of testing the hypotheses

H0 : P = 0 vs. H1 : P ̸= 0 (1)

in high-dimensional settings. When (p1, p2) = (p − 1, 1) or (1, p − 1), testing

(1) amounts to testing correlation coefficients. Aoshima and Yata [1] proposed

a statistic for the latter problem and Yata and Aoshima [19] improved this test

statistic by using a method called the extended cross-data-matrix methodology

(ECDM). However, tests on the correlation matrix are equally important, e.g.,

in pathway analysis or graphical modeling for high-dimensional data. One pos-

sible application pertains to the construction of gene networks, as portrayed in

Figure 1.

Here, we consider testing partial correlation coefficients. When Σ > 0, write

Ω = Σ−1 =

Ω1 Ω∗

Ω⊤
∗ Ω2

 = (ωij),

where, for i ∈ {1, 2}, Ωi is the corresponding pi × pi matrix. Here, (mij)

denotes a matrix whose (i, j)th element is mij . When i ̸= j, −ωij(ωiiωjj)−1/2

is the (i, j)th partial correlation coefficient; see, e.g., Drton and Perlman [5].

We denote the partial correlation coefficient matrix by

P Ω = −diag(ω11, . . . , ωp1p1)
−1/2Ω∗diag(ωp1+1p1+1, . . . , ωpp)−1/2
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Figure 1: Relevance of hypotheses (1) illustrated in the context of gene networks.

and note that the test of the hypotheses

H0 : P Ω = 0 vs. H1 : P Ω ̸= 0

is equivalent to the test of hypotheses (1) since Ω∗ = 0 is equivalent to Σ∗ = 0.

Drton and Perlman [5] and Wille et al. [16] considered pathway analysis

or graphical modeling of microarray data by testing an individual partial cor-

relation coefficient. For example, Wille et al. [16] analyzed gene networks of

microarray data with p = 834 (p1 = 39 and p2 = 795) and n = 118. In contrast,

Hero and Rajaratnam [8] considered correlation screening procedures for high-

dimensional data by testing correlations. Lan et al. [10] and Zhong and Chen

[20] considered tests of regression coefficient vectors in linear regression models.

As for tests of independence, see, among others, Fujikoshi et al. [7], Hyodo et

al. [9], Srivastava and Reid [13], and Yang and Pan [17]. Also, one may refer to

Székely and Rizzo [14, 15] for distance correlation.

In Section 2, we set the notation and state several assumptions required

for the construction of our high-dimensional correlation test of hypotheses (1).

In Section 3, we produce a test statistic for this problem by using the ECDM

methodology and show the unbiasedness of the ECDM estimator. We also show

that the ECDM estimator is consistent and asymptotically Normal when p→ ∞

and n → ∞. In Section 4, we propose a test procedure for (1) by the ECDM

estimator and evaluate its asymptotic size and power when p→ ∞ and n→ ∞
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theoretically and numerically. In Section 5, we give several applications of the

ECDM estimator. Finally, we demonstrate how the test procedure performs in

practice using microarray data.

2. Assumptions

In this section, we lay out the basic assumptions for the construction of our

test of hypotheses (1). The eigenvalue decomposition of Σ is denoted by Σ =

HΛH⊤, where Λ = diag(λ1, . . . , λp) and λ1 ≥ · · · ≥ λp ≥ 0 are the eigenvalues

of Σ, while H is an orthogonal matrix of the corresponding eigenvectors.

For all j ∈ {1, . . . , n}, let xj = HΛ1/2zj+µ, where E(zj) = 0 and var(zj) =

Ip, the identity matrix of dimension p. Note that if xj is Gaussian, the elements

of zj form a random sample from the standard Normal distribution, N (0, 1).

We assume that, for all j ∈ {1, . . . , n},

xj = Γwj + µ, (2)

where Γ is a p× q matrix for some q > 0 such that ΓΓ⊤ = Σ, and w1, . . . ,wn

form a random sample, so that for every j ∈ {1, . . . , n}, wj = (w1j , . . . , wqj)⊤,

E(wj) = 0 and var(wj) = Iq. Let Γ = (Γ⊤
1 ,Γ

⊤
2 )⊤, where for i ∈ {1, 2},

Γi = (γi1, . . . ,γiq) with γij ∈ Rpi , so that xij = Γiwj + µi. Note that

Σ∗ = Γ1Γ⊤
2 =

q∑
r=1

γ1rγ
⊤
2r.

Also note that Eq. (2) includes the case where Γ = HΛ1/2 and wj = zj . For

all r ∈ {1, . . . , q}, let var(w2
rj) = Mr and assume that lim supp→∞Mr <∞.

Following Aoshima and Yata [2] and Bai and Saranadasa [3], we assume

that:

(A1) For all r, s, t, u ∈ {1, . . . , q} with r ̸= s, t, u,

E(w2
rjw

2
sj) = E(w2

rj)E(w2
sj) = 1 and E(wrjwsjwtjwuj) = 0.

We also make the following assumption instead of (A1) whenever necessary:
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(A2) For all v ∈ {2, . . . , 8}, r1 ̸= r2 ̸= · · · ≠ rv ∈ [1, q] and α1, . . . , αv ∈ [1, 4]

with α1 + · · · + αv ≤ 8,

E(wα1
r1j · · ·w

αv
rvj) = E(wα1

r1j) · · ·E(wαv
rvj).

See Chen and Qin [4] and Zhong and Chen [20] concerning (A2). Note that

(A2) implies (A1). Further note that when xj is Gaussian, Γ = HΛ1/2 and

wj = zj in Eq. (2). In addition, (A2) is naturally satisfied when xj is Gaussian

because the elements of zj are independent and Mr = 2 for all r ∈ {1, . . . , q}.

Furthermore, we impose the following assumption on Σ1 and Σ2 whenever

required:

(A3) min
{ tr(Σ4

1)
tr(Σ2

1)2
,

tr(Σ4
2)

tr(Σ2
2)2

}
→ 0 as p→ ∞.

We note that if pi → ∞ and tr(Σ4
i )/tr(Σ

2
i )2 → 0 as p→ ∞, (A3) holds even

when pi′ is fixed for i′ ̸= i. Also note that “tr(Σ4
i )/tr(Σ

2
i )

2 → 0 as p → ∞”

is equivalent to “λmax(Σi)/tr(Σ2
i )

1/2 → 0 as p→ ∞,” where λmax(Σi) denotes

the largest eigenvalue of Σi. Let m = min(p, n) and ∆ = tr(Σ∗Σ⊤
∗ ) (= ||Σ∗||2F ),

where || · ||F is the Frobenius norm. We note that ∆ = 0 is equivalent to P = 0.

Finally, we also make either one of the following assumptions whenever the

need arises:

(A4)
tr(Σ2

1)tr(Σ
2
2)

n2∆2
→ 0 as m→ ∞;

(A5) lim sup
m→∞

{ n2∆2

tr(Σ2
1)tr(Σ

2
2)

}
<∞.

Note that (A5) holds under the null hypothesis H0 in Eq. (1). Also, note that

∆2{tr(Σ2
1)tr(Σ

2
2)}−1 ∈ [0, 1] from Eq. (A.1) in the Appendix. If ∆ is sufficiently

large to ensure that ∆−2tr(Σ2
1)tr(Σ

2
2) = O(1), then (A4) holds. If ∆ is small

enough that ∆ = O(1), (A5) holds when {tr(Σ2
1)tr(Σ

2
2)}−1 = O{(p1p2)−1} and

n = O{(p1p2)1/2}.

3. ECDM methodology

Yata and Aoshima [19] developed the ECDM methodology as an extension of

the CDM methodology given by Yata and Aoshima [18]. One of the advantages
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of the ECDM methodology is to produce an unbiased estimator having small

asymptotic variance at a low computational cost. See Section 2.5 of Yata and

Aoshima [19] for details. In this section, we propose a statistic for testing the

hypotheses (1) based on the ECDM methodology.

3.1. Unbiased estimator by ECDM

We consider an unbiased estimator of ∆ by the ECDM methodology. Let

n(1) = ⌈n/2⌉ and n(2) = n−n(1), where ⌈x⌉ denotes the smallest integer greater

than or equal to x. For every k ∈ {3, . . . , 2n− 1}, let

V n(1)(k) =

{⌊k/2⌋ − n(1) + 1, . . . , ⌊k/2⌋} if ⌊k/2⌋ ≥ n(1),

{1, . . . , ⌊k/2⌋} ∪ {⌊k/2⌋ + n(2) + 1, . . . , n} otherwise,

V n(2)(k) =

{⌊k/2⌋ + 1, . . . , ⌊k/2⌋ + n(2)} if ⌊k/2⌋ ≤ n(1),

{1, . . . , ⌊k/2⌋ − n(1)} ∪ {⌊k/2⌋ + 1, . . . , n} otherwise,

where ⌊x⌋ denotes the largest integer smaller than or equal to x. Let #A denote

the cardinality of the set A. Note that for all ℓ ∈ {1, 2} and k ∈ {3, . . . , 2n−1},

#V n(ℓ)(k) = n(ℓ), V n(1)(k) ∩ V n(2)(k) = ∅, V n(1)(k) ∪ V n(2)(k) = {1, . . . , n}.

Further note that

∀1≤i<j≤n i ∈ V n(1)(i+j) and j ∈ V n(2)(i+j). (3)

For all ℓ ∈ {1, 2} and k ∈ {3, . . . , 2n− 1}, let

xℓ(1)(k) =
1
n(1)

∑
j∈V n(1)(k)

xℓj and xℓ(2)(k) =
1
n(2)

∑
j∈V n(2)(k)

xℓj .

For every 1 ≤ i < j ≤ n, further let

∆̂ij = (x1i − x1(1)(i+j))⊤(x1j − x1(2)(i+j))(x2i − x2(1)(i+j))⊤(x2j − x2(2)(i+j)).

Then, in view of Eq. (3), for all 1 ≤ i < j ≤ n, we have the following facts:

(i) For all ℓ ∈ {1, 2}, xℓi − xℓ(1)(i+j) and xℓj − xℓ(2)(i+j) are independent.
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(ii) E(∆̂ij) = ∆{(n(1) − 1)(n(2) − 1)}/(n(1)n(2)).

Let

un =
n(1)n(2)

(n(1) − 1)(n(2) − 1)
. (4)

We propose to estimate ∆ by

T̂n =
2un

n(n− 1)

n∑
i<j

∆̂ij .

Then, we have that E(T̂n) = ∆.

Remark 1. One can save the computational cost of T̂n by using previously

calculated values of x1(i)(k) and x2(i)(k) for i ∈ {1, 2} and k ∈ {3, . . . , 2n − 1}.

Then, the computational cost of T̂n is of the order, O(n2p).

Set

x1n =
1
n

n∑
j=1

x1j , x2n =
1
n

n∑
j=1

x2j ,

and

S∗ =
1

n− 1

n∑
j=1

(x1j − x1n)(x2j − x2n)⊤.

Then tr(S∗S
⊤
∗ ) is a naive estimator of ∆ and under (A1),

E{tr(S∗S
⊤
∗ )} = ∆ +O{tr(Σ1)tr(Σ2)/n}.

Note that the bias term of tr(S∗S
⊤
∗ ) becomes very large as p increases. Srivas-

tava and Reid [13] suggested estimating ∆ by

∆̂SR =
(n− 1)2

(n− 2)(n+ 1)

{
tr(S∗S

⊤
∗ ) − tr(S1)tr(S2)

n− 1

}
when the underlying distribution is Gaussian, where S1 and S2 are the sample

covariance matrices. They showed that E(∆̂SR) = ∆. However, ∆̂SR can be

severely biased when the Gaussian assumption fails. In contrast, the proposed

estimator, T̂n, is always unbiased and one can claim that E(T̂n) = ∆ without

any assumptions.

Remark 2. We give the following Mathematica algorithm to calculate T̂n:

Input: Sample size n and n× pi data matrices X[1], X[2] such as for i ∈ {1, 2},

X[i] = (xi1, . . . ,xin)⊤.
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Mathematica code:

• n1 =Ceiling[n/2]; n2 = n−n1; u = 2∗n1∗n2/((n1−1)∗ (n2−1)∗n∗ (n−1))

• V[1, k−, X−] :=If [Floor[k/2] ≥ n1, Take[X, {Floor[k/2]−n1+1, Floor[k/2]}],

Join[Take[X, {1, Floor[k/2]}], Take[X, {Floor[k/2] + n2 + 1, n}] ] ]

• V[2, k−, X−] :=If [Floor[k/2] ≤ n1, Take[X, {Floor[k/2] + 1, Floor[k/2] +

n2}],

Join[Take[X, {1, Floor[k/2] − n1}, Take[X, {Floor[k/2] + 1, n}] ] ]

• Do[M[i, j, k] =Mean[V [j, k, X[i] ], {k, 3, 2 ∗ n − 1}, {i, 1, 2}, {j, 1, 2}]

• T = u∗Sum[(Part[X[1], i]−M[1, 1, i + j]).(Part[X[1], j]−M[1, 2, i + j])

∗(Part[X[2], i]−M[2, 1, i+j]).(Part[X[2], j]−M[2, 2, i+j]), {j, 2, n}, {i, 1, j−1}]

Then T = T̂n.

3.2. Asymptotic properties of T̂n

We first consider the consistency of T̂n in the sense that T̂n/∆ = 1+oP (1) as

m→ ∞. Let δ = n−1{2tr(Σ2
1)tr(Σ

2
2)}1/2. LetM ′

r = Mr−2 for all r ∈ {1, . . . , q}

and note that M ′
r = 0 when the underlying distribution is Gaussian. We have

the following result.

Lemma 3.1. Assume (A1). Then, as m→ ∞,

var(T̂n) =
{

4
tr(Σ1Σ∗Σ2Σ⊤

∗ ) + tr{(Σ∗Σ⊤
∗ )2} +

∑q
j=1M

′
j(γ

⊤
1jΣ∗γ2j)2

n

+ 2
∆2

n2
+ δ2

}
{1 + o(1)} +O

[{tr(Σ4
1)tr(Σ

4
2)}1/2

n2

]
.

Remark 3. When the underlying distribution is Gaussian and Σ∗ = 0, Srivas-

tava and Reid [13] showed that, as m→ ∞,

var(∆̂SR) = δ2{1 + o(1)}

under a certain regularity condition which is stronger than (A3). Note that

var(T̂n) given in Lemma 3.1 is asymptotically equivalent to var(∆̂SR) under

(A3) and Σ∗ = 0.

From Lemma 3.1, we can also deduce that T̂n is consistent, as stated next.
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Theorem 3.1. Assume (A1) and (A4). Then, as m→ ∞, T̂n/∆ = 1 + oP (1).

While consistency holds whenever (A4) is satisfied, we can show that T̂n is

asymptotically Normal under a different set of assumptions, as detailed below.

Lemma 3.2. Assume (A1), (A3) and (A5). Then, as m → ∞, var(T̂n) =

δ2{1 + o(1)}.

From Lemma 3.2, we have the asymptotic normality of T̂n as follows.

Theorem 3.2. Assume (A2), (A3) and (A5). Then, as m→ ∞

T̂n − ∆√
var(T̂n)

=
T̂n − ∆

δ
+ oP (1) N (0, 1),

where  denotes convergence in distribution and N (0, 1) denotes a random

variable distributed as the standard Normal distribution.

3.3. Estimation of tr(Σ2
i )

Given that tr(Σ2
1) and tr(Σ2

2) are unknown in δ, it is necessary to estimate

them to construct a test of the hypotheses (1). Following Yata and Aoshima

[19], an estimator of tr(Σ2
i ) is given, for i ∈ {1, 2}, by

Win =
2un

n(n− 1)

n∑
r<s

{
(xir − xi(1)(r+s))⊤(xis − xi(2)(r+s))

}2
.

Note that E(Win) = tr(Σ2
i ). From Lemma 3.1, we have the following result.

Lemma 3.3. Assume (A1). Then, for i ∈ {1, 2}, as m→ ∞,

var
{ Win

tr(Σ2
i )

}
=

[ 4
ntr(Σ2

i )2

{
2tr(Σ4

i ) +
q∑

j=1

M ′
j(γ

⊤
ijΣiγij)

2
}

+
4
n2

]
{1 + o(1)} → 0.

Remark 4. In Section 2.5 of Yata and Aoshima [19], they compared Win with

other estimators of tr(Σ2
i ) theoretically and computationally. They showed that

Win has small asymptotic variance at a low computational cost.

Let δ̂ = n−1(2W1nW2n)1/2. Then, by combining Theorem 3.2 with Lemma 3.3,

we have the following result.
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Corollary 3.1. Assume (A2), (A3) and (A5). Then, as m→ ∞, (T̂n − ∆)/δ̂  
N (0, 1).

As an illustration, we consider a simple example in which

p1 = p2, µ = 0, Σ1 = (0.3|i−j|1/3
), Σ2 = (0.4|i−j|1/3

), Γ = HΛ1/2.

For i ∈ {1, 2}, let Σi = HiΛiH
⊤
i , where Λi = diag(λi1, . . . , λipi) with eigenval-

ues λi1 ≥ · · · ≥ λipi ≥ 0, and Hi is an orthogonal matrix with the corresponding

eigenvectors. We consider two scenarios:

(a) ∆ = 0, in which case

x1j = H1Λ
1/2
1 (w1j , . . . , wp1j)⊤, x2j = H2Λ

1/2
2 (wp1+1j , . . . , wpj)⊤.

(b) ∆ = λ13λ23 , in which case

x1j = H1Λ
1/2
1 (w1j , . . . , wp1j)⊤

x2j = H2Λ
1/2
2 (wp1+1j , wp1+2j , w3j , wp+4j , . . . , wpj)⊤.

For each choice of (p, n) ∈ {(10, 25), (200, 50), (4000, 150)}, vectors x1, . . . ,xn

were generated independently from a pseudo-random Normal distribution with

mean vector zero and covariance matrix Σ. Note that (A2), (A3) and (A5) hold

from the fact that ∆ = O(1).

Displayed in Figure 2 are two histograms of 2000 independent outcomes

of T̂n/δ̂ in scenarios (a), (b), and (p, n), together with probability densities of

N (0, 1) and N (∆/δ, 1). From Corollary 3.1, we expect that T̂n/δ̂ is close to

N (0, 1) when ∆ = 0 and N (∆/δ, 1) when ∆ ̸= 0. When (p, n) = (10, 25), the

histograms detract considerably from the asymptotic densities. When (p, n) =

(200, 50), the histogram for (a) approaches the N (0, 1) fairly well. However, the

histogram for (b) is still far from the N (∆/δ, 1). This is because the convergence

in Lemma 3.2 is slow for ∆ ̸= 0 compared to ∆ = 0. As expected, both the his-

tograms match the limiting distributions very closely when (p, n) = (4000, 150).

For other simulation settings such as p1 = p − 1 and p2 = 1, see Section 2 of

Yata and Aoshima [19].
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(p, n) = (10, 25) (p, n) = (200, 50) (p, n) = (4000, 150)

Figure 2: The solid lines are probability densities of N (0, 1) and N (∆/δ, 1). The histograms

of T̂n/δ̂ for cases of (a) ∆ = 0 and (b) ∆ ̸= 0 fit the solid lines with increasing dimension and

sample size: (p, n) = (10, 25), (200, 50) and (4000, 150).

4. Test of high-dimensional correlations

In this section, we propose a test of the hypotheses (1) in high-dimensional

settings.

4.1. Test procedure for hypotheses (1)

Let α ∈ (0, 1/2) be a prespecified constant. Let zα be a constant such that

Pr{N (0, 1) > zα} = α. From Corollary 3.1, we propose to

rejecting H0 ⇔ T̂n/δ̂ > zα. (5)

Then, we have the following result.

Theorem 4.1. Under (A2) and (A3), the size Π0 and power Π of testing pro-

cedure (5) are such that

Π0 = α+ o(1) and Π(∆⋆) − Φ
(∆⋆

δ
− zα

)
= o(1),

where Φ denotes the cumulative distribution function of N (0, 1) and Π(∆⋆)

denotes the power when ∆ = ∆⋆ for given ∆⋆ > 0.

When (A4) is met, we have the following result from Theorem 3.1.

Corollary 4.1. Assume (A1) and (A4) under H1. Then the test (5) is such

that, for any ∆ > 0, as m→ ∞, Π(∆) = 1 + o(1).

11



Remark 5. Let

K =
{

4
tr(Σ1Σ∗Σ2Σ⊤

∗ ) + tr{(Σ∗Σ⊤
∗ )2} +

∑q
j=1M

′
j(γ

⊤
1jΣ∗γ2j)2

n
+ 2

∆2

n2
+ δ2

}1/2

.

Then, from Lemma 3.1, one has var(T̂n)K−2 → 1 as m → ∞ under (A1) and

(A3). Hence, from Theorem 3.2, one may write the power in Theorem 4.1 as

Π(∆⋆) − Φ
(∆⋆

K
− zαδ

K

)
= o(1).

4.2. Simulation

In order to study the performance of the test (5), we used computer simula-

tions. We set α = 0.05, p1 = p2, µ = 0,

Σ1 = B(0.3|i−j|1/3
)B, Σ2 = B(0.4|i−j|1/3

)B, Γ = HΛ1/2,

where

B = diag[{0.5 + 1/(p1 + 1)}1/2, . . . , {0.5 + p1/(p1 + 1)}1/2].

Note that for i ∈ {1, 2}, tr(Σi) = pi. We set (a) ∆ = 0 and (b) ∆ = λ13λ23,

which are the same settings as in Figure 2. We considered three distributions

for x1, . . . ,xn, namely

(I) Np(0,Σ);

(II) for all r ∈ {1, . . . , q}, wrj = 2−1/2(vrj − 1), where vrjs are i.i.d. as χ2
(1),

the chi-squared distribution with 1 degree of freedom;

(III) wjs are i.i.d. as p-variate t-distribution, tp(ν), with mean zero, covariance

matrix Ip and degrees of freedom ν = 10.

Note that (A2) is met in (I) and (II). However, (A1) — or (A2) — is not met in

scenario (III). We set p = 2s (s ∈ {4, . . . , 11}) and n = 4⌈p1/2
1 ⌉. We note that

(A3) and (A5) hold for (a) and (b).

We compared the performance of T̂n with ∆̂SR/δ̂SR of Srivastava and Reid

[13], where, for i ∈ {1, 2},

δ̂SR = {2W1(SR)W2(SR)}1/2/n,

Wi(SR) = (n− 1)2{(n− 2)(n+ 1)}−1{tr(S2
i ) − (n− 1)−1tr(Si)2}.
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Srivastava and Reid [13] showed that ∆̂SR/δ̂SR is asymptotically Normal when

the underlying distribution is Gaussian and ∆ = 0. Also, note that E(∆̂SR) = ∆

only under the Gaussian assumption. In contrast, from Corollary 3.1, T̂n/δ̂ is

asymptotically Normal even for non-Gaussian situations and ∆ ̸= 0. Also, one

can claim that E(T̂n) = ∆ without any assumptions such as (A1).

Figure 3 summarizes the findings obtained by averaging the outcomes from

4000 (= 2R, say) replications for scenarios (I)–(III). Here, the first 2000 repli-

cations were generated for (a) when ∆ = 0 and the last 2000 replications were

generated for (b) when ∆ ̸= 0. We defined Pr = 1 (or 0) when H0 was falsely

rejected (or not) for all r ∈ {1, . . . , 2000}, and when H1 was falsely rejected (or

not) for all r ∈ {2001, . . . , 4000}. We used

α =
1
R

R∑
r=1

Pr and 1 − β = 1 − 1
R

2R∑
r=R+1

Pr

to estimate the size in the left panels, and the power in the right panels, respec-

tively. Their standard deviations are less than 0.011.

Let L = Φ(∆K−1 − zαδK
−1). From Theorem 4.1, and in view of Remark 5,

we expected that α and 1−β for (5) would be close to 0.05 and L, respectively.

Figure 4 exhibits the averages (in the left panels) and the sample variances (in

the right panels) of T̂n/∆ and ∆̂SR/∆ for the outcomes of (b) when ∆ ̸= 0 in

scenarios (I)–(III). From Remark 5, the asymptotic variance for T̂n/∆ was given

by K2/∆2.

From Figures 3 and 4, we observe that ∆̂SR performs well in the Gaussian

case. However, for non-Gaussian cases such as (II) and (III), ∆̂SR does not do

so well and was particularly bad under scenario (III). This is probably because

(A1) — or (A2) — is not met in scenario (III). In contrast, the behavior of T̂n

was adequate for high-dimensional cases, even in the non-Gaussian situations.

We further note that T̂n is quite robust against other non-Gaussian situations.

Therefore, we can recommend to use T̂n for testing hypotheses (1) and for the

estimation of ∆.

13



(I) Np(0,Σ).

(II) The chi-squared distribution with 1 degree of freedom.

(III) tp(10).

Figure 3: The values of α are denoted by the dashed lines in the left panels and the values of

1 − β are denoted by the dashed lines in the right panels for the tests by (5) and ∆̂SR/δ̂SR

(SR) in scenarios (I)–(III). The asymptotic powers were given by L = Φ(∆K−1 − zαδK−1),

which was denoted by the solid lines in the right panels.
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(I) Np(0,Σ).

(II) The chi-squared distribution with 1 degree of freedom.

(III) tp(10).

Figure 4: The averages of T̂n/∆ and ∆̂SR/∆ are denoted by the dashed lines in the left

panels and their sample variances, V (T̂n/∆) and V (∆̂SR/∆), are denoted by the dashed lines

in the right panels for (b) in scenarios (I)–(III). The asymptotic variance of T̂n/∆ was given

by K2/∆2, which was denoted by the solid lines in the right panels.
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5. Applications

In this section, we give several applications of the results stated in Section 3.

5.1. Confidence interval for ∆

A confidence interval of asymptotic level α ∈ (0, 1) for ∆ is given by

I = [max{T̂n − zα/2δ̂, 0}, T̂n + zα/2δ̂].

Indeed, from Corollary 3.1, one has, as m→ ∞,

Pr(∆ ∈ I) = 1 − α+ o(1)

under (A2), (A3) and (A5). Hence, one can estimate ∆ by I. If one considers

Σ0 as a candidate of Σ∗, one can check whether Σ0 is a valid candidate or not

according as ||Σ0||2F ∈ I or not.

5.2. Checking whether (A4) holds or not

As discussed in Section 3, T̂n is consistent when (A4) is met, and T̂n is

asymptotically Normal when (A5) is met. Here, we propose a method to check

whether (A4) holds or not.

Let κ̂ = W1nW2n(nT̂n)−2. We have the following result.

Proposition 5.1. Assume (A1). Then, as m→ ∞,

κ̂ = oP (1) under (A4); κ̂−1 = OP (1) under (A5).

From Proposition 5.1, one can distinguish (A4) and (A5). If κ̂ is sufficiently

small, one may call on (A4); otherwise one can invoke (A5).

5.3. Estimation of the RV-coefficient

Let ρ = ∆{tr(Σ2
1)tr(Σ

2
2)}−1/2. Here, ρ is the (population) RV-coefficient,

which is a multivariate generalization of the squared Pearson correlation coeffi-

cient. Note that ρ ∈ [0, 1]; see Robert and Escoufier [11] for details. Smilde et

al. [12] considered the RV-coefficient for high-dimensional data.

Let ρ̂ = T̂n(W1nW2n)−1/2. We then have the following result.
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Proposition 5.2. Assume (A1). Then, as m→ ∞,

ρ̂ = ρ+OP (1/n+ ρ/n1/2) +OP

[{ tr(Σ1Σ∗Σ2Σ⊤
∗ )

tr(Σ2
1)tr(Σ

2
2)n

}1/2]
= ρ+OP (n−1/2).

Thus, one can estimate the RV coefficient by ρ̂ for high-dimensional data.

5.4. Test of high-dimensional covariance structures

We consider testing

H0 : Σ∗ = Σ0 vs. H1 : Σ∗ ̸= Σ0, (6)

where Σ0 is a candidate covariance structure. Let ∆0 = ||Σ∗ − Σ0||2F and

∆̂ij,0 = un∆̂ij − n(1)(x1i − x1(1)(i+j))⊤Σ0(x2i − x2(1)(i+j))/(n(1) − 1)

−n(2)(x1j − x1(2)(i+j))⊤Σ0(x2j − x2(2)(i+j))/(n(2) − 1),

where un is defined as in Eq. (4). Note that

E(∆̂ij,0) = ||Σ∗||2F − 2tr(Σ⊤
∗ Σ0) = ∆0 − ||Σ0||2F .

Then, we can test hypotheses (6) using the statistic

T̂n,0 =
2

n(n− 1)

n∑
i<j

∆̂ij,0 + ||Σ0||2F .

Note that E(T̂n,0) = ∆0.

Let Σ∗0 = Σ∗ − Σ0. Then, we have the following result.

Lemma 5.1. Assume (A1). Then, as m→ ∞,

var(T̂n,0) =
[
4
tr(Σ1Σ∗0Σ2Σ⊤

∗0) + tr{(Σ∗Σ⊤
∗0)

2} +
∑q

j=1M
′
j(γ

⊤
1jΣ∗0γ2j)2

n

+ 2
∆2

n2
+ δ2

]
{1 + o(1)} +O

[{tr(Σ4
1)tr(Σ

4
2)}1/2

n2

]
.

From Lemma 5.1, Theorems 3.1 and 3.2, we have the following results.

Corollary 5.1. Assume (A1). Assume also (A4) with ∆ = ∆0. Then, as

m→ ∞, T̂n,0/∆0 = 1 + oP (1).
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Corollary 5.2. Assume (A2) and (A3). Assume also (A5) with ∆ = ∆0.

Then, as m→ ∞,
T̂n,0 − ∆0

(δ2 + 2∆2/n2)1/2
 N (0, 1).

Hence, from Lemma 3.3 and Corollary 5.2, we can test (6) by

rejecting H0 ⇔ T̂n,0/(δ̂2 + 2||Σ0||4F /n2)1/2 > zα.

Under (A2) and (A3), the size of this test is α+ o(1), as m→ ∞.

6. Application

In this section, we demonstrate how the proposed test procedures perform in

practice using microarray data. We analyzed gene expression data of Arabidopsis

thaliana given by Wille et al. [16] in which the data set consists of 118 samples

having 834 (= p) genes: 39 (= p1) isoprenoid genes and 795 (= p2) additional

genes. All the data were logarithmic transformed. Wille et al. [16] considered

a genetic network between the two sets of genes. By using graphical Gaussian

modeling, they constructed the isoprenoid gene network given in Figure 2 of

[16]. In Figure 5, we illustrate the isoprenoid gene network and the additional

genes.

We first consider testing (1) using (5). See Figure 1 for illustration. Let

α = 0.05. We found T̂n = 352.5 and δ̂ = 7.296, so that T̂n/δ̂ = 48.3. From

(5) and zα = 1.645, we are led to reject H0 and to conclude that the two

networks are connected. In addition, we found κ̂ = 0.000214. Thus, with the

help of Proposition 5.1 one may conclude that (A4) is met, so that the power

of the test is 1 asymptotically and T̂n/∆ = 1 + oP (1) from Theorem 3.1 and

Corollary 4.1. Also, with the help of Proposition 5.2 we found ρ̂ = 0.579 as an

estimate of the RV-coefficient.

Next, we considered testing hypotheses (1) between some part of the iso-

prenoid genes and the additional genes. The isoprenoid genes consisted of three

types as the MEP pathway (19 genes), the MVA pathway (15 genes) and mito-

chondrion (5 genes). See [16] for details. From Figure 5 we expect that (i) the
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Figure 5: Illustration of the isoprenoid gene network given by Figure 2 in Wille et al. [16]

and the additional genes, where DXPS1, PPDS1 and so on, are names of genes. DPPS2 is

connected with both the MEP pathway and the MVA pathway. Other genes of mitochondrion

are not connected with either the MEP pathway or the MVA pathway.

correlation between DPPS2 and the additional genes is high, and (ii) the corre-

lation between the genes of mitochondrion (except DPPS2) and the additional

genes is low. We set x2j as the additional genes (p2 = 795). We considered three

tests for x1j : (a) the genes of mitochondrion (p1 = 5); (b) DPPS2 (p1 = 1); and

(c) UPPS1, GGPPS1, 5, 9 (p1 = 4). By using the first 50 samples (n = 50) of

the 118 samples, we constructed (5). At level α = 0.05, we can then reject H0

for (a) since T̂n/δ̂ = 12.27 and for (b) since T̂n/δ̂ = 13.23. On the other hand,

we fail to reject H0 for (c) since T̂n/δ̂ = 1.417. Hence, we could conclude (i)

and (ii).

We also considered the correlation test for the genes of mitochondrion by

the multiple testing procedure with FWER ≤ 0.05 given by (22) in Yata and

Aoshima [19]. This led to the conclusion that UPPS1 and DPPS2 have corre-

lations with the additional genes, that is (ii) fails the multiple test.

Proceeding as in Section 5 in [19], we also considered a high-dimensional

linear regression model, viz.

Y = XΘ + E,

where Y is an n× p2 response matrix, X is an n× k fixed design matrix, E is

an n× p2 error matrix with mean zero, and Θ is a k × p2 parameter matrix.

Let x1j be the jth sample of the 35 isoprenoid genes (except UPPS1, and

GGPPS1, 5, 9). For each j ∈ {1, . . . , 118}, let x1(j) = (1,x⊤
1j)

⊤. We set Y =
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(x21, . . . ,x2n)⊤ and X = (x1(1), . . . ,x1(n))⊤ with k = 36. We note that the

standard elements of Θ are path coefficients from the isoprenoid genes to the

additional genes. By using the first 50 observations as a training data set, we

obtained the least squared estimator of Θ by Θ̂ = (X⊤X)−1X⊤Y .

We investigated the prediction accuracy of the regression with Θ̂ by using

the remaining 68 observations (68 = 118 − 50) as a test data set. To this end,

we used the prediction mean squared error (PMSE), viz.

E(||x2j − Θ̂
⊤

x1(j)||2|Θ̂).

By using the test samples x1(j) and x2j for j ∈ {51, . . . , 118}, we applied the

bias-corrected and accelerated (BCa) bootstrap by Efron [6]. Then, we con-

structed a 95% confidence interval (CI) of the PMSE by [837.6, 1189.5] from

10,000 replications. On the other hand, we considered the PMSE for the full

isoprenoid (39 genes). Then, similar to above, we constructed 95% CI of the

PMSE by [1088.7, 1581.3]. The PMSE by the 35 isoprenoid genes is probably

smaller than that of the full isoprenoid genes. Thus we conclude that the test

(5) effectively works for this data set.

Appendix: Proofs

Throughout, we assume that µ1 = 0 and µ2 = 0 without loss of generality.

Let Υ = tr(Σ1Σ∗Σ2Σ⊤
∗ ), Ψ = tr(Σ2

1)tr(Σ
2
2) and Ω = tr(Σ4

1)tr(Σ
4
2). Note that

q∑
i=1

(γ⊤
1iΣ∗γ2i)

2 ≤
q∑

i,j

(γ⊤
1iΣ∗γ2j)

2 = Υ;

tr{(Σ∗Σ⊤
∗ )2} =

q∑
i,j

(γ⊤
1iΣ∗γ2j)(γ

⊤
1jΣ∗γ2i) ≤

q∑
i,j

(γ⊤
1iΣ∗γ2j)

2 = Υ;

∆ =
q∑

i,j

(γ⊤
1iγ1jγ

⊤
2iγ2j) ≤

2∏
ℓ=1

{ q∑
i,j

(γ⊤
ℓiγℓj)

2
}1/2

= Ψ1/2; and

Υ =
q∑

i,j

(γ⊤
1iΣ1γ1j)(γ

⊤
2iΣ2γ2j) ≤

2∏
ℓ=1

{ q∑
i,j

(γ⊤
ℓiΣℓγℓj)

2
}1/2

= Ω1/2 ≤ Ψ (A.1)
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from the fact that for i ∈ {1, 2}, tr(Σ4
i ) ≤ tr(Σ2

i )
2. Then, we note that K2 =

O(Ψn−2 + Υn−1), where K is given in Remark 5. Let yij = un∆̂ij − ∆ and

εij = x⊤
1ix1jx

⊤
2ix2j − ∆ for all i < j. Note that

T̂n − ∆ =
2

n(n− 1)

n∑
i<j

yij .

For all i ̸= j, let

ηij =
q∑

r ̸=s

q∑
t=1

γ⊤
1rγ1tγ

⊤
2sγ2twriwsi(w2

tj − 1),

ψij =
q∑

r,t

γ⊤
1rγ1tγ

⊤
2rγ2t(w

2
ri − 1)(w2

tj − 1),

and

ϕij =
q∑

r ̸=s

q∑
t̸=u

γ⊤
1rγ1tγ

⊤
2sγ2uwriwsiwtjwuj .

Note that E(ϕij) = 0 for all i ̸= j and E(ϕijϕi′j) = 0 for all i ̸= i′ ̸= j. Let

Un =
2

n(n− 1)

n∑
i<j

εij , Vn =
2

n(n− 1)

n∑
i<j

ϕij

and B = E(ϕ2
ij) for any i ̸= j. Furthermore, for all i < j, set

Σ̂∗,ij(1) = n(1)(n(1) − 1)−1(x1i − x1(1)(i+j))(x2i − x2(1)(i+j))⊤

and

Σ̂∗,ij(2) = n(2)(n(2) − 1)−1(x1j − x1(2)(i+j))(x2j − x2(2)(i+j))⊤.

Proof of Lemma 3.1. For all i < j, write

yij = tr{(Σ̂∗,ij(1)−Σ∗)(Σ̂∗,ij(2)−Σ∗)⊤}+tr(Σ̂∗,ij(1)Σ
⊤
∗ )+tr(Σ̂∗,ij(2)Σ

⊤
∗ )−2∆

and

εij = ϕij + ηij + ηji + ψij + tr(x1ix
⊤
2iΣ

⊤
∗ ) + tr(x1jx

⊤
2jΣ

⊤
∗ ) − 2∆. (A.2)

For all i < j, we note that ϕij , ηij , ηji and ψij are uncorrelated under (A1).

Also note that
q∑

i=1

(γ⊤
1iΣ1γ1i)(γ

⊤
2iΣ2γ2i) ≤

q∑
i,j

|(γ⊤
1iΣ1γ1j)(γ

⊤
2iΣ2γ2j)| ≤ Ω1/2.
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Under (A1), one then has, for all i ̸= j,

E(ψ2
ij) = O

{ q∑
r,t

(γ⊤
1rγ1tγ

⊤
2rγ2t)

2
}

= O
( q∑

r=1

γ⊤
1rΣ1γ1rγ

⊤
2rΣ2γ2r

)
= O(Ω1/2).

Similarly, under (A1), one also has E(η2
ij) = O(Ω1/2) for all i ̸= j. Then, we

have that under (A1), for all i < j,

E(ε2ij) = Ψ + ∆2 +O(Υ + Ω1/2);

and for all i < j < k,

E(εijεik) = E(εikεjk) = var{tr(x1ix
⊤
2iΣ

⊤
∗ )}

= Υ + tr{(Σ∗Σ⊤
∗ )2} +

q∑
r=1

(Mr − 2)(γ⊤
1rΣ∗γ2r)

2.

We also have that under (A1), for all i < j and k < ℓ; i ̸= j ̸= k ̸= ℓ,

E(εijεkℓ) = 0. Then, under (A1), we have, as m→ ∞,

var(Un) = E(U2
n) = K2{1 + o(1)} +O(Ω1/2/n2) = O(K2) (A.3)

On the other hand, we have that under (A1), for all i < j, E{(yij − εij)2} =

O(Ψ/n); and for all i < j < k,

E{(yij − εij)(yik − εik)} = O(Ψ/n2 + Υ/n),

E{(yik − εik)(yjk − εjk)} = O(Ψ/n2 + Υ/n).

We also have that under (A1), for all i < j and k < ℓ; i ̸= j ̸= k ̸= ℓ,

E{(yij − εij)(ykℓ − εkℓ)} = O(Ψ/n3 + Υ/n2).

Then, under (A1), we have that, as m→ ∞,

var(Un − T̂n) = E[{Un − (T̂n − ∆)}2] = o(K2). (A.4)

Hence, by combining Eq. (A.3) with Eq. (A.4), we have that under (A1), as

m→ ∞,

var(T̂n) = var(Un) + var(Un − T̂n) − 2E[{Un − (T̂n − ∆)}Un]

= K2{1 + o(1)} +O(Ω1/2/n2)
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from the facts that var(T̂n) = E[{(T̂n − ∆) − Un + Un}2] and

|E[{Un − (T̂n − ∆)}Un]| ≤ {var(Un − T̂n)var(Un)}1/2

by the Cauchy–Schwarz inequality. This concludes the argument.

Proof of Lemma 3.2. Let r∗ = rank(Σ1/2
1 Σ∗). When we consider the singular

value decomposition of Σ1/2
1 Σ∗, it follows that Σ1/2

1 Σ∗ =
∑r∗

j=1 λ∗jh∗j(1)h
⊤
∗j(2),

where λ∗1 ≥ · · · ≥ λ∗r∗ > 0 denote the singular values of Σ1/2
1 Σ∗ and for each

j ∈ {1, . . . , r∗}, h∗j(1) (or h∗j(2)) denotes a unit left- (or right-) singular vector

corresponding to λ∗j . Note that Υ = tr(Σ1/2
1 Σ∗Σ2Σ⊤

∗ Σ1/2
1 ). Then

Υ = tr
{( r∗∑

j=1

λ∗jh∗j(1)h
⊤
∗j(2)

)
Σ2

( r∗∑
j=1

λ∗jh∗j(2)h
⊤
∗j(1)

)}
=

r∗∑
j=1

λ2
∗jh

⊤
∗j(2)Σ2h∗j(2) ≤ λmax(Σ2)

r∗∑
j=1

λ2
∗j = λmax(Σ2)tr(Σ⊤

∗ Σ1Σ∗).

Similarly, we can see that tr(Σ⊤
∗ Σ1Σ∗) ≤ λmax(Σ1)tr(Σ⊤

∗ Σ∗) = λmax(Σ1)∆,

so that

Υ ≤ λmax(Σ1)λmax(Σ2)∆. (A.5)

Thus under (A3), one has Υ = o(∆Ψ1/2) as p → ∞. It follows that nΥΨ−1 =

o(n∆Ψ−1/2), so that under (A3) and (A5), as m→ ∞,

nΥΨ−1 = o(1). (A.6)

By noting that
q∑

i=1

(γ⊤
1iΣ∗γ2i)

2 ≤ Υ, tr{(Σ∗Σ⊤
∗ )2} ≤ Υ,

from Lemma 3.1 and Eq. (A.6), we see that, as m→ ∞, var(T̂n)/δ2 = 1 + o(1)

under (A1), (A3) and (A5) from the fact that ∆2Ψ−1 = o(1) under (A5).

Proof of Theorem 3.1. It follows from Eq. (A.5) that Υ ≤ Ψ1/2∆, and hence

K2 = O(Ψn−2 + Ψ1/2∆n−1). From Lemma 3.1 and the fact that Ω1/2 ≤ Ψ, it

follows that, as m → ∞, var(Tn∆−1) = O{(n2∆2)−1Ψ + (n∆)−1Ψ1/2} under

(A1). Thus, under (A4), Chebyshev’s inequality’s allows us to conclude.
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The following lemmas are instrumental in the proof of Theorem 3.2.

Lemma A.1. Under (A2), one has

(i) E(ϕ2
ijϕ

2
i′j) = O(Ψ2) for all i, i′ ̸= j;

(ii) E(ϕijϕi′jϕij′ϕi′j′) = O(Ω) for all i ̸= i′ ̸= j ̸= j′.

Proof. To prove (i), let ζrstu = γ⊤
1rγ1tγ

⊤
2sγ2u for all r, s, t, u. Let also

A1 =
q∑

r ̸=s

q∑
t̸=u

ζrstu(ζrstu + ζsrtu + ζrsut + ζsrut)w2
riw

2
siw

2
tjw

2
uj

and A2 = ϕ2
ij −A1 for i ̸= j. Note that E(A1) = B and E(A2) = 0 under (A2).

We can see that
q∑

r ̸=s

q∑
t̸=u

(ζ2
rstu + ζ2

srtu + ζ2
rsut + ζ2

srut) = O(Ψ),

and hence
q∑

r ̸=s

q∑
t̸=u

(|ζrstu| + |ζsrtu| + |ζrsut| + |ζsrut|)2 = O(Ψ).

Then, under (A2), we have

E(A2
1) ≤ E

{( q∑
r ̸=s

q∑
t̸=u

(|ζrstu| + |ζsrtu| + |ζrsut| + |ζsrut|)2w2
riw

2
siw

2
tjw

2
uj

)2}
= O(Ψ2). (A.7)

For E(A2
2), it is necessary to consider the terms of w3

riw
3
r′iw

2
r′′i (r ̸= r′ ̸= r′′)

because it does not hold that E(w3
riw

3
r′iw

2
r′′i) = 0 (r ̸= r′ ̸= r′′) unless E(w3

ri) =

0 or E(w3
r′i) = 0. Here, under (A2), we can assert that for sufficiently large
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C > 0,∣∣∣E( q∑
r ̸=r′ ̸=r′′

q∑
t̸=u

ζrr′tuζrr′′tu

q∑
t′ ̸=u′

ζrr′t′u′ζr′r′′t′u′w3
riw

3
r′iw

2
r′′iw

2
tjw

2
ujw

2
t′jw

2
u′j

)∣∣∣
≤ C

q∑
r ̸=r′ ̸=r′′

q∑
t̸=u

|ζrr′tuζrr′′tu|
q∑

t′ ̸=u′

|ζrr′t′u′ζr′r′′t′u′ |

≤ C

q∑
r,r′,r′′

{( q∑
t,u

ζ2
rr′tu

)( q∑
t,u

ζ2
rr′′tu

)}1/2{( q∑
t,u

ζ2
rr′tu

)( q∑
t,u

ζ2
r′r′′tu

)}1/2

≤ C
{ q∑

r,r′,r′′

( q∑
t,u

ζ2
rr′tu

)( q∑
t,u

ζ2
rr′′tu

)}1/2{ q∑
r,r′,r′′

( q∑
t,u

ζ2
rr′tu

)( q∑
t,u

ζ2
r′r′′tu

)}1/2

≤ C
( q∑

r,r′

q∑
t,u

ζ2
rr′tu

)( q∑
r,r′′

q∑
t,u

ζ2
rr′′tu

)1/2( q∑
r′,r′′

q∑
t,u

ζ2
r′r′′tu

)1/2

= O(Ψ2),

where the fact that |E(w3
ri)| ≤ {E(w4

ri)E(w2
ri)}1/2 ≤M

1/2
r for all r ∈ {1, . . . , q}

has been used. Similarly, for other terms, we can evaluate the order to be

O(Ψ2). Hence, we can claim that E(A2
2) = O(Ψ2) under (A2), so that E(ϕ4

ij) =

O{E(A2
1) + E(A2

2)} = O(Ψ2) from Eq. (A.7). Finally, noting that

E(ϕ2
ijϕ

2
i′j) ≤ {E(ϕ4

ij)E(ϕ4
i′j)}1/2,

we conclude that (i) holds.

To show (ii), note that from Eq. (A.1), we have that, under (A2),

E(ϕijϕi′jϕij′ϕi′j′) = O(Ω) +O(Υ2) = O(Ω)

for all i ̸= i′ ̸= j ̸= j′. This is enough to conclude.

Lemma A.2. Under (A1), (A3) and (A5), one has, as m→ ∞, var(T̂n−Vn) =

o(δ2).

Proof. From Eq. (A.2), we have that under (A1),

E{(ϕij − εij)2} = O(Υ + Ω1/2) for all i ̸= j;

E{(ϕij − εij)(ϕik − εik)} = O(Υ) for all i ̸= j ̸= k;

and E{(ϕij − εij)(ϕkℓ − εkℓ)} = 0 for all i ̸= j ̸= k ̸= ℓ.
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Then, from Eq. (A.6), we have, under (A1), (A3) and (A5), that as m→ ∞,

var(Un − Vn) = O(Υ/n+ Ω1/2/n2) = o(δ2). (A.8)

By combining Eq. (A.8) with Eq. (A.4), and using the fact that var(T̂n −Vn) =

O{var(T̂n − Un) + var(Un − Vn)}, we can conclude.

Proof of Theorem 3.2. For each j ∈ {2, . . . , n}, let

vj =
2

n(n− 1)

j−1∑
i=1

ϕij .

Note that
n∑

j=2

vj =
2

n(n− 1)

n∑
i<j

ϕij = Vn

and that, for all j ∈ {3, . . . , n}, E(vj |vj−1, . . . , v2) = 0.

Now for each j ∈ {2, . . . , n}, let ξj = vj [2B{n(n− 1)}−1]−1/2. Note that
n∑

j=2

E(ξ2j ) = 1, var
( n∑

j=2

ξj

)
= 1

from the fact that var(
∑n

j=2 vj) = 2B/{n(n−1)}. Let I(·) denote the indicator

function. By noting that
q∑

i=1

(γ⊤
1iΣ1γ1i)(γ

⊤
2iΣ2γ2i) ≤ Ω1/2

from Eq. (A.1), we can deduce, under (A2) and (A3), that as p→ ∞,

B = Ψ + ∆2 +O(Ω1/2) = Ψ{1 + o(1)} + ∆2. (A.9)

Then, by using Chebyshev’s inequality and the Cauchy–Schwarz inequality,

from Lemma A.1, under (A2) and (A3), the Lindeberg condition holds that,

as m→ ∞,
n∑

j=2

E{ξ2j I(ξ2j ≥ τ)} ≤
n∑

j=2

E(ξ4j )
τ

= O
( Ψ2

B2n

)
→ 0 (A.10)

for any τ > 0. Hence, from Lemma A.1, Eq. (A.9) and Eq. (A.10), we deduce

that under (A2) and (A3), as m→ ∞,∑
2≤i<j≤n

E[{ξ2i − E(ξ2i )}{ξ2j − E(ξ2j )}] = O
( Ψ2

B2n
+

Ω
B2

)
→ 0
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and
n∑

j=2

E[{ξ2j − E(ξ2)}2] ≤
n∑

j=2

E(ξ4j ) → 0,

so that

var
( n∑

j=2

ξ2j

)
= E

[{ n∑
j=2

{ξ2j − E(ξ2j )}
}2]

→ 0. (A.11)

Note that

var(T̂n)1/2[2B{n(n− 1)}−1]−1/2 = δ[2B{n(n− 1)}−1]−1/2 + o(1) → 1

and T̂n − ∆ = Vn + oP (δ) as m → ∞ under (A2), (A3) and (A5) from Lem-

mas 3.2 and A.2. Then, proceeding as in the proof of Theorem 2.1 in [19],

from Eq. (A.10) and Eq. (A.11), under (A2), (A3) and (A5), we obtain that, as

m→ ∞,

T̂n − ∆√
var(T̂n)

=
T̂n − ∆

δ
+ oP (1) =

n∑
j=2

ξj + oP (1) ⇒ N (0, 1). (A.12)

This concludes the argument.

Proof of Lemma 3.3. Upon replacing (Σ2,γ2j ,Σ∗,∆) with (Σ1, γ1j ,Σ1, tr(Σ2
1))

in Lemma 3.1, we can get the result when i = 1. The result for i = 2 follows in

a similar way.

Proof of Corollary 3.1. It suffices to combine Theorem 3.2 with Lemma 3.3 to

conclude.

Proofs of Theorem 4.1 and Corollary 4.1. To prove Corollary 4.1, under (A1)

and (A4), from Theorem 3.1 and Lemma 3.3, we obtain that, as m→ ∞,

Pr(T̂n/δ̂ > zα) = Pr(T̂n/∆ > zαδ̂/∆) = Pr{1 + oP (1) > oP (1)} → 1.

We conclude the result of Corollary 4.1.

Next, to prove Theorem 4.1, one can proceed as in the proof of Theorem

2.2 in [19]. The results concerning the size and power when (A5) is met can be

deduced from Corollary 3.1. We note that Φ(∆δ−1 − zα) → 1 as m→ ∞ under
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(A4), so that we obtain the result of power when (A4) is met from Corollary 4.1.

Hence, by considering the convergent subsequence of ∆/δ, we can obtain the

power result stated in Theorem 4.1. This concludes the proof.

Proof of Proposition 5.1. We first consider the case when (A4) is met. From

Theorem 3.1 and Lemma 3.3, one has κ̂ = (n∆)−2Ψ{1 + oP (1)} = oP (1) as

m→ ∞ under (A1) and (A4). Thus the result holds when (A4) is met.

Next, we consider the case when (A5) is met. From Eq. (A.5), one has

Υ ≤ λmax(Σ1)λmax(Σ2)∆ ≤ Ψ1/2∆,

so that nΥΨ−1 = O(1) under (A5). Then, from Lemma 3.1 and (A.1), under

(A1) and (A5), we deduce that var(T̂n) = O(Ψn−2) as m → ∞. Note that

∆ = O(Ψ1/2n−1) under (A5). Thus under (A1) and (A5), one has T̂n = ∆ +

OP (Ψ1/2n−1) = OP (Ψ1/2n−1) as m→ ∞. Then, from Lemma 3.3, under (A1)

and (A5), we have that, as m→ ∞,

κ̂−1 = Ψ−1n2T̂ 2
n{1 + oP (1)} = OP (1).

Therefore, the result holds when (A5) is met and the proof is complete.

Proof of Proposition 5.2. The conclusion derives easily by combining Lemmas 3.1

and 3.3.

Proof of Lemma 5.1. For all i < j, let yij,0 = ∆̂ij,0 + ||Σ0||2F − ∆0 and

εij,0 = εij − x⊤
1iΣ0x2i − x⊤

1jΣ0x2j + 2tr(Σ∗Σ⊤
0 ).

From Eq. (A.2), we can write

yij,0 = tr{(Σ̂∗,ij(1) − Σ∗)(Σ̂∗,ij(2) − Σ∗)⊤}

+ tr(Σ̂∗,ij(1)Σ
⊤
∗0) + tr(Σ̂∗,ij(2)Σ

⊤
∗0) − 2tr(Σ∗Σ⊤

∗0)

and

εij,0 = ϕij + ηij + ηji + ψij + tr(x1ix
⊤
2iΣ

⊤
∗0) + tr(x1jx

⊤
2jΣ

⊤
∗0) − 2tr(Σ∗Σ⊤

∗0).

The rest of the argument is similar to the proof of Lemma 3.1.
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Proofs of Corollaries 5.1 and 5.2. We first consider the proof of Corollary 5.1.

Let Υ0 = tr(Σ1Σ∗0Σ2Σ⊤
∗0). Similar to Eq. (A.5), it holds that Υ0 ≤ Ψ1/2∆0.

Then, by noting that
q∑

i=1

(γ⊤
1iΣ∗0γ2i)

2 ≤ Υ0

and tr{(Σ∗0Σ⊤
∗ )2} ≤ Υ0, from Lemma 5.1, we have that as m→ ∞

var(T̂n,0/∆0) = O{Ψ/(n2∆2
0) + Ψ1/2/(n∆0)}

under (A1). Thus, under (A4) with ∆ = ∆0, from Chebyshev’s inequality, we

can claim the result of Corollary 5.1.

Next, we consider the proof of Corollary 5.2. Similar to the proof of Lemma A.2,

under (A1), (A3) and (A5) with ∆ = ∆0, we can claim that var(T̂n,0 − Vn) =

o(δ2) as m→ ∞. From Eq. (A.9), we also note that, as m→ ∞,

(δ2 + 2∆2n−2)1/2[2B{n(n− 1)}−1]−1/2 → 1

under (A2) and (A3). Thus, by analogy with Eq. (A.12), we can conclude.
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