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Abstract

Analysis of 3D protein structures is an important task in structural biology.

In the protein structural analysis, protein structures are commonly com-

pared by applying alignment and superposition to the backbone structures

and computing the root mean square deviation (RMSD). This approach,

however, can be suboptimal because the results depend on the alignment

techniques. Moreover, RMSD, which relies on the alignment results, does

not always proportionate to the number of the aligned substructures. These

lead to the proposal of many protein structural comparison methods. While

most of them are based on using geometrical information directly, here we

propose a new method for protein structural comparison based on the set

of the multi-view molecular visualization images of the protein. In the pro-

posed method, the set of the images is then modeled as a subspace and

the similarity between two protein structures is defined by the canonical

angles between the corresponding subspaces. The main advantage is that

precise alignment is not needed. Besides, multiple types of protein visualiza-

tion can be used to enrich the distinctive information. The effectiveness of

the proposed method was evaluated through the classification experiments

on seven classes of proteins, where the proposed method outperformed the

conventional methods. We also designed and developed an online protein

comparison system, called View-based Protein Comparison (VPC), as an

implementation of the proposed method. Finally, as many methods have

been proposed for measurement of protein structural similarity, we proposed

a method for distance metric combination, by generalizing the concept of

large margin nearest neighbor (LMNN). While LMNN was originally pro-

posed to learn Mahalanobis-based distance metric from a set of feature

vectors, we learnt a weight combination from a set of distance metrics, by

introducing three loss functions to the objective function of LMNN. The

validity of the proposed method was demonstrated through experiments on

two public dataset of Ding Dubchak and ENZYME dataset.
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Chapter 1

Introduction

Proteins have very important roles in carrying out various biological processes in every

living organism. For example, hemoglobin, which is a protein that densely exists in

a red blood cell, has a function as a transport agent for oxygen and carbon dioxide.

Keratin is a protein that provides strength for structures such as human skin or hair.

Enzymes are protein molecules that work as biological catalysts. The function of a

protein is determined by its 3D structure. This points to the importance of protein

structure comparison as the fundamental tool for protein analysis. In this chapter,

firstly, the overview of protein in an organism is provided in Chapter 1.1. Secondly, the

importance of protein analysis is elaborated in Chapter 1.2. Then, the motivation and

objective of this thesis are provided in Chapter 1.3. Finally, the organization of this

thesis is given in Chapter 1.4.

1.1 Overview of protein

The word “protein” was first coined by Jacob Berzelius in 1838, which was later used

by Mulder in scientific literature in the same year [1]. It comes from the Greek word

“proteos” that has meaning of primary importance. Protein is a very important sub-

stance in a living thing. Living thing can be defined as a unit that can conduct chemical

activities including reproduction and evolution [2]. Figure 1.1 shows the general hier-

archical composition of a multicellular living thing with human as an example. One

multicellular organism consists of a collection of organ systems where each organ sys-

tem consists of a number of organs to carry out specific functions in the organism. For

example, respiratory system of human consists of organs such as nasal cavity, pharynx,

larynx, trachea, bronchi, lungs, and diaphragm. Each organ contains tissues, which are

1
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Figure 1.1: Hierarchical composition of a living thing.

groups of similar cells that perform similar functions. Tissues are composed of cells,

which are the basic unit of life. Cell that has simple structure without nucleus is cate-

gorized as prokaryotic. Cell with complex structure is categorized as eukaryotic. Cell in

the latter category is composed of units called organelles that perform specific cellular

functions. Organelle contains supramolecular complexes, each of which is composed of

macromolecules that are involved in mostly every cellular process [3]. Macromolecules,

literally can be translated to “large molecules”, are grouped into four classes, namely,

carbohydrates, lipids, nucleic acids, and proteins. Here, we focus on the protein, the

structure of which is composed of amino acids. There are many fields in bioinformatics

that study protein and the structure, including proteomics and structural bioinformat-

ics. In this thesis, we focus on the protein structure comparison which is an important

tool for the protein analysis.

1.2 Importance of protein structure analysis and compar-

ison

Protein structure analysis covers tasks such as studying the properties of the structure,

structure comparison, structure prediction, and interactions between proteins. While

the purpose of the protein structure analysis is to obtain a new biological insight, two

main applications of protein structure analysis are as follows:

1. Structure-based drug design. Protein structures lead to the functions. By study-

2



ing the relationship of the structures and the functions including the interaction

between proteins through computational method (termed as in silico method),

the cost and time for drug development can be largely reduced [4].

2. Study of evolution. Proteins are encoded by genetic codes in DNA (Deoxyribonu-

cleic Acid) which is transcribed to RNA (Ribonucleic Acid). The genetic code

is then translated into the sequence of amino acids which is the building block

of a protein. Since the evolution can be studied through genetic codes, studying

protein and the structures can support the study of evolution, particularly the

early evolution of living things [5, 6].

In this thesis, we limit the scope of our study to the protein structure comparison.

The importance of protein structure comparison is summarized in terms of the following

reasons [7, 8]:

1. Function determination. In the study of protein, it has been understood that

the function of the protein is based on the structure. Consequently, the function

of an unknown protein can be inferred by comparing the structure against the

database of known structures whose functions are already known.

2. Clustering. By clustering a number of proteins based on the structural similari-

ties, we can analyze the properties of the similar structures of the same group.

3. Assessment of structure prediction. In structural biology, predicting the 3D geo-

metrical structure of a protein from a sequence of amino acid using computational

method is one important task. Structural comparison is used to evaluate the pre-

diction algorithm by computing the similarity between the predicted structure

and the ground-truth which is determined by experimental method.

1.3 Motivations and objectives

Protein structures obtained through experimental methods are stored in a public world

wide repository called protein databank (PDB) [9]. To support the study of proteins,

various protein structure classification schemes have also been proposed against the

structures stored in PDB (further discussion on protein structure classification schemes

is given in Chapter 2.2). The most comprehensive classification scheme for the protein

structure is SCOP (Structural Classification of Proteins) [10, 11]. The SCOP database

is constructed by protein experts through manual inspection and utilization of various

3
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Figure 1.2: Growth of protein data stored in PDB and SCOP database.

analysis tools. As shown in Figure 1.2, due to the rapid advancement in the experimen-

tal methods for obtaining the protein structures, the growth of the protein structures

stored in PDB increases exponentially, while the growth of the protein structures stored

in SCOP database increases linearly. The number of the protein structures stored in

PDB is more than 110, 000, while the number of the classified protein structures in

SCOP database is about 73, 996 structures. This suggests that an automatic compari-

son and classification framework with high accuracy is needed.

Although protein structure comparison is very important, there is still no standard

method for measuring the similarity between protein structures. The most common

methods for comparing two protein structures are based on the structural alignment

and the computation of root mean square deviation (RMSD) between the superposed

structures. However, since structural alignment is a difficult problem, the alignment

results are varied depending on the alignment algorithm. In this thesis, we address the

issues on conventional method by the following approach:

1. We propose a new approach to protein structural comparison by casting the

problem of 3D structural comparison into the comparison of multi-view molecu-

lar visualization images of the protein structures, termed as view-based method

(Chapter 3). The validity of the proposed method is demonstrated through clas-

sification of seven classes proteins based on Astral SCOP [10, 12]. We also design

and develop an online comparison system based on the proposed method.
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2. We propose a method for combination of multiple distances by generalizing the

concept from large margin nearest neighbor (Chapter 4). The validity of the

proposed method is demonstrated through classification of 27 folds proteins of

Ding Dubchak dataset [13, 14] and six classes of protein enzymes [15].

The objective of this research is to provide a robust method for comparing two

protein structures. The validity of the proposed method is demonstrated through clas-

sification experiments. However, the ultimate goal of this research is to provide a gen-

eral comparison tool for protein analysis, not limited only for classification of protein

structures, but also for other purposes such as screening of structures in the pipeline

of protein-protein interaction or for protein clustering.

1.4 Thesis organization

The rest of this thesis is organized as follows.

• Chapter 2 provides the overview of protein structure. Firstly, the composition of

protein structures is provided. Secondly, several classification schemes of protein

structures are described. Finally, conventional methods for protein structural

comparison are reviewed.

• Chapter 3 discusses the proposed methods for protein structure comparison using

multi-view molecular visualization images.

• Chapter 4 discusses the proposed methods for combination of multiple distance

metrics for protein structure classification.

• Chapter 5 concludes the thesis by providing summaries and future works.

• Appendix A provides the list of protein structures used in the experimental section

in Chapter 3.

• Appendix B provides the detailed technical documentation on the online com-

parison system based on the proposed method in Chapter 3, called View-based

Protein Comparison (VPC)-system.

5



Chapter 2

Overview of Protein Structure

Analysis

In this chapter, we first provide the review on the composition of protein structure,

including how to obtain the 3D protein structures. Then, classification schemes of

protein structure are reviewed. Finally, the conventional methods for protein structure

comparison are described.

2.1 Protein structure composition

The building block of proteins is amino acid. The structure of one amino acid is shown

in Figure 2.1. Amino acid contains amine group (NH+
3 ), carboxylic acid group (COO−),

one hydrogen atom, and a residue group (side chain). In the center, there is a carbon

atom which is called central alpha carbon (Cα) that connects each group and the

hydrogen atom. Figure 2.2 lists 20 common amino acids available in nature including

the three-letter and one-letter abbreviations for the amino acid naming. Amino acids

are categorized as non polar if the side chain attracts water. Non polar amino acid,

on the other hand, repels water. The property that disfavors water is also termed as

hydrophobic. Amino acids that have either negative or positive charge of side chain are

categorized as electrically charged amino acid. Amino acids with negative charged side

chain are acidic, while amino acids with positive charged side chain are basic.

2.1.1 Determination of protein structure

The 3D coordinates of every atom of a protein molecule can be determined through

experiments. It is still an open problem for prediction of the 3D protein structure

6
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from amino acid sequence by using only computational method. In the following, the

experimental methods to determine the protein structure using X-ray crystallography

and nuclear magnetic resonance (NMR) spectroscopy are briefly described, as most

structures stored in PDB are obtained from these methods.

In X-ray crystallography method, the protein has to be purified and crystalized.

Then, X-rays’ beams with specific wave-lengths are emitted to the crystal form of

the protein. The diffraction pattern from the crystalized protein is then analyzed to

generate electron density map which later be used to determine the location of the

atoms. The accuracy of the obtained structure from the X-ray crystallography method

is measured by resolution and R-factor. Resolution defines the level of detail of the

diffraction pattern and the electron density map. The unit of length used is Ångström

(Å), where 1 Å= 10−10 m. Resolution of 1 Å is high, while the resolution of 3 Å is

considered low, where only the basic contours of the protein can be inferred. R-factor

measures the quality of the obtained atomic model by comparing the model with the

simulated diffraction pattern which is prepared beforehand. Smaller value of R-factor

indicates better quality.

In NMR spectroscopy method, the protein has to be purified and in the form of

liquid solution. Then, radio waves are emitted to the protein under a strong magnetic

field condition. The conformation of the atoms is determined by analyzing the reso-

nances. Since the protein is in the form of liquid solution, it is possible to study the

structure of flexible protein using the NMR spectroscopy.

Besides X-ray crystallography and NMR spectroscopy, methods for determination

of protein structures include electron microscopy, optical spectroscopic, vibrational

spectroscopy, and electron spin resonance spectroscopy.
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Figure 2.2: List of 20 common amino acids available in nature.

2.1.2 Hierarchical composition of protein structure

The primary structure of a protein is an ordered sequence of amino acids, where each

of the amino acid is connected by peptide bond as shown in Figure 2.3. Peptide bond

between two amino acids is formed by sharing the electron pairs in the amine group and

the carboxylic acid group of both amino acids, in which a water molecule is released.

From the bonding, the atoms connecting two Cα are in the same plane, forming torsion

angles of ω, φ, and ψ. These angles are important properties to determine the secondary

structure of the protein.

The secondary structure of a protein is common substructures which are formed due

to the the interactions between the atoms, particularly the bonding of hydrogen atoms.
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Figure 2.3: Peptide bonds between Alanine (A) and Isoleucine (I) and between
Isoleucine (I) and Cysteine (C). The amino acid sequence shown in the figure belongs
to the protein with PDB code 1crn.

Figure 2.4: Secondary structures of protein. Left: α-helix; right: β-sheet.

Figure 2.4 shows the secondary structures of alpha helix (α) and beta strand/sheet (β).

Substructures not in the categories of both α and β structures are categorized as random

coils or turns. Based on the number of the residues and the torsion angles, alpha helix

can be further be categorized into 3.613-helix (α-helix), 310-helix, and π-helix. The

3.613-helix has 3.6 residues per turn. The 310-helix and the π-helix have approximately
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Figure 2.5: Example of common topologies of tertiary structure of protein. Left: an-
tiparallel β-sheet; right: βαβ.

3 and 4.1 residues per turn, respectively. The beta structure can be categorized further

into β-bridge (single β structure) and β-sheet (parallel or anti-parallel β structure).

The tertiary structure of a protein is determined based on how the secondary struc-

tures are connected. There are common motifs in the tertiary structure. For examples,

antiparallel β-sheet and βαβ motifs are two common motifs in the tertiary structure

(Figure 2.5). The interaction of more than one tertiary structure of protein forms

the quaternary structure. Figure 2.6 summarizes the four levels of protein structure

compositions.

2.2 Protein structure classification

Recent advancement in molecular biology has enabled the collection of massive data of

proteins. To take the full advantages of such abundant data, protein classification is

required. The main purpose of the classification is to have meaningful categorical sets of

proteins which constitute the same biological context. The protein classification scheme

can be categorized into two approaches. The first approach is based on the structural

information of the protein, while the second approach is based on the functionality [16].
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Figure 2.6: Four levels of protein structure compositions.

2.2.1 Structure-based classification

In structure-based classification, the classification scheme is based on the information

of either primary, secondary, or tertiary structure of the protein. Popular classification

schemes in this category include SCOP (Structural Classification of Proteins) [10, 11],

CATH (Class Architecture Topology Homology) [17], FSSP (Fold classification based

on Structure-Structure alignment of Proteins) [18], and DSSP (Dictionary of Secondary

Structures of Proteins) [19].

SCOP provides a comprehensive classification scheme and description of known pro-

tein structures, where the structures are from the PDB. SCOP is constructed by manual

inspection of protein experts with the help of some tools for the analysis. Therefore,

SCOP is regarded as one of the most comprehensive and reliable protein structure

classification scheme. Consequently, most classification algorithms are tested through

SCOP classification scheme. In this thesis, we also used SCOP as the ground truth in

the experiment. In SCOP, a protein is categorized based on a hierarchical classification

scheme as shown in Figure 2.7. Prior to the classification, a protein is firstly segmented

into its domain. A domain in a protein is defined as an area that is relatively inde-
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Figure 2.7: Hierarchical classification scheme of SCOP.

pendent (less interaction with the rest of the protein). Then, the classification starts

by placing the domain into class level, which is based on the secondary composition.

There are seven classes in SCOP with addition of four synthetic classes: α (contains

mostly helical structure), β (contains mostly β structure, α/β (contains both α and β

where β sheets exist in parallel), α + β (contains both α and β where β-sheets exist

in anti-parallel direction), multi-domain (contains multiple domains), membrane (has

membrane and surface structure), and small proteins (has few well-defined secondary

structures). The next level of the hierarchy is the identification of fold, which is re-

garded as the most difficult stage [20]. Proteins are categorized into the same fold if

they share similar topologies. The next hierarchical level is superfamily. Proteins that

belong to the same superfamily have similar fold and perform similar functions, but

low sequence identities. Proteins of the same family, which is one step further from

superfamily, have an evolutionary relationship based on the primary structure similar-

ity. Proteins with the same binding site are grouped into protein domain. Proteins are

then categorized based on species. The bottom hierarchy in SCOP is basically the part

of the segmented protein which is stored in PDB.

In CATH database, proteins are also categorized into hierarchical classification

scheme which is shown in Figure 2.8. CATH is constructed by semi-automatic pro-

cedure where the intervention of human’s analysis is not as much as in SCOP. At the

top level of the hierarchy, a protein is categorized into class level. There are three major

classes in CATH: mainly α, mainly β, and α-β which includes both α/β and α + β.
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Figure 2.8: Hierarchical classification scheme of CATH.

These classes correspond to the α, β, α/β, and α+β classes in SCOP. One level below

the class is called architecture. Proteins belong to the same architecture have roughly

the same arrangement of secondary structure without consideration the connectivity.

The next level of the hierarchy is topology. Topology in CATH corresponds to the fold

level in SCOP. Finally, the last levels of hierarchy in CATH are homologous superfamily

and family, which corresponds to the superfamily and family in SCOP. Just like SCOP,

CATH is also widely used to benchmark protein structure comparison methods [21].

FSSP is constructed fully automatic by using DALI (Distance matrix ALIgnment) [22]

against the proteins stored in PDB with criterion of having more than 30 residues and

all pairwise sequence identities less than 25% (Sequence identities can be interpreted

as the similarities of the amino acid sequence). By using these proteins as reference,

all-against-all comparison and clustering are performed to generate the FSSP database.

DSSP contains the database of secondary structures of protein. DSSP is constructed

fully automatic by using hydrogen bond estimation algorithm, which is a standard

method for predicting secondary structure from the primary structure of a protein.

There are eight types of outcome from DSSP: α-helix, β-bridge, β-sheet, 310-helix,

π-helix, hydrogen bonded turn (helical turn), bend, and coil.

2.2.2 Function-based classification

Function-based classification does not take the structural information of the protein into

account. Nevertheless, proteins with similar fold structures share the same functional-

ity. Therefore, the distinction between function-based and structure-based approaches

are not very obvious. In function-based classification, the classification scheme is based

on the properties of the proteins in the experiment or other features that are com-
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pletely independent of the protein structures. Most of the databases of function-based

classification are constructed with low to medium automation. For example, Enzyme

Commission (EC) hierarchical classification [15]1, firstly proposed in 1993, is one of

the oldest and well-known classification schemes that categorize protein into six main

classes based on the enzyme reaction mechanism.

2.3 Comparison between protein structures

Comparison between protein structures is an integral part of the protein structure anal-

ysis. The most common approach to comparison between protein structures is based

on structural alignment. To avoid the difficulties of the alignment, different approaches

apply geometrical feature extraction to the protein structure and represent it by de-

scriptor such as graph or feature vector. The protein structures are then compared by

computing the distance or similarity between the corresponding descriptors.

2.3.1 Alignment-based comparison

The principal of alignment-based method is by firstly applying alignment that considers

the equivalence between pairs of amino acid residues. Next, a search is performed

to determine the type of the geometrical transformation that minimizes the distance

between the Cα [8]. Finally, the root mean square deviation (RMSD) between the

superimposed Cα is computed as the dissimilarity measure. RMSD is written as

RMSD =

√√√√ 1

N

N∑
i=1

δi , (2.1)

where δi is the distance between ith aligned-pairs of the Cα of the superimposed protein

structures and N is the length of the alignment.

Many methods of protein structural alignment have been proposed. Some of the

widely used methods are DALI [22], CE (Combinatorial Extension) [23], FATCAT

(Flexible structure AlignmenT by Chaining Aligned fragment pairs allowing Twists) [24],

and TM-align (Template Modeling alignment) [25].

In DALI, the first step of the algorithm is the construction of a distance matrix

containing the pairwise distances between the intra Cα for each protein structure. Then,

overlapped sub-matrices of six residues, termed as hexapeptide fragments, are generated.

Next, DALI searches for the most similar and compatible pairs of the hexapeptide

1As of 2015/11/26, EC database is accessible at http://www.expasy.ch/enzyme/
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SCOP ID: d1aj3a_
Number of residues: 98
(Protein length)

SCOP ID: d2scpa_
Number of residues: 174
(Protein length)

Alignment results using CE:
-Alignment length: 77
-RMSD: 8.04 Å

Alignment results using TM-align:
-Alignment length: 66
-RMSD: 4.18 Å

Figure 2.9: Problems of alignment-based methods: different alignment algorithms may
output different alignment results.

fragments. These similar pairs are called contact patterns. From the set of the contact

patterns pairs, a consistent large set of contact patterns is generated by using Monte

Carlo algorithm, while at the same time minimizing the distance of the Cα pairs.

In CE, the protein structure is also segmented into fragments. A pair of similar

fragments is called aligned fragment pair (AFP), in which one fragment contains eight

residues. AFPs are detected based on the threshold of RMSD of the Cα. After set of

AFPs are collected, CE searches for the longest continuous path of the AFPs by using

dynamic programming.

FATCAT has the similar procedure with CE. AFPs are firstly collected. Then, by

using dynamic programming AFPs are connected. The difference between FATCAT

and CE is that in FATCAT, the alignment restriction is more flexible where twists are

allowed in connecting two AFPs.

In TM-align, the first step of the algorithm is by applying an initial alignment.

There are three types of initial alignments used in TM-align. The first type is through

the detection and alignment of the secondary structures by using dynamic program-

ming. The second type is based on the gapless matching of the structures, based on

the threading algorithm1. The third type is also based on the dynamic programming

but with a different penalty value. After the initial alignment, the next step is done by

applying iterative heuristic algorithm to refine the alignment result.

One problem with alignment-based methods is the difficulty on determining a sin-

gle optimal alignment in terms of functional similarity or tertiary structure similar-

1Although threading is commonly used for protein structure prediction from the amino acid se-
quence, threading is also equivalent to structure comparison [26].
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ity [27, 28]. Consequently, different alignment algorithms produce different results. For

example, Figure 2.9 shows the alignment results for protein with SCOP ID d1aj3a

and d2scpa using CE and TM-align. From the results, we can see that the alignments

produced quite different results. The difficulty of alignment increases when the proteins

sequence identity is 20% or below because the structural differences become large [29].

Another problem arises from the use of RMSD values. RMSD depends on the length

of the alignment, but a greater number of aligned positions does not always produce

a smaller RMSD [24, 25]. This suggests that RMSD is too blunt to be used as dis-

similarity measure. As a result, for classification and retrieval tasks, various scoring

functions have also been proposed to complement the RMSD. For example, in CE, Z-

Score statistics is computed by evaluating the probability of finding alignment path of

the same with gap either smaller or the same in a representative dataset of proteins [23].

FATCAT also has its own score, called as FATCAT score. TM-align also provides a

scoring function called TM-score [30], which uses a weight based on the length of the

aligned structures.

2.3.2 Descriptor-based comparison

To avoid the alignment difficulties, other approaches use a global representation of the

protein structures by applying feature extraction to the 3D geometrical structures. In

the following, some of the notable protein descriptors are described.

In [31], a protein descriptor called Gauss Integral Tuning (GIT) was proposed. In

GIT, the backbone structure of a protein is regarded as an oriented open curve in 3D

space. Then, based on the knot theory, a series of Gauss integrals for the writhe1

and average crossing are computed over the curve, and the protein structure is finally

represented as a 31-dimensional feature vector. GIT has been used for fast clustering

of protein structures [32].

In [33], principal component correlation (PCC) method was proposed. In PCC

method, a protein structure is represented by a symmetric interaction matrix contain-

ing parameters of the relation between secondary structure elements. The similarity

between the protein structures is defined by correlating the principal components of

the matrices.

In [34, 35], tableau-based representation for protein structures was proposed. In this

method, a protein structure is described as a tableau containing the encoded orientation

of the secondary structures. The similarity of two protein structures are computed by

1Writhe is defined as the total number of negative crossing subtracted from the total number of
positive crossing.
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searching the most similar subtableaux using either quadratic integer programming,

integer linear programming, or dynamic programming for speeding up the process.

In [36], 3D Zernike descriptor was proposed for representing protein structures.

However, instead of extracting the features of the 3D backbone structure, this approach

extracts 3D Zernike of the voxelized 3D geometrical surface of the protein structure.

Similar to [36], the method of [37] applied feature extraction based on the wavelet to

the voxelized 3D geometrical surface of the protein structure.

In the above methods, we note that the protein structural comparison no longer

requires alignment techniques. Instead, the similarities or dissimilarities between the

protein structures are defined by the comparison of the descriptors of the corresponding

protein structures.
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Chapter 3

Protein Structure Comparison

Using Multi-view Visualization

Images

As mentioned in the previous chapter, alignment based method has difficulties on com-

parison of two different structures. In this chapter, we propose a view-based approach

for protein structure comparison in order to address the problems of conventional meth-

ods. The unique feature of our proposed method is the use of a set of 2D multi-views

of 3D molecular visualization. This chapter is organized as follows. The background of

the proposed method is discussed in Chapter 3.1. The detail of the proposed method is

then described in Chapter 3.2. The experimental results are presented in Chapter 3.3.

Further discussion on the proposed method is provided in Chapter 3.4. Then an on-

line implementation of the proposed method is described in Chapter 3.5. Finally, the

summary is given in Chapter 3.6.

3.1 Background

There are a number of 3D molecular visualization softwares which can be used for

visualizing the 3D molecular structure of a protein from a set of the 3D atom coordinates

of the structure [38]. The molecular visualization softwares are commonly used for

manual inspection of protein structure to supplement automatic analysis tools and for

educational purposes [38, 39]. In practice, 3D structure of protein is inspected manually

after projection from multiple viewpoints onto the 2D plane of a computer screen using

various types of structural representation. This suggests that protein visualizations
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contain distinctive information for protein analysis, which leads us to propose a new

approach that employs a set of multi-view images of the 3D visualization. This also

points to the additional advantage that particular characteristics of a protein can be

more readily extracted from different types of protein visualizations. As a result, the

comparison between protein structures is casted into the comparison of the two sets of

the multi-view images of them.

In computer vision field, one of widely used methods for the comparison of image

sets is based on the mutual subspace method (MSM) [40]. In MSM, two sets of images

to be compared are represented by subspaces which are generated by applying princi-

pal component analysis (PCA). Then, the similarity between the sets of the images is

defined by the canonical angles between the two corresponding subspaces. MSM and

its extensions [41, 42] have been successfully applied to various 3D object recognition

tasks, such as facial recognition [43, 44, 45, 46], hand shape recognition [47, 48], and gen-

eral 3D object recognition including identification of 100 apples with 99% recognition

rate [49]. The simplicity and high performance of MSM based method for classification

of complicated and similar 3D shapes also motivate us to adopt the subspace method.

Motivated from those two factors above, we exploit multi-view images of protein

visualization for protein structure comparison. The proposed similarity measurement

method takes the advantage of the multi-view images of the protein visualization and

the subspace representation. To sum up, the advantages of the proposed method are

as follows:

1. Precise alignment is not needed, especially for comparing very different structures.

2. By using 3D molecular visualization software, various types of protein visualiza-

tions can be used to emphasize particular properties of the protein structure.

3. The proposed method is a subspace-based method, so that it is straightforward

to extend the capability of the proposed method by adapting any subspace learn-

ing methods, where in this thesis we apply Grassmann discriminant analysis

(GDA) [50] in the classification framework.

In brief, the contributions of this work are as follows:

1. Introduction of GDA as a subspace learning method to the protein-structure clas-

sification framework. GDA can also be regarded as a feature extraction method

that improves the discriminative power among the subspaces corresponding to

the protein structures.
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2. Introduction of LBP-based image-feature extraction methods [51, 52, 53] during

analysis of the protein visualization images.

3. Comprehensive classification of seven classes of protein structure based on the

Structural Classification of Proteins (SCOP) scheme [10].

4. Design and development of an online protein structure comparison system based

on our view-based method; namely, the View-based Protein Comparison (VPC)

system.

3.2 Proposed method

Figure 3.1 shows the basic idea of the proposed method. The key point is that instead of

using the 3D geometrical information directly, a set of multi-view visualization images

is generated by rotating the protein structures by using 3D molecular visualization

software. Using the software, we can also synthesize different types of visualizations that

emphasize different properties. After collecting a set of multi-view images, a feature

vector is then extracted from each image, because the generated protein images can

contain position and pixel variation while also having a complex visualization structure.

Local binary pattern (LBP)-based [51, 52, 53] image-feature extraction methods were

applied to the set of images, as LBPs can encode the micro-patterns of an image. A

subspace is then generated by applying PCA to the set of feature vectors. Finally, the

similarity between protein structures is measured by the canonical angles θi between

the corresponding subspaces.

The problem of comparing protein structures becomes that of comparing sets of

multi-view images. In this sense, we can regard this method as view-based method. In

the following we describe the basic idea of using subspace representation for image set.

With the advancement of computer graphics, we can visualize the structure of

proteins by using various 3D molecular graphics softwares [38]. For example, Figure 3.2

shows the backbone visualization of three small proteins and one α-protein generated

using Jmol [54]. Proteins d1axha and d1viba belong to small protein class but different

fold; protein d1axha and d1omca belong to the same superfamily of omega toxin-

like [10].

To capture the whole structural view of a protein, firstly, a number of 2D projected

images are synthesized by collecting the visualization images from multiple viewpoints,

through rotation of the 3D structure. Then, subspace representation is used to model

the pattern distribution of the image set. Let X = {xi}ni=1 be a set of feature vectors
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Figure 3.1: Basic idea of the proposed method.

Figure 3.2: Example of backbone visualization. From left to right: backbone visualiza-
tion of small proteins d1axha , d1viba , and d1omca , and α-protein d1kcfa1, respec-
tively.

of an image set from protein p, where xi ∈ Rf , f is the dimensionality of one feature

vector, and n is the number of the images. The autocorrelation matrix that corresponds

to X can be computed as A = 1
n

∑n
i=1 xix

>
i . A set of orthogonal basis vectors of the N -

dimensional subspace P that represents X is obtained by computing the eigenvectors

[φ1, . . . , φN ] ∈ Rf×N corresponding to the N highest eigenvalues of A. Subspace P

then contains the space for the overall possible translation and rotation of the protein

shape. For example, Figure 3.3 shows the visualization of the first 30 basis vectors of
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Figure 3.3: The visualization of the first 30 basis vectors of the corresponding subspace
for d1axha .

the corresponding subspace for d1axha , where 360 images (64×64 pixels), synthesized

through 359 times rotation around Y-axis of the viewing plane coordinate (360 view

points around Y-axis), were used.

Unlike alignment based methods which search for a single most optimal alignment,

comparing two subspaces essentially means that we search for multiple similarities

in the space of the possible pose and rotation of the protein shapes within the two

corresponding subspaces simultaneously. Let Q be another M -dimensional subspace

generated from protein q. The similarity between subspaces Q and P is defined using the

cosines of the canonical angles θi=1,...,min(M,N) (cos θ1 > · · · > cos θmin(M,N)) between

them. The objective function to obtain the first canonical angle [55] is written as

cos θ1 = max
u∈Q

max
v∈P

u>v, (3.1)

where u and v are the f -dimensional unit vectors (canonical vectors) of subspaces P

and Q respectively, that form the smallest angle. The next i-th canonical angles are
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defined similarly as in (3.1), such that u>i ui = v>i vi = 1 and u>i uj = v>i vj = 0 for

i 6= j. The practical solution to obtain the set of the canonical angles is by computing

the singular values of U>V, where U = [φ1, . . . , φN ] and V = [ψ1, . . . , ψM ] are the sets

of orthogonal basis vectors of subspaces P and Q, respectively.

A pair of canonical vectors ûi and v̂i that form canonical angle θi can be obtained

as follows:

ûi = Uyi, v̂i = Vzi, (3.2)

where yi and zi are, respectively, the left and right singular vectors of U>V.

Figures 3.4(a), 3.4(b), and 3.4(c) show the first five canonical vectors and the

similarity values when comparing 100-dimensional corresponding subspaces of d1axha

with d1viba , d1omca , and d1kcfa1, respectively. The first canonical angle, cos2θ1,

denotes the highest similarity value of the two proteins. The second canonical angle,

cos2θ2, denotes the second highest similarity value, and so on. The obtained similarity

values based on the first canonical angle were 0.7014, 0.8281, and 0.5654, respectively.

In comparison with TM-align, the average TM-scores were 0.2048, 0.4427, and 0.2005,

respectively. From these, we can see that the similarity values between the protein

structures can be captured through the subspaces representation, similar to that of the

alignment based method. In addition to that, depending on applications, we can use

multiple similarities instead of just a single best similarity. In the case of application

for roughly classifying very different protein structures as preprocessing of more detail

analysis, using the average of the similarities may produce better results because we can

capture the overall similar sub-structures instead of just the most similar sub-structure.

The rest of this chapter describes the detail of the basic idea. We first discuss the

usage of multi-view visualization images and how to generate them in Chapter 3.2.1.

Then, we provide the overview of the image feature extraction methods used in our work

in Chapter 3.2.2. We discuss how the comparison is conducted further with adaptation

of Grassmann discriminant analysis (GDA) for classification task in Chapter 3.2.3.

Finally the flow of the classification framework is presented in Chapter 3.2.4.

3.2.1 Generation of image set

In this research, we use Jmol [54] to generate the set of the visualization images.

Through the 3D molecular visualization software such as Jmol, it is possible to view

different type of protein visualizations which emphasize particular properties of the

protein structure. Some of the protein visualizations from Jmol are shown in Fig-

ure 3.5. Backbone visualization displays the backbone structure of the protein, which
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Figure 3.4: The visualization of the first five canonical vectors and the similarity values
when comparing: (a) d1axha with d1viba ; (b) d1axha with d1omca ; (c) d1axha
with d1kcfa1.

is the trace of the Cα atom. Ribbon visualization displays the backbone structure in

a smooth ribbon shape, where the helical shape of the α-helix structure can be clearly

visualized. Rocket visualization contains information of secondary structure of the pro-

tein, where it displays the secondary structure of α-helices and β-sheets as directed

cylinders and arrows, respectively, while the random coils are visualized as strings.

Cartoon visualization displays α-helices as ribbons, β-sheets as directed ribbons, and

random coils as strings. Since each protein visualization has different characteristics,
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Figure 3.5: Visualization of protein structure with PDB code 1crn generated using
Jmol [54]. From left to right: backbone, ribbon, rocket, cartoon.

Figure 3.6: Illustration of 50 uniform viewpoints for a protein structure (50 uniform ro-
tations). Each point on the unit sphere is the viewpoint from which the 2D visualization
is synthesized.

we use multiple visualizations to build more elaborate protein descriptors.

We used simple rotational scheme (only around Y viewing axis) in describing the

basic idea of the proposed method to simplify the interpretation of the visualized basis

vectors and the canonical vectors. However, to capture the overall structure of a protein,

multiple view protein visualization images are synthesized by uniformly rotating the

protein structure around its central X, Y, and Z viewing axes. The procedure to
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Figure 3.7: 50 uniform rotations of a cartoon visualization of protein ID d1a0pa1.

generate the uniform rotation angles can be regarded as the problem of producing

a uniform distribution of points on the surface of a sphere, where each point is the

viewpoint for the protein visualization, i.e., the position of the virtual camera that

captures the visualization image, as illustrated in Figure 3.6. In the implementation,

the protein structure is rotated according to the camera position. Note that here the
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term of the number of viewpoints and the number of rotations are used interchangeably.

Figure 3.7 shows an image set of cartoon visualizations generated from 50 uniform

rotations (50 uniform view-points).

There are a number of methods for uniformly distributing a set of points on the

surface of a sphere [56, 57, 58, 59]. One of the simplest approaches to approximate the

uniform distribution of points on the surface of a sphere is by using the generalization

of the Thomson problem. The Thomson problem originally aims for finding a config-

uration of set of electrons on the surface of a unit sphere such that the electrostatic

potential energy is minimum [58, 59].

In the following, the generalization of the Thomson problem to find the configuration

of uniformly distributed points on the surface of a sphere is briefly described. Let

{x}Ni=1 ∈ R3 be the set of N points to be distributed uniformly on the surface of a 3D

sphere. The distances between all points are small if they are uniformly distributed.

Thus, the objective function is written as follows [58]:

min
N∑
i=1

∑
j<i

1

‖xi − xj‖22
,

subject to xi,xj ∈ R3, ‖xi‖ = ‖xj‖ = 1, and 1 ≤ i ≤ N.

(3.3)

To simplify the optimization, the constraints in Eq. (3.3) are removed by transforming

the coordinate system from Cartesian into that of the spherical, where a point is com-

posed of the elevation angle θ and the Azimuth angle φ. Points on spherical coordinate

system (θ, φ) are transformed back to x = [x, y, z]> ∈ R3 as follows [59]:

x = cos θ sinφ,

y = cos θ cosφ,

z = sin θ.

(3.4)

By substituting x with its elements x, y, z, function to be minimized in Eq. (3.3) is

rewritten by

min
N∑
i=1

∑
j<i

1

(xi − xj)2 + (yi − yj)2 + (zi − zj)2
. (3.5)

Finally, with substitution using Eq. (3.4), the objective function becomes

min
N∑
i=1

∑
j<i

1

2 [cos θj cos θi cos(φj − φi) + sin θj sin θi − 1]
. (3.6)
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Equation (3.6) can be solved by using unconstrained nonlinear optimization methods.

Here, we used the trust-region method [60] from the Matlab optimization toolbox.

3.2.2 Feature extraction

Instead of directly using the vectorized raw pixel values of the 2D protein visualiza-

tion image as a feature vector, we can employ feature extraction methods to improve

the robustness to the position and size variation of the protein. In the following, we

briefly provide the overview of two image feature extraction methods, namely, local

binary pattern (LBP) based method [51, 52, 53] and higher-order local autocorrelation

(HLAC) [61], which were used in the experiments.

3.2.2.1 LBP-based feature extraction

The underlying concept of LBP is to use joint distribution of the pixels of local textural

patterns. The LBP [51] of an image is defined as the binary code of the local texture

found by thresholding a neighborhood of pixels around a center pixel as follows:

LBP (xc, yc) =

P∑
p=1

s(Ip − Ic)2p−1,

s(x) =

1 if x ≤ 0,

0 otherwise,

(3.7)

where (xc, yc) is the position of the center pixel, and Ip and Ic are the grayscale values

of the neighboring pixel and the center pixel, respectively. P is the number of pixels in

the neighborhood. If P = 8, the number of the LBP patterns is 256 (2P ). An image I

is then encoded by a histogram of the LBP codes that contains the micro-patterns of

the image. The flow of LBP computation is shown in Figure 3.8.

To derive a general formulation of LBP, a radius r is introduced as follows:

xp = xc + r cos(2πp/P ),

yp = xc + r sin(2πp/P ),
(3.8)

where xp and yp are the coordinates of Ip in Eq.(3.7) and r is the radius. Figure 3.9

illustrates the effect of different r.

Due to the effectiveness and simplicity of this method, many LBP extensions have

been proposed and used in various applications, such as face recognition [52, 62, 63] and
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Figure 3.8: Flow of computing LBP histogram from an image.

Figure 3.9: Neighborhood pixels affected by different radius r. Left figure: r = 1; right
figure: r = 2.

facial expression analysis [64, 65], human detection [66, 67], and texture analysis [68]

including medical image analysis [69] and bio-cell classification [53, 70]. In the following

we reviewed some of LBP variants that we used for feature extraction of the protein

visualization images.

Uniform LBP In uniform LBP, written as LBPu2, there are two types of LBP

code, namely, uniform pattern and non-uniform pattern [52]. LBP code containing

at most two bitwise transitions is recognized as uniform pattern. For example, LBP

codes 00000000 (no transition), 11111111 (no transition), 00110000 (2 transitions), and

00001111 (1 transition) are uniform. LBP codes 01001111 (3 transitions), 11001100

(3 transitions), 10101111 (4 transitions) are non-uniform. All LBP codes with non-

uniform pattern are assigned to one LBP code, resulting in a lower number of LBP

codes. For example, the number of the LBP patterns becomes 59 when P = 8. The

motivations behind the proposal of uniform LBP are two folds [52]. The first is because

through observation, most LBPs of texture images were found of containing uniform

patterns up to 90% when P = 8. The second motivation is for robustness against noise.
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2

Figure 3.10: Configurations of CoALBP for four neighborhood pixels.

Rotational invariant LBP Invariance of rotation was introduced to LBP by ap-

plying rotation invariant mapping. In practice, the mapping is done through circular

bitwise right rotation of the LBP code into its minimum value. For example, LBP codes

10000010, 10100000, 00001010 are mapped to the same minimum LBP code 00000101.

Rotational invariant LBP is commonly written as LBPri. Combination of uniform

LBP and rotational invariant LBP is termed uniform rotation invariant LBP, written

as LBPriu2 [52].

Co-occurrence adjacent LBP In [70], an extension of LBP called co-occurrence

adjacent LBP (CoALBP) was proposed. CoALBP encodes adjacent LBP (a pair of

LBPs) into one binary code to consider their spatial relations. In relation to Eq.(3.7),

CoALBP is written by

CoALBP (xc, yc; ∆s) = (LBP (xc, yc), LBP (xc + ∆s1, yc + ∆s2)), (3.9)

where ∆s = [s1, s2]
> is a displacement vector with s1 = s cos θ and s2 = s sin θ;

s is the interval between two LBPs and θ = 0, π/4, π/2, 3π/4. Figure 3.10 shows

the configurations of CoALBP for four neighborhood pixels (P = 4). Due to this

configuration, the number of possible LBP patterns of an image becomes 22P × 4.

In [53], rotational invariant of CoALBP, called rotation invariant co-occurrence LBP

(RIC-LBP), was proposed. RIC-LBP searches for the rotation equivalent LBP pairs by

considering cases where LBP pairs of θ = 0, π/4, π/2, 3π/4 and LBP pairs which are

rotated by 180 degrees have rotation equivalence. In RIC-LBP, the number of possible

LBP patterns is reduced to 2P (2P + 1)/2.
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Figure 3.11: The HLAC’s 35 mask patterns.

3.2.2.2 HLAC feature extraction

HLAC [61] encodes images as N -order autocorrelations of pixel values:

HLAC(I) =
∑
r∈I

I(r)I(r + a1) . . . I(r + aN ), (3.10)

where r is the pixel position in image I and ai is a pixel displacement with (aix, aiy) ∈
{±∆, 0}. The order of N is limited to two (N ∈ {0, 1, 2}). Duplicate configurations

of r, r + a1, . . . , r + aN are removed so that the total number of local mask patterns is

reduced to 35 (Figure 3.11), which results in a 35-dimensional HLAC feature vector.

HLAC has the property of position invariance, which is useful for feature extraction

from protein visualization images. To capture both the local and overall global struc-

ture, multiple of displacement range ∆r, which are equivalent to using multiple image

scales, are used (Figure 3.12). The details on the parameters used are described in the

Section of Experiment.

3.2.3 Comparing two sets of protein images

In Chapter 3.2, we described how to compute the canonical angles between two sub-

spaces corresponding to the protein structures, where the subspaces are generated by

applying principal component analysis to the set of the feature vectors. Figure 3.13 il-
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Figure 3.12: Example of multiple displacement ranges in HLAC.
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Figure 3.13: Protein structure similarity computed using canonical angles between two
subspaces and its relation to distance on a Grassmann manifold.

lustrates the computation of the canonical angles between two corresponding subspaces

generated from the visualizations of protein structures p and q. Since in this research
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we conducted classification at class-level which requires the overall structural similar-

ity, instead of using only the first canonical angle, we used the average of the canonical

angles defined in (3.1). The final similarity measure between subspaces Q and P from

(3.1) is then computed as

Sim(Q,P) =
1

min(N,M)

min(N,M)∑
i=1

cos2 θi. (3.11)

A Grassmann manifold G(N, d) is defined as a set of N -dimensional subspaces of

Rd. In a Grassmann manifold, a subspace P is regarded as a point, as shown in

Figure 3.13, represented by a d × N orthonormal matrix U that has the set of basis

vectors [φ1, . . . , φN ] as its columns. The computation of canonical angles between

subspaces can be regarded as the simplest computation of distance on the Grassmann

manifold.

In the classification task, one subspace is used to represent one protein structure.

However, each subspace is modeled without taking into account the variation between

the subspaces. We can further extract powerful features for the corresponding protein

structures to maximize the separation between different class proteins and minimize

the variation within the same class proteins, by applying discriminant analysis. Here,

we start discussion by describing the conventional discriminant analysis, followed by

the Grassmann Discriminant Analysis which applies discriminant analysis to the set of

points on a Grassmann manifold.

Let X = {xi}ni=1 and Y = {yi}ni=1 ∈ {1, . . . , C} be a pair of a set of samples and

a set of class labels, respectively. Linear discriminant analysis (LDA) is a supervised

feature extraction technique that searches for a transformation W of X that maxi-

mizes the between-class variation and minimizes the within-class variation, through

the optimization of the Rayleigh coefficient:

J(W) =
W>SbW

W>SwW
, (3.12)

Sb =
C∑
c=1

nc(µc − µ)(µc − µ)>, (3.13)

Sw =

C∑
c=1

∑
yi∈c

(xi − µc)(xi − µc)>, (3.14)
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where µc = 1
nc

∑
yi=c

xi is the mean of the sample data of class c, and µ = 1
n

∑
i xi is

the mean of all samples. Assuming that Sw is invertible, the solution for W is the set

of the C − 1 largest eigenvectors of S−1w Sb.

To apply discriminant analysis on a Grassmann manifold, LDA is kernelized with

the Grassmann kernel [50]. Let Φ(x) be a function that maps x to a feature space G.

Assume that the solution W ∈ G can be written as a linear combination of the mapped

data [71]:

W =

n∑
i=1

αiΦ(xi). (3.15)

To avoid a direct computation of Φ(x) in (3.15), dot products can be used. Suppose

that k(xi,xj) = (Φ(xi) ·Φ(xj)). Then

W>µc =
1

nc

n∑
i=1

∑
yj∈c

αi(Φ(xi) ·Φ(xj))

=
1

nc

n∑
i=1

∑
yj∈c

αik(xi,xj)

= α̂>µ̂c.

(3.16)

By using (3.16), the numerator and denominator of (3.12) become

W>SbW = W>

[
C∑
c=1

nc(µc − µ)(µc − µ)>

]
W

= α̂>

[
C∑
c=1

nc(µ̂c − µ̂)(µ̂c − µ̂)>

]
α̂

= α̂>Mα̂

(3.17)

W>SwW = W>

[
C∑
c=1

∑
yi∈c

(Φ(xi)− µc)(Φ(xi)− µc)>
]

W

= α̂>

 C∑
c=1

∑
yj∈c

(Kj − µ̂c)(Kj − µ̂c)>
 α̂

= α̂>Nα̂.

(3.18)

The objective function (3.12) is then rewritten as

J(α̂) = max
α̂

α̂>KMKα̂

α̂>KNKα̂+ σI
, (3.19)
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where σ is the regularization parameter. For the Grassmann kernel, the following

projection kernel can be used [50]:

k(P,Q) = ‖P>Q‖2F , (3.20)

where P and Q are the projection matrices of subspaces P and Q, which correspond to

proteins p and q, respectively. Essentially, the projection kernel in (3.20) is equivalent

to the similarity measures in (3.11).

3.2.4 Flow of the classification framework

Let {pi}ni=1 and {yi}ni=1 be a set of reference protein structures and a set of class labels,

respectively. Let R and V be the number of rotations and visualization types for

generating multiple views of 2D protein images, respectively.

Training phase:

Step 1 For each pi, generate R protein images for each visualization ({I(v)r }, where

r = 1, . . . , R and v = 1, . . . , V ) using Jmol [54].

Step 2 Apply feature extraction to each image in {I(v)r } to obtain a set of feature

vectors {x(v)
r }.

Step 3 Generate a subspace P
(v)
i for each visualization v.

Step 4 Compute the kernel matrix Ktrain for each pair of subspaces in the training

set. When using multiple visualizations, the kernel matrix is computed using the

average similarities from the multiple visualizations.

Step 5 Compute α in (3.19), using the methods given in [72].

Step 6 Compute the new training feature vectors Ftrain(i) = α>Ktrain(i).

Testing phase:

Step 1 Generate R protein images for each visualization of input protein q ({I(v)r },
where r = 1, . . . , R and v = 1, . . . , V ) by using Jmol [54].

Step 2 Apply feature extraction to each image in {I(v)r } to obtain a set of feature

vectors {x(v)
r }.

Step 3 Generate the input subspace Q(v) for each visualization v.
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Figure 3.14: Sizes of proteins used in the experiment (number of residues): (1) α; (2)
β; (3) α/β; (4) α+β; (5) multidomain; (6) membrane; and (7) small proteins.

Step 4 Compute the kernel matrix Ktest as the similarity between Q(v) and {P(v)
i } by

using (3.11). When using multiple visualizations, the kernel matrix is computed

using the average similarities from the multiple visualizations.

Step 5 Compute the new test feature vectors Ftest = α>Ktest.

Step 6 Classify the input protein using k-NN classification of Ftrain(i) and Ftest.

3.3 Experiments

To evaluate the effectiveness of the proposed similarity measure, we classified proteins

into 7 classes according to the protein classification scheme of the SCOP database [10]:

(1) α-proteins (containing mainly α-helices), (2) β-proteins (containing mainly β-sheets);

(3) α/β-proteins (containing both α and β structures where the β-sheets are parallel);

(4) α+β-proteins (containing both α and β structures where the β-sheets are anti-

parallel); (5) multi-domain proteins that have multi-functions; (6) membrane and cell

surface proteins; and (7) small proteins. We compare our proposed method with the

widely used alignment methods CE [23], FATCAT [24], and TM-align [25].

3.3.1 Experimental setting

We used 700 proteins (100 proteins for each class), which were randomly selected from

the Astral SCOP dataset [11] so that each protein has ≤20% sequence similarity. Fig-
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Figure 3.15: Examples of proteins used in the experiments.

ures 3.14 and 3.15 show the plot of the protein sizes and the examples for each class,

respectively. In the experiments, 10-fold validation scheme was used. Ten proteins
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Table 3.1: List of feature extraction parameters and dimensionality for each feature.

HLAC LBPu2 LBPri LBPriu2 RIC-LBP

Parameters ∆ = 2, 4, 8 r = 1, 2, 4 r = 1, 2, 4 r = 1, 2, 4 (r, s) = (1, 2),

P = 8 P = 8 P = 8 (2, 4), (4, 8)

Dimensionality 105 177 108 30 408

from each class were used for the test and the rest for training and the experiments

were repeated 10 times. Most of the proteins that belong to the same family are used

as either training or testing, but not both. This strategy was used to increase the

variability between training and testing proteins that belong to the same class.

Jmol [54] was used to synthesize 500 uniformly rotated 128 × 128 grayscale visu-

alization images of the backbone, ribbon, rocket, and cartoon types. HLAC, LBPu2,

LBPri, LBPriu2, and RIC-LBP were used as features for the visualization images. The

parameters and dimensionality of each feature are shown in Table 3.1. Since several

parameters were used, the final feature vector is the result of concatenating the feature

vectors extracted by using each parameter. Cross validation of training data was used

for tuning the parameter k for k-NN and subspace dimension.

Classifications using conventional methods were similarly conducted using 10-fold

validation scheme. First, the similarity or dissimilarity between an input protein and

the training protein was computed. Then, k-NN was used to classify the protein. The

parameter for k-NN was automatically tuned by cross validation of the training set.

For the TM-align method, since the TM-score is not symmetric, the average of the

TM-scores was used as the similarity measure.

3.3.2 Single visualization

Table 3.2 shows the results of the classification for the conventional methods. The

experimental results for the view-based methods using MSM and GDA are reported in

Tables 3.3 and 3.4, respectively.

When using RMSD, CE only obtained the average accuracy of 33.86%. The per-

formance of CE improved to 49.14% when using Z-score statistics. Table 3.5 shows the

confusion matrix for CE when RMSD was used as the distance metric. When using

RMSD, CE was unable to classify multi-domain proteins, and frequently classified in-

put proteins as either membrane or small proteins. These experimental results confirm

the limitations of RMSD as a distance measure for protein structure classification task.

From Tables 3.3 and 3.4, we can see that the overall performance when using GDA
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Table 3.2: Classification results for conventional methods (accuracy in %).

Methods/
Class

(1) (2) (3) (4) (5) (6) (7) Avg.

CE [23, 73]

- RMSD 9 36 42 4 0 78 68 33.86

- Z-score 80 82 69 32 16 32 33 49.14

FATCAT
(Raw
score)
[24, 73]

62 63 74 36 57 51 29 53.14

TM-align
(TM-
Score)[25]

76 80 89 45 12 77 69 64.00

was significantly better than that of using only MSM. When using backbone visual-

ization, the accuracy of the classification using GDA reached 60%, outperforming CE

and FATCAT. On the other hand, when using MSM, the accuracy was only up to

51.71%. The proposed method using GDA with rocket visualization and LBP-based

feature achieved accuracy rates of more than 65%, which outperformed TM-align.

In general, alignment-based methods attempt to align and superpose the backbone

structures of the proteins. Methods such as TM-align [25] apply secondary structure

alignment as an initial alignment. In the view-based method, the usage of rocket

visualizations can be regarded as analogous to the alignment method in that it uses

information about the secondary and backbone structures.

Tables 3.6 and 3.7 show the confusion matrices for TM-align and rocket visualiza-

tion with LBPu2, respectively. From the confusion matrix shown in Table 3.7, we can

see clearly that by using the visualization images, the multi-domain protein class (5),

which contains mostly large sized proteins, and the small protein class (7), which con-

tains mostly proteins with fewer residues than in other classes, can be classified more

accurately than by the use of alignment-based methods.

3.3.3 Multiple visualizations and effect of rotation number

As mentioned previously, each type of visualization exposes different structural char-

acteristics. Here, we demonstrate how the use of multiple visualizations improves the

classification results. We used a simple approach to combination, taking the average

of the similarity values of all visualizations. Table 3.8 shows a summary of the experi-
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Table 3.3: Classification results for view-based MSM (accuracy in %).

Methods/
Class

(1) (2) (3) (4) (5) (6) (7) Avg.

Backbone:

- HLAC 47 65 44 30 54 47 48 47.86

- LBPu2 30 59 55 24 49 53 77 49.57

- LBPri 41 48 61 20 49 41 78 48.29

- LBPriu2 28 42 42 29 52 41 61 42.14

- RIC-LBP 42 60 57 28 43 50 82 51.71

Ribbon:

- HLAC 55 62 39 22 57 40 58 47.57

- LBPu2 49 71 60 37 46 45 85 56.14

- LBPri 55 52 45 22 51 31 81 48.14

- LBPriu2 38 54 56 28 55 36 81 49.71

- RIC-LBP 57 71 68 28 45 40 92 57.29

Rocket:

- HLAC 50 63 49 31 46 39 77 50.71

- LBPu2 57 62 63 44 52 53 60 55.86

- LBPri 69 66 56 36 42 46 73 55.43

- LBPriu2 66 74 54 26 46 44 58 52.57

- RIC-LBP 65 71 62 43 56 49 80 60.86

Cartoon:

- HLAC 62 60 34 23 53 38 58 46.86

- LBPu2 52 66 52 35 49 47 84 55.00

- LBPri 61 58 49 19 64 31 77 51.29

- LBPriu2 45 58 46 18 47 33 77 46.29

- RIC-LBP 57 66 65 28 55 42 92 57.86

mental results with using various configurations of visualizations and RIC-LBP features

with GDA. By using the unweighted combination of ribbon, rocket, and cartoon visu-

alizations, the proposed method achieved a 69.43% accuracy rate, which is much better

than that of the TM-align.

Next, we evaluated the effect of the number of multi-view images, that is, the

number of rotations, on the classification performance of the proposed method using

all the visualizations and combinations with different feature extraction methods used in

the previous experiments. Figure 3.16 shows box plots of the experimental results with

rotation numbers of 50, 100, 500, and 1000. It can be seen that the overall experimental
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Table 3.4: Classification results for view-based GDA (accuracy in %).

Methods/
Class

(1) (2) (3) (4) (5) (6) (7) Avg.

Backbone:

- HLAC 58 66 53 33 63 41 82 56.57

- LBPu2 50 71 53 39 61 45 79 56.86

- LBPri 54 74 54 46 59 52 81 60.00

- LBPriu2 52 66 44 38 59 54 80 56.14

- RIC-LBP 60 67 55 42 54 54 90 60.29

Ribbon:

- HLAC 58 68 52 44 64 38 85 58.43

- LBPu2 62 65 48 51 64 58 82 61.43

- LBPri 68 68 58 38 53 49 86 60.00

- LBPriu2 61 66 61 35 52 48 83 58.00

- RIC-LBP 66 73 54 50 53 61 86 63.29

Rocket:

- HLAC 75 67 53 35 59 46 84 59.86

- LBPu2 73 74 66 53 54 57 84 65.86

- LBPri 68 82 61 51 55 55 88 65.71

- LBPriu2 64 78 59 52 54 47 82 62.29

- RIC-LBP 72 72 63 53 63 54 83 65.71

Cartoon:

- HLAC 62 69 51 39 58 44 80 57.57

- LBPu2 62 72 56 48 52 56 81 61.00

- LBPri 59 72 61 40 52 53 86 60.43

- LBPriu2 57 67 66 35 54 49 84 58.86

- RIC-LBP 67 72 58 48 55 62 88 64.29

results for different feature extraction methods and visualizations converged when the

number of the rotations reached 500.

3.3.4 Significance test over alignment method

To ensure the performance difference in between our method and alignment method is

marginally significant, we conducted statistical test using McNemar’s test [74], which is

a nonparametric test typically used for comparing two classification methods in terms

of classification errors. The null hypothesis assumes that both methods have the same

performance. The procedure of the McNemar’s test to compare methods M1 and M2
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Table 3.5: Confusion matrix for CE with RMSD.
Predicted class

(1) (2) (3) (4) (5) (6) (7)

T
ru

e
cl

as
s

(1) 9 0 0 0 1 65 25

(2) 0 36 0 0 2 3 59

(3) 1 0 42 1 2 21 33

(4) 1 1 1 4 1 30 62

(5) 2 0 10 0 0 28 60

(6) 3 0 1 0 1 78 17

(7) 1 7 2 3 6 13 68

Table 3.6: Confusion matrix for TM-align.
Predicted class

(1) (2) (3) (4) (5) (6) (7)

T
ru

e
cl

as
s

(1) 76 0 0 3 0 20 1

(2) 5 80 0 7 1 7 0

(3) 3 1 89 2 0 5 0

(4) 6 14 12 45 1 20 2

(5) 21 4 20 13 12 30 0

(6) 17 6 0 0 0 77 0

(7) 8 6 0 13 0 4 69

Table 3.7: Confusion matrix for rocket with LBPu2+GDA.
Predicted class

(1) (2) (3) (4) (5) (6) (7)

T
ru

e
cl

a
ss

(1) 73 0 2 2 5 13 5

(2) 0 74 3 14 3 0 6

(3) 2 0 66 10 20 1 1

(4) 3 18 15 53 8 0 3

(5) 5 0 31 7 54 3 0

(6) 23 5 0 6 6 57 3

(7) 5 6 0 3 0 2 84

is as follows.

Step 1 : Generate a (2×2)-contingency matrix, with the following elements {cij}. The

element c10 is the number of tests in which the test data are classified correctly

by M1 but misclassified by M2; c11 is the number of tests in which the test data

are correctly classified by both methods; c01 and c00 are the complements of c10
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Table 3.8: Experimental results, using a combination of multiple visualizations and
RIC-LBP with GDA (accuracy in %).

Backbone Ribbon Rocket Cartoon (1) (2) (3) (4) (5) (6) (7) Avg.

X X 64 75 63 53 50 59 90 64.86

X X X 68 74 68 53 57 64 88 67.43

X X X X 66 74 69 51 56 61 88 66.43

X X 72 75 66 53 61 61 82 67.14

X X X 68 75 66 53 64 62 89 68.14

X X 67 76 57 52 59 59 90 65.71

X X 69 78 64 57 54 57 88 66.71

X X X 72 77 66 59 64 61 87 69.43

X X 70 74 65 56 62 63 86 68.00
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Figure 3.16: Accuracy of the proposed method, using various parameters for visual-
ization and different feature extraction methods, for different numbers of view points
(rotations).

and c11, respectively.

Step 2 : Compute the χ2 statistic: χ2
Mc = (|c01−c10|−1)2

c01+c10
.

Step 3 : Obtain the p-value for this statistic from the χ2 distribution with 1 degree
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Figure 3.17: Plot of accuracy over the number of the amino acids. The horizontal
axis indicates the length of the amino acid sequence. The vertical axis indicates the
accuracy of the classification results.

of freedom.

We compared the performance of the proposed method, when using 500 rotation

and RIC-LBP features, with that of the TM-align based method. The McNemar’s test

produced p = 0.01338, which means that we can reject the null hypothesis at the 5%

level and conclude that the classification performance of the proposed method is better

than that of the TM-align based method.

3.4 Further discussion

In this chapter, we discuss further the strength and weakness of the proposed method.

Figure 3.17 shows the overall accuracy for different size of proteins, where the proposed

method was using multiple visualization (ribbon, rocket, and cartoon) with RIC-LBP

and GDA. Similarly, Figure 3.18 shows a plot of all the proteins and the proteins that

were correctly classified by the same proposed method. It can be seen that the proposed

method can correctly classify proteins with a wide range of sizes. As a comparison,

Figure 3.19 shows the same plot for the TM-align method.

44



0 100 200 300 400 500 600 700
0

500

1000

1500

N
u

m
b

er
 o

f 
am

in
o

 a
ci

d
s 

(r
es

id
u

es
)

700 proteins (each class contains 100 proteins)

 

 

Protein

Correctly classified (RIC−LBP)

Figure 3.18: Plot of the proteins correctly classified by the proposed method (ribbon,
rocket, and cartoon visualization with RIC-LBP). The horizontal axis indicates the
protein structure (1 to 100: α-proteins; 101 to 200: β-proteins; 201 to 300: α/β-
proteins; 301-400: α+β-proteins, 401-500: multidomain proteins; 501-600: membrane
proteins; 601-700: small proteins). The vertical axis gives the size of the protein
(number of amino acids).

In our classification experiment, the protein structures are categorized at class-level

hierarchy which is still at a coarse-level. In this case, the proteins that belong to the

same class category do not necessarily have very similar structures. By using the set

of the multiple view of visualization images, the proposed method captures the overall

structures of the proteins while discards some of the geometrical detail. Large protein

tends to have a complicated structure; in this case, view-based method can capture

the overall complex structure, while discarding the geometrical detail which does not

contain discriminative information for classification at the class-level hierarchy. Thanks

to this, view-based method performed much better than the alignment based method

for classifying the large proteins. Another thing to be noted is that since protein is

functioning by binding with other molecules, the important parts are the structures on

the outer of the protein, which are visible through the use of the multi-view images.

However, for the case of classification of proteins with similar structures, alignment

based methods may outperform the view-based method since they can take into account
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Figure 3.19: Plot of the proteins correctly classified using the TM-align method. The
horizontal axis indicates the protein structure (1 to 100: α-proteins; 101 to 200: β-
proteins; 201 to 300: α/β-proteins; 301-400: α+β-proteins, 401-500: multidomain
proteins; 501-600: membrane proteins; 601-700: small proteins). The vertical axis
gives the size of the protein (number of amino acids).

the 3D geometrical detail and local topology of the protein structures.

3.5 Online system: View-based Protein Comparison (VPC)

Unlike the conventional methods, the proposed method requires the generation of vi-

sualization images and feature extractions so that the implementation can be slightly

complicated. To ease the difficulties, we designed a modular framework for implement-

ing the proposed method and developed an online system, called View-based Protein

Comparison (VPC), which is an implementation of our basic idea that uses the canoni-

cal angles as similarity measures between two protein structures1. In the following, we

describe how we implement the algorithm. Then, we show the computational speed of

the current implementation.

1URL: http://www.cvlab.cs.tsukuba.ac.jp/˜chendra/proteinfront/

46

http://www.cvlab.cs.tsukuba.ac.jp/~chendra/proteinfront/


Figure 3.20: General process flow of the VPC system. We adopted a modular ar-
chitecture to improve scalability and easy maintenance, by using POSIX interprocess
communication. First, front-end receives requests either through web-based interface
or HTTP API. The input proteins can be in the form of PDB file format or the seven-
characters SCOP ID. Then, the requests are passed to the back-end through Gateway
module (A). User will be given a unique code to each request, so that the user can
query the results any time. Each request received by module (A) is stored temporarily
in the message queue, called request queue. Visualization Process module (B) keeps
checking the request queue. If any queue comes, visualization process then starts by
spawning Jmol. When generation of multi-view images is completed without error, a
queue is passed to feature extraction queue. On the other hand, if any error occurs,
an error message is passed to results queue. The feature extraction queue is watched
by Feature Extraction and Subspace module (C), which applies feature extractions,
generates subspaces, and calculates the canonical angles. Finally, if all the process is
either successfully completed or with error, the results are passed to the results queue.
The results queue is handled by Output Generation module (D), which generates the
final output files and store them to the magnetic disk.

3.5.1 Implementation of VPC

The general process flow of our system is shown in Figure 3.20. The system consists of

two Linux OS based machines as follows:

1. Front-end: Shared web server using Intel Celeron G1101 2.27 Ghz with 512MB

RAM.

2. Back-end: Intel dual Xeon E-2680V2 2.8Ghz with 128GB RAM, where 32 GB of
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Figure 3.21: User interface of the VPC system.

Table 3.9: Average time for computing one pair of protein structure similarities using
our demonstration online system.
Process A (in seconds) B (in seconds)

Visualization using Jmol 197 19

Feature extraction of RIC-LBP 442 61

Subspace generation and similarity measurement 17 8

the RAM is specifically used as virtual disk.

The front-end machine, developed mostly using PHP, accepts requests from either

the web-based interface or through HTTP API. The back-end machine was developed

mostly using Python, Bottlepy [75], SciPy [76], and Jmol [54] version 13. We used the

virtual disk to temporarily store the visualization image files.

Figure 3.21 shows the web interface of VPC system. Through the web interface,

VPC system accepts requests to compare two proteins in the form of PDB files or

inputting the SCOP ID. The available feature types are the raw pixel values, HLAC,

LBPu2, and the RIC-LBP features. The option for rotation parameters are 50, 100,
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500, or 1000 uniform or random rotations. For every request, our system produces a

unique code for the user, so that the results can be queried any time through the web

interface that we provide (the results are stored for 7 days). The output of our online

tool is a compressed Matlab file format containing the set of the extracted features,

basis vectors and eigenvectors of the corresponding N -dimensional subspaces, and the

average of the n-th cosine of the canonical angles, where n = 1, . . . , N , and N is fixed

to 50. Through the web interface, users can also view the plot of the nth similarity

values and the 3D visualization of the protein structures.

3.5.2 Computational speed of VPC

The computational speed of our system is as follows. To complete 100 concurrent

requests for computing the protein structure pair similarities, with parameters of 500

uniform rotations and RIC-LBP features, our system took time about 741 seconds.

The average computational speed for one request of the 100 concurrent request is

shown on the column A in Table 3.9. Column B in Table 3.9 shows the average

computational speed for one request of 10 consecutive requests where none of them

were executed at the same time. We note that the computational speed can further

be improved by optimizing the implementation using C/C++ and GPGPU (General-

purpose computing on Graphics Processing Units) programming and removing the

dependency with third party molecular visualization software that is not specifically

designed for our purpose.

3.6 Summary

We proposed a new approach to protein structures comparison based on image sets syn-

thesized by the protein visualization. In this approach, a protein structure is encoded

as a subspace generated from a set of 2D visualizations of the 3D structures. Then,

the similarity between protein structures is defined by the canonical angles between

the corresponding subspaces. The main advantage of this approach is that alignment

is not required, so that proteins of the same class that have very different structures

can be classified more accurately. Multiple similarities can also be obtained, although

here we simply used the average of the similarity degrees. Through different types of

visualization, we can also embed additional information, such as the secondary struc-

ture of the protein. We adopted Grassmann discriminant analysis into the classification

framework to extract discriminative features from the corresponding subspaces for each
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protein structure. The validity of the proposed method is demonstrated through ex-

periments classifying proteins with 20% sequence identity into 7 classes according to

the SCOP classification scheme. The experimental results demonstrate that the view-

based method outperformed conventional methods, especially for the classes where the

the proteins have very different structures. To ease the difficulties in implementing

the proposed method, we also designed a software framework and developed an online

protein comparison system, called View-based Protein Comparison (VPC) system.

This research can also be considered as a proof of concept that view-based method

is useful and has big potential in protein structure analysis. The experimental results

can be regarded as a baseline performance of the view-based method. To further im-

prove the performance, some directions for future works include the parameter tuning

related to the generation of the visualization images. For example, embedding amino

acid types through different color and adjusting illumination setting, initial structural

orientation, and virtual camera parameters may outcome better descriptor for compar-

ing the structures. Since proteins carry out biological function by binding with other

molecules, the most important parts are the structures on the surface of the protein.

This suggests that while complicated structures can contain many occluded parts, the

occlusion can be dealt with simultaneous usage of multiple virtual cameras and adap-

tive number of view-points for the visualization images. To deal with classification at

fold-level and deeper hierarchies where proteins with similar structures belong to dif-

ferent categories, preprocessing such as local structural segmentation and rough local

alignment prior to the generation of the visualization images can be considered.

Finally, the use of subspace as the protein structure representation can be extended

to embed various protein properties, not only visualization images, and be used for

different purposes other than classification task. In the future, we intend to study the

adoption of our current work, which is based on the subspace representation including

nonlinear subspace, to other tasks such as protein structure prediction and protein

docking problem.
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Chapter 4

Combination of Distance Metrics

for Protein Fold Recognition

As mentioned in Chapters 2 and 3, many methods have been proposed for comparing

the similarity or dissimilarity between protein fold structures. It is difficult to select

one best method from a number of the protein structural comparison methods. For

example, the methods based on the molecular visualization are superior for classifying

protein that have large intra-variation but have problems when classifying proteins

with very similar structures. In contrast, alignment-based methods are superior for

differentiating very similar protein structures but inferior for comparing very different

structures. This brought us to the idea of combining multiple methods to optimize

the classification peformance which is the main focus of this chapter. We generalize

the concept of the large margin nearest neighbor (LMNN) to learn an optimal weight

combination for multiple metrics. The rest of this chapter is organized as follows. The

background of the proposed method is discussed in Chapter 4.1. Related works on

fusion techniques are reviewed in Chapter 4.2. A brief overview of LMNN is provided

in Chapter 4.3. The proposed method is described in Chapter 4.4. The experimental

results and discussion are provided in Chapter 4.5. Finally the summary is given in

Chapter 4.6.

4.1 Background

In general classification task, many fusion and metric learning algorithms have been

proposed for combining multiple methods to improve the classification results [77,

78, 79, 80, 81, 82, 83]. However, most of the methods require the availability of a
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Figure 4.1: Basic idea of the proposed metrics combination method. Let ds(Pi, Pj)
be the distance between two sample proteins Pi and Pj computed using method s.
The objective is to optimize the weight combination of multiple distance measures
{1, . . . , S}, by minimizing the distances between each protein and its intra-class proteins
and enlarging the distances of different class proteins under margin l, using only the
sets of the distance matrices.

feature vector representation. Unfortunately, for the case of protein structural com-

parison, feature vector representation is not always available. For example, alignment

methods [22, 23, 24, 25, 73] only produce either distances or similarity values with

the aligned sub-structures. Subspace-based representation proposed in Chapter 3 and

Graph-based representation [84] are another two examples of nontrivial features repre-

sentation for protein structures, from which only similarity metrics can be obtained.

Here, we propose a combination of multiple distance metrics for protein fold clas-

sification, illustrated in Figure 4.1. Given S distance measures {di}Si=1 (assumed to be

obtained by using multiple techniques), our task is to learn an optimal weight coefficient

w∗ ∈ RS by minimizing the distance between samples that belong to the same class

and enlarging the distance of samples that belong to other classes only using the sets of
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the distance matrices. This concept is similar to that of the large margin nearest neigh-

bor (LMNN) [79] and closely related to the support vector machine (SVM), wherein

the separation between classes is optimized according to convex optimization with a

hinge loss function. However, unlike SVM, which is theoretically designed for two-class

classification tasks, our method and the conventional LMNN are naturally applicable to

multi-class problems. While the original LMNN learns a Mahalanobis-based distance

metric from a set of feature vectors of training data, our proposed method learns an

optimal weight coefficients for combination of the distance metrics from training data.

The final distance, termed as overall distance, is then defined as the linear combination

of the distances that can be used for any distance-based classification such as k-nearest

neighbor classification.

The main advantage of our proposed method is the capability in finding an optimal

combination for many distance metrics, possibly including poor metrics (metrics that

output poor performance in the classification). Accordingly, when there are a number of

distance measures available, we can eliminate the difficulties in selecting the appropriate

measures for the combination. In practice, this property is important because the

distance measure that can perform the best on a certain data is commonly not known

beforehand.

We demonstrate the effectiveness of the proposed method through classification ex-

periments on 27 fold classes of proteins using Ding Dubchak dataset [13, 14] and six

classes of protein enzymes using ENZYMES dataset [84]. Our proposed method is

closely related to multiple kernel learning (MKL) [85, 86, 87], where MKL combines

multiple kernel matrices instead of distances. Therefore, we compared the performance

of our proposed method with generalized MKL (GMKL) [86] in addition to näıve av-

eraging and voting.

In brief, the contributions of this work are as follows:

• Generalization of the concept of the LMNN to learn optimal weight coefficients

for a combination of distance metrics.

• Introduction of three loss functions to the problem formulation for combining

distance metrics using hinge loss, smooth hinge loss, and logistic loss.

• Comprehensive experiments on protein fold and enzymes classification, includ-

ing performance comparison with näıve methods (averaging and voting) and

GMKL [86] using the public protein dataset of Ding Dubchak [13, 14] and EN-

ZYMES [84].
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4.2 Related works

Metric learning is defined as a method that constructs a new distance function which

hopefully perform better than that of the original distance function [88]. We regard our

method is closely related to metric learning because our method learns a new metric

from given multiple metrics by minimizing the L2 distances of the same class data and

enlarging those of the different classes’ data. There are many metric learning methods

have been proposed. One of the most well-known metric learning methods is large

margin nearest neighbor (LMNN) [79]. LMNN learns a Mahalanobis distance metric

for k-NN classification, such that the data within the k-nearest neighbor belong to the

same class and the data of different classes are separated by a large margin. Another

example is relevant component analysis (RCA) [77]. RCA learns a Mahalanobis distance

metric by first generating a set of chunklet1. The covariance matrix in RCA is then

computed using weighted scatter matrix based on the chunklets. In [78], Neighborhood

Component Analysis (NCA) was proposed for improving k-NN classification. NCA

learns Mahalanobis distance metrics by explicitly maximizing the probability of a data

point to be correctly classified through introduction of a stochastic cost function solved

using gradient decent. In [80], instead of Mahalanobis-based distance metric learning,

a random forest-based metric learning was proposed by considering both the relative

location and the absolute positions of the data samples. There are many other metric

learning methods such as [81, 82, 83]. However, all of them require feature vector

representation of the data samples.

Since the proposed method combines multiple methods, the proposed method is also

related to fusion techniques. The simplest approach to multiple methods combination is

either by averaging or voting. As we combined multiple distance obtained from multiple

methods, our work is very similar to multiple kernel learning (MKL) [85, 86, 87]. The

difference is that MKL-based methods combine similarity matrices, while our method

combines distance matrices.

From the view point of statistical analysis and information theory, finding an opti-

mal combination from multiple methods is related to model selection, such as stepwise

regression method, with Akaike information criterion (AIC) or Bayes information cri-

terion (BIC) as the indicator of the model performance. However, stepwise regression

can be suboptimal due to local-optima and the optimization of indirect performance

indicator, while the proposed method directly optimizes the distance specifically for

k-NN classification. Another problem is on the scalability since the computational cost

1Chunklet is defined as a set of data of the same class but the class label is unknown [77].
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Figure 4.2: Illustration of how LMNN works. The small circle in the center represents
one sample data point xi. LMNN learns a transformation matrix from a set of feature
vectors of samples to pull in data points of the same class and push out data points of
different classes with a margin of one unit distance.

significantly increases by the number of the models.

4.3 Large margin nearest neighbor (LMNN)

Conventional metric learning algorithms search for a transformation of feature vectors

of the sample data to obtain an optimal metric, used for task that depends on distances,

such as classification using nearest-neighbor method [88]. In the following, we provide

an overview of LMNN [79], which is the basis of our proposed method.

Let D = {(xi, yi)}ni=1 be a training set, where xi ∈ Rd is a data point (a feature

vector) and yi ∈ {1, 2, . . . , C} is the class label of xi. Then, LMNN searches for a linear

transformation W : Rd → Rf (f ≤ d), ensuring that the data points in the same class

are brought closer to each other and that the margins between different classes are

made larger, as shown in Figure 4.2. The cost function to be minimized consists of two

terms as follows:

F (W) =

n∑
i=1

∑
j:yj=yi

‖W(xi − xj)‖2+

µ

n∑
i=1

∑
j:yj=yi

∑
h:yh 6=yi

[
1 + ‖W(xi − xj)‖2 − ‖W(xi − xh)‖2

]
+
,

(4.1)

where µ > 0 is a balancing parameter between the two terms. The first term imposes

a cost when the distances between the data points in the same class are large and the

second term imposes a cost when the distances between the data points in different

classes are smaller than the distances to data points within the class. Here, [·]+ is the

55



hinge loss defined as

[x]+ =

x, if x > 0,

0, otherwise.
(4.2)

To optimize F (W), the transformation matrix W is parameterized as the Mahalanobis-

based distance metric with a covariance matrix C = W>W, so that Eq.(4.1) becomes

F (C) =

n∑
i=1

∑
j:yj=yi

M(xi, xj)+

µ
n∑
i=1

∑
j:yj=yi

∑
h:yh 6=yi

[1 + M(xi, xj)−M(xi, xh)]+ ,

(4.3)

where M(xi, xj) = (xi − xj)>C(xi − xj). The cost function F (C) can be optimized

using semidefinite programming or subgradient descent [79].

4.4 Proposed method

While the conventional distance metric learning aims to learn a new distance metric

through transformation of feature vectors, the goal of our proposed method is to learn

an optimal overall distance through combination of multiple distance metrics. The mo-

tivation is to deal with the protein fold classification task where a number of protein

structural dissimilarity measures are defined without feature vector representation in

addition to dissimilarity measures defined in vector spaces with feature vectors repre-

sentation. In the following, we reformulate Eq.(4.1) to work with distances instead of

feature vectors.

Let the distance measure between two data points xi and xj computed using a con-

crete distance function with corresponding weight w be d(xi, xj ;w). The cost function

in Eq.(4.1) is then rewritten as a cost function J(w):

J(w) =
n∑
i=1

∑
j:yj=yi

d2(xi, xj ;w) + µ
∑

h:yh 6=yi

[L(i, j, h;w)]+

 , (4.4)

L(i, j, h;w) = l + d2(xi, xj ;w)− d2(xi, xh;w). (4.5)

The same as in Eq.(4.1), µ > 0 is a balancing parameter between the two terms.

However, here the margin is set as a tuning parameter l ≥ 0, while in Eq.(4.1) the

margin is fixed to 1. In the original formulation of LMNN [79], the distance d was
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parameterized as a Mahalanobis-based distance. On the other hand, we parameterize

d as a convex combination of multiple distance measures.

4.4.1 Distance combination

As mentioned in the introduction, methods for comparing protein fold structures use

either distances (dissimilarities) or similarity scores to evaluate the similarity between

two proteins. Before combination of the distances or similarity scores, these values

need to be normalized into a distance measure with range 0 ≤ dij ≤ 1, by redefining

dij = Dij/max(D), where dij is the distance between xi and xj , and D is the n × n
distance matrix for n training samples. Likewise, we can convert a similarity measure to

a distance measure by letting dij = 1− (uij/max(U)), where uij denotes the similarity

value between xi and xj , and U is the n× n similarity matrix for n training samples.

The linear combination of S distance measures is written as follows:

d(xi, xj ;w) =

S∑
s=1

wsds(xi, xj), (4.6)

where ds(xi, xj) are the normalized distance measures between xi and xj as obtained

from the multiple protein structure comparison methods. To ensure that the convexity

and S-simplex constraints are satisfied, the weight for each distance measure w =

(w1, . . . , wS)> ∈ RS must satisfy

S∑
s=1

ws = 1, ws ≥ 0. (4.7)

Assuming that each distance ds(xi, xj) satisfies the axiom of distance metric, i.e., non-

negativity, coincidence axiom, symmetry, and triangle inequality, Eq.(4.6) also satisfies

the axiom of distance metric.

4.4.2 Optimization algorithm

In the following, we formulate the optimization algorithm to obtain the optimal pa-

rameter w∗. First, Eqs.(4.4) and (4.5) are rewritten as

J(w) = w>Mw + µ
n∑
i=1

∑
j:yj=yi

∑
h:yh 6=yi

[L(i, j, h;w)]+ (4.8)
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L(i, j, h;w) = l + w>dijd
>
ijw −w>dihd

>
ihw, (4.9)

where

M =
n∑
i=1

∑
j:yj=yi

dijd
>
ij , (4.10)

dij = (d1(xi, xj), . . . , dS(xi, xj))
> ∈ RS , (4.11)

d(xi, xj ;w) = w>dij . (4.12)

The first term in Eq.(4.8) is a smooth quadratic function that can be directly optimized.

In contrast, the second term contains hinge loss [x]+, which is not straightforward to

optimize since it is not a smooth function. In the following, we first provide an iterative

algorithm to optimize Eq.(4.8) and then present three approaches for solving the second

term. The first approach optimizes hinge loss by using the subgradient algorithm. The

second approach adds relaxation to the hinge loss through smoothing the hinge loss.

Finally, the third approach replaces hinge loss with logistic loss.

4.4.2.1 Optimization algorithm

Algorithm 1 provides an iterative algorithm based on the gradient method for optimiz-

ing Eq.(4.8). In Algorithm 1, gijh is replaced with either gHLijh , gSHLijh , or gLLijh, which

corresponds to the gradient of the second terms when using hinge loss (Chapter 4.4.2.2),

smooth hinge loss (Chapter 4.4.2.3), or logistic loss (Chapter 4.4.2.4), respectively.

4.4.2.2 Hinge loss optimization

Hinge loss [·]+ in Eq.(4.8) is not differentiable at the origin, but it is possible to optimize

the hinge loss by using the subgradient method. The subgradient of [L(i, j, h;w)]+ is

as follows:

Rs 3 gHLijh =

2(dijd
>
ij − dihd

>
ih)w, if z > 0,

0, otherwise,
(4.13)

where z = L(i, j, h;w).
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4.4.2.3 Smooth hinge loss optimization

Smooth hinge loss [89] adds an intermediate criterion to the hinge loss so that it is

differentiable everywhere. Smooth hinge loss is defined as follows:

hsmooth(x) =


x− 1

2 , if x ≥ 1,

1
2x

2, if 0 < x < 1,

0, otherwise.

(4.14)

By replacing [L(i, j, h;w)]+ with hsmooth(L(i, j, h;w)), the gradient becomes

Rs 3 gSHLijh =


2(dijd

>
ij − dihd

>
ih)w, if z ≥ 1,

(2(dijd
>
ij − dihd

>
ih)w)z, if 0 < z < 1,

0, otherwise,

(4.15)

where z = L(i, j, h;w).

4.4.2.4 Logistic loss optimization

Another alternative to using hinge loss is to use logistic loss log(1+ex), which is convex

and differentiable everywhere. The cost function J(w) in Eq.(4.8), approximated by

logistic loss, is then written as follows:

w>Mw + µ

n∑
i=1

∑
j:yj=yi

∑
h:yh 6=yi

log(1 + ez), (4.16)

where z = L(i, j, h;w). The gradient of Eq.(4.16) is given by

Rs 3 gLLijh =
2el+w>(dijd

>
ij−dihd

>
ih)w(dijd

>
ij − dihd

>
ih)w

1 + el+w>(dijd
>
ij−dihd

>
ih)w

. (4.17)

4.4.3 Flow of the classification framework

Figure 4.3 shows the flow of the classification framework.

Training phase:

Step 1: Given n training proteins and S methods that compute either similarities or
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Algorithm 1 Gradient based Algorithm for Minimizing J(w)

Initialize: w0 = (1/S, ..., 1/S), µ > 0, l > 0, ε are set to small values, such as 10−5

or 10−6, and M is as in Eq.(4.10).
repeat

w ← w − ε

{
Mw + µ

n∑
i=1

∑
j:yj=yi

∑
h:yh 6=yi

gijh

}
Simplex projection:
for s = 1, . . . , S do

if ws < 0 then ws ← 0
end for
for s = 1, . . . , S do
ws ← ws∑S

s=1 ws

end for
until converges
Output: optimal coefficient w∗ ← w

…

…

�� ��, �� �� ��,��

�� ��, �� �� ��, ��

…

…

…

…

…

n training proteins

S distance matrices

…

…
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…

…

…

…

…

Step 1: Compute multiple distance matrices

Step 2: Find �∗ using Algorithm 1

�∗ = ��
∗, … ,��

∗ � ∈ ℝ�
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Step 1: 

Compute multiple distances

Distance �� Distance ��

Step 2: 

Combine multiple distances

…

Overall distance:

�����	

 = ∑ ��
∗��

�
���

Step 3: 

Classify using k-NN

(1) Training Phase (2) Recognition Phase

Figure 4.3: Flow of the classification framework.

distances, compute S n × n distance matrices in which each element is normal-

ized (0 ≤ ds(xi, xj) ≤ 1).

Step 2: Find the optimal w∗ ∈ RS by using Algorithm 1.
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Recognition phase:

Step 1: Given an input protein, compute S distances (d1, . . . , dS) between the input

protein and each training protein and normalize the value similarly to that in the

training phase.

Step 2: Compute the overall distance doverall by combining the S distances, using w∗.

Step 3: Apply k-nearest neighbor to the overall distance doverall to predict the fold

class of the input protein.

4.5 Experiments

To evaluate the validity of the proposed method, we conducted protein fold classification

experiments using Ding Dubchak dataset [13, 14] and ENZYMES dataset [84], and

compared the results with those from conventional methods based on averaging, voting,

and GMKL [86]. The classification performance was evaluated in terms of precision

(ratio of true positives to true positives and false positives) and recall (ratio of true

positives to true positives and false negatives).

4.5.1 Ding Dubchak dataset

The Ding Dubchak dataset [13, 14] contains 27 fold classes of 693 proteins, as shown

in Table 4.1. We conducted the classification experiments by combining distance met-

rics from the extracted features of the amino acid sequences and the 3D structural

comparison methods. The original dataset does not contain the 3D structure of the

proteins. Therefore, we downloaded the 3D structure for each protein from ASTRAL

SCOP [12] for use by the 3D structural comparison methods. In the experiments, 18

types of similarity (or dissimilarity) metrics were used. Table 4.2 lists all distance met-

rics. We used 12 distances computed from 12 types of feature vectors extracted from

the sequence of the amino acids [14] (D-1 to D-12), 2 dissimilarity measures from two

3D structural comparison methods (D-13 and D-17), and 4 similarity measures from

four 3D structural comparison methods (D-14, D-15, D-16, and D-18). All the distance

measures D1 to D-18 satisfy the axiom of a metric. Note that measures D-13 to D-18

lack of explicit feature vector representation. Since our main focus is to validate the

effectiveness of the proposed method for metrics combination, we did not use any novel

methods for computing the distances of the features from the sequences of the amino

acids.
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Table 4.1: 27-fold protein compositions used in the experiments.
No. Fold class # Proteins

1 Alpha; Globin-like 19
2 Alpha; Cytochrome c 16
3 DNA-binding 3-helical bundle 32
4 Alpha; Four-helical up-and-down bundle 15
5 Alpha; 4-helical cytokines 18
6 Alpha; EF-hand 15
7 Beta; Immunoglobulin-like beta-sandwich 74
8 Beta; Cupredoxins 21
9 Beta; Viral coat and capsid proteins 29
10 Beta; ConA-like lectins/glucanases 13
11 Beta; SH3-like barrel 16
12 Beta; OB-fold 32
13 Beta; beta-Trefoil 12
14 Beta; Trypsin-like serine proteases 13
15 Beta; Lipocalins 16
16 A/B; beta/alpha (TIM)-barrel 77
17 A/B; FAD (also NAD)-binding motif 23
18 A/B; Flavodoxin-like 24
19 A/B; NAD(P)-binding Rossmann-fold 40
20 A/B; P-loop nucleotide triphosphate

hydrolases 22
21 A/B; Thioredoxin-like 17
22 A/B; Ribonuclease H-like motif 22
23 A/B; alpha/beta-Hydrolases 18
24 A/B; Periplasmic binding protein-like 15
25 A+B; beta-Grasp 15
26 A+B; Ferredoxin-like 40
27 Small; Small inhibitors, toxins, lectins 39

Total 693

4.5.1.1 Experimental setting

We conducted the experiments 10 times by repeatedly splitting the dataset into 50%

training and 50% test data using stratified random sampling and used the same 10 set

of training and test data for the conventional methods and the proposed methods. Since

we compared the proposed method with GMKL [86], all metrics needed to be converted

to kernel matrices, which are basically similarity matrices. All of the metrics are also

needed to be converted to distance matrices for applying the proposed method. For

GMKL, we converted all distances into kernel matrices by using a radial basis function
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Table 4.2: List of similarity and dissimilarity metrics used in the experiments. Metrics
D-1 to D-12 are based on the feature extraction of the protein sequences [13, 14]; D-13 to
D-18 are similarity (or dissimilarity) measurements based on the 3D protein structures.

Name Type Features or methods

D-1 Euclidean distance Amino acid composition
D-2 Euclidean distance Predicted 2nd structure
D-3 Euclidean distance Hydrophobicity
D-4 Euclidean distance van der Waals Volume
D-5 Euclidean distance Polarity
D-6 Euclidean distance Polarizability
D-7 Euclidean distance Pse Amino Acid-1
D-8 Euclidean distance Pse Amino Acid-4
D-9 Euclidean distance Pse Amino Acid-14
D-10 Euclidean distance Pse Amino Acid-30
D-11 Euclidean distance SW BLOSUM62
D-12 Euclidean distance SW PAM50

D-13 RMSD dissimilarity CE [23, 73]
D-14 Z-Score similarity CE [23, 73]
D-15 Canonical angles similarity CMSM (view-based)
D-16 FATCAT similarity FATCAT [24, 73]
D-17 RMSD dissimilarity TM-align [25]
D-18 TM-score similarity TM-align [25]

exp(−d2ij/σ). The σ was tuned by simulated annealing, by using 5-fold cross validation

of the training data. For the proposed method, to ensure the equivalence with those

in GMKL, the obtained kernel matrices were converted back to distance matrices by

using the method described in Chapter 4.4.1.

The parameters of the proposed method (margin l, balancing parameter µ, and

k for k-NN) and GMKL were also tuned using 5-fold cross validation of the training

data. For the proposed method, a number of balancing parameters and margins were

then prepared, with values ranging from 0.01 to 1 in steps of 0.05. For GMKL, several

step size limits for the backtracking line-search algorithm were set as follows: upper

values: 0.1, 1.0, 2.1; lower values: 0.1, 0.3, 0.9. For the SVM used by GMKL, we also

tuned the misclassification penalty, which was set to 0.5, 1, 1.5, and 2. We then applied

the proposed method to all combinations of parameters with hinge loss, smooth hinge

loss, and logistic loss optimization, and GMKL with L2 regularization. When using

averaging, voting, and the proposed method, the k-nearest neighbor of the combined

distances was used. When using GMKL, one-against-all SVM was used.
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Table 4.3: Average precision (Prec.) and recall (Rec.) [%] for each baseline feature and
method.

Metrics D-1 D-2 D-3 D-4 D-5 D-6 D-7 D-8 D-9

Prec. 42.4 36.6 27.8 30.9 28.2 24.9 35.0 33.8 30.1

Rec. 38.2 37.4 24.9 25.5 25.1 21.8 32.1 29.0 23.9

Metrics D-10 D-11 D-12 D-13 D-14 D-15 D-16 D-17 D-18

Prec. 27.8 51.4 48.1 86.6 92.7 75.3 92.4 83.3 98.8

Rec. 20.4 44.8 43.5 83.4 92.2 74.2 91.2 59.9 98.7

4.5.1.2 Experimental results

Firstly, as the baseline performance, classification experiments were conducted for each

feature and method listed in Table 4.2 with k-nearest neighbor. Table 4.3 summarizes

the experimental results for all the features based on amino acid sequences and methods

based on the 3D structures. In the study of protein analysis, protein fold prediction

using the features from amino acid sequences has been known to be a very difficult

task. Consequently, the classification results when using D-1 to D-12 were poor, just

as expected. In contrast, although protein fold classification using the 3D structure is

also a challenging task, since the fold categories are determined by the 3D geometrical

structure the performances when using D-13 to D-18 were much better than when

using D-1 to D-12. From Table 4.3, we can also confirm that the scoring used in the

protein structure comparison, either similarity or dissimilarity, could significantly affect

the classification results. For example, when using CE [23, 73], the recall when using

RMSD (D-13) was 83.4%, but when using the Z-Score (D-14) the recall improved to

92.2%. When using TM-align, the recall when using RMSD (D-17) was only 59.9%.

In contrast, when using TM-score (D-18), the performance significantly improved to

98.7%.

Secondly, we used several combinations of the distance matrices to demonstrate both

the effectiveness and limitations of the proposed method, and compared the results with

näıve methods such as averaging, voting, and GMKL [86] as the representative method

from multiple kernel learning based algorithm. We did not compare our method with

the conventional feature-based distance metric learning methods [77, 79, 80, 81, 82, 83?

] because of the unavailability of the explicit feature vectors. Tables 4.4 and 4.5 show

the combinations of distance matrices and the classification results for each method,

respectively. In Table 4.5, HL, SHL, and LL are the proposed methods using hinge

loss, smooth hinge loss, and logistic loss, respectively. In the following, we discuss the

performance of each method shown in Table 4.5.
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Table 4.4: Combinations of distance matrices.

D-1 to 3D structure based
Comb. D-12 D-13 D-14 D-15 D-16 D-17 D-18

C-1 X
C-2 X X
C-3 X X X X X X X
C-4 X X X X X X
C-5 X X
C-6 X X X
C-7 X X X X
C-8 X X X X X
C-9 X X X X X X

When using averaging, which is basically the same as using a uniform weight (each

entry of w is 1/S, where S is the number of the distances) to combine the distances,

the performance was significantly affected by the number of good distance metrics.

For example, when all the distance metrics were from the 3D structure-based method

(combination C-4), the averaging method achieved high precision (97.0%) and recall

(96.4%). However, when the metrics from both amino acid sequence and 3D structure

based methods were combined, averaging performed poorly compared with the other

methods.

The voting-based method uses the most votes among the distance metrics to deter-

mine the fold category of an input protein. The overall performance of the voting-based

method was better than that of averaging, but voting also requires a majority of the

distance metrics to have good accuracy. The performance of the voting method was

better than averaging when multiple distance metrics from 3D structure-based methods

were included (combinations C-3).

Multiple kernel learning is known to be the most widely used method for com-

bination of metrics. When GMKL [86] was used, the classification results improved

significantly compared to results with the averaging and voting. For combination C-1,

GMKL outperformed the other methods. However, the results for the other combina-

tions were worse than with the proposed method. For comparison purpose, Table 4.6

shows the experimental results using original LMNN, SVM, and random forest (RF) for

combination C-1 where feature representations were available. The combination was

done by either voting or concatenation of the feature vectors. In voting-based method,

the LMNN, SVM, or RF was first applied to each type of the features in the combi-
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Table 4.5: Average classification results in term of precision and recall [%] for combi-
nations of distance matrices. HL, SHL, and LL stand for hinge loss, smooth hinge loss,
and logistic loss, respectively.

Precision
Averaging Voting GMKL Ours

[86] HL SHL LL

C-1 52.3 58.0 58.0 51.0 51.5 50.6

C-2 63.8 67.7 86.6 99.0 98.7 98.1

C-3 89.4 91.4 97.6 98.8 98.5 97.8

C-4 97.0 97.0 92.5 98.8 98.4 97.3

C-5 65.8 66.1 86.0 90.1 90.2 90.4

C-6 75.5 75.4 93.1 95.4 95.9 95.7

C-7 76.9 78.5 92.5 96.0 96.1 95.9

C-8 79.4 86.1 93.4 96.3 96.3 96.0

C-9 85.8 87.9 96.5 96.8 96.5 96.4

Recall
Averaging Voting GMKL Ours

[86] HL SHL LL

C-1 41.3 50.3 54.8 45.6 45.9 42.2

C-2 54.0 59.5 84.4 98.9 98.6 98.0

C-3 87.0 88.3 97.4 98.7 98.3 97.5

C-4 96.4 96.5 92.3 98.7 98.2 96.8

C-5 55.2 58.3 84.4 89.2 89.2 89.5

C-6 67.1 68.3 92.3 95.0 95.6 95.4

C-7 69.5 71.5 91.7 95.7 95.8 95.6

C-8 72.5 80.6 92.8 96.0 96.0 95.7

C-9 81.6 82.9 96.2 96.4 95.9 95.9

Table 4.6: Average precision and recall [%] for combination C-1 using LMNN, SVM,
and random forest (RF).

Precision Recall
Voting Concatenation Voting Concatenation

LMNN 61.78 56.25 53.04 52.50

SVM 63.74 59.66 32.18 38.50

RF 63.86 63.48 46.18 52.41

nation C-1 and then the final classification results were decided through voting among

the 12 distances. In concatenation method, all feature vectors were first concatenated.

Then, the LMNN, SVM, or RF was applied to the concatenated features. For SVM, we
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Figure 4.4: Error rates for combination C-3.

tested using linear, quadratic, and third degree polynomial kernel, where we reported

the best results which were produced with quadratic kernel. For the RF, the number

of trees was empirically set to 1000. When using voting-based method, all the methods

obtained higher precisions than that of GMKL, where the highest precision of 63.86%

was obtained by using random forest. With concatenation of the features before apply-

ing each method (LMNN, SVM, and RF), the precisions decreased. However, in term

of recall, the performance of GMKL was still better than the performance of LMNN,

SVM, and RF with either voting-based method or concatenation of the feature vectors.

The proposed method was used together with the three types of loss functions de-

scribed in Chapter 4.4.2. The overall performances for the three loss functions were

comparatively similar to one other. Although LMNN-based methods did not perform

well for combination C-1, the precision and recall for the proposed method with smooth

hinge loss (SHL) were slightly better than the best results from the single measure

(D-11). In the case when the combination consists of distances from both amino acid

sequence features and 3D structure-based methods, the proposed method outperformed

averaging, voting, and GMKL. This suggests that when distance metrics are very dif-

ferent in terms of performance, our method is still able to find the optimal weights

for combination. In combination C-2, where there were 12 poor distances with one

very good distance measure, the proposed method with hinge loss could still achieve

precision and recall comparable to the single measure of D-18.

Figure 4.4 shows the boxplot of the error rate for combination C-3. Table 4.7 shows

the p-value of the t-test for the 10 repeated experiments using the proposed method

with combination C-3, GMKL, and the single measure D-18. From the Table 4.7, we

can conclude that with more than 95% confidence (p = 0.0005) the proposed method
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Table 4.7: The p-value of the t-test for single measure D-18 and combination C-3.

D-18 GMKL HL SHL LL

D-18 - 0.0046 0.7351 0.2693 0.0007

GMKL 0.0046 - 0.0005 0.0265 0.6470

HL 0.7351 0.0005 - 0.0661 0.0002

SHL 0.2693 0.0265 0.0661 - 0.0081

LL 0.0007 0.6470 0.0002 0.0081 -

using hinge loss performed better than that of the GMKL. The t-test results show that

the combination of all 18 distances using the proposed method with hinge loss and

smooth hinge loss performed the same as the single measure D-18. This points to the

capability of the proposed method in finding an optimal combination when combining

heterogeneous metrics to eliminate the necessity for preselecting the distance metrics.

4.5.1.3 Computational time and further discussion

Table 4.8 compares the average computational time and iteration required for the pro-

posed method and GMKL to complete the optimization for combination C-3. The

experiments were conducted using Intel Xeon E5-2630 2.3 Ghz with 32 GB RAM. The

proposed methods were implemented using Matlab, while the computation of the cost

function and gradient for smooth hinge loss and logistic loss were implemented using

C. When using the proposed method with hinge loss optimization, one experiment can

be completed in a relatively short time, this is because the computation of the sub-

gradient is very simple. With smooth hinge loss, more iterations were required before

convergence, which points to the longer computational time. Logistic loss required the

least iterations to converge. However, since it requires to compute exponential function

in each iteration, the average computational time was longer than that of the hinge

loss. For GMKL, we used the publicly available Matlab code from [86] that uses the

quadratic programming function from Matlab optimization toolbox. Average compu-

tational time of GMKL was 628.63 seconds. GMKL was basically fast, except for the

case when convergence solution could not be obtained. In that case, we used active-set

method in quadratic programming, which can deal with non-convex problem with the

trade-off in computational time.

Next, we conducted 10 repeated experiments for combination C-1, C-2, C-3, and

C-4 by using hinge loss with random initial weights instead of equal weights. For com-

bination C-1, the average precision and recall were 50.6% and 45.3%, respectively. For
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Table 4.8: Average computational time and iterations for the proposed methods and
GMKL for combination C-3.

HL SHL LL GMKL

Time (in secs) 11.05 148.88 133.59 628.63

Iteration 80 131 60 -

Table 4.9: Average of optimal weight coefficients [%] for combination C-3, obtained by
hinge loss (HL), smooth hinge loss (SHL), and logistic loss (LL) over the 10 repeated
experiments.

Distances HL SHL LL

D-1 3.06 ± 0.11 0.89 ± 0.03 4.20 ± 0.00

D-2 1.61 ± 0.04 0.77 ± 0.03 2.37 ± 0.00

D-3 0.41 ± 0.01 0.27 ± 0.01 2.56 ± 0.00

D-4 0.17 ± 0.00 0.24 ± 0.01 2.42 ± 0.00

D-5 0.00 0.24 ± 0.01 2.55 ± 0.00

D-6 0.00 0.26 ± 0.01 2.01 ± 0.00

D-7 0.10 ± 0.00 0.23 ± 0.00 2.86 ± 0.00

D-8 0.05 ± 0.00 0.21 ± 0.00 2.30 ± 0.00

D-9 0.00 0.18 ± 0.00 1.07 ± 0.00

D-10 0.00 0.00 2.20 ± 0.01

D-11 0.45 ± 0.01 0.37 ± 0.01 0.52 ± 0.00

D-12 0.00 0.28 ± 0.01 0.19 ± 0.00

D-13 3.03 ± 0.06 4.88 ± 0.25 17.63 ± 0.02

D-14 3.78 ± 0.22 4.63 ± 0.38 16.22 ± 0.01

D-15 18.92 ± 2.70 24.14 ± 4.75 8.16 ± 0.02

D-16 0.32 ± 0.01 0.48 ± 0.02 3.85 ± 0.00

D-17 4.39 ± 0.24 4.10 ± 0.28 13.06 ± 0.01

D-18 63.72 ± 5.45 57.83 ± 7.97 15.85 ± 0.01

combination C-2, the average precision and recall were 99.0% and 98.9%. For combi-

nation C-3, the average precision and recall were 98.7% and 98.6%, respectively. For

combination C-4, the average precision and recall were 98.8% and 98.7%, respectively.

By comparing these results with those in Table 4.5, we can see that the proposed

method is not largely affected by the initial weights.

Finally, we discuss the characteristics of the hinge loss, smooth hinge loss, and

logistic loss. Figure 4.5 shows how the costs imposed by the hinge loss were smoothened

by smooth hinge loss and logistic loss. Table 4.9 shows the optimal weight coefficients

when combining all distance metrics (combination C-3) using each loss function. Hinge
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Figure 4.5: Costs imposed by hinge loss (HL), smooth hinge loss (SHL), and logistic
loss (LL).

loss tends to sparsely pick up the metrics, where the majority of the weights were given

to D-18 (63.72%). Although D-15 performed worse than other 3D structure based

method (see Table 4.3), the average weight for D-15 was 18.92%, which were higher

than the other distances. This suggests that the proposed method can selectively adjust

the weight for the most optimal combination. When using hinge loss, there were five

distances with zero weights (D-5, D-6, D-9, D-10, and D-12). Smooth hinge loss also

put most of the weights to D-18 (57.83%). However, smooth hinge loss considered more

distance metrics than hinge loss whereas only D-10 had zero weight. When the cost

function used logistic loss, all of the distance metrics were used. This suggests that

using smooth loss functions, such as smooth hinge loss or logistic loss, the weights were

more uniformly distributed over the available distance metrics.

4.5.2 ENZYMES dataset

In this experiment, we conducted classification experiments on ENZYMES dataset that

contains six classes of protein enzymes (100 proteins in each class), where a graph-

based representation is used to represent each protein [84]. Since it is not trivial

to combine graph-based representation, conventional feature combinations and met-

ric learning cannot be used. We combined three types of graph-based kernel matrices:

the Weisfeiler-Lehman based subtree kernel [90], propagation based graph kernel [91],

and GraphHopper kernel [92]. We conducted three repeated experiments by randomly

selecting 30% of samples in each class as training and the rest as testing. When using

the proposed method, the kernel matrices were converted into distance matrices as in
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Table 4.10: Summary of the classification results in term of precision and recall [%] for
ENZYMES dataset.

Method Precision Recall

Single metric (k-NN):
- GraphHopper [90] 55.3 54.4
- Propagation [91] 19.6 18.3
- Weisfeiler-Lehman [92] 31.8 27.5

Combination:
- Averaging (k-NN) 53.2 46.9
- Voting (k-NN) 52.7 31.7
- GMKL (SVM) 55.6 50.1

Ours (fixed step size, 1-NN):
- Hinge loss 55.3 54.4
- Smooth hinge loss 55.3 54.4
- Logistic loss 53.7 52.7
Ours (with Armijo rule, 1-NN):
- Hinge loss 54.2 53.4
- Smooth hinge loss 55.8 54.9
- Logistic loss 53.1 52.4

the previous experiments with the Ding Dubchak dataset and fixed value of k = 1 for

the k-NN was used. When using GMKL, the kernel matrices were directly used. The

parameters for the proposed methods and the GMKL were tuned in the same manner as

in the previous experiments. In addition to the use of the fixed value for step size in the

proposed methods (ε = 10−5), we also used an adaptive step size by using Armijo rule

[93]. We reported the experimental results based on the average of the three repeated

experiments.

4.5.2.1 Experimental results

Table 4.10 summarizes the experimental results. By using k-NN, the classification re-

sults using each kernel were relatively low. With averaging and voting, the performance

were worse than those with the GraphHopper kernel which has 55.3% precision and

54.4% recall. When using GMKL, the precision was slightly better than that of Graph-

Hopper, while the recall was not as bad as the averaging and voting. When using the

proposed method with fixed step size, the hinge loss and smooth hinge loss put weight

only to GraphHopper kernel, resulting the same performance as GraphHopper kernel.

With Armijo rule, the proposed method with smooth hinge loss could slightly improve
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the performance of the GraphHopper kernel, where the precision and recall were im-

proved to 55.8% and 54.9%, respectively. These results suggest that the proposed

method can still effectively deal with distance metrics that have poor performance.

4.6 Summary

We proposed a method that finds optimal combinations of distance metrics for protein

fold classification task by generalizing the concept of LMNN for combining multiple

distance metrics. LMNN was originally proposed for learning Mahalanobis-based dis-

tance metric from a set of feature vectors of sample data. On the other hand, our

objective is to find an optimal combination of distance metrics from multiple protein

structural measurement methods, where natural feature vector representation is not

always available. The final distance, termed as overall distance, is then defined as a lin-

ear combination of the multiple distance measures. The convex optimization problem

is solved by using an iterative algorithm based on the subgradient and gradient meth-

ods; for this we adopted three types of loss functions: hinge loss, smooth hinge loss,

and logistic loss. The effectiveness of the proposed method was demonstrated through

classification experiments using the Ding Dubchak dataset and ENZYMES dataset,

where the proposed method outperformed the naive conventional methods and GMKL.

In particular, the proposed method could effectively find an optimal combination for

distance metrics with very different performance. Thus, we can avoid the difficulties in

pre-selecting distance metrics among a number of available distance metrics. However,

an analyst should make an effort to make a list of possible distance measures before

applying the proposed method. If there is no single good measure is included in the

list of the metrics, the proposed method may not work effectively. In contrast, it is

not a big problem if many poor metrics exist in the list because the proposed method

can construct an optimal combination of poor metrics (poorly performed comparison

methods) and good metrics.

To further improve the performance of the proposed method, imposing a locality

neighborhood constraint by considering only the instances in a close region [79] is

one direction of our future works. To impose explicit locality, another direction is by

imposing different weights for different region ranges, as in the local metric learning [94],

to our problem formulation. Since the proposed method is technically generic, we will

also consider applying the proposed method to different classification tasks other than

the protein fold classification problem.
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Chapter 5

Concluding Remarks

In this chapter, we provide the summary of the work presented in this thesis with regard

to the goal and the research direction in the future.

5.1 Summary

In this research, as a general tool for the protein structure analysis, we address the limi-

tation of the conventional methods on 3D protein structural comparison. While protein

structural analysis is a broad subject, we limit the scope by focusing on classification

task as the test case.

In Chapter 3, we explored the possibility of using image set based method for mea-

suring the similarity between the protein structures, by utilizing the 3D visualization

molecular software. Our motivation comes from the fact that the 3D visualization

molecular software is commonly used to manually inspect the 3D structure of proteins.

However, to our best knowledge, our work is the first that demonstrate the usefulness

of using the set of protein visualization images in automatic protein structure classifi-

cation. Our proposed method, termed as view-based method, addresses the difficulties

of the alignment method in computing the similarity between the very different struc-

tures. By using the proposed method, it is also possible to use of multiple visualizations

of the protein structure to enrich the protein descriptor. Moreover, since the set of the

visualization images is modeled by a subspace, it is straightforward to adapt any sub-

space learning algorithm in the classification framework. The validity of the proposed

method was demonstrated through the experimental results in classification of seven

protein classes, especially where the structures are very different.

Various similarity and dissimilarity measures for comparing protein structures have
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been proposed. However, it is difficult to determine which method is the best among

them for general classification task. In Chapter 4, we generalized the concept of the

large margin nearest neighbor (LMNN) for obtaining an optimal distance metrics com-

bination, termed as overall distance. The main advantage of the proposed method is

the capability on finding an optimal combination even with the inclusion of comparison

methods that do not perform well in the combination. The validity of the proposed

method was demonstrated through the experimental results in classification of 27 pro-

tein folds and six ENZYME classes.

5.2 Future work

Although the experimental results shows that the proposed methods in Chapters 3 and

4 outperformed conventional methods in the classification task, there are many work

to be done in the future.

In Chapter 3, we used uniformly fixed distributed viewpoints with the central view-

ing axis of the protein structure as the initialization for generation of the multiple-view

images. This approach works well to capture the overall structure of the protein and to

differentiate protein at coarse level. In the future, we will consider applying alignment

as the preprocessing prior to the generation of the multiple-view images and consider

adaptive number of viewpoints. In generating the visualization images, we used a third

party software Jmol [54] which is not specifically designed for our purpose. Developing

our own visualization software can further speed up the computation of the proposed

method. Exploring various computer graphics parameters such as illumination and

color is also an important direction for improving the proposed method. We will also

consider to apply the proposed method in the pipeline of protein-protein docking frame-

work.

In Chapter 4, we used straightforward weighting scheme. In the future, we will

consider to add adaptive weights, i.e., by imposing different weights for different neigh-

borhood ranges [81], or add neighborhood constraint such as introduced in [79]. We

will also consider to apply the proposed method for classification task other than the

protein structure classification.

74



Appendix A: List of Proteins in

the Experiments

This appendix provides the list of the SCOP ID of the 700 proteins in sequential order

used in the experimental section of Chapter 3.3. In the classification experiments, we

divided the dataset into 10 subsets of testing data to conduct 10 repeated experiments:

in the first experiment, we used the first 10 proteins from each class as test data and

the rest for training; in the second experiment, we used the 11th to 20th proteins from

each class as test data, and the rest for training; and so on.

To compute the average computation time for 100 concurrent requests, we used

100 proteins from the Alpha (α) and Beta (β) proteins. In computing the average

computation time for each of 10 consecutive requests (only one process at a time), we

used the first 10 proteins from the Alpha (α) and Beta (β) proteins.

The protein stored in SCOP database has three types of identifiers as follows:

1. sccs (SCOP concise classification string). Sccs is a dot notation with format of

[class.fold.superfamily.family] to describe the hierarchical category of the protein.

The identifier for a class are in alphabet, while the rest are in numeric. For

example, protein with sccs of a.2.6.3 represents class “a” which is α, fold number

2 in class α which is a fold of Long alpha-hairpin, superfamily number 6 which

is tRNA-binding arm, family number 3 which is Valyl-tRNA synthetase (ValRS)

C-terminal domain.

2. sunid. Sunid is a unique identifier in SCOP in the form of a number for any entry

in the SCOP.

3. sid. Sid is a stable domain identifier with format of seven characters, as follows:

character “d”, followed by four character of PDB ID (original protein identifier

stored in PDB), followed by the protein chain in the form of alphanumeric (“ ”

if no chain; “.” if multiple chains), and finally is a character that specified the
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segmented part (domain) of the protein structure (“ ” if contains a whole struc-

ture).

In the following, the list of the proteins for each class is listed using sid identifiers.

Alpha (α) proteins

d3l0fa d2iy5a1 d2f6ma d1z0jb1 d1e29a d3k2aa d1gv2a2 d2cqra1 d2iw5b1 d1ofcx1

d1hlva1 d2gfna1 d1rr7a d2coba1 d1r1ta d1d8ka d1ka8a d1t0fa1 d1xb4a1 d1u5tb1

d2obpa1 d1z96a1 d1vdla d1h7ca d4a5xa d2wkxa1 d1jfia d1h6ga2 d1dova d2fzfa1

d1syya d1d9ca d1ivsa2 d1x91a d2fefa1 d3dbya2 d1nh2d1 d2icta d1wlza1 d1qasa1

d1p5sa d1irqa d4dnda d1s2xa d2b4jc1 d1tuka d3h8ja2 d1a0pa1 d2o6ka1 d1jvra

d1l9la d1fkma2 d2i53a1 d2a5yb2 d1dgna d1q8ca d1hc1a1 d1dbha1 d1q4ga1 d1lj8a3

d2i76a1 d1kwfa d2wy8a d2g0da d1iiea d1vnsa d1h6ka1 d4b8ja d2onda1 d1j1ja

d1wy6a d2ouxa1 d2fx0a2 d1fcya d1fpsa d3vj8a d3hlxa d1ef1c d1j0pa d1m1qa

d1kcfa1 d1wija d1i2ta d1u61a d1ztda1 d2q0ta1 d1ov9a d1iyjb2 d1vfga1 d2ozbb1

d1w53a d1us7b d1n93x d1ojha d1sj7a1 d1sj8a2 d1q8da d2choa1 d1ykha1 d2p6va1

Beta (β) proteins

d2giya1 d1l6za1 d1nezg d1l6za2 d1biha3 d1olza1 d4hbqa1 d2yxma d3bn3b2 d1bqua2

d1i1ra1 d3csba1 d1cd9b2 d2hyma2 d1cfba1 d1cwva2 d1my7a d1h3ga1 d2fhfa1 d2fhfa2

d1ex0a1 d2d7na1 d3ugua1 d2omza1 d1z0na1 d2q0zx2 d2nqda d1e5ba d3zuca d1j8ra

d2okma d2j43a2 d3ef4a d1rlwa d1f53a d1wgva d2iqya d1od3a d1pmhx d1gwma

d3ku3a d1flca1 d1dmza d1cq3a d1d2sa d1kqra d2uwaa d1jova d1zy9a1 d3tcqa2

d2xiwa d1r4ka d1vbva1 d1gu7a1 d1o89a1 d2i6va1 d2q3ga d3vqfa d2ylba d1prtf

d3tssa1 d1o7ia d3kdfb d1ueba3 d1b3qa2 d1xhba1 d4ac9a2 d1g7sa1 d1kzla2 d2vbua

d3mmga d2fug31 d1foea2 d1t77a2 d1lf7a d4iaxa d3kffa d2f09a1 d3cu9a d1gxra

d2f2ha3 d1rk8c d4g3qa2 d1qwra d1vj2a d1sefa d3s4ya2 d1v8qa d1tula d2pp6a1

d2c3fa1 d1udxa1 d1pgl11 d2b78a1 d2anea1 d2b97a d2q6ka2 d1wida d2geca1 d2ed6a1

Alpha and beta (α/β) proteins

d3vzxa d2fhfa5 d3hn3a3 d1x38a1 d1gqia1 d1x7fa2 d2fiqa1 d2p10a1 d1xa0a2 d1qora2

d1wmaa1 d2h7ma d3cina1 d2f1ka2 d1kyqa1 d1pjqa1 d2ivda1 d2gqwa2 d1w4xa2 d2i5ia1

d1h16a d3vbaa d3osxa d2d0oa1 d1vq8y1 d1io0a d1n8yc2 d3h0sa2 d1j3aa d1vq8c1

d3rqia d2z98a d4fgla d2y71a d4au1a d1sura d2r8oa1 d2iyva d1a7ja d2akab1

d1e9ra d1cr1a d1g6oa d1yksa2 d2fwra1 d1r6bx3 d1jqlb d1u0ja d1rifa d1t1ua1
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d1i9sa d1d5ra2 d1yt8a1 d1lu4a d2g50a3 d1vhua d1w94a1 d2hqsa2 d1ckqa d1na6a2

d1wtea d1dzfa1 d3beda1 d2fxua1 d2v3za1 d3hl8a d1wlja d2vgna2 d1o13a d3fuca

d1m4la d2gfqa1 d1nd6a d1g60a d2f8la1 d2gtia1 d1lc5a d2cb9a d2ocga d2absa1

d2v9la d2phpa1 d4atya d3ml1a1 d2bfwa1 d2iw1a d2olra1 d1ko7a2 d1dp4a d2pw9a1

d1u02a d2ghta d2o2xa1 d2obba1 d3k7pa d1vl1a d2nx2a1 d3lnla d2fcja1 d2g5gx1

Alpha and beta (α+ β) proteins

d3hzsa d4hlsa d2je6a1 d1ueka1 d1k8rb d1j0ga d1l5pa d3fila d1tkea1 d2fug13 d2bo9b2

d2oqea2 d1v58a2 d1idpa d1oh0a d3blza1 d3g8za d2a4da1 d1t11a3 d2f23a2 d1ll7a2

d3rmua d2hnga1 d4ffua d3rjsa d2dmya1 d4htga2 d1q8ba d1s7ia d2gvka1 d3znua

d2gffa d1nh8a2 d2vona2 d2bopa d1tdja2 d1zvpa2 d2f06a2 d1qd1a1 d1zj8a1 d1in0a1

d1q8ka2 d1tiga d2zfza d1l0wa2 d1dt9a2 d1t3ta5 d1vk3a2 d1ydwa2 d1ewfa1 d1ztpa1

d3dk9a3 d2choa3 d2izva2 d2hbaa1 d1e3ha5 d1seta2 d2p0la1 d2fh1a2 d4kefa d4espa

d2fh5a1 d1l3la2 d1p0za d2p7ja2 d2b06a1 d3c9fa1 d2hkja3 d2ggca d1b6aa2 d1kbla3

d2r85a2 d2ybxa d2cmwa d2jc5a d1p9ea d1wraa1 d2p97a1 d3dsda d1qmea3 d1jb0d

d1tt8a d4gf3a d1k8kf d2od0a1 d1lg7a d2d7va1 d1go3e2 d1nr3a d1ss6a d1vlya2

d1v33a d3hwua d1wmia1 d2a6qa1 d2dira1 d2ghvc1 d3m7va2 d1zd0a1 d3c8wa1

Multi-domain proteins (alpha and beta)

d2v95a d2i06a d2hdsa d1ci9a d1vqqa3 d2bg1a1 d1qmea4 d2p74a d1yqsa d1u60a

d4k0wa d1gwea d1u5ua d1w07a3 d2wbia1 d3swoa1 d3mkha1 d1ka1a d1lbva d1inpa

d2bjia d3ncia2 d2py5a2 d4dqqa2 d4g1qa1 d3fsia d1mswd d1muka d1u09a d3bsoa

d1uvja d1jx4a2 d1jiha2 d1t94a2 d2yi9a d3pwta d1bjta d4elya d3ilwa d1d3ya

d1dd9a d1nuia1 d2eiya d1wuil d2fug41 d1wuis d1sg6a d1o2da d3uhja d1pg4a

d2d1sa d3o83a d1i2aa d1oa0a d1su8a d1h5wa d1uf2a d1twfb d4g7hc d1twfa

d1io1a d1kyqa2 d1pjqa3 d1gqea d1lfpa d1ldja3 d1k8ta d1m1ca d3aa0a d1szqa

d1nh1a d4jbua d1q88a d3vdpa d1xfia d2g8la1 d1uwka d1z0sa d2bona1 d1vkya

d1xqba d1u7la d1urja d1zjca1 d1zbpa1 d2hq2a1 d2hqva1 d2azea1 d2azeb1 d2avue1

d2p62a1 d2oeza1 d3er9b d3rlff1 d2i5ha1 d2i71a1 d2o3ia1 d2i0za2 d4dyna d2guma1

Membrane and cell surface proteins and peptides

d1cola d3bl2a d1q59a d1ddba d2vofa d1nkza d1nkzb d1lghb d1qjpa d3gp6a

d1ys5a1 d3arco d2zfga d2pora d2fgqx d1by5a d2vdfa d2x55a d1tlya d1ek9a

d3pika d1uuna d1lsha2 d1lsha3 d1lshb d3c0na2 d3zjxa d3n40f1 d1m0ka d4j9zb

d2oara1 d1c99a d3s8gb1 d1fftb2 d3ag3b1 d4i0ua2 d1kqfc d1ppjc2 d2bs2c d1kf6c

77



d2wdqc d2wdqd d1y5ic1 d2qi9a d3ag3g d3ag3j d3ag3k d3ag3l d3ag3m d1m56d

d3s8gc d2wjnh1 d1ppje2 d2e74d2 d1ppjg d1ppjj d1jb0f d1jb0i d1jb0x d1l2pa

d1kqfb2 d4i7zc3 d1q90l d1q90m d4i7zf d4i7zh d1rh5b d1rkla d3arcl d3arch d3arcm

d3arce d3arcf d3ag3c d1ppjf d1jb0l d1ppjc1 d3n5ka1 d2vv5a3 d1iwga7 d1iwga8

d1oeda d1pw4a d2cfqa d1rh5a d1rwta d1u7ga d2clyc d1slqa d2nwwa1 d1r5sa

d2clya1 d2clyb1 d3arcc d2uuia1 d4al0a d2zy9a3 d3rlff2 d3d31c1 d2qfia2

Small proteins

d1viba d1ss3a d1lu0a d1fu3a d1axha d1lupa d1d1ha d1dl0a d1qk7a d1agga

d2sn3a d1acwa d1fjna d1lpba2 d1q4ga2 d1kloa1 d1lr7a1 d1b9wa1 d1deca d2pw8i

d1oiga d3tvji d1tocr2 d1ut3a d1zuea1 d2nlsa d2tgia d1hcna d1quba3 d2o39c1

d1elva2 d1ok3a1 d2ok5a4 d2z3qb1 d2h9ec d1sg1x4 d1exta1 d2heyr2 d2vgha d1e88a3

d1tpga2 d1u5ma d1iyca d2hipa d1isua d3a38a d1bboa1 d1bhia d1tf3a3 d1x6ha1

d1x6ha2 d1rmda1 d1znfa d1a1ia1 d1x3ca1 d1wjpa1 d2csha2 d2ctda1 d1x5wa1 d2ghfa3

d2en2a1 d1wjva1 d2vrda1 d1wira d2vy4a1 d1zmec1 d3g9ma d1ibia1 d1x68a1 d1x62a1

d2dloa2 d1xpaa2 d2d8ra1 d2vuti d1dsva d1a6bb d1akya2 d1twfi2 d1yuza2 d1vzia2

d1gh9a d2k4xa1 d2j9ub1 d1n0za d2apob d2jnea1 d2zjr41 d1weoa d2g45a d1rjuv

d1eyfa d3ueja d1z60a1 d1weea d2vnfa d1f81a d1lpva d1t50a d1oc0b d2dkta1
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Appendix B: Documentation of

View-based Protein Comparison

(VPC) System

We provided VPC System including the source code for off-line usage. This appendix

provides the details of the architecture of VPC, system manual for installation and

maintenance, HTTP API interface manual, and a closing note for the VPC system.

There are technical terms related to web-based technology and operating system in

this document. The detail description for each technical term is beyond the scope of

this appendix.

B.1 Architecture

As described in Chapter 3.5, VPC system consists of multiple modules which can be

divided into two parts: front-end and back-end. The front-end handles the incoming

and outgoing data from and to end-users. The back-end handles all the required com-

putation. This section describes the detailed framework of both the front-end and the

back-end.

Front-end

The front-end module of VPC uses Apache web server and PHP server-side scripting.

The main function of the front-end is as the interface for end-users to submit the protein

structures and the algorithm parameters for the comparison. End-user can submit the

comparison request either through web interface or through HTTP API.

Table B.1 lists the library dependencies other than the Apache and PHP. Table B.2

provides the structure of directories in the front-end, respectively.
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Table B.1: Library dependencies for the VPC’s front-end.
Libraries Description

PHPMailer (ver. 5.2.13)
An open-source PHP library for sending email
in PHP.

Jquery and Jquery-ui
(ver. 1.11.2)

An open-source javascript library that simplifies
HTML event handling and AJAX interactions.

JSmol
An open-source library for viewing 3D protein
structure using HTML5.

Table B.2: Structure of directories in the VPC’s front-end.
Directories Description

ajax/
Contains scripts for AJAX and event handling
of the user interface.

api/
Contains a script which handles the request for
comparing two proteins through HTTP API.

css/ Contains the style sheets for the user interface.

internal/
Contains scripts for internal communication
with back-end, to control file deletion and for-
warding results.

js/
Contains javascript libraries for the user inter-
face, including Jquery.

jsmol/ Contains JSmol libraries.

lib/
Contains PHP scripts for supporting the user
interface, including PHPMailer.

results/
Stores the results of comparison. The results
will be removed after seven days from the cre-
ation date.

upload/ Stores the uploaded protein files.

In the following, files for main process of the VPC system are described:

• /index.php: The starting point script.

• /ajax/atab0.php: Input form (first tabular page).

• /ajax/atab0submit.php: Handling the request from the first tabular page.

• /ajax/atab0upload.php: Handling file upload.

• /ajax/atab1.php: Server status viewer (second tabular page).

• /ajax/atab1submit.php: Handling the request from the second tabular page.

• /ajax/atab2.php: Result viewer (third tabular page).

• /ajax/atab2get.php: Forwarding result files from the result directory.

• /ajax/atab2submit.php: Handling the request from the third tabular page.
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• /ajax/atab3.php: Displays the description of the VPC system and the pro-

posed similarity method.

• /ajax/atab4.php: Displays the development history of the VPC system.

• /ajax/UploadHandler.php: PHP Class to handle file upload in AJAX.

• /api/comparepair.php: PHP script which processes protein comparison re-

quest through HTTP API.

• /internal/index.php: PHP script which is called from back-end to store the

comparison results’ files in the front-end storage and notify user through email if

requested when the comparison process is completed.

• /internal/indexdel.php: PHP script which is called from back-end to re-

move the comparison results.

• js/init.js: a javascript file that contains initialization in the user interface.

The rest of the files and directories contain Jquery libraries.

• lib/checkmail.php: a PHP script to validate the email address format.

• lib/libcommon.php: a PHP script that contains server parameters used in

the VPC system, including the base URL, path of the script, the back-end’s IP

address, and the results path. The parameters have to be consistence with those

in the back-end modules.

Back-end

Back-end of the VPC system consists of four main modules which were mainly devel-

oped using Python with utilization of POSIX interprocess communication, as follows:

• Gateway module (module A): constantly waiting for any HTTP request from the

front-end. The request received from the front-end is reformatted into JSON

(JavaScript Object Notation) before passed to different modules through POSIX

message queue.

• Visualization process module (module B): constantly waiting for any POSIX mes-

sage from gateway module in Request queue. If a message is available, this module

will insert the message to MySQL database. If required, this module will also

download PDB file from SCOP Astral database server. Once the PDB files are

available, Jmol is then spawn and the database entry corresponding to the re-

quest is updated to indicate that the generation of visualization images has been

started. When the visualization is completed, a message is passed to module C

through Features extraction queue.

• Features extractions and subspace module (module C): constantly waiting for
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any POSIX message from module B in Features extraction queue. If a message

is available, this module will update the database entry corresponding to the

request to indicate the feature extraction is started. In this module, feature ex-

traction, subspace generation, and similarity measurement are performed. When

the computation is completed, a message is passed to moduleD through Results

queue.

• Output generation module (module D): constantly waiting for any POSIX mes-

sage in Results queue, either error message or completion message. If a message

is available, this module will update the database entry corresponding to the re-

quest to indicate that the computation has completed. If the message indicates

completion instead of error, this module will generate Matlab files including PNG

files for use in the front-end. This module then sends the file (in tar.bz2 format) to

front-end by accessing the URL path of internal/index.php of the front-end.

The entity-relationship diagram of the database used in the MySQL is shown in

Figure B.1. Below are the description of each table:

• TRequestRaw2: stores the raw request data. The primary key id is automatically

assigned by auto-increment integer value. Field Json contains the Json formatted

data. Field pidhandler is reserved for storing the process ID that is currently

handling the request. Field processCode contains pre-defined integer constant

to indicate the process status. Table B.3 displays the list of the code.

• TRequest2: stores the parsed request data. The primary keys id and reqid are

the foreign key from Table TRequestRaw2 and the random request code generated

for end-user who requested the computation to be used later when querying the

results, respectively. Field rotations contains the information of the number

of view-points (rotations) followed by either letter ‘U’ or ‘R’ to denote uniform

or random rotations, respectively. For example, ‘50U’ indicates 50 uniform view-

points, while ‘50R’ indicates 50 random view-points. Field features contains ei-

ther ‘RAW’, ‘LBPu2’, ‘HLAC’, or ‘RIC-LBP’ feature extraction. These values are

defined in the front-end PHP script lib/libcommon.php. Fields protein1

and protein2 contain either SCOP IDs or the file name of the PDBs. Field

methods is currently fixed to ‘MSM’.

• TResult2: stores the result of the computation.

• TProcessDetail2: stores the time stamp for every process listed in Table B.3.

When there is any insertion or update for Table TRequestRaw2, new entry will

be inserted automatically to this table.
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Table B.3: List of process code in VPC.
Code Description

0 Message is received by gateway.

1 Generation of visualization images is started.

5 Feature extraction is started.

7 Construction of subspaces and similarity computation are started.

8 Similarity computation has just completed.

10 Error occurred.

100 Computation has been completed with success.

101 Computation has been terminated with failure.

TRequest2

id INT

reqid VARCHAR(14)

regtime DATETIME

ipaddress INT

rotations VARCHAR(5)

features VARCHAR(10)

email TEXT

protein1 VARCHAR(45)

protein2 VARCHAR(45)

methods VARCHAR(10)

Indexes

PRIMARY

regtime

reqid

fk_TRequest2_TRequestRaw21_idx

TRequestRaw2

id INT

Json TEXT

reqdate DATETIME

lastupdate DATETIME

pidhandler INT

processCode INT

Indexes

PRIMARY

Triggers

BEF INSERT TRequestRaw2_BINS

TResult2

id INT

reqid VARCHAR(14)

regtime DATETIME

lastaccesstime DATETIME

deletedtime DATETIME

Indexes

PRIMARY

reqid_idx

TProcessDetail2

id INT

processCode INT

regtime DATETIME

Indexes

TProcessDetail2pcode

TProcessDetail2id

PRIMARY

Figure B.1: The entity-relationship diagram of the database.

In the implementation, some of the key constraints are not explicitly enforced in the

MySQL for the sake of simplicity.

Tables B.4 and B.5 show the library dependencies and the structure of directories

in the back-end, respectively. The files that directly involve in the main process of the

VPC system are described as follows:

• /modules/apaconfig.py: Contains the configuration of the VPC system,
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Table B.4: Library dependencies for the VPC’s back-end.
Libraries Description

Bottlepy [75] (ver. 0.12.3)
A lightweight web-server based on Python for com-
munication with front-end.

MySQL database server
(ver. 14.14)

A relational database management system for stor-
ing comparison requests.

Jmol [54]
(ver. 13.1.16 2013.05.20a)

A 3D molecular visualization software for generat-
ing multi-view images.

SciPy and Numpy [76] Numerical library packages for Python.

Posix ipc library for
Python

A library used for controlling POSIX message
queue.

MySQLdb library for
Python

A library used for interfacing with MySQL.

Table B.5: Structure of directories in the VPC’s back-end.
Directories Description

log/ Stores log file of each module.

modules/ Contains classes and modules.

results/ Stores the comparison results.

rotationlist/

Stores pre-calculated uniformly distributed
view-points (virtual camera position) for
20, 50, 100, 250, 500, 750, 1000, 1500, and 2000
view-points.

savedproteins/ Stores uploaded and downloaded PDB files.

tmp/
Stores files with the process id (PID) of running
modules.

including paths, database, and other server settings.

• /modules/apadb.py: Python class for handling database as a wrapper of

MySQLdb.

• /modules/daemonB.py: main script for module B.

• /modules/daemonCv4.py: main script for module C.

• /modules/daemonDv2.php: main script for module D.

• /modules/deleteResultsNdays.py: main script for checking if any deletion

of result files is required.

• /modules/featureext.py: Python class for image feature extraction process.

• /modules/gateway.py: main script for gateway module.

• /modules/jmolscriptgenerator.py: Python class for generating Jmol script

which is used to generate the protein visualization images.
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• /modules/subspacemethod.py: Python class for construction of subspace

and computation of average canonical angles between two subspaces.

• /modules/run.sh: Bash script to start the back-end’s process.

• /modules/stop.sh: Bash script to stop the back-end’s process.

B.2 System manual

Front-end setup

Assuming that an Apache web server with PHP extension have been installed, the

VPC’s front-end setup is straightforward. Although in the current implementation the

front-end and the back-end are separated, it is possible to use a single machine for

both front-end and back-end. In setting up the front-end, the system configurations in

/lib/libcommon.php need to be adjusted:

• BASEURL: the base URL of the web interface of front-end.

• UPLOADPATH: the path for storing uploaded PDB files in front-end.

• PROTEINSERVER: the base URL of the back-end’s gateway module.

• RESULTSPATH: the path for storing the comparison results in front-end.

• ADMINEMAIL: displayed email address when sending email.

Back-end setup

Here, we assume that all required dependencies have been installed and all the files and

directories have been put in place. Before running the VPC’s back-end, the following

setup are required:

• Enabling MySQL service and generating the required tables as shown in Fig-

ure B.1 using the provided SQL script.

• Creating virtual disk to store the visualization images temporarily. For example:

mount -t ramfs -o mode=1777,size=32G ramfs /mnt/ramdisk/,

assuming that the virtual disk size is 32 GB and located at /mnt/ramdisk.

Note that this process may need to be executed every time the operating system

is restarted. Automation can be done through cron scheduling.

• Initializing the POSIX message queue. Firstly, create an empty directory for stor-

ing the message queue files. Then, mount the message queue with the following

command:

mount -t mqueue none /dev/mqueue,
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assuming that the message queue is stored in directory /dev/mqueue. Similarly,

this process requires to be executed every time the operating system is restarted.

• The default configuration in Linux OS for the maximum number of message queue

is small. Therefore, increasing the limit for the message queue number is highly

recommended, by modifying /etc/sysctl.conf. For the detail, please refer

to the Linux OS documentation.

• The automatic deletion of results’ files are performed through scheduler. There-

fore, schedule daily execution of /modules/deleteResultsNdays.py using

daily cron scheduling.

• The system configurations are located in /modules/apaconfig.py. Some of

the important configurations which require adjustment are as follows:

– WWWBASE: the base URL of the web interface of front-end.

– WWWINTERNAL: the path to access /internal/index.php relative to the

WWWBASE.

– WWWINTERNALDEL: the path to access /internal/indexdel.php rela-

tive to the WWWBASE.

– AUTHINTERNAL: base64 encoded text containing the user and password to

access WWWINTERNAL and WWWINTERNALDEL (it is advisable to restrict the

access to WWWINTERNAL and WWWINTERNALDEL if the system is open to

public).

– FILEUPLOADPATHUSER: the directory in the back-end to store the uploaded

PDB files.

– FILEUPLOADPATHASTRAL: the directory in the back-end to store the down-

loaded PDB files.

– FILERESULTS: the directory in the back-end to store the results.

– DBHOST, DBUSER, DBPASS, DBNAME: the configurations for the database

(host, user name, password, and database name, respectively).

Running and maintenance

Since the front-end is only a web interface, there is no specific requirement for start-

ing the process of the VPC’s front-end. However, Jmol visualization software used

in the back-end requires a Graphical User Interface (GUI) environment, such as X11,

to synthesize the protein visualization. Consequently, the execution of the starting

script for the back-end has to be performed under GUI environment. The back-end is

started by executing /modules/run.sh. The back-end can be terminated by execut-
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ing /modules/stop.sh.

As mentioned previously, the removal of results’ files are performed through sched-

uler. However, the current implementation does not perform any deletion in the

database. It is advisable to add a regular maintenance of the database as well, es-

pecially when the VPC system is extensively used.

B.3 HTTP API interface

Besides through web interface, VPC system can be accessed through HTTP request.

The HTTP request requires HTTP POST method directed to the following relative

path api/comparepair.php. For example, if the base URL of the web interface

of the front-end is defined by BASEURL, the URL for HTTP API interface is then

BASEURL/api/comparepair.php.

The request fields are as follows:

• prot1type: Set to ‘1’ if the input for protein 1 is in the form of SCOP ID. Set

to ‘2’ if the input protein for protein 1 is a PDB file.

• prot1txt: Set to the seven-characters of the SCOP ID if prot1type=’1’.

Otherwise, set to empty or let undefined.

• prot1file: Set to the original file name of PDB file for protein 1 if prot1type=’2’.

Otherwise, set to empty or let undefined.

• prot1fileContent: Set to the content of the PDB file of protein 1 if prot1type=’2’.

Otherwise, set to empty or let undefined.

• prot2type: Set to ‘1’ if the input for protein 2 is in the form of SCOP ID. Set

to ‘2’ if the input protein for protein 2 is a PDB file.

• prot2txt: Set to the seven-characters of the SCOP ID if prot2type=’1’.

Otherwise, set to empty or let undefined.

• prot2file: Set to the original file name of PDB file for protein 2 if prot2type=’2’.

Otherwise, set to empty or let undefined.

• prot2fileContent: Set to the content of the PDB file of protein 2 if prot2type=’2’.

Otherwise, set to empty or let undefined.

• features: Set to feature extraction method, either ‘RAW’, ‘LBPu2’, ‘HLAC’,

or ‘RIC-LBP’.

• rotations: Set to the number of view-points and the type, either uniform or

random. Valid values are ‘50U’, ‘100U’, ‘500U’, and ‘1000U’ for uniform type and

‘50R’, ‘100R’, ‘500R’, and ‘1000R’ for random type.

• methods: Set to ‘MSM’.
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• email: Set to the email address that will receive notification if the computation

is complete (optional). If not needed, set to empty or let undefined.

If there is no error, the response from HTTP the request is a random code which

can be used for querying the result. For example, response “OK:56305cef5006b”

indicates that the request is successfully accepted with request code 56305cef5006b

for querying the result. On the other hand, when error is occurred, an error mes-

sage is returned as the response. For example, “ERR:Rotation number is not

valid.” indicates an error has occurred because the parameter for the rotation num-

ber is not valid. The list of the error messages can be found in the back-end’s file

/modules/apaconfig.py. To access the comparison results which are submitted

through HTTP API, a user can use either the web interface by inputting the request

code or through HTTP GET method by passing field reqcode with the request code

and the result’s type code=12 for obtaining the compressed result file. As an exam-

ple, if the request code is 56305cef5006b, the HTTP GET method is directed to

BASEURL/ajax/atab2get.php?reqcode=56305cef5006b&code=12.

B.4 Closing note

The provision of the VPC system is to reduce the difficulties in implementing the

proposed method. Owing to the modularity of the system, it can be easily customized

for different types of feature extractions and comparison methods, including different

analysis for the given two input proteins. To reduce the computational time, future

work includes the implementation of the system using C/C++ programming language

and GPU programming.
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