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Abstract

Document retrieval is a vital tool in many applications. In recent decades, content-

based document retrieval emerged as an alternative to text-based retrieval due to

its advantage of automatic annotation. In this thesis, I focus on visual documents

and present a system for content-based document image retrieval (CBDIR). The

proposed system takes sketch queries as input, allowing users to sketch their thoughts

as queries. Advantages of this paradigm are multiple: It allows users to input

several types of queries (e.g. drawing, mathematical expressions, diagrams, chemical

equations). It performs automatic document annotation, which drastically saves

labor time and effort. In addition, it permits cross-lingual retrieval since queries

and document annotations do not depend on a particular language or script.

In order to build the system, research on several areas of pattern recognition has

been conducted. First, I designed adequate data normalization which is necessary to

transform raw data into a representation easier to process by matching and retrieval

algorithms. Then, I introduced a novel shape descriptor that extracts keypoints from

binary images by generating background information and using an objective measure

of keypoint prominence. Afterwards, I proposed a spotting algorithm that is inspired

from the human behavior, and rationalized with a theoretical model. Finally, I

designed an indexing method that exploits the high redundancy of characters and

symbols in document images. The indexing method is effective in dataset indexing,

and it can be also used for dataset compression.

This thesis presents several contributions to the state of the art in pattern

recognition, including a comparative study of contours and skeletons, novel and

robust keypoint-based features, in addition to a general-purpose CBDIR method

that is rationalized with a theoretical model. Evaluation of each building block of

the system has been done using public datasets and comparison with state of the art

methods. To assess the overall system, I used datasets of handwritten mathematical

expression queries, as an initial application without loss of generality. Experimental

results and comparative evaluation demonstrate the effectiveness of the proposed

algorithms and their possible future improvement and extension.
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Chapter 1

Introduction

In the recent decades, data digitization became an important trend that emerged

due to the requirements of modern technologies and societal transformations. Digi-

tization of documents allowed their easier access, safer storage, and their processing

by data mining softwarea. Due to these advantages, huge projects are being car-

ried out on data digitization, such as the Google Books Project, the Digital India

Projectb, and the Large Scale Book Digitization Projects at Illinois USAc, to name

only a few.

To process digital data, computer software use application-specific formats to

represent documents of various types (e.g. a scanned or a printed book, image,

recording, video). Then, they are used in applications of document analysis [1, 2].

This thesis is concerned with visual documents and focuses on datasets of images.

Usually, such datasets are indexed to allow their fast retrieval and efficient storage.

Then, they are retrieved using online search systems. Retrieval requires document

annotation, which is usually done using text labels. Afterwards, users retrieve doc-

uments using search engines such as Google and Yahoo!.

Image annotation is a crucial task for retrieval applications. In most existing

systems, annotation is done manually by attributing text labels to images [3]. This

paradigm, while being effective, suffers from three major limitations that hinder

its application to truly big data: First, manual annotation is a labor-intensive and

time-consuming task. Second, describing images with words is a subjective task

that differs from one person to another and depends on the person’s state of mind

[4, 5]. Third, annotating images with text prevents cross-lingual retrieval. Fig. 1.1

illustrates some challenges of manual image annotation.

aNew York Times; May 14, 2006; Scan This Book!
bhttps://digitizeindia.gov.in/
chttp://www.library.illinois.edu/dcc/largescalebook.html

1

http://www.nytimes.com/2006/05/14/magazine/14publishing.html
https://digitizeindia.gov.in/
http://www.library.illinois.edu/dcc/largescalebook.html
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(a) (b)

Fig. 1.1: Challenges of manual image annotation: (a) Annotating the image
with participant names would be a lot faster with automatic face recognition. (b)
The portrait can be ambiguously interpreted as a young girl or an old woman [6].

Due to the aforementioned limitations of text-based image retrieval, content-

based image retrieval (CBIR) was acknowledged as an interesting alternative of

which the main advantage is automatic annotation using the image content. Re-

search on CBIR traces back to 1992 with the pioneer work of Kato et al. [7] where

they presented a system for sketch-based image retrieval (SBIR). The main advan-

tage of SBIR over text-based systems and CBIR is allowing users to draw queries

instead of typing them using a keyboard or presenting an example image. Since

the work by Kato, SBIR became a hot research topic [8] and contributed in various

applications such as finding criminal profiles using queries by a sketch artist [9],

retrieving math documents using hand-drawn expression queries [10], etc. Fig. 1.2

shows an example of SBIR using the GazoPa system developed by Hitachi.

In this thesis, I present a system for content-based document image retrieval

(CBDIR) using sketch queries. The system allows users to submit sketch queries

in order to retrieve digital documents that are indexed offline. Sketches are binary

images introduced by users using a sketching device, and documents images are bi-

narized since the color information is irrelevant. Research has been conducted to

find the adequate data representation, feature extraction, and matching algorithms

to allow satisfactory performances. The main characteristics of the proposed sys-

tem are being segmentation and recognition-free. Avoiding segmentation spares the

system from erroneous image segmentation which affect retrieval performances, and

avoiding recognition allows the system to be applicable to several types of queries

(e.g. drawings, mathematical expressions, diagrams) that are not recognizable with

optical character recognition (OCR).
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Fig. 1.2: SBIR using the GazoPa system by Hitachi.

Fig. 1.3: Flowchart of the proposed system.

The proposed system is modular and operates as follows (Fig. 1.3): First,

the user’s query and the document are subjected to normalization which produces

compact image representations that reduce the number of foreground pixels without

altering the visual information. Next, features are extracted from the normalized

images. Afterwards, the query is spotted inside the document using local and global

feature matching. Indexing is used to produce an index dataset of the documents

for the sake of efficiency.
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Each building block of the system is evaluated using public datasets, and

the overall performance is evaluated in CBDIR of mathematical expression queries

using a dataset of handwritten mathematical expressions and printed document

images, as an initial application without loss of generality. Experimental results and

comparative evaluation demonstrated the effectiveness of the proposed algorithms

and their possible future improvement and extension.

Research on CBDIR systems and sketching is underway and advances are re-

ported by several research groups that specialize in different applications. André

van der Hoek’s group builds tablet and electronic whiteboard systems that support

informal sketching by software designers [11]. Christoph Meinel’s group works on

lecture video indexing using OCR [12, 13]. David Doermann’s group conducts re-

search on CBDIR using queries as logos [14, 15]. John Collomosse’s group presented

methods for video retrieval using queries that indicate object motion in the form

of sketched arrows [16]. Richard Zanibbi’s group focuses on CBDIR using mathe-

matical expression queries that are snapshots [17] or handwritten [10]. This thesis’

contributions to the state of the art mainly include designing an algorithm for CB-

DIR that is not application-specific [18], robust shape features [19], in addition to

adequate image preprocessing [20] and indexing [21].

In the remainder of this thesis, each chapter is devoted to a building block of

the proposed system (Fig. 1.3), with a state of the art review, originally proposed

methodology and experimental evaluation. In Chapter 2, I report a comparative

study of contours and skeletons in order to determine the adequate compact repre-

sentation for my application. In Chapter 3, I introduce a novel keypoint descriptor

that is based on background information generation and a measure of keypoint

prominence. In Chapter 4, I rationalize query spotting in document images with a

theoretical model, and present an algorithmic implementation to adapt the model

to noisy and fluctuated handwritten images. In Chapter 5, I present a method for

dataset indexing using connected components clustering. Finally, the summary and

conclusions of this research, and my out-take on its future applications are reported

in Chapter 6.



Chapter 2

Data normalization by compact

representation

In numerous pattern recognition tasks, it is routine to produce an intermediate

image representation with reduced dimensionality in order to filter out noise and

remove redundant information [22]. In case of binary images, contours and skeletons

are widely accepted as adequate representations for subsequent classification and

matching algorithms using statistical shape features [23, 24]. Both representations

share the common and interesting property of encoding the visual information of an

object by using a limited set of points, and both have been used for interest points

detection (e.g. curvature points, corners, etc.).

While contour extraction is a trivial task in binary images that involves de-

tecting an object’s pixels located on the boundary, skeletonization requires more

complex algorithms in order to extract the skeleton of an object, which is the locus

of the symmetric points of the local symmetries of the shape [25, 26]. Algorithms for

skeletonization have also been called medial axis transformations, with the resulting

skeleton being known as medial line or medial axis [27].

Skeletons are an interesting object representation due to their ability to cap-

ture various aspects of shapes. Not only could they give access to both object

interiors and object boundaries, but they can also provide rich geometrical relation-

ships among objects [23, 28]. In the literature, it is often assumed that skeletons

are particularly suitable for describing elongated shapes [28–31]. At the same time,

the skeletal representation is also an active research area in the cognitive science

community for its role in human perception [32]. However, there has been no sys-

tematic study to date for assessing the strength of skeletons in different types of

image variations, that include both digital (e.g. noise, blurring, etc.) or biologically

plausible variations (e.g. size, morphing, etc.).

5
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In this chapter, the performances of contours and skeletons as object rep-

resentations for shape matching are compared. Shape matching experiments are

conducted on test image datasets involving thick, elongated, and nearly thin ob-

jects. In addition, different image variations like contour noise, blurring, and size

reduction are generated. Finally, their matching performances are evaluated using

objective and commonly adopted metrics.

The remainder of this chapter is organized as follows: In Sec. 5.1, the related

literature on contour detection and skeletonization, selected applications in shape

matching, and related studies in cognitive science are overviewed. Sec. 2.2 presents

my experimental platform, including the shape feature descriptor, the shape match-

ing algorithms and the metrics. Experimental evaluation and results are discussed

in Sec. 2.3. Lastly, concluding remarks are given in Sec. 2.4.

2.1 Related work

In this section, the focus is on the literature related to contour detection and skele-

tonization in 2D binary images, shape matching, and related studies in cognitive

science.

2.1.1 Contour detection and skeletonization

Contour detection has been an early concern for image processing researchers for its

necessity in multiple applications [22]. In case of binary images, contour detection

can be easily achieved since the contour corresponds to boundary points that have

at least one background neighbor. Furthermore, sophisticated algorithms have been

presented to improve processing efficiency [33, 34].

On the other hand, Skeletonization is a more complicated task that can be

done using one of several approaches. Mathematical morphology operations such as

erosion and dilation can be used to produce a skeleton [35]. Thinning refers to the

category of algorithms that perform iterative removal of boundary pixels in a way

that preserves topology and connectivity [28]. The final skeleton should be centered

within the object and reflects its geometrical features. Another approach is based on

the Distance Transform (DT), which is a replica of the object, where the foreground

elements are replaced with their distances from the background [36]. The DT is

interpreted as a landscape, where the label of a pixel indicates its height. Then, the

skeletal elements can be directly identified by using pixel neighborhood analysis.

Skeletons can also be extracted by using Voronoi diagrams [37]. The principle of
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a Voronoi diagram is to determine for each object point pi a region that contains

the points which are closer to pi that to the remaining object points {pj}j 6=i. The

resultant Voronoi diagram corresponds to the locus of regions borders. Usually, a

set of object points is sampled and used to compute the Voronoi diagram, and a

post-processing step is anticipated to prune non-necessary branches of the skeleton

[38].

A skeletonization algorithm is considered desirable if it meets the following

properties [28, 39]:

• Produce a thin or nearly thin skeleton,

• Preserve the connectivity of the original object, which means that connected

parts in the original object should stay connected in the skeleton,

• Preserve the visual topology of the original object, which means that although

the skeleton is a compact representation of the original object, it should deliver

the same visual information.

• Be robust against contour noise.

Research on improving skeletonization algorithms focused on improving effi-

ciency [40], insuring topology preservation [41, 42], and adding robustness against

noise using filtering [43, 44] and pruning [45]. Application-specific algorithms have

also been presented such as extracting skeletons of handwriting, fingerprints, and

cereal plant images [43, 46]. Comparison of skeletonization algorithms can be found

in [28, 47].

It is generally accepted that skeletons are a suitable representation for elon-

gated shapes [28–31]. On the other hand, skeletonization of thick images produces

skeletons that look very differently from the original objects, which often appears

counterintuitive to the human observer [48]. In this case, contours would be a more

suitable representation (Fig. 2.1).

2.1.2 Shape matching

Shape matching is an old central problem of pattern recognition that is concerned

with matching an image against another image or against a template [49, 50]. Usu-

ally, the input image is subjected to a preprocessing step for noise removal and

dimensionality reduction, then shape features are extracted and used for matching.

In case of binary images, shape features are essential because of the absence of other
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Table 2.1: Average statistics of the image datasets.

Dataset # classes
Image Image % object % contour % skeleton

per class size pixels pixels pixels
Thick

20 [8,10] 768×576 104,200 2.02% 0.7%
(197 images)

Elongated
20 [6,10] 768×576 41,616 4.09% 1.61%

(174 images)
Nearly thin

20 10 888×276 10,747 44.64% 16.7%
(200 images)

features (e.g. color) [51]. In addition, behavioral studies have shown that shape fea-

tures are preferable to humans even when other features are available [52]. In this

section, I focus on methods that use statistical shape features. For information on

different paradigms, I refer the reader to [24, 53].

Contours and skeletons have been widely used in shape matching as a dimen-

sionality reduction step prior to feature extraction. Skeletons have been used in a

variety of applications including optical character recognition (OCR) [54], document

image analysis [55], biometric authentication [56], medical imaging [57], signature

verification [58], CBIR using sketch queries [59], etc. In OCR, skeletons are used as

a normalized representation to insure invariance to pen thickness and handwriting

styles. In fingerprint and retinal images, skeletonization is used in order to produce

one-pixel-wide objects whose geometrical and topological properties are input to the

identification process. In document analysis, signature verification and CBIR using

sketch queries, skeletonization is used as a preprocessing and normalization step.

Contours are a widely used representation that dramatically reduces the num-

ber of points, yet preserves the shape visual information [60]. Consequently, they

have been used in different applications including shape classification and matching

[60, 61], CBIR using sketch queries [7], shape matching using interest points detec-

tion [62], etc. Xu et al. argue that contours are the best features for content-based

retrieval of spine X-ray images [63].

Few studies have tackled the comparison between contours and skeletons in

shape matching problems. Leung and Chen preferred using contours of thick objects

and skeletons of elongated objects, in the context of trademark image retrieval [64].

Chalechale et al. used contours of colored images in a database and skeletons of

hand-drawn user queries for CBIR [65].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2.1: Datasets and different image representations: The first row shows
images from Dataset 1 (thick objects), the second row shows images from Dataset
2 (elongated objects), and the third row shows images from Dataset 3 (nearly
thin objects). The first column shows original images, the second column shows
contour images, and the third column shows skeleton images.

2.1.3 Related studies in cognitive science

Contours and skeletons belong to an important research topic in cognitive science,

and many studies have focused on their neural representations and roles in human

perception [25].

A number of studies have theoretically favored skeletons in object recognition

[32]. However, few physiological studies have reported supportive results [66].

Recently, several studies provided experimental evidence for the response of

neurons at the primary visual cortex (V1) to contours and skeletons [67–70]. Al-

though a retinal image of an object often includes noise on the contour, the phys-

iological based skeletal representation appears to be robust against noise [70]. In

contrast, engineered skeletons are sensitive to contour noise. To my knowledge, no

studies have been proposed to compare the two representations for human percep-

tion.
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2.2 Experimental platform for compact represen-

tation

The experimental platform is generic and consists of extracting shape features from

an intermediate image representation, and then use them as input to a shape match-

ing algorithm. The algorithm’s performance is evaluated using objective metrics.

In the following, the image representations are presented in Sec. 2.2.1, the

shape feature descriptor in Sec. 2.2.2, and the shape matching algorithms and

evaluation metrics in Sec. 2.2.3.

2.2.1 Image representations

Contours and skeletons are extracted using the following procedures: Pixel neighbor-

hood analysis is used for contour extraction, where a pixel is considered a contour

pixel if it has at least one background neighbor. Skeletons are extracted using a

thinning algorithm [71]. The thinning algorithm extracts skeletons by applying suc-

cessive iterations of rule-based boundary pixel removal. The final result is a skeleton

that preserves connectivity and topology of the original object. Fig. 2.1 illustrates

the image representations.

Different algorithms can be found in the literature and they are endowed with

robustness against image variations or tuned for specific applications (Sec. 2.1.1).

For instance, contour simplification and skeleton pruning have been used to remove

irrelevant branches caused by contour perturbations [45], and scale-space filtering

has been applied for noise-robust skeletonization by optimal filtering scale selection

[44]. In the present work, I use the procedures mentioned above since my goal is to

investigate the effect of image variations on shape matching and not to neutralize

it.

2.2.2 Shape feature descriptor

The histogram of pixel distributions in polar coordinates was used as a feature

descriptor. Features are extracted by calculating the distances and angles of pixels

inside a circular layout located at the shape centroid (Fig. 3.4).

The similarity between two images I1 and I2 is expressed by the Histogram

Intersection measure, S, computed from their corresponding histograms. S is cal-
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culated as follows:

S =
M−1∑
i=0

N−1∑
j=0

min(H1
ij, H

2
ij) (2.1)

where H1 and H2 are the histograms corresponding to images I1 and I2, and M and

N are the histogram dimensions.

This descriptor is efficient and global, which makes it conform more with hu-

man perception [72].

2.2.3 Shape matching algorithms and metrics

I used two shape matching algorithms: object classification (OC) and content-based

image retrieval (CBIR). OC performances are evaluated using the Classification

Accuracy metric, and CBIR performances are evaluated using the F-Measure metric.

Object classification

OC is done using a K-Nearest Neighbors algorithm. Given an image I, the cor-

responding feature histogram H is matched against the N images of the dataset.

Then, the K most similar images are used to identify the class of I in a major-

ity voting manner. A rejection class is attributed to I if the number of majority

votes is less than K × 40%. The algorithm’s performance is estimated using the

Classification Accuracy metric, that is expressed as a percentage and calculated as

follow:

Classification Accuracy = 100× 1

N

N∑
k=1

scorek (2.2)

where scorek takes 1 when the relevant class has the majority voting, and 0 other-

wise.

CBIR

Similarly to OC, the NR most similar images to a query I are retrieved. Then, the

retrieval performance is estimated using the F -Measure metric, that is expressed

as a percentage and calculated as follows:

F -Measure = 100× 1

N

N∑
k=1

2× precisionk × recallk
precisionk + recallk

(2.3)
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Fig. 2.2: Feature extraction layout.

where precisionk and recallk are calculated as follows:

precisionk =
number of retrieved images of class k

NR

(2.4)

recallk =
number of retrieved images of class k

|classk|
(2.5)

Precision expresses the ability to find relevant instances among the retrieved

images, and recall expresses the ability to find all relevant images of the image class.

CBIR is concerned with precision and recall of retrieval, while OC takes into account

only the majority appearance inside the retrieval set.

2.3 Experimental results

In this section, I present the image datasets I used (Sec. 2.3.1), the image variations

I analyzed (Sec. 2.3.2), and the results (Sec. 2.3.3).

2.3.1 Image datasets

The image datasets include:

• Dataset 1: Images of thick objects.

• Dataset 2: Images of elongated objects.

• Dataset 3: Images of nearly thin objects.

Images of Dataset 1 and Dataset 2 have been collected from the ALOI dataset

[73], while images of Dataset 3 were chosen from Zanibbi and Yu’s dataset [10]. The

image datasets can be obtained from the authors. Fig. 2.1 shows examples of the

images and their derived representations, while Table 2.1 presents a summary of the



2.3. EXPERIMENTAL RESULTS 13

datasets. It can be seen from Table 2.1 that the percentage of points in contours

and skeletons is smallest in thick images, and largest in nearly thin images.

2.3.2 Image variations

I analyze the effect of contour noise, blurring, and size reduction. Contour noise is

a common challenge for skeletonization algorithms [44] and a biologically plausible

image variation [70]. In my experiments, additive contour noises were generated by

randomly removing a percentage of contour points that ranges from 0% (original

images) to 100% (all contour points removed). Additive border noise is expected

to dramatically alter the structure of skeletons [68]. This synthetically simulates

the binary images affected by border noise that are often produced by scanners

or sketching devices [74]. Fig. 2.3 shows samples of the noisy images and their

corresponding representations.

Image blurring is a widely used image processing procedure and has been used

to as a remedy to contour noise [43, 44, 75]. In this experiment, I generate multiple

blurred images using a Gaussian filter of scale σ that ranges from 0 (original images)

to 15. This range of blurring scales insures an interval of fine to coarse. After

blurring, image binarization is applied using a standard algorithm [76]. Fig. 2.5

shows samples of the blurred images and their corresponding representations.

Size is a biologically plausible property that is frequently changed [77]. Size

change affects the level of details existing in an image; Large images contain more

local details, while smaller images have less local details but preserve global details.

Images of reduced sizes were generated with a size reduction factor that ranges from

1 (original images) to 5 using a pixel area re-sampling algorithm [78]. This range

insures a study of the performances on image that vary from large to small. Fig.

2.7 shows samples from the generated images.

2.3.3 Results

Throughout the experiments, the parameter K in Classification Accuracy is set to

K =
√
N where N is the total number of images in the dataset, as suggested in

[79]. The parameter NR used in F -Measure takes the same value as K. The feature

histogram dimensions are set to M = 5 and N = 12, respectively.

Figures 2.4, 2.6, and 2.8 show the results of OC and CBIR using the dif-

ferent representations exposed to noise, blurring, and size reduction. Contours

outperformed skeletons in most cases regardless of the image category and vari-

ation. The performances expressed in OC are higher than in CBIR due to the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2.3: Effects of noise. Images of Fig. 2.1 with 20% additive contour noise
and their corresponding representations.

(a) Thick objects (b) Elongated objects (c) Nearly thing objects

Fig. 2.4: Performances in presence of noise.

intrinsic difference between the corresponding metrics Classification Accuracy and

F-Measure respectively. Classification Accuracy considers the number of relevant

images in the voting pool, while F-Measure takes into account also the precision

and recall of retrieval. For instance, say I have an image I of class C that con-

tains 10 instances in total, and a number of voters K = 5 where 3 belong to C.

In this case, Classification Accuracy = 100% as C gets the majority vote, while

F -Measure = 40% (since precision = 3
5

and recall = 3
10

).

Contours are stable in presence of noise regardless of the image category. In
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2.5: Effects of blurring. Images of Fig. 2.1 after blurring using a Gaussian
filter of scale σ = 5 and binarization, and their corresponding representations.

(a) Thick objects (b) Elongated objects (c) Nearly thing objects

Fig. 2.6: Performances in presence of blurring. The Blurring Level corresponds
to the Gaussian filter scale σ.

case of blurring, performances remain stable with respect to a moderate amount of

blurring, and start decreasing when the blurring becomes significant. In case of size

reduction, performances remain stable.

Skeletons noticeably improve in the presence of noise. The improvement is

particularly noticeable in case of thick and elongated images. In case of blurring,

skeletons’ stability seems to be dependent on object thickness. Large amount of

blurring cause significant shape alterations on nearly thin objects, particularly be-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2.7: Effects of size reduction. Images of Fig. 2.1 after size reduction by a
factor of 4, and their corresponding representations.

(a) Thick objects (b) Elongated objects (c) Nearly thing objects

Fig. 2.8: Performances in presence of size reduction.

cause they are multi-component objects, and hence cause performances to decrease.

In case of size reduction, performances remain stable.

I observe that the performances of contours and skeletons track each other

consistently in case of large amount of blurring and size reduction. In these cases,

the delivered skeletons and contours are distorted and lose local details which leads

to decreasing performances in both representations. In case of noise, skeletons are

more sensitive than contours and the performances by the two representations evolve
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(a) (b)

Fig. 2.9: Percentage of skeleton points and image spatial frequency as function
of the level of noise corresponding to skeletons extracted from thick images.

(a) (b) (c)

(d) (e) (f)

Fig. 2.10: Uniqueness of skeletons: The objects in images (a) and (d) are visually
dissimilar, yet their respective skeletons in images (b) and (e) are visually similar.
Adding noise increased dissimilarity between the skeletons in images (c) and (f).

differently.

The improvement of skeletons’ performances in presence of noise is an inter-

esting finding, as it is often assumed that noise is counter-productive for shape

matching. When contour noise is added, branches appear in locus of contour noise

and result in increasing the number of skeleton points (Fig. 2.9(a)) and the image

spatial frequency (Fig. 2.9(b)). The spatial frequency is approximated by the av-

erage percentage of active histogram bins. This shows that additive contour noise

results in skeletons that recover more spread feature points from the original object,

and hence improve the uniqueness property of skeletons (Fig. 2.10). In the contrary,

noise does not significantly affect the contour representation.

The effect of noise on the dataset distribution is estimated by calculating the
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Distinctiveness as a function of the level of noise. The Distinctiveness measure is

calculated as follows:

Distinctiveness Measure =
σinter − σintra
σinter + σintra

(2.6)

where σinter and σintra refer to the standard deviations of inter-class similarity and

intra-class similarity. Fig. 2.11 shows the plot of Distinctiveness Measure in case

of thick objects subjected to noise. When the noise level increases, Distinctiveness

Measure corresponding to skeletons increases which indicates that feature vectors

are clustering and that these clusters are spreading away from each others. On the

other hand, increasing the level of noise does not affect Distinctiveness Measure of

contours.

I relate my results to the field of CBIR and classification of medical images for

aiding physicians’ diagnosis. Specifically, content-based spine X-ray image retrieval

is a particularly challenging research problem due to poor image quality and low

inter-class variations [63, 80, 81]. There, shape is the main feature due to absence

of other image cues, and existing methods for shape representation and matching

seem to rely essentially on contours [63, 81]. Due to ambiguous vertebral bound-

aries, segmentation is a difficult task and the resulted regions usually have contours

with local perturbations [82]. Using boundary filtering for perturbation reduction is

nontrivial because local changes in the contour might indicate important features

that are crucial to effective retrieval or lesion detection [81]. Antani et al. made a

comparison between different shape representations on a set of 250 vertebra bound-

ary images and the best result was a 55.94% performance score [81], which is an

indicator of the problem difficulty.

I notice the absence of using skeletons in the field of content-based retrieval of

spine X-ray images. My results show that skeletons are more sensitive to boundary

changes than contours and presence of boundary perturbations may even improve

matching performances. Skeletons may be able to emphasize the local changes more

than contours and hence overcome the small inter-class variations. Also, filtering can

be applied in a scale-space fashion for optimal skeletonization. In such a scenario,

a single skeleton may be selected according to an objective metric from multiple

candidates produced from filtered images of different levels.

2.4 Conclusion

In this chapter, I reported a comparative evaluation of contours and skeletons as

shape representations used for statistical feature extraction. Despite the widespread
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Fig. 2.11: Distinctiveness Measure as function of the level of noise corresponding
to thick images.

of these representations in pattern recognition and their importance in human per-

ception, no existing studies to compare their performances have been reported.

Different image datasets including thick, elongated, and nearly thin images

were prepared. Moreover, various image variations including noise, blurring, and

size reduction were generated. Performance evaluation is done using object classi-

fication and content-based image retrieval algorithms, and measured by objective

and commonly adopted metrics.

Results indicate that contours outperform skeletons and that they are stable

in case of moderate image variations. In addition, a noteworthy finding is the

improvement of skeletons in the presence of noise, due to increase in the number of

skeleton points and the image spatial frequency.

This study highlighted the beneficial nature of investigating these two shape

representations in pattern recognition and cognitive science. I hope my findings can

contribute in the following goals:

• Guide the choice of an image representation according to its performances

using a class of images subjected to image variations that I investigated. I

conjecture that using skeletons and scale-space filtering can be beneficial for

characterizing some classes of medical images.

• Improvement observed in skeletons in the presence of noise may lead to the

design of novel shape descriptors. Contrary to general belief about skeletons, I

observed that the branches created in locus of noise could improve distinctive-

ness which leads me to think that they contain significant clues for distinction.
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• Since contours and skeletons are interesting topics for researchers on cognition,

my findings could become a relevant feedback on the computational impor-

tance of these representations in image matching.

The findings of this study, related to the supremacy of contours over skeletons,

will be exploited in the subsequent chapters.



Chapter 3

Feature description by keypoints

Shape matching is a vibrant area of research on image analysis due to the numerous

applications it allows [83]. Particularly, when dealing with binary images where color

and texture information are absent (e.g. silhouette images, scanned documents,

sketches, etc.), shape is the only available feature to be used for image representation

and matching [51].

Numerous methods have been presented for shape feature extraction in binary

images [24, 84]. Usually, images are subjected to contour detection or skeletoniza-

tion before feature extraction in order to remove redundant information and reduce

processing time [85]. Moreover, some methods select certain keypoints and use them

to extract features [61, 86–93]. In these cases, keypoints are selected based on their

saliency or by using uniform sampling from the shape contours.

Due to the absence of background information in binary images, keypoints are

extracted from the foreground pixels (i.e. regions, contours, or skeletons) and the

background is omitted. In this work, I introduce a shape descriptor that approaches

the problem differently by generating background information in binary images. The

main steps of the descriptor are the following:

• Keypoint extraction: An image transformation is used to generate background

information on the original binary image. Then, keypoints are extracted from

the transformed image using point local area analysis.

• Keypoint selection: An objective measure of keypoint prominence is used to

automatically select the most important keypoints and filter out the redundant

and sensitive ones.

• Feature representation: A feature vector is calculated for each keypoint by

using the distributions of contour points in the local area of the keypoint.

21
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I report evaluation of BIK using silhouette images of the Kimia 216 dataset [94]

and the MPEG-7 CE-shape-1 part B [95], handwritten mathematical expressions of

Zanibbi and Yu’s dataset [10], hand-drawn diagram sketches of Liang et al.’s [96],

and noisy scanned logo images of the Tobacco 800 dataset [14]. Experimental results

on various types of images and a comparative evaluation demonstrate that BIK is

competitive compared with state-of-the-art methods.

The remainder of this chapter is organized as follows: Sec. 5.1 reviews key

methods of shape matching. I present my descriptor in Sec. 3.2 and evaluate it in

Sec. 3.3. Concluding remarks and future work are presented in Sec. 5.4.

3.1 Related work

Research on shape matching has led to a large repository of methods [84] where

shape descriptors can be classified into methods using global and local features [24],

graph-based methods [96], contour-based methods and skeleton based methods [85],

in addition to methods using keypoints [61, 86, 87].

Global methods extract features using the coarse information of the shape,

and hence do not convey much information about the local details. Such methods

include shape signatures [26], Fourier descriptors [97], and angular partitioning [65].

Global methods are robust against noise but on the detriment of representing fine

details. On the other hand, other methods take into consideration the local region of

the shape points, which makes them capable of capturing fine details of the shape.

Such methods include curvature scale space (CSS) [86], shape contexts [61], and

variations of binary local patterns [59].

Graph-based methods represent features using graph structures in contrast to

statistical methods which use statistical natures of appearances [96]. Advantages

of graph-based methods are their ability to represent spatial and hierarchical rela-

tionships between the object parts [98]. In addition, graph structures permit partial

matching. On the other hand, graph matching is time-consuming and thus it is

common to transform a graph to a numerical feature vector in order to speed up

computations, which often result in information loss [92, 93]

Contours and skeletons have been used as an intermediate representation be-

fore feature extraction. Contours are more robust against noise than skeletons, as

skeletons tend to generate noisy branches and artifacts in presence of shape border

perturbations [85]. On the other hand, skeletons are more suitable in applications

that require the segmentation of the original object into constituent parts for sub-

sequent graph-based feature representation [88, 99].
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Keypoint-based methods use a number of shape points for feature extraction.

A number of descriptors use uniform keypoint sampling from the shape contours

without special consideration about the keypoints curvature or location [61, 87,

100, 101]. Other methods extract specific interest points from the shape contour.

High curvature points of the contour have been used for keypoint extraction [89–

91]. Curvature scale space (CSS) uses scale space filtering [102] to extract contour

inflection points [86]. Then, the contour deformation and merging of inflection points

caused by scale space filtering are used for feature extraction.

Scale-space filtering has also been used to extract distinctive keypoints in in-

tensity images in the well-known SIFT descriptor [103]. However, it has been shown

that SIFT keypoints are suboptimal compared to keypoints that are uniformly sam-

pled from the shape contours when using complex binary images such as historical

hieroglyphs [104]. This result is due to the absence of local changes of intensity in

binary images that hinders scale-space filtering from detecting distinctive keypoints

and attributing them characteristic scales.

In the following, I present a novel keypoint descriptor. An earlier version of

this work has been reported in [19].

3.2 Image prominent keypoints

The proposed descriptor operates as follows: First, keypoints are extracted (Sec.

3.2.1). Then, a number of keypoints are selected among the extracted ones and the

others are filtered out (Sec. 3.2.2). Finally, a feature vector is calculated for each

keypoint (Sec. 3.2.3).

3.2.1 Keypoint extraction

In this step, a transformation is applied on the input binary image in order to

generate background information. Then, points having specific characteristics in

their local areas are used to extract keypoints.

For my image transformation, I use the distance transform (DT) [105]. DT gen-

erates a grayscale image where the intensity of each pixel corresponds to its distance

from the nearest foreground pixel (Fig. 3.1(c)). Here, the distance between pixels is

equal to their Manhattan distance as commonly used in DT implementations [106].

Keypoints are extracted as follows: First, the original image (Fig. 3.1(a))

is normalized by applying contour detection and image translation (Fig. 3.1(b)).

Then, background information is generated using DT (Fig. 3.1(c)). Before applying
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(a) (b) (c) (d) (e) (f)

Fig. 3.1: Keypoint extraction steps: (a) Original binary image. (b) WF ×
HF image after normalization (a = 0.25). (c) DT image. (d) Regions of equal
maximal intensity highlighted in different colors (e) Keypoints (k = 11). (f)
Keypoint vectors (α = 1): Circle radii correspond to the keypoint distance from
the nearest contour point, and arrows show the orientation of the vector delimited
by the keypoint and its nearest contour point.

(a) k = 5 (b) k = 9 (c) k = 15

Fig. 3.2: Effect of the parameter k on the number of keypoints.

DT, a 1-pixel-width border frame is added to the normalized image in order to

delimit the object so DT does not systematically generate maxima at the borders.

Next, regions of equal maximal intensity are detected on the DT image using a

k × k square window (Fig. 3.1(d)). Finally, the detected regions are represented

using their centers of masses which are taken as keypoints (Fig. 3.1(e)).

Contour detection is used to produce a compact representation of the original

image that reduces the number of foreground pixels but preserves the visual infor-

mation [85, 107]. Due to using contours, keypoints can be extracted from regions

inside and outside the object (Fig. 3.1(e)).

The dimensions (WF , HF ) of the frame used before applying DT are calculated

as follows:

WF = (1 + a) WBB, HF = (1 + a) HBB (3.1)

where WBB and HBB are the dimensions of the object’s bounding box, and a ≥ 0

is introduced to allow for a space between the object contours and the frame pixels

in order to extract keypoints in these regions. The object is translated towards the

center of the frame.
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Regions of equal maximal intensity are detected using a k × k square window

located at each DT image pixel. The parameter k affects the number of extracted

local maxima. The larger k gets, the fewer keypoints are detected (Fig. 3.2).

Due to using DT to generate background information, the extracted keypoints

are in locus of symmetry between foreground pixels and thus characterize the object

using its local symmetries. I anticipate the significance of such keypoints in shape

representation due to the importance of symmetry as a characteristic of patterns

that is exploited in human perception [108] and in computational image matching

[109].

3.2.2 Keypoint selection

The initial number of keypoints can be reduced by filtering out the redundant and

sensitive keypoints. Redundant keypoints duplicate representing the same details

of the image, and keypoints that are located very close to contours are sensitive to

insignificant changes in image local details.

A measure of keypoint prominence is introduced for keypoint ranking and

selection. A prominent keypoint is defined according to two aspects:

• It has few keypoints in its local area, and thus it is non-redundant.

• It is not located very close to foreground points, and thus it is robust against

insignificant changes in image local details.

Formally, the prominence γ(i) of a keypoint Ki is calculated as follows:

γ(i) =
di

1 + ni
(3.2)

where di is the distance from keypoint Ki to its closest contour or frame border

point, and ni is the number of close keypoints. A keypoint Kj is considered close to

Ki if it is located within a distance to Ki proportional to di.

My hypothesis for automatically selecting the most prominent keypoints is as

follows: I observe that the range of prominence values commonly indicates three

types of keypoints (Fig. 3.3(c)). The first type corresponds to few keypoints with

extreme prominence values, the second type corresponds to a larger number of key-

points with increasing redundancy, and the third type corresponds to keypoints with

high redundancy and closeness to the contours or frame borders. Since keypoints of

the third type are redundant and sensitive, they are filtered out.
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(a)

(b) (c)

Fig. 3.3: Keypoint selection: (a) Curve approximation by three segments applied
on image (b), (c) keypoints of the first type in green, keypoints of second type in
blue, and keypoints of third type in red. Automatic keypoint selection reduces
the number of keypoints from 298 to 78.

In order to filter out keypoints of the third type, I calculate the cumulative

keypoint prominence Γ(i) for a number i of keypoints ranked in their descending

prominence measures, as follows:

Γ(i) = ln (
i∑

j=1

γ(j) ) (3.3)

Fig. 3.3(a) shows a typical curve of Γ as a function of the number of accumulated

keypoints. The curve of Γ can be roughly segmented into three parts corresponding

to the types of keypoints. In order to find keypoints of each type, a two-dimensional

search is used to detect the three segments that minimize the area between them

and the curve of Γ. Then, keypoints corresponding to the first and second types are

selected. In the literature, a similar strategy has been reported in [110] to automat-

ically detect salient corner points in online sketches using scale-space filtering and

digital ink attributes (e.g. pen speed, curvature).
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Fig. 3.4: Keypoint feature extraction using a layout which radius is proportional
to the distance between the keypoint and its nearest contour or frame point. The
feature vector is calculated using the distribution of contour pixels and not frame
pixels.

3.2.3 Feature represenation and matching

The last step is to calculate a feature vector to each keypoint Ki. For this purpose,

I use a scale-invariant circular layout which radius ri is proportional to the distance

between the keypoint Ki and its closest contour point (Fig. 3.4):

ri = α× di (3.4)

where α is a constant. Then, a histogram hi is extracted by calculating the dis-

tribution of contour points in distance and angle bins. The distance between two

histograms is expressed by the X 2 statistic:

X 2(h1, h2) =
1

2

NB−1∑
j=0

[h1(j)− h2(j)]2

h1(j) + h2(j)
(3.5)

where NB is the number of bins in a keypoint histogram. Using the distance di to

set the radius of the feature layout makes the descriptor scale-invariant.

The dissimilarity d between two images I1 and I2 is estimated by the cumula-

tive minimum distance between the images’ keypoint histograms:

d(I1, I2) =
1

N1

N1−1∑
i=0

min
0≤j<N2

{X 2(h1
i , h

2
j)} (3.6)

where N1 and N2 are the number of keypoints in images I1 and I2. Because d(I1, I2)

is asymmetric, I express the distance between two images I1 and I2 as follows:

D(I1, I2) =
d(I1, I2) + d(I2, I1)

2
(D ∈ [0, 1]) (3.7)
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Table 3.1: Information about the datasets.

Dataset # images # classes # instances
Kimia 216 18 12

MPEG-7 1400 70 20
Zanibbi and Yu 200 20 10

Liang et al. 1086 35 [17, 22]
Tobacco 412 35 [1, 68]

The smaller D(I1, I2) is, the more similar I1 and I2 are.

The feature vector is translation-invariant due to using the object’s bounding

box for image normalization, and scale-invariant due to using keypoint-dependent

feature extraction layouts. Rotation-invariance can be insured by using the orien-

tation of the vector delimited by the keypoint and its nearest contour point as a

reference orientation (Fig. 3.1(f)), or by using shifted matching of the keypoints’

feature vectors.

3.3 Evaluation

In this section, I report the evaluation of my descriptor and compare it against other

methods. I start first by introducing the datasets used during the experiments.

3.3.1 Datasets

Evaluation is done using five datasets: The Kimia 216 dataset [94] and the MPEG-7

dataset [95] include silhouette images that are neat and which contain single com-

ponent objects. Zanibbi and Yu’s dataset [10] contains handwritten mathematical

expressions which exhibit handwriting fluctuations and component displacement,

which also appear in Liang et al.’s dataset [96] of hand-drawn diagram sketches.

The Tobacco 800 dataset [14] contains logo images that are taken from scanned

documents and they are the noisiest compared to the other datasets. Table 3.1 and

Fig. 3.5 show information about the datasets and samples of the images.

3.3.2 Descriptor evaluation

Before evaluating the descriptor, I set its parameters as follows: The parameter for

setting the normalization frame’s dimensions is set a = 0.25, which insures a scale-

invariant frame with space between its borders and the object contours. A keypoint
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(a)

(b)

(c)

(d)

(e)

Fig. 3.5: Samples of the dataset images: (a) Kimia’s dataset [94], (b) MPEG-7
dataset [95], (c) Zanibbi and Yu’s dataset [10], (d) Liang et al. dataset [96], (e)
Tobacco 800 logo dataset [14].

Kj is considered close to a keypoint Ki if the distance between them is equal or

less than di
4

, where di is the distance between keypoint Ki and its closest contour

or frame border point. The radial and angular numbers of bins in the keypoint

descriptor are set as 4 distance bins and 8 angle bins in order to make a trade-off

between distinctiveness and robustness. A small number of bins compromises the

descriptor’s distinctiveness, while a larger number of bins causes sensitivity to noise

and fluctuations [104]. The constant for configuring the keypoint-dependent feature

layout radius is set α = 1.5 in order to insure taking into account the closest contour

points in the smallest distance bins.

Evaluation is done using the precision at n metric [111], denoted P@n, which

is calculated as follows:

P@n =
|{n retrieved images} ∩ {relevant images}|

|{n retrievd images}|
(3.8)
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Fig. 3.6: Effect of varying the parameter k on P@n.

I set the number of retrieved images n as query-dependent and equivalent to the

number of the query’s class instances. The larger P@n is, the better matching

performances are.

Keypoint sampling evaluation

During keypoint extraction, the parameter k defines the size of the local maxima

detection window and thus affects the number of extracted keypoints (Fig. 3.2). I

evaluate the effect of this parameter on matching performances.

Fig. 3.6 shows curves of P@n as a function of k using the Kimia 216 dataset,

Zanibbi and Yu’s dataset, and Tobacco logos dataset. For all datasets, the best

matching performances correspond to k = 3, which means that the best way is to

keep a maximum number of keypoints that will be later filtered during the keypoint

selection step. According to the results of this experiment, I set k = 3 empirically

and use it in subsequent experiments.

Keypoint distinctiveness evaluation

The distinctiveness of BIK’s keypoints is assessed by comparison with equidistant

sampling which is used in numerous descriptors, namely shape contexts [61]. I per-

form experiments of image retrieval using the Kimia 216 dataset where each image

is used as a query and the average P@n is calculated for all queries. I extract the

same number of keypoints using BIK and shape contexts and perform matching
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Fig. 3.7: P@n as a function of the number of keypoints N for BIK and shape
contexts on the Kimia 216 dataset.

using my keypoint matching steps (Sec. 3.2.3). In order to make the comparison

between BIK keypoints and shape contexts fair, I introduced two modifications on

the shape contexts: Features are extracted from equidistant keypoints from the

contour and all the remaining contour points are considered when calculating the

keypoint’s histogram, unlike the original shape context descriptor where only the

sampled keypoints are considered. In addition, scale-invariance is introduced by

making the circular feature extraction layout’s size adaptive to the shape by calcu-

lating the distance between each keypoint and its farther contour point, instead of

using static log-polar layouts. Consequently, these modifications led to better re-

sults when compared with the original shape contexts considering only equidistant

keypoints and using static log-polar layouts for feature extraction.

Fig. 3.7 shows performances of BIK keypoints and shape contexts. For small

numbers of extracted keypoints, using equidistant keypoints outperforms BIK key-

points. Then, starting from 40 keypoints, BIK outperforms shape contexts and the

gap increases in correlation with the number of keypoints. In fact, using 40 BIK

keypoints outperforms using 100 shape contexts. This result shows that my key-

points are distinctive and outperform the widely-used equidistant keypoint sampling

scheme.

Keypoint selection evaluation

The keypoint selection step aims to reduce the number of keypoints by removing

the redundant ones and the ones too close to the shape contour. Fig. 3.8 shows
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Table 3.2: P@n and number of keypoints N using BIK with all keypoints and
with selected keypoints.

Implementation
All keypoints Selected keypoints
P@n N P@n N

Kimia 216 88.27 % 147 85.49 % 58
Zanibbi and Yu 78.0 % 1610 81.65 % 564
Tobacco logos 77.21 % 1203 82.74 % 379

Fig. 3.8: P@n as a function of the percentage of used keypoints relative to the
total number of extracted keypoints using BIK.

retrieval performances expressed in P@n as a function of the percentage of keypoints

using the Kimia 216 dataset, Zanibbi and Yu’s dataset, and Tobacco logos dataset.

For the Kimia 216 dataset, performances increase when the percentage of keypoints

increases. As for Zanibbi and Yu’s and Tobacco logos datasets, optimal performances

are obtained when not all of the keypoints are used (when 20% and 60% of keypoints

are selected respectively).

Table 3.2 shows retrieval performances of BIK when all keypoints are used

and when keypoint selection is performed. For all datasets, the reduction in number

of keypoints is significant and roughly makes the third of total keypoints. In case

of Zanibbi and Yu’s and Tobacco logos datasets, matching performances improve.

However, they decrease in case of Kimia 216 dataset. This result suggests that my

keypoint prominence-based selection is effective when the initial number of keypoints

is relatively large (cases of Zanibbi and Yu’s and Tobacco logos datasets). When

the initial number of keypoints is relatively small (case of Kimia 216 dataset), the

keypoint selection step would better be skipped. This can be done using a threshold

on the initial number of keypoints.
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Table 3.3: Characteristics of the methods used for comparison.

Method Keypoint
-based

Feature extraction Feature representation

Local
features

Global
features

Graphs
Feature
vectors

BIK X X X
SRD [59] X X X
SC [61] X X X
PSSG [88] X X X
CS [89] X X X
TSDIZ [90] X X X
SSD+GF [91] X X X
MST [92] X X X X
LS+G [93] X X X X
TPG [96] X X X

3.3.3 Performance comparison with other descriptors

The proposed descriptor is compared with other existing methods using five datasets.

For Kimia 216, Liang et al. and MPEG-7 datasets, I compare with state-of-the-art

methods and calculate performance measures that are used in available published re-

sults. As for Zanibbi and Yu’s and Tobacco logos datasets, comparison is done using

the P@n performance metric and comparison is done with SRD. Other keypoint-

based and graph-based methods are omitted here because they need special con-

siderations regarding keypoint sampling and matching of multi-component images.

In case of Kimia’s dataset, I calculate the retrieval performance metric reported in

several published papers, that is the number of relevant retrieved images for each of

the top 6 ranks and the percentage calculated by summing these numbers. In case

of Liang et al.’s dataset is done using the mean average precision (MAP) metric

[111]. In case of the MPEG-7 dataset, the P@10 metric is used.

Table 3.3 shows general characteristics of the methods used for comparison.

Characteristics are usage of keypoints, feature extraction using local or global fea-

tures, and feature representation using graphs or feature vectors. Some methods

combine local and global features in order to reach higher distinctiveness and ro-

bustness against noise. Due to high computations required for graph matching, some

methods extract a feature vector from the graph initially produced.

Table 3.4 reports the results of the comparison using five datasets. Over-

all, BIK yields competitive performances relative to state-of-the-art methods. BIK

outperforms shape contexts which use equidistant sampling of contour points, and

methods based on contour salient keypoints such as contour salience (CS) [89], min-
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Table 3.4: Results of the comparison. For each dataset, a specific metric is used
to make the comparison compatible.

Method
Kimia 216

dataset
[94]

MPEG-7
dataset

[95]

Zanibbi
and Yu’s
dataset

[10]

Liang et
al. dataset

[96]

Tobacco
logos

dataset
[14]

Metric P@n P@10 P@n MAP P@n
BIK 93.83 % 75.48 % 82.74 % 83.83 % 81.65 %
SRD [59] 86.96 % . 47.6 % . 82.55 %
SC [61] 92.12 % . . . .
PSSG [88] 99.22 % . . . .
CS [89] . 36 % . . .
TSDIZ [90] . 81 % . . .
SSD+GF [91] . 85 % . . .
MST [92] . . . 29.8 % .
LS+G [93] . . . 50.9 % .
TPG [96] . . . 61.6 % .

imal spanning tree (MST) [92] and Laplacian spectrum with geometry (LS+G) [93].

BIK is competitive compared with methods that combine local and global features

such as SRD [59], and methods that use graphs for feature representation including

MST [92], LS+G [93], and TPG [96].

3.3.4 Summary and discussion

The proposed descriptor is able to extract distinctive keypoints as demonstrated

by comparison with similar numbers of shape context keypoints extracted using

equidistant contour points sampling on the Kimia 216 dataset. In fact, BIK is able to

outperform shape contexts using significantly fewer keypoints. This is further proven

when BIK outperforms methods that detect salient points in the image contour

using the other datasets. An interesting direction motivated by these results is to

combine BIK keypoints with salient keypoints of the contour for the sake of better

distinctiveness.

Experiments on challenging images, such as fluctuated handwritten mathemat-

ical expressions of the Zanibbi and Yu’s dataset and hand-drawn diagram sketches

of Liang et al.’s dataset, demonstrate the reliability of BIK, as it outperforms largely

other methods. Methods used for comparison include graph-based descriptors which

are known for their high matching performances and ability to perform partial

matching.

Reliability of BIK is also shown when assessed on the noisy scanned images of
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the Tobacco logos dataset. Results on this dataset are particularly promising given

that no preprocessing has been applied for noise reduction.

The keypoint selection based on keypoint prominence is effective in reducing

the number of keypoints without significantly compromising the descriptor’s distinc-

tiveness. However, the performances improve when the initial number of keypoints

is relatively large. For this purpose, a threshold on the initial number of keypoints

can be used to activate or skip the prominence-based keypoint selection.

3.4 Conclusion

In this chapter, I introduced a descriptor for binary image matching using image

prominent keypoints. The proposed binary image keypoints descriptor (BIK) gener-

ates background information in binary images, then extracts keypoints using pixels

that have specific characteristics in their local areas. A measure of keypoint promi-

nence is used for automatically selecting the most prominent keypoints and filtering

out the redundant and sensitive ones.

The proposed descriptor has been evaluated using five public datasets of silhou-

ette images, handwritten mathematical expressions, hand-drawn diagram sketches,

and scanned logo images. Experimental results and comparison with state-of-the-

art methods demonstrated that BIK has competitive matching performances when

applied on various types of images, including challenging images of fluctuated hand-

writing and noisy scanned images.

In the following chapter, BIK will be integrated in my document image retrieval

system as a measure of candidate relevance. Since BIK is relatively time-consuming

due to the large number of its keypoints, it will be used after pre-selecting a number

of candidates using an efficient descriptor.
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Chapter 4

Query spotting by feature

combination

Query spotting in document images is the task aiming to locate a query inside a

larger document image. When queries correspond to handwritten words, retrieval is

often done by using optical character recognition (OCR) to perform recognize-then-

retrieve [112]. On the other hand, in case of non-text queries, and when documents

are degraded, multilingual or multi-authored, different approaches are called for to

insure content-based retrieval [113, 114]. In the latter scenario, features are extracted

from the query and used to spot its occurrences inside the document image. Usually,

segmentation is applied in order to extract relevant regions from the document image

[115].

In this chapter, I introduce a method for content-based document image re-

trieval (CBDIR) that is both segmentation and recognition-free. My method pro-

ceeds as follows: First, connected components of the query are paired with their

corresponding matches in the document image using shape features. A similarity

threshold is then used to select the components of the document image that are

most similar to the query components. Next, the selected components are used to

recover candidate occurrences of the query in the document image by using size-

adaptive bounding boxes. Finally, a score is calculated for each candidate and used

for candidate ranking.

To demonstrate its effectiveness, I evaluate my method on CBDIR of hand-

written mathematical expression queries. This field has received a growing attention

in recent years but retrieval performances are still low [116]. Handwritten mathe-

matical expressions are particularly challenging to tasks of retrieval and recognition

due to faulty document image segmentation and expression structural ambiguity

[117, 118]. In addition, handwriting fluctuations contribute to making the problem

37
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harder. The difficulty can be illustrated by the results of the latest edition of the

International Competition on Recognition of Online Handwritten Mathematical Ex-

pressions (CROHME 2013), where the best and second best expression recognition

systems among eight participants yielded recognition rates of 60.36% and 23.40%

respectively when tested on 671 handwritten expression images [119]. Offline hand-

written expressions, which are the focus of my evaluation, are even more challenging

since they do not preserve the writing time and stroke order information that usually

assist symbol extraction.

The outline of this chapter is as follows: In Sec. 5.1, I review related approaches

for recognition-free CBDIR. My theoretical model is presented in Sec. 4.2 and

its algorithmic implementation in Sec. 4.3. I evaluate my method on CBDIR of

handwritten mathematical expressions and present experimental results in Sec. 4.4.

Finally, my concluding remarks and future directions are given in Sec. 5.4.

4.1 Related work

As stated above, methods for CBDIR can be categorized as recognition-based or

recognition-free. In this section, I review references of recognition-free methods, as

my contribution is of this category. I refer the reader to references [112, 120] for

information on recognition-based methods.

Methods for CBDIR using word queries often start by segmenting the docu-

ment image into lines and words using a priori knowledge about the distance between

characters and words. An early method of this type has been introduced by Man-

matha et al. [121], as a new alternative to OCR at the time. The authors presented

two algorithms for word spotting by estimating the shift between the query and the

words in the document image. The document image is subjected to normalization

and segmentation into words. Then, the number of words is pruned using the areas

and aspect ratios of the words. The two spotting algorithms calculate the shift be-

tween the query word and the document image words using the Euclidean distance

and Scott and Longuet Higgins’ algorithm. Similar methods using word queries have

been presented in [122, 123].

Other CBDIR methods incorporate a priori knowledge about the documents

and queries’ language. For instance, Lu and Tan presented a method for CBDIR of

Chinese documents based on a modified Hausdorff distance for Chinese characters

[124]. Sari and Kefali presented a method for CBDIR of Arabic documents using

specific features of Arabic characters (e.g. diacritics, loops) [125].

Other researchers aimed for language-invariance. In [126], Lee et al. used
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the SIFT descriptor [103] for CBDIR word queries. The user’s query is introduced

online and normalized in a specific font. Then, SIFT is used for feature extraction

and matching of the query in the document image. Query occurrences are detected

using clustering. The authors evaluated their approach using English and Korean

documents and obtained language-invariant results.

Approaches for non-word queries have been introduced. For instance, Zhu et al.

presented a CBDIR framework specific to signature queries [127]. Their approach

is based on the view that signatures posses a characteristic multiscale structural

saliency. In [10], Zanibbi and Yu introduced an approach for CBDIR using mathe-

matical expression queries. Their approach works as follows: First, Recursive X-Y

Cutting [128] is used to produce X-Y trees for the document image and the query,

and pruning is used to discard irrelevant regions such as text. Then, spotting is

done by looking up the query in the document image index using features of its X-Y

tree, producing a set of candidates. Candidate ranking is done using Dynamic Time

Warping [129].

In a previous work [55], I proposed a voting-based segmentation and recognition-

free approach. First, connected components are extracted from the query and doc-

ument image, and then matched using shape features. Next, connected components

of the document image vote for possible locations of the query using component sim-

ilarity scores and displacement vectors calculated from the query components and

their matches in the document image. Voting produces a grayscale image where

brighter spots indicate possible occurrence locations, and these spots are used to

extract occurrence candidates that are ranked according to their similarity with

the query. Similarity is estimated using a shape descriptor [59]. Later, I presented

an optimized version using Genetic Algorithms to remove incorrect components in

candidate occurrences [130].

The present paper is an improvement of my previous work by making it simpler.

I also modify several processing stages that need the query, therefore making offline

dataset indexing feasible. In addition, my method does not rely on script or class-

specific features unlike the aforementioned methods.

4.2 Theoretical model for feature combination

A CBDIR method relies on a spotting stage to find the location of a query inside a

larger document image. My method for spotting mimics the intuitive way humans

follow to perform the same task when unable to read or identify the query. The

human’s analogy can be illustrated by the example of a foreign tourist who tries to
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find a train station’s name on a map that is written in the local language script,

to which I suppose the tourist is totally unfamiliar. In case the station’s name is

composed of several components, the tourist might decompose it and then try to

do the spotting component by component. Finally, an occurrence is validated if it

contains all the components of the station’s name. During this process, the tourist

might ignore words or patterns that are obviously irrelevant to the targeted station’s

name.

My model is based on the assumption that spotting can be considered a

Bayesian inference process that uses the local and global similarities of the query

and its occurrences in the document image. Here, the local similarities provide

prior knowledge and lead to calculating P (AR), that is the probability of a set A

of document image components being a relevant occurrence of the query. Then,

the suitability of A, including the global similarity, will be evaluated via multiple

observed attributes of A, which can be expressed as a vector x. By introducing the

likelihood p(x|AR), the posterior probability P (A|x) can be evaluated.

4.2.1 Prior knowledge

The query image and the document image contain equations, words, figures, draw-

ing, etc. When considered from a micro level point of view, the image contains

connected components that can be alphabets, symbols, geometrical primitives, etc.

The connected components, or simply components, of the query image IQ and the

document image IDOC are denoted {CQ
i }Mi=1 and {CDOC

j }Nj=1 respectively, where M

and N are the number of components in IQ and IDOC .

Each query component CQ
i defines a class ωi. {CDOC

j }Nj=1 are treated as pat-

terns to be classified into a class among {ωi}Mi=1, corresponding to {CQ
i }Mi=1.

A component classifier is used to calculate P (ωi|CDOC
j ), which is the probabil-

ity that CDOC
j corresponds to the class ωi. Each component CDOC

j is then assigned

the class ωi having the largest probability. For each document image component

CDOC
j , I have

∑M
i=1 P (ωi|CDOC

j ) = 1.

After attribution to a class among {ωi}Mi=1, the components {CDOC
j }Nj=1 are

used to form candidates of IQ occurrences in IDOC . A candidate is a set A of

document image components and it is defined as follows:

A = {CDOC
φ(i) }Mi=1 (4.1)

where φ(i) is a function that returns the index j of CDOC
j that is assigned to ωi.

φ(i) insures that A has a document image component from each class ωi.
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At this stage, A is a relevant candidate if it contains components from all the

classes {ωi}Mi=1. AR denotes the event that set A is a relevant candidate. I take as

the initial prior probability of AR as follows:

P (AR) =
M∏
i=1

P (ωi|CDOC
φ(i) ) (4.2)

Here, I assume that {P (ωi|CDOC
φ(i) )}Mi=1 are independent.

4.2.2 Observation

Eq. 4.2 does not take into account the locations of components relative to each

other inside a candidate A. Therefore, multiple (K) observations x = [x1 . . . xK ]

concerning the global resemblance and suitability of A are introduced by way of a

likelihood function p(x|AR).

4.2.3 Inference

The evidence provided by x is used to update the relevance probability using Bayes’

theorem:

P (AR|x) =
p(x|AR)× P (AR)

p(x)
(4.3)

which shows that the posterior probability P (AR|x) is maximized when the quantity

p(x|AR) × P (AR) is maximized. Without loss of generality, I have P (AR|x) ∝
p(x|AR)× P (AR).

4.2.4 Decision function

Using the ln operator, the decision function is expressed as follows:

D(A) = ln(P (AR|x))

= ln(p(x|AR)) +
M∑
i=1

ln(P (ωi|CDOC
φ(i) ))

(4.4)

Therefore, a candidate A that maximizes D(A) can be judged to be relevant

to query IQ.
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(a) (b)

Fig. 4.1: Feature extraction from connected components: (a) Feature extraction
layout. (b) Illustration of a feature vector (the brighter the bin region the larger
the value).

4.3 Algorithmic implementation

My algorithm proceeds as follows: First, features are extracted from the components

of IQ and IDOC (Sec. 4.3.1) and used to detect candidate occurrences of IQ in IDOC

(Sec. 4.3.2). Next, a score is calculated for each candidate to express its relevance

to the query (Sec. 4.3.3).

4.3.1 Component feature extraction and matching

A feature vector V is produced for each component of IQ and IDOC . Features are

extracted by calculating the distribution of pixels inside a bounding circular layout

of which the origin is the component’s centroid (Fig. 4.1). The similarity between

two components Ci and Cj is equivalent to the histogram intersections between their

corresponding vectors, which is calculated as follows:

S(Ci, Cj) =
R−1∑
r=0

Θ−1∑
θ=0

min(Vi
r,θ,V

j
r,θ) (4.5)

where R and Θ refer to the radial and angular number of sections. Two components

Ci and Cj are considered similar if they satisfy S(Ci, Cj) ≥ α, where α ∈ [0, 1] is

a similarity threshold. S(Ci, Cj) is the practical implementation of P (ωi | CDOC
j )

defined in Sec. 4.2.1.

4.3.2 Detection of query occurrence candidates

One component of the query, that I call main component Q̂, is determined and used

as a seed for candidate occurrence detection. In this implementation, Q̂ is chosen

as the largest component in terms of number of pixels. Then, components of the

document image IDOC which are similar to Q̂ are detected. The set of components

of IDOC which are similar to Q̂ is denoted B = {CDOC
j | S(Q̂, Cj) ≥ α : 1 ≤
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(a)

  

(b)

Fig. 4.2: Illustration of the bounding box-based spotting procedure: (a) An
example of a handwritten query with the main component Q̂ highlighted in green.
(b) Matches of Q̂ are highlighted in green. The blue bounding box refers to a
relevant candidate, and the two red bounding boxes refer to irrelevant candidates
(other red bounding boxes are omitted for clarity).

j ≤ N}. The neighboring components of an element of B possibly belong to an

occurrence of IQ in IDOC and they are extracted to form a candidate A. Neighboring

components extraction is done using a bounding box that is calculated using the

query’s dimensions (WQ, HQ) and Q̂ (Fig. 4.2). The bounding box’s dimensions are

calculated as follows:

(W,H) = (WQ, HQ)× size of Ĝ

size of Q̂
× β (4.6)

where Ĝ denotes a match of Q̂ in B, size of a component is expressed by the number

of its pixels, and β is a parameter to control the size of the bounding box which

is introduced to account for handwriting fluctuations. The normalization using the

components’ sizes makes the boxes size-adaptive.

In order to account for component disconnectedness or merging, spotting is

done using a number NQ̂ of main components instead of one. The extracted main

components are the NQ̂ largest components of IQ.

4.3.3 Candidate score

The last step is to compute a score for each set A that expresses its relevance as a

query occurrence candidate. For this purpose, p(x|AR) is estimated as a multidi-

mensional observation x = [a b c], where:

• a = S(A, IQ) is the matching score between the image produced by A and the

query IQ using a shape descriptor (Sec. 4.3.1). Specifically here, the feature

extraction layout’s centroid corresponds to the centroid of Ĝ instead of the
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global centroid of A, and all components’ points located inside the circular

layout are considered.

• b is equivalent to the maximum value of a when calculated for the large com-

ponents of A. The large components of A are the components having their

sizes superior to the average component size in A. b is introduced to account

for component disconnectedness and merging.

• c is equal to the number of query components that have similar counterparts

in the candidate divided by the total number of query components. c is intro-

duced to penalize cases when a single component of the query is matched to

several components by mistake.

The scores a, b, and c are normalized and fall in the interval [0, 1]. Large values

indicate similarity between A and IQ while small values indicate dissimilarity.

Assuming that the components of x are independent, the combined probability

p(x|AR) = p(a|AR) p(b|AR) p(c|AR) is integrated in Eq. 4.4, which gives:

D(A) = ln(P (a|AR)) + ln(P (b|AR)) + ln(P (c|AR))

+
M∑
i=1

ln(P (ωi|CDOC
φ(i) ))

(4.7)

Each candidate A is assigned a score that expresses its relevance as a query

occurrence candidate. score(A) is calculated as follows:

score(A, γ) = ln(1 + a) + ln(1 + b) + ln(1 + c)

+
γ

NQ̂

NA∑
u=1

ln(1 + max
1≤i≤M

S(Ci, Cu))
(4.8)

where 1 is added to avoid the ln of zero probability values. Finally, the candidates

are ranked in their descending score.

score(A,NQ̂) is a direct implementation of the theoretical model (Eq. 4.4).

When component disconnectedness and merging in a candidate A are significant,

the quantity of the score
∑NA

u=1 ln(1 + max1≤i≤M S(Ci, Cu)) accumulates incorrect

similarity values that eventually increase the score and cause A to be judged as

relevant to query IQ incorrectly. The parameter γ ∈ [0, NQ̂] is thus introduced to

mitigate this effect.
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Table 4.1: Information about the MathBrush subset [131] and Zanibbi and Yu’s
dataset [10].

Dataset # images # classes # instances Expression size
MathBrush subset 739 50 [11, 16] 19.21

Zanibbi and Yu 240 20 10 13.41

4.4 Experimental Results

In this section, I evaluate my algorithm by investigating the effects of its parameters

and comparing it with a state-of-the-art method. I start by introducing the datasets

used during the experiments.

4.4.1 Datasets

My method is evaluated using the MathBrush dataset [131] and Zanibbi and Yu’s

dataset [10] which contain offline expressionsa. From the original MathBrush dataset,

I use a subset that consists of 739 images (50 printed and 679 are handwritten) that

belong to 50 classes containing between 11 and 16 instances each which are produced

by 20 writers. My subset preparation is based on choosing images that have at least

one similar instance. Zanibbi and Yu’s dataset contains 200 documents images, 40

printed queries, and 200 handwritten queries provided by 10 writers. The docu-

ment images are collected from the CVPR 2008 conference proceedings, their size is

2560×3310 pixels and resolution is 300dpi. Table 4.1 summarizes information about

the datasets and Fig. 4.3 shows histograms of the expression sizes (i.e. average

number of components) in each dataset. Fig. 4.4 illustrates the difficulty of the

data with examples taken from Zanibbi and Yu’s dataset.

The images are subjected to binarization [76] followed by contour detection

based on previous results that demonstrate the effectiveness of contours as a compact

shape representation (Chapter 2) [20].

4.4.2 Parameter setting

The radial and angular numbers of sections in the shape descriptor (Sec. 4.3.1)

have to be set in a way to cope with the data. Small values of R and Θ compromise

the descriptor’s distinctiveness, while large values cause sensitivity to noise and

fluctuations [104]. Based on these considerations, I set their values to be R = 5 and

Θ = 10.

aI use datasets of offline expressions for the sake of generality. For a survey on datasets of online
expressions, the reader is referred to [116].
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Fig. 4.3: Expression size histograms of the MathBrush subset and Zanibbi and
Yu’s dataset. The size of an expression is equal to the number of its components.

Fig. 4.4: Data challenges. Left: examples of fluctuated queries. Right: examples
of component disconnectedness (highlighted in red).
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The parameter γ controls the weight of a priori knowledge estimated by the

query and candidate component similarities and is used for calculating the candidate

scores (Eq. 4.8). γ is introduced to mitigate the frequent component disconnected-

ness and merging. In order to observe the effect of γ, I conducted image matching

experiments on the MathBrush subset and the 240 queries of Zanibbi and Yu’s

dataset using a symmetrical similarity measure calculated from the candidate score

(Sec. 4.3.3):

Similarity(Ii, Ij) =
scoreIi(Ij, γ) + scoreIj(Ii, γ)

2
(4.9)

where Ii and Ij are dataset images, and scoreIi(Ij, γ) refers to calculating the score

of candidate Ij when taking Ii as the query.

For evaluation, the precision at n metric, denoted P@n, is used [111]. P@n is

defined as follows:

P@n =
|{n retrieved images} ∩ {relevant images}|

|{n retrieved images}|
× 100 (4.10)

where n is equal to the number of instances in the query’s class and |S| is the number

of objects in the set S. The larger P@n is, the better matching performances are.

Fig. 4.5 shows the effect of varying values of γ on image matching perfor-

mances. Although the datasets differ in number of images and expression size, best

performances for both are obtained when γ = 2. I adopt this setting for γ in

subsequent experiments.

The parameter β controls the size of the bounding box used for spotting (Eq.

4.6). Based on my observation, writers tend to reduce the space between expression

symbols and hence deliver handwritten expressions that are more compact compared

to printed expressions. I set β = 1.1 in order to make the bounding box calculated

from the writer’s query slightly larger so as to account for the compact writing style.

Before retrieval operations on Zanibbi and Yu’s dataset, components of the

query that have less than 10 pixels plus thick and large components of the docu-

ment images are filtered out. A component is considered thick if its contour pixels

are less than 30% of its total pixels, and large if the total number of pixels exceeds

1000 pixels. This procedure filters out on average 22.85% of each document image

foreground pixels corresponding mostly to binarized figures. The number of main

components used for spotting is taken as 3
4
N , and a candidate is discarded if its

number of components is smaller or larger than N by N
4

. In order to maintain a

reasonable processing time, I apply dataset indexing using connected component

clustering (Chapter 5) [21]. During the query’s main component matching, a maxi-
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Fig. 4.5: Curves of P@n when γ is varied. The MathBrush subset and Zanibbi
and Yu’s dataset are used.

Fig. 4.6: Curves of (P -Recall, A-Recall) when α is varied. Zanibbi and Yu’s
dataset is used.

mum of 50 similar clusters are retrieved.

Subsequent evaluation is done using the P-Recall and A-Recall metrics that

are used in [10]. They are calculated for n retrieved images as follows:

P -Recall =
# relevant retrieved images

# relevant images in dataset
× 100 (4.11)
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A-Recall =
Candidate bound. box area

Ground truth bound. box area
× 100 (4.12)

where n is a constant that indicates the number of retrieved document images. P-

Recall indicates the algorithm’s ability to retrieve the relevant document images (i.e.

the correct pages), and A-Recall indicates the ability to spot the correct area of the

relevant query’s occurrence in the document image. Since n is fixed, both metrics

express the precision of the algorithm.

Now, I evaluate the effect of parameter α which is the component similarity

threshold (Sec. 4.3.1). The value of α controls the trade-off between true negative

and false positive document image components matched to the query’s main com-

ponents. Fig. 4.6 shows the result of CBDIR experiments for different values of α.

Printed and handwritten queries lead to different performance behavior when α is

changed. For printed queries, performances remain stable for values of α up to 0.6,

while performances of handwritten queries start to decrease when α > 0.5. This

result is explained by the neat quality of printed fonts in contrary to fluctuations

and noise in handwritten queries. According to this result, I set α = 0.5.

4.4.3 Comparative evaluation

Table 4.2 shows my comparative results. Using γ = 2 improves performances as an-

ticipated earlier (Fig. 4.5). Results of my method are presented when the candidate

score (Sec. 4.3.3) is used, and when BIK (Chapter 3) is used for candidate re-ranking

after initial ranking of 20 candidate groups by the candidate score. The proposed

method gives better results when BIK re-ranking is used, and it outperforms Zanibbi

and Yu’s method [10]. BIK improves significantly retrieval performances especially

in case of handwritten queries. For printed queries, results are slightly better when

the candidate score is used.

My method outperforms Zanibbi and Yu’s method in case of printed and hand-

written queries for n = {1, 5, 10}. This result is due to two fundamental differences

between the methods: (1) Zanibbi and Yu’s algorithm uses an X-Y cutting-based

segmentation step [128] that produces a tree index of the query and the document

image. The authors pointed to the brittleness of X-Y cutting when handling hand-

written queries especially to variations of the gap between characters. In contrary,

my method is segmentation-free, which spares it from erroneous segmentation re-

sults. (2) After building the tree indexes, Zanibbi and Yu’s method uses a set of

features to represent the indexed regions. Among the features, they rely on struc-

tural features such as tree depth and the number of nodes. Structural features

are vulnerable to noisy patterns such as handwriting [98]. On the other hand, my
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Table 4.2: Average values of P -Recall and A-Recall calculated for n = 1, 5, 10
and when α = 0.7. Boldface indicates the best results.

Method n
Printed queries Handwritten queries

P-Recall A-Recall P-Recall A-Recall

My method
(γ = M)

1 85.0% 62.51% 17.0% 6.2%
5 100% 94.29% 36.5% 15.34%
10 100% 98.56% 46.5% 20.62%

My method
(γ = 2)

1 100% 94.28% 40.0% 27.83%
5 100% 96.78% 63.5% 51.15%
10 100% 96.78% 73.5% 57.92%

My method + BIK
(γ = 2)

1 92.5% 89.29% 54.0% 47.84%
5 100% 96.29% 70.0% 59.89%
10 100% 96.78% 75.0% 62.43%

Zanibbi and
Yu [10]

1 . 90% 38.6% 26.7%
5 . 90% 54.9% 39.8%
10 . 90% 63.2% 43.3%

Fig. 4.7: Retrieval performances per writer when α = 0.5, n = 10 using Zanibbi
and Yu’s dataset.

method relies essentially on statistical features.

Fig. 4.7 shows the retrieval performances per writer. When the handwrit-

ing fluctuations and component displacement are limited, retrieval performances

are high (e.g. writer 5 having P -Recall = 90% and A-Recall = 81.02%). Lower

performances by other writers were caused by significant component alteration and

displacement. An example is writer 7 who has lower results because of their par-

ticular compact writing style, reported similarly by Zanibbi and Yu’s [10]. Fig. 4.8

shows examples of queries delivered by a writer that led to satisfactory retrieval

performances.
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Fig. 4.8: Queries by writer 7 that led to results P -Recall = 80% and A-Recall =
73.73%.

4.5 Conclusion

In this chapter, I introduced a CBDIR method that is both segmentation and

recognition-free. By avoiding segmentation, my method is spared from erroneous

segmentation results. Recognition is avoided for the sake of generality and applica-

bility in domains different than text. My method is underpinned by a theoretical

model that exploits Bayes’ rule and introduces an algorithmic implementation that

copes with noises and fluctuations. To prove my method, I evaluate it on CBDIR of

mathematical expression queries. Experiments on two datasets and a comparative

evaluation show that my method outperforms a state-of-the-art segmentation-based

algorithm [10].
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Chapter 5

Dataset indexing by clustering

Due to the availability of large storage media, document image datasets are a

widespread medium of storing information. Nowadays, such datasets are becom-

ing more and more large scale [132]. In order to insure satisfactory efficiency per-

formances, dataset indexing has been used in retrieval applications [133]. Indexing

methods produce a representation of the data that is optimized for online querying.

In addition, indexing methods have been used for dataset compression by exploiting

data redundancy [134].

In this chapter, I present a method for document image dataset compression

and indexing using redundant information in document images (Fig. 5.1). My

method exploits redundancy by performing clustering of similar connected compo-

nents extracted from document images (Fig. 5.2). Comparing to previous techniques

(Sec. 5.1), my method stands out with the following aspects:

• My algorithm is based on similarity estimation between connected components

instead of character pattern images (Sec. 5.2.1), which makes it language-

independent and more general.

• I introduce an optimized component encoding mechanism that uses some of

the components’ points and not all of them (Sec. 5.2.2).

• I save the compressed indexing as a text file that is further compressed, which

enhances compression performances (Sec. 5.2.3).

I evaluated the proposed algorithm in indexing and compression. Experimen-

tal results demonstrate the usefulness of my algorithm as an indexing process for

document retrieval (Sec. 5.3.2), and competitive performances comparing with two

compression standards, namely the ZIP and XZ formats (Sec. 5.3.1).

53
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Fig. 5.1: Illustration of component redundancy in a document image (the clus-
ters components are highlighted in black, and the redundant component are gray).
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Fig. 5.2: Similarity-based component clustering.
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5.1 Related work

Approaches for document image compression using redundant information have been

proposed. Haffner et al. presented a method for high resolution color document

image compression by separating the image into text, pictures, and background

[135][136]. Then, specific compression is applied to each category. For text compres-

sion, they use character pattern matching and substitution.

Imura and Tanaka presented a method for document image compression by

grouping similar components [137]. First, characters are extracted using image seg-

mentation, and considered as pattern images. Then, a ”pseudo-code” is generated

for each character image using statistical features and Principal Component Anal-

ysis. The groups of characters are used to produce the compressed file. Evaluation

showed that this method is language-dependent.

A similar method has been presented by Shiah and Yen [138]. Their technique

is specific to Chinese documents and they use a priori knowledge to perform adequate

image segmentation, Chinese character merging, and specific features extraction and

matching. In both methods [137, 138] the compression error is not evaluated with

objective metrics.

Shiah and Yen presented a method for Chinese document image compression

[138]. First, image segmentation is done using a priori knowledge about the docu-

ments. Then, Chinese characters are extracted using specific techniques of stroke

merging. Compression is done using specific feature extraction and matching.

Imura and Tanaka presented a similar method and evaluated it using English

and Japanese documents [137]. They obtained language-dependent results. In both

methods [137, 138], the compression error is not evaluated with objective metrics.

5.2 Similarity-based connected component clus-

tering

The proposed algorithm takes as input a document image dataset, and produces

a compressed file using sequential clustering of connected components and text file

compression. The algorithm proceeds as follows: The document image dataset

contains M images. For each image Ii, the connected components, {Cj}Ni
j=1, are

extracted, where Ni refers to the number of components in Ii. Then, a discrete

function f(Cj) returns the cluster index corresponding to Cj if it has been already

registered in hash table Table, or -1 otherwise. Consequently, Cj is registered in
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Clusterk, or a new cluster Clusterk0 is created for Cj. This processing populates

Table with clusters of connected components. Then, Table is saved in a text file

TxtF ile. Finally, the output CompressedF ile is produced by compressing TxtF ile

using any text compressing algorithm.

In the following, I explain the mechanism for component similarity estimation

(Sec. 5.2.1), component encoding (Sec. 5.2.2), and hash table compression (Sec.

5.2.3).

5.2.1 Component similarity estimation

Similarity between components is estimated using shape features extracted from

connected components as done in [55][130]: For a component Cj, a feature vector
−→
Vj

is extracted by calculating the distribution of pixels in polar coordinate where the

origin is the component’s centroid. The similarity between two components Ca and

Cb is equivalent to the Histogram Intersection between their corresponding vectors,

which is calculated as follows:

S(Ca, Cb) =
R−1∑
r=0

Θ−1∑
θ=0

min(V a
r,θ, V

b
r,θ) (5.1)

where R and Θ refer to the radial and angular number of sections. Two components

Ca and Cb are considered similar if they satisfy S(Ca, Cb) > δ, where δ ∈ [0, 1] is a

similarity threshold.

Using this feature extraction and matching mechanism, the function f(Cj) is

implemented as follows:

f(Cj) =

 k, if ∃Ck[S(Cj, Ck) > δ]

−1, otherwise
(5.2)

where Ck refers to the cluster center of Clusterk.

5.2.2 Component encoding

For the sake of optimal compression, the number of points in a component is re-

duced before saving it in the text file TxtF ile. The component encoding algorithm

extracts the necessary points to reconstruct a component. For a component Cj,

the contour points and several non-contour, or interior points, are sufficient to re-

construct the component by connected component analysis. Therefore, only those

points are needed to be saved. Fig. 5.3 shows examples of original components and
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(a) (b)

Fig. 5.3: Reconstruction points in components (contour points are highlighted
in green and interior points are highlighted in red): (a) In case of a nearly thin
component, the number of encoded points is not significantly reduced. Here,
encoding ratio = 73%. (b) In case of a thick component, the number of encoded
points is significantly reduced. Here, encoding ratio = 48%.

their corresponding reconstruction points.

Algorithm 1 shows the component encoding steps: ListRj refers to the list of

points needed for component reconstruction. First, the contour CP and an interior

point IP are extracted, and added to ListRj . Then, the reconstructed component

CR
j is produced using ListRj . L points {Pl}Ll=1 which exists in Cj but not in CR

j are

detected. Then, one point from {Pl}Ll=1, P1, is added to ListRj . The iterations of

producing CR
j are repeated until CR

j and Cj match.

Algorithm 1 Component encoding

define ListRj : List of Points in the jth component

CP ← ContourPoints(Cj)

IP ← InteriorPoint(Cj)

ListRj ← CP , IP

while stop = false do

CR
j ← ReconstructComponent(ListRj )

{Pl}Ll=1 ← DifferencePoints(CR
j , Cj)

if {Pl}Ll=1 is empty then

stop = true

else

ListRj ← P1

end if

end for
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5.2.3 Hash table compression

The hash table, Table, is saved in a text file that is used of image reconstruction.

In the text file, a header contains information about the images’ names and sizes,

and the rest of the file contains information about clusters which are the location of

the connected component (centroid and image index), interior points and contour

points, and locations of similar connected components.

Afterwards, the text file is compressed using any available text compression

mechanism to produce a compressed indexing of the document image dataset. The

idea behind using a text file is to exploit the character redundancy inside a plain

text which is a main feature of text compression algorithms. After compressing the

text file, the result is a binary file that has a reduced size.

5.3 Experimental results

I evaluate the algorithm’s performances in terms of compression and indexing.

Throughout the experiments, I set the component descriptor dimensions to R = 3

and Θ = 12, and the similarity threshold to δ = 0.99. In the following, I call my

method C3 as abbreviation to Connected Components Clustering.

5.3.1 Compression performances

Evaluation procedure

I used three printed binary document image datasets that have been collected as

follows:

• Dataset 1: 356 document images taken from the book of abstract of the 2014

World Congress on Computational Intelligence. The images are compressed

in PNG-ZIP format, their size is 2479 × 3508 and their resolution is 300 dpi.

• Dataset 2: 159 document images taken from the book ”Memoirs of John R.

Young Utah Pioneer 1847”a. The images are compressed in PNG-ZIP format,

their size is 2489 × 3518 and their resolution is 300 dpi.

• Dataset 3: 1320 document images taken from the book ”Soothill-Hodous: A

Dictionary of Chinese Buddhist Terms”b. Images contain English and Chinese

aAvailable at http://www.gutenberg.org/ebooks/46391
bAvailable at http://dev.ddbc.edu.tw/glossaries/
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words. The images are compressed in TIFF-Group4 format, their size is 2479

× 3508 and their resolution is 300 dpi.

The evaluation procedure consists of calculating the size of the compressed file

and the error rate. The error rate ξ quantifies the number of pixel differences be-

tween the reconstructed image and its corresponding original image over the dataset,

and it is calculated as follows:

ξ =
1

M

M∑
i=1

1

H ×W

H−1∑
x=0

W−1∑
y=0

|IRi (x, y)− Ii(x, y)| (5.3)

where M is the number of images in the dataset, Ii and IRi refer to the original and

reconstructed images, and H and W are the height and width of Ii.

I compare my method, C3, combined with another standard compression

method, namely ZIP or XZ [139], against using the standard compression method

directly on the dataset.

Results and discussion

Compression performance

Table 5.1 shows the compression results: For all three datasets, C3 achieved higher

compression comparing with using the ZIP or XZ compression directly. The best

compression came with combining my method with XZ compression, in which case

the compression rates (i.e. the size of the compressed file divided on the size of

the original dataset) were respectively 6.4%, 2.2% and 16.6%. As for ZIP and XZ,

their performances is explained by the fact that the images are already compressed.

Therefore, no further significant compression can be achieved.

The performance of the proposed method is affected by the component redun-

dancy in the document image dataset (Fig. 5.1). This can be seen particularly by

the compression rates of Dataset 1 and Dataset 2, being 6.4%, 2.2% respectively.

In case of these datasets, the number of redundant components is at the order of

103. For Dataset 3, the compression rate is 16.6%, as the number of redundant

components is at the order of 102. The performances are also due to the optimized

component encoding using a reduced number of points. Table 5.2 shows the en-

coding ratio which is equal to the number of encoded points divided by the initial

number of points. The encoding ratio is affected by the thickness of connected com-

ponents (Fig. 5.3); The thicker a component is, the less number of points needed

for reconstruction comparing with the initial number.



60 CHAPTER 5. DATASET INDEXING BY CLUSTERING

Table 5.1: Compression and information preservation results using three
datasets

Dataset
Original Compression Size after Error rate

size method compression ξ

Dataset 1 107 MB

ZIP 102.7 MB

1.5 × 10−6C3-ZIP 10.5 MB
XZ 102.5 MB

C3-XZ 6.9 MB

Dataset 2 50.2 MB

ZIP 34.4 MB

0.1 × 10−6C3-ZIP 1.7 MB
XZ 34.2 MB

C3-XZ 1.1 MB

Dataset 3 44 MB

ZIP 37.6 MB

0.3 × 10−6C3-ZIP 13.3 MB
XZ 26.9 MB

C3-XZ 7.3 MB

Table 5.2: Compression results using three datasets

Dataset # components # clusters Encoding ratio
Dataset 1 2 713 162 1 031 94.2 %
Dataset 2 414 854 239 75.7 %
Dataset 3 1 835 719 10 792 52.4 %

Information loss

The proposed compression method is lossy, and that is due to the tolerance of the

descriptor used to estimate component similarity (Sec. 5.2.1). In my experiments,

the error rate values were very low and I observe that it does not affect the document

image readability. The component similarity threshold δ can be used as a parameter

that controls the trade-off between the compression rate and the error rate.

5.3.2 Indexing performances

I implemented the proposed algorithm as an indexing mechanism for my ongoing

document retrieval project [55, 130]. Then, I conducted retrieval experiments using

Zanibbi and Yu’s dataset [10]. This dataset contains 200 document images taken

from a conference proceedings, and 240 printed and handwritten query images of

mathematical expressions.

A core part of my document retrieval algorithm is comparing the connected

components of the query against the connected components of the dataset images.

In case of non-indexed implementation, all components of the document images
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are considered. While in case of an indexed implementation, only the components

forming the clusters are considered.

I report the average duration of a component comparison process using a desk-

top computer equipped with a 3.40 GHz CPU. In case of a non-indexed implemen-

tation, the average duration to run a comparison was equal to 3, 579 ms. While in

case of indexing, the average duration was equal to 705 ms. The improvement in

efficiency is then equal to 507%.

5.4 Conclusion

In this chapter, I presented a method for document image dataset indexing and

compression by clustering of connected components. My method extracts connected

components from each dataset image and performs sequential clustering to make a

hash table that is a compressed indexing the dataset. Then, the hash table is saved

in a text file, and the text file is further compressed using any available compression

methodology. Component encoding in the text file is done using a reduced number

of points which are sufficient for component reconstruction.

Experimental results showed that my algorithm improves efficiency when used

for indexing in a content-based document retrieval application, and that the com-

pression performances are competitive. Compression produced very low compression

errors that do not compromise the document readability.
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Chapter 6

Summary and conclusions

This thesis presents a contribution in the area of content-based document image

retrieval (CBDIR) using sketch queries, and enables future research applications.

In this chapter, the main findings and contributions are summarized and discussed.

Then, future applications are overviewed.

6.1 Summary of contributions

Comparing contours and skeletons

The initial stage of the system is preprocessing and normalization of queries and

document images. For this purpose, contours and skeletons have been compared

as both compact representations that preserve the visual information of objects.

Results of the comparison indicate that contours outperform skeletons and that

they are stable in case of moderate image variations. In addition, a noteworthy

finding is the improvement of skeletons in the presence of noise, due to increase in

the number of skeleton points and the image spatial frequency.

This study highlighted the beneficial nature of investigating these two repre-

sentations in pattern recognition. It provides a guide to the choice of an image

representation according to its performances in certain image classes and variations.

In addition, it reveals the unexpected improvement observed in skeletons in presence

of noise, which may inspire the design of novel shape descriptors. Furthermore, this

study is a valuable feedback to researchers on cognitive science, where contours and

skeletons are investigated in human perception.
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Shape matching using keypoints

The binary image keypoints (BIK) descriptor has been introduced. BIK is able

to extract distinctive keypoints by generating background information in binary

images, and using a keypoint selection criteria to rank keypoints and select the most

important ones automatically. The descriptor is translation-invariant due to using

the object’s bounding box for image normalization, and scale-invariant by using

keypoint-dependent feature extraction layouts. Rotation-invariance can be insured

by using the orientation of the vector delimited by the keypoint and its nearest

contour point as a reference orientation, or by using shifted matching. Evaluation

using five public datasets indicate that BIK is competitive when applied on various

types of images.

Experimental results demonstrated that BIK is competitive compared with

state of the art methods. Further improvement of BIK can be done by implementing

different approaches for keypoint extraction, selection and feature representation

using domain knowledge. It can also be extended to color images by applying edge

detection as a preprocessing.

Query spotting in document images

A content-based document image retrieval (CBDIR) method is presented. The

method avoids segmentation which spares it from erroneous segmentation results,

and avoids recognition for the sake of generality and applicability in domains dif-

ferent than text. The proposed method is underpinned by a theoretical model

that exploits Bayes’ rule and introduces an algorithmic implementation that copes

with noises and fluctuations. Experiments on handwritten mathematical expression

queries and comparison with a segmentation-based method [10] showed that the

proposed method is competitive.

The proposed theoretical model and its implementation are highly modular.

Improvement can focus on enhancing each of the modules, and conducting evaluation

in different challenging problem domains.

Document image dataset indexing

A method for document image dataset indexing using connected components clus-

tering has been presented. Experimental results showed its effectiveness in improv-

ing efficiency when used for indexing, in addition to its successful applicability in

compression.
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The proposed method can be improved in several aspects: In the present im-

plementation, centers of clusters are connected components that are extracted using

pixel connectivity analysis, and centers similarity is estimated using shape features.

In other applications, centers of clusters and centers similarity can be defined ac-

cording to the image classes (e.g. texture patterns in case of texture images, strokes

in case of handwritten signature images, etc.). When image variations such as ro-

tation and scale change are anticipated, the centers descriptor can be tuned or a

robust descriptor can be used. Moreover, the centers similarity threshold can be

made loose to account for component variations caused by noise.

6.2 Research applications

The proposed system allows for several research directions. For instance, domains

specifications can be used to improve performances by designing a query normal-

ization procedure. Taking mathematical expression queries as an example, symbol

recognition [140] can be used to convert handwritten queries introduced online to

printed queries, allowing much higher performances to be reached. In addition,

once the type of queries is fixed, irrelevant patterns can be filtered out from the

documents using heuristics (e.g. no need to keep text blocks in case of diagram

queries).

This thesis introduces a theoretical model that rationalizes the way humans

perform query spotting, and presents an algorithmic implementation according to

this model. It would be interesting to further investigate the theoretical model

by an experiment of human perception using an eye tracking device. In such an

experiment, subjects would be asked to spot a query inside a scene, assuming that

both the query and the scene objects are unreadable. Then, the experimental output,

expressed by the subjects’ gaze trajectories, would be beneficial to further improve

the model, in addition to its relevance to researchers on human perception and visual

attention.

An interesting extension of my system is application on video databases. Par-

ticularly, the Khan Academy video library is a good candidatea due to its large size

(more than 5000 videos) and increasing popularity (more than 2 million subscribers).

Extending my system to this library can be done using one of two approaches:

• Transforming the videos into a document image dataset by using keyframe

extraction.

aKhan Academy channel: https://www.youtube.com/user/khanacademy

https://www.youtube.com/user/khanacademy
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• Modifying the dataset indexing method (Chapter 5) to process video inputs.
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