
A Study on High-performance and Reliable

Distributed Storage System

March 2016

Hiroki

Ohtsuji

A Study on High-performance and Reliable

Distributed Storage System

Graduate School of Systems and Information Engineering

University of Tsukuba

March 2016

Hiroki Ohtsuji

Abstract

As we are heading towards an era of exa-scale computing, the amount of data

handled by distributed storage systems is increasing rapidly. Exa-scale storage

systems should provide high-performance and reliability. However, these two per-

formance metrics are in a trade-off relationship. In particular, to handle large-scale

data, bandwidth is the most important performance metric. Existing studies show

that there is performance degradation when the system enables mechanisms for

improving the reliability. This study proposes two methods and their designs for

reliable distributed storage systems with minimized overheads. In addition, this

study proposes a mechanism for wide-area distributed environments, where the

network latency greatly affects the performance.

The first method is a pipelined parity-generation method with an active-

storage mechanism. The active-storage mechanism can utilize the computational

capabilities of the storage nodes to generate parity blocks of redundant storage

systems. The proposed method builds parity-generation pipelines using the active-

storage mechanism. The pipelined parity-generation mechanism can eliminate

bottlenecks caused due to increase in traffic owing to parity blocks. Thus, the

performance improvement with the proposed method is about 32.6% compared to

the naive implementation.

The second method is a parity-generation method that uses programmable

network switches. This method utilizes the programmable capabilities of the

future network switches to generate parity blocks. Conventional implementations

cannot utilize these abilities of network switches. However, network switches can

generate parity blocks and there is no increase in the traffic from the writer node

of the storage system in the proposed method. As a result, the performance

improvement is 44%.

The third method optimizes the remote file access using a high-bandwidth

network with long latency. When a distributed storage system is deployed in a

wide-area environment, the network latency delays the file-access requests and

responses between the clients and the servers. This proposal intends to solve the

performance degradation caused by network latency with an adaptive strategy,

i

which considers the data-access pattern, network delay, and network bandwidth.

This method successfully improves the performance of all access patterns: se-

quential access, stride access, and random access. It can be applied to different

layers of the storage systems so that it can help the system in providing both

high-performance and reliability.

This study describes a form of a reliable storage system which can leverage the

abilities of the storage nodes and network switches through two different methods

and one additional mechanism. Each method proves the advantages of utilizing

the programmable network and the computing capabilities of the storage nodes. In

light of the rapid growth of software-defined networking devices and new storage

architectures, which are typified by burst buffer, the proposals presented in this

study can become important parts of the next-generation storage systems.

ii

Contents

Abstract i

1 Introduction 1

1.1 Background . 1

1.1.1 Architecture of distributed storage system 1

1.1.2 Reliability of the storage system 2

1.1.3 Performance degradation of redundant storage systems . . 2

1.2 Contributions . 3

1.3 Outline . 4

2 Active-Storage Mechanism 5

2.1 Abstract . 5

2.2 Introduction . 6

2.2.1 Background . 6

2.2.2 Contributions . 7

2.3 Related Work . 8

2.4 Network-based RAID . 10

2.4.1 Cluster-wide RAID architecture 10

2.4.2 Basic idea of proposed method 10

2.5 Design of Cluster-wide RAID-5 11

2.5.1 Data layout . 11

2.5.2 Pipeline topology . 12

2.5.3 Data movement . 12

2.5.4 Partial Write . 14

2.5.5 Dedicated Network for Parity Generation 15

2.5.6 Scalability validation and latency of cluster-wide RAID-5

(3D-1P) system . 15

2.5.7 Quantitative modeling of parity calculation cost, network

traffic, latency, and performance 17

2.5.8 Bandwidth and latency trade-off 22

iii

CONTENTS

2.6 Implementation of Zero-copy transfer for XOR calculation and data

store . 23

2.6.1 Utilization of RDMA in storage network 23

2.6.2 Data processing pipeline with RDMA 23

2.6.3 Choice of RDMA implementation 24

2.6.4 Types of RDMA operations 25

2.6.5 Components for zero-copy pipelined data processing 25

2.6.6 Ring buffer . 26

2.6.7 Peer (connection) and Pipe 26

2.6.8 Pipeline . 27

2.6.9 Implementation of RAID-5 with zero-copy pipeline 28

2.7 Performance Evaluation . 28

2.7.1 Evaluation condition . 28

2.7.2 Preliminary Evaluation . 29

2.7.3 Write throughput evaluation of the cluster-wide RAID-5 . 30

2.7.4 Scalability evaluation of Cluster-wide RAID-5 31

2.8 Conclusion of this chapter . 32

3 Network-based Data Processing Architecture for Reliable and

High-performance Distributed Storage System 35

3.1 Abstract . 35

3.2 Introduction . 36

3.2.1 Background . 36

3.2.2 Contributions . 36

3.3 Related work . 37

3.4 System design . 38

3.4.1 Network-based data processing architecture 38

3.4.2 Overview of the system . 39

3.4.3 Data layout . 40

3.4.4 Switch architeture . 40

3.4.5 Fallback mode . 40

3.4.6 Rebuild . 42

3.4.7 Prototype implementation overview 42

3.4.8 Optimized data transfer and processing with RDMA . . . 43

3.4.9 Interaction between applications and switches 43

3.5 Evaluation . 45

3.5.1 Evaluation target and conditions 45

3.5.2 Evaluation results . 45

3.6 Conclusion of this chapter . 46

iv

CONTENTS

4 A Method to Optimize Remote File Access Adapting to Access

Pattern and Network Delay 48

4.1 Introduction . 48

4.1.1 Background . 48

4.2 Related work . 49

4.3 A method of remote file access and performance evaluation results 51

4.3.1 Remote file access using synchronous RPC 51

4.3.2 RPC buffer size and performance 51

4.4 Access pattern recognition and dynamic RPC buffer size adjustment 53

4.5 Dynamic optimization of the RPC buffer size 56

4.5.1 Behavior of the proposed method 59

4.6 Performance evaluation . 60

4.6.1 Sequential access . 60

4.6.2 Stride access . 62

4.6.3 Overhead of optimization 62

4.6.4 Mixed access pattern . 63

4.7 Conclusion of this chapter . 63

5 Conclusion 65

5.1 Summary . 65

5.2 Future work . 66

Acknowledgements 68

Bibliography 68

A List of Publications 75

v

List of Figures

1.1 Comparison of XOR (A = A xor B) calculation throughput, the

bandwidth of an InfiniBand FDR x4 network, and the write through-

put of the latest flash memory device [1]. -O, -O2, and -O3 are

optimization levels of gcc. 3

2.1 Naive implementation of cluster-wide RAID system. A client gen-

erates a parity block and transfers data and parity blocks to storage

nodes. 6

2.2 Naive and optimized transfer . 10

2.3 Data layout of RAID-5 . 12

2.4 Network data movement of optimized cluster-wide RAID-5. Num-

ber(s) of (in, out) correspond to number of network path(s). In

this case, 12 is the same bandwidth as a single network path. . . . 13

2.5 Pipeline connection of Cluster-wide RAID-5 (3D-1P). The writer

node sends the striped data blocks to storage nodes. Storage nodes

exchange the data blocks each other and calculate parity blocks.

The data block movement is shown in Fig. 2.8. 14

2.6 Partial write to a cluster-wide RAID-4 system. 15

2.7 Dedicated network for parity generation 16

2.8 Pipeline stage of cluster-wide RAID-5 (3D-1P) with single writer

node. Each number corresponds to the data stripe number in

Fig. 3.3. The writer node sends striped blocks (0-11) to the server

nodes. Then, server nodes exchange the data blocks each other

and generate parity blocks. Server nodes store the blue blocks and

green blocks to the storage device. 16

2.9 The amount of traffic of each network path with a naive cluster-

wide RAID-4 implementation. 18

2.10 The amount of traffic of each network path with an active-storage

mechanism. 19

vi

LIST OF FIGURES

2.11 The comparison of the theoretical performance of the active-storage

mechanism (w/, w/o dedicated network), the naive method, and

the naive method with an additional network. 22

2.12 RDMA CPU by-pass data transfer 25

2.13 An example of ring buffers interactions 27

2.14 Explanation of zero-copy relay pipe 28

2.15 XOR pipe . 29

2.16 Example of optimized cluster-wide RAID-4 pipeline 30

2.17 RDMA Write Throughput of InfiniBand FDRx4 with ib write bw

(perftest tools) . 31

2.18 Throughput of Pipe and XOR Pipe 31

2.19 Write throughput comparison of RAID-4 (3D-1P), naive RAID-4,

and 3 stripes (RAID-0) . 32

2.20 Write throughput comparison of optimized RAID-5 (w/ active-

storage), naive RAID-5, and stripe (RAID-0). 33

2.21 Scalability evaluation of Cluster-wide RAID-5 (3D-1P) X-axis is the

number of writer nodes and Y-axis is the total write throughput

(MB/s). 33

3.1 Parity blocks increase traffic and degrade write throughput. . . . 37

3.2 Target architecture of network storage systems. The proposal of

this study is a method for utilizing a programmable network switch

for erasure-coded network storage systems. A writer node sends

source data blocks to a programmable switch. The switch generates

parity blocks and sends them to storae nodes. 39

3.3 Data layout of striped blocks and parity block(s). Data blocks are

split into striped blocks. Parity blocks are xor value of striped

blocks. Missing data blocks can be recovered from rest blocks by

calculating xor value of another block. 40

3.4 Architecture of a programmable network switch. A writer sends

source data blocks. A switch has a splitter and an XOR calculation

module. The splitter splits tha source data blocks into striped

blocks. The XOR calculation module calculates the XOR value

of the striped blocks. Then, the switch sends all data blocks to

storage servers. 41

3.5 Two cases of failure of a network switch. 41

3.6 Rebuilding data blocks of stripe #1 from stripe #0 and parity #0 42

3.7 Components of a node with multiple network devices 43

vii

LIST OF FIGURES

3.8 RDMA data transfer and parity generation. A writer send source

data blocks to a programmable switch. The switch splits source

data blocks into striped blocks (not described in the figure) and

calculates parity blocks. Afterward, the switch sends them to stor-

age nodes using different InfiniBand HCAs. All data blocks are

stored in ring buffers and there is no memory copy. 44

3.9 Bidirectional network (InfiniBand FDR 4x) throughput evaluation

with ib write bw (perftest tools). 46

3.10 Write throughput comparison between optimized and naive method 47

4.1 Performance evaluation result of remote file access using synchronous

RPC. Network delay of LAN is 50us and WAN is 25ms. 49

4.2 Sequence of remote file access using synchronous RPC 50

4.3 Performance of sequential access with each network delay and buffer

size . 52

4.4 Performance of stride access(read 512KB and seek 3.5MB) with

each network delay and buffer size 53

4.5 Performance of stride access(read 3MB and seek 6MB) with each

network delay and buffer size . 54

4.6 Procedure to measure the RPC buffer utilization ratio 55

4.7 Difference of the measured RPC utilization ratio by n 55

4.8 Behavior of the proposed method 58

4.9 Behavior of the proposed method (stride: read 3MB and seek 6MB) 59

4.10 Performance of sequential access 60

4.11 Performance of stride access(read 512KB and seek 3.5MB) 61

4.12 Performance of stride access(read 3MB and seek 6MB) 62

4.13 Performance comparison of mixture of sequential access and stride

access . 63

viii

List of Tables

2.1 Amount of traffic for each node in the naive method when the

client writes a 10 MB file . 10

2.2 Amount of traffic for each node with the optimized method when

the client writes a 10 MB file . 11

2.3 Node specification . 30

4.1 Parameters . 58

4.2 Selected RPC buffer size (sequential access) 60

4.3 Selected RPC buffer size in stride access(read 512KB and seek 3.5MB) 61

4.4 Selected RPC buffer size in stride access(read 3MB and seek 6MB) 62

ix

Chapter 1

Introduction

Storage systems play an important role in the development of data-intensive com-

puting. The amount of data handled by supercomputers is increasing rapidly,

and is about to reach exa-scale. There are multiple data sources such as sensors,

space observatories, simulations, and so on. In order to obtain new information

from the huge amounts of data, the computing systems have to provide better

capabilities for data capture, curation, and analysis [2].

Storage systems also have to provide both reliability and high performance, for

data-intensive computing, because the system consists of multiple storage nodes

with possibilities of failure. However, there is a trade-off between reliability and

performance [3]. If we add more redundancy to the storage system, the perfor-

mance will degrade if there is no special mechanism to prevent this degradation.

This study proposes two methods for designing reliable and high-performance

storage systems, which utilize the abilities of the storage nodes and network de-

vices and an additional parameter optimization mechanism for wide-area environ-

ments.

1.1 Background

1.1.1 Architecture of distributed storage system

A distributed storage system consists of multiple storage nodes. There are dif-

ferent levels of redundancy. The first level ls the disk-level redundancy, which is

provided by conventional RAID [4, 5] systems. However, typical RAID hardware

cannot cover the node failures and rack failures; hence, the distributed storage

systems have to cover node/rack-level failures. The details of the node-level re-

dundancy are described in Section 1.1.2. The target of this study is a method

to provide efficient mechanisms for the node-level and rack-level redundancy of

1

1.1. BACKGROUND

distributed storage systems.

In addition to the conventional network storage architecture, the burst buffer

mechanism [6] is used for an improved I/O performance. Burst buffer uses large

amounts of flash memory (non-volatile memory) to accelerate the I/O perfor-

mance. An existing product of the burst buffer mechanism [7] provides reliability

by client-side coding, as it claims that erasure coding is not scalable. This study

also helps the burst buffer mechanism to ensure the reliability by providing re-

dundancy with a scalable design.

1.1.2 Reliability of the storage system

Reliability of the storage system consists of two metrics: availability and durabil-

ity. In order to achieve these two metrics, the system has to cover multiple node

failures. Previously, replication [8] was used for these purposes. The replication

method creates multiple copies of the original data; therefore, it requires at least

the same amount of space as required by the original data. This behavior is ineffi-

cient in the large-scale storage systems in terms of cost. Moreover, replica-creation

processes require additional data transfers.

Several studies [9, 10] have applied erasure coding [11] to storage systems,

instead of the replication method. Their results show that they successfully im-

proved the space efficiency; however, there is performance degradation in the

throughput of data-write. This performance degradation is caused by the in-

creased amount of the data stored in the actual storage devices. The increase in

the data size is inevitable; however, the performance can be improved by using

an optimal data-processing mechanism, which is the main proposal in this study.

1.1.3 Performance degradation of redundant storage sys-

tems

If we simply add redundancy to the distributed storage systems, the performance

of these systems will degrade because of overheads. These overheads can be classi-

fied as the cost of parity calculation, and an increase in network traffic. Owing to

the calculation speed of the recent CPUs (Fig. 1.1), as long as the system uses the

simple XOR parity, the parity-calculation cost is not a bottleneck. However, the

increase in network traffic is a dominant bottleneck because the throughput of the

flash-memory-based storage devices reaches 4GB/s (as on January 2016 [1]) and

will increase rapidly owing to internal parallelism of the device [12]. In addition,

the target system of this study has the same storage throughput as the network.

The increase in network traffic is caused by the additional data for redundancy,

2

1.2. CONTRIBUTIONS

644
1,890

2,794

11,531

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

gcc gcc -O gcc -O2 gcc -O3

InfiniBand FDR x4
NVMe Flash

Th
ro

ug
hp

ut
 [M

B/
s]

Figure 1.1: Comparison of XOR (A = A xor B) calculation throughput, the
bandwidth of an InfiniBand FDR x4 network, and the write throughput of the
latest flash memory device [1]. -O, -O2, and -O3 are optimization levels of gcc.

which is inevitable [13].

1.2 Contributions

The aim of this study is to figure out the optimal architecture for a distributed

storage system, which utilizes the capabilities of storage servers and network de-

vices. In particular, this paper proposes three different methods: an active-storage

mechanism, a method to utilize programmable network switches for distributed

storage systems, and an optimization method for remote file access in wide-area

distributed environments.

These proposals are methodologies and can be applied to any layers of the

storage systems. This study mainly focuses on object-based distributed storage

systems, which separate the metadata management and the actual data I/O. The

components of the systems are connected to the network. Each storage element

is a computing node, which has various types of storage devices: disks, flash-

memory-based storage devices, and conventional RAID systems. The proposed

methods intend to improve the reliability and performance of the distributed stor-

age systems, regardless of the type of underlying storage devices.

The active-storage mechanism utilizes storage nodes to process data by build-

ing data-processing pipelines across multiple storage nodes. The second method

proposes to build a data-processing mechanism, using network switches, for stor-

age redundancy. The third method is for wide-area environments and can be

applied to any communication layers that uses RPCs (remote procedure calls) for

data transfer.

3

1.3. OUTLINE

The first two methods achieved reliable storage systems with less overheads in

terms of the write-throughput by eliminating the increased traffic from the writer

nodes. The last method improves the performance of file access in wide-area

environments. In addition, the method with the active-storage mechanism offers

high-scalability, which is an important performance factor in large-scale storage

systems.

1.3 Outline

This study consists of three main chapters.

• Chapter 2. Active-storage Mechanism

• Chapter 3. Network-based Data Processing Architecture for Reliable and

High-performance Distributed Storage System

• Chapter 4. A Method to Optimize Remote File Access Adapting to Access

Pattern and Network Delay

4

Chapter 2

Active-Storage Mechanism

2.1 Abstract

Reliable and high-performance network I/O mechanism is a critical part of exas-

cale storage systems. In order to improve system reliability, some storage systems

use replication and erasure coding. However, this is an additional cost and re-

quires higher bandwidth. This chapter proposes a novel method to implement

a zero-overhead network RAID-5 with an active storage mechanism. The pro-

posed method focuses on the write operation of the cluster-wide (network based)

RAID system, and it can be generalized to the recovery process. In general, write

throughput of the storage system with erasure coding is degraded because of the

additional coding computation and the increased amount of transferred data. The

proposal solves this problem and enables us to implement a zero-overhead cluster-

wide RAID system by avoiding client-side computation cost and network traffic.

Furthermore, the proposed method enables the system to separate the traffic of

the striped data blocks (source) and the parity generation traffic. Scalability of

cluster-wide RAID can be highly increased with a dedicated network for the parity

generation process. In addition, this chapter proposes an efficient implementation

method that utilizes an InfiniBand remote direct memory access (RDMA) mech-

anism to minimize the number of memory copy operations. This implementation

is built with zero-copy pipelines, and enables us to use a low-overhead inter-node

data processing mechanism. The measured throughput gain was 32.6% compared

to that of the naive method. The results show the same performance as RAID-0,

which means that the proposed method achieves the zero-overhead cluster-wide

RAID.

5

2.2. INTRODUCTION

! " #

$%&'()*+,-&)'-.

/010*+"23.

4)-&#'

!

4)-&#'

"
56-&)7

8'(9

4):-6;'*(:9'8

<-&;&(6%*96)6*8&='>*

"23

?'),:-@*)-6AA&B>

!"#$%

CCD*8%:,*9:,(

4)-&#'

!
4)-&#'

"
56-&)7

Figure 2.1: Naive implementation of cluster-wide RAID system. A client generates
a parity block and transfers data and parity blocks to storage nodes.

2.2 Introduction

2.2.1 Background

Exa-scale storage system is not for a distant future. Many breakthroughs in tech-

nology are required to reach the post-petascale era. Large-scale storage systems

consist of disks that are connected to each other via a network. Reliability is

a critical issue for this kind of systems because the increase in the number of

components increases the probability of system failure.

Replication [8] is a popular and simple technology to improve the reliability

of large-scale storage systems; however, it requires twice the space of the original

data or even more [14]. This problem is directly associated to the increase of the

total system cost especially in large-scale systems.

Erasure coding including Reed-Solomon coding [11] and “exclusive or” (XOR)

based parity systems are another way to improve the reliability. This requires less

additional storage capacity than replication does; however, there are additional

computational costs for erasure coding that result in poor I/O write performance.

Existing storage systems that utilize erasure codes [15, 16], have an additional cost

6

2.2. INTRODUCTION

for reliability, which compromise the system performance. This study focused on

both performance and reliability improvement.

Fig. 2.1 shows a naive implementation of a cluster-wide RAID system. A client

generates parity blocks and sends both parity blocks and original striped blocks.

Parity generation processes require additional computing cost and increase the

amount of the outbound traffic from the writer node. They become bottlenecks

and deteriorate the write I/O performance. This chapter proposes a way to reduce

this additional cost from a client.

This study applied RAID [4, 5] like mechanism to distributed network storage

systems. It is called “cluster-wide RAID”. As described in the previous para-

graph, the increased amount of traffic causes performance degradation when a

client generates the parity blocks and sends them to the storage nodes. To elim-

inate this additional traffic, I design an inter-nodes zero-copy data processing

mechanism. Each storage node works as “Active-Storage”, which actively pro-

cesses data blocks. The key idea is a brand-new topology of a data processing

pipeline that is enabled using the Active-Storage mechanism. The optimized data

processing pipeline off-loads the parity generation process to the storage nodes and

eliminates the additional traffic of the client (writer node) network. This mech-

anism can be applied to emerging technologies such as Burst Buffer [6], which

improve the I/O performance of exascale systems.

The proposed Active-Storage mechanism successfully achieves both perfor-

mance and reliability in cluster-wide RAID systems.

2.2.2 Contributions

The proposed method reduce bottlenecks of critical paths of the redundant net-

work storage system and offers a low-overhead scalable implementation for a

cluster-wide RAID system. Networks became bottleneck in the system because

the target system of this study should have the high-throughput storage devices

which can provide sufficient bandwidth for the latest networks. There is no ex-

isting distributed storage system that offers a zero-overhead redundancy support.

T herefore, the proposed method can change the stereotype: redundancy always

comes with compromises on performance.

The active storage mechanism for the cluster-wide RAID adds redundancy

to the storage system with minimal performance degradation. The performance

of the cluster-wide RAID-5 is almost the same as RAID-0, which has no redun-

dancy. In addition, the nature of the proposed method enables the system to

add a dedicated network. It increases the scalability of the cluster-wide RAID

implementation.

7

2.3. RELATED WORK

The maximum write throughput from a single client node was 5,969 MB/s us-

ing the cluster-wide RAID-5 (3D-1P). The total write throughput of the cluster-

wide RAID-5 (3D-1P) scales up to 20,141 MB/s. The performance gain compared

to that of the naive method was 32.6% and 11.9% respectively. The write through-

put with the cluster-wide RAID-5 was almost the same as that of RAID-0 (only

striped blocks). The performance was not changed although RAID-5 contains

additional parity blocks and increases the network traffic. Hence, the proposed

method is called “zero-overhead method”.

2.3 Related Work

This chapter focuses on redundancy in storage systems; hence this section explains

several existing technology and compare them with the proposed method.

Replication is a widely used technologies in distributed file systems. Glus-

terFS [17] and Gfarm [18] support replication for data redundancy.

Ceph [9] and HDFS [19, 10] support not only replication but also Reed-

Solomon based erasure coding. The erasure coding in HDFS is supported by

HDFS-RAID [20, 21] module, which asynchronously transforms from replication

to erasure coding to save capacity using background tasks. In other words, it

requires a replication process before a erasure coding process. The replication

process is essentially a duplicated task so that it brings an additional overhead,

which has grater impact than the synchronous coding in terms of the amount of

the network traffic. In addition, it makes the system complicated. Xorbas [22] is

also an extension for HDFS, which they claim that their new coding offers better

performance than HDFS-RAID. However, they still uses a asynchronous encoding.

Thus, it has the same problem.

Well-known commercial storage products do asynchronous encoding as well. It

is believed that the synchronous coding degrades the performance and this is the

reason why other studies and products use asynchronous encoding. The proposal

realizes a zero-overhead on-the-fly cluster-wide RAID, which has benefits in terms

of the implementation simpleness and the predictability of the performance.

NCCloud [23] is an optimized RAID-6 implementation for multiple-cloud stor-

age system. The aim of this study is to reduce the overhead of code regeneration.

In addition to distributed storage systems, there are several studies [24, 25] to

improve the performance of conventional RAID-6 systems. These studies are not

explicitly relevant to ours; however, they give us useful insights to optimize era-

sure coding in the storage systems. TickerTAIP [26] implements RAID-5 and uses

a similar mechanism as the proposed method. However, their optimization only

targets small data update. The proposal optimally writes large data that is much

8

2.3. RELATED WORK

larger than the block size. In this case, the RAID-5 overhead can be avoided using

the proposed parallel data pipeline processing among storage nodes. Evaluation

results of TickerTAIP show that the performance of the RAID-5 is slower than the

result with only stripes (RAID-0), while our proposal offers cluster-wide RAID-5

without performance degradation. TPT-RAID [27] also implements RAID-5 with

a third party transfer mechanism. However, the design of the proposed method

does not have a controller and does not only target iSCSI protocol. In addition,

their binary tree XOR method can reduce the depth of data pipelines (n to log2 n)

and to improve the performance in certain conditions as they claimed in their pa-

per. However, the cluster-wide RAID implementation transfers the data in an

optimal order (2.5.3) so that the effect of the depth of the pipeline is minimized

in most case. The detail of the latency of the cluster-wide RAID will be discussed

in 2.5.6 and 2.5.7.

Next, I focus on the network of distributed storage systems. PVFS [28] has the

RDMA network implementation [29]. NFS [30] is a widely used remote file access

mechanism and several studies exist in order to add the RDMA support to NFS.

One example is NFS over RDMA [31]. RDMA is an imperative technology for this

study because the proposed method leveraged the nature of RDMA functionality

for the parity generation process.

With regard to the notion of “active-storage”, [32] proposed an architecture,

which off-loads application specific data processing tasks to active disks. [33] pro-

posed a similar architecture for DAG-structured workflows. This study focuses on

the utilization of the active-storage mechanism to provide an efficient mechanism

for storage redundancy.

For data redundancy (not limited to erasure codes), DRBD [34] is an example

of on-the-fly data replication system. After the data is written to the source disk,

DRBD transparently transfers the data and keeps the remote replica block device

identical. Network Block Device [35] provides an interface to use block devices of

the remote node. Network block devices are usable for software RAID; however

they have a significant bottleneck. If a RAID system is used on these network

block devices, the client needs to write parity data in addition to the original data.

This results in a traffic increase in the client’s network. Network bandwidth within

computers is narrower than the interconnection between a storage controller and

disks. Therefore, implementing a cluster-wide RAID on top of the existing network

storage systems is not recommended. That is why this study implements both

storage and network layers for a cluster-wide RAID system.

9

2.4. NETWORK-BASED RAID

�� �� �� �� �� ��

����	

���

����	

���

������

�

������

�

	
����

������

�

������

�

	
����

���
��
����� �������
���
����

Figure 2.2: Naive and optimized transfer

Table 2.1: Amount of traffic for each node in the naive method when the client
writes a 10 MB file

Source Node #0 Node #1 Parity
In 0 MB 5 MB 5 MB 5 MB
Out 15 MB 0 MB 0 MB 0 MB

2.4 Network-based RAID

2.4.1 Cluster-wide RAID architecture

Cluster-wide RAID, which is the main focus of this paper, provides cross-node

redundancy by building a RAID-like structure on the network. In a simple term,

cluster-wide RAID replaces disks with storage nodes. By replacing disks with

storage nodes, cluster-wide RAID can adopt the distributed data processing ap-

proach. Each storage node can communicate with other nodes in cluster-wide

RAID. This feature expands the possibility to optimize erasure coding generation

in a distributed manner. This thesis focuses on the write phase of the cluster-wide

RAID system and propose an optimized zero-overhead method.

2.4.2 Basic idea of proposed method

A cluster-wide RAID also brings us some possibility to optimize the data transfer

method. Disks and storage nodes are completely different because storage nodes

have network interfaces while disks do not. This difference enables us to exchange

the data within storage devices whereas the conventional RAID delegates every-

thing to the centralized controller. The proposal is based on this feature of the

10

2.5. DESIGN OF CLUSTER-WIDE RAID-5

Table 2.2: Amount of traffic for each node with the optimized method when the
client writes a 10 MB file

Source Node #0 Node #1 Parity
In 0 MB 5 MB 10 MB 5 MB
Out 10 MB 5 MB 5 MB 0 MB

cluster-wide RAID.

For example, in a RAID-4 storage system with 4 drives (one of them is dedi-

cated for parity data), the amount of data written by the RAID controller increases

by 25%. RAID and other storage controller have enough bandwidth for each disk;

hence, this increased traffic does not create any problem. However, if this method

is applied naively to cluster-wide RAID systems, the source node (client / writer)

sends an additional parity data via network. It will cause performance degrada-

tion. Fig.3.2 is an explanation of a proposed method to solve this problem. In this

figure, there is an assumption that the storage system is configured as a RAID-4

array. The left figure is a naive implementation. The amount of traffic from the

source node is 1.5 times more than the size of the original data. This causes 33%

performance degradation. The right figure is the proposed method. The source

node writes two stripes to storage node #0 and #1. Next, storage node #0 sends

the received chunk to node #1. Then, node #1 calculates the XOR value of the

data from node #0 and the source. Finally, node #1 sends the XOR block to

the parity node. This method reduces the total amount of traffic from the source

node. In the cluster-wide RAID environment, each network path is critical for I/O

performance. Therefore, reducing the traffic of client node is effective to overall

system throughput. Table.2.1 and Table.2.2 show the I/O traffic of each node

when the client node writes a 10 MB file. If any part of the table exceeds the

size of the original data, the performance is degraded. Using the naive method,

output traffic of the client node exceeds 10 MB while using the optimized method,

the I/O traffic never exceeds 10 MB. It means that there is no bottleneck in the

optimized system.

2.5 Design of Cluster-wide RAID-5

2.5.1 Data layout

RAID-5 is a well known RAID configuration and is used in major existing systems.

This study applies an “Active-Storage Mechanism” to the cluster-wide RAID-5.

This section explains the RAID-5 data layout. Fig.3.3 shows a layout of RAID-5

configuration with four storage nodes. Each row corresponds to the number of a

11

2.5. DESIGN OF CLUSTER-WIDE RAID-5

� � � �

�
�

�
�

�
�

�
�

��
�

���

�
�

�
�

�
�

��
�

��
�

�
�

�
�

�
�

��
�

��
	

�
�

�
	

�

��
��

��
��

�

�
��

�
��

�� ��������	
����������� ������

�
�

� �
��

�	

�����	����	�����

Figure 2.3: Data layout of RAID-5

storage node. The striped data blocks are presented as D0 ∼ D11. Other blocks

are parity data.

2.5.2 Pipeline topology

Cluster-wide RAID is an aggregation of data pipelines, which are processed by

active storage nodes. This section describes the pipeline topology and data move-

ment of the cluster-wide RAID-5. The topology of four nodes for a cluster-wide

RAID-5 is shown in Fig. 2.4. Vertical lines correspond to the storage nodes (There

are four storage nodes). The client node spreads stripes to storage zero to three.

All storage nodes are connected with four pipelines that are separated with hor-

izontal orange lines. All pipelines process data in parallel. The writer keeps the

data until it receives ACK messages from storage nodes which store parity blocks.

If there is no ACK message from storage nodes within the specified time, the

writer resends data blocks.

2.5.3 Data movement

This section focuses on the data movement in a cluster-wide RAID-5 implemen-

tation. The data movement is shown in the Fig. 2.4; however, the matrices are

shown for clarification. Matrices (2.1) to (2.3) show the data movement. Rows

correspond to source nodes and columns correspond to destination nodes. For

example, element (0,1) in matrix. (2.1) means that node #0 send D0 to the node

#1. These transfer operations compose three stage pipelines.

Pipeline connections are shown in Fig. 2.5. Each line corresponds to Peer(s).

Striped blocks are saved to the disk and other data will be transferred to other

nodes for parity generation. Fig. 2.8 describes the pipeline stage when four clients

write the data to cluster-wide RAID-5 (3D-1P) simultaneously. Each row corre-

12

2.5. DESIGN OF CLUSTER-WIDE RAID-5

!"#!$#!% !&#!'#!(!)#!*#!&" !+#!,#!&&

!+-!$

!"-!&-!)!"-!&

!+

!+-!$-!'

!*
!*-!,

!*-!,-!%

!(
!(-!&"

!(-!&"-!&&

!"

.%#$/ .%#$/ .%#$/ .%#$/.01#2345/

'

606780179

:3;7 <" <& <) <$

;=5=

>?@

Figure 2.4: Network data movement of optimized cluster-wide RAID-5. Num-
ber(s) of (in, out) correspond to number of network path(s). In this case, 12 is
the same bandwidth as a single network path.

sponds to the number of storage node and col corresponds to time step. Each

storage node can send and receive (implemented with RDMA write operations)

simultaneously because it has a full-duplex network. In addition, the system has

a dedicated network (explained in the next subsection). Every pipeline finishes

in the twelve time steps, which is the same duration as the client data write. It

means the cluster-wide RAID mechanism never creates a bottleneck. There is

no hazard in the pipelines so that the cluster-wide RAID-5 can utilize the full

bandwidth of the network and has better scalability.

0 D0 0 0

0 0 D9 0

0 0 0 D7

D5 0 0 0

 (2.1)

13

2.5. DESIGN OF CLUSTER-WIDE RAID-5

�

�

��������	
�

�

�

�

�

�

�

��������	�
���� ��������	�
��� ��������	�
���� ��������	�
����

Figure 2.5: Pipeline connection of Cluster-wide RAID-5 (3D-1P). The writer node
sends the striped data blocks to storage nodes. Storage nodes exchange the data
blocks each other and calculate parity blocks. The data block movement is shown
in Fig. 2.8.

0 D5 +D3 0 0

0 0 D0 +D1 0

0 0 0 D9 +D10

D7 +D8 0 0 0

 (2.2)

 0 D6+D7+D8 0 0

0 0 D5+D3+D4 0

0 0 0 D0+D1+D2

D9+D10+D11 0 0 0

 (2.3)

2.5.4 Partial Write

This subsection describes a method for partial write. When the writer updates

stripes partially, parity blocks also have to be updated. Fig. 2.6 depicts the data

processing flow when the writer updates data blocks of storage node 1 and 2. The

storage node 1 receives the new data blocks and calculates xor value with old

data blocks. Then, the storage node 1 sends them to the storage node 2. The

storage node 2 does the same thing as the storage node 1 and finally, the storage

node p receives the updated parity blocks. The current prototype implementation

does not support the partial write; however, it can be implemented with the same

mechanism as the full-stripe write.

14

2.5. DESIGN OF CLUSTER-WIDE RAID-5

0 1 2

writer

Stripe
1

B xor Bʼ

Stripe
2

p
Pʼ = P xor (B xor Bʼ)

xor (C xor Cʼ)

Partial write to cluster-wide RAID-4

A B→Bʼ C→Cʼ

(B xor Bʼ)
xor

(C xor Cʼ)

P→Pʼ

Figure 2.6: Partial write to a cluster-wide RAID-4 system.

The estimated performance gain of the partial write (m blocks to update) with

the proposed method is the same as the case of N −mD1P cluster-wide RAID.

2.5.5 Dedicated Network for Parity Generation

The proposed pipelined architecture can split the data flow into source data trans-

fer and inter-storage node data exchange. This characteristic enables us to add

another network hardware to storage nodes and provides additional network paths

to data processing pipelines. In this paper, it is referred as dedicated network.

Parity generation process using dedicated network will disperse the traffic on

the network. It will increase the scalability of the cluster-wide RAID system.

Fig. 2.7 describes the dedicated network.

The dedicated network can be separated from the main network where the

source data blocks come from. Thus, the dedicated network does not affect to the

number of occupied ports of switches that belongs to the main network segment.

2.5.6 Scalability validation and latency of cluster-wide RAID-

5 (3D-1P) system

This subsection describes the scalability and the latency issue of the cluster-wide

RAID mechanism.

The amount of traffic of storage nodes of the cluster-wide RAID-5 (3D-1P)

are shown in the bottom of Fig. 2.4. In this case, 12 means 100% usage of the

15

2.5. DESIGN OF CLUSTER-WIDE RAID-5

��
��
��
��
��
��
�������

����������	��
����������������	������	

Figure 2.7: Dedicated network for parity generation

� � � � � � � � 	
 �� �� �� �� �� ��

��������

��������

��������

��������

���������

���������

���������

���������

���

�

�

�

�

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � �� � 	
 �

� � � � � �� � 	 ��
 �

� �

�

� � �� � 	 ��
 �

� � � � � �� � 	 ��
 �

� �

�

�

��

� �

�

�

	 	

	

	

� �

�

�

� �

�

�

�� ��

��

��

� �

�

�

�� ��

��

��

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

����
 ����

����

����

���

���

���

���

�����

�����

�����

�����

����

����

����

����

���

���

���

���

�������

�������

�������

�������

����	

����	

����	

����	

� � � � � � �� � 	
 �

�� � 	 ��
 �

��
 �

	 ��
 �

��

���������	��
��

�����

��������� �����

�����������������

���

Figure 2.8: Pipeline stage of cluster-wide RAID-5 (3D-1P) with single writer node.
Each number corresponds to the data stripe number in Fig. 3.3. The writer node
sends striped blocks (0-11) to the server nodes. Then, server nodes exchange the
data blocks each other and generate parity blocks. Server nodes store the blue
blocks and green blocks to the storage device.

network because the writer node has 12 data paths in total.

Each storage node uses 50% of inbound network bandwidth and 25% of out-

bound network bandwidth when a client writes data to these storage nodes. Net-

work traffic of the parity generation process can be off-loaded to the dedicated

network. In this case, 50% of the inbound traffic and 100% of the outbound traf-

fic are off-loaded. The write throughput scales up in proportion to the number

of storage nodes because the traffic is well distributed among storage nodes and

there is no traffic concentration.

Fig. 2.4 also depicts the latency of the system. As long as the writer sends

the data blocks in the order in 2.5.3, the parity generation process completes two

data transfer period after the last block is received by the server. For example,

the parity block “5+3+4” is generated soon after the server #1 received the block

16

2.5. DESIGN OF CLUSTER-WIDE RAID-5

“4” from the writer #0. The generalized latency model will be discussed in the

next subsection.

2.5.7 Quantitative modeling of parity calculation cost, net-

work traffic, latency, and performance

This subsection shows a generalized model of the parity calculation cost and net-

work traffic / latency of cluster-wide RAID-5 system with an arbitrary number of

storage nodes. The amount of the data to write is 1 in the following formulas. t

is the one-way trip time between storage nodes, s is the bandwidth of network,

and x is the parity calculation throughput. The definition of the term “latency”

in this section is the time to write one block to storage nodes.

Parity calculation cost

The prototype system uses simple XOR parity. As of 2016, XOR calculation

throughput of CPUs is faster than the network throughput. However, future

network devices will provide much faster interface so that this subsection discusses

the parity calculation cost of the proposed method.

The writer node generates parity blocks with the naive method. In this case,

the total amount of data to calculate parity blocks on the writer node is:

2(n− 2)

n− 1

With the active-storage mechanism, parity generation processes are distributed

to multiple storage nodes. Each storage node processes the following amount of

data:

2(n− 2)

(n− 1)n

The total amount of the data to calculate parity blocks is the same. However,

the proposed method can reduce the calculation cost of the writer node.

Naive method

A writer node generates parity blocks and sends them with striped blocks with

a naive method. Fig. 2.9 describes the amount of traffic of each network path of

a cluster-wide RAID-4 with a naive method. Each network path has the same

amount of traffic because the writer sends all data blocks and servers only receive

them. Therefore, each node receives 1/(n − 1) traffic of the outbound traffic of

17

2.5. DESIGN OF CLUSTER-WIDE RAID-5

0 1 n-1

writer

xor

1n/(n-1)

・・・

n nodes

1/(n-1) 1/(n-1) 1/(n-1)

Figure 2.9: The amount of traffic of each network path with a naive cluster-wide
RAID-4 implementation.

the size of the original data. In the case of cluster-wide RAID-5, the values are

the same as the case of RAID-4 because the ratio of the parity blocks and original

striped blocks are the same.

The latency of a naive RAID-4 and RAID-5 implementation is

XOR calculation time + latency + transfer time =

2(n− 2)

(n− 1)x
+ t+

1

s(n− 1)

With the active-storage mechanism

The cluster-wide RAID-5 network topology can be split into multiple cluster-wide

RAID-4 systems. In the case of RAID-5 (3D-1P) (shown in Fig. 3.3), there are

four RAID-4 pipelines in the system. For instance, the first one is the pipeline of

D0, D1,D2, and D0+D1+D2. With regard to this data pipeline, the amount of

traffic of each storage node is as follows.

18

2.5. DESIGN OF CLUSTER-WIDE RAID-5

! "#$ "#%

&'(

)(*+,(

%

%-."#%/ %-."#%/

000

"1"'2,3

%-."#%/%-."#%/ %-."#%/

Figure 2.10: The amount of traffic of each network path with an active-storage
mechanism.

S0 in =
1

n− 1
S0 out =

1

n− 1

S1...n−2 in =
2

n− 1
S1...n−2 out =

1

n− 1

Sn−1 in =
1

n− 1
Sn−1 out = 0

When the system has a dedicated network (2.5.5), the traffic for parity gener-

ation processes is off-loaded and the amount of traffic is as follows.

19

2.5. DESIGN OF CLUSTER-WIDE RAID-5

S0 in =
1

n− 1
S0 out = 0

S0 in dedicated = 0 S0 out dedicated =
1

n− 1

S1...n−2 in =
1

n− 1
S1...n−2 out =

1

n− 1

S1...n−2 in dedicated =
1

n− 1
S1...n−2 out dedicated =

1

n− 1

Sn−1 in =
1

n− 1
Sn−1 out = 0

Sn−1 in dedicated =
1

n− 1
Sn−1 out dedicated = 0

In the cluster-wide RAID-5 system, the amount of the traffic of each storage

node is an average traffic of all storage nodes.

Sin =
2

n

Sout =
1

n

Finally, with a dedicated network, the traffic is as follows.

Sin =
1

n
Sin dedicated =

1

n

Sout = 0 Sout dedicated =
1

n

The latency of the active-storage RAID-5 (3D-1P) was discussed in the previ-

ous subsection. If the transfer block size is larger than (n−2) t
1
s
+ 1

x

(the product of

the number of the depth of pipelines and the sum of the inverted number of the

network throughput and xor throughput), the effect of the pipeline length can be

covered. The typical example values with InfiniBand FDR and RAID-5 (3D-1P)

system are n = 4, s = 6,000 MB/s and , t = 1us. Therefore, if the block size is

smaller than 12 KB in this condition, the length of the pipelines does not affect

to the overall latency.

As explained in the previous section, the last parity block is generated the

period of two data transfers after the time when the writer sent the last block.

Therefore, the generalized latency of the cluster-wide RAID-5 system is as follows.

(Time to transfer the data blocks from the writer) +

20

2.5. DESIGN OF CLUSTER-WIDE RAID-5

(XOR calculation time of a block) + (time to send a block) + latency=

1

s
+ t+

1

xn(n− 1)
+

1

sn(n− 1)
+ t

Theoretical performance

This subsection discusses the theoretical write throughput per writer node of

Cluster-wide RAID systems. The theoretical performance can be calculated from

the amount of traffic. w is the number of concurrent writer nodes in following

formulas. All results are relative performance and 1 corresponds to the bandwidth

of a single writer node.

The performance with the active-storage mechanism without a dedicated net-

work (per writer nodes):

min(1,
n

2w
)

The performance with the active-storage mechanism with a dedicated network

(per writer nodes):

min(1,
n

w
)

The performance with the naive method (per writer nodes):

min(
n− 1

n
,
n− 1

w
)

For instance, Fig. 2.11 describes the comparison of the theoretical relative

performance per writer node of the Cluster-wide RAID-5 (3D-1P) system. The

performance of the active-storage is superior to the case of the naive method

when there are n/2 or less writer nodes. The performance of the active-storage

with a dedicated network is always superior to the naive method. Dedicated

networks require additional resources; however, the naive method cannot utilize

them. “Naive method with an additional server-side network” is the performance

of the case where the servers have extra networks, which are connected to the same

network of writer nodes. In this case, the performance is the same as the naive

method and the scalability is better than the active-storage with a dedicated

network. “Naive method with an additional client-side network” describes the

performance of the case where the all clients (writers) have equipped additional

network device(s) with the naive method. The performance is better than all cases

up to 2 writer nodes. The performance degrades afterwards because the total

amount of bandwidth of the servers is not changed. Therefore, the advantage of

21

2.5. DESIGN OF CLUSTER-WIDE RAID-5

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
number	of	writer	nodes

Theoretical	relative	performance	per	writer	node	of	
Cluster-wide	RAID-5	(3D1P)

Active-storage Active-storage	w/	dedicated	NW

Naïve Naïve	w/	additional	server-side	NW

Naïve	w/	additional	client-side	NW

Figure 2.11: The comparison of the theoretical performance of the active-storage
mechanism (w/, w/o dedicated network), the naive method, and the naive method
with an additional network.

this configuration is very limited. Additionally, it requires the tremendous amount

of the additional resources because all computing nodes have to be equipped with

an additional network device.

However, there is a fundamental problem that the naive method increases the

total amount of the traffic of the network between writer nodes and server nodes,

which is the valuable bandwidth in the entire system. It depends on the design of

the interconnection network; however, typically, the traffic between storage nodes

and computing nodes goes through the long network path, which affects other

network communications. Although the performance of the active-storage with

a dedicated network is inferior to the naive method with an additional network

in several cases, there is the advantages that the proposed method has less side

effects to the entire system.

2.5.8 Bandwidth and latency trade-off

The proposed method builds multiple data pipelines over multiple storage nodes.

This subsection discusses the trade off of the proposed method because long data

pipelines increase the latency. Current major storage devices are hard disk drives,

which take several ms to read and write data randomly. In contrast, the latency of

the latest network device (InfiniBand) is less than few microseconds. In addition,

22

2.6. IMPLEMENTATION OF ZERO-COPY TRANSFER FOR XOR CALCULATION
AND DATA STORE

the effect of the long data pipelines is minimized as described in 2.5.6 and 2.5.7.

The situation is almost the same even with latest flash memory storage devices

because their latency is longer than the latency of the latest network devices.

2.6 Implementation of Zero-copy transfer for XOR

calculation and data store

2.6.1 Utilization of RDMA in storage network

The prototype implementation used RDMA to implement all part of network data

access within storage / client nodes. RDMA helped us to reduce the number of

copy and memory consumption. Modern network interface has RDMA function to

reduce overheads of the network communication. InfiniBand is a widely used high

performance network and supports RDMA function. RDMA enables programs

to transfer their data on the memory to/from the memory in a remote node

directly with small overhead compared with a socket-based communication that

requires system calls to send and receive data. All data transfers are CPU-bypass.

Therefore, all that a CPU needs to do is to issue a transfer operation to InfiniBand

interface(s). In addition, RDMA can perform zero-copy transfer that eliminates

overhead resulted from memory copy in system layers.

2.6.2 Data processing pipeline with RDMA

To implement the Active-Storage mechanism for a cluster-wide RAID, this study

built an RDMA data processing pipeline mechanism. It will reduce the overhead

and memory footprint of data processing pipelines on multiple nodes.

Usage of RDMA is very important in this study because the prototype imple-

mentation of a cluster-wide RAID maximize the advantage of RDMA communi-

cation to minimize the number of memory copies. As described in the previous

section, storage nodes receive data and calculate the XOR value with their own

data. Then send the result to another storage node. In this process, there are

three memory copies (three times copies between user space and kernel space:

twice for receiving and once for sending) in the storage node in an ordinary net-

work. However, zero-copy is achieved with RDMA communication by using DMA

hardware directly in the user space. Excessive memory bandwidth consumption

degrades the performance of the entire system. Therefore, to minimize the side

effect and gain the maximum I/O performance in a cluster-wide RAID, a special-

ized network data processing architecture is implemented. A detailed explanation

of this mechanism is discussed in section 2.6.6.

23

2.6. IMPLEMENTATION OF ZERO-COPY TRANSFER FOR XOR CALCULATION
AND DATA STORE

2.6.3 Choice of RDMA implementation

RDMA is a game changing technology for cluster computing because it enables

direct memory access in the user space for remote communication; however, uti-

lizing RDMA requires additional programming issues. This section shows how

RDMA communication operations are used.

Fig. 2.12 shows how RDMA function works to transfer data on the mem-

ory to another node’s remote memory. As this figure shows, there is no middle

layer between the client’s memory and server’s memory. InfiniBand Host Channel

Adapter (HCA) is responsible for everything with regard to network issues such

as congestion control, error correction and retransmission. There are several ways

to utilize RDMA function. These involve Verbs APIs, IPoIB (IP over IB) and

SDP (Sockets direct protocol).

The prototype implementation uses InfiniBand network with Verbs APIs in

order to maximize the performance. Verbs APIs are group of primitive functions,

which are provided by Open Fabrics Software [36]. They run in the user space and

there is no context switching; however, they correspond to hardware functions.

This is an advantage to implement efficient programs because we can control

everything with regard to data transfer. It is also required to do initialization

procedure such as memory registration, connection establishment, building queue

structures, exchanging memory information, and so on. It takes a number of

steps; however, it is is an advantage of the prototype implementation.

Besides Verbs APIs, there are several interfaces to use InfiniBand. There are

several studies [37, 38] about different ways to use InfiniBand. The IPoIB (IP over

InfiniBand) is the easiest way to use InfiniBand because it provides an interface

like ordinary Ethernet adapter. The IPoIB still has the same problem as Ethernet

because it uses network layer(s) of the operating system. In addition, InfiniBand

has hardware flow control and error correction; therefore, the protocol level (i.e.,

TCP) control is a duplicate function and becomes bottleneck. Moreover, SDP

replaces the TCP control functions with InfiniBand adapter’s hardware. It elimi-

nates duplicate functions of TCP/IP and InfiniBand. Therefore, the performance

of SDP is better than IPoIB [37]. The last method is using Verbs API, which

this study selected. SDP still has some bottleneck with network communication

because it uses socket interface to send and receive data. In general, socket inter-

face is not suitable for RDMA communication because it is impossible to specify

whether the hardware sends the designated data using the given buffer area di-

rectly or by coping to an internal buffer. Utilization of Verbs API requires many

proceadures; however, this is the best way to leverage the advantage of RDMA

communication.

24

2.6. IMPLEMENTATION OF ZERO-COPY TRANSFER FOR XOR CALCULATION
AND DATA STORE

����������	

����

���

������

������ ����������	

����

���

������

������

��
�

����	� ����

Figure 2.12: RDMA CPU by-pass data transfer

2.6.4 Types of RDMA operations

InfiniBand provides several communication methods [39]:

• Send

• Receive

• RDMA write (w/immediate)

• RDMA read

Send and receive are mainly used for message exchange. In the prototype

implementation, send and receive are used to exchange control information. This

includes the memory address and flow control information.

RDMA write and read are truly zero-copy operations. They provide interface

for direct access to a remote memory. The prototype implementation uses RDMA

write operation to send data to remote nodes. RDMA write supports the “with

immediate” mode, that includes a small message to notify a receiver for data to be

transferred. To implement a data processing pipeline, an efficient notification of

data transfer is essential. That is why the prototype implementation uses RDMA

write “with immediate” mode for data transfer in the data pipeline process.

2.6.5 Components for zero-copy pipelined data processing

The following subsections explain four components (listed below) for a zero-copy

data processing pipeline.

• Ring buffer

• Peer (connection)

• Pipe

• Pipeline

25

2.6. IMPLEMENTATION OF ZERO-COPY TRANSFER FOR XOR CALCULATION
AND DATA STORE

2.6.6 Ring buffer

All memories used for RDMA communications must be registered to InfiniBand

hardware. However, memory registration takes a long time compared with the

transfer operations. In order to avoid frequent memory registration, the prototype

implementation uses ring buffer. Once the entire memory of the ring buffer has

been registered, memory registration processes are not necessary afterward.

Pipelined data processing often requires barriers to wait for other data. How-

ever, RDMA write operation is an one-sided communication; therefore, there is a

possibility of unexpected overwriting. Fig. 2.13 shows the mechanism to prevent

this problem. Each ring buffer has “Tail list” to mark the necessary and unused

data. The length of this list is equal to the number of external references. For

example, the length will increase when a certain ring buffer has to apply XOR

to another buffer. The tail of the “Tail list” is the most important thing in this

mechanism. Peer (to be described next) tells this value to the sender. As long

as sender(s) does not write any data beyond the tail of the “Tail list,” the neces-

sary data is perfectly protected. More precisely, each ring buffer has a current

pointer, which points the position of the current sending buffer, and this pointer

cannot overtake any tail of receiver’s ring buffer. After the data in a certain buffer

is processed, the tail proceeds to the next position. After all tails are moved to

the next position, the buffer is ready for its next receive.

2.6.7 Peer (connection) and Pipe

All nodes are connected with reliable connection (RC) of InfiniBand. “Peer”

manages the connection and issues transfer operations to InfiniBand HCA. In

Fig. 2.14, black arrows correspond to peers. Each peer is closely tied with the ring

buffer. Peer interacts with the ring buffer, sends data, and receives information

from a remote node. The information includes the position of the tail of next ring

buffer.

Peer is just a connection between two nodes. To implement a cluster-wide

RAID, peer(s) have to be connected properly to build a storage network topology

(Pipe). Fig.2.14 describes the zero-copy relay pipe. In this figure, node #1 sends

data to node #2. Then, node #2 re-sends the data to node #3 from the same

buffer. This is how zero-copy relay works. It is impossible when using ordinarily

socket based network programming.

Fig. 2.15 is an explanation of the XOR pipe. In the cluster-wide RAID system,

XOR calculation is an important function. Nodes #s1 and #s2 send data to node

#2. Node #2 receives data in each ring buffer, and calculates XOR value of the

two data blocks, and stores it in one of the ring buffers. Next, node #2 sends the

26

2.6. IMPLEMENTATION OF ZERO-COPY TRANSFER FOR XOR CALCULATION
AND DATA STORE

�

�

�

�
�

�

�

�

	
������������

�����

� ������
�����������

�

�

�

�
�

�

�

�

�������� �!��"��#������

�

�

�

�
�

�

�

�

��������
	
��$�%

	
��$�%

����������	

����������	

&'�����

�	��������������	���

�	���������������

	
��$�%
����	���	���	�����������	���������		��������	��������

�	�������������������������������

������������	������	�����	�������

����������	������������������

���	���������������

Figure 2.13: An example of ring buffers interactions

result to node #3 from the ring buffer directly. There is no additional memory

copy; thus, this is the most efficient method to receive, calculate XOR and send

the result.

2.6.8 Pipeline

Pipelines for a cluster-wide RAID system can be built by connecting the ring

buffer, peer, and pipe.

Fig. 2.16 shows an optimized RAID-4 pipeline design that is one of RAID-5

data pipeline processes. This topology is the same as the right picture in Fig. 3.2.

Node #s is a source node and splits data into two stripes and sends them to

storage nodes #0 and #1. Node #0’s ring buffer is connected to Node #s’s buffer

(0) and node #1’s buffer using a zero-copy relay pipe. This pipe saves the data

and transfers it to the next node. An XOR pipe connects buffer #1 of node #s,

a buffer #1 of node #1, and the end point buffer of node #p. This pipe refers

the data in buffer #0 of node#1. Thus, this XOR pipe will add a reference tail

to the tail list of this ring buffer. The cluster-wide RAID-5 can be built using a

combination of multiple RAID-4 pipelines.

27

2.7. PERFORMANCE EVALUATION

����

�������

�������

�������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�	��

������	

	��

�����������

�

�

�

�

�

�

�

�

���������	��
��	���

�������������	
�����

������������

	
��������

	
��������

	
��������

���

����������

���

����������

Figure 2.14: Explanation of zero-copy relay pipe

2.6.9 Implementation of RAID-5 with zero-copy pipeline

Three important elements (ring buffer, pipe, and pipeline) are used to build a

cluster-wide RAID system. Those components interfaces to connect with each

other. Initially, the network data processing topology for a specific RAID have

to be determined. Then, they should be connected properly according to the

determined topology. The actual topology of RAID-5 (3D-1P) is shown in Fig. 2.5.

2.7 Performance Evaluation

2.7.1 Evaluation condition

This section shows the write throughput evaluation results of the cluster-wide

RAID-5. The target of the evaluation is sequential write because the increased

network traffic mainly affects the throughput.

This evaluation focuses on the network and transfer mechanism without saving

to the disks because the network speed is much faster than the disks we have

today. The main target of the proposal is the data transfer mechanism. In future,

we can implement the disk write phase using high-bandwidth storage devices.

Flash memory based storage devices are getting more parallelism and bandwidth.

In addition, overlapping the data transfer phase and the data write phase is a

common thing in HPC applications. Moreover, if we try to build redundant

burst buffer with the proposed method, the physical storage throughput has less

impact on the performance. Because of the above reasons, this study evaluated

the performance without a disk write phase. In addition, current the prototype

28

2.7. PERFORMANCE EVALUATION

����

�������

�������

�������

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�	��

������	

	��

�����������

�

�

�

�

�

�

�

�

�����������	��
�� �������������

�����������������

�����	����������������������������

������������������������

������	�

����

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	��

��� ����

Figure 2.15: XOR pipe

implementation does not have a mechanism to handle ACK messages, which does

not affect to sustained performance.

All evaluation results are average of three measurements. The test case for

RAID-5 is 3D-1P, which has four storage nodes. Three of four blocks are striped

data and one block is parity data. In addition, this study did scalability evaluation

of the cluster-wide RAID with a dedicated network.

2.7.2 Preliminary Evaluation

InfiniBand FDRx4 throughput is shown in the Fig.2.17. These throughput results

are measured with ib write bw of OFED perftest tools.

Fig. 2.18 shows the performance evaluation results of Pipe and XOR Pipe.

The pipe throughput means that the transfer throughput between a server and

a client. XOR Pipe receives data blocks from different two clients and calculates

the xor value of received blocks, then sends the xor value to the receiver node.

The transfer performance and the XOR Pipe throughput are almost same as the

throughput of InfiniBand FDR so that the data processing pipeline mechanism

will not became a bottleneck.

In addition, this subsection describes the performance results of the simplest

case of cluster-wide RAID systems. Fig. 2.19 depitcts a result of performance

evaluation of a cluster-wide RAID-4 system, which has 3 data nodes and 1 parity

29

2.7. PERFORMANCE EVALUATION

�������

�������������	 ������

���� ����

�
�
�
�

�

�

�

��

�

�

�

�

�

�

��

�

�

�

�

�

�

��

�

�

�

�

�

�

��

�

�

�

�

�

�

��

�

�

�

�

�

�

��

�

�

�

���������	
��� ����

�

�

�

�

�

�

�

�

	

����������	

���������

�����

�����

�����

�����

Figure 2.16: Example of optimized cluster-wide RAID-4 pipeline

Table 2.3: Node specification
CPU Intel(R) Xeon(R) CPU E5-2665 8 cores x2

Memory DDR3 1600MHz 64GB
Network InfiniBand FDRx4 (Mellanox MT4099)

node. X-axis the block size, which is the size of striped block and parity block.

We evaluated the performance with two block size: 64KB and 128KB. In the

both case, results are almost same so that we can say the overhead comes from

the pipelined data transfer architecture does not affect to the performance. In

any case, the evaluation results of optimized RAID-4 are 32-33% better than the

results of the naive method.

2.7.3 Write throughput evaluation of the cluster-wide RAID-

5

Fig. 2.20 shows the performance evaluation result of the cluster-wide RAID-5.

This study evaluated the optimized implementation and compared it with the the-

oretical performance of the naive implementation. Naive implementation means

that the writer generates parity blocks and distributes them to the storage nodes.

The theoretical naive performance was computed using these parameters: Maxi-

mum bandwidth of network is 6,000 MB/s and performance slow down is 25% (As

shown in Fig. 3.3, 16 of 20 blocks are the original data blocks). This is the best

estimation (without considering the overhead) of the naive method; therefore it

is not a problem to compare it with the theoretical performance.

In the case of one client node, the performance gain (compared to the the-

oretical performance of the naive method) is 32.6% with 64KB block size and

30

2.7. PERFORMANCE EVALUATION

�

�����

�����

�����

�����

�����

�����

	����

�
 �� ��� ���� ��	�
 ���������	���

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�������������������

Figure 2.17: RDMA Write Throughput of InfiniBand FDRx4 with ib write bw
(perftest tools)

����� �����

�

�����

�����

	����

����

�����

�����

������������������� �������

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

Figure 2.18: Throughput of Pipe and XOR Pipe

30.0% with 128KB block size. 64KB block size is chosen for following evaluations

because the performance is almost the same and using small block size has advan-

tages when the prototype system has an implementation of non-sequential write

in future.

2.7.4 Scalability evaluation of Cluster-wide RAID-5

Fig. 2.21 describes the result of the scalability evaluation of Cluster-wide RAID-

5. In this evaluation, a dedicated network (described in section 2.5.5) is used to

enhance the scalability of the cluster-wide RAID.

The X-axis corresponds to the number of writer nodes and the Y-axis is the

total write throughput for all clients (MB/s). The performance of the proposed

method (optimized) scales up to 20GB/s while the theoretical performance of

naive method scales up to 18GB/s. The performance gain is 11.9% in the case

31

2.8. CONCLUSION OF THIS CHAPTER

5360 5637 5803

4058 4228 4340

5425 5707 5761

0

1000

2000

3000

4000

5000

6000

7000

4KB 8KB 16KB

Th
ro
ug
hp

ut
	[M

B/
s]

Block	size

RAID-4	(3D1P)	w/	Active-
storage

naive	RAID-4

3	stripes	(RAID-0)

Figure 2.19: Write throughput comparison of RAID-4 (3D-1P), naive RAID-4,
and 3 stripes (RAID-0)

of eight writer nodes. Moreover, the performance of cluster-wide RAID-5 with

optimized method is almost same as the performance of RAID-0 (three stripes)

with one to three clients nodes. With four or more clients, the performance of

optimized method exceeds the RAID-0 because cluster-wide RAID-5 increased

the scalability by using the network of parity nodes and the dedicated network.

2.8 Conclusion of this chapter

A cluster-wide RAID has an advantage to save storage capacity compared to the

replication, but the additional computation and data transfer cost are problems

to improve the write I/O performance. This paper proposed an active storage

mechanism for cluster-wide RAID system to remove these problems from a client.

The active storage mechanism offloads the parity computation and parity block

transfer to storage nodes. This chapter showed the topology of data pipelines

among storage nodes to calculate RAID-5 parity blocks, which enables a zero-

overhead RAID-5 active storage. This chapter also showed the zero-copy RDMA

implementation of zero-overhead data pipelines that comprise ring buffer, peer

and pipe.

As a result of the proposed design, the evaluated performance was much higher

than that of the naive method in all cases. The performance gain was 32.6% with

RAID-5 (single client). In particular, the performance of RAID-5 and RAID-

32

2.8. CONCLUSION OF THIS CHAPTER

�����

�����

����� �����

����	

���	�

�

�����

����

	����

�����

�����

�����

�����

��� �
��

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

����������

�������������� ��!	��"# $%&'������ ��!	��"#�!()��*����%�# ���� ��!	��*����#

Figure 2.20: Write throughput comparison of optimized RAID-5 (w/ active-
storage), naive RAID-5, and stripe (RAID-0).

!"#$%

&&"!'(

&)"$%$
&#"*''

&#"$&+
&#"!&+

%("((&

%("&'&

'"!((

#"(((

&+"!((
&$"(((&$"(((

&$"(((

&$"(((&$"(((

!"*$+

&&"!$&

&*"%'%

&$"($'
&$"&*(

&$"&'!

&$"&#'
&$"+'(

(,

!"(((,

&("(((,

&!"(((,

%("(((,

%!"(((,

& % + ' !) * $
-./012,34,526712,-3819

:37;<,52671,723.=>?.7, 34,@<.9712A5681, BCDEA!,F+E&GH, IJKL9M

N?76/6O18

-;PQ1,BCDEA!,F7>132176R;<H

BCDEA(,F+,9726?19",5L3,

?;267SH

Figure 2.21: Scalability evaluation of Cluster-wide RAID-5 (3D-1P) X-axis is the
number of writer nodes and Y-axis is the total write throughput (MB/s).

0 (without parity) was the same, even though RAID-5 had additional parity.

Moreover, the scalability evaluation showed that the cluster-wide RAID had better

scalability because of the parity generation off-loading strategy. It means that the

proposed method can build a scalable, high-performance, and reliable cluster-wide

RAID system.

In future work, we will apply the proposed method to an existing system.

Here, we implemented and evaluated the concept system. The current prototype

implementation does not support read operations, however, the proposed mecha-

nism is sufficiently flexible to implement them. The evaluation results showed the

33

2.8. CONCLUSION OF THIS CHAPTER

significant advantage of the proposed method over existing systems; however, we

can define more characteristics of the proposed method by running a real workload

on the system.

34

Chapter 3

Network-based Data Processing

Architecture for Reliable and

High-performance Distributed

Storage System

3.1 Abstract

In the era of post-peta scale computing, high-performance and reliable storage

systems have become much more important. Close cooperation between network

and storage is an emerging issue. This paper proposes a network-based data

processing architecture to build reliable and high-performance distributed storage

system using future programmable network devices. Distributed storage systems

use replication or erasure coding for ensuring reliability. However, they require

additional data transfer and computing resources. Satisfying both reliability and

performance is an important issue for storage systems. Recent studies related

to Software Defined Networking (SDN) imply that programmable network switch

will become more functional. Currently, SDN intends to provide a flexible routing

mechanism. Network switches are starting to have intelligent mechanisms and are

expected to have a capability for data processing. In the proposed architecture,

storage controller functionality is offloaded to a programmable network switch to

eliminate additional data transfer. This study describes the results of experiments

to show the advantage of the proposed network-based data processing mechanisms

for erasure coding and show an optimized design for distributed storage systems.

With the proposed method, the performance gain of a reliable data storage system

is 44% compared with a client compute case.

35

3.2. INTRODUCTION

3.2 Introduction

3.2.1 Background

Next generation distributed storage systems have to meet the demands of exa-scale

computing systems. In particular, high-performance and reliable data handling

mechanisms are critical problems. In order to add reliability to network storage

systems, replication [8] and erasure coding are commonly used. However, when a

writer node stores data to a storage system, amount of traffic from the writer node

increases by the additional data. This additional data degrades the performance

because of the bandwidth limitation of a client node. Fig. 3.1 describes how the

parity blocks increase the traffic and cause the performance degradation. In this

case, a parity block is added to striped blocks. It causes 50% traffic increase and

33% degradation of write throughput. In order to avoid this performance degra-

dation, we need additional mechanisms to eliminate performance bottlenecks.

The target of this chapter is optimization of network storage systems which

use erasure coding. The optimization utilizes the functions of a programmable

network switch.

Existing systems provide reliability through use of the computational power of

storage nodes or client nodes. However, as typified by Software Defined Network-

ing (SDN), network hardware has started to shift toward programmable devices.

This movement suggests the possibility of implementing a data processing mech-

anism on the storage network. This study assumes future network devices with

programmable functions and proposes a method for utilizing them.

3.2.2 Contributions

This study proposes an architecture design for utilizing data processing mechanism

on the network in order to improve the performance of reliable distributed storage

systems. The architecture offloads parity generation processes to a network switch

to eliminate the overhead of reliable storage systems. The proposal includes a

design of network storage system and a methodology for utilizing programmable

network switches. The proposal also implies the way to utilize those functions in

real systems.

The proposed method achieves zero-overhead with erasure-codes generation,

whereas existing systems degrade performance because of additional data trans-

fer and computing. In preparation for next-generation programmable network

devices, this chapter shows an efficient way of using them.

Write performance reaches to 5,548 MB/s with redundant data, which is al-

most same as the network throughput. The Performance gain is 14% to 44%.

36

3.3. RELATED WORK

!"#$%&'() !"#$%&'(*!+,#-&'./"/'01+-23

!"#$%&'() !"#$%&'(* 4/#$"5'()

6+#

7/"/'01+-23'8$"9'%/#$"5

01+-23

*:;

<:;

=:;

>?)@

A#$"&#'B+.&

CCDE@'FGG&-"$H&'8#$"&'"9#+,I9%,"

!"+#/I&'B+.&3

Figure 3.1: Parity blocks increase traffic and degrade write throughput.

Although there are additional data blocks for reliability, performance does not

change. This means that the proposed method realizes the “zero-overhead” reli-

able network storage system.

3.3 Related work

The main focus of the study is a methodology for utilizing programmable network

switches to eliminate bottlenecks from reliable network storage systems.

There are existing storage/file systems which use replication and erasure cod-

ing in order to improve reliability. RAID [4, 5] is a well-known example of reli-

able storage systems. However, ordinary RAID systems cover only disk failures

and cannot recover from node-level failures. In contrast, the proposal intends

to provide node-level redundancy for network storage systems. GlusterFS [17],

Gfarm [18], Ceph [9], and HDFS [19, 10] are network storage/file systems and

have a replication mechanism. However, as mentioned before, replication uses

twice or more storage space and should be avoided with exa-scale systems. Ceph

and HDFS also support Reed-Solomon [11] based erasure coding. HDFS supports

erasure coding using the HDFS-RAID [20] module. The most important thing

is that all of them does not support “on-the-fly” replication/encoding because of

performance issues. The proposed method generates parity block (erasure code)

on an “on-the-fly” basis, hence they are different from this work.

In order to build a zero-overhead reliable storage system, this study proposes

a new architecture which utilizes programmable abilities of a network switch.

37

3.4. SYSTEM DESIGN

There are several studies related to this issue that are not only limited to the

optimization of storage systems. [40] is a study to optimize MPI collective opera-

tions using network switches equipped with FPGA, which utilized NetFPGA [41]

and OpenFlow switches and improved the performance of MPI operations. The

optimization target is not the same as this work; however, the idea of improv-

ing network communication performance using specialized hardware functions is

common.

From the perspective of existing network devices, Mellanox provides the func-

tion [42] for optimizing MPI communication operations. The target of this hard-

ware is to optimize MPI operations; however, this is only an example of an HPC

communication layer accelerated by hardware. Hardware functions that optimize

the network of storage systems are in the extension of this type of idea. This is

the reason why this study intends to utilize those hardware functions to optimize

erasure codes in network storage systems.

In addition, the prototype implementation uses Remote Direct Memory Access

(RDMA) to minimize the overhead of network communication by eliminating

unnecessary memory copies. Advantages of applying RDMA communciation to

network storage systems are shown in existing studies. NFS over RDMA [31] is

an example of adding RDMA support to NFS [30]. [29] shows performance gain

by adding RDMA support to PVFS [28].

3.4 System design

3.4.1 Network-based data processing architecture

Network-based data processing architecture moves parity generation processes

from storage servers to programmable switches. This chapter describes a design for

data processing architecture for parity generation processes and shows a prototype

implementation.

The target of this study is not a dedicated hardware based large-scale block

storage device but a system which consists of multiple storage servers. Con-

ventional network storage systems use computing resources of servers to provide

mechanisms for reliability. In that type of system, network only transfers the data

between storage servers.

As discussed in 3.2.1, bottlenecks come from the reliability issues are owing to

the increased amount of data and the limitation of network bandwidth. Utilizing

programmable abilities of network switches is a good solution to solve these prob-

lems because network switches have enough bandwidth to spread the increased

data. At this time, there is no network switch (in production and not an FPGA

38

3.4. SYSTEM DESIGN

!

"#$!%&'()!*$+,(!*$,(

-&%.&/00/12#(345+$*%5)

6$&*-#(78 6$&*-#(79 :/&*$;(78

6$&*-#(78 6$&*-#(79
<

=/$/(12%+')

6$&*-#(78 6$&*-#(79 :/&*$;(78

>%&

<

?&*$#&

Figure 3.2: Target architecture of network storage systems. The proposal of
this study is a method for utilizing a programmable network switch for erasure-
coded network storage systems. A writer node sends source data blocks to a
programmable switch. The switch generates parity blocks and sends them to
storae nodes.

based devices) that has programmable function to implement a mechanism for

erasure coding. However, it is possible to propose a method for utilizing the abil-

ity of future network switches for reliable storage systems and provide evaluation

results with a proof of concept system. The proof of concept system consists of

computing nodes with multiple network devices. Following sections describe the

the proof of concept system of the network-based data processing architecture and

the method for reliable storage systems.

3.4.2 Overview of the system

This study targets network storage systems with parity (erasure coding) data.

The aim of this chapter is to propose a method to utilize network data processing

functions and to show evaluation results of the proof of concept system.

Fig. 3.2 describes the architecture of the target system. A writer node sends

the data bocks (Stripes #0 and Stripes #1) to a network switch. This switch has

programmable functions and calculates a parity block from Stripe #0 and Stripe

#1. The switch sends stripe and parity blocks to storage nodes.

39

3.4. SYSTEM DESIGN

!" !# $%&'&()*+,-. !/ !0 !1 !2

3'+4&56(7+86(!" !" !/ $!1

3'+4&56(7+86(!# !# !0 $!2

3'+4&56(7+86(!9 :;<(=!">(!#? :;<(=!/>(!0? $:;<=!1>(!2?

Figure 3.3: Data layout of striped blocks and parity block(s). Data blocks are
split into striped blocks. Parity blocks are xor value of striped blocks. Missing
data blocks can be recovered from rest blocks by calculating xor value of another
block.

3.4.3 Data layout

Fig. 3.3 describes the data layout of the target system. In this figure, the original

data blocks are #0 to #5. Two storage nodes store those data blocks and another

stores the exclusive OR (XOR) value (parity) of each original data block.

3.4.4 Switch architeture

Fig. 3.4 shows how network-based data processing architecture works. The writer

node sends data blocks to the switch, which then splits data blocks into striped

blocks and calculates their XOR value. Each parity block is sent to storage nodes

for striped blocks and a parity node stores the parity blocks.

3.4.5 Fallback mode

The current experiment environment is only for prototype purpose. However,

when the method is applied to a large-scale environment, switch failures become

a major trouble.

The system should have a fallback mode in preparation for switch failures.

Fig. 3.5 describes the fallback mode of a storage system. If the switch loses

programmable functions (left in the figure), the writer node can split the data

blocks into striped blocks and calculate the parity blocks. Next, the writer node

sends all blocks to storage nodes. In the case of complete network failure (right

in the figure), another network mechanism is required. If there is an available

network path, the writer can use it to apply the fallback mode.

40

3.4. SYSTEM DESIGN

!"#$%&'()$*#+,($*#,(-&%.&/00/12"(345+#*%5)

6#&*-"(78 6#&*-"(79 :/&*#;(78<&*#"&

=>?6-2*##"&

6%4&+"(@/#/

Figure 3.4: Architecture of a programmable network switch. A writer sends source
data blocks. A switch has a splitter and an XOR calculation module. The splitter
splits tha source data blocks into striped blocks. The XOR calculation module
calculates the XOR value of the striped blocks. Then, the switch sends all data
blocks to storage servers.

!"#$%&'()$*#+,($*#,(-&%.&/00/12"(345+#*%5)

6#&*-"(78 6#&*-"(79 :/&*#;(78<&*#"&

=>?6-2*##"&

!"#$%&'()$*#+,($*#,(-&%.&/00/12"(345+#*%5)

6#&*-"(78 6#&*-"(79 :/&*#;(78<&*#"&

=>?6-2*##"&

@/+'4-()$*#+,

A/221/+'(B-&%.&/00/12"(345+#*%5)(3/*24&"C A/221/+'(B5"#$%&'()$*#+,(3/*24&"C

Figure 3.5: Two cases of failure of a network switch.

41

3.4. SYSTEM DESIGN

Network switch with
programmable functions

Stripe #0 Stripe #1 Parity #0

XOR

New
Stripe #1

Figure 3.6: Rebuilding data blocks of stripe #1 from stripe #0 and parity #0

3.4.6 Rebuild

Rebuild feature is an important component to build a complete storage system.

However the current prototype implementation does not have a rebuild feature,

this subsection discusses a design to implement a rebuild feature on the proposed

system. Fig. 3.6 depicts the topology when the system rebuilds missing data which

is stored on node #1. Since the switch has sufficient bandwidth to receive data

blocks from multiple node, the number of storage node of the system does not

affect to the rebuild throughput.

3.4.7 Prototype implementation overview

Currently, there is no actual hardware for the programmable network switch;

therefore this study implemented it with a computer and multiple network cards.

Fig. 3.7 describes the connection of each component.

The node has multiple network cards (in this figure, network cards are Infini-

Band HCAs). Because of the limitation of the number of PCI Express lanes, three

InfiniBand HCAs are installed to the node. Fig. 3.8 describes the data transfer

mechanism and parity generation process. The prototype implementation utilized

the RDMA function of the InfiniBand HCAs to optimize the data transfer pro-

cesses and save memory space. The data structure and data processing mechanism

are described in the next subsection.

42

3.4. SYSTEM DESIGN

!"#$%& !"#$%'

"!() *+&$,- "!() *+&$,- "!() *+&$,-

(.$/01$,2 (.$/01$,2 (.$/01$,2

Figure 3.7: Components of a node with multiple network devices

3.4.8 Optimized data transfer and processing with RDMA

Fig. 3.8 describes the zero-copy data structure of the data processing mechanism.

Each node has ring buffer(s) to transfer and process the data blocks. In order

to use the RDMA data transfer functions, a memory registration process is re-

quired in advance to the actual transfer process. If different buffer blocks are

used for multiple transfer processes, a memory registration process occurres each

time a block is transferred. However, it requires considerable time and causes

performance degradation [43]. Therefore, the prototype implementation uses ring

buffer(s) for RDMA communication. Once the ring buffer is registered, further

data transfer processes never require memory registration processes. In Fig. 3.8

the writer nodes send data blocks to the switch. The switch splits the data into

two striped blocks and stores them to ring buffers. Then, the switch sends the

striped blocks to storage nodes and calculates the XOR value of these two blocks.

Finally, the XOR value is sent to the storage node (p).

3.4.9 Interaction between applications and switches

This study proposes a method itself and shows the evaluation results of the pro-

posal. However, this subsection explains the assumed interface between applica-

tions and the proposed mechanism.

The proposal itself is a proposal of a mechanism so that it does not require a

specific protocol. The implementation of the proposed method can have general-

ized operations to orchestrate designated storage layouts. They can be extensions

of existing storage network protocol or remote file access protocols.

43

3.4. SYSTEM DESIGN

!"#$%&'()#*'(+

,-.&(/011'$

2,'&-3"'$'*(4'4#$56

7$-"'$

89,

!"#$%&'()#*'(:

!"#$%&'()#*'(;

!7-"<=

>?@(A+

>?@(A!

>?@(A:

Figure 3.8: RDMA data transfer and parity generation. A writer send source data
blocks to a programmable switch. The switch splits source data blocks into striped
blocks (not described in the figure) and calculates parity blocks. Afterward, the
switch sends them to storage nodes using different InfiniBand HCAs. All data
blocks are stored in ring buffers and there is no memory copy.

44

3.5. EVALUATION

3.5 Evaluation

3.5.1 Evaluation target and conditions

The proposed method intends to optimize the performance of data write to reliable

storage systems.

This section describes the result of an evaluation on the cluster nodes con-

nected with InfiniBand FDR 4x. To implement network-based data processing

architecture, a node equipped with multiple InfiniBand HCAs is used. In this

evaluation, three InfiniBand HCAs was installed to a computing node. First,

the throughput of the multiple InfiniBand HCAs was evaluated to confirm that

the test environment did not have any performance bottlenecks resulting from

hardware specifications. Fig. 3.9 depicts the results of the total bidirectional

bandwidth evaluation. The perftest tools (ib write bw) is used to evaluate net-

work performance. As can be seen from the graph, the results are in proportion

to the number of installed HCAs. There is no performance degradation caused by

limitation of the PCI Express bus or other interconnect issues.

In addition, the evaluation skipped writing to the actual disk because of the

limitation of existing storage hardware and the purpose of the evaluation. The

aim of the proposed method is optimization of the data transfer mechanism. It

does not mean that the network bandwidth is not a bottleneck in the system

because as of 2016, the throughput of write and read of the latest product reaches

5,000 MB/s and 3,000 MB/s respectively [1].

All results are average of three measurements.

3.5.2 Evaluation results

Fig. 3.10 shows the results of the sequential write throughput evaluation. The

X-axis corresponds to stripe size and the Y-axis corresponds to the write through-

put from a client node. The blue graph is the result of optimization (using data

processing architecture of a network switch) and the red graph is the result of

naive implementation (the client sends both striped and parity blocks). Perfor-

mance gain by the optimization was 14% (8KB stripe case) to 44% (64KB stripe

case). With the best case of the optimized implementation, the throughput almost

reaches network performance. This means that the proposed method successfully

eliminated the bottleneck of the reliable data write. The performance of the fall-

back mode 3.4.5 will be the same as the results of the naive method, provided

that the system has the same back up network.

The evaluation results show that the proposed method improves the perfor-

mance of reliable data write by eliminating the bottleneck. In this evaluation,

45

3.6. CONCLUSION OF THIS CHAPTER

�

�����

������

������

������

������

������

������

� � �	 ��� 	�
� ����� ����		 ��
����

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

����������	
��������

��������	�
����������
�������

����

�����

�����

Figure 3.9: Bidirectional network (InfiniBand FDR 4x) throughput evaluation
with ib write bw (perftest tools).

the data processing architecture using the node equipped with multiple network

devices is used. However, the method consists of data processing (XOR) pipelines

and can be implemented as hardware. This means that immediately after obtain-

ing a network switch with programmable functions, the proposed method can be

implemented by hardware without a major modification of the design.

3.6 Conclusion of this chapter

This study proposed a methodology for utilizing programmable network switches

to eliminate the overhead of reliable network storage systems. The root cause of

the performance degradation of reliable network storage system was the increased

amount of traffic caused by additional parity data blocks. The proposed design

moves the parity generation processes to a programmable network switch in order

to avoid congestion in a writer node’s network. A prototype system using RDMA

transfer operations and conducted evaluations was implemented.

The evaluation results showed that the performance gain by the proposed

method was 14% to 44%.

Currently, this study implemented the proposed method using a computer

equipped with multiple network devices. However, the method can be imple-

mented as a hardware and can be applied to future programmable network switches.

Applying the method to existing systems and adding support of random/stride

46

3.6. CONCLUSION OF THIS CHAPTER

�����

�����

�����

�����

��		�

���
�

���
�

�����

�

����

�����

�����

�����

�����

�����

��
�� ��� ���

�

�

�

�

�

�

�

�

�

�

	

�

�

	

�

�

�

�

�

�

�

���������	�

���������

���������������

Figure 3.10: Write throughput comparison between optimized and naive method

writing is an important issue. In addition, a scalability issue is an important future

work when the method is applied to huge systems because this study used a

preliminary evaluation environment, which had a single network switch. Another

future work is that the full-support of file system’s functions. The prototype

implementation did not support partial write, rebuilding, and read operations

since this work focused on the performance degradation caused by the increased

traffic.

The target for the evaluation in this chapter was the sequential write to stor-

age systems; however, the results showed good performance in case of 16KB to

64KB stripe block size. It implies that the proposed method can achieve better

performance with real workloads.

47

Chapter 4

A Method to Optimize Remote

File Access Adapting to Access

Pattern and Network Delay

4.1 Introduction

Access pattern and network latency have major impacts on performance of remote

file access. Especially, non-sequential access under high network latency environ-

ment degrades the performance of remote file access. To achieve high performance,

it is necessary to use an adaptive configuration method. This chapter investigates

the performance of remote file access with synchronous RPC, in terms of access

patterns and network latency, and proposes an adaptive RPC buffer manage-

ment strategy to improve remote file access performance. This method considers

network-delay, bandwidth, and data access patterns. The performance of remote

file access under varied conditions is significantly improved by the method. Es-

pecially, performance of random access under high-latency environment with the

proposed method is much higher than a naive implementation, which uses fixed

parameters. The evaluation of the proposed method revealed that the proposed

method can find optimal parameters and the performance with the parameters is

close to the optimal case.

4.1.1 Background

Sharing data in wide area distributed environment becomes more and more im-

portant. Particularly, growth of e-science and data intensive computing boost

demand of data sharing within super computers. Wide area distributed file sys-

tem is suitable for data sharing. File duplication[8], which is commonly used to

48

4.2. RELATED WORK

86.92

3.165

18.01

1

0 20 40 60 80 100

Sequential(LAN)

Random(LAN)

Sequential(WAN)

Random(WAN)

Throughput [MB/s]

Figure 4.1: Performance evaluation result of remote file access using synchronous
RPC. Network delay of LAN is 50us and WAN is 25ms.

speed up the data sharing is tolerant to network delay since it transfers the whole

file. However, remote file access is used when a client computer does not have

enough storage capacity or needs only a fraction of the file. Remote file access

is sensitive to network delay. For example, the performance of the random data

access with a high latency network is much lower than the performance with a

low latency network. Fig. 4.1 is a result of performance evaluation of an exist-

ing method, which uses synchronous RPC. This figure shows that performance

of random access with high latency network is low, although the performance of

sequential access with low latency network is high. To improve the performance

under the high latency environment, a system administrator must optimize con-

figurations manually. However, it takes much time and there are many factors

should be concerned. Therefore, a method to optimize configurations automati-

cally, which is the main topic of the chapter is essential.

4.2 Related work

There are two types of remote file access method. The first method transfers a

portion of a file with RPCs (Remote Procedure Call) which contain a file offset and

size. The other method transfers the whole file as the web protocol. Gfarm [18]

and NFS [44] are examples of the former method. The specific size of data will

be transferred between the client and the server by this type of remote file access.

The size is 1MB with Gfarm and several dozen kilobytes with NFS. AFS [45] and

Coda [46] are examples of the latter type. This chapter focuses on the former

49

4.2. RELATED WORK

File server

File system client

Application

Protocol of the
file system

System call
(Library)

RPC
buffer size

Read from the RPC buffer (if exists)

RPC buffer

Figure 4.2: Sequence of remote file access using synchronous RPC

type of remote file access.

There are several studies to improve the performance of remote file access.

PVFS [28] divides a file into stripes and stores them on several servers in order

to permit striping access, which offers higher performance. Lustre [47] enables

both striping access and collective I/O. In addition, lustre can issue many RPCs

concurrently in order to tolerate network delay. However, the data transfer size is

fixed, so the system administrator have to optimize the parameters manually. [48]

is an example of an experiment of Lustre with a wide-area network and discussed

the relation between Lustre’s parameters and performance. This chapter also

focuses on wide-area distributed environment so that [48] is a helpful research to

know the performance characteristics with high latency network.

Other remote file access implementations have different methods to improve

the performance of remote file access. Grid FTP, which is an extended version of

FTP [49], adapted to grid environments. Grid FTP has a concurrent TCP con-

nections feature, which enables high-throughput transferring with a high latency

network. [50] is a research to optimize a number of concurrent TCP connections

by monitoring throughput. This method demonstrates high performance in the

real environment. [51] describes the method to determine the nature of data access

and to select the file system policy in order to improve the performance. NFS has

a performance tuning tool “nfso”, however it is not a dynamic tuning method and

system administrators have to set the parameters manually. The fixed parameters

cannot handle different environments.

This chapter describes the method of automatic optimization of RPC-based

remote file access, which considers the usage situation and the network environ-

ment.

50

4.3. A METHOD OF REMOTE FILE ACCESS AND PERFORMANCE EVALUATION
RESULTS

4.3 A method of remote file access and perfor-

mance evaluation results

As already mentioned in the previous section, there are two types of remote file ac-

cess on a distributed file system. This study aims at remote file access using RPC.

RPC can be divided into two types: synchronous RPC and asynchronous RPC.

This chapter focuses on synchronous RPC, with which a client sends requests to

a server one by one to and waits completions of previous RPCs.

4.3.1 Remote file access using synchronous RPC

Fig. 4.2 depicts a sequence of remote file access using synchronous RPC. This

figure shows what information is send to the server by the client. The appli-

cation issues requests and they will be sent to the file server by the file system

client. The server receives the request which contains the file offset and size, and

returns the corresponding data to the client. In case of remote file access with

synchronous RPCs, network delay lags the execution time of the RPC. Thus the

number of RPC execution per unit time will be decreased. This behavior degrades

the performance.

4.3.2 RPC buffer size and performance

As shown in 4.3.1, the client requests the fixed size of data to the server by a RPC.

The RPC has a “size” parameter which means the amount of data transferred by

a single RPC. In this paper, this parameter is called “RPC buffer size”. Existing

methods of remote file access fix the RPC buffer size.

The performance of remote file access will be degraded if the RPC buffer size

is fixed, because the number of the issued RPC will be decreased. This problem

is prominent in the case of sequential access.

On the other hand, the server returns the fixed size of data even if the client

requests one byte. All the returned data except for one byte is useless for the

client. This inefficient behavior degrades the performance of random-access and

stride-access.

In order to evaluate the effect of the RPC buffer size on remote file access, this

study measured the performance in case of various RPC buffer sizes and access

patterns. A prototype implementation was used for the performance measure-

ment. The implementation transfers data between a client and a server Network

delay was made by the tc (netem) command of Linux and each computer was

connected with a gigabit ethernet network. The server has RAID-0 7200rpm hard

51

4.3. A METHOD OF REMOTE FILE ACCESS AND PERFORMANCE EVALUATION
RESULTS

0

20

40

60

80

100

120

Th
ro

u
gh

p
u

t
[M

B
/s

]

RPC buffer size [byte]

0ms

10ms

25ms

50ms

75ms

100ms

Figure 4.3: Performance of sequential access with each network delay and buffer
size

disk drives to avoid that the server’s local storage becomes a bottleneck. TCP

stack is the cubic, which is the default on Linux 2.6.x. The tested range of the

RPC buffer size is from 64KB to 512MB because the performance is saturated if

the size is bigger than 512MB. The size of the transferred files was 6GB.

Fig. [4.3 - 4.5] are performance evaluation results of sequential access. The

experiment reads 512KB and seeks 3.5MB stride access and the last is 3MB read

and 6MB seek stride access. The X-axis is the RPC buffer size and the Y-axis is

the measured throughput[MB/s]. Each line in the graph corresponds to the given

network delay.

Fig. 4.3 describes that larger RPC buffer size brings better performance. With

the less than 1MB of RPC buffer size, the effect of the overhead degrades the per-

formance. If the network delay is higher, the RPC buffer size must be set to a

large value in order to achieve high performance. For example, in the case of

100ms network delay, the RPC buffer size must be larger than 512MB to achieve

more than 100MB/s throughput. Two factors characterize the performance of se-

quential access. The one is the time to complete RPC execution, which is affected

by the network delay. The long network latency brings the long waiting time. The

second is the behavior of the TCP implementation. Small size burst transfers can

not expand the congestion window of TCP. The TCP window size should be large

to achieve higher throughput transfer with the high latency network. For these

reasons, larger RPC buffer size improves the performance of sequential access.

On the other hand, Fig. [4.4, 4.5] show that larger buffer size is not always

optimal. In these cases, the small RPC buffer size improves the performance

52

4.4. ACCESS PATTERN RECOGNITION AND DYNAMIC RPC BUFFER SIZE
ADJUSTMENT

0

5

10

15

20

25

30

Th
ro

u
gh

p
u

t
[M

B
/s

]

RPC buffer size [byte]

0ms

10ms

25ms

50ms

75ms

100ms

Figure 4.4: Performance of stride access(read 512KB and seek 3.5MB) with each
network delay and buffer size

because of the low latency network. It means that the optimal value of the RPC

buffer size depends on not only an access pattern but also the network delay. There

is unnecessary data transfer(s) if the RPC buffer is too large than the amount of

the data the client requested. This point is clear from the 0 ms delay case and 10

ms delay case of Fig. 4.5.

In contrast, the small RPC buffer size degrades the performance of random-

access in the high network latency environment because each RPC execution takes

the time longer than the network delay. Therefore, larger RPC buffer size can

reduce the count of total RPCs that has a better effect than the small buffer size

which reduces unnecessary data transfers.

It can be concluded that the larger RPC buffer size is optimal with sequential

access. The best RPC buffer size depends on both the network delay and the

access pattern with other data access patterns.

4.4 Access pattern recognition and dynamic RPC

buffer size adjustment

The previous section showed effects of the network delay and the access pattern

regarding the remote file access performance. It is necessary to use a method to

recognize the access patterns in order to optimize the RPC buffer size adaptively.

This section describes the method to recognize the access pattern.

As described in Section4.3.1, an RPC execution transfer the same amount

of data as the parameter of RPC buffer size. The definition of “RPC buffer

53

4.4. ACCESS PATTERN RECOGNITION AND DYNAMIC RPC BUFFER SIZE
ADJUSTMENT

0
10
20
30
40
50
60
70
80

Th
ro

u
gh

p
u

t
[M

B
/s

]

RPC buffer size [MB/s]

0ms

10ms

25ms

50ms

75ms

100ms

Figure 4.5: Performance of stride access(read 3MB and seek 6MB) with each
network delay and buffer size

utilization ratio” is a percentage of the data that is used by the client application.

A sequential access raises this percentage to 100% since the client accesses the

RPC buffer continuously. On the contrary, the client uses the partial data of

the RPC buffer in case of the random or stride access. Then, the RPC buffer

utilization ratio will be less than 100%. For example, the RPC buffer size is 8 MB

and the client application reads 1 MB data from the buffer, then the RPC buffer

utilization ratio is 12.5%. Therefore, if the RPC buffer utilization ratio is high,

the access pattern is sequential. If the percentage is low, it is a random or stride

access.

There are several ways to measure RPC buffer utilization ratio. The simplest

way to detect the access pattern is to collect access logs and to analyze them.

However, this is not a suitable approach because the frequent file access also

increases the log size and consumes a long time to analyze. In addition, the order

of file access(es) is not essential information.

To avoid this problem, this study proposes the new method that keeps in-

formation with regard to the accessed area in the RPC buffer. The RPC buffer

utilization ratio can be calculated by number of used and unused bytes in the

buffer. However, there is still a problem. As the RPC buffer size increases, the

amount of memory to keep the used or unused bits will also increase. Then, this

study divided the RPC buffer into n blocks. When the client accesses the data

which is corresponding to a certain block, the block is recorded as a used block.

To calculate the RPC buffer utilization ratio, all the system have to do is just to

count the number of used blocks.

Fig. 4.6 depicts the relationship between the actual data access and the RPC

54

4.4. ACCESS PATTERN RECOGNITION AND DYNAMIC RPC BUFFER SIZE
ADJUSTMENT

RPC buffer size

Block size

Read

Seek

Used Unused

Accessed
RPC Buffer

Blocks to
measure
utilization ratio

Request

Figure 4.6: Procedure to measure the RPC buffer utilization ratio

n=16

n=4 100%

50%

Measured RPC
buffer utilization
ratio

Read
Seek

Figure 4.7: Difference of the measured RPC utilization ratio by n

buffer utilization ratio. The first row corresponds to the I/O requests issued by

the client application. The second row is the RPC buffer, that saves the data from

the server, The bottom row describes the blocks to measure the RPC utilization

ratio.

The RPC buffer utilization can be calculated from the number of used blocks

as shown in the bottom row and the formula is:

RPC buffer utilization ratio =
number of used blocks

n
(4.1)

n is a number of partitions and the method to determine n is as follows. Larger

n makes the result of the measured utilization ratio more precise.

It is not true that the precise utilization ratio brings the best performance.

This point is discussed in 4.3.2. The optimal RPC buffer size depends on the

55

4.5. DYNAMIC OPTIMIZATION OF THE RPC BUFFER SIZE

network delay.

Fig. 4.7 shows the difference of the measured RPC buffer utilization ratio

with the different n values: 4 and 16. First row indicates requests from the client

application. If n is 16 then the result is 50%. On the other hand, if the n is 4, then

the result is 100%. In this case, the access pattern is determined as sequential.

Smaller n does not decrease the RPC buffer utilization ratio because a block will

be marked as used if at least one byte is used in a certain block. Ultimately, every

access pattern is recognized as sequential if the n is 1. This study proposes the

method to optimize the RPC buffer size by using this behavior.

As described in the previous section, the main purpose to decrease the RPC

buffer size is to reduce the useless data transfer. However, the small buffer size

increases the number of RPCs. One RPC execution at least takes the time of the

network delay. Therefore, the decreased RPC buffer size has advantages only if

the is larger than the amount of data that can be transferred during the time of

network delay. If smaller RPC buffer size cannot improve the performance, the

access pattern should be treated as a sequential access and the data should be

transferred in bulk. This strategy is called “data sieving”[52].

n can change the behavior of data sieving. The amount of data that the

network can transfer in the time of network delay can be calculated by the product

of the network bandwidth and the network delay. This value is called “Bandwidth-

delay product”. If the size of skipped area of the RPC buffer is bigger than the

bandwidth-delay product, the area should be ignored and regarded as used. To

realize this behavior, set the n to meet the following statements in order that

the block size of the RPC buffer becomes the same value as the bandwidth-delay

product.

Bandwidth-delay product = Block size (4.2)

=
RPC buffer size

n
(4.3)

The RPC buffer utilization ratio can be calculated from the n and the measured

network bandwidth and delay.

4.5 Dynamic optimization of the RPC buffer size

The access pattern can be determined by the method shown in the previous sec-

tion. Sequential access patterns raise the RPC buffer utilization ratio and the

discontinuous access patterns degrade it. These results imply that lower RPC

buffer utilization ratio means the access pattern is random or stride, and higher

56

4.5. DYNAMIC OPTIMIZATION OF THE RPC BUFFER SIZE

RPC buffer utilization ratio means the access pattern is sequential.

This method changes the RPC buffer size dynamically based on this rule. The

RPC buffer size is changed by the average of the m RPC buffer utilization ratio

values in order to avoid frequent changing of the RPC buffer size. The m should

be large if the continuity of the access pattern is important. Moveover, larger

RPC buffer size takes a long time to complete RPC execution, set mto Msmall if

the RPC buffer size is larger than LARGE BUFSIZE and set to Mlarge if the

RPC buffer size is smaller than LARGE BUFSIZE to avoid continuing of the

inefficient state. The optimal values of these parameters depend on the frequency

of access pattern changing and the characteristic of applications.

The RPC buffer utilization ratio is equal to the percentage of the data used in

the transferred buffer. Therefore, the RPC buffer size should be shrunken if the

RPC buffer utilization ratio is low, or the RPC buffer size should be expanded if

the ratio is high. The size of the RPC buffer utilization ratio is judged by by two

threshold values: Uhigh and Ulow. The procedure to change the RPC buffer size is

as follows:

1: if FLAG = 1 then
2: FLAG = 0
3: if Ut < Ut−1 then
4: WAIT = p
5: Bsize = Bsize / σ
6: end if
7: end if
8: if WAIT > 0 then
9: WAIT = WAIT -1
10: CONTINUE
11: end if
12: if Ut > Uhigh then
13: if Bsize < Bmax then
14: Bsize = Bsize * σ
15: FLAG = 1
16: end if
17: else if Ut < = Ulow then
18: Bsize = Bsize * Ut

19: end if

Ut is the current RPC buffer utilization ratio and Ut−1 is the previous ratio.

Bsize is the RPC buffer size and Bmax is the maximum size of the RPC buffer. σ

is an increase rate of the RPC buffer size. Note that the Ut is an average value of

M of the utilization ratio values (this is not described in the algorithm).

57

4.5. DYNAMIC OPTIMIZATION OF THE RPC BUFFER SIZE

Table 4.1: Parameters
Parameter name value

LARGE BUFSIZE 128MB
Msmall 1
Mnormal 4
Uhigh 95%
Ulow 50%
Bmax 512MB

Growth rate(σ) 2
p 16

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

R
P

C
 b

u
ff

er
 s

iz
e

[b
yt

e
]

U
ti

liz
at

io
n

 r
at

io
[%

]

Utiliza
tion
ratio
[%]
RPC
buffer
size

Sequential Stride

Figure 4.8: Behavior of the proposed method

The RPC buffer size increases if the RPC buffer utilization ratio is high for

a long time (Line 14).In contrast, the random access pattern decrease the RPC

buffer utilization ratio, and the RPC buffer size will be decreased (Line 18). Then,

the RPC buffer utilization ratio raises when the RPC buffer size becomes an ap-

propriate value; however, this behavior does not mean that the access pattern

is sequential. The RPC buffer size will be increased by the procedure above, al-

though it is an unexpected behavior when the access pattern is still not sequential.

However, sequential access patterns can not be detected until the RPC buffer size

is expanded. To combine the two behaviors, the method turns back the RPC

buffer size to the previous value and fixes the RPC buffer size for next p RPC exe-

cutions (Line 1 to 11). Smaller p enables the method to react quickly to sequential

access patterns.

58

4.5. DYNAMIC OPTIMIZATION OF THE RPC BUFFER SIZE

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000
9000000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

R
P

C
 b

u
ff

e
r

si
ze

 [
b

yt
e

]

Number of RPCs

Optimal

Buf size

Figure 4.9: Behavior of the proposed method (stride: read 3MB and seek 6MB)

4.5.1 Behavior of the proposed method

This subsection describes how the proposed method changes the RPC buffer size

dynamically. Table 4.1 shows those parameters. Fig. 4.8 shows the transition of

the RPC buffer size and the RPC buffer utilization ratio in the case of a sequential

access pattern (1 GB) and a stride access pattern. The X-axis is the count of

RPCs issued, the left Y-axis is the RPC buffer utilization ratio[%], and the right

Y-axis is the RPC buffer size[KB]. Until the 30th RPC execution, the RPC buffer

utilization ratio is raised by the sequential access pattern and the RPC buffer size

is also expanded. After that, the stride access pattern decreases the RPC buffer

utilization ratio and the RPC buffer size. The RPC buffer utilization ratio will be

100% when the RPC buffer size is the optimal value. However, even if the RPC

buffer utilization ratio is 100%, expanding the RPC buffer size decrease the RPC

buffer utilization ratio because it is not a sequential access pattern. Then, the

method fixes the RPC buffer size next p times of RPC execution in order to keep

the optimal state as long as possible.

Fig. 4.9 shows the optimal value and the RPC buffer size which is changed by

the algorithm. The tested access pattern is the repetition of reading 3MB and

seeking 6MB. The optimal value means the best RPC buffer size, this is taken

from Fig. 4.5. The initial size of the RPC buffer size is 1 MB and it increases to

4 MB, which is the optimal value in this case.

59

4.6. PERFORMANCE EVALUATION

106.1
104.7 105.9 103.5 101.4 102.299.1 97.8

93.8
86.7 82.3 77.7

99.9

42.7

18.7
9.6 6.4 4.8

0

20

40

60

80

100

120

0ms 10ms 25ms 50ms 75ms 100ms

Th
ro

u
gh

p
u

t
[M

B
/s

]

Network delay

Optimal

Adaptive

1MB fixed

Figure 4.10: Performance of sequential access

Table 4.2: Selected RPC buffer size (sequential access)
Network delay Adaptive Optimal

0ms 512MB 128MB
10ms 512MB 256MB
25ms 512MB 512MB
50ms 512MB 512MB
75ms 512MB 512MB
100ms 512MB 512MB

4.6 Performance evaluation

This section describes the performance evaluation results of the proposed method.

The evaluation environment is the same as described in section 4.3.2.

4.6.1 Sequential access

Fig. 4.10 depicts a performance comparison of sequential access patterns. The

X-axis is the network delay and the Y-axis is a measured throughput of a 6 GB

file transfer. The Table 4.2 shows the optimal RPC buffer sizes and the selected

RPC buffer sizes by the proposed method under each network delay condition.

These “Optimal” results were collected from the measured performance results

with given the RPC buffer size values from 64 KB to 512 MB. “Optimal” in

the graph is the performance result of when the RPC buffer size is set to the

corresponding value in the Table 4.2. “Adaptive” is the performance with the

60

4.6. PERFORMANCE EVALUATION

24.1

16.4
15.7

15.0 15.0 13.8

20.2

15.8 14.1
13.6 12.5 10.9

24.1

14.7

9.4

4.8 3.2 2.4

0

5

10

15

20

25

30

0ms 10ms 25ms 50ms 75ms 100ms

Th
ro

u
gh

p
u

t
[M

B
/s

]

Network delay

Optimal

Adaptive

1MB fixed

Figure 4.11: Performance of stride access(read 512KB and seek 3.5MB)

Table 4.3: Selected RPC buffer size in stride access(read 512KB and seek 3.5MB)
Network delay Adaptive Optimal

0ms 512KB 1MB
10ms 4MB 4MB
25ms 512MB 512MB
50ms 512MB 512MB
75ms 512MB 512MB
100ms 512MB 512MB

proposed method and “1MB fixed” is the result of the case where the RPC buffer

size is fixed to 1MB, which is an example of conventional systems. In the case of

“1MB fixed”, the throughput is degraded by the network delay while “Adaptive”

keeps the high throughput.

As shown in the Table 4.2, the proposed method selected the RPC buffer size,

which is equal to the size of “Optimal” except with a low latency environment.

For example, in the cases of 0 ms and 10 ms, the measured performance is maxi-

mized when the RPC buffer size is 128MB or 256MB;however, the optimal value

is 512MB. The reason for this behavior is that the proposed method only moni-

tors the RPC buffer utilization ratio. The difference in the performance between

“Optimal” and “Adaptive” is caused by the amount of time to increase the RPC

buffer size. Therefore, this difference is not persistent with large files.

61

4.6. PERFORMANCE EVALUATION

67.8

46.5
37.1

35.2 35.0 35.0

57.4

41.7
33.4

30.0 27.9 26.0

67.8

36.2

17.9
9.6 6.5 4.9

0
10
20
30
40
50
60
70
80

0ms 10ms 25ms 50ms 75ms 100ms

Th
ro

u
gh

p
u

t
[M

B
/s

]

Network delay

Optimal

Adaptive

1MB fixed

Figure 4.12: Performance of stride access(read 3MB and seek 6MB)

Table 4.4: Selected RPC buffer size in stride access(read 3MB and seek 6MB)
Network delay Adaptive Optimal

0ms 1MB 1MB
10ms 4MB 4MB
25ms 4MB 4MB
50ms 512MB 512MB
75ms 512MB 512MB
100ms 512MB 512MB

4.6.2 Stride access

Fig. [4.11, 4.12] are the results of the performance evaluation with stride access

patterns. The X-axis and the Y-axis are the same to those of the sequential access

evaluation. The performance is better than that of “1MB fixed” under almost all

conditions with the proposed method.

Table 4.3 shows that the proposed method selected the same value as “Op-

timal” except for the case of the stride access (512KB reading) with the 0 ms

network delay.

4.6.3 Overhead of optimization

If the number of blocks (n) is 4096, the proposed method requires 512 (4096/8)

bytes of memory to save which block was used. In addition, it requires 64 bytes

of memory to save the 8 histories to calculate the average utilization ratio.

The actual measured time to determine the RPC buffer utilization ratio and

62

4.7. CONCLUSION OF THIS CHAPTER

63.55

54.78
47.34

22.43

14.46
9.62

67.18

35.83

18.13

9.59 6.44 4.88

0

10

20

30

40

50

60

70

80

0ms 10ms 25ms 50ms 75ms 100ms

Th
ro

u
gh

p
u

t
[M

B
/s

]

Delay [ms]

Adaptive

1MB fixed

Figure 4.13: Performance comparison of mixture of sequential access and stride
access

size was 160 microseconds per RPC execution. The overhead is very small com-

pared to data transfer operations themselves. Thus, the proposed method can

apply to remote file access without minimal disadvantage.

4.6.4 Mixed access pattern

Fig 4.13 describes the throughput with the mixed access pattern of sequential

accesses (50 MB) and 25 iterations of the combination of read (2 MB) and seek

(4 MB). The proposed method can achieve higher performance with the mixed

access pattern. This performance improvement shows that the proposed method

can adapt to not only a single access pattern but also mixed multiple data access

patterns.

4.7 Conclusion of this chapter

The evaluation results showed that the proposed method can improve the perfor-

mance of remote file access under various conditions. For example, the proposed

method can handle the stride access 16 times faster than the implementation with

the fixed RPC buffer size on the 100 ms delay network. The proposed method

used only one parameter: the RPC buffer utilization ratio, which can consider the

network bandwidth, the network latency and the access pattern. The advantage

of this method is the ability to consider many factors with a simple way. Addi-

63

4.7. CONCLUSION OF THIS CHAPTER

tionally, the overhead is small to apply to the real system. Therefore, this method

can improve the performance of the common remote file access systems which use

synchronous RPCs. Future work is the benchmark with real workloads, which is

helpful to know the real value of the proposed method.

64

Chapter 5

Conclusion

5.1 Summary

This study defined an important problem of the existing distributed storage sys-

tems as the trade-off between performance and reliability. Existing methods for

storage redundancy bring about performance degradation. This study revealed

that the performance degradation is caused by the additional data blocks used

for redundancy. These additional data blocks increase the network traffic of the

writer node, whose network constitutes a critical path in dominant cases. This

study proposed two different data-processing pipeline architectures for reliable

and high-performance distributed storage systems. These methods offload the

parity-generation processes to storage servers or network switches, to prevent the

storage systems from degrading their performances. Both methods utilized the

data-processing abilities of the storage nodes and the programmable functions

of the future network switches. Existing studies never utilized these computing

resources for reliable storage systems, as done in this study. This study also pro-

posed an additional optimization mechanism for wide-area environments, which

considered three important factors at the same time.

The first method, the “Active-storage mechanism” successfully utilized the

CPUs and the network devices of the storage nodes to generate parity blocks by

building data-processing pipelines across multiple storage nodes. This mechanism

can off-load the parity-generation processes to the storage servers. Typically, the

storage servers only receive data blocks from the writer nodes passively, whereas;

this method utilized the storage servers actively, to generate parity blocks. The

implementation of the prototype system utilized RDMA functions to minimize the

overhead, and successfully proved the advantages of the proposed method. None

of the existing studies achieved a reliable distributed storage system, without

performance degradation; however, the evaluation results of this study revealed

65

5.2. FUTURE WORK

that this method could reduce overheads.

The second method “Network-based Data Processing Architecture for Reliable

and High-performance Distributed Storage System” utilized the programmable

functions of the future network switches. This method off-loaded the parity-

generation processes to network switches to reduce the performance degradation

caused by the increased traffic. The future programmable network switch is not

available as on January 2016; however, the evaluation was conducted with the

software implementation, and the results showed that the method could improve

the performance of reliable storage systems. In addition, the proposed architec-

ture used only simple data-processing pipelines, which could be implemented as

hardware mechanisms.

The third method “A Method to Optimize Remote File Access Adapting to

Access Pattern and Network Delay” was an adaptive optimization method for

remote file access in wide-area environments. The method could consider the

network bandwidth, the access patterns, and the network latency, simultaneously.

This study examined the effects of these three factors with detailed preliminary

evaluations, and the proposed method could figure out the optimal parameters

for the given environments.

These three methods are not for a specific system layer and can be applied

to any system layer. For example, they can be applied to the block-device layer

or the file-system layer. The combination of these proposed methods has the

possibility to change the design of distributed storage systems, since it was pro-

vided to possess the advantage of breaking the trade-off between performance and

reliability.

5.2 Future work

The study proposed two methods for reliable and high-performance storage sys-

tems, and one additional mechanism; however, they have not been implemented

as a complete file system. Moreover, the proposal to utilize the programmable

network switches can be evaluated again when the hardware implementations of

the switches are available. Although the performance evaluation results show the

advantages of proposed methods, it is necessary to evaluate them with real work-

loads or well-known benchmark programs in order to know the real impact on the

existing systems. In addition, these proposed methods can work well together be-

cause they have different advantages. A method of building a hybrid architecture

using these proposed methods will also be of importance in the future.

The existing systems have started to replace the replication mechanisms with

efficient codes. However. they might have performance-degradation problems

66

5.2. FUTURE WORK

related to code-generation processes. The proposals of this study can act as key

ideas for future efficient and reliable storage systems of the future.

67

Acknowledgements

First, I would like to express my deepest gratitude to my advisor, Professor Os-

amu Tatebe, for the support in research activities. His continuous support made

my research fruitful. In addition, he gave me numerous opportunities to join in-

ternational conferences and workshops, which helped to broaden my outlook and

to learn how to cooperate with international research communities.

Besides my advisor, I would like to thank Professor Taisuke Boku, Professor

Kenjiro Taura, Associate Professor Shuichi Oikawa, and Dr. Yusuke Tanimura

for their insightful comments and feedback regarding this thesis.

My gratitude extends to Professor Mitsuhisa Sato, Professor Daisuke

Takahashi, Associate Professor Yoshiki Yamaguchi, Lecturer Hideyuki Kawashima,

Assistant Professor Hiroto Tadano, Dr. Hiroaki Umeda, Dr. Kazuya

Matsumoto, Dr. Masahiro Tanaka, and Dr. Mohamed Jabri for their support and

inspiration.

I also thank all students in the HPCS laboratory, especially the students in the

Big Data team, for their hard work in maintaining the experiment cluster nodes,

and for the instructive discussions during the weekly meetings.

Finally, I would like to thank my parents for their continuous support and

encouragement.

68

Bibliography

[1] Intel Solid-State Drive Data Center P3608 Series.

http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-

drives-dc-p3608-series.html.

[2] Tony Hey, Stewart Tansley, and Kristin Tolle, editors. The Fourth Paradigm:

Data-Intensive Scientific Discovery. Microsoft Research, Redmond, Washing-

ton, 2009.

[3] A. Gharaibeh, S. Al-Kiswany, and M. Ripeanu. ThriftStore: Finessing Re-

liability Trade-Offs in Replicated Storage Systems. Parallel and Distributed

Systems, IEEE Transactions on, 22(6):910–923, June 2011.

[4] David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Re-

dundant Arrays of Inexpensive Disks (RAID). In SIGMOD Rec., volume 17,

pages 109–116. ACM, June 1988.

[5] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and

David A. Patterson. RAID: High-performance, Reliable Secondary Storage.

In ACM Computing Surveys, volume 26, pages 145–185, 1994.

[6] A. Nisar, Wei keng Liao, and A. Choudhary. Delegation-Based I/O Mecha-

nism for High Performance Computing Systems. In IEEE Transactions on

Parallel and Distributed Systems, volume 23, pages 271–279, 2012.

[7] DDN R⃝IME14KTM. http://www.ddn.com/products/infinite-memory-engine-

ime14k/.

[8] Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, and Steven

Tuecke. The Data Grid: Towards an Architecture for the Distributed Man-

agement and Analysis of Large Scientific Datasets. In Journal of network and

computer applications, volume 23, pages 187–200, 1999.

[9] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and

Carlos Maltzahn. Ceph: A Scalable, High-performance Distributed File Sys-

69

BIBLIOGRAPHY

tem. In Proceedings of the 7th Symposium on Operating Systems Design and

Implementation, OSDI ’06, pages 307–320. USENIX Association, 2006.

[10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.

The Hadoop Distributed File System. In Proceedings of the 2010 IEEE 26th

Symposium on Mass Storage Systems and Technologies (MSST), pages 1–10.

IEEE Computer Society, 2010.

[11] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite

fields. In Journal of the Society for Industrial & Applied Mathematics, vol-

ume 8, pages 300–304. SIAM, 1960.

[12] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark

Manasse, and Rina Panigrahy. Design Tradeoffs for SSD Performance. In

USENIX 2008 Annual Technical Conference, ATC’08, pages 57–70, Berkeley,

CA, USA, 2008. USENIX Association.

[13] Claude Shannon. A mathematical theory of communication. Bell System

Technical Journal, 27:379–423, 623–656, 1948.

[14] Hakim Weatherspoon and John Kubiatowicz. Erasure Coding Vs. Repli-

cation: A Quantitative Comparison. In Revised Papers from the First In-

ternational Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 328–338.

Springer-Verlag, 2002.

[15] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick

Eaton, Dennis Geels, Ramakrishan Gummadi, Sean Rhea, Hakim Weath-

erspoon, Westley Weimer, Chris Wells, and Ben Zhao. OceanStore: An

Architecture for Global-scale Persistent Storage. In SIGPLAN Notices, vol-

ume 35, pages 190–201, November 2000.

[16] Ranjita Bhagwan, Kiran Tati, Yu-Chung Cheng, Stefan Savage, and Geof-

frey M. Voelker. Total Recall: System Support for Automated Availabil-

ity Management. In Proceedings of the 1st Conference on Symposium on

Networked Systems Design and Implementation - Volume 1, NSDI’04, pages

25–25, Berkeley, CA, USA, 2004. USENIX Association.

[17] RedHat. Gluster FS, http://www.gluster.org/.

[18] Osamu Tatebe, Kohei Hiraga, and Noriyuki Soda. Gfarm Grid File System.

In New Generation Computing, Ohmsha, Ltd. and Springer, volume 28, pages

257–275, 2010.

70

BIBLIOGRAPHY

[19] Hadoop. http://hadoop.apache.org/.

[20] Bin Fan, Wittawat Tantisiriroj, Lin Xiao, and Garth Gibson. DiskReduce:

RAID for Data-intensive Scalable Computing. In Proceedings of the 4th An-

nual Workshop on Petascale Data Storage, PDSW ’09, pages 6–10. ACM,

2009.

[21] Facebook’s Realtime Distributed FS based on Apache Hadoop.

https://github.com/facebookarchive/hadoop-20.

[22] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopou-

los, Alexandros G. Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba

Borthakur. XORing elephants: novel erasure codes for big data. In Pro-

ceedings of the 39th international conference on Very Large Data Bases,

PVLDB’13, pages 325–336. VLDB Endowment, 2013.

[23] Yuchong Hu, Henry C. H. Chen, Patrick P. C. Lee, and Yang Tang. NCCloud:

Applying Network Coding for the Storage Repair in a Cloud-of-clouds. In

Proceedings of the 10th USENIX Conference on File and Storage Technolo-

gies, FAST’12, pages 21–21. USENIX Association, 2012.

[24] Chentao Wu, Xubin He, Jizhong Han, Huailiang Tan, and Changsheng Xie.

SDM: A Stripe-Based Data Migration Scheme to Improve the Scalability of

RAID-6. In Proceedings of 2012 IEEE International Conference on Cluster

Computing (CLUSTER), pages 284–292, Sept 2012.

[25] Guangyan Zhang, Keqin Li, Jingzhe Wang, and Weimin Zheng. Accelerate

RDP RAID-6 Scaling by Reducing Disk I/Os and XOR Operations. In IEEE

Transactions on Computers, volume 64, pages 32–44, 2015.

[26] Pei Cao, Swee Boon Lim, Shivakumar Venkataraman, and John Wilkes.

The TickerTAIP Parallel RAID Architecture. In SIGARCH Comput. Ar-

chit. News, volume 21, pages 52–63, New York, NY, USA, May 1993. ACM.

[27] Y. Birk and E. Zilber. TPT-RAID: a High Performance Box-Fault Tolerant

Storage System. In 24th IEEE Conference on Mass Storage Systems and

Technologies(MSST), pages 215–220, 2007.

[28] Philip H. Carns, Walter B. Ligon, III, Robert B. Ross, and Rajeev Thakur.

PVFS: A Parallel File System for Linux Clusters. In Proceedings of the 4th

Annual Linux Showcase and Conference, pages 317–327. USENIX Associa-

tion, 2000.

71

BIBLIOGRAPHY

[29] Jiesheng Wu, Pete Wyckoff, and Dhabaleswar K. Panda. PVFS over In-

finiBand: Design and Performance Evaluation. In The 2003 International

Conference on Parallel Processing (ICPP 03), pages 125–132, 2003.

[30] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler,

and D. Noveck. Network File System (NFS) version 4 Protocol. RFC 3530

(Proposed Standard), April 2003.

[31] Brent Callaghan, Theresa Lingutla-Raj, Alex Chiu, Peter Staubach, and

Omer Asad. NFS over RDMA. In Proceedings of the ACM SIGCOMM work-

shop on Network-I/O convergence: experience, lessons, implications, NICELI

’03, pages 196–208. ACM, 2003.

[32] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active Disks: Programming

Model, Algorithms and Evaluation. SIGPLAN Not., 33(11):81–91, October

1998.

[33] Patrick Donnelly and Douglas Thain. Design of an Active Storage Cluster File

System for DAG Workflows. In Proceedings of the 2013 International Work-

shop on Data-Intensive Scalable Computing Systems, DISCS-2013, pages 37–

42, New York, NY, USA, 2013. ACM.

[34] Philipp Reisner. DRBD v8 Replicated Storage with Shared Disk Semantics.

In Proceedings of the 12th International Linux System Technology Conference,

pages 1–11, 2005.

[35] P.T. A. Marin Lopez, Arturo Garcia Ares. The Network Block Device. In

Linux Journal, volume 2000. Belltown Media, 2000.

[36] OpenFabrics. http://beany.openfabrics.org/.

[37] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy, J. Wu, and

D. K. Panda. Sockets Direct Protocol over InfiniBand in Clusters: Is It

Beneficial? In Proceedings of the 2004 IEEE International Symposium on

Performance Analysis of Systems and Software, ISPASS ’04, pages 28–35.

IEEE Computer Society, 2004.

[38] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang, H. Sub-

ramoni, C. Murthy, and D. K. Panda. High Performance RDMA-based De-

sign of HDFS over InfiniBand. In Proceedings of the International Conference

on High Performance Computing, Networking, Storage and Analysis, SC ’12,

pages 35:1–35:35. IEEE Computer Society Press, 2012.

72

BIBLIOGRAPHY

[39] Mellanox Technologies. RDMA aware programming user manual,

http://www.mellanox.com/related-docs/

prod software/RDMA Aware Programming user manual.pdf.

[40] Omer Arap, Geoffrey Brown, Bryce Himebaugh, and Martin Swany. Software

Defined Multicasting for MPI Collective Operation Offloading with the NetF-

PGA. In Euro-Par 2014 Parallel Processing, volume 8632 of Lecture Notes in

Computer Science, pages 632–643. Springer International Publishing, 2014.

[41] J.W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,

R. Raghuraman, and Jianying Luo. NetFPGA–An Open Platform for

Gigabit-Rate Network Switching and Routing. In Microelectronic Systems

Education, 2007. MSE ’07. IEEE International Conference on, pages 160–

161, June 2007.

[42] Mellanox. CORE-Direct The Most Advanced Technology for

MPI/SHMEM Collectives Offloads. http://www.mellanox.com/related-

docs/whitepapers/TB CORE-Direct.pdf.

[43] D. Dalessandro and P. Wyckoff. Memory Management Strategies for Data

Serving with RDMA. In High-Performance Interconnects, 2007. HOTI 2007.

15th Annual IEEE Symposium on, pages 135–142, Aug 2007.

[44] B. Callaghan, B. Pawlowski, and P. Staubach. NFS Version 3 Protocol Spec-

ification. In RFC 1813, 1995.

[45] John H. Howard. Scale and performance in a distributed file system. In ACM

Trans. Computer Systems, volume 6, pages 51–81, 1988.

[46] M. Satyanarayanan. Coda: A Highly Available File System for a Distributed

Workstation Environment. In IEEE Trans. Computers, volume 39, pages

447–459, 1990.

[47] P. J. Braam. Lustre, http://www.lustre.org/.

[48] Stephen C. Simms, Gregory G. Pike, and Doug Balog. Wide Area Filesystem

Performance using Lustre on the TeraGrid. In Proceedings of the TeraGrid

2007 Conference, 2007.

[49] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959, October 1985.

[50] Takeshi Ito, Hiroyuki Ohsaki, and Makoto Imase. GridFTP-APT: Automatic

Parallelism Tuning Mechanism for Data Transfer Protocol GridFTP. IEEE

73

BIBLIOGRAPHY

International Symposium on Cluster Computing and the Grid, 0:454–461,

2006.

[51] Tara M. Madhyastha, Christopher L. Elford, and Daniel A. Reed. Optimizing

Input/Output Using Adaptive File System Policies. In Proceedings of the

Fifth Goddard Conference on Mass Storage Systems and Technologies, pages

493–514, 1996.

[52] Rajeev Thakur, William Gropp, and Ewing Lusk. Data Sieving and Collective

I/O in ROMIO. In Proceedings of the Seventh Symposium on the Frontiers

of Massively Parallel Computation, pages 182–189. IEEE Computer Society

Press, 1988.

74

Appendix A

List of Publications

Journal Papers (in Japanese)

1. 大辻弘貴，建部修見，「アクセスパターンと回線遅延を考慮した遠隔ファイ
ルアクセスの最適化」，論文誌コンピューティングシステム (ACS)，情報処
理学会，Vol. 4，No 4，pp.122-134，2011年 10月

Conference Papers (Refereed)

1. Hiroki Ohtsuji and Osamu Tatebe, “Network-based Data Processing Ar-

chitecture for Reliable and High-performance Distributed Storage System”,

Euro-Par 2015: Parallel Processing Workshops, Lecture Notes in Computer

Science, Vol. 9523, pp.16-26, 2015 (DOI: 10.1007/978-3-319-27308-2 2)

2. Hiroki Ohtsuji and Osamu Tatebe, “Active-Storage Mechanism for Cluster-

wide RAID System”, Proceedings of IEEE International Conference on

Data Science and Data Intensive Systems (DSDIS), pp.25-32, 2015 (DOI:

10.1109/DSDIS.2015.101)

Conference Papers (Refereed short papers)

1. Hiroki Ohtsuji and Osamu Tatebe, “Server-side Efficient Parity Genera-

tion for Cluster-wide RAID System”, Proceedings of 7th IEEE Interna-

tional Conference on Cloud Computing Technology and Science (Cloud-

Com), pp.444-447, 2015 (DOI: 10.1109/CloudCom.2015.25)

75

Posters (Refereed)

1. Hiroki Ohtsuji and Osamu Tatebe,“ POSTER: Preliminary evaluation of

optimized transfer method for cluster-wide RAID-4”, Proceedings of IEEE
International Conference on Cluster Computing (CLUSTER), pp.284-285,

2014 (DOI: 10.1109/CLUSTER.2014.6968775)

Symposium Papers (in Japanese, Refereed)

1. 大辻弘貴，建部修見，「アクセスパターンと回線遅延を考慮した遠隔ファイル
アクセスの最適化」，先進的計算基盤システムシンポジウム (SACSIS2011)

論文集，2011年 5月

List of Other Publications (in Japanese)

1. 大辻弘貴，建部修見，「Cluster-wide RAID向けの集中型コントローラ」，情報
処理学会ハイパフォーマンスコンピューティング研究会 (HPC147, HOKKE22)，
2014年 12月

2. 大辻弘貴，建部修見，「Cluster-wide RAIDの実装と評価」，情報処理学会ハ
イパフォーマンスコンピューティング研究会 (HPC145, SWoPP2014)，2014

年 8月

3. 大辻弘貴，建部修見，「分散ストレージシステムに対する低オーバヘッド冗
長化書き込み手法の提案と評価」，情報処理学会ハイパフォーマンスコン
ピューティング研究会 (HPC142, HOKKE21)，2013年 12月

4. 大辻弘貴，建部修見，「RDMAによる低オーバヘッドファイルアクセスと
冗長記録」，情報処理学会ハイパフォーマンスコンピューティング研究会
(HPC137, HOKKE20)，2012年 12月

5. 大辻弘貴，建部修見，「Infinibandを用いたファイルアクセスの高速化」，情報処
理学会ハイパフォーマンスコンピューティング研究会 (HPC135, SWoPP2012)，
2012年 8月

6. 大辻弘貴，建部修見，「Non-blocking RPCを用いた遠隔ファイルアクセスの
実装と性能評価」，情報処理学会ハイパフォーマンスコンピューティング研
究会 (HPC132, HOKKE19)，2011年 11月

7. 大辻弘貴，建部修見，「Non-blocking RPCを用いた遠隔ファイルアクセス
の最適化」，情報処理学会ハイパフォーマンスコンピューティング研究会
(HPC130, SWoPP2011)，2011年 8月

76

8. 大辻弘貴，建部修見，「遠隔ファイルアクセスにおけるアクセスパターンと
遅延の影響」，情報処理学会ハイパフォーマンスコンピューティング研究会
(HPC128, HOKKE18)，2010年 12月

List of Presentations and Posters

1. Hiroki Ohtsuji and Osamu Tatebe, “Breaking the Trade-off between Perfor-

mance and Reliability of Network Storage System”, PRAGMA29 (Poster),

Depok, Indonesia, Oct. 2015

2. Hiroki Ohtsuji and Osamu Tatebe, “Pipelined Data Processing Architecture

for Network Storage Systems”, PRAGMA28 (Poster), Nara, Apr. 2015

3. Hiroki Ohtsuji and Osamu Tatebe, “Network-based Storage Architecture for

Exa-scale Computing Systems”, PRAGMA27 (Poster), Bloomington(IN),

Oct. 2014

4. Hiroki Ohtsuji and Osamu Tatebe, “Towards 100% Solar-powered Exa-scale

Computing”, PRAGMA26 (Poster), Tainan, Apr. 2014

5. Hiroki Ohtsuji, “Building a Single-sided Communication Layer for Exa-scale

Storage Systems”, Argonne National Laboratory Seminar Series, Argonne,

Aug. 2013

6. Hiroki Ohtsuji and Osamu Tatebe, “High-throughput Remote File Access

for Exa-scale Storage Systems”, IWCST2013, Hangzhou, Oct, 2013

7. Hiroki Ohtsuji and Osamu Tatebe, “High Throughput, Low latency and

Reliable Remote File Access”, PRAGMA24 (Poster), Bangkok, Mar. 2013

8. Hiroki Ohtsuji and Osamu Tatebe, “Remote File Access with Infiniband

RDMA”, PRAGMA23 (Poster), Seoul, Oct. 2012

9. Hiroki Ohtsuji and Osamu Tatebe, “High Throughput Remote File Access

with Infiniband”, PRAGMA22 (Poster), Melbourne, Apr. 2012

10. Hiroki Ohtsuji and Osamu Tatebe, “Optimization of Remote File Access

Considering Access Pattern and Network Delay”, PRAGMA20, HongKong,

Mar. 2011

77

Awards and Projects

1. 筑波大学大学院システム情報工学研究科コンピュータサイエンス専攻 専攻
長表彰, 2013年 3月

2. 第二回HPCアイデア・コンテスト 最優秀賞, 2014年 3月

3. 日本学術振興会特別研究員 (DC2),「次世代高性能計算機に向けたネットワー
ク指向ストレージシステムの研究」，2014年 4月-2016年 3月

4. PRAGMA29 Workshop, Best Technical Talk, 2015年 10月

78

