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ABSTRACT

Factors and possible constraints to extremely large spread of effective climate sensitivity (ECS) ranging

about 2.1–10.4K are examined by using a large-member ensemble of quadrupling CO2 experiments with an

atmospheric general circulation model (AGCM). The ensemble, called the multiparameter multiphysics

ensemble (MPMPE), consists of both parametric and structural uncertainties in parameterizations of cloud,

cumulus convection, and turbulence based on two different versions of AGCM. The sum of the low- and

middle-cloud shortwave feedback explains most of the ECS spread among the MPMPEmembers. For about

half of the perturbed physics ensembles (PPEs) in the MPMPE, variation in lower-tropospheric mixing in-

tensity (LTMI) corresponds well with the ECS variation, whereas it does not for the other half. In the latter

PPEs, large spread in optically thickmiddle-cloud feedback over the equatorial ocean substantially affects the

ECS, disrupting the LTMI–ECS relationship. Although observed LTMI can constrain uncertainty in the low-

cloud feedback, total uncertainty of the ECS among the MPMPE cannot solely be explained by the LTMI,

suggesting a limitation of single emergent constraint for the ECS.

1. Introduction

During these three decades, the uncertainty range of

climate sensitivity (CS), determined as global-mean

surface temperature increase in response to doubling

of CO2 concentration, has not been reduced efficiently

(Knutti and Hegerl 2008; Maslin and Austin 2012)

despite improving quality of climate model projections

(Reichler and Kim 2008). It is essential to achieve

progress in understanding of factors contributing to the

spread of CS and to constrain the spread from obser-

vational metrics with physical consistency (Fasullo et al.

2015; Klein and Hall 2015). Uncertainty in cloud feed-

back, the most important factor for the spread of CS

(Dufresne and Bony 2008), has been examined by de-

composing into different cloud properties including re-

gionality, height, and optical depth (e.g., Zelinka et al.

2012a,b, 2013; hereafter Z13). For example, negative

cloud feedback over the high latitudes associated with a
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phase change from ice to liquid cloud is physically con-

sistent and robust among models (e.g., Tsushima et al.

2006; Zelinka et al. 2012b; Z13). In contrast, low cloud

amount feedback over the ocean, the largest contributor

to the total spread of cloud feedback (Bony andDufresne

2005; Webb et al. 2006), still scatters substantially even in

the state-of-the-art climatemodels [archived in phase 5 of

the Coupled Model Intercomparison Project (CMIP5);

Taylor et al. 2012] both in sign and magnitude (Vial et al.

2013; Z13; Qu et al. 2014).

The CMIP multimodel ensemble (MME) consists of

general circulation models (GCMs) developed in differ-

ent research groups but it does not necessarily cover the

full range of possible uncertainty because similar model

structures among some of them (e.g., Knutti et al. 2013)

and limited ensemblemembers (Tebaldi andKnutti 2007;

Collins et al. 2011). In previous literature, this sampling

problem in ‘‘the ensemble of opportunity’’ was addressed

using different experimental strategies. A well-known

sampling strategy from perturbing parameters in model

physics schemes [a perturbed physics ensemble (PPE)] is

an effective way to examine dependencies of CS and

climate feedbacks on model parameters in a given model

structure (Murphy et al. 2004; Stainforth et al. 2005; Piani

et al. 2005; Sanderson et al. 2010; Yokohata et al. 2010;

Collins et al. 2011; Klocke et al. 2011; Shiogama et al.

2012; Webb et al. 2013; Yamazaki et al. 2013; Zhao 2014;

Tomassini et al. 2015). Yokohata et al. (2010, 2013) and

Sanderson (2011) compared PPEs based on different

GCMs and revealed that parametric uncertainty depends

on model structures; therefore, both structural and

parametric uncertainties in CS should be examined in

unified frameworks.

Structurally different GCMs can produce larger gaps

of CS and cloud feedback than parametric uncertainty

in a given model structure. Watanabe et al. (2012,

hereafter W12) explored gaps of CS and cloud feedback

between different versions of MIROC climate model

(section 2a) by using a multiphysics ensemble (MPE)

developed by replacing physics schemes (cloud, cumulus

convection, and turbulence) between the two GCMs

(Table 1). Gettelman et al. (2012) also developed an

MPE based on two versions of the Community Atmo-

sphere Model. In addition, Shiogama et al. (2014,

hereafter Shi14) developed PPEs based on the eight

MPE models (W12), collectively called the multipa-

rameter multiphysics ensemble (MPMPE), and exam-

ined the CS spread among it. The MPE consists of both

low-CS and high-CS models (W12), resulting in an ex-

tremely wide range of CS (2.1–10.4K) among the

136-member MPMPE. Cloud feedback, particularly

shortwave (SW) radiation feedback over the ocean, is

the dominant factor for the CS spread among the

MPMPE, similar to the state-of-the-art MME. How-

ever, the largest contributors (low- or middle-cloud

feedback over the tropical ocean) for the spreads of

CS are suggested to be different among the eight PPEs

with different model structures (Shi14). In Shi14, re-

spective contributions from different types of cloud

(cloud amount, height, and optical thickness; see section

2b) to the total spread in cloud feedback among the

MPMPE were not explored. In addition, Shi14 exam-

ined cloud radiative feedback parameters simply by all-

sky and clear-sky radiative balances (see section 2b),

resulting in a possible artifact in the estimated cloud

feedback due to noncloud effects.

By using above different types of ensembles (par-

ticularly MME and PPE), observational metrics (called

emergent constraint) associated with cloud processes

were applied to constrain the uncertainty range in CS

(Fasullo et al. 2015; Klein and Hall 2015). Sherwood

et al. (2014, hereafter She14) examined a possible

correspondence between CS and intensity of vertical

air mixing between the boundary layer and free

TABLE 1. List of models with n representing ensemble size. Old denotes that physics schemes of MIROC5 were replaced by those of

MIROC3. MIROC5 convection scheme: prognostic closure with state-dependent entrainment (Chikira and Sugiyama 2010; Chikira

2010). Cloud scheme: prognostic cloud with mixed-phase microphysics (Watanabe et al. 2009; Wilson and Ballard 1999). Boundary layer

scheme: Nakanishi–Niino–Mellor–Yamada level-2.5 closure (Nakanishi 2001; Nakanishi and Niino 2004). MIROC3 convection scheme:

prognosticArakawa–Schubert schemewith triggering function (Pan andRandall 1998; Emori et al. 2005). Cloud scheme: diagnostic cloud

with simplemicrophysics (LeTreut and Li 1991; Ogura et al. 2008). Boundary layer scheme:Mellor–Yamada level-2.0 closure (Mellor and

Yamada 1974, 1982). Check marks represent categories of the models.

MIROC5A Cld Cnv Vdf CnvVdf CldCnv CldVdf CldCnvVdf

n 20 20 20 11 12 20 15 18

Cloud scheme Old Old Old Old

Convection scheme Old Old Old Old

Boundary layer scheme Old Old Old Old

NewCnv ✔ ✔ ✔ ✔

OldCnv ✔ ✔ ✔ ✔

MIROC3-like ✔ ✔
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troposphere that is essential for the low cloud feedback

(Brient and Bony 2013; Demoto et al. 2013; Zhang et al.

2013; Zhao 2014). She14 showed that the half of the CS

variance among 43 CMIP3 and CMIP5 models can be

explained by spread of lower-tropospheric mixing in-

tensity (LTMI). As a result, the CS spread can be con-

strained by observed LTMI into higher value among the

MME (.3K). It is physically reasonable that GCMs

with stronger low-latitude LTMI should be dryer in a

warming climate, resulting in a stronger positive low-

cloud feedback compared with weaker-LTMI GCMs

(Fasullo et al. 2015; Klein and Hall 2015). However,

correlation between LTMI and low-cloud feedback is

not clearer than that for LTMI and CS, suggesting a

remaining issue on physical consistency and effective-

ness of LTMI for constraining the possible range of CS

(She14; Klein and Hall 2015).

PPEs can be used as tests for physical consistency of

the emergent constraint found inMMEs (Klein andHall

2015). However, a PPE developed by a particular model

structure is insufficient to examine a possible un-

certainty range of CS. Therefore, we examine a physical

consistency of LTMI to constrain spread of low-cloud

feedback by using the large-member MPMPE. We ex-

amine respective roles of different types of cloud in the

uncertainty in cloud feedback among the MPMPE by

using satellite-simulator outputs (see section 2b). Re-

sults of this study reveal that LTMI can explain spread of

low-cloud feedback but is not sufficient for constraint on

CS uncertainty among the MPMPE. Section 2 describes

data and methods used in this study. Section 3 explores

general characteristics of cloud feedback among the

MPMPE and decomposition of it into different cloud

types. In section 4, roles of low- and middle-level cloud

feedbacks in the CS spread are examined. Section 5

examines the relationships among LTMI, cloud feed-

back, and CS within the MPMPE. Section 6 provides a

summary and discussion of this study.

2. Data and methods

a. Model and experiments

We use experimental data of MPMPE from Shi14,

which is based on two versions of the atmospheric gen-

eral circulation models (AGCMs): MIROC5 (hereafter

MIROC5A; CS is 2.85K; Watanabe et al. 2010) and

MIROC3 (CS is 3.6K; Hasumi and Emori 2004). First,

MIROC5A and additional seven hybrid AGCMs to-

gether called the MPE (W12) were developed by re-

placing single or multiple physics schemes (cloud,

cumulus convection, and turbulence) in MIROC5A to

corresponding schemes adopted in MIROC3. For

example, the model in which convection scheme is re-

placed by that of MIROC3 is called Cnv (Table 1). See

W12 for more details of MPE and numerical experi-

ments. Second, Latin-hypercube sampling (McKay et al.

1979) was applied to the MPE models to develop eight

PPEs (up to 20 members) by sweeping parameters for

the cloud, cumulus convection, and turbulence schemes

(Shi14). In total, 136 out of 20 3 8 members in the

MPMPE (Table 1) are used in this study (remainders are

not available due to numerical problems; see Shi14).

Details of perturbed parameters in the physics schemes

and their allowable ranges can be found in Table 2

of Shi14.

Next, 6-yr-long control (CTL) and two sensitivity

experiments were conducted on 136 members in

MPMPE to diagnose CS, forcing, and feedback. In CTL,

AGCMs were forced by climatological sea surface

temperature (SST) and sea ice from the preindustrial

control simulation of the coupled atmosphere–ocean

general circulation model (CGCM) version of MIROC5.

CO2 concentration was set to be identical to preindustrial

run proposed in CMIP5 (273ppmv). Next the increasing

SST run and CO2 run were performed by prescribing

patterned SST increase and the quadrupling of CO2 con-

centration, respectively. The prescribed SST increase and

sea ice change were derived from the difference be-

tween the average of the years 11–20 from the CO2

quadrupling run and the preindustrial run in the

CGCM version of MIROC5. See Shi14 for more details

of the experiments. From the three runs (CTL, SST,

and CO2), global-mean radiative forcing (RF), total

radiative feedback parameter (l), and effective CS

(ECS) are determined as

RF5 (R
CO2

2R
CTL

)/2, (1)

l5 (R
SST

2R
CTL

)/(SAT
SST

2SAT
CTL

), and (2)

ECS52RF/l , (3)

where R represents global-mean radiative balance at

the top of the atmosphere (TOA) and SAT denotes

surface air temperature. Subscripts represent the

names of the experiments. All the quantities are ex-

pressed as annual mean in this study. The factor of 1/2 in

Eq. (1) converts the RF of CO2 quadrupling to that of

doubling. Although a 6-yr integration would be short

to estimate RF, l, and ECS, the estimations are con-

sistent with those derived from 20-yr integrations

(Shi14). Note that the l and ECS estimated in this

method do not contain the nonlinear effect of l (e.g.,

Armour et al. 2013; Andrews et al. 2015), suggesting a

limitation for comparing with equilibrium CS obtained

from long-term CGCM simulations (e.g., Andrews

et al. 2012).
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b. Diagnosing cloud radiative feedback parameters

Although some previous studies including Shi14 esti-

mated cloud feedback by cloud radiative effect (differ-

ence between all-sky and clear-sky TOA radiation), such

estimation could be biased due to contamination of

noncloud radiative perturbation (e.g., Soden et al. 2008).

In this study, cloud l is diagnosed by using cloud radi-

ative kernel method (Z13). The International Satellite

Cloud Climatology Project (ISCCP) simulator (Klein

and Jakob 1999; Webb et al. 2001) implemented in the

MPMPE diagnoses cloud fraction at cloud-top pressure

(CTP) ranges and cloud optical depth t ranges in a

similar manner to the satellite observation. The ISCCP

simulator diagnoses 49 types of cloud (7 CTP3 7 t bins)

based on ISCCP cloud classification. Then simulator-

produced clouds and ISCCP cloud radiative kernel are

used to diagnose cloud l. The radiative perturbation at

TOAdue to change in the simulated ISCCP clouds in the

model can be diagnosed by multiplying radiative kernel

[longwave (LW) and shortwave radiation components]

and cloud fraction change in the 49 cloud bins. The sum

of TOA radiative perturbation from all the 49 cloud bins

per 1K increase in global-mean SAT corresponds to

total cloud l. Net cloud l (lcld) is derived from the sum

of LW and SW cloud l (lLWcld and lSWcld). In this study,

we mainly focus on lSWcld because the contribution of

lSWcld dominates the spread of ECS among theMPMPE

(section 3a).

Here estimated cloud l could be biased due to im-

proper implementation of the ISCCP simulator. We

tested consistency between total cloud fraction obtained

from summing the CTP–t histogram and total cloud

fraction directly computed in the model cloud scheme

(Zelinka et al. 2012a) and confirmed that the two show

good agreements among MPMPE. The cloud l can be

decomposed into high, middle, and low CTP and thin,

medium, and thick t components by CTP and t bins. In

addition, we also utilize a partitioning method proposed

in Z13 that can decompose the cloud l into 1) cloud

amount feedback, 2) CTP feedback, 3) t feedback, and

4) a residual term. Cloud amount feedback represents a

role of total cloud amount change in l assuming a con-

stant relative probability distribution in 49 types of

ISCCP cloud. CTP (t) feedback is derived by assuming

constant t (CTP) and total cloud amount. The ISCCP

simulator and cloud radiative kernel can eliminate the

noncloud radiative effect from the estimate of cloud

l (Z13).

c. Lower-tropospheric mixing intensity

In this study, the relationship between cloud radiative

feedback parameters and LTMI among the MPMPE is

examined to explore generality of the relationship found

in the MME (She14). LTMI consists of two components

of lower-tropospheric mixing: small-scale mixing Msmall

via parameterized processes and large-scale mixing re-

solved in GCMs. Note that Msmall is determined by a

vertically integrated specific humidity tendency term

(from 850hPa to the surface) due to parameterized

convection in GCMs averaged over the tropical ocean

(308S–308N). She14 showed that drying of the boundary

layer and moistening of the free troposphere via Msmall

and its change in a warming climate are stronger in

higher-CS GCMs; the reverse is also true. However,

most of GCMs did not provide the convective specific

humidity tendency term to the CMIP5 archives.

Therefore She14 proposed to use an index S calculated

from resolved variables alternative to Msmall. Differ-

ences of relative humidity (RH) and temperature (T)

between the boundary layer (at 850 hPa) and free tro-

posphere above the boundary layer (at 700 hPa) over the

tropical deep convective region (the upper quartile of

the annual-mean midtropospheric ascending motion;

Fig. 1 in She14) are used to determine S. The differences

of T (DT7002850; in kelvin) and RH (DRH7002850; in

percent) are scaled; then S is derived as

S[ (DRH
7002850

/1002DT
7002850

/9) , (4)

where 100% and 9K are scaling factors to reduce the

noise from other factors that affect DRH7002850 and

DT7002850 (She14). Here the region used for calculating

S is restricted to the tropical deep convective region to

prevent contamination of nonlocal influence on hu-

midity over the subsidence regions (She14). In this

study, both Msmall and S are examined.

As for the large-scale mixing, resolved vertical pres-

sure velocity v at the lower (700–850hPa) and middle

troposphere (400–600 hPa) are used (v1 and v2, re-

spectively). A ratio D (of shallow to deep overturning)

and LTMI are determined as

D[ hDH(D)H(2v
1
)i/h2v

2
H(2v

2
)i and (5)

LTMI[ S1D , (6)

whereH is the step function, D is difference between v2

and v1, and angle brackets indicate the areal average

over the tropical ocean (308S–308N). Here She14 re-

stricted the area for calculating D into 1608–308E to

avoid contamination of the effect of erroneously simu-

lated shallow ascent over the warm ocean found in a few

CMIPmodels.As for theMPMPE, simulated positions of

the shallow ascent are similar (figure not shown) to the

reanalyses (Fig. 3a in She14), resulting in a low sensitivity

of results to choice of longitudinal area for calculatingD.
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Observations and reanalyses data are used to obtain

S, D, and LTMI to constrain modeled l and ECS in a

similar manner to She14. The index S in observations

and reanalyses is derived from She14 based on radio-

sonde observations [the Integrated Global Radiosonde

Archive; see Sherwood et al. (2008) and She14] and

gridded reanalyses data (ERA-Interim: Dee et al. 2011;

and MERRA: Rienecker et al. 2011) averaged over the

Indo-Pacific warm pool (Fig. 1 in She14). ObservedD is

derived from v averaged over the tropical ocean in

ERA-Interim and MERRA.

3. Forcing, feedback, and ECS in MPMPE

a. Total spread of ECS and cloud feedback
among MPMPE

As a prelude to this study, we revisit the relationship

of RF, l, and ECS within the MPMPE. Figure 1a shows

total l and ECS among 136 members of the MPMPE.

As shown in Shi14, total l rather than RF determines

the spread of ECS (92%) among the MPMPE (2.1–

10.4K) although RF also contributes partly to CS un-

certainty among the MME (see Kamae et al. 2015, and

FIG. 1. Global-mean radiative feedback parameter (l;Wm22 K21) andECS (K). (a) Scatterplot of total l vs ECS

among the MPMPE. Black lines indicate a least squares regression, and values plotted in the upper left the cor-

relation coefficient. Plotted symbols and colors represent the eight PPEs based on individual MPEs. Gray lines

denote RF (Wm22). Also shown are scatterplots of (b) lcld, (c) lSWcld, and (d) lLWcld vs ECS. Colored lines in

(c),(d) denote least squares regressions of eight PPEs with statistical significance at the 90% level.
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references therein). Here the vertical axis is scaled

as21/ECS because ECS is in proportion to21/l, when

RF (3.6–4.7Wm22) is assumed to be constant [Eq. (3)].

Figures 1b–d show contributions of lcld, lSWcld, and

lLWcld derived from the ISCCP simulator-produced

cloud fraction and the cloud radiative kernel (section

2b). The term lcld also shows a high correlation

with 21/ECS (R 5 0.95), suggesting a dominant con-

tribution to the spread of ECS. Both the SW and LW

radiation components contribute to the ECS spread but

the former dominates (Figs. 1c,d). Figure 2a summa-

rizes averages and individual members of lSWcld among

PPEs. All the eight MPE models except Vdf show

significant correlations between lSWcld and ECS

(Fig. 1c), suggesting that both the differences among

the MPE models and the spreads among the individual

PPEs can largely be explained by lSWcld. Here the Vdf

model has only 11 members (Table 1) because of nu-

merical problems (Shi14), and the spread in lSWcld is

smaller than the other models (Fig. 2a), resulting in an

insignificant relationship between lSWcld and ECS

(Fig. 1c). Note that the general characteristics of

spreads and PPE-mean l are consistent with Shi14

although they estimated the cloud feedbacks by using

cloud radiative effect (section 2b).

Here the total spread of ECS and lSWcld among

MPMPE consists both of structural uncertainty due to

difference in model structure and parametric un-

certainty associated with sensitivity on model parame-

ters in a given model structure (see sections 1 and 2). In

the next subsection, we focus on the structural un-

certainty in lSWcld and then examine the parametric

uncertainty in the eight PPEs.

b. Uncertainty in shortwave cloud feedback due to
differences in model structure

As shown in W12 and Shi14, lSWcld in eight MPE

models is diverse both in sign and magnitude (Fig. 2a),

similar to CMIP5 MME (Vial et al. 2013; Z13). PPE-

mean lSWcld values in fiveMPEs (MIROC5A, Cld, Cnv,

Vdf, and CnvVdf) are negative whereas the others

(CldCnv, CldVdf, and CldCnvVdf) are positive, con-

tributing to the large ECS spread among the eightMPEs

(W12; Figs. 1c and 2a). The differences associated with

model structures are consistent with differences of ECS

and lSWcld betweenMIROC5 andMIROC3 (Watanabe

FIG. 2. Spread of lSWcld (Wm22 K21) and its decomposition. (a) Ensemble means of lSWcld in eight PPEs (bars)

and individual ensemble members (crosses); (b) lSWcld decomposed into three CTP categories [high (50–440 hPa),

middle (440–680 hPa), and low (680–1000 hPa)]. Error bars represent minimum-to-maximum ranges. Gray rectan-

gles are identical to the bars in (a). (c) Decomposition into three t categories [thin (0–3.6), medium (3.6–23), and

thick (23–380)]. (d) Decomposition into cloud amount (Am), CTP, and t feedback.
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et al. 2010; W12). The difference of lSWcld is further

examined by decomposing into different types of cloud

feedbacks. Figures 2b and 2c show the decomposition of

lSWcld into different CTP and t categories, respectively.

Among the three categories of CTP [high (50–440hPa),

middle (440–680 hPa), and low (680–1000hPa)], low and

middle CTP mainly contribute to the difference of lSWcld

among the eight MPEs. Low-CTP lSWcld is systemati-

cally negative in MIROC5A, while largely positive in

CldVdf and CldCnvVdf (also called MIROC3-like

models; Table 1). The difference of low-CTP lSWcld

accounts for 0.85 (CldVdf minus MIROC5A) and

0.55Wm22K21 (CldCnvVdf minus MIROC5A), com-

parable to the differences in total lSWcld (Figs. 2a,b).

However, the difference in middle-CTP lSWcld is also

essential for large negative and positive lSWcld in Vdf

and CldCnv, suggesting that a combination of the low-

and middle-CTP lSWcld largely determines the inter-

MPE variation (W12; Shi14).

The value of lSWcld decomposed into different t cate-

gories (Fig. 2c) reveals that lSWcld due to the medium

(thick) t clouds is robustly positive (negative), consistent

with CMIP5 MME (Z13). In a global warming simu-

lations, t increases substantially over the middle and

high latitudes, resulting in a negative global-mean SW

t feedback (Zelinka et al. 2012b; Z13). Here inter-MPE

differences in medium and thick t lSWcld contribute

substantially to the spread among the MPEs despite the

qualitative consistency (positive in medium and nega-

tive in thick categories) among them (Fig. 2c).

Figure 3 shows lSWcld divided into 49 bins based on

seven CTP and seven t bins. As shown in Fig. 2, con-

tributions of inter-MPE spread in low-to-middle CTP

(440–1000hPa) and medium-to-thick t clouds (3.6–380)

dominate the total spread in lSWcld and ECS. Here some

particular bin clouds strongly contribute to the total

lSWcld spread. In MIROC5A, Cld, Vdf, and CldVdf,

optically thick middle-top cloud (23–60 for t and 440–

680 hPa for CTP; black rectangles shown in Fig. 3) show

large negative l while the remainders show neutral or

positive l. This inter-MPE difference in these two bins

can largely explain the difference in middle-top lSWcld

shown in Fig. 2b. Spatial pattern and contribution to the

total spread of ECS are examined in a later section. In

addition, optically thin-to-medium low-top clouds (1.3–

23 for t and 800–1000hPa for CTP; Fig. 3) also show

substantial spread among the eight MPEs. The large

lSWcld variation in these bins (neutral in Cnv and large

positive in Vdf, CldVdf, and CldCnvVdf) largely cor-

responds to the inter-MPE variation of low-top lSWcld

(Fig. 2b). It is interesting that low-ECS MIROC5A also

shows positive lSWcld in 800–1000-hPa bins but large

FIG. 3. The values of lSWcld (Wm22 K–1) decomposed into 49 types of ISCCP clouds (7 CTP 3 7 t bins). Ensemble means of PPEs in

(a) MIROC5A, (b) Cld, (c) Cnv, (d) Vdf, (e) CnvVdf, (f) CldCnv, (g) CldVdf, and (h) CldCnvVdf. Black rectangles represent cloud bins

examined in sections 4 and 5.
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negative lSWcld in 680–800-hPa bins and the optically

thick middle-top cloud (Fig. 3a), resulting in a negative

global-mean lSWcld (Fig. 2a).

Figure 2d shows the decomposition of lSWcld into

cloud amount, CTP, and t feedbacks amongMPMPE. It

is clearly shown that lSWcld due to cloud amount feed-

back dominates the total spread in lSWcld, suggesting

that the total change in cloud amount rather shifts of

probability density function in CTP–t bins is important

for the spread among the eight MPEs (Fig. 3). Here

PPE-mean lSWcld due to cloud amount feedback is

positive in all the eight MPEs, consistent with five

CMIP5 models (Z13). It should be also noted that large

negative lSWcld due to t feedback also contribute to

negative lSWcld in MIROC5A, Cld, Cnv, Vdf, and

CnvVdf (Fig. 2d).

c. Parametric uncertainty in eight PPEs

As shown above, the inter-MPE variation in lSWcld

substantially contributes to the ECS spread among the

MPMPE. However, the large spreads of the ECS in the

individual PPEs (except Vdf) apparently indicate an

importance of parametric uncertainty in total spreads of

lSWcld and ECS. For example, upper bounds of ECS

(4.5, 5.9, and 10.4K) and lSWcld are quite different

among CldCnv, CldVdf, and CldCnvVdf (Figs. 1a,c)

although PPE-mean lSWcld values are comparable

(Fig. 2a). In addition, eight PPEs can provide systematic

tests for robustness of different types of cloud feedback

found among the MME (Vial et al. 2013; Z13). The

parametric uncertainty and its dependency on themodel

structure are examined in this subsection.

The ranges of the parametric uncertainty are different

among eight PPEs (Fig. 2a). MIROC5A and Vdf have

relatively small spreads while CldCnvVdf has sub-

stantially large spread, contributing to the extremely-

high ECS members in CldCnvVdf (Fig. 1c). The large

parametric uncertainty in low- and middle-top lSWcld

(Fig. 2b) and medium- and thick-t lSWcld (Fig. 2c) con-

tributes to the large spread in total lSWcld, indicating

that important contributors for intra-PPE spread also

contribute to inter-PPEs spread. Figure 2d also reveals

that both the intra-PPE and inter-PPE spreads in lSWcld

due to cloud amount feedback are important for the

total spread in lSWcld among the MPMPE. It should be

noted that intra-PPE spread in lSWcld due to t feedback

is also predominant in some PPEs including CldCnvVdf

(Fig. 2d). The extremely large spread of total lSWcld

(Fig. 3a) in CldCnvVdf can be attributed to the spread of

t feedback (Fig. 2d). The lSWcld due to t is consistently

negative among CMIP5 MME (Z13) and most of the

MPMPE (Fig. 2d) but largely positive in the extremely

highECSmembers ofCldCnvVdf (0.35–0.45Wm22K–1).

Physical explanations and possible constraints on the

positive lSWcld should be examined in future studies.

However, the intra-PPE spread in lSWcld in CldCnvVdf

corresponds well with LTMI (section 5).

The intra-PPE and inter-PPE spreads are comparable

in low-top and middle-top clouds (Fig. 2). In the next

section, we examine sources of uncertainty in lSWcld and

ECS among all the MPMPE members including both

the structural and parametric uncertainties.

4. Importance of middle and low cloud feedbacks
for ECS spread

The results above reveal that both the spreads of low-

top and middle-top cloud feedback show model-

structure dependencies. Figure 4 shows spatial patterns

of the first principal mode of interensemble variations in

low-top (680–1000hPa) and middle-top (440–680 hPa)

cloud feedback among the MPMPE. These modes ac-

count for 39.2% and 45.8% of the variances in the low-

and middle-top cloud feedback, respectively. Both

of the first modes are dominant over the ocean,

suggesting a limited contribution of land cloud feedback

to the global-mean lSWcld spread (similar to CMIP5

MME; Vial et al. 2013; Kamae et al. 2016). In the low-

top lSWcld, the large spread in the first mode is restricted

to the subtropical–tropical ocean, similar to the inter-

model variation in the low-top lSWcld among CMIP5

models (Fig. 8d in Vial et al. 2013). On the other hand,

the large lSWcld in the first mode of the middle-top cloud

is restricted to a narrow latitudinal band (Fig. 4c). These

two leading modes are referred to as ‘‘oceanic low-cloud

feedback’’ and ‘‘equatorial middle-cloud feedback’’ in

this study. These two feedback components can

explain a large part of the ECS spread among the

MPMPE (detailed below).

Scores of principal components (PCs) of both the

feedbacks (Figs. 4b,d) show clear model-structure de-

pendencies. The PC1 scores in the oceanic low-cloud

feedback (Fig. 4b) are lower inMIROC5A and higher in

the MIROC3-like models (Table 1), consistent with the

model-structure dependency found in Fig. 2b. The PC1

score in the equatorial middle-cloud feedback (Fig. 4d)

can clearly be divided into two subsets: negative in

MIROC5A, Cld, Vdf, and CldVdf (NewCnv subset;

Table 1) and positive in the remainders (OldCnv sub-

set). This grouping is apparently consistent with Figs. 2b

and 3 (section 3). In short, the positive oceanic low-top

lSWcld is large if both old Cld and Vdf schemes are im-

plemented while the new Cnv scheme contributes to the

large negative equatorial middle-top lSWcld.

Figure 5 shows the difference in the 49-bin lSWcld

between CldCnvVdf and MIROC5A, Cnv, and
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MIROC5A on the one hand and between CldVdf and

MIROC5A on the other. Differences of spatial patterns

of lSWcld in different CTP and t categories are shown in

Fig. 6. As suggested in section 3, the large difference of

lSWcld between MIROC5A (low ECS) and CldCnvVdf

(high ECS) can be found in the low-top bins and the

optically thick middle-top bins (black rectangles in

Fig. 5). These two differences can be explained by the

Cnv scheme and the combination of the Cld and Vdf

schemes. Differences in lSWcld between Cnv and

MIROC5A (CldVdf and MIROC5A) can be found in

the optically thick middle-top (low-top) bins. Spatial

patterns of the lSWcld difference (Fig. 6a) can also be

approximated by the sum of the two (Figs. 6h,o),

FIG. 5. As in Fig. 3, but for differences between (a) CldCnvVdf, (b) Cnv, and (c) CldVdf and MIROC5A.

FIG. 4. PCs of lSWcld (Wm22 K–1) variation among theMPMPE. (a) Spatial pattern of the first model of empirical

orthogonal function in low-top lSWcld. Global mean is shown at the lower left in the panel. (b) PC1 scores for the

individual members. (c),(d) As in (a),(b), but for middle-top lSWcld. These modes account for 39.2% and 45.8% of

the variance in (a) and (c), respectively.
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consistent with the dominant modes among the

MPMPE (Figs. 4a,c). The difference between Cnv and

MIROC5A exhibits the equatorial middle-top lSWcld

pattern (Figs. 6h,j), and is categorized into the optically

thick cloud (Figs. 5b and 6n). A spatially similar pattern

with reversed sign found in optically medium lSWcld

(Fig. 6m) partly cancels this feedback. The difference

between CldVdf and MIROC5A in the oceanic low-top

lSWcld (Figs. 6o,r) dominates in the opticallymedium bin

(Figs. 5c and 6t). The sum of these components can

largely explain differences between CldCnvVdf and

MIROC5A (Figs. 6a–g).

These two dominant modes of lSWcld can also explain

intra-PPE variations of lSWcld and ECS. Figure 7 shows

the relationship betweenlSWcld in the particular cloudbins

(Fig. 5) and ECS among the MPMPE. In Fig. 7a, the op-

tically thick middle-top (23–60 for t and 440–680hPa for

CTP; Fig. 5) lSWcld explains intra-PPE variation in

MIROC5A, Cld, and Vdf. The other four MPEs, with the

exception of CldVdf, also show significant positive corre-

lations (colored lines), suggesting the importance of the

middle-top cloud feedback on the spread ofECS. The low-

top (1.3–23 for t and 800–1000hPa for CTP; Fig. 5) lSWcld

values show high correlations with ECS in high-ECS

FIG. 6. Spatial patterns of lSWcld (Wm22 K21). (a) Difference betweenCldCnvVdf andMIROC5A.Also shown is the decomposition of

(a) into (b) high-, (c) middle-, and (d) low-top clouds and into (e) thin, (f) medium, and (g) thick t clouds. Global mean is shown at the

lower left in each panel. (h)–(n) As in (a)–(g), but for Cnv minus MIROC5A. (o)–(u) As in (a)–(g), but for CldVdf minus MIROC5A.
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models (CnvVdf, CldCnv, CldVdf, and CldCnvVdf;

Fig. 7b). In low-ECS MPEs, both positive (Cnv) and

negative or insignificant (MIROC5A and Vdf) correla-

tions are found (Fig. 7b). Interestingly, the sum of the two

can explain 72% of the ECS variance among theMPMPE

(Fig. 7c) despite their limited (5 out of 49) cloud bins. The

results above (Figs. 2–7) indicate that the two components

are effective to explain both the inter-PPE and the intra-

PPE variations in lSWcld and the resultant ECS.

In MIROC5A PPE, ECS, and total lSWcld are largely

determined by the equatorial optically thick middle-top

lSWcld (Fig. 7a), consistent with previous studies [see

Fig. 9 in Shiogama et al. (2012) and Fig. 3f in Shi14]. The

strong middle-cloud feedback results in limited or neg-

ative correlation between the low-cloud l and ECS

(Fig. 7b; see also Fig. 3c in Shi14). In contrast, large parts

of the ECS in the MIROC3-like PPEs are explained by

the low-cloud l over ocean [Figs. 4a and 7b; see also

Fig. 6 in Yokohata et al. (2010) and Fig. 3 in Shi14]. As

revealed in Yokohata et al. (2010), parametric un-

certainty can be dependent on model structures, sug-

gesting that single feedback processes such as low-cloud

feedback cannot explain total ECS uncertainty among

ensembles based on multiple model structures. In the

remaining part of this paper, we examine possible ap-

plications of LTMI (section 1) for constraining lSWcld

and ECS in the structurally different PPEs, namely

the MPMPE.

5. Lower-tropospheric mixing intensity and cloud
feedback

Figure 8 shows relationship between LTMI (and its

components, S and D) and ECS among the MPMPE.

We divide the ensemble into two groups with old

(OldCnv subset; section 4 and Table 1) and new con-

vection schemes (NewCnv subset) because the LTMI–

ECS relationships are clearly different between them.

All the members of the OldCnv subset show clear pos-

itive correlations between S and LTMI (Fig. 8a), while

none of the NewCnv subset do (Fig. 8b). Members in

OldCnv subset with higher ECS clearly tend to have

larger S although ECS scatters in a given S value (e.g.,

2.3–3.1K when S 5 0.36). Positive correlations can also

be found betweenD and ECS in the OldCnv subset with

limited statistical significance (Fig. 8c) but are not found

in the NewCnv subset (Fig. 8d). Resulting from the two,

sum of S andD (5LTMI) corresponds well with ECS in

all members of the OldCnv subset (Fig. 8e). The high

correlations reveal that LTMI can explain the spread of

ECS among half of the MPMPE subsets. Ranges of

observed LTMI obtained from the reanalyses and ra-

diosonde (section 2c) are comparable to that in the

OldCnv subset. Here the upper end of the OldCnv

subset is out of the observed range, suggesting that ECS

values higher than 5.1K are inconsistent with the ob-

servations. However, S,D, and LTMI do not show good

correspondence with ECS among the NewCnv subset

(Figs. 8b,d,f). Here LTMI–ECS correlations are signifi-

cant (at 95% confidence level) among all the MPMPE

members (R5 0.67) or the PPE-mean of the eight MPE

models (R 5 0.71; Fig. 9a). The positive correlation

among the eight MPE models is consistent with

the CMIP MME (She14) while their ranges and

observation-based constraints are apparently different

between the two (see section 6). Despite the significant

positive correlations, intra-PPE correlations are nega-

tive in three PPEs (Fig. 8f), suggesting a limited

FIG. 7. As in Fig. 1c, but for lSWcld from particular cloud bins andECS: (a) 23–60 for t and 440–680 hPa for CTP (black rectangles in Fig. 3),

(b) 1.3–23 for t and 800–1000 hPa for CTP, and (c) sum of values from (a) and (b).
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applicability of the LTMI-based constraint on ECS to

the MPMPE.

We further examine why the constraint on ECS by

LTMI is not effective for the NewCnv subset. Figure 10

shows the relationship between Msmall (section 2c) and

ECS among the MPMPE. She14 suggested that a larger

Msmall in a control climate results in a stronger drying of

the boundary layer in a warming climate, resulting in a

positive correlation between S and CS. Although Msmall

was only available from nine members in the CMIP

MME (She14), Msmall is available for all the MPMPE

members. All members of the OldCnv subset show sig-

nificant negative correlations between the two (Fig. 10a),

supporting She14’s results. In contrast, the NewCnv

subset (exceptCldVdf) does not show significant negative

correlations (Fig. 10b), consistent with the unclear S–ECS

and LTMI–ECS relationships (Figs. 8b,f).

In the OldCnv subset,Msmall explains well the spreads

of low-top, middle-top (Fig. 10c,e), and total lSWcld

(figure not shown), leading to the high Msmall–ECS and

LTMI–ECS correlations (Figs. 8e and 10a). A relation-

ship between LTMI and low-top lSWcld shown in Fig. 9b

and Table 2 is also statistically significant in the OldCnv

subset, suggesting that the LTMI can constrain the low-

top lSWcld. In the NewCnv subset, however, both Msmall

and the LTMI do not explain well the spread of ECS

(Figs. 8f and 10b) despite significant negative correla-

tions between Msmall and low-top lSWcld (Fig. 10d) that

are similar to the those in the OldCnv subset (Fig. 10c).

Among all the MPMPE members, a lower range

(#1.9Wm22K–1) of the low-top lSWcld is consistent

with the observed LTMI (Fig. 9b). Note that two out of

eight PPEs do not show significant positive correlations

(Table 2).

FIG. 8. Scatterplot of LTMI and ECS (K) among the MPMPE. Shown are (a) S, (c) D, and (e) LTMI (5S 1 D) and ECS among the

OldCnv subset (Cnv, CldCnv, CnvVdf, and CldCnvVdf). (b),(d),(f) As in (a),(c),(e), but for the NewCnv subset (MIROC5A, Cld, Vdf,

and CldVdf). Colored lines denote a least squares regression that is statistically significant at the 90% level (colors as in Fig. 7). Values at

the top left show correlation coefficients of the individual PPEs. Black square and diamond across the bottom of each panel indicate S,D,

and LTMI values derived from ERA-Interim and MERRA, respectively. Bars at the bottom in (a) and (b) represent 2s range from

radiosonde observation (She14). The two bars at the bottom in (e) and (f) denote the radiosonde added toD obtained from the reanalyses.
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The NewCnv subset has strong negative feedback in

the equatorial middle-top cloud (Figs. 2–4 and 10f),

resulting in the weak relationship between the low-top

lSWcld and ECS (Fig. 7b). This is consistent with the

negative or insignificant Msmall–ECS and LTMI–ECS

correlations (Figs. 8f and 10b). Despite the high corre-

lations among Msmall, LTMI, and the low-top lSWcld

(Figs. 9b and 10d), the large spread in the middle-top

lSWcld (Fig. 10f) results in the unclear relationship be-

tween Msmall (or LTMI) and total lSWcld (or ECS;

Figs. 8f and 10b). It is noteworthy that significant cor-

relations between Msmall and the middle-top lSWcld are

found both in the OldCnv and NewCnv subsets and

these correlations are systematically opposite between

the two (negative in the OldCnv subset and positive in

the NewCnv subset; Figs. 10e,f). Physical processes re-

sponsible for the relationship between Msmall (and

LTMI) and themiddle-top lSWcld should be examined in

future studies.

6. Summary and discussion

The extremely large spread in ECS (2.1–10.4K) found

in the MPMPE is mainly due to the large structural and

parametric uncertainty in lSWcld. Despite the qualita-

tively robust lSWcld components (positive thin- and

medium-t feedback, negative thick-t feedback, positive

amount feedback, and negative t feedback), substantial

spreads in the equatorial middle-top feedback and the

oceanic low-top feedback contribute to the large spread

in the total lSWcld both in sign and magnitude. Among

the MPMPE, the NewCnv and the MIROC3-like sub-

sets have large negative middle-top and positive low-top

lSWcld, respectively. The sumof the two can explain 72%

of the ECS spread among the MPMPE. ECS in the

OldCnv subset largely depends on the low-top lSWcld,

resulting in the high LTMI–ECS correlation because

LTMI can explain the low-top lSWcld. In contrast, the

high LTMI–ECS correlation cannot be found in the

NewCnv subset. All the MPMPE members show high

correlations between lower-tropospheric convective

dehydration, a component of the LTMI, and the low-top

lSWcld, supporting the hypothesis that LTMI can con-

strain the low cloud feedback. Among the MPMPE,

members with low-top lSWcld higher than 1.9Wm22K21

are not supported by the observed LTMI. However, the

large spread in the middle-top lSWcld in the NewCnv

subset results in the limited applicability of the LTMI-

based ECS constraint to the MPMPE. A possible

emergent constraint for the middle-cloud feedback is

necessary for more effective constraint on structural and

parametric uncertainties in CS.

She14 concluded that CS is constrained to be higher

than 3K based on the observed LTMI and LTMI–CS

relationship among the CMIP MME. This conclusion

seems to be opposite to the current study (i.e., lower

ECSmembers aremore consistent with the observations

FIG. 9. (a) As in Figs. 8e,f, but for all theMPMPEmembers. Red

circles and line represent PPEmeans of the eight MPEmodels and

their least squares regression, respectively. Gray and red values at

top left in the panels indicate correlation coefficients of all the

MPMPE members and the PPE-means of the eight MPE models,

respectively. (b) As in (a), but for a scatterplot of LTMI and lSWcld

(Wm22 K21) in bins of 1.3–23 for t and 800–1000 hPa for CTP

(Fig. 7b).
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than higher ECS members among the MPMPE). Both

MIROC3 and MIROC5 models have relatively larger

LTMI than the CMIP multimodel mean (Fig. 5b in

She14), resulting in a less effective constraint of the

lower ECS in the MPMPE (Fig. 9a). In addition, the

CMIP MME does not cover the extremely high CS

(Fig. 5b in She14), resulting in a difficulty for con-

straining the higher CS range. The difference in relative

contributions of the middle-cloud feedback to the CS

uncertainty is also one of the factors for the difference

between the CMIP MME and the MPMPE.

The results of this study indicate that the relationship

between LTMI and CS depends on ensembles. In

CMIP3 and CMIP5 MME, intermodel variation of CS

shows a high correlation with LTMI (She14) because the

spread of low-cloud feedback is the largest contributor

to the CS spread among the ensemble (Zelinka et al.

2012a; Z13; Vial et al. 2013). As for the NewCnv PPEs,

the large uncertainty in the middle-top feedback results

in the weak LTMI–ECS correlation. The convection

scheme implemented in the NewCnv subset can repre-

sent the population of middle-level cumulus congestus

over the tropics realistically (Chikira and Sugiyama

2010; Chikira 2010). The large spread in the equatorial

middle cloud feedback is associated with a model pa-

rameter in the cumulus scheme and extremely large

negative feedback tends to be inconsistent with ob-

served variables (Fig. 13 in Shiogama et al. 2012). It is

worthwhile to note that multiple satellite observations

should be used to evaluate cloud representations in

models because of possible biases in the middle cloud

observed by ISCCP and a limited accuracy of the

FIG. 10. (a) Scatterplot of Msmall (Wm22) and ECS (K) for the OldCnv subset. Values at top left in the panels indicate correlation

coefficients of the individual PPEs; (c) Msmall and lSWcld (Wm22 K–1) in bins of 1.3–23 for t and 800–1000 hPa for CTP (Fig. 7b); and

(e) Msmall and lSWcld in bins of 23–60 for t and 440–680 hPa for CTP (Fig. 7a). (b),(d),(f) As in (a),(c),(e), but for the NewCnv subset.

TABLE 2. Correlation coefficients betweenLTMI and lSWcld in bins

of 1.3–23 for t and 800–1000 hPa for CTP (Fig. 9b).

Models Correlation coef

MIROC5A 0.56

Cld 0.85

Cnv 0.58

Vdf 0.55

CnvVdf 0.87

CldCnv 20.28

CldVdf 0.45

CldCnvVdf 20.52
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simulator-produced clouds (e.g., Pincus et al. 2012). The

results of this study suggest a need to evaluate repre-

sentations of the tropical cumulus congestus both in

MME and PPE and possible influence on themiddle-top

feedback and CS in systematic frameworks.
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