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Abstract
Superconductors are a class of materials containing superconducting quantum condensates with

exactly zero electrical resistance and expulsion of magnetic fields when cooled below a critical tem-
perature [1]. According to Bardeen-Cooper-Schrieffer (BCS) theory, electrons near Fermi surface
form Cooper pairs due to electron-phonon interaction and condense into a superconducting quantum
state along with opening of a band gap [2]. In some materials, there are several Fermi surfaces orig-
inated from different bands. It is possible to have multiple superconducting gaps arising from these
Fermi surfaces. The superconducting condensate is composed of several components and thus we call
such materials as multi-component superconductors.

Multi-component superconductivity was first discussed in transition metals with a two-band BCS
model more than fifty years ago [3]. Soon after that Kondo pointed out that superconducting critical
temperature should be increased by Josephson-like interband couplings [4]. The degree of freedom of
relative phase difference in a two-component superconductor was first discussed by Leggett [5]. The
interest to multi-component superconductivity is recovered due to the discovery of superconductivity
in MgB2 with pronounced evidences for two superconducting gaps in 2001 [6] and the discovery of
iron-based superconductors with more than two superconducting gaps in 2008 [7].

In superconductors with three or more components, time-reversal symmetry (TRS) may be broken
in the presence of repulsive interband couplings, resulting in a pair of degenerate states characterized
by opposite chiralities [8–10]. A hopeful candidate to realize this TRS broken (TRSB) state is the
iron-based superconductor with at most five gaps originating from the five Fe 3d orbitals. Repulsive
interband couplings are suggested by some experiments [11–13].

In this thesis, we mainly focus on novel phenomena of the TRSB state. Asymmetric critical cur-
rents are revealed in a Josephson junction between a three-component superconductor with broken
TRS and a single-component superconductor [14]. Fractional flux plateaus are found in the mag-
netization curve for a superconductor loop with two halves occupied by the degenerate states with
opposite chiralities [15]. Magnetic field penetrates a constriction connecting two bulks occupied by
TRSB states with opposite chiralities and takes a ribbon-shaped distribution [16]. At last we study
the magnetic response of two-component superconductors and find a first-order phase transition as-
sociated with vortex penetration [17].

At first, we focus on the Josephson effect of the TRSB state. We consider a Josephson junc-
tion between a three-component TRSB superconductor with gap functions {∆1,∆2,∆3} and a single-
component superconductor with gap function ∆0, as shown in Fig. 1(a). The phase of ∆ j are defined
as φ j with j = 0, 1, 2, 3. Since the intercomponent phase differences are locked in the TRSB state, we
can study the supercurrent as a function of phase φ = φ1 − φ0. By adopting Bogoliubov-de Gennes
equations, we obtain Andreev spectra and the current-phase relation as shown in Fig. 1(b). It is in-
teresting to find that critical currents are unequal in the two opposite directions. The asymmetry of
critical current is a clear manifestation of broken TRS.

It is intriguing to notice that asymmetric critical currents have been observed in a hybrid junction
between a single-band superconductor PbIn and an iron-based superconductor BaFe2−xCoxAs2 [18].
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FIG. 1. (a) Schematics of point contact junction between single-band superconductor and three-band TRSB superconductor. Arrows
indicate phases of gap functions and white circle with rotating direction represents the chirality referring to the mutual phases blue →
yellow → purple among three condensates. (b) Current-phase relation of ballistic point-contact junction between single-band and
three-band superconductor for parameters φ2 − φ1 = 0.9π, φ3 − φ1 = 1.3π and temperature T = 0.2|∆|/kB with kB the Boltzmann
constant. For simplicity, all gap functions are assigned with the same amplitude |∆|. Inset: Andreev spectra for the same parameter set.

The difference between two critical currents is well beyond the experimental precision. In the light of
our theoretical work, TRSB states have already been realized in iron-based superconductors.

Next, we consider a loop of a multi-component superconductor where the two halves are occupied
by two TRSB states carrying on opposite chiralities, accompanied by two domain walls associated
with inter-component phase kinks. We define the phase kink between component-i and j as Di j with
i , j and i, j = 1, 2, 3. The situation is interesting when the two domain walls accommodate different
phase kinks, such as D12 and D23 in domain wall I and II respectively shown in Fig. 2(a). By inspection
one sees that ψ2 rotates 4π/3 anticlockwise over the two domain walls, while ψ1 and ψ3 rotate −2π/3.
When the external magnetic field provides the additional phase rotation of 2π/3 in all condensates,
a state with 2π phase winding in ψ2 and 0 in both ψ1 and ψ3 is stabilized. This yields a fractional
flux ηΦ0 in the loop. The state with a fractional flux trapped in this loop is stable in a certain range
of external magnetic field, which leads to a fractional flux plateau in magnetization curve shown
schematically in Fig. 2(b).

The above discussion can be elucidated by the integration of magnetic flux over the superconducting
loop using Ginzburg-Landau (GL) formalism where the supercurrent is given by [1, 19]

J =
∑

j=1,2,3

2e
m j
|ψ j|2~

(
∇φ j −

2π
Φ0

A
)
, (1)

with m j and φ j the effective mass and phase of component- j. For a thick loop, supercurrent is zero
deep inside the superconductor. In this case the magnetic flux trapped in the loop is given by the line
integration of phase differences as can be seen from Eq. (1)

Φ =
Φ0

2π

[∮
C

p1∇φ1 + p2∇φ2 + p3∇φ3

p1 + p2 + p3
dl

]
=
Φ0

2π

[∮
C
∇φ1dl +

∫
DW

p2∇φ12 + p3∇φ13

p1 + p2 + p3
dl

]
, (2)

with p j = |ψ j|2/m∗j and φi j = φi − φ j for i, j = 1, 2, 3, where ”C” is taken as the middle line of the
loop with zero supercurrent everywhere, and the ”DW” stands for domain-wall regimes (grey parts
in Fig. 2) with phase kinks. At the right side, we divide the integrand into two terms, indicating two
contributions to the total magnetic flux. The first contribution should be an integer multiple of 2π due
to the single-valued wave function in the loop. The integrand in the second contribution is nonzero
only on domain walls. This contribution is nonzero when two different phase kinks are realized at
domain wall I and II, with the value depending on the quantities p j.
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FIG. 2. (a) Schematic setup with a loop of TRSB superconductor, where the two halves are occupied by the two degenerate states
with opposite chiralities. The three arrows denote the phases of order parameters and the green circle indicates the chirality. Between
the two halves of the loop there are two domain wall I and II accommodating inter-component phase kinks. Phase kinks between two
different pairs of components can trap fractional flux (0 < η < 1). The dashed circle denotes the direction for counting phase winding in
the loop. (b) Schematic magnetization curve with fractional flux plateaus displayed together with gauge-invariant phase kinks denoted
by [Dik/D jk] in the order of domain wall I and II.

Presuming the same length of domain walls I and II, the two configurations [Dik/D jk] and [D jk/Dik]
at the domain walls [I/II] take the same free energy. However, integrating phase differences for these
two configurations along the closed path in the anticlockwise way [see Fig. 2(a)] results in oppo-
site fractional values of 2π in the second term in Eq. (2). Therefore, these two configurations give
two fractional fluxes Φ1 and Φ2 related by Φ1 + Φ2 = Φ0. Although fractional fluxes individually
take arbitrary values depending on material parameters and temperature, they form pairs related by
the flux quantum Φ0, which is a unique signature of TRSB state. Fractional flux plateaus with cor-
responding configurations of phase kinks are schematically shown in Fig. 2(b). This phenomenon
is a clear evidence of TRSB superconductivity, and in a general point of view it provides a novel
chance to explore relative phase difference, phase kink and soliton in ubiquitous multi-component
superconductivity such as that in iron pnicitides.

In this thesis we also study vortex states on a domain wall at a constriction connecting two bulk
superconductors with degenerate TRSB states, as shown in Fig. 3(a). With GL approach we find that
vortices in different components dissociate from each other, resulting in a ribbon-shaped distribution
of magnetic field at the domain wall as shown in Fig. 3(b) [16].

At last, we explore the magnetic response of two-component superconductors in terms of GL the-
ory. We find that, in a certain parameter regime, a vortex lattice is thermodynamically stable, which
is characterized by the following features: (1) the vortex-lattice constant is finite and determined by
the parameters of GL free-energy functional, (2) the superconducting order parameters do not recover
to the bulk values, and (3) the magnetic field is only partially screened. At a threshold field Hc1,
many vortices enter simultaneously to form such a lattice in the whole sample, yielding a discon-
tinuous jump in magnetization and thus a first-order phase transition [17]. As a sharp contrast, in
single-component superconductors vortices penetrate into the sample at Hc1 associated with a con-
tinuous phase transition corresponding to infinite separation among vortices. This phenomenon can
be observed even when both components are categorized into type II in absence of intercomponent
coupling.

To summarize, we have explored several novel phenomena in multi-component superconductors,
which can be used to identify the TRSB state. The present work highlights the unique properties of
multi-component superconductors and provide deeper understandings on multi-component supercon-
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FIG. 3. (a) Schematics of constriction junction between two bulks occupied by TRSB states with opposite chiralities. A domain wall
forms on the constriction where the red and blue order parameters form a phase kink. (b) Ribbon-shaped distribution of magnetic field
on constriction.
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Chapter 1

Introduction

1.1 Basics of Superconductivity

In 1908 a Dutch physics Heike Kamerlingh Onnes successfully liquefied helium which gave him a refrigeration
technique to reach 4.2K, and then he started to study the electric conductivity of metals around this temperature.
Three years later in mercury he observed an extraordinary phenomenon: the electrical resistance dropped
abruptly to zero at 4.2K, which opens the gate of superconductivity . Since then in the last one hundred years,
superconductivity has remained as a fascinating field in condensed matter physics with continuing surprises.

Flux quantization

Soon after the Bohr’s model was established, de Broglie proposed the matter wave and pointed out the corre-
spondence between its phase-winding numbers and the discrete electron orbitals in the Hydrogen atom. Since
then, the phase winding becomes a fundamental property of quantum mechanics and serves as a guidance to
find quantized observables in the quantum states discovered later on. In superconductors, the phase winding
of superconducting wave leads to the flux quantization, which is firstly recognized by F. London [1]. He in-
troduced the concept ”macroscopic quantum state” to describe superconductivity and indicate the ground state
of superconductors in the form of ψ =

√
ns exp(iϕ), where ns = ψ∗ψ represent the density of superconducting

charges and ϕ is the phase of the wave function. From the quantum mechanics, the current density is

J =
q

2m

[
ψ∗

(
−i~∇ −

q
c

A
)
ψ + ψ

(
−i~∇ −

q
c

A
)
ψ∗

]
=

2ens

m

(
~∇ϕ −

2e
c

A
)
, (1.1)

where A is the vector potential and q = 2e (Cooper-pair) is the unit charge in supercurrent which becomes
known after the advent of BCS theory [2]. By integrating the phase gradient from a location ”a” to a location
”b”, we obtain the phase shift between ”a” and ”b” as

∆ϕ =
1
~

∫ b

a

(
m

2ens
J +

2e
c

A
)
· dl (1.2)

1



Chapter 1. Introduction 2

Figure 1.1: Schematics of superconducting ring with trapped quantized flux. L is a path deep inside supercon-
ductor where supercurrent is zero everywhere.

Now we consider a superconducting ring with a closed path L deep inside the sample with J = 0 as shown in
Fig. 3.1, where the phase shift around the closed path is given by

∆ϕ =
2e
~c

∮
L

A · dl =
2e
~c

Φ. (1.3)

Combined with the condition of single-value wave function ∆ϕ = 2πn with n an integer, Eq. (1.3) gives

Φ = n
hc
2e

= nΦ0, (1.4)

where Φ0 = 2.07 × 10−15Wb is called the magnetic flux quantum. This has been shown experimentally with
measurements of the flux trapped in a thick hollow cylinder which screens the supercurrent to zero [3, 4].

Meissner effect

It is interesting to take a curl on left and right side of Eq. (1.1), where we obtain

∇ × J = −
4e2ns

mc
B, (1.5)

which is the second London equation. Together with the Maxwell equations

∇ × B =
4π
c

J, ∇ · B = 0, (1.6)

we obtain
∇2B =

1
λ2 B, (1.7)

where

λ =

√
mc2

16e2πns
. (1.8)
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Figure 1.2: Schematics of superconducting ring with trapped quantized flux. L is a path deep inside supercon-
ductor where supercurrent is zero everywhere.

If we consider a superconducting medium occupying the half space x > 0 and an external magnetic field at
x ≤ 0, solution of Eq. (1.7) is given by

B(x) = B0 exp
(
−

x
λ

)
, (1.9)

which indicates the Meissner effect and λ is the London penetration length which characterizes the distance to
which a magnetic field penetrates into a superconductor.

Josephson effect

In 1962, B. D. Josephson [5] studied a device, known as the Josephson junction, consisted with two supercon-
ductors separated by a thin insulating film and predicted two following phenomena:(1) a current flows across
the junction with zero-voltage drop in presence of phase difference between two superconductors, which is
called the DC Josephson effect, and (2) the supercurrent changes periodically with a frequency ν = 2eV/h in
presence of a voltage V between two sides of the junction, which is called the AC Josephson effect. The DC
Josephson effect was soon observed experimentally by Anderson and Rowell in 1963 [6], and the AC Josephson
effect was observed by Yanson et al. in 1965 [7]. Later on Josephson effect was also found in other junctions
where the insulator was replaced by normal metal, semiconductor or superconducting constriction with size
smaller than the superconducting coherence length [8]. In general, Josephson effect takes place in a junction
where two superconducting bulks connected and coupled by a weak link.

Here we use the Schrodinger equation to derive the supercurrent as function of the phase shift across the
junction. This method was provided by Feynman [9], which is rough however has a clear physics picture. The
quantum mechanical wavefunctions of two superconducting states are given by

ψ j =
√

ns jeiϕ j (1.10)

where ϕ j and ns j are phase and density of Cooper-pairs with j = 1, 2 . The dynamics of the wavefunctions is
determined by the following coupled wave equations

i~
∂ψ1

∂t
= µ1ψ1 + kψ2

i~
∂ψ2

∂t
= µ2ψ2 + kψ1

(1.11)
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where k is the coupling coefficient which characterizes the coupling strength across the weak link and µ1 and
µ2 represent the chemical potentials in the two bulks. Substituting Eq. (1.11) into Eq. (1.10) gives

∂ns1

∂t
= −

∂ns2

∂t
=

2k
~

√
ns1ns2 sin(ϕ2 − ϕ1) (1.12)

−
∂

∂t
(ϕ2 − ϕ1) = µ2 − µ1 (1.13)

The first equation describes a charge transportation and thus we get the Josephson current

j = 2e
∂ns1

∂t
=

4ek
~

√
ns1ns2 sin(ϕ2 − ϕ1). (1.14)

When a voltage V is applied across the junction, the energy levels shifts to µ1 − µ2 = 2eV . Writing jc =

4ek
√

ns1ns2/~ and ∆ϕ = ϕ2 − ϕ1, we obtain

j = jc sin ∆ϕ (1.15)

∂∆ϕ

∂t
=

2eV
~

(1.16)

which represent the DC and AC Josephson effect. From Eq. (1.16), we obtain that a DC voltage 1µV produce
a AC current with frequency ω = 863.6MHz. When Cooper-pairs pass through the potential barrier at the
junction, photons with energy ~ω = 2eV will be released or absorbed. With this effect, precise value of e/~ can
be obtained by measuring V and ω [10].

For simplicity, we carry out the above discussion in terms of the phase difference δ. Since δ is not gauge
invariant, in general it cannot determine the Josephson current which is a gauge-invariant physical quantity.
This problem is solved by introducing the gauge-invariant phase difference

θ = ∆ϕ −
2π
Φ0

∫
A · dl, (1.17)

where the integration is from one side of the junction to the other, so the general expression of current-phase
relation is

js = jc sin θ. (1.18)

When gauge A = 0 is adopted, which is reasonable in absence of magnetic flux, Eq. (1.18) is reduced to
Eq. (1.15).

Quantum interference

When we connect two superconductors with two Josephson junctions to form a superconducting circuit as
shown in Fig. 1.3, phase differences across the two junctions are related, which leads to quantum interference
phenomena. Since the two junctions are very short compared with the whole circle, the trapped flux in ”L” is
given by

Φ =

∮
L

A · dl =

∫ c

b
A · dl +

∫ a

d
A · dl. (1.19)
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Figure 1.3: Schematics of a superconducting quantum interference device (SQUID) with two Josephson junc-
tions. ”L” is a closed path where the supercurrent is zero on its path in the superconducting region, i.e. from b

to c and d to a.

Considering that J = 0 on the parts of ”L” in the superconductor, according to Eq. (1.2) we have the phase
differences

ϕc − ϕb =
2π
Φ0

∫ c

b
A · dl, ϕa − ϕd =

2π
Φ0

∫ a

d
A · dl, (1.20)

which leads to
(ϕc − ϕb) + (ϕa − ϕd) =

2π
Φ0

Φ. (1.21)

The condition of single-valued wave function requires

(ϕc − ϕb) + (ϕb − ϕa) + (ϕa − ϕd) + (ϕd − ϕc) = 2πn. (1.22)

By combining above two equations, we obtain the relation between the phase shift across junction-1 ∆ϕ1 =

ϕa − ϕb and the phase shift across junction-2 ∆ϕ2 = ϕd − ϕc as

∆ϕ2 − ∆ϕ1 = 2πn −
2π
Φ0

Φ. (1.23)

Here we consider a simple case that two junctions have the same critical current Ic and the total supercurrent is
thus given by

I = Ic sin ∆ϕ1 + Ic sin ∆ϕ2

= Ic sin (∆ϕ2 + 2πΦ/Φ0) + Ic sin ∆ϕ2

= 2Ic cos(πΦ/Φ0) sin(∆ϕ2 + πΦ/Φ0),

(1.24)

and thus the maximum supercurrent as
Im = 2Ic| cos(πΦ/Φ0)|, (1.25)

which is shown in Fig. 1.4. There are two special cases of trapped flux: (1) when Φ = nΦ0, the two phase
shifts can simultaneously take the value π/2 and give the greatest total supercurrent 2Ic, which is a constructive
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Figure 1.4: Schematics of a superconducting quantum interference device (SQUID) with two Josephson junc-
tions. ”L” is a closed path where the supercurrent is zero on its path in the superconducting region, i.e. from b

to c and d to a.

interference and (2) when Φ = nΦ0 +Φ0/2, the two phase shifts always have a difference of π, where Josephson
current in junctions cancel each other, which indicates a destructive interference.

1.2 Microscopic Theory of Superconductivity

1.2.1 Bardeen-Cooper-Schrieffer Theory

Although phenomenological theories give a good description of the electrodynamic properties of superconduc-
tors, the microscopic picture of the superconductivity still remains unknown for forty years after the discovery
of superconductivty, which becomes an urgent problem in the community of solid state physics. From 1950, ex-
perimental discoveries such as isotope effect and observation of superconducting gap provides clues to answers
of these questions, which finally lead to advent of BCS theory in 1957.

The first evidence of an energy gap between the superconducing ground state and the excited state is from
measurements of electronic contribution of specific heat [11], which reveals an exponential form of temperature
dependence as

ces ∝ e−bTc/T . (1.26)

Since the number of particles above an energy gap Eg is proportional to exp{−Eg/2kBT } at temperature T , the
measurements of specific heat suggests existence of superconducting gap

Eg = 2bkBTc. (1.27)

With b ≈ 1.5 from the measurements, the energy gap is given by

Eg ≈ 3kBTc. (1.28)

The gap was later directly observed by irradiating electromagnetic waves on the superconductor, where the
waves were absorbed strongly when photon energy was larger than Eg [12]. In conventional superconductors,
the energy gap is at the order of 10−4eV .
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In 1950, Maxwell [13] and Reynolds [14] independently found the relevance between critical temperature Tc

and the mass of the isotope M: TcMβ = constant with β ≈ 0.5. It is well known that the mass of ions in crystal
lattices is associated with the vibration properties on crystal lattice, therefore phonon-electron interactions
should be considered seriously in the mechanism of superconductivity.

Soon Frohlich proposed that the phonon-electron interaction possibly induces an attraction among electrons
[15]. The microscopic picture is given in the following way. When an electron goes through a positive ionic
crystal cell, the lattice around is distorted due to the Coulomb interaction, which increases the local density of
positive charges, and thus another electron should approach this site. In presence of the ionic crystal lattice, an
effective attraction forms between two electrons. A reasonable condition for the attraction is that the moving
frequency of electrons should be smaller than the frequency of phonons, otherwise the distortion cannot be
induced by the moving electron. However it is still not clear whether this attraction is related to emergence of
superconductivity or not.

In 1956, Cooper obtained a bound state formed by a pair of electrons in presence of an attraction between them
[16], as the dawn of advent of BCS theory. In his model, he put two additional electrons into a metal at 0K
and considered unchanged Fermi surface, which forces the two electrons to occupy the states above the Fermi
surface due to Pauli principle, and thus the many-body problem is reduced to a simple two-body problem.
Then he assumed an attraction between the electrons and solve the energy spectrum. He obtained a bound state
below the Fermi surface, where indeed has no space for additional electrons. Therefore, the Fermi sea becomes
unstable with the formation of the bound state and a reorganization of Fermi surface is inevitable. The Cooper-
pairing effect provides a basis for understanding of superconductivity. The pairs form a Bose condensate which
is the origin of all quantum phenomena in superconductors.

Figure 1.5: Schematics of phonon-electron interaction in the BCS model. Electron with momentum l emits
a phonon with momentum (l − k) which is absorbed by another electron with moment −l. The Cooper pair

(l ↑,−l ↓) is scattered to the state (k ↑,−k ↓).

Only one year later, Bardeen, Cooper and Schrieffer proposed the great BCS theory which is the first micro-
scopic theory of superconductivity since the discovery of superconductivity. In BCS theory, we have the paring
Hamiltonian

H =
∑
kσ

εkc†k,σckσ +
∑
k,l

Vc†k↑c
†

−k↓c−l↓cl↑ (1.29)
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where ε is the single-particle energy relative to the Fermi energy, k, l are momentum, σ is spin and V is the
pairing interaction. BCS took the ground state as

|ψG〉 =
∏

k

(uk + vkc†k↑c
†

−k↓)|φ0〉, (1.30)

where |uk|
2 + |vk|

2 = 1. |uk|
2 and |vk|

2 are the probabilities of the Cooper pair being unoccupied and occupied.
Here for simplicity, we take uk and vk as real. To obtain the energy minimum, we set

δ〈ψG |H|ψG〉 = 0, (1.31)

where
〈ψG |H|ψG〉 = 2εkv2

k +
∑
k,l

Vklukvkulvl. (1.32)

It is convenient to use
uk = sin θk and vk = cos θk, (1.33)

and the right side of Eq. (1.32) changes to∑
k

εk(1 + cos 2θk) +
1
4

∑
k,l

Vkl sin 2θk sin 2θl. (1.34)

We minimize the energy by taking the derivative with respect to θk as zero, which gives

− 2εk sin 2θk +
∑

l

Vkl cos 2θk sin 2θl = 0, (1.35)

and we obtain
tan 2θk =

1
2εk

∑
l

Vkl sin 2θl. (1.36)

By defining quantities

∆k = −
∑

l

Vklulvl = −
1
2

∑
l

Vkl sin 2θl, Ek =

√
∆2

k + ε2
k , (1.37)

Eq. (1.36) becomes

tan 2θ = −
∆k

εk
, (1.38)

and thus we have
2ukvk = sin 2θk =

∆k

Ek
(1.39)

and
v2

k − u2
k = cos 2θk = −

εk

Ek
. (1.40)
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Here we put the minus sign for cos 2θk to make vk → 0 as εk → ∞, which is based on the consideration that
the pairing should take place around Fermi surface. From Eq. (1.36), (1.38) and (1.39), we get

∆k = −
1
2

∑
l

∆l√
∆2

l + ε2
l

Vkl. (1.41)

BCS made an assumption that

Vkl =

−V |εk|, |εl| ≤ ~ωc,

0 |εk|, |εl| > ~ωc,
(1.42)

where V is a positive constant. ∆k becomes an constant ∆ independent of k, which reduces Eq. (1.41) to

1 =
V
2

∑
k

1√
∆2

k + ε2
k

. (1.43)

The summation above can be replaced by an integration, and thus Eq. (1.43) is rewritten as

1 =
N(0)V

2

∫ ~ω

−~ω

dε
√

∆2 + ε2
= N(0)V sinh−1 ~ωc

∆
, (1.44)

where the density of states from −~ωc to ~ωc is taken as the density at Fermi surface N(0) approximately. In
the weak coupling limit N(0)V � 1, we obtain

∆ ≈ 2~ωce−1/N(0)V . (1.45)

In BCS theory, the attraction between electrons are taken as the electron-phonon interaction. Therefore we can
have a cut-off frequency ωc which is the largest frequency of phonons in the materials. Since ~ωc for isotopes
of the same element is proportional to M−0.5, the proportionality between ∆ and ~ωc is consistent with the
isotope effect.

1.2.2 Bogoliubov-de Gennes Equations

According to the picture of Cooper-pairs, excitation above the superconducting gap are particles and holes.
Here we assume the wavefunctions of electrons at coordinate r as linear combinations of the quasiparticle
states

Ψ†(r ↑) =
∑

n

[
γ†n↑u

∗
n(r) − γn↓vn(r))

]
,

Ψ†(r ↓) =
∑

n

[
γ†n↓u

∗
n(r) + γn↑vn(r))

]
,

Ψ(r ↑) =
∑

n

[
γn↑un(r) − γ†n↓v

∗
n(r))

]
,

Ψ(r ↓) =
∑

n

[
γn↓un(r) + γ†n↑vn(r))

]
,

(1.46)
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where γn↑ create a quasiparticle of spin up in the state n and γn↓ annihilates a quasiparticle with spin down.
The electron operators follow the Fermi communication relations

Ψ(r, α)Ψ(r′, β) + Ψ(r′, β)Ψ(r, α) = 0, (1.47)

Ψ†(r, α)Ψ†(r′, β) + Ψ†(r′, β)Ψ†(r, α) = 0, (1.48)

Ψ†(r, α)Ψ(r′, β) + Ψ(r′, β)Ψ†(r, α) = δαβδ(r − r′), (1.49)

where α and β are spin indexes. The quasiparticle operators should also follow the Fermi commutation relations

γn,αγm,β + γm,βγn,α = 0, (1.50)

γ†n,αγ
†

m,β + γ†m,βγ
†
n,α = 0, (1.51)

γ†n,αγm,β + γm,βγ
†
n,α = δαβδmn. (1.52)

The BCS Hamiltonian in the real space is

H =
∑
α

∫
Ψ†(r, α)Ĥ0Ψ(r, α)d3r −

V
2

∑
α,β

∫
Ψ†(r, α)Ψ†(r, β)Ψ(r, β)Ψ(r, α)d3r, (1.53)

where V > 0. De Gennes simplified this Hamiltonian to an effective mean-field Hamiltonian which is the
second order of Ψ:

He f f =
∑
α

∫ [
Ψ†(r, α)Ĥ0Ψ(r, α) + U(r)Ψ†(r, α)Ψ(r, α)

]
d3r

+

∫ [
∆Ψ†(r, ↑)Ψ†(r, ↓) + ∆∗Ψ(r, ↓)Ψ(r, ↑))

]
d3r,

(1.54)

which contains a real effective field

U(r) = −V〈Ψ†(r, ↓)Ψ(r, ↓)〉 = −V〈Ψ†(r, ↑)Ψ(r, ↑)〉, (1.55)

and a complex effective field

∆(r) = −V〈Ψ( ↓)Ψ(r ↑)〉 = V〈Ψ( ↑)Ψ(r ↓)〉. (1.56)

This Hamiltonian should be diagonal in the quasiparticle operators γn,α and γ†n,α as

He f f = Eg +
∑
n,α

εnγ
†
n,αγn,α, (1.57)

where Eg is the energy of the ground state and εn is the energy of excited state |n〉. From Eq. (1.54), we have
the commutators

[He f f ,Ψ(r, ↑)] = −[H0 + U(r)]Ψ(r, ↑) − ∆(r)Ψ†(r, ↓), (1.58)

[He f f ,Ψ(r, ↓)] = −[H0 + U(r)]Ψ(r, ↓) + ∆(r)Ψ†(r, ↑). (1.59)
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we also have the commutator from Eq. (1.57) as

[He f f , γn,α] = −εnγn,α, (1.60)

[He f f , γ
†
n,α] = εnγ

†
n,α. (1.61)

Since Eq. (1.58) and (1.59) should be equivalent to Eq. (1.60) and (1.61), we express Ψ with γ by using Eq.
(1.46) and compare the terms with γ and γ†. We find that Eq. (1.60) and (1.61) hold when u and v satisfy the
Bogoliubov de-Gennes (BdG) equations

[H0 + U]u + ∆v = εu, (1.62)

− [H∗0 + U]v + ∆∗u = εv. (1.63)

1.3 Ginzburg-Landau Theory

In the introduction of microscopic picture of superconductivity, we obtain the ground state, excited state and en-
ergy gap from the BCS theory, which also successfully explains phenomena such as zero resistance, Meissner
effect and isotope effect. Nevertheless, it is inconvenient to study a sample with inhomogeneous supercon-
ductivity based on BCS theory. Similarly, the London theory does not consider the suppression of density of
Cooper pairs under magnetic field and also has no discussion on the spacial variation of the density. Therefore
both theories have difficulty in dealing with spatial inhomogeneity, which unfortunately is a common occa-
sion when superconductors are under external electromagnetic field. In such cases, the Ginzburg-Landau (GL)
theory are proved to be a valuable tool [17].

In 1950 Ginzburg and Landau established a phenomenological theory based on Landau theory of second-order
phase transition [18]. Based on this Ginzburg-Landau (GL) theory in 1957 Abrikosov predicted a vortex struc-
ture where supercurrent flows around a normal core, which appears in type-II superconductors [19]. Later in
1959, Gor’kov derived the GL theory from BCS theory near the phase transition point, where the supercon-
ducting order parameters are small and changes slowly in space [20]. This derivation yielded a microscopic
interpretation of all the parameters and allows a calculation of coefficients in GL theory. After the develop in
this decade, GL theory was fully understood and widely accepted as a powerful tool in research of supercon-
ductors. In this Chapter, I will briefly introduce the GL theory as a basis for the further study.

1.3.1 Ginzburg-Landau Free Energy Functional

The GL theory is based on the Landau theory of second-order phase transitions, where a crucial point is the ex-
pansion of the free energy in powers of an order parameter which distinguishes the symmetry of the two phases.
This order parameter is nonzero below the critical temperature and zero above it. When temperature is close
to the superconducting phase transition temperature Tc, the value and spatial gradient of the superconducting
order parameter are small, which allows the expansion of free energy in the form

f = fn + α |Ψ (r)|2 +
β

2
|Ψ(r)|4 +

~2

2m
|∇Ψ(r)|2, (1.64)
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Figure 1.6: GL free energy for T > Tc and T < Tc.

where fn is the free energy of the normal state, Ψ(r) is a complex order parameter with |Ψ(r)|2 representing
the local density of Cooper-pairs, and the gradient term corresponds to quantum mechanical kinetic energy of
a Cooper-pair. Coefficients of |Ψ|2 and |Ψ|4 are temperature dependent, but at temperature neat Tc only the
leading term is kept, and thus we have

α = α0

(
1 −

T
Tc

)
α0 < 0 (1.65)

and β is a positive constant.

In absence of external fields, the equilibrium state is uniform where the order parameter is homogeneous and
can be obtained by minimizing the free energy without the gradient term, which leads to

T < Tc : α < 0, |Ψ|2 = |Ψ∞|
2 = −α/β,

T > Tc : α > 0, Ψ = 0.
(1.66)

In this thesis, we denote the order parameter at the uniform state as the bulk order parameter Ψ∞ and its value
is called the bulk value. A corresponding curve showing the free energy as a function of the order parameter is
given in Fig. 1.6. At T < Tc, we have

f − fn = −
α2

2β
= −

H2
tc

8π
, (1.67)

where we obtain the thermodynamic critical field Htc as

Htc =

√
4πα2

β
. (1.68)

Now let us consider the behavior in presence of a magnetic field. We need to add the term of energy density
of magnetic field B2/8π and replace ∇Ψ with [∇ − i(2e/~c)A]Ψ to restore the gauge invariance. The final
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expression of the free energy thus takes the form

f = fn + α |Ψ (r)|2 +
β

2
|Ψ(r)|4 +

1
2m

∣∣∣∣∣∣
(
~

i
∇ −

2e
c

A
)
Ψ(r)

∣∣∣∣∣∣2 +
(∇ × A)2

8π
. (1.69)

We can check this free energy is gauge invariant under the following gauge transformation

A→ A +
2e
~c
∇χ, Ψ→ Ψeiχ. (1.70)

By varying the free energy with respect to A and Ψ∗, one can obtain the GL equations as

αΨ + β |Ψ|2 Ψ +
1

2m

(
~

i
∇ −

2e
c

A
)2

Ψ = 0, (1.71)

Js =
c

4π
∇ × ∇ × A =

2e
m
|Ψ|2

(
~∇ϕ −

2e
c

A
)
, (1.72)

where Js is the supercurrent and ϕ is the phase of the order parameter.

The general boundary condition for superconductors are provided by de Gennes [21], which assures that no
supercurrent passes through the boundary. The formula of boundary condition is given by

n ·
(
~

i
∇ +

2e
c

A
)
Ψ =

i~
b

Ψ, (1.73)

where n is the unitary vector perpendicular to the boundary and b is a real constant. The value of b depends
on the nature of the material which the boundary attaches to and generally there are three cases: (1) b → ∞
indicates a superconductor/insulator boundary, (2) b > 0 describes a superconductor/normal metal interface,
(3) b = 0 when the superconductor is attached to a ferromagnet which require Ψ = 0 at the boundary.

In presence of external field, the free energy continuous at phase transition point is the Gibbs free energy

G = f −
H · B

4π
. (1.74)

At Htc, both the bulk superconducting state and the normal state have the same Gibbs free energy as

Gs0 = −
H2

tc

8π
. (1.75)

London penetration length

Here we derive the London penetration length from the second GL equation. In London gauge where |Ψ| is a
constant, we put a curl operation on both sides of Eq. (1.72) and get

c
4π
∇ × ∇ × B =

4e2|Ψ|2

mc
B, (1.76)

which leads to

∇2B = −
16πe2α

mβc2 B, (1.77)



Chapter 1. Introduction 14

after substituting the order parameter of the equilibrium state. If we consider a superconducting medium
occupying the half space x > 0 and an external magnetic field at x ≤ 0, solution of Eq. (1.77) is given by

B(x) = B0 exp
(
−

x
λ

)
, (1.78)

where we get the penetration length λ as

λ =

√
−

mβc2

16πe2α
. (1.79)

Coherence length

When a disturbance of superconducting order parameter from the bulk value takes place somewhere in a su-
percondcutor in absence of external field, the order parameter should recover to the bulk value far away. The
characteristic length to describe this recovery is the GL coherence length. Here we set Ψ = Ψ∞ + g(x) where
Ψ is the bulk order parameter and g(x) is the deviation, and Eq. (5.2) becomes

α (Ψ∞ + g) + β(Ψ∞ + g)3 −
~2

2m
∇2(Ψ∞ + g) = 0, (1.80)

where we use the gauge A = 0 and take Ψ as real for simplicity. By considering a small deviation that g � Ψ∞,
we have, to the first order in g,

α (Ψ∞ + g) + β(Ψ3
∞ + 3Ψ2

∞g) −
~2

2m
∇2g = 0. (1.81)

After substituting the value of Ψb, we get

∇2g =

(
2
ξ2

)
g, (1.82)

where ξ is the coherence length and given by

ξ =

√
−
~2

2mα
. (1.83)

The solution of Eq. (1.82) is

g(x) = g(0) exp
−√2x

ξ

 , (1.84)

which shows that the deviation decays in a length of order ξ.

Now we can introduce the famous dimensionless Ginzburg-Landau parameter κ, which is defined as

κ =
λ

ξ
=

√
m2βc2

8πe2~2 . (1.85)

As will be discussed later in details, κ = 1/
√

2 separates superconductor of type-I and type-II.

Nucleation field

When the magnetic field is initially very high, the superconductivity of a sample is completely broken. When
we decrease the magnetic field, there is a critical field where the superconductivity begins to appear in the
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interior of a bulk sample; we call this critical field as the nucleation field Hn. At nucleation field, the order
parameter is extremely small and thus we only keep the first of Ψ in Eq. (5.2), which leads to the linearized GL
equation

αΨ +
1

2m

(
~

i
∇ −

2e
c

A
)2

Ψ = 0. (1.86)

We consider a bulk sample in a field H along the z direction and the vector potential is taken as

Ay = Hx. (1.87)

In this condition, Eq. (1.86) becomes−∇2 + i
4πHx

Φ0

∂

∂y
+

(
2πH
Φ0

)2

x2

 Ψ =
1
ξ2 Ψ. (1.88)

We search for a solution in the form
Ψ = f (x)ei(kyy+kzz) (1.89)

because the effective potential is a function of x. Substituting Eq. (1.89) into Eq. (1.88), we get

− ∇2 f +

(
2πH
Φ0

)2 (
x −

kyΦ0

2πH

)2

f = E f , (1.90)

where

E =

(
1
ξ2 − k2

z

)
. (1.91)

We notice that ky only shifts the the location of potential minimum which is unimportant for the present discus-
sion. Eq. (1.90) is a Schrodinger equation for a particle in a harmonic oscillator potential, where the resulting
eigenvalues are

E = En =

(
n +

1
2

)
~

(
2eH
mc

)
(1.92)

with an integer n. From above two equations, we obtain

H =
Φ0

2π(2n + 1)

(
1
ξ2 − k2

z

)
. (1.93)

Clearly the highest magnetic field is reached at kz = 0 which means that there is no energy wasted at the z
direction and n = 0 which indicates the lowest Landau level. This field is the nucleation field which has the
formula

Hn =
Φ0

2πξ2 , (1.94)

and the corresponding eigenfunction is

f (x) = exp
(
−

x2

2ξ2

)
= exp

(
−
πHnx2

Φ0

)
. (1.95)
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Here it is interesting to write the thermodynamic critical field in Eq. (1.68) in another way as

Htc =
Φ0

2
√

2πξλ
. (1.96)

By comparing Eq. (1.94) and Eq. (1.96), we get a relation

Hn =
√

2κHtc. (1.97)

1.3.2 Classification of Superconductivity

We now introduce the interface between the normal state and superconducting state, where the interface energy
changes sign at κ = 1/

√
2, leading to different magnetic response. We consider an infinite one-dimensional

superconductor along x axis where order parameter is only a function of x and the magnetic field is along z axis
but changes only with the coordinate x. The boundary conditions are

x→ −∞ : Ψ = Ψ∞ & B = 0,

x→ +∞ : Ψ = 0 & B = Htc.
(1.98)

Figure 1.7: Schematics of variation of order parameter and magnetic at interface. The case κ � 1/
√

2 indicates
a type-I superconductor with positive interface energy; the case κ � 1/

√
2 indicates a type-II superconductor

with negative interface energy.

Since the external field is fixed at Htc, the appropriate free energy to consider is the Gibbs free energy. We have
mentioned that the Gibbs free energy of bulk superconducting state and normal state have the same value Gs0

as given in Eq. (1.75). Here we see the excess Gibbs free energy over Gs0, which is written as

ρ =

∫ ∞

−∞

(G +
H2

tc

8π
)dx

=

∫ ∞

−∞

α |Ψ (r)|2 +
β

2
|Ψ(r)|4 +

1
2m

∣∣∣∣∣∣
(
~

i
∇ −

2e
c

A
)
Ψ(r)

∣∣∣∣∣∣2 +
(B − Htc)2

8π

 dx.
(1.99)
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If we multiply the first GL equation Eq. 5.2 by Ψ∗ and integrate over all x, we get∫ ∞

−∞

α |Ψ (r)|2 + β |Ψ(r)|4 +
1

2m

∣∣∣∣∣∣
(
~

i
∇ −

2e
c

A
)
Ψ(r)

∣∣∣∣∣∣2
 dx = 0, (1.100)

which can simplifies the excess Gibbs free energy to

ρ =
H2

tc

8π

∫ ∞

−∞

(1 − h
Htc

)2

−

(
Ψ

Ψ∞

)4 dx. (1.101)

This form clearly displays a positive diamagnetic energy and a negative condensation energy, which together
decides the sign of ρ. When the penetration length is much smaller than the coherence length as shown in
Fig. 1.7(a), the diamagnetic effect is strong and order parameter recovers slowly, which makes the diamagnetic
energy dominant, thus leading to positive interface energy. On the other hand when the penetration length is
much larger than the coherence length as shown in Fig. 1.7(b), the condensation energy is dominant which
gives negative interface energy. For both cases, the exact results [22] have been obtained as

κ �
1
√

2
: ρ′ =

4
√

2ξ
3

> 0,

κ �
1
√

2
: ρ′ = −

8(
√

2 − 1)λ
3

< 0,

(1.102)

where ρ′ is the value of integration in Eq. (1.101). The crossover point of zero interface energy is found at

κ =
1
√

2
(1.103)

by Ginzburg and Landau with numerical integration. We also have Hn = Htc at this crossover point according
to Eq. (1.97). In Abrikosov’s path-breaking paper in 1957, he anticipated a distinct behaviors of supercon-
ductors with negative interface energy under magnetic fields: magnetic flux penetrating through the sample is
subdivided until each flux becomes a flux quantum Φ0, which is carried by a vortex where supercurrent rotates
around a normal core. Since then, superconductors with κ < 1/

√
2 and κ > 1/

√
2 are categorized as type-I

and type-II superconductors. Type-I superconductivity is usually exhibited by pure metals such as aluminium,
indium and mercury. There are many type-II superconductors including cuprate superconductors, MgB2 and
iron-based superconductors.

1.3.3 Vortex Matter in Type-II Superconductors

In the previous introduction, we have shown that phase coherence allows 2π phase winding and trapped flux
quantum Φ0. Abrikosov pointed out that a vortex with 2π phase winding around a normal core can penetrate
into a superconductor in type-II superconductors due to the negative interface energy. Here we introduce the
structure of this vortex in the GL frame.

From the second GL equation Eq. (1.72), we get the phase gradient as

∇ϕ =
2e
~c

A +
mJs

2e~|Ψ|2
. (1.104)
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Figure 1.8: (a) Distribution of order parameter in a vortex. (b) Distribution of magnetic field in a vortex (c)
Supercurrent flowing around the normal core.
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By integrating the phase gradient along a closed path ”c”, the single-valued order parameter requires∮
c

(
2e
~c

A +
mJs

2e~|Ψ|2

)
dl = N2π, (1.105)

which further leads to ∮
c

(
A +

cmJs

4e2|Ψ|2

)
dl = NΦ0, (1.106)

which defines a vortex for N = 1.

To illustrate the structure of a vortex, I display Fig. 1.8 which is a numerical result of one vortex in a sample
with size (10λ × 10λ). At the core of the vortex, the magnetic field is largest and the order parameter is
suppressed to zero. Outside the normal core, the magnetic field and supercurrents decay at the length scale of
λ and order parameter increases at the length scale of ξ. Far from the core we can find a closed path where
magnetic field and supercurrents are zero everywhere, and thus the flux inside is Φ0.

There is an interface connecting the normal core and the bulk superconducing state far away. In type-II super-
conductors, this interface energy is negative which makes the entry of vortices energetically favored. In stead
of joining together, vortices separated from each other to achieve maximum area of interface in total, which
leads to the formation of triangle vortex lattices.

1.3.4 Time-Dependent Ginzburg-Landau Approach

In order to give a better understanding and description of the dynamics of various superconducting transitions,
Gorkov and Eliashberg derived the time-dependent Ginzburg-Landau (TDGL) equations as [23, 24]

~2

2m∗D

(
∂t + i

e∗

~
ΦE

)
Ψ = −

δ f
δΨ∗

, (1.107)

σ

c

(
1
c
∂tA + ∇ΦE

)
= −

δ f
δA

, (1.108)

where f is the GL free energy. The constant D is the phenomenogical diffusion coefficient, σ the electrical con-
ductivity and ΦE the electric scalar potental. The gauge invariant quantities are the magnetic field, B = ∇ × A;
current density, J = σE + Js; density of Cooper pairs, ns = |Ψ|2 and the electric field, E = −(1/c)∂A/∂t−∇ΦE .
In a dimensionless form [24], TDGL equations are simplified to(

∂

∂t
+ iκΦE

)
Ψ = −

δ f
δΨ∗

, (1.109)

σ

(
∂A
∂t

+ ∇ΦE

)
= −

1
2
δ f
δA

(1.110)

with the GL free energy

f = − |Ψ|2 +
1
2
|Ψ|4 +

∣∣∣∣∣∣
(

1
iκ
∇ − A

)
Ψ

∣∣∣∣∣∣2 + (∇ × A)2. (1.111)
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Figure 1.9: Schematic of phonon-electron interaction which transfer a Cooper pair in s-band to d-band.

TDGL equations are gauge invariant under the following transformation:

Ψ′ = Ψeiκχ, A′ = A + ∇χ, Φ′ = Φ −
∂χ

∂t
. (1.112)

To give a better understanding of TDGL equations, we choose the gauge ΦE=0. The first TDGL equation Eq.
(1.109) becomes

∂Ψ

∂t
= −

δ f
δΨ∗

(1.113)

This is just the Langevin equation without random forces. The minus sign at the right side guarantees the
evolution direction to the energy minimum. As we have

∂A
∂t

= −E, −
1
2
δ f
δA

= Js − ∇ × ∇ × A (1.114)

Eq. (1.110) is rewritten as
∇ × ∇ × A = Js + σE (1.115)

which is the Ampere’s Law. In this sense, TDGL equations describe the dynamics of cooper pairs in an
electromagnetic field. Since the TDGL equations are nonlinear differential equations of complex variables, it
is difficult to solve them analytically. Within this thesis, I use the numerical method provided by Gropp et al.
[24] to study various superconducting systems.

1.4 Time-Reversal-Symmetry-Broken (TRSB) State in Multi-Component Su-
perconductors

1.4.1 Multi-Component Superconductivity

The original BCS theory was a simplified model considering a single isotropic superconducting gap, which has
lots of room for refinement. Two years after its establishment, Suhl, Matthias and Walker studied the two-band
extention [25], with the motivation to explain the superconductivity in transition metals. In BCS theory, a pair
of electrons (k ↑,−k ↓) is excited to the state (k′ ↑,−k′ ↓) through a virtual process of emission and reabsorption
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of a phonon. As an extention in two-band superconductivity, this electron-phonon interaction may take place
between two bands if an interband scattering process is available. Therefore an extra term describing interband
coupling should be included in the hamiltonian as

H =
∑
kσ
ξksc

†

kσckσ +
∑
kσ
ξkdd†kσdkσ −

∑
kk′

Vssc
†

k↑c
†

−k↓c−k′↓ck′↑ −
∑
kk′

Vddd†k↑d
†

−k↓d−k′↓dk′↑

−
∑
kk′

Vsd
(
c†k↑c

†

−k↓d−k′↓dk′↑ + d†k↑d
†

−k↓c−k′↓ck′↑
) (1.116)

where ξks, ξkd are kinetic energy of single particles in s− and d−band. c†, c and d†, d are the corresponding
creation and annihilation operators. Vss, Vdd and Vsd are the averaged electron-phonon interaction energy from
s − s, d − d and s − d process which is shown in Fig. (1.9). They found only one critical temperature in
presence of interband coupling, no matter how small it is. Another consequence of interband coupling is that
the interband coupling itself can induce superconductivity even when Vss = 0 and Vdd = 0. Then J. Kondo
developed this theory by pointing out that superconducting transition temperature is always raised over that of
a single band when the interband coupling Vsd is introduced [26]. It means that even a repulsive coupling can
lower the energy of system, after introducing a minus sign between two gap functions.

After Kondo’s study, this topic slept for almost 40 years until the discovery of MgB2 [27] in 2001. MgB2

has two superconducting gaps of the π and σ bands of electrons, which are 7.1meV and 2.2meV respectively
[28]. And the two gaps are weakly coupled. Concerning the two gap structure of MgB2, the studies of multi-
component superconductivity were still limited to two-component superconductivity. Then in 2008, multi-
band iron-based superconductivity was discovered [29]. In principle, iron pnictides may have at most five
gaps because of five Fermi sheets mainly originating from five-fold degenerated Fe 3d orbitals [30, 31]. In
support, some angle resolved photoemission spectroscopy (ARPES) experiments observed as many as four
different gaps [32, 33]. Some tight-binding calculations show that one electron and two hole-like bands are
most strongly coupled in the pair scattering channel [34, 35]. All these make the study of multi-component
superconductivity with interband couplings quite urgent. In this thesis, I mainly focus on the superconductors
with three or more components with broken time-reversal symmetry.

1.4.2 Time-Reversal Symmetry

Before starting the introduction of TRSB state, let me first explain the time-reversal symmetry (TRS). Actually
this term time reversal is a misnomer, which reminds us of science fiction. The time-reversal process is what
happens when seeing a movie backwards. After the time-reversal operation, the time still flow forward but the
motion reversed following the original trajectory as shown in Fig. 1.10.

In the original motion, we set the acceleration at time t0 as a(t0). After reversal of motion, the acceleration
aR(t0) is given by

aR(t0) =
vR(t0 + dt) − vR(t0)

dt
=
−v(t0 − dt) + v(t0)

dt
= a(t0), (1.117)

which shows that the acceleration does not change under time-reversal operation.

Now we discuss whether the reversed motion is real or not, in other words, whether it obeys the physical law.
We first consider a falling ball in the gravitational field with an accelerated speed g. Its reversed motion is
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Figure 1.10: Schematics of reversed motion after the time-reversal operation at time t0. Speed at every site
reverses relative to the original motion. x and v refer to the coordinate and speed of the original motion, and xR

and vR refer to coordinate and speed of the reversed motion. Time-reversal requires xR(t0) = x(t0), xR(t0 + dt) =

x(t0 − dt), xR(t0 + 2dt) = x(to − 2dt), vR(t0) = −v(t0), vR(t0 + dt) = −v(t0 − dt), vR(t0 + 2dt) = −v(t0 − 2dt).

the ball going up with the speed decreasing at acceleration g, which follows the Newton’s law and thus a real
movement. In this case, we say the dynamics of the ball here has the time-reversal symmetry.

The situation differs when we consider a moving electron under a magnetic field B, where the electron feels the
Lorentz force F = ev×B which depends on the speed v, as shown in Fig. 1.11. The reversal of motion changes
the direction of Lorentz force and further leads to reversal of acceleration, contradictory to Eq. (1.117). The
electron can not follow the original trajectory back due to the Lorentz force. This means that the motion of the
electron after time-reversal operation is not real, in other words, conflicting with the physical law. In this case,
we say that the electron’s dynamics here has no time-reversal symmetry.

Figure 1.11: Unphysical motion of electron after the time-reversal operation. B is the magnetic field and F
is the Lorentz force. The dashed line refers to the motion of electron under time-reversal operation, where the

newton’s law seems failed.

Now we introduce the time-reversal symmetry in quantum mechanics. We use Θ as the time-reversal operator,
and we should have

ΘxΘ−1 = x, ΘpΘ−1 = −p (1.118)
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where x and p is the position and momentum operator. We consider

|α〉 → Θ|α〉, (1.119)

as a time reversal operation and Θ|α〉 is the time-reversed state, or motion-reversed state. We now derive the
basis properties of Θ by studying the time evolution of the time-reversed state. We consider a system at a
quantum state α at t = 0. At a slightly later time t = dt, the state becomes

|α; t = dt〉 =

(
1 −

iH
~

dt
)
|α〉, (1.120)

where H is the Hamiltonian of the system. Now we first apply Θ on the state at t = 0, and let the system evolve
under the dynamics of H. The state at t = dt is (

1 −
iH
~

dt
)
Θ|α〉. (1.121)

If the motion reserves the time-reversal symmetry, the above state should be the same as

Θ|α; t = −dt〉 = Θ

(
1 +

iH
~

dt
)
|α〉, (1.122)

and thus we obtain (
1 −

iH
~

dt
)
Θ|α〉 = Θ

(
1 +

iH
~

dt
)
|α〉, (1.123)

which is reduced to
− iHΘ|α〉 = ΘiH|α〉. (1.124)

If Θ is a unitary operator, we have
− HΘ = ΘH, (1.125)

which makes
HΘ|n〉 = −ΘH|n〉 = −EnΘ|n〉, (1.126)

where |n〉 is an eigenstate with energy eigenvalue En. Eq. (1.125) also implies

Θ−1 p2

2m
Θ = −

p2

2m
(1.127)

Both Eq. (1.126) and (1.127) indicate that Θ makes the energy of state negative, which is nonsensical because
no state has energy lower than a particle at rest.

The above arguments suggest that Θ should be antiunitary, and thus Eq. (1.124) leads to

ΘH = HΘ. (1.128)

With this equation, the problems in Eq. (1.126) and (1.127) do not exist and we obtain physically sensible
results. For simplicity, we use

Θ = K (1.129)

where K means taking the complex conjugate. Eq. (1.128) is the condition of time-reversal symmetry.
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1.4.3 TRSB States in Three-Component Superconductors

Superconductivity in each condensate is described by a complex superconducting order parameter ψ j = |ψ j|eiϕ j .
The phase differences between order parameters are decided by the intercomponent couplings. In two-component
superconductors, an attractive coupling leads to two parallel order parameters while a repulsive coupling gives
opposite signs of two order parameters. The situation differs when there are three components, where a frus-
trated state can emerge as a compromise of three repulsive interband couplings. In this case, interband phase
differences are neither 0 nor π, leading to time-reversal symmetry (TRS) breaking [36]. The TRSB state can be
realized in a multi-band superconductor even with all the gap functions of s-wave symmetry, which distinguish-
es it from magnetic superconductors and chiral p-wave superconductors. Due to the discovery of iron-pnictide
superconductors where several orbitals of Fe contribute to multi superconducting condensates, this possibility
becomes realistic and attracts wide attentions [37–49]. Stanev and Tesanovic had a thorough discussion of
possibility of TRSB states with BCS theory in the context of iron-based superconductors [37]. A detailed dis-
cussion on thermodynamic stability with GL theory was established by Hu and Wang, which provides a phase
diagram of the TRSB sate [41].

Here we adopt the GL theory of three-component superconductors to introduce the TRSB state [38, 41, 50].
The GL free energy functional takes the following form

F =
∑

j=1,2,3

α j
∣∣∣ψ j

∣∣∣2 +
β j

2

∣∣∣ψ j
∣∣∣4 +

1
2m j

∣∣∣∣∣∣
(
−i~∇ −

2e
c

A
)
ψ j

∣∣∣∣∣∣2
 −∑

j<k

γ jk
(
ψ∗jψk + c.c.

)
+

1
8π

(∇ × A)2 , (1.130)

where α j is a temperature-dependent coefficient which is negative when T < Tc j and positive when T > Tc j,
with Tc j the critical point of the superconducting component- j before considering inter-band couplings, and
γ jk is an Josephson-like inter-component coupling taken as constant for simplicity. Other parameters are all
conventionally defined. The GL equations in absence of magnetic fields are given by

α1ψ1 + β1 |ψ1|
2 ψ1 − γ12ψ2 − γ13ψ3 = 0, (1.131)

α2ψ2 + β2 |ψ2|
2 ψ2 − γ12ψ1 − γ23ψ3 = 0, (1.132)

α3ψ3 + β3 |ψ3|
2 ψ3 − γ13ψ1 − γ23ψ2 = 0, (1.133)

which gives order parameters at the the equilibrium state. The status of time-reversal symmetry is decided by
the phase differences of order parameters. When the phase differences are either 0 or π, all order parameters
can become real after dropping a common phase, which makes the gap functions real since each GL order
parameter has the same phase with the corresponding gap function. A gap function as a real number reserves
the time-reversal symmetry of the Hamiltonian according to Eq. (1.128). We call this state as the time-reversal-
symmetry-reserved (TRSR) state. On the other hand, when phase differences of order parameter are neither
0 or π, some of the order parameters have to be a complex number which breaks the time-reversal symmetry.
We call this superconductoring state as the TRSB state. In the following, we discuss the situation of interband
couplings which induces the TRSR state or the TRSB state.

Time-reversal symmetry reserved state

(1) When three inter-band couplings are all attractive (γ jk > 0) (expressed as (+,+,+)), three order parameters
have the same phase in the equilibrium state, as shown in Fig. 1.12(a)
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(2) When two couplings are repulsive while the other coupling is attractive (+,−,−), two order parameters have
the same phase while the other one has a π phase difference from them, as shown in Fig. 1.12(b)

Figure 1.12: TRSR state with (a) three attractive couplings (+,+,+), or (b) two repulsive couplings and one
attractive coupling (+,−,−).

Superconducting states in both cases reserve the TRS because the intercomponent phase differences are either
0 or π. We also find that the inter-component phase differences enjoy the most favorable value in compliance
with the corresponding inter-component coupling. In other words, we have ∆ϕ jk = 0 when γ jk > 0 and
∆ϕ jk = π when γ jk < 0. However we will see below that for (+,+,−) and (−,−,−) it is impossible to put all
the inter-component phase differences at the most favorable value, which introduces frustrated intercomponent
phase difference.

TRSB state

First let us discuss the cases (+,+,−) and (−,−,−) with intercompnent couplings distinct from each other.
For (+,+,−) case where the attractive couplings are much stronger than the repulsive coupling and the am-
plitude of three order parameters are comparable, three parallel order parameters still have the same phase.
And for (−,−,−) case where two repulsive couplings are much stronger than the attractive one, we still have
the equilibrium state as shown in Fig. 1.12(b). However, when three components and inter-band couplings
are comparable, it is possible to obtain a case that inter-component phase differences are neither 0 nor π, as
shown by Fig. 1.13. In three-component superconductors, we have two degenerate TRSB states with opposite
chiralities. The phase diagram of the TRSB state can be found in [41].

Figure 1.13: Two degenerate TRSB states with opposite chiralities for (a) three repulsive couplings (−,−,−)
and (b) one repulsive and two attractive couplings (+,+,−).

A hopeful candidate to carry this TRSB state is the iron-based superconductor with at most five gaps originat-
ing from the five Fe 3d orbitals [51]. In Ba0.6K0.4Fe2As2, angle resolved photoemission spectroscopy (ARPES)
measurements observed four different gaps at two electron-like and two hole-like Fermi pockets [33]. Sign re-
versals between Cooper pairing of electron pockets and hole pockets caused by spin fluctuations were discussed
[52, 53]. A sign reversal between two strong hole pockets has also been suggested in KFe2As2 [43, 54, 55].

It has been suggested that spontaneous broken TRS is accompanied by novel phenomena such as fractional
vortices [56, 57], modified phase slip [58], spontaneous supercurrent and self-induced flux[59, 60], massless
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Leggett mode [42, 61], mixed phase density mode [62] and vortex clusters [47]. In this thesis, I will mainly
explore the novel phenomena in the TRSB state, which helps to identify the TRSB state in possible materials.



Chapter 2

Josephson Effects in Three-Band
Superconductors with Broken Time-Reversal
Symmetry

The Josephson effect is a remarkable macroscopic tunneling phenomenon associated with broken gauge sym-
metry in a superconducting state [5]. When phase difference ∆ϕ exists between two superconductors connected
by a weak link, dc supercurrent flows through the junction with zero voltage bias. The detailed form of cur-
rent phase relation (CPR) depends on the materials and geometries of the weak links, while the ac Josephson
relation is given by ∂t(∆ϕ) = 2eV/~.

Because the Josephson effect is due to interference between wave functions of two superconductors that are
weakly linked, it carries the information of gap structures. Therefore, it is widely used as a tool to detect
the pairing symmetry in an unconventional superconductor. For example, the half-flux quanta observed in
the tricrystal junction in high-temperature cuprate superconductor serves as the best evidence for the d-wave
pairing symmetry [59].

In this chapter, I will first introduce the Andreev reflection as the mechanism of Cooper-pair tunneling in
superconductor-normal metal-superconductor (SNS) Josepshon junction. Then I will study a SNS junction con-
necting a single-band superconductor and a three-band TRSB superconductor. Phenomena such as asymmetric
critical currents, subharmonic Shapiro steps, and symmetric Fraunhhofer patterns are revealed theoretically.
Existing experimental results consistent with our proposal are discussed in terms of the present work.

2.1 Andreev Reflection

Andreev reflection is a type of particle scattering that occurs at the interface between a superconductor and a
normal metal, which was first discovered by Alexander F. Andreev [63]. When an electron in the normal metal
penetrates into the superconductor at energy lower than the superconducting gap, the incident electron forms a
Cooper-pair with reflection of a hole of opposite spin and velocity, as shown in Fig. 2.1. The Andreev reflection

27
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is originated from the absence of excited states within the superconducting gap, which forces the pairing of the
incident electron by pulling another electron from the normal metal (i.e. reflection of a hole).

Figure 2.1: Schematics of a N-S junction showing the process of Andreev reflection. Θ(x) is the step function.

Let us now consider this phenomenon quantitatively with the Blonder-Tinkham-Klapwijk (BTK) model [64].
We consider an electron moving along x axis and the junction is located at x = 0 as shown in Fig. 2.1. We
study the system with the one-dimensional BdG equation−~2∂2

x/2m − EF ∆Θ(x)
∆∗Θ(x) ~2∂2

x/2m + EF

ψ = Eψ, (2.1)

where EF = ~2k2
F/2m and ψ = (u↑(x), v↓(x))T is the wavefunction in the Nambu spinor notation where u

and v are the particle and hole part. We first obtain the wavefunction in the normal metal (x < 0) and the
superconductor (x > 0) separately and then connect them with boundary conditions.

Solutions in normal metal

In the normal metal, the BdG equation is reduced to−~2∂2
x/2m − EF 0

0 ~2∂2
x/2m + EF

 u(x)
v(x)

 = E
u(x)
v(x)

 , (2.2)

which exhibits two energy spectra: ε = ~2k2/2m−EF for particles and ε = −~2k2/2m + EF for holes, as shown
in Fig. 2.2. The group velocities of an electron and hole are give by

vNe =
1
~

dε
dke

=
~ke

m
, vNh =

1
~

dε
dkh

= −
~kh

m
. (2.3)

For eigenenergy E, there are four solutions of eigenfunction including two particle solutions which refer to

(1) right moving electrons : k = ke, ψ
e
+ =

10
 eike x, (2.4)
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Figure 2.2: Energy spectra in normal metal with four solutions of BdG equations at energy level E. Red and
black arrows refer to the directions of group velocity of electrons and holes.

(2) le f t moving electrons : k = −ke, ψ
e
− =

10
 e−ike x, (2.5)

where ke = kF
√

1 + E/EF , and two hole solutions which refer to

(1) le f t moving holes : k = kh, ψ
h
+ =

01
 eikh x, (2.6)

(2) right moving holes : k = −kh, ψ
h
− =

01
 e−ikh x, (2.7)

where kh = kF
√

1 − E/EF .

Solutions in superconductor

In the superconductor, the BdG equation is reduced to−~2∂2
x/2m − EF ∆eiϕ

∆e−iϕ ~2∂2
x/2m + EF

 u(x)
v(x)

 = E
u(x)
v(x)

 , (2.8)

which exhibits two energy spectra: ε = ±
√

(~2k′2/2m − EF)2 + ∆2, as shown in Fig. 2.3. The group velocities
of an electron-like particle and an hole-like particle are given by

vS e =
1
~

dE
dk′e

=

√
E2 − ∆2

E
~k′e
m
, vS h =

1
~

dE
dk′h

= −

√
E2 − ∆2

E

~k′h
m
. (2.9)

For eigenenergy E > ∆, there are four solutions of eigenfunction including two particle-like solutions which
refer to

(1) right moving electron − like quasiparticle : k = k′e, ψ
e
+ =

u0eiϕ

v0

 eik′e x, (2.10)

(2) le f t moving electron − like quasiparticle : k = −k′e, ψ
e
− =

u0eiϕ

v0

 e−ik′e x, (2.11)
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Figure 2.3: Energy spectra in superconductor with four solutions of BdG equations at energy level E. Red and
black arrows refer to the directions of group velocity of electron-like and hole-like particles.

where

ke = kF

√√√
1 +

√
E2 − ∆2

E2
F

, (2.12)

and two hole-like solutions which refer to

(1) le f t moving hole − like quasiparticle : k = k′h, ψ
h
+ =

v0eiϕ

u0

 eik′h x, (2.13)

(2) right moving hole − like quasiparticle : k = −k′h, ψ
h
− =

v0eiϕ

u0

 e−ik′h x, (2.14)

where

kh = kF

√√√
1 −

√
E2 − ∆2

E2
F

. (2.15)

Here the quantities u0 and v0 are

u0 =

√√√√
1
2

1 +

√
1 −

(
∆

E

)2
, v0 =

√√√√
1
2

1 −
√

1 −
(
∆

E

)2
. (2.16)

In a superconductor, the excited quasiparticle is neither an electrons nor a hole but a combination of both.
We call the quasiparticle electron-like when |k| > kF because the electron has a larger contribution in the
wavefunction (|u0| > |v0|). Similarly we have the hole-like quasiparticles when |k| < kF because the hole has
a larger contribution in the wavefunction (|u0| < |v0|). For E � ∆, one can find u0 → 1 and v0 → 0 because
quasiparticle cannot feel the gap which makes the exciton an electron again.

Superconductor-normal metal junction

Now we consider a junction connecting the normal metal and the superconductor. At energy level E, there are
eight possible excitations as shown in Fig. (2.4)(a). The BdG equations are given by−~2∂2

x/2m − EF + Vδ(x) ∆eiϕΘ(x)
∆e−iϕΘ(x) ~2∂2

x/2m + EF − Vδ(x)

 u(x)
v(x)

 = E
u(x)
v(x)

 . (2.17)



Chapter 2. Josephson Effects in Three-Band Superconductors with Broken Time-Reversal Symmetry 31

Figure 2.4: (a) Schematics of junction with potential barrier V connecting normal metal and superconductor.
An electron is injected from the normal metal to the superconductor, has the possibilities of reflected as an
hole, reflected as an electron, tunneling as a hole-like particle and tunneling as an electron-like particle with
probability currents A, B, C and D. (b) Energy spectra of junction where 0 ∼ 7 are eight excited states at energy

level E. Red and black arrows refer to directions of probability currents of quasiparticles.

Here we consider a case that ∆ � E f , where we can approximately take the momentum of excited states as kF .
The group velocities of For the case of an injected electron from normal metal, the wavefunction at the side of
the normal metal is

ψN =

10
 eikF x + b

10
 e−ikF x + a

01
 eikF x, (2.18)

and the superconductor is

ψS = d
u0eiϕ

v0

 eikF x + c
v0eiϕ

u0

 e−ikF x. (2.19)

By adopting the boundary conditions

ψs(0) = ψN(0) = ψ(0),
~2

2m
[ψ′s(0) − ψ′N(0)] = Vψ(0), (2.20)

where the superscript ’ means the gradient with respect to x, we obtain

a =
u0v0

γ
e−iϕ, b = −

(u2
0 − v2

0)(Z2 + iZ)
γ

, , c =
iv0Z
γ

e−iϕ, d =
u0(1 − iZ)

γ
e−iϕ, (2.21)

where
Z =

mV
~2kF

, γ = u2
0 + (u2

0 − v2
0)Z2. (2.22)

Here |a|2, |b|2 |c|2 and |d|2 are the probabilities of the appearance of corresponding quasiparticles. From Eq.
(2.3), we have the group velocity of particles and holes as

vNe = vNF , vNh = −vNF , (2.23)

where vNF = ~kF/m. From Eq. (2.9), we have the group velocities of electron-like particles and hole-like
particles as

vS e =

√
E2 − ∆2

E
vNF = (u2

0 − v2
0)vNF , vS h = −

√
E2 − ∆2

E
vNF = −(u2

0 − v2
0)vNF . (2.24)
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We finally obtain the probability currents as

A =

∣∣∣∣∣∣ |a|2vNh

vNF

∣∣∣∣∣∣ =
u2

0v2
0

γ2 , (2.25)

B =

∣∣∣∣∣∣ |b|2vNe

vNF

∣∣∣∣∣∣ =
(u2

0 − v2
0)Z2(Z2 + 1)

γ2 , (2.26)

C =

∣∣∣∣∣∣ |c|2vS h

vNF

∣∣∣∣∣∣ =
v2

0(u2
0 − v2

0)Z2

γ2 , (2.27)

D =

∣∣∣∣∣∣ |d|2vS e

vNF

∣∣∣∣∣∣ =
u2

0(u2
0 − v2

0)(1 + Z2)

γ2 , (2.28)

where the velocities are normalized with the velocity of the injected electron vNF . One can easily verify that

A + B + C + D = 1, (2.29)

which is required by the conservation of particle number.

Figure 2.5: Probability currents of ballistic case with Z = 0. A and D refer to the probability to have a hole
reflected and a electron transmitted. B and C are vanishing in the case.

Now we consider a simple case with Z = 0. We find that the B and C vanish which is due to absence of
scattering center to change the wave vector from kF to −kF . The probability current of transmitted electron
and reflected hole as a function of energy level is shown in Fig. (2.5). When energy of the injected electron is
lower than the gap, a hole is certainly reflected. When the energy is above the gap, since the electron still feel
the existence of gap, it is still possible to have a hole reflected.
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2.2 Asymmetric Critical Currents

In this paper, we investigate the tunneling phenomena in a Josephson junction connecting a single-band super-
conductor and a three-band TRSB superconductor as shown in Fig. 2.6.

Figure 2.6: (color online) Schematics of point contact junction between single-band superconductor and three-
band TRSB superconductor. Arrows indicate phases of gap functions and white circle with rotating direction

represents the chirality.

We consider a point contact junction [65] with the size much smaller than the BCS coherence length. We model
the SNS junction by a step change in the gap functions

∆(x) =


∆0, x < 0;
0, x = 0;

{∆1,∆2,∆3}, x > 0,
(2.30)

with the origin at the point contact in Fig. 2.6; for simplicity all gaps are taken as s-wave pairing. In the bulk
on the right hand side, ∆1,∆2 and ∆3 are determined by the interband Cooper-pair scattering processes, and
nontrivial phase differences exist among ∆1,∆2 and ∆3[41]. By extending previous works for two-band case
[60, 66], the full BdG equations are given by

H1 + T11 T12 T13

T12 H2 + T22 T23

T13 T23 H3 + T33



ψ1

ψ2

ψ3

 = E


ψ1

ψ2

ψ3

 , (2.31)

with T jk = t jkδ(x)σz, ψ j = (u j↑(x), v j↓(x))T and

H j =

 −~2∂2
x/2m − EF ∆ jΘ(x) + ∆0Θ(−x)

∆∗jΘ(x) + ∆∗0Θ(−x) ~2∂2
x/2m + EF

 (2.32)
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with σz the Pauli matrix, Θ(x) the Heaviside function and EF = ~2k2
F/2m. Here ψ j are written in the Nambu

spinor notation and T jk are the intraband ( j = k) and interband ( j , k) single-particle scattering terms. The
BdG equations describe the transporting process of Copper pairs through the Andreev reflections [64] in the
ballistic limit.

In order to calculate the Andreev levels, we consider the right moving quasiparticles in the three-band super-
conductor on the right-hand side and the left moving quasiparticles in the single-band superconductor on the
left-hand side [65]. The solution has the form ψ j = ψ0−Θ(−x) + ψ j+Θ(x) with

ψ0− = a j−

u0eiϕ0

v0

 e−ikF x + b j−

v0eiϕ0

u0

 eikF x,

ψ j+ = a j+

u jeiϕ j

v j

 eikF x + b j+

v jeiϕ j

u j

 e−ikF x,

(2.33)

where

u j =

√√√√
1
2

1 +

√
1 −

(
|∆ j|

E

)2
, v j =

√√√√
1
2

1 −
√

1 −
(
|∆ j|

E

)2
 (2.34)

with j = 1, 2 and 3. To obtain Eq. (2.33), we have assumed the Andreev approximation E,∆ j � EF , and thus
the wave vectors simply read ±kF . While Eq. (2.33) shares the same form with the two-band superconductors
[66], the physics is quite different as will be revealed below due to the broken TRS.

From Eq. (2.33), the boundary conditions are given by

ψ0−(0) = ψ j+(0),(
∂ψ j+

∂x
−
∂ψ0−

∂x

)∣∣∣∣∣∣
x=0

=
2m
~2

[
t j jψ j−(0) + t jkψk−(0) + t jlψl−(0)

]
.

(2.35)

Ballistic junction with equal gap

Here we first consider a simple case with |∆0| = |∆ j| = |∆| in the ballistic limit (t jk = 0). From Eq. (2.35), we
obtain the Andreev spectra as

E±j = ± |∆| cos(ϕ j0/2) (2.36)

with ϕ j0 = ϕ j − ϕ0. Supercurrent in each channel is given by [67]

I j =
2e
~

∂E+
j

∂ϕ j0
f (E+

j ) +
2e
~

∂E−j
∂ϕ j0

f (E−j ) (2.37)
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Figure 2.7: (color online) Current-phase relation of ballistic point-contact junction between single-band and
three-band superconductor for parameters ϕ21 = 0.9π, ϕ31 = 1.3π and T = 0.2∆/kB. Inset: Red, green and blue

curves indicate the Josephson current in condensate-1, 2 and 3.

where f (E j) is the Fermi-Dirac distribution function. Thus we obtain the total current

Is(ϕ) =
e|∆|
~

sin(ϕ/2) tanh
|∆| cos(ϕ/2)

2kBT

+
e|∆|
~

sin[(ϕ + ϕ21)/2] tanh
|∆| cos[(ϕ + ϕ21)/2]

2kBT

+
e|∆|
~

sin[(ϕ + ϕ31)/2] tanh
|∆| cos[(ϕ + ϕ31)/2]

2kBT
,

(2.38)

where ϕ ≡ ϕ10, and ϕ21 and ϕ31 are interband phase differences for the three-band superconductor.

In a three-band superconductor with interband attractions, all gap functions take the same phase which reserves
the TRS. However, when the interband couplings are repulsive, gap functions have to take different phases with
nontrivial phase differences, which breaks the TRS [36–43].

To be specific, we consider a case with equal gap amplitudes albeit different interband couplings, such that
ϕ21 = 0.9π and ϕ31 = 1.3π. The current phase relation (CPR) for this system is displayed in Fig. 2.7. It is
interesting to find that critical currents in the two opposite directions are unequal.

The reason for the asymmetry in the critical currents can be found from the symmetry of CPR. In a conventional
time-reversal-symmetry-reserved (TRSR) superconductor (three-band: ϕ jk = 0 or π), the same critical currents
in two directions is a direct consequence of anti-reversal symmetry of CPR I(−ϕ) = −I(ϕ) as can be seen
in Eq. (2.38). This property is protected by TRS [68]. However in a TRSB state under concern, this anti-
reversal symmetry is broken as in Eq. (2.38) since ϕ21, ϕ31 , 0, π. The asymmetric critical currents can also be
understood from the absence of symmetry in the Andreev spectra.
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The relation between the broken TRS and asymmetric critical currents can be seen in another way. Upon the
time-reversal transformation to the whole system, supercurrent reverses its direction and the superconducting
state changes according to (ϕ j → −ϕ j). In a TRSB state, the superconducting state upon TRS operation results
in another state with chirality opposite to the original one. Therefore the same amount of supercurrents can
only be guaranteed by two different states, which are not connected to each other. It is clearly not the case in
the TRSR state.

As temperature approaches Tc, the gap function is suppressed and Eq. (2.38) is approximately reduced to

Is(ϕ) =
e|∆|2

4~kBT
[sinϕ + sin(ϕ + ϕ21) + sin(ϕ + ϕ31)]. (2.39)

A translational anti-symmetry Is(ϕ) = −Is(ϕ + π) appears, which makes the two critical currents in the two
opposite directions equal to each other. At low temperatures, the translational antisymmetry is destroyed by
high harmonics additional to those in Eq. (2.39), which realize the asymmetric critical currents discussed
above.

As shown in Fig. 2.7, zero Josephson current is obtained when ϕ , 0, π, indicating a ϕ-Josephson junction
[69, 70]. However, the critical currents in the opposite directions are asymmetric in the present system, which
is different from the previously discussed ϕ-junction.

Non-ballistic junction

Now we put a scattering center at the interface by taking t jk , 0 at Eq. (2.31) and consider the possible effect
of single-particle scattering among different bands. The BdG equations can only be solved numerically, and
the results for a typical TRSB state are displayed in Fig. 2.8. We find that the asymmetry in critical currents
remains unchanged. The gaps in Fig. 2.8(b) are caused by interband scattering which is similar to hybridization
of two bands.

Figure 2.8: Current-phase relation and Andreev spectra of point-contact junction between a single-band and
three-band superconductor with intraband and interband single-particle scattering. The panels (a) and (b) show
the asymmetric critical currents and Andreev spectra. Here we use the same TRSB state as in Fig. 2.7(a) and
(b). The hopping coefficients are t11 = 1.1, t22 = 1.2, t33 = 0.8, t12 = 0.3, t13 = 0.1 and t23 = 0.5. All t jk are in

unite of 2m/~2kF .
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Unequal gaps

In the above investigation, we have considered a special case with |∆0| = |∆ j|. Now we study the general
situation with |∆0| , |∆ j|, in which Josephson current is contributed from not only discrete Andreev levels
below the two gaps but also intermediate continuum levels between the two gaps with a formalism similar to
the single-band system [71].

We first consider the supercurrent carried by the Andreev levels. As in the main text, the wave functions at two
sides of the junction and boundary conditions are given by

ψ j− = a j−

 u0eiϕ0

v0

 e−ikF x + b j−

 v0eiϕ0

u0

 eikF x,

ψ j+ = a j+

 u jeiϕ j

v j

 eikF x + b j+

 v jeiϕ j

u j

 e−ikF x,

(2.40)

and

ψ j−(0) = ψ j+(0),(
∂ψ j+

∂x
−
∂ψ j−

∂x

)∣∣∣∣∣∣
x=0

=
2m
~2

[
t j jψ j−(0) + t jkψk−(0) + t jlψl−(0)

]
,

(2.41)

which lead to 
M1 C12 C13

C12 M2 C23

C13 C23 M3




D1

D2

D3

 = 0, (2.42)

with D j = (a j+, b j+, a j−, b j−)T ,

M j =


u jeiϕ j0 v jeiϕ j0 −u0 −v0

v j u j −v0 −u0

u jeiϕ j0 −v jeiϕ j0 (1 − T j j)u0 −(1 + T j j)v0

v j −u j (1 − T j j)v0 −(1 + T j j)u0

 ,
and

C jk =


0 0 0 0
0 0 0 0
0 0 −T jku0 −T jkv0

0 0 −T jkv0 −T jku0


with T jk = 2mt jk/i~2kF .

Non-zero solutions are available when the determinant of the square matrix in Eq. (2.42) is zero, which results
in the Andreev spectra E±j (ϕ j0). The tunneling current can be calculated with the formula

IA =
∑

j=1,2,3

2e
~

∂E+
j

∂ϕ j0
fE+

j
+

2e
~

∂E−j
∂ϕ j0

fE−j
, (2.43)

where fE+
j

and fE−j
are the Fermi-Dirac distribution function.
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The analytical expression of IA is available for a ballistic junction with t jk = 0, where the square matrix in Eq.
(2.42) is reduced to three 4 × 4 diagonal block matrices. The Andreev spectra are obtained as

E±j = ±
|∆0||∆ j| sinϕ j0√

|∆0|2 + |∆ j|
2 − 2|∆0||∆ j| cosϕ j0

(2.44)

with the restriction cosϕ j0 ≤ |∆0/∆ j|, which carry the tunneling current

IA =
∑

j=1,2,3

2e
~

|∆0|
2|∆ j|

2 −
(
|∆0|

2 + |∆ j|
2 − |∆0||∆ j| cosϕ j0

)
|∆0||∆ j| cosϕ j0(

|∆0|2 + |∆ j|
2 − |∆0||∆ j| cosϕ j0

)3/2

× tanh
|∆0||∆ j| sinϕ j0

2kBT
√
|∆0|2 + |∆ j|

2 − |∆0||∆ j| cosϕ j0

 .
(2.45)

Now we consider the tunneling current flowing in the energy region between the two gaps. To be specific,
we take |∆0| < |∆ j|. In this energy region, electron-like and hole-like quasiparticles are injected from the
left single-band superconductor and transmitted into the right three-band superconductor, contributing to the
tunneling current.

The wave function in the left superconductor is given by

ψ j− =

 u0eiϕ0

v0

 eikF x + a j−

 u0eiϕ0

v0

 e−ikF x + b j−

 v0eiϕ0

u0

 eikF x, (2.46)

where the first term is the incident electron-like quasiparticle which is absent in Eq. (2.40), the second ter-
m is the reflected electron-like quasiparticle and the third term is the reflected hole-like quasiparticle. The
transmitted wave ψ j+ maintains the form

ψ j+ = a j+

 u jeiϕ j

v j

 eikF x + b j+

 v jeiϕ j

u j

 e−ikF x. (2.47)

By using the boundary conditions in Eq. (2.41), we obtain
M1 C12 C13

C12 M2 C23

C13 C23 M3




D1

D2

D3

 =


Q1

Q2

Q3

 , (2.48)

with Q j =
(
u0, v0, (1 + T j j + T jk + T jl)u0, (1 + T j j + T jk + T jl)v0

)T
, from where we can obtain (a j+, b j+, a j−, b j−).

It is noted that Eq. (2.43) is not convenient for calculating the tunneling current in the present continuum energy
regime. Instead we integrate the electrical current density as

Ie
I =

∑
j=1,2,3

e
~kF

m

∫ |∆ j |

|∆0 |

+

∫ −|∆0 |

−|∆ j |

 (|a j+|
2 − |b j+|

2
)

Ns− fE jdE j, (2.49)
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Figure 2.9: (color online) Current phase relation of point-contact junction between single-band and three-band
TRSB superconductor with different gap amplitudes. Here we have |∆1| = 1.2|∆0|, |∆2| = 1.3|∆0|, |∆3| = 1.5|∆0|,

ϕ21 = 0.6π, ϕ31 = 1.1π, t11 = t22 = t33 = 0.2 and t12 = t13 = t23 = 0.1. All t jk are in unite of 2m/~2kF .

where Ns− is the density of states for the electron-like quasiparticles in the left superconductor and fE j is the
Fermi-Dirac distribution function. A similar calculation can be done for the incident hole-like quasiparticles,
which contribute a current Ih

I . The total current carried by the intermediate energy region is thus given by

II = Ie
I + Ih

I . (2.50)

The ballistic case can be solved analytically and the tunneling current is

II =
∑

j=1,2,3

2e
h

∫ |∆ j |

|∆0 |

√
1 −

∣∣∣∣∣∣∆0

E j

∣∣∣∣∣∣2
 1

1 −
∣∣∣∣∆0

E j

∣∣∣∣ cos
[
ϕ j0 − cos−1

∣∣∣∣E j
∆ j

∣∣∣∣]
−

1

1 −
∣∣∣∣∆0

E j

∣∣∣∣ cos
[
ϕ j0 + cos−1

∣∣∣∣E j
∆ j

∣∣∣∣]
 tanh

E j

2kBT
dE j

 .
(2.51)

The calculation result can be extended to the |∆0| > |∆ j|, by simply reversing the limits of integration.

For a non-ballistic junction with scattering centers at the interface (t jk , 0), numerical calculations are required
and the current phase relation is shown in Fig. 2.9. An asymmetry in critical currents is found when the
three-band superconductor stays at a TRSB state where ϕ21, ϕ31 , 0, π.

2.3 Subharmonic Shapiro Steps

Conventional shapiro steps
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When a Josephson junction under a DC bias V0 is irradiated by a microwave with frequency ω1, the voltage
drop across the junction is

V = V0 + V1 cosω1t. (2.52)

Putting it into Eq. (1.16), and integrating over time, we obtain

∆ϕ = ∆ϕ0 +
2eV0

~
t +

2eV1

~ω1
sinω1t (2.53)

where ∆ϕ0 is a constant of integration. The Josephson current now becomes

j = jc sin
(
∆ϕ0 +

2eV0

~
t +

2eV1

~ω1
sinω1t

)
= jc

∑
(−1)nJn

(
2eV1

~ω1

)
sin

(
∆ϕ0 +

2eV0

~
t − n

2eV1

~
t
) (2.54)

where Jn is the Bessel function of the first kind. The Josephson current has not only a component with fre-
quency ω = 2eV0/~ but also abundant harmonics from the microwave, which has modulating effect on the
Josephson current. When we have

V0 = Vn = nV1, (2.55)

a DC component of supercurrent is obtained. By taking into the normal current as well, in the I-V curve current
steps appear with the total DC current taking any value in the range

Vn/R − jcJn

(
2eV1

~ω1

)
≤ I ≤ Vn/R + jcJn

(
2eV1

~ω1

)
, (2.56)

where R is the normal resistance of the junction. These steps are named as Shapiro steps in the credit of its first
observation by S. Shapiro in 1963 [72].

Subharmonic Shapiro steps

Now we analyze the response of the TRSB state to a microwave irradiation. For this purpose, we rewrite the
CPR Eq. (2.38). In the three tunneling channels, we have I j(−ϕ j0) = −I j(ϕ j0) and I j(ϕ j0 + 2π) = I j(ϕ j0)
according to Eq. (2.37). Therefore, I j can be expanded into a Fourier series with only sine functions, and thus
the CPR can be written as

Is(ϕ) =

+∞∑
n=1

[I1n sin nϕ + I2n sin n(ϕ + ϕ21) + I3n sin n(ϕ + ϕ31)], (2.57)

where
I jn =

1
π

∫ π

−π

e|∆|
~

sin(ξ/2) tanh
|∆| cos(ξ/2)

2kBT
sin nξdξ (2.58)

with j = 1, 2 and 3. It is noticed that the supercurrents carried by the three channels may enhance and suppress
each other, depending on the phase differences and the order of Fourier components. To illustrate this effect
clearly, we consider an isotropic state with |∆1| = |∆2| = |∆3| and ϕ21 = ϕ32 = 2π/3 at the right-hand side of the
junction. It is interesting to observe that a complete cancelation takes place for 3n + 1 and 3n + 2 for n=0,1,2,
... , and the CPR is reduced to

Is(ϕ) = Ic sin 3ϕ. (2.59)
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Figure 2.10: (color online) Subharmonic Shapiro steps of overdamped junction between single-band and three-
band isotropic TRSB superconductor (|∆1| = |∆2| = |∆3| and ϕ21 = ϕ32 = 2π/3) driven by ac voltage source.

The parameters are V1 = 0.15~ω1/e and R = 0.75~ω1/eIc.

Now we take the applied voltage with the form V = V0 + V1 cosω1t. The Josephson current is given by

Is(ϕ) = Ic

+∞∑
m=−∞

(−1)mJm(
6eV1

~ω1
) sin(δ0 + 3ω0t − mω1t) (2.60)

with Jm the Bessel function of the first kind, δ0 an arbitrary phase and ω0 = 2eV0/~. It is easy to find that the
supercurrent contains a dc component when

V0 =
m
3
~ω1

2e
. (2.61)

The fractional numbers m/3 indicate the subharmonic Shapiro steps.

We assume that junction is overdamped with a shunted resistance R, and thus the total dc current on the mth
subharmonic Shapiro step can take any value in the range

V0

R
− IcJm(

6eV1

~ω1
) ≤ 〈I〉 ≤

V0

R
+ IcJm(

6eV1

~ω1
) (2.62)

as shown in Fig. 2.10.

For general TRSB states where cancelations are not complete, 1/2 Shapiro step appears. However, because
the 1/2 step is still suppressed and the 1/3 step is enhanced, we expect that the 1/3 step is comparable or even
larger than the 1/2 step.

2.4 Fraunhofer Patterns

Now let us see the Fraunhofer interference in an extended junction between a single-band superconductor and
a three-band TRSB superconductor. We adopt the general expression for Josephson currents [68, 73] Is(ϕ) in
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Figure 2.11: (a) Schematic figure of extended junction between single-band superconductor and three-band
TRSB superconductors under magnetic fields, (b) Symmetric Fraunhofer pattern under changing magnetic field-
s. We use the CPR in the form of Fourier series with the coefficient I11 = I21 = I31 = 1.0, I12 = I22 = I32 = 0.1.

Eq. (2.57). In the presence of a flux Φ penetrating into the junction, the Josephson current is given

IΦ(ϕ) =
1
L

∫ L

0
Is(ϕ +

2πΦ

Φ0

x
L

)dx =
∑

n

sin(nπΦ/Φ0)
nπΦ/Φ0

× [I1n sin nϕ + I2n sin n(ϕ + ϕ21) + I3n sin n(ϕ + ϕ31)].

(2.63)

We find that the supercurrent is symmetric with respect to the direction of magnetic flux, which indicates that
TRSB states do not couple with magnetic fields.

2.5 Discussions and Conclusions

Although we have focused on point-contact junction in the above investigations, it is clear that the main results
remain valid for junctions with extensions since the most essential ingredient is the existence of TRSB state
characterized by nontrivial phase differences among condensates, in which the high harmonics in Josephson
current become more prominent.

There is a special case where component-2 and component-3 are equivalent, which results in ϕ21 = −ϕ31,
and the critical currents in opposite directions are equal according to Eq. (2.38), albeit the broken TRS. We
notice that the case ϕ21 = −ϕ31 generated by two equivalent components is accidental without symmetry
protection. When temperature changes, gap amplitudes and/or interband couplings become different for the
two components, for which asymmetric critical currents appear. In the case that component-2 coincides with
component-3, we may distinguish the TRSB state from TRSR state by using the Shapiro steps. For TRSB state,
1/3-step is larger than or comparable to 1/2-step (Fig. 3 is an extreme case where 1/2-step is suppressed to zero
since the three components are equivalent), while in the TRSR state 1/2-step is expected larger than 1/3-step.

It is intriguing to notice that asymmetric critical currents have been observed in a hybrid junction between a
single-band superconductor PbIn and an iron-based superconductor BaFe2−xCoxAs2 [74, 75]. The difference
between two critical currents is well beyond the experimental precision. Subharmonic Shapiro steps were also
detected in the same setup, indicating the importance of high-order harmonics in the Josephson current. While
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the asymmetric critical currents was explained by presuming vortices accidentally trapped in one of the two
superconductors [76], we wish to point out the two phenomena observed in the experiments can be understood
in terms of the existence of a TRSB state as discussed in the present work. Further careful investigations
are highly anticipated to make the situation clear. For example, the Fraunhofer pattern is to be measured,
which should be asymmetric with respect to the flux direction if some vortices are trapped in one of the two
superconductors [77], while the TRSB state corresponds to a symmetric one.

We notice that there is another similar experiment for a junction between Pb and an iron pnictide Ba1−xKxFe2As2

with x = 0.29 and x = 0.49, where symmetric critical currents have been observed [78]. It is possible that in
order to see the TRSB state, and thus the asymmetric critical currents, the hole doping rate is to be tuned to the
overdoping regime, according to a recent theoretical work [43].

To summarize, in superconductors with three or more bands, time-reversal symmetry may be broken in the
presence of repulsive interband couplings, characterized by nontrivial phase differences among condensates.
Due to the broken time-reversal symmetry, asymmetric critical currents appear in a Josephson junction between
a single-band and a multi-band superconductor. Subharmonic Shapiro steps become more prominent since the
tunneling currents carried by different bands may cancel each other, which reduces the sizes of integer Shapiro
steps.



Chapter 3

Fractional Flux Plateau in Magnetization
Curve of Multi-Component Superconductor
Loop

Vortex with 2π phase winding is a hallmark of macroscopic quantum state such as superfluidity and super-
conductivity [1, 19, 79, 80]. In superconductors, a vortex is accompanied by a quantum of magnetic flux
Φ0 = hc/2e in a closed path with zero supercurrent. Since the quantization of magnetic flux is intimately
related to the phase winding, superconductivity gap functions carrying intrinsic phase variation induced by un-
conventional pairing symmetry should leave unique consequences on the response to external magnetic field.
By now several interesting examples are available. A tricrystal ring of cuprate superconductor YBa2Cu3O7−δ

was observed to carry a half flux quanta Φ0/2, which is the signature for d-wave pairing symmetry [59]. In
a ring-shaped setup composed by Nb and NdFeAsO0.88F0.12, flux jumps in odd-number multiple of half flux
quanta were observed [81–83], which provides a support to the S +− pairing symmetry for iron-pnictide super-
conductors [30, 52, 84–89]. Half-valued fluxoid jumps in magnetization curve of a thin annular coil made of
Sr2RuO4 were reported being consistent with the p-wave pairing symmetry [90].

In the previous chapter we have found that in a Josephson junction between a conventional single-component
superconductor and a multi-component superconductor in TRSB state, the critical current should be asymmet-
ric with respect to the current direction as the consequence of broken TRS [91]. As a matter of fact, unequal
critical currents in opposite current directions were observed experimentally in a Josephson junction between
PbIn and BaFe1.8Co0.2As2 [74]. Therefore, the TRSB state may have been realized already in iron-based su-
perconductors, which is consistent with a microscopic analysis where band structures and strongly correlated
effects are taken into account [43]. To cross check this novel superconducting phenomenon becomes an impor-
tant issue.

In the present chapter, we address a new phase-sensitive property of the TRSB superconducting state. As
schematically shown in Fig. 3.1, we consider a loop of multi-component superconductor where the two halves
are occupied by two TRSB states carrying on opposite chiralities, accompanied by two domain walls associated
with inter-component phase kinks. We reveal explicitly that fractional flux plateaus appear in magnetization
curve associated with free-energy minima, where the domain walls accommodate phase kinks among different

44
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Figure 3.1: Schematic setup with a loop of time-reversal-symmetry-broken (TRSB) superconductor, where
the two halves are occupied by the two degenerate states with opposite chiralities. The three arrows denote
the phases of order parameters and the yellow circle indicates the chirality referring to the mutual phases
red→ blue→ purple among three condensates. Between the two halves of the loop there are two domain wall

I and II accommodating inter-component phase kinks.

components leading to 2π phase winding along the loop only in one or two of the three condensates. While the
heights of fractional flux plateaus depend on material parameters and temperature, they form pairs with heights
related by the flux quantum Φ0, which is a unique signature of TRSB superconducting state and can be used
to confirm the state itself [92]. In a more general point of view this provides a novel chance to explore relative
phase difference, phase kink and soliton in ubiquitous multi-component superconductivity.

3.1 Fractional Flux in Superconductor Loop

In order to reveal the essence of physics we first consider an isotropic TRSB state which is generated by three
equivalent condensates with equal mutual repulsion. For simplicity all order parameters are taken as s-wave
from now on. The two states in the loop are given by Ψ = {ψ1, ψ2, ψ3} = |ψ|{1, ei2π/3, ei4π/3} and Ψ∗ with
opposite chiralities (see Fig. 3.1). Across each of the two domain walls between the left and right halves of the
superconductor loop, there is a phase kink where inter-component phase difference between two of the three
order parameters shrinks to zero and reopens in the opposite way continuously, resulting a sign reversal in the
phase difference at the two sides of domain (see Fig. 2). We notice that phase kinks are gauge-invariant objects,
which inevitably appear at the interface between two bulks of TRSB states with opposite chiralities.

When the two domain walls accommodate the phase kink between the same two condensates, such as that
between condensate 1 and 2 defined as D12 in Fig. 3.2(a), the phase rotation integrated in a counterclockwise
manner (indicated by L in Fig. 3.2) over the two domain walls cancel each other, resulting in the same phase
winding in all the three condensates. In this case, the flux trapped in the loop is an integer multiple of flux
quantum Φ0 when the loop is thick enough to fully screen the magnetic field.
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Figure 3.2: Illustration of relation between the phase kinks at domain wall I and II and the flux trapped in the
superconductor loop: (a) phase kinks between a same pair of components which can only trap integer multiples
of flux quantum; (b) phase kinks between two different pairs of components which can trap fractional flux
(0 < η < 1). Colored curves at the domain walls refer to the phase variations in corresponding condensates, and
Di j is for the gauge-invariant phase kink between condensate i and j. The dashed circle denotes the direction

for counting phase winding in the loop.

The situation differs when the two domain walls accommodate different phase kinks, such as D12 and D23 in
domain wall I and II respectively shown in Fig. 3.2(b). By inspection one sees that ψ2 rotates 4π/3 anticlock-
wise over the two domain walls, while ψ1 and ψ3 rotate −2π/3. When the external magnetic field provides the
additional phase rotation of 2π/3 in all condensates, a state with 2π phase winding in ψ2 and 0 in both ψ1 and
ψ3 is stabilized. This yields a fractional flux quanta Φ0/3 in the loop. The state with a fractional flux trapped in
this loop is expected to be stable in a certain range of external magnetic field, which leads to a fractional flux
plateau in magnetization curve shown schematically in Fig. 3.3.

The above discussion can be elucidated by the integration of magnetic flux over the superconducting loop using
GL formalism where the supercurrent is given by [17, 50]

J =
∑

j=1,2,3

2e
m j
|ψ j|

2~

(
∇ϕ j −

2π
Φ0

A
)
, (3.1)

with m j and ϕ j the effective mass and phase of component- j. For a thick loop, supercurrent is zero deep inside
the superconductor. In this case the magnetic flux trapped in the loop is given by the line integration of phase
differences as can be seen from Eq. (3.1)

Φ =
Φ0

2π

[∮
C

p1∇ϕ1 + p2∇ϕ2 + p3∇ϕ3

p1 + p2 + p3
dl

]
=

Φ0

2π

[∮
C
∇ϕ1dl +

∫
DW

p2∇ϕ12 + p3∇ϕ13

p1 + p2 + p3
dl

]
, (3.2)

with p j = |ψ j|
2/m j and ϕi j = ϕ j − ϕi for i, j = 1, 2, 3, where ”C” is a closed path along the loop with zero

supercurrent everywhere (see Fig. 1), and the ”DW” denotes domain-wall regimes (grey parts in Fig. 2) with
phase kinks. In the second line, we divide the integrand into two terms, indicating two contributions to the total
magnetic flux. The first contribution should be an integer multiple of 2π due to the single-valued wave function
in the loop. The integrand in the second contribution is nonzero only on domain walls. This contribution is
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Figure 3.3: Schematic magnetization curve with fractional flux plateaus displayed together with gauge-
invariant phase kinks denoted by [Dik/D jk] in the order of domain wall I and II.

nonzero when two different phase kinks are realized at domain wall I and II, with the value depending also on
the quantities p j.

Presuming the same length of domain walls I and II, the two configurations [Dik/D jk] and [D jk/Dik] at the
domain walls [I/II] take the same free energy. However, integrating phase differences for these two configu-
rations along the closed path in the anticlockwise way (see Fig. 3.2) results in opposite fractional values of
2π in the second term in Eq. (3.2). Therefore, these two configurations give two fractional fluxes Φ1 and Φ2

related by the flux quantum Φ0. Fractional flux plateaus with corresponding configurations of phase kinks are
schematically shown in Fig. 3.3.

3.2 TDGL Approach

Here we adopt GL formalism to check the thermodynamic stability of states carrying fractional fluxes. The GL
free-energy functional of a three-band superconductor with Josephson-like inter-component couplings is given
by [41, 50]

F =
∑

j=1,2,3

[
α j

∣∣∣ψ j
∣∣∣2 +

β j
2

∣∣∣ψ j
∣∣∣4 + ~2

2m j

∣∣∣∣(∇i − 2π
Φ0

A
)
ψ j

∣∣∣∣2]
−

∑
j,k=1,2,3; j<k

γ jk
(
ψ∗jψk + c.c.

)
+ 1

8π (∇ × A)2 , (3.3)

where α j is a temperature-dependent coefficient which is negative when T < Tc j and positive when T > Tc j,
with Tc j the critical point of the superconducting component- j before considering intercomponent couplings,
and γ jk is an intercomponent coupling taken as constant for simplicity. For γ12γ13γ23 < 0, a TRSB supercon-
ducting state appears when the coefficients in Eq. (5.1) satisfy conditions revealed in a previous work [41]. To
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Figure 3.4: Amplitudes and phases of order parameters in two TRSB states with parameters α′1 = 0.012, α′2 =

0.013, α′3 = 0.011, γ′12 = γ′23 = −0.24, γ′13 = −0.25, m′1 = m′3 = 1, m′2 = 1.1, β′1 = β′2 = β′3 = 1 and κ1 = 1.5.
See text for definitions of the dimensionless GL parameters.

be specific, we put γ12, γ13, γ23 < 0, namely all repulsive Josephson-like couplings, since it is easy to see that
other TRSB states can be generated from this case by simple gauge transformation.

We adopt dimensionless quantities given by [93]

x = λ1(0)x′, A = λ1(0)Htc1(0)
√

2A′, J =
2e~ψ2

10(0)
m1ξ1(0) J′,

ψ j = ψ10(0)ψ′j, α j = −α1(0)α′j, β j = β1β
′
j, γ jk = −α1(0)γ′jk, (3.4)

m j = m1m j
′, κ1 = λ1(0)/ξ1(0), F = G0F′

with ψ2
10(0) = −α1(0)/β1, λ1(0) =

√
m1c2/[4πψ2

10(0)(2e)2], ξ1(0) =
√
−~2/[2m1α1(0)], Htc1 =

√
−4πα1(0)ψ2

10(0)

and G0 = H2
tc1(0)/4π. In the dimensionless units, the GL free energy is rewritten as

F′ =
∑

j=1,2,3

α′j ∣∣∣ψ′j∣∣∣2 +
β′j

2

∣∣∣ψ′j∣∣∣4 +
1

m j
′

∣∣∣∣∣∣
(

1
iκ1
∇ − A′

)
ψ′j

∣∣∣∣∣∣2
 − ∑

j,k=1,2,3; j<k

γ′jk

(
ψ∗j
′ψ′k + c.c.

)
+

(
∇ × A′

)2 . (3.5)

The system can be described by the following TDGL equations in the zero-electric potential gauge [24]

∂ψ′j

∂t
= −α′jψ

′
j − β

′
j|ψ
′
j|

2ψ′j −
1

m j
′

(
1

iκ1
∇ − A′

)2

ψ′j +
∑

k=1,2,3;k, j

γ′jkψ
′
k (3.6)

with j = 1, 2, 3 and

σ
∂A′

∂t
=

∑
j=1,2,3

1
m′j
|ψ′j|

2
(

1
iκ1
∇ϕ′j − A′

)
− ∇ × ∇ × A′ (3.7)

with σ the coefficient of normal conductivity. At equilibrium the left-hand sides of Eqs. (3.6) and (3.7) are
zero, which gives the GL equations. By solving three GL equations in Eq. (3.6) with A′ = 0, we obtain the
amplitudes and phases of the condensates at zero magnetic field [41].

In the present multi-component superconducting system, the critical point Tc is higher than Tc j for j = 1, 2, 3.
In order to make sure that the GL formalism is valid for investigating the thermodynamics properties of the
coupled system, we choose temperature satisfying Tc j < T . Tc, where α′j are positive and small. In Fig. 3.4
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Figure 3.5: (a) Magnetization curve of thermodynamically stable state and (b) Gibbs free energies of several
competing states in the superconductor loop shown in Fig. 1 upon sweeping external magnetic field. Parameters
are the same as Fig. 3.4. The superconductor loop is of square shape with outer frame of 24λ1(0) and inner

frame of 8λ1(0).

we display the two TRSB states with opposite chiralities, which are used for the following study on the mag-
netization process.

We take a square loop with external dimension 24λ1(0) × 24λ1(0) and the wall thickness 8λ1(0) to investigate
the magnetic response. From Eq. (3.1) we obtain the the penetration length λ2 = (

∑
j |ψ
′
j|

2/m′j)
−1λ2

1(0) in
the dimensionless form. For the states given in Fig. 3.4, λ = 1.22λ1(0) is much smaller than the thickness
of loop wall. Therefore, one can take the closed path ”C” as the middle line of the superconducting loop
where supercurrent is negligibly small (see Appendix). At the edge of superconductor, we presume that no
supercurrent flows out of the superconductor, and the B field at the external edge of superconductor loop is
fixed to the value of applied magnetic field.

The magnetization curve derived from TDGL equations (3.6) and (3.7) is shown in Fig. 3.5, where fractional
flux plateaus corresponding to states with free-energy minima are obtained. When the magnetic field is small,
there is no flux penetrating into the loop. As the magnetic field increases to H/Htc1(0) = 0.009, the stable
state takes a fractional flux Φ1 = 0.26Φ0. This state remains stable till the magnetic field H/Htc1(0) = 0.019,
yielding a plateau in the magnetization curve. As the magnetic field increases further, there appears another
state with fractional flux Φ2 = 0.74Φ0 in the regime 0.019 ≤ H/Htc1(0) ≤ 0.029. We can see that both Φ1 and
Φ2 deviate from Φ0/3 and 2Φ0/3, because of the three inequivalent condensates in the system. Nevertheless,
it is clear that the relation Φ1 + Φ2 = Φ0 is satisfied as revealed in Sec. 3.1. For even larger magnetic field, the
stable state permits one flux quantum Φ0 inside the loop. Note that the magnetic fields for the fractional flux
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plateaus are very small as compared with the typical field Htc1(0) and thus there is no vortex inside the body of
superconductor.

We check the phase kinks at the two domain walls I and II and the phase windings along the loop in the three
condensates at the fractional flux plateaus. At Φ1 = 0.26Φ0, phase kink D12 and D23 are realized at region I
and II respectively, and ψ2 rotates 2π along the loop leaving ψ1 and ψ3 unwinding. At Φ1 = 0.74Φ0, the phase
kinks D12 and D23 are at domain wall II and I, opposite to the case of Φ1 = 0.26Φ0, and ψ1 and ψ3 rotate 2π
with ψ2 unwinding. At integer flux quanta Φ = 0 and Φ = Φ0, the phase kink is D12 at both domain wall I and
II. All these are in accordance with the discussion in Sec. 3.1. In general, there are at most six fractional flux
plateaus between the integer flux quanta 0 and Φ0. For GL parameters given in Fig. 3.4 we can only see two
plateaus in Fig. 3.5(a) because the free energies of domain walls satisfy F(D12) . F(D23) < F(D13) such that
only the phase-kink pair D12 and D23 is stabilized.

3.3 Temperature Dependence

Figure 3.6: Temperature dependence of trapped flux in superconductor loop. Parameters are the same as the
Fig. 3.4 except for the changing α j with temperature.

The amplitudes and inter-component phase differences of order parameters change with temperature, leading
to variation in stable domain-wall structures. As a result, both height and width of fractional flux plateau
should change as temperature is swept. It is also possible that a phase kink becomes unstable and changes to
another one at a critical temperature, leading to a jump of flux since different pairs of phase kinks correspond
to different fluxes.

Here we give a typical example of temperature dependence of trapped flux with our numerical results shown in
Fig. 3.6. For simplicity, we consider the linear temperature dependence of α j with α j = α j(0)(1−T/Tc j) where
α j(0) < 0 and Tc1 = Tc2 = Tc3. At the initial state at T = 0.7Tc, the stable fractional flux is 0.29Φ0 with phase
kink D12 at domain wall I and D13 at domain wall II. As temperature increases, the value of the fractional flux
changes thereupon. At T ≈ 0.82Tc, D13 becomes unstable and changes to D12, and simultaneously a flux jump
takes place.
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Figure 3.7: Magnetization curve with two fractional flux plateaus for an asymmetric superconductor loop,
where the width of side including domain II is enlarged to 12λ1(0) from that given in Fig. 3.5. The parameters

are the same as Fig. 3.4 except for α′1 = 0.025, α′2 = 0.028 and α′3 = 0.022.

3.4 Asymmetric Superconductor Loop

Up to this point, the superconductor loop is presumed to have the same width at domain wall I and II, which
guarantees the degeneracy of domain-wall energy between phase-kink pairs [Dik/D jk] and [D jk/Dik]. In this
case, it is easy to see that the magnetization curve in Fig. 3.3 should be symmetric with respect to the direction
of magnetic field. In general, the two widths can be different. In the latter case [Dik/D jk] may be unstable
even though [D jk/Dik] is stable associated with free-energy minimum. As shown in Fig. 3.7 for an asymmetric
superconducting loop, the fractional flux plateau at Φ = 0.74Φ0 remains stable for 0.017 ≤ H/Htc1(0) ≤ 0.023,
while that at Φ = 0.26Φ0 disappears in contrast to Fig. 3.5, since they are associated with different phase-kink
configurations at domain wall I and II. It is worth noticing that even in this asymmetric loop the plateau at
Φ = −0.26Φ0 is still stable for −0.020 ≤ H/Htc1(0) ≤ −0.014, since it is associated with the same phase-
kink configuration with that at Φ = 0.74Φ0 and a difference of flux quantum Φ0 coming from the first term
in Eq. (3.2). In this asymmetric loop, the magnetization curve is asymmetric with respect the direction of
magnetic field as in Fig. 3.7. The property that fractional flux plateaus in positive and negative magnetic fields
are paired with the difference of flux quantum Φ0 is robust, and can be taken as a crosscheck for fractional flux
plateaus originated from the TRSB state.

3.5 Discussions and Conclusions

In the present chapter we study the case that the left and right halves of the superconductor loop take the two
TRSB states with opposite chiralities. This situation can be realized in experiments by cooling the whole system
from temperature above Tc with laser heat pulse irradiated on region I and II [94]. The two halves condensate
independently and by chance arrive at the different TRSB superconducting states, leading to the two domain
walls at region I and II after releasing the irradiation. In order to check the stability of this configuration, we
estimate the free energy of the whole system in terms of TDGL approach. As shown in Fig. 3.8, the state
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Figure 3.8: Gibbs free energy for the system in Fig. 1 with two halves occupied by the two TRSB states with
opposite chiralities as a function of the location of domain walls x defined in the inset. Parameters and sample

size are the same as Fig. 3.5.

with two domain walls locating at the middle of the top and bottom sides of the loop corresponds to a free-
energy minimum. The domain walls once generated should be stable since moving them outside the loop is
prohibited by a large free-energy barrier which is produced by an elongated, single domain wall during the
process of domain-wall relocating (see that at x2 in the inset of Fig. 3.8). The stability of the present setup
against relocating one of the two domain walls along the loop can be provided by widening the left and right
arms of the loop. The increase in free energy in states with fractional fluxes and integer flux quanta upon
application of external magnetic field is smaller by one order of magnitude than the free-energy barrier as seen
in Fig. 3.8, which justifies the discussion on fractional flux plateaus in the present work.

At this point we notice that the free-energy barrier in Fig. 3.8 generated by the two TRSB states at the two halves

Figure 3.9: Distribution of supercurrent density J′ in the superconductor loop for the fractional flux plateau
of Φ = 0.26Φ0 in Fig. 5, and that of order parameters on domain wall II. The directions and lengths of arrows
refer to phases and amplitudes of order parameters, where |ψ2| and |ψ3| are suppressed to 0.63 and 0.77 of the

bulk values while |ψ1| remains almost unchanged.
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of superconductor loop is crucially important for the thermodynamic stability of fractional flux plateaus. From
Eq. (3.2) one might think that a two-component superconductor or a three-component one with preserved TRS
can also accommodate fractional fluxes. However, in these cases there is no free-energy barrier like that in
Fig. 3.8, and states with fractional fluxes are unstable.

An example of the distribution of supercurrent density in the superconductor loop and order parameters on
domain walls is shown in Fig. 3.9, where the superconductivity survives in all components and the Meissner
effect screens the magnetic field and thus the total supercurrent to zero. The important feature here is that,
although the supercurrents in individual components are not zero due to the phase shifts, they flow in the
opposite directions and cancel each other, leading to zero total supercurrent. The situation of a domain wall
as discussed in the present work is quite different from a vortex, where the phase winding induces a divergent
kinetic energy, which requests the total suppression of amplitude of the superconducting order parameter at the
vortex core.

Half-valued fluxoid jumps in magnetization curve was reported in a small multi-component superconducting
sample comparable with penetration length[90]. This results in no full screening of magnetic field, and thus
the magnetization curve exhibits finite slope for any external magnetic field. Namely, there is no fractional
flux plateau in their system. In previous studies on vortex states of TRSB superconductor it was discussed that
vortex cores of different condensates can deviate from each other in space [47, 57, 95–97]. However, without
a closed path along which supercurrent is zero everywhere, there is no fractional flux plateau in magnetization
curve.

To summarize, we have studied the magnetic response of a loop of three-component superconductor with two
degenerate time-reversal symmetry broken states at two halves. When the two domain walls between the two
halves accommodate different inter-component phase kinks, fractional flux plateaus appear in the magnetization
curve which form pairs related to each other by the flux quantum. These properties are expected to be helpful
for detecting experimentally the time-reversal symmetry broken superconducting state which can be realized
in iron-pnictide superconductors. In a general point of view, this endeavour provides a novel chance to explore
relative phase difference, phase kink and soliton in ubiquitous multi-component superconductivity.



Chapter 4

Dissociation of Vortices in Multi-Component
Superconductors

In a type II superconductor, magnetic field penetrates into sample in terms of vortices associated with tiny mag-
netic fluxes. In single-band case, a vortex, namely a 2π phase rotation of the superconducting order parameter,
carries quantized magnetic flux Φ0. Multi-band superconductors are different because multiple condensates
simultaneously couple to a common gauge field, and a vortex associated with 2π phase rotation in one con-
densate only carries a fraction flux as shown in the previous chapter. When interband phase differences are
locked to each other due to strong couplings, phase rotation along a closed path is the same for different con-
densates. Therefore, vortices in different bands overlap in space, which makes the vortex in an individual
component difficultly observed. The situation is different when a phase separation exists between the two time-
reversal symmetry broken (TRSB) superconducting states with opposite chiralities in a sample. On domain
walls [41, 42, 57, 98], interband phase difference develops a phase kink as shown in Fig. 4.1, resulting in dif-
ferent winding numbers in different components in presence of external magnetic field and thus dissociation of
vortices in different components. In the present work we consider a constriction junction where such a domain
wall is stabilized due to the small size of junction.

4.1 Model

In the present work, we study superconductors with external magnetic field where the order parameters are
inhomogeneous. A direct minimization of GL free energy is difficult in this case. We use the same TDGL
approach we introduced in the previous chapter.

As an icon we mainly focus here on the isotropic case (α1 = α2 = α3 ≡ α, β1 = β2 = β3 ≡ β,m1 = m2 = m3 ≡

m, γ12 = γ13 = γ23 ≡ γ < 0), where the dimensionless GL free energy function is given by

F′ =
∑

j=1,2,3

α′ ∣∣∣ψ′j∣∣∣2 +
1
2
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1

m′
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(
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)
ψ′j

∣∣∣∣∣∣2
 − ∑

j,k=1,2,3; j<k

γ′
(
ψ∗j
′ψ′k + c.c.

)
+

(
∇ × A′

)2 (4.1)
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Figure 4.1: Schematics of constriction junction between two bulks with distinct TRSB states. A domain wall
forms on the constriction where phase difference between red and blue order parameters ∆ϕ closes and opens

again.

by using the dimensionless units in Eq. (3.4). Tc is determined by α(Tc) + γ = 0. The degenerate TRSB states
are Ψ̂ = |ψ|(1, ei2π/3, ei4π/3) and Ψ̂∗ = |ψ|(1, e−i2π/3, e−i4π/3) where |ψ| =

√
−α − γ for T < Tc. In a TDGL

simulation, the sample is discretized into a grid of meshes. The mesh size should be carefully selected because
a too small size increases the simulation time, which may cause insufficient relaxation, and large sizes may
give artificial results. Here, we carefully select the mesh size as ∆x = ∆y = 0.1λ1(0) when parameters are
α = 0.2, γ = −0.3 and κ1 = 4. We confirmed that further decreasing the mesh size does not change the results.

4.2 Dissociated Vortices on Constriction

Here we consider a structure of two bulks connected by a constriction as shown in Fig. 4.1. The size of
constriction is adjusted to be comparable with the coherence length. We focus on the case with distinct TRSB
states (Ψ̂ and Ψ̂∗) in the two bulks, and thus a domain wall forms on the constriction where configuration of
three order parameters deforms from the rigid 2π/3 structure. For example, phase difference between blue and
red order parameters closes once and opens again, which forms a phase kink as shown in Fig. 4.1.

A laser heat pulse can be used to realize this situation in experiments [94]. At temperature above Tc, we ir-
radiate the heat pulse on the constriction. When we cool the sample below Tc, the two bulks transform to
superconducting states with distinct TRSB states by chance. We then switch off the heat pulse. Superconduc-
tivity recovers on the constriction and a domain wall forms. After that we apply the magnetic field to bring
vortices into the superconductor.

In simulations, two bulks are put at TRSB states with opposite chiralities as the initial condition of TDGL equa-
tions. The self-consistent evolution drives the system to a stable state with a domain wall on the constriction.
Then we switch on the external magnetic field H, and the system evolves again with flux penetrating into the
sample from the boundaries and forming vortices inside. A typical vortex configuration near the constriction
is shown in Fig. 4.2 for the final stable state. It is interesting to find that on the constriction only ψ2 has a 2π
phase winding but ψ1 and ψ3 do not, as seen in Fig. 4.2(a).
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Figure 4.2: Simulation results of stable vortex distribution in three components in presence of domain wall on
constriction. All panels are contour figures of amplitudes of three order parameters where red, blue and yellow
in Fig. 4.1 correspond to component-1, 2 and 3 respectively. Area in panel is 10 × 10 which is a part of a
larger sample with boundaries shown by green lines. Width of constriction in (a), (b) and (c) is 2.6, 3.6 and 4.4.

Parameters are α′ = 0.2, H′ = 0.25, γ′ = −0.3 and κ1 = 4.0.

Figure 4.3: Magnetic field distribution on constriction when two bulks are at (a) two distinct TRSB states (b)
an identical TRSB state. Parameters are the same as Fig. 4.2. Area in panel is 10 × 7 which is a part of a large

sample with boundaries shown by green lines. Width of constriction is the same as Fig. 2(c).

We then increase the width of constriction, vortices in component-1 and component-3 start to penetrate the
constriction as shown in Figs. 4.2(b) and (c). We can see that vortex cores in different components do not
overlap on the constriction, in contrast to those outside the constriction area. When vortices in all components
overlap, all order parameters at the core are zero which allow strong magnetic field penetration. While on
the constriction, only one order parameter is zero at vortex core, and thus the penetrated field is weak due to
the screening from the other two components. These dissociated vortices form a ribbon-like distribution of
magnetic field as shown in Fig. 4.3(a) and Fig. 4.4. In a symmetric sample, the vortex configuration should be
symmetric as seen in Fig. 4.4(a). When the constriction shifts from center as shown in Fig. 4.4(b), the ribbon
becomes asymmetric as well. This is different from a previous work [95], where irregular ribbon structures
were obtained despite of symmetric sample. When the two bulks at the two sides of constriction take a same
TRSB state, there is only integer vortices as shown in Fig. 4.3(b).



Chapter 4. Dissociation of Vortices in Multi-component Superconductors 57

Figure 4.4: Magnetic field distribution in presence of dissociated vortices for different sample shapes. Param-
eter are the same as Fig. 4.2. The sample size is 20 × 20 for (a) and 18 × 20 for (b) with boundaries shown by

green lines. Width of the constriction is 10.

4.3 Discussions and Conclusions

The dissociation of vortices in different components discussed in this chapter are based on the structure of
domain walls in TRSB states. Therefore, the creation and stability of the domain wall are important. In the
present chapter, we use a controllable method: create a domain wall with laser heat pulse and stabilize the
domain wall by shrinking the its size. In this way, the domain wall can be stable as long as the section of
constriction is much smaller than the bulk.

To summarize, in superconductors with three or more components, a stable domain wall forms on a small junc-
tion between two time-reversal symmetry broken states with opposite chiralities. Under external magnetic field,
vortices in different components dissociate from each other on the junction, where magnetic field distribution
exhibits ribbon-like structures. This is a clear manifestation of time-reversal symmetry broken superconducting
states in multi-component superconductors.



Chapter 5

First-Order Phase Transition associated with
Vortex Penetration in Two-Component
Superconductors

Superconductors are classified into type-I and type-II depending on their response to applied magnetic fields
[19]. When applied fields are small, superconductors of both types expel magnetic field completely which is
known as the Meissner effect. For larger fields, Type-I superconductors still accommodate the Meissner state
(uniform superconducting state) until a sudden break down of superconductivity at thermodynamic critical field
Htc through a first-order phase transition. However in type-II superconductors, superconducting state is broken
little by little starting from Hc1 (Hc1 < Htc) where a single vortex with a normal core begins to penetrate.
Vortex number increases under larger applied fields until the complete suppression of superconductivity at Hn

(Hn > Htc). The phase transition are continuous at both Hc1 and Hn.

Due to the evidence of two superconducting gaps found in V[99], Nb-doped SrTiO3[100] and MgB2 [27, 101],
the magnetic responses of two-band superconductors attract a lot of attentions. Coherence length in individual
components, penetration length and the conventional interface have been adopted to discuss the vortex states
in two-component superconductors [93, 102–105].

In this chapter we will renew the study with the help of one-dimensional variations of order parameters and
magnetic induction with two boundaries at normal state under thermodynamic critical field Htc. In a certain
regime of parameters, we find a confined superconducting phase where the superconductivity grows to a state
different from the bulk state and the magnetic field is not screened to zero. Correspondingly, we find a first-
order phase transition between the Meissner and vortex state.
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5.1 Two-Component Ginzburg-Landau Theory

Here we adopt Ginzburg-Landau (GL) theory to study the two-component superconductivity. The free-energy
density functional is given by [50]

F =
∑

j=1,2

[
α j

∣∣∣ψ j
∣∣∣2 +

β j
2

∣∣∣ψ j
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)
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8π (∇ × A)2 , (5.1)

where α j is a temperature-dependent coefficient which is negative when T < Tc j and positive when T >

Tc j, where Tc j is the critical temperature of the superconducting component-j in absence of inter-component
coupling, and γ is the coefficient of inter-component coupling taken as constant for simplicity. By variating F
with respect to variations in ψ∗j and A, we obtain the GL equations
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Now we consider the temperature very close to the critical temperature Tc and obtain the solutions approx-
imated to the first of (1 − T/Tc). The superconducting order parameters in bulk ψs j follow the linear GL
equations  α1 −γ

−γ α2

  ψs1

ψs2

 = 0 (5.4)

or in a vector form Q · Ψ = 0 with coupling matrix Q. Tc is given by the highest temperature where the
determinant of Q becomes zero; i.e.,

α1(Tc)α2(Tc) − γ2 = 0. (5.5)

It is easy to see that both α j are positive close to Tc and ratio between order parameters is

ψs1

ψs2
≈

γ
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γ

. (5.6)

By combining Eq. (5.6) with the full GL equations α1 + β1ψ
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we obtain the bulk value of order parameters
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and
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from which the thermodynamic critical field Htc is given by
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From Eq. (5.3), we obtain the penetration length

λ2 =
c2

16πe2

[(
1

m1α1
+

1
m2α2

) (
1 −

α1α2

γ2

)]−1 β1

α2
1

+
β2

α2
2

 (5.11)

which becomes divergent at Tc.

Next we explore the coherence length by considering a small disturbance of order parameter ψ j from the bulk
value ψs j without magnetic field in presence. We set ψ j = ψs j + δ j, where δ j � ψs j. From Eq. (5.2), we obtain

α jδ j + 3β j|ψs j|
2δ j −

~2

2m j
∇2δ j − γδk = 0. (5.12)

For exponentially decaying disturbance δ j = A j exp(−
√
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The coherence length ξ is determined by the zero determinant of the above matrix. Although there are two
solutions, we found that only one coherence length is divergent close to Tc and it is given by
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Now let us study the nucleation field in a bulk sample in the presence of magnetic field B along the z axis. B is
uniform and equals to applied magnetic field H. A conventional gauge is Ay = Hx. Because order parameters
are very small at nucleation field, we adopt the linear GL equations
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We look for a solution in the form ψ j = eikyyeikzz f j(x). Nucleation field Hn is obtained at ky = kz = 0, and thus
we have −∇2
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Based on the lowest level Landau solution with f j = b j exp
(
− 1

2
2πHn
Φ0

x2
)
, we obtain α1 + 1

m1

π~2Hn
Φ0

−γ

−γ α2 + 1
m2

π~2Hn
Φ0

  b1

b2

 = 0. (5.17)

For nonzero solution of order parameters, the determinant of the above matrix is required to be zero, which
gives the nucleation field
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2
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, (5.18)

and the ratio between amplitudes of two order parameters
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b2
=

γ

α1
. (5.19)

5.2 Superconductivity under Magnetic Fields

Figure 5.1: An infinitely large superconductor with variations of superconducting order parameters and mag-
netic induction along x-axis, with two boundaries taken as the normal state under the thermodynamic field

Htc.

Now we consider an infinitely large two-dimensional superconductor as shown in Fig. (5.1), where the super-
conductivity is uniform along the y-axis but varies along the x-axis, and thus we are solving a one-dimensional
problem. The boundaries at x-axis are chosen at the normal state under Htc because this state has the same
Gibbs free energy with the bulk state without magnetic field.

This one-dimensional problem is useful in discussing the magnetic response in single-component supercon-
ductors. When superconductivity grows to the bulk state with complete suppression of the magnetic field, a
negative interface energy and thus a type-II superconductivity are suggested. On the other hand, when super-
conductivity cannot grow at all, a positive interface energy and thus a type-I superconductivity are suggested.

We adopt this model on the two-component superconductors and hope to find something unconventional. We
use the two-component TDGL approach where the GL free energy functional is given by
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with all quantities defined in dimensionless units provided in Eq. (3.4).

We obtain a new superconducting state where the distributions of superconducting order parameters and mag-
netic fields are shown in Fig. 5.2(a) and (b). In Fig. 5.2(a) order parameters grow to ψs′ j in the center of the
system, which is smaller than the bulk order parameter ψs j, and then decrease in a symmetric way to zero.
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Figure 5.2: Distribution of (a) order parameters and (b) magnetic fields in the sample shown in Fig. 5.1. The
parameters for (a) and (b) are α′1 = α′2 = 0.1, β′1 = 1, β′2 = 0.2, m′1 = 1, m′2 = 6, γ′ = 0.3, κ1 = 0.71, and for

(c) and (d) are the same except for κ1 = 0.8.

Since the superconductivity only appear in a confined region, we name it ”confined superconducting phase”.
Correspondingly, the magnetic field decreases to Bs′ , 0 at the center and then increases back to Htc. When
the length of the sample increases, the confined superconducting state remains unchanged. We find

ψs′1

ψs′2
,
ψs1

ψs2
, (5.21)

which indicates (ψs′1, ψs′2) is a different state from (ψs1, ψs2).

solution is for two-component system, which however behaves similarly to conventional single component
ones.

For comparison we draw Fig 5.2(c) and (d) which is the solution for two-component system, which however
behaves similarly to conventional single-component ones: the order parameters grow from the boundaries and
reach the bulk values in the interior, where terraces of bulk order parameter form. When the length of sample
increases, the order parameters still extends to the boundaries and the terrace becomes longer. Here we use the
name ”extended superconducting phase” to distinguish it from the confined superconducting phase.

5.3 Parameter Dependence

Now we continuously change the parameter κ1 and obtain the excess free energy η of the stable state as

η =

∫ 2L

0

(
F −

HtcB
4π

+
H2

tc

8π

)
dx (5.22)
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where x = 0 and x = 2L are the coordinate of the left and right side of the sample. The result is shown in Fig.
5.3, where there are three regions of κ1 associated with different stable states, divided by κ∗1 and κ∗∗1 . We have
κ∗1 ≈ 0.68 and κ∗∗2 ≈ 0.725 for the parameters given in Fig. 5.2.

For κ1 < κ
∗
1, the stable state is normal state with η = 0, which is due to Hn < Htc. At κ1 = κ∗1, we have Hc = Htc.

For κ∗1 < κ1 < κ∗∗1 , the confined superconducting phase appears. As κ1 is increased to κ∗∗1 , the peak values of
order parameters approach the bulk value. At κ1 = κ∗∗1 , the confined and extended superconducting phases have
the same free energy, and for κ1 > κ

∗∗
1 , the extended superconducting phase is always obtained.

5.4 Phase Diagram

From the information of interface between superconducting and normal state, we can analyze the vortex states
under applied magnetic field and the associated phase transitions.

For κ < κ∗1, we have Hn = Htc and thus a typical Type-I superconductivity is obtained. Superconductivity col-
lapse from the Meissner state (uniform superconducting state) to normal state associated with a magnetization
jump, which indicates a first-order phase transition at Htc, as shown in the phase diagram Fig. 5.4(a).

The region κ1 > κ∗∗1 is also conventional because the superconducting order parameters grow to bulk order
parameter from the normal state under Htc, which indicates a typical type-II superconductor. Therefore, we
still have the continuous phase transition at vortex penetration field Hc1 and nucleation field Hn as shown in
Fig. 5.4(c).

The nontrivial region with novel physics is κ∗1 < κ1 < κ∗∗2 , where the confined superconducting phase is stable.
This indicates that upon penetration vortices form vortex lattice which the lattice constant as the width of the
confined superconducting region. Between two vortex cores the superconductivity recovers to a state different
from the bulk superconducting state and the magnetic field is not suppressed to zero. Therefore, we have
simultaneous entry of many vortices together to form a tight vortex lattice in the whole sample at the threshold

Figure 5.3: κ1 dependence of excess free energy of two-component superconductor in Fig. (5.1). The parame-
ters except κ1 are the same with Fig. 5.2.
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Figure 5.4: H-T phase diagram for two-component superconductors. Three diagrams correspond to three
regions of κ1 in Fig. 5.3. The double and single line represent first-order and continuous phase transition.

field Hc1, leading to a large magnetization jump which indicates a first-order phase transition. The phase
diagram of this novel case is shown in Fig. 1.13(b).

5.5 Discussions and Conclusions

In single-component superconductors, we have κ∗1 = κ∗∗1 = 1/
√

2 which dichotomizes the superconductors
to type-I and type-II superconductor. Therefore, the first-order phase transition associated with the vortex
penetration is a unique phenomenon in multi-component superconductors. Here we introduced a new method to
study the superconductivity under magnetic field by considering the grown superconductivity from the normal
state under Htc. This method is useless in single-component superconductors because the superconductivity
only grows to the bulk state and the magnetic field screened to zero, which is equivalent to the study of interface
between bulk superconducting state and the normal state. However, in multi-component superconductors, this
method gives the novel confined superconducting phase.

Our theory is different the discussion of vortex penetration when symbolic ξ1 <
√

2λ < ξ2 is considered
[102, 106], where ξ1 and ξ2 indicate the coherence length of two components in absence of the intercomponent
coupling. The use of ξ1 and ξ2 constrains the study at temperature smaller than the critical temperature of
each component, which implied the ignorance of intercomponent couplings. Here we study the system at
temperature above Tc1 and Tc2 with effect of intercomponent couplings considered.
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To summarize, in this chapter we have studied the magnetic response of a two-component superconductor by
exploring the one-dimensional variations of order parameters and magnetic induction with two boundaries at
the normal state under Htc for convenience. In a certain regime of parameters, we find a confined supercon-
ducting phase where superconductivity grows to a state different from the bulk state and the magnetic field is
not suppressed to zero, which has no counterpart in single-component superconductors. For superconductors
in this parameter regime, upon penetration many vortices enter together to form a tight vortex lattice, which
leads to a first-order phase transition.



Chapter 6

Conclusions

In superconductors with three or more bands, time-reversal symmetry may be broken in the presence of re-
pulsive interband couplings, resulting in a pair of degenerate states characterized by opposite chiralities. In
this thesis, I have mainly studied the novel phenomena in three-component superconductors with broken time-
reversal symmetry.

I have considered a Josephson junction between a three-band superconductor with broken TRS and a single-
band superconductor. Phenomena such as asymmetric critical currents, subharmonic Shapiro steps and sym-
metric Fraunhhofer patterns are revealed theoretically. It is intriguing to notice that asymmetric critical currents
have been observed in a hybrid junction between a single-band superconductor PbIn and an iron-based super-
conductor BaFe2−xCoxAs2 . The difference between two critical currents is well beyond the experimental
precision. In the light of our theoretical work, TRSB states have already been realized in iron-based supercon-
ductors.

To cross check the time-reversal symmetry broken state, I have explored the magnetic response a loop of such
superconductor with two halves occupied by the two states with opposite chiralities. Fractional flux plateaus
are found in magnetization curve associated with free-energy minima, where the two domain walls between
the two halves of loop accommodate different inter-component phase kinks leading to finite winding numbers
around the loop only in a part of all condensates. Fractional flux plateaus form pairs related by the flux
quantum Φ0 = hc/2e, although they individually take arbitrary values depending on material parameters and
temperature. This phenomenon is a clear evidence of time-reversal symmetry broken superconductivity, and in
a general point of view it provides a novel chance to explore relative phase difference, phase kink and soliton
in ubiquitous multi-component superconductivity such as that in iron pnicitides.

When prepared carefully there is a stable domain wall on a constriction which connects two bulks in states with
opposite chiralities. Under certain external magnetic fields, vortices in different components dissociate with
each other, resulting in a ribbon shape distribution of magnetic field at the position of the domain wall.

In addition to superconductors with three or more components, novel phenomena are also available in two-
component superconductors. We have studied the magnetic response of two-component superconductors. In
a certain regime of parameters, we find a confined superconducting phase where superconductivity grows to a
state different from the bulk state and the magnetic field is not suppressed to zero, which has no counterpart

66
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in single-component superconductors. For superconductors in this parameter regime, upon penetration many
vortices enter together to form a tight vortex lattice, which leads to a first-order phase transition.
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