1	Title
2	Construction of a cyanobacterium synthesizing cyclopropane fatty acids
3	
4	Authors
5	Shuntaro Machida ^a , Yoshihiro Shiraiwa ^{b,c} and Iwane Suzuki ^{b,*}
6	
7	Affiliations
8	^a Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1,
9	Tsukuba, Ibaraki 305-8572, Japan
10	^b Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1,
11	Tsukuba, Ibaraki 305-8572, Japan
12	^c Japan Science and Technology Agency, CREST
13	
14	Corresponding author
15	Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba,
16	Ibaraki 305-8572, Japan. Tel: +81-29-853-4908, Fax: +81-29-853-6614
17	E-mail address: iwanes6803@biol.tsukuba.ac.jp (I. Suzuki).
18	

20 Abstract

Microalgae have received much attention as a next-generation source of biomass energy. 2122However, most of the fatty acids (FAs) from microalgae are multiply unsaturated; thus, the biofuels derived from them are fluid, but vulnerable to oxidation. In this study, we attempted 23to synthesize cyclopropane FAs in the cyanobacterium Synechocystis sp. PCC 6803 by 24expressing the cfa gene for cyclopropane FA synthase from Escherichia coli with the aim of 25producing FAs that are fluid and stable in response to oxidization. We successfully 26synthesized cyclopropane FAs in Synechocystis with a yield of ~30% of total FAs. Growth of 27the transformants was altered, particularly at low temperatures, but photosynthesis and 28respiration were not significantly affected. C16:1^{$\Delta 9$} synthesis in the *desA⁻/desD⁻* strain by 2930 expression of the desC2 gene for sn-2 specific $\Delta 9$ desaturase positively affected growth at low temperatures via promotion of various cellular processes, with the exceptions of 3132photosynthesis and respiration. Estimation of the apparent activities of desaturases suggested that some acyl-lipid desaturases might recognize the lipid side chain. 33

34

35 Keywords

Biofuel; Microalgae; Cyclopropane fatty acid; Acyl lipid desaturase; *Synechocystis* sp. PCC
6803

38 1. Introduction

Contemporary society is dependent on large quantities of fossil fuels. Fossil fuels are 39 used not only as resources for large-scale transportation and generation of electricity, but also 4041as raw materials for the production of various chemicals. However, use of fossil fuels accelerates global warming and environmental pollution. Moreover, the demand for fossil 42fuels is increasing due to global industrial expansion, while the availability of these fuels is 43gradually diminishing. Therefore, development of alternative sources of liquid fuels is 44required to sustain society. In recent years, microalgae have attracted attention as 45next-generation sources of biomass energy because their production does not directly compete 46with the production of land crops, which is sources of food, and because their production 47efficiency is extremely high [5,16]. Some microalgae accumulate large quantities of oils 48(mainly triacylglycerols), especially under conditions of stress, such as nitrogen starvation [8]. 49Fatty acids (FAs) in triacylglycerols are hydrolyzed and methylated, and their derivatives are 50utilized as biofuels. Most FAs from microalgae are multiply unsaturated; thus, the biofuels 51derived from them are fluid, but vulnerable to oxidation. Thus, direct use of natural FAs from 52microalgae in industry may be problematic. Use of FAs could be expanded if they were stable 53in response to oxidation during long-term storage and if they were sufficiently fluid. Saturated 5455FAs are stable in response to oxidation, but saturated FAs with C16 or C18 chains (which are

the major acyl groups of lipids in living organisms) solidify at physiological temperatures.

57 Thus, saturated FAs are not suitable for use in biofuel production.

Some bacteria, such as Escherichia coli and Lactobacillus arabinosus, synthesize 58cyclopropane FAs, which contain a cyclopropane ring in the acyl group. For example, 30% of 59FAs in the total membrane lipids of E. coli cells are cyclopropane FAs. A green sulfur 60 bacterium, Chlorobaculum tepidum, also produces cyclopropane FAs attached to glycolipids 61 [15]. This suggests that heterotrophic bacteria are not the only producers of cyclopropane FAs. 62 63 However, oxygenic photosynthetic organisms do not synthesize cyclopropane FAs. Instead, they produce unsaturated FAs to maintain membrane fluidity, suggesting that cyclopropane 64FAs might negatively affect oxygenic photosynthesis. Cyclopropane FA synthase in E. coli 65catalyzes the modification of acyl chains to their cyclopropane derivatives through 66 methylation of an unsaturated bond. In this reaction, S-adenosyl-L-methionine (SAM) is used 67 68 as a methyl donor. The enzyme acts on the double bond at the $\Delta 9$ or $\Delta 11$ in FAs attached to lipids in the membrane [23]. Unsaturated FAs exist in the membrane lipids of most organisms 69 and maintain membrane fluidity. Additionally, SAM exists in most organisms as a methyl 70donor for methylation reactions. Thus, organisms harboring $\Delta 9$ or $\Delta 11$ unsaturated FAs in 71their membrane lipids and in which the cyclopropane FA synthase from E. coli is expressed 72heterologously may have the ability to synthesize cyclopropane FAs. However, this has not 73

been evaluated to date.

75	Cyanobacterial acyl-lipid desaturases introduce double bonds at specific positions in FAs
76	that are esterified to the glycerol backbone of the membrane lipid [14]. The desA, desB, desC,
77	and desD genes of Synechocystis sp. PCC 6803 encode the acyl-lipid desaturases that
78	introduce double bonds at the $\Delta 12$, $\Delta 15$, $\Delta 9$, and $\Delta 6$ positions, respectively, of C18 FAs
79	attached at the sn-1 position of the lipids. In Synechocystis, a saturated C18 FA, stearic acid
80	(C18:0), is synthesized and incorporated into the <i>sn</i> -1 position of membrane lipids, followed
81	by desaturation. DesC introduces a double bond at the $\Delta 9$ position in the saturated FA. Then,
82	DesA and DesD unsaturate at the $\Delta 12$ and $\Delta 6$ positions, respectively, of oleic acid (C18:1 ^{$\Delta 9$}),
83	and the $\Delta 12$ unsaturated FAs are utilized by DesB as substrates to introduce an unsaturated
84	bond at the $\Delta 15$ position. The <i>desA</i> and <i>desD</i> genes were inactivated in the <i>desA⁻/desD⁻</i> strain,
85	and this strain accumulated more C18:1 ^{$\Delta 9$} than did the wild-type strain [18]. In <i>Synechocystis</i> ,
86	the endogenous desaturase specifically unsaturates C18 FAs attached at the sn-1 position of
87	lipids but cannot unsaturate C16 FAs attached at the <i>sn</i> -2 position. On the other hand, DesC2
88	from <i>Nostoc</i> sp. strain 36 can unsaturate the $\Delta 9$ position of C16 FAs attached at the <i>sn</i> -2
89	position [4].

In this study, we attempted to synthesize cyclopropane FAs in the cyanobacterium Synechocystis sp. PCC 6803 by expressing the cyclopropane FA synthase from *E. coli* to

92	produce FAs that are fluid and stable in response to oxidization. To increase the yield of
93	cyclopropane FAs in vivo, we also expressed the desC2 gene from Nostoc sp. and examined
94	the effects of mutations in desA and desD of Synechocystis. We analyzed the changes in FA
95	composition, cell growth, and respiration, and photosynthesis activities in the Synechocystis
96	transformants.

98 2. Materials and Methods

99 2.1. Organisms and culture conditions

The Synechocystis sp. PCC 6803 glucose-tolerant strain [24] was used as the wild type in 100 this study. Synechocystis cells were grown in BG11 [17] buffered with 20 mM 1011024-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-NaOH (pH 7.5) at 34°C or 26°C under continuous illumination by white fluorescent lamps at 70 μ mole photons m⁻² s⁻¹ 103 and aerated with 1% (v/v) CO₂-enriched air [21]. All transformants were maintained in BG11 104medium solidified with 1.5% (w/v) Bacto-agar (BD Biosciences Japan, Tokyo) in the 105106 presence of 25 µg/mL kanamycin sulfate, 25 µg/mL spectinomycin dihydrochloride pentahydrate, or 25 µg/mL chloramphenicol, depending on the selection markers used. 107

E. coli strain JM109 [25] was grown in 1.5 mL of LB medium [1] at 37°C with shaking at 200 rpm. All transformants were maintained in LB medium solidified with 1.5% (w/v)

Bacto-agar (BD Biosciences Japan) in the presence of 50 µg/mL sodium ampicillin or 50 µg/mL spectinomycin dihydrochloride pentahydrate, depending on the selection markers used. To supply exogenous FAs, C18:1^{$\Delta 9$}, linoleic acid (C18:2^{$\Delta 9,12$}), γ -linolenic acid (C18:3^{$\Delta 6,9.12$}), and α -linolenic acid (C18:3^{$\Delta 9,12,15$}), to the *E. coli* cells, we cultivated the cells in liquid LB medium [1] containing 1 mM sodium salt of C18:1^{$\Delta 9$} (Tokyo chemical industry, Japan), C18:2^{$\Delta 9,12$} (Funakoshi, Tokyo, Japan), C18:3^{$\Delta 6,9.12$} (Sigma Aldrich, Missouri, USA), or C18:3^{$\Delta 9,12,15$} (Funakoshi).

117

118 2.2. Plasmid construction and transformation

For heterologous expression of the cfa and desC2 genes in Synechocystis and 119overexpression of the cfa gene in E. coli, we constructed four plasmids-pTHT-cfaSp, 120pTHT-Sp, pTHT-desC2Sp, and pTHT-cfadesC2Sp-which are derivatives of an expression 121vector, pTCHT2031V, for this cyanobacterium [9]. Fig. S1 shows the construction scheme for 122these plasmids, and Table S1 shows the primers used. The plasmid pTCHT2031V contains 123124five DNA fragments in the following order: the sequence upstream of the slr2031 gene (2031up), a chloramphenicol resistance gene cassette (Cm-r), the trc promoter sequence (trc), 125the sequence downstream of the slr2031 gene (2031dn), and the plasmid backbone of the 126pUC vector [9]. The derived plasmids had fragments introduced between 2031up and 2031dn 127

128	into the Synechocystis chromosome through homologous recombination with the coding
129	sequence of <i>slr2031</i> , a non-essential gene. At first, to replace the selection marker from the
130	chloramphenicol resistance gene cassette with the spectinomycin resistance gene cassette, we
131	constructed a plasmid lacking the chloramphenicol resistance gene cassette, pTHT2031V,
132	from pTCHT2031V by PCR amplification and using an In-Fusion HD Cloning Kit (Takara
133	Bio, Ohtsu, Japan). The cfa gene was amplified by PCR by using E. coli chromosomal DNA
134	as the template. The amplified DNA fragment was subcloned into a T-vector pMD19 vector
135	(Takara Bio) to obtain the pMD-cfa plasmid, which was confirmed by DNA sequencing. We
136	next amplified a DNA fragment including the spectinomycin resistance gene (Sp-r) using
137	pAM1146 [20] as a template. The Sp-r fragment, digested with BamHI and BglII, was
138	inserted into pMD-cfa, and pTHT2031V was cleaved with BglII in the same orientation as
139	transcription of the cfa gene and the trc promoter, respectively, to obtain pMD-cfaSp and
140	pTHT-Sp. The fragments containing the <i>cfa</i> and Sp-r genes in pMD-cfaSp were excised using
141	NdeI and BglII and inserted into pTHT2031V digested using the same restriction enzymes to
142	obtain pTHT-cfaSp. The desC2 gene from the Nostoc sp. strain 36 [4] was artificially
143	synthesized (Life Technologies Japan, Tokyo) and optimized for the codon usage of
144	Synechocystis. Finally, we inserted the desC2 gene into pTHT-cfaSp and amplified the
145	fragment with two primer sets using an In-Fusion HD Cloning Kit (Takara Bio) to obtain

146 pTHT-desC2Sp and pTHT-cfadesC2Sp.

147	pTHT-cfaSp and pTHT-Sp were introduced into E. coli strain JM109 to construct the cfa
148	overexpression and vector control strains, respectively. The FA compositions of these cells
149	were analyzed. pTHT-cfaSp, pTHT-desC2Sp, and pTHT-cfadesC2Sp were used to transform
150	cells of the wild-type and <i>desA⁻/desD⁻</i> strains of <i>Synechocystis</i> by homologous recombination
151	[24]. After verifying complete segregation of the mutated chromosomes from those
152	possessing the native slr2031 gene by PCR, FA compositions and photosynthesis and
153	respiration activities were analyzed.

154

155 2.3. FA analysis

156Profiles of FAs in the cells were examined by the method of Kotajima et al. [11]. Cells were precipitated by centrifugation and re-suspended in 2 mL of methanol. The suspensions 157were transferred to glass test tubes. After complete drying using a concentrating centrifuge 158(CC-105, Tomy Seiko, Tokyo, Japan), the pellet was re-suspended in 0.1 M hydrochloric acid 159160 methanolic solution (Wako Pure Chemicals, Osaka, Japan). Then, the tubes were tightly capped and incubated at 100°C for 1 h to allow saponification of the acyl-groups in lipids and 161 conversion into FA methyl esters (FAMEs). The resultant FAMEs were recovered using 162*n*-hexane. The hexane phases recovered were evaporated, and the residues containing FAMEs 163

164 were dissolved in 100 μ L of *n*-hexane.

To identify and quantify FAMEs, we applied 1 µl of the hexane solution to a GC-2014 165gas chromatograph equipped with a flame-ionization detector (Shimadzu, Kyoto, Japan). 166Helium was used as a carrier gas at a constant flow rate of 1.25 mL/min in split-less mode. A 167168CP-Sil5 CB column (Agilent Technologies, Santa Clara, CA) was used at the following temperatures: 60°C for 1.5 min, then 130°C at 20°C/min, and a further increase to 230°C at 169 4°C/min. Most FAMEs were provisionally identified based on retention time and confirmed 170using commercial FAME standards (Nu-Chek Prep, Elysian, MN). To identify 171cis-9,10-methylenehexadecanoic acid (C17:1cyclo^{Δ 9}) and cis-9,10-methyleneoctadecanoic 172acid (C19:1cyclo^{$\Delta 9$}), we used a gas chromatograph, GC-2010, equipped with a mass 173174spectrometer, QP-2010 (Shimadzu). Conditions of GC were identical to those used for the FAME quantification, as described above. We confirmed the retention times and mass 175spectrums of C17:1cyclo^{Δ9} (Santa Cruz Biotechnology, Texas USA) and C19:1cyclo^{Δ9}(Santa 176Cruz Biotechnology). *cis*-9,10-methylene-*cis*-12-octadecenoic acid (C19: $2^{\Delta 12}$ cyclo^{$\Delta 9$}) and 177cis-9,10-methylene-cis-12,15-octadecadienoic acid (C19:3^{Δ 12,15}cyclo^{Δ 9}) were estimated from 178the differences in the mass of the parent ion of C19:1cyclo^{$\Delta 9$} and pattern of fragmentation 179seen in the GC-MS results. 180

181 In order to analyze FAs attached to each lipid, the harvested cells were stored at -80°C

182	and the lipids were extracted with CH_3Cl :methanol (2:1, v/v). The cell debris were
183	sedimented by centrifugation. The resulting supernatant was transferred into new tubes and
184	evaporated. Then, the samples was re-suspended in 300 μl CH_3Cl:methanol (2:1, v/v) and
185	applied to a silica gel plate. The lipids were separated by thin-layer chromatography using
186	chloroform/methanol/acetic acid (65:25:8, v/v/v). The lipids were detected by staining with
187	primulin and then the silica gel corresponding to the lipid spots was scraped off and extracted
188	as described above.

189

2.4. Photosynthesis and respiration activities 190

191 Photosynthesis and respiration activities were measured as evolution and absorption of oxygen, respectively, using an oxygen electrode (Oxytherm System, Hansatech, Norfolk, UK). 192Synechocystis cells were grown at 34°C and 26°C for 2 d, and assayed at the same 193temperatures. Photosynthesis activity in these samples was measured at a light intensity of 194600 µmole photons m⁻² s⁻¹, which represented saturated light conditions. Sodium hydrogen 195196 carbonate (2.5 mM) was added to the cell suspensions as a carbon source. Respiration activity was measured in the dark. 197

198

2.5. RNA extraction and quantification of mRNA 199

200	For the RNA extraction, wild-type and transformant cells were cultivated at 34°C under
201	standard growth condition for 3 d, and then the cultures were transferred to 26°C. After 1 d of
202	cultivation, the cells were inoculated into fresh BG11 medium at an OD ₇₃₀ of 0.1 and further
203	cultivated at 26°C for 1 d. The total RNAs were isolated by TRIzol Max Bacterial RNA
204	Isolation Kit (Invitrogen, Carlsbad, CA), and purified by RNeasy Minikit (QIAGEN, Hilden,
205	Germany) as previously described by Kotajima et al. [11].
206	The total RNAs extracted from the Synechocystis cells were reverse transcribed by
207	PrimeScript RT Reagent Kit with gDNA Eraser (Perfect Real Time) (Takara Bio) to obtain
208	cDNAs. Real-time PCR was performed using a GoTaq qPCR Master Mix (Promega,
209	Fitchburg, WI) on a PikoPeal 96 Real-Time PCR system (Thermo Fisher Scientific, Waltham,
210	MA). The 10 μL of PCR reaction mixture contained 5 ng of cDNAs, 0.2 μL of 10 μM
211	forward primer, and 0.2 μL of 10 μM reverse primer. To determine the expression levels of
212	the desC, desA, and desD genes, we used primer sets desC_qPCR_F and desC_qPCR_R,
213	desA_qPCR_F and desA_qPCR_R, and desD_qPCR_F and desD_qPCR_R, respectively
214	(Table S1). As a reference, we amplified the <i>rnpB</i> gene encoding the RNase P subunit B using
215	primers rnpB_RT_F and rnpB_RT_R. As a negative control, we used total RNA samples that
216	were not reverse transcribed. The threshold cycle (C_T) values were determined by PikoReal
217	Software 2.2 (Thermo Fisher Scientific) following the manual. Relative quantitation was

performed using the comparative C_T method [12]. The results of the wild-type cells were used
for calibration.

220

- **3. Results and Discussion**
- 222 3.1. FA composition of cfa-overexpressing E. coli

E. coli cells synthesize the unsaturated FAs palmitoleic acid (C16:1^{Δ 9}) and vaccenic acid 223 $(C18:1^{\Delta 11})$ as components of their membrane lipids, but not $C18:1^{\Delta 9}$, $C18:2^{\Delta 9,12}$, or 224C18:3^{Δ 6,9.12}, which are the major unsaturated FAs in *Synechocystis* cells grown at 34°C. 225FA-modifying enzymes, including the acyl-lipid FA desaturases, are position-specific [3]. It 226was unclear whether Cfa in E. coli introduces cyclopropane groups at the $\Delta 9$ and $\Delta 11$ 227positions of the unsaturated FAs or specifically at the ω 7 position. To determine whether Cfa 228could modify C18:1^{$\Delta 9$}, C18:2^{$\Delta 9,12$}, and C18:3^{$\Delta 6,9.12$} in vivo, we analyzed the FA compositions 229 of the wild-type and cfa-overexpressing E. coli strains cultivated in a liquid medium 230containing C18:1^{$\Delta 9$}, C18:2^{$\Delta 9,12$}, C18:3^{$\Delta 9,12,15$}, or C18:3^{$\Delta 6,9.12$}. 231

Addition of each FA to a culture of the wild-type strain of *E. coli* resulted in total FAs in membrane lipids comprising 10-30% of C18:1^{$\Delta 9$}, C18:2^{$\Delta 9,12$}, C18:3^{$\Delta 9,12,15$}, and C18:3^{$\Delta 6,9,12$} (Table 1). Wild-type cells cultivated with C18:1^{$\Delta 9$}, C18:2^{$\Delta 9,12$}, and C18:3^{$\Delta 9,12,15$} exhibited 0.3 $\pm 0.1\%$, 0.3 $\pm 0.1\%$, and 1.7 $\pm 0.7\%$ of C19:1cyclo^{$\Delta 9$}, C19:2^{$\Delta 12$}cyclo^{$\Delta 9$}, and C19:3^{$\Delta 12,15$}cyclo^{$\Delta 9$},

236	respectively, among the total membrane FAs. The total FAs in membrane lipids of the
237	<i>cfa</i> -overexpressing <i>E. coli</i> strain comprised 8-12% of C18:1 ^{$\Delta 9$} , C18:2 ^{$\Delta 9,12$} , C18:3 ^{$\Delta 9,12,15$} , and
238	C18:3 ^{$\Delta 6,9.12$} . Moreover, the <i>cfa</i> -overexpressing strain cultivated with C18:1 ^{$\Delta 9$} , C18:2 ^{$\Delta 9,12$} , and
239	$C18:3^{\Delta9,12,15}$ exhibited 14.5 ± 2.9%, 5.4 ± 0.7%, and 2.2 ± 0.2% of C19:1cyclo ^{$\Delta9$} ,
240	C19:2 ^{Δ12} cyclo ^{Δ9} , and C19:3 ^{Δ12,15} cyclo ^{Δ9} , respectively, among total membrane FAs. When
241	both wild-type and <i>cfa</i> -overexpressing <i>E. coli</i> cells were cultivated with C18:3 ^{Δ6,9,12} ,
242	approximately 10% of it of the total FAs was incorporated into the membrane lipids. Both
243	cells synthesized C17:1cyclo ^{$\Delta 9$} and lactobacillic acid (C19:1cyclo ^{$\Delta 11$}), but did not synthesize
244	novel cyclopropane FAs, such as cis-9,10-methylene-cis-6,12-octadecadienoic acid
245	$(C19:3^{\Delta6,12}cyclo^{\Delta9})$. C16:1 ^{$\Delta7$} , C16:2 ^{$\Delta7,10$} , C16:3 ^{$\Delta4,7,10$} , and C16:3 ^{$\Delta7,10,13$} were detected when the
246	cells were cultured in media including C18:1 ^{$\Delta 9$} , C18:2 ^{$\Delta 9,12$} , C18:3 ^{$\Delta 6,9,12$} , and C18:3 ^{$\Delta 9,12,15$} ,
247	respectively, as exogenous FAs. The purities of C18:1 ^{$\Delta 9$} , C18:2 ^{$\Delta 9,12$} , C18:3 ^{$\Delta 6,9,12$} , and
248	C18:3 $^{\Delta9,12,15}$ were higher than 97%, 99%, 99%, and 99%, respectively. In addition, when we
249	incubated these FAs in LB medium with shaking, these FAs were not changed into C16 FAs
250	(data not shown). Thus, we concluded that C16:1 ^{Δ7} , C16:2 ^{Δ7,10} , C16:3 ^{Δ4,7,10} , and C16:3 ^{Δ7,10,13}
251	were produced from C18:1 ^{$\Delta 9$} , C18:2 ^{$\Delta 9,12$} , C18:3 ^{$\Delta 6,9,12$} , and C18:3 ^{$\Delta 9,12,15$} , respectively, in the <i>E</i> .
252	<i>coli</i> cells during the culture, perhaps via β -oxidation.

253 These results suggest that Cfa can specifically modify the $\Delta 9$ position of the C18

254	unsaturated FAs C18:1 ^{$\Delta 9$} , C18:2 ^{$\Delta 9,12$} , and C18:3 ^{$\Delta 9,12,15$} as substrates for production of
255	cyclopropane FAs. However, if both the $\Delta 6$ and $\Delta 9$ positions of the C18 unsaturated FAs
256	were unsaturated, Cfa could not introduce a cyclopropane ring at the $\Delta 9$ position. These
257	results suggested that C18:1 ^{$\Delta 9$} , C18:2 ^{$\Delta 9,12$} , and C18:3 ^{$\Delta 9,12,15$} are candidate substrates for Cfa in
258	cfa-expressing Synechocystis cells.

260 3.2. FA compositions of Synechocystis transformants

261 3.2.1. Heterologous expression of the cfa gene in wild-type Synechocystis

According to the results from FA feeding experiments in *E. coli* expressing the *cfa* gene,

263 Cfa can convert C18:1^{$\Delta 9$} and C18:2^{$\Delta 9,12$} to C19:1cyclo^{$\Delta 9$} and C19:2^{$\Delta 12$}cyclo^{$\Delta 9$}, respectively.

264 We examined whether the unsaturated FAs endogenously synthesized and incorporated into

265 membrane lipids are converted to cyclopropane FAs *in vivo* by heterologously expressing *cfa*

266 in wild-type Synechocystis cells.

In wild-type *Synechocystis* cells, $C18:1^{\Delta 9}$ and $C18:2^{\Delta 9,12}$, which are thought to be substrates for Cfa, comprised $18.3 \pm 0.6\%$ and $16.6 \pm 0.6\%$ of total FAs, respectively. $C18:3^{\Delta 6,9,12}$, which may not be catalyzed by Cfa, comprised $9.2 \pm 0.8\%$ of total FAs. In the strain harboring the *cfa* gene (*cfa*⁺), $C19:1cyclo^{\Delta 9}$ comprised $18.8 \pm 0.4\%$ of total FAs. Simultaneously, the $C18:1^{\Delta 9}$ content was reduced to $5.1 \pm 0.4\%$ (Table 2). Interestingly, C19:2^{Δ 12} cyclo^{Δ 9} was not produced from C18:2^{Δ 9,12} in *Synechocystis* cells. The abundance of C18:2^{Δ 9,12} in the *cfa*⁺ strain was 10.7 ± 0.7%, which was slightly lower than that in wild-type cells. These results indicated that Cfa was functional in the *Synechocystis* cells, but that only C18:1^{Δ 9} was used as a substrate and that DesA, a Δ 12 acyl-lipid desaturase in *Synechocystis*, also uses C18:1^{Δ 9} but not C19:1cyclo^{Δ 9} as a substrate. Cfa and DesA compete for use of C18:1^{Δ 9}.

Although Cfa converted C18:2^{Δ 9,12} to C19:2^{Δ 12} cyclo^{Δ 9} in *E. coli* cells, this did not happen 278in Synechocystis cells. The reason for this discrepancy is unclear, but the head groups of the 279membrane lipids differ between these two organisms. The membrane lipids in E. coli are 280phospholipids (e.g., phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol 281282[PG], and cardiolipin) [6], whereas those in Synechocystis are mainly glycolipids (e.g., monogalactosyl diacylglycerol [MGDG], digalactosyl diacylglycerol [DGDG], and 283sulfoquinovosyl diacylglycerol [SQDG]) and only one phospholipid, PG [14]. We next 284separated the total lipids into each membrane lipid (i.e., MGDG, DGDG, SQDG, and PG) by 285thin-layer chromatography and determined the FA profiles. As shown in Table S2, in the cfa^+ 286strain, C19:1cyclo^{$\Delta 9$} was incorporated into all four types of lipids, and the C19:1cyclo^{$\Delta 9$} 287content in SQDG was slightly lower than those in the other three lipids. Because a greater 288quantity of palmitic acid (C16:0) was attached to SQDG than to the other lipids in 289

Synechocystis cells, as reported previously [22], the C19:1cyclo^{$\Delta 9$} level in the lipids was lower.

291 Thus, Cfa activities were unaffected by differences in the lipid head groups.

The difference in lipid types does not explain the lack of production of C19: $2^{\Delta 12}$ cyclo^{$\Delta 9$} in 292Synechocystis. According to the literature, Cfa acts on the nonpolar portion of phospholipids 293dispersed in vesicles [19]. Recently, S. J. Biller et al. [2] showed that many microorganisms 294develop and release small membrane vesicles from cell surfaces. However, the presence of 295such membrane vesicles in the cytosol of cyanobacterial cells is yet to be demonstrated. At 296this time, we cannot clearly identify the substrate of Cfa. In Synechocystis cells, there are 297 three cell membranes, i.e., the outer membrane, inner membrane, and thylakoid membrane. In 298these membranes, the lipids or FAs do not exist unevenly [10]. Thus, we did not consider the 299presence of a different compartment of C18:2^{Δ 9,12} in *Synechocystis*. However, in unidentified 300 vesicles and possible microdomains where Cfa might locate and function, we cannot ignore 301 the possibility. It is unclear why C19: $2^{\Delta 12}$ cyclo^{$\Delta 9$} was not produced in *Synechocystis*. 302

303

304 3.2.2. Heterologous expression of cfa in desA⁻/desD⁻ Synechocystis cells

305 Cfa catalyzed the synthesis of only C19:1cyclo^{$\Delta 9$} from C18:1^{$\Delta 9$} in *Synechocystis* cells 306 (Table 2). To increase the abundance of C19:1cyclo^{$\Delta 9$} in *Synechocystis* cells, we attempted to 307 introduce the *cfa* gene into the *desA⁻/desD⁻* strain (*desA⁻/desD⁻/cfa⁺*), which does not produce

308	C18 polyunsaturated FAs [18]. Total FAs of the $desA/desD$ strain comprised 49.8 \pm 0.5% of
309	C18:1 ^{$\Delta 9$} , which is 2.5-fold greater than that of wild-type cells (Table 2). Although we
310	attempted to increase the abundance of C19:1cyclo ^{$\Delta 9$} in the <i>desA⁻/desD⁻/cfa⁺</i> strain, it
311	unexpectedly comprised $22.2 \pm 0.6\%$ of the total FAs (Table 2). First, we hypothesized that
312	Cfa prefers unsaturated FAs attached to phospholipids. However, the FA compositions of
313	each lipid class—MGDG, DGDG, SQDG, and PG—of desA ⁻ /desD ⁻ /cfa ⁺ were not markedly
314	altered, suggesting that Cfa does not discriminate among lipid head groups (Table S2). Excess
315	C19:1cyclo ^{$\Delta 9$} in the membrane lipids might exert deleterious effects on <i>Synechocystis</i> cells.

317 *3.2.3. Heterologous coexpression of* cfa *and* desC2 *in* Synechocystis *cells*

In the $desA^{-}/desD^{-}/cfa^{+}$ strain, the abundance of C19:1cyclo^{$\Delta 9$} was not increased 318 compared with that in the cfa^+ strain. To increase the abundance of cyclopropane FAs in 319*Synechocystis* cells, we attempted to synthesize a novel cyclopropane FA, C17:1cyclo^{$\Delta 9$}, from 320C16:1^{$\Delta 9$} in *Synechocystis*. The endogenous desaturases of *Synechocystis* specifically 321 322unsaturate C18 FAs attached at the sn-1 position of the lipids, but cannot unsaturate C16 FAs attached at the sn-2 position [14]. In contrast, DesC2 from Nostoc sp. strain 36 specifically 323unsaturates C16 saturated FA attached at the sn-2 position [4]. We aimed to synthesize 324C17:1cyclo^{$\Delta 9$} by coexpression of the *cfa* and *desC2* genes in the wild-type and *desA⁻/desD⁻* 325

strains of *Synechocystis* ($cfa^+/desC2^+$ and $desA^-/desD^-/cfa^+/desC2^+$). Furthermore, we also constructed the $desC2^+$ and $desA^-/desD^-/desC2^+$ strains by introducing the corresponding genes into the wild-type and $desA^-/desD^-$ cells, respectively, as controls. In the $desC2^+$ and $desA^-/desD^-/desC2^+$ strains, C16:1^{$\Delta 9$} comprised approximately 25% of total FAs. Because C19:1cyclo^{$\Delta 9$} comprised ~20% of total FAs in the cfa^+ and $desA^-/desD^-/cfa^+$ strains, we expected that the $cfa^+/desC2^+$ and $desA^-/desD^-/cfa^+/desC2^+$

strains would synthesize ~20% C17:1cyclo^{$\Delta 9$} in addition to 20% C19:1cyclo^{$\Delta 9$}. However, the

333 $cfa^+/desC2^+$ and $desA^-/desD^-/cfa^+/desC2^+$ strains produced only 7.7 \pm 0.5% and 5.2 \pm 0.4%

334 C17:1cyclo^{$\Delta 9$}, respectively. Moreover, the C16:1^{$\Delta 9$} abundance was reduced to 2.3 ± 0.1% and

 $1.8 \pm 0.1\%$ in the $cfa^+/desC2^+$ and $desA^-/desD^-/cfa^+/desC2^+$ strains, respectively. Interestingly,

336 C19:1cyclo^{$\Delta 9$} abundance was maintained after introduction of the *desC2* gene, comprising

more than 20% in the $cfa^+/desC2^+$ and $desA^-/desD^-/cfa^+/desC2^+$ strains. The abundance of C17:1cyclo^{$\Delta 9$} in the $cfa^+/desC2^+$ and $desA^-/desD^-/cfa^+/desC2^+$ strains was lower than our estimation. C16:1^{$\Delta 9$} abundance in the $cfa^+/desC2^+$ and $desA^-/desD^-/cfa^+/desC2^+$ strains was

markedly lower than that in the $desC2^+$ and $desA^-/desD^-/desC2^+$ strains.

341

342 *3.3. Growth of the* Synechocystis *transformants*

343 In this study, we constructed *Synechocystis* strains that synthesized cyclopropane FAs

and unsaturated C16 FAs. These are novel FAs in *Synechocystis* cells; therefore, we examined
the effects of synthesis of cyclopropane FAs and unsaturated C16 FA on the growth of *Synechocystis* cells.

Both wild-type and cfa^+ cells grew well at high and low temperatures (34°C and 26°C, 347respectively) (Fig. 1). The growth rates were not altered by introduction of the *cfa* gene in 348wild-type cells. The growth of desA⁻/desD⁻ cells at 34°C was reduced compared with that of 349wild-type cells, whereas growth at 26°C was almost halted, as reported previously [18]. The 350growth rate of $desA^{-}/desD^{-}/cfa^{+}$ cells was lower than that of $desA^{-}/desD^{-}$ cells at both 351temperatures, and these cells were unable to grow at 26°C. These results suggest that 352C19:1cyclo^{$\Delta 9$} synthesis in cells that do not synthesize polyunsaturated FAs negatively affected 353growth, irrespective of temperature. The melting point of C18:1^{$\Delta 9$}; i.e., 16.3°C 354(http://www.sciencelab.com/msds.php?msdsId=9927682), is lower than that of C19:1cyclo^{$\Delta 9$} 355(i.e., 27.8–28.8°C) [7], suggesting that maintenance of membrane fluidity in cells with 356membrane lipids possessing C19:1cyclo^{$\Delta 9$} instead of C18:1^{$\Delta 9$} might be difficult. 357

The growth rate at 34°C of wild-type cells harboring the *desC2* gene was slightly decreased compared with that of wild-type cells, and growth at 26°C was significantly repressed. These results suggest that synthesis of C16:1^{$\Delta 9$} in the wild-type cells negatively affected their growth, particularly at low temperatures. In a previous report [4], the

362	unsaturation of the C16 FAs attached at the sn-2 position was suggested to contribute to the
363	growth of a Nostoc strain living in an Antarctic lake at low temperatures, but this was not so
364	in the case of <i>Synechocystis</i> . Although the growth of the $desA^{-}/desD^{-}/desC2^{+}$ strain at 34°C
365	was not changed, growth at 26°C was significantly increased. However, the growth rate of the
366	$desA^{-}/desD^{-}/cfa^{+}/desC2^{+}$ strain decreased to almost the same extent as that of the $desA^{-}/desD^{-}$
367	strain. Although C16:1 ^{$\Delta 9$} synthesis in wild-type cells resulted in decreased growth at 26°C,
368	growth of the $desA^{-}/desD^{-}$ strain was stimulated at this temperature. If the C18 FA at the <i>sn</i> -1
369	position is not multiply unsaturated, unsaturation of the C16 FA at the sn-2 position might
370	contribute to growth at low temperatures. C16:1 ^{$\Delta 9$} production by the <i>desA⁻/desD⁻</i> strain might
371	have maintained the membrane fluidity under low-temperature conditions. Co-introduction of
372	the cfa gene abrogated the positive effects of the $desC2$ gene on growth at low temperature.
373	Therefore, the conversion of C16:1 ^{$\Delta 9$} at the <i>sn</i> -2 position of membrane lipids into
374	C16:1cyclo ^{$\Delta 9$} might decrease membrane fluidity.

376 *3.4. Effect of cyclopropane FA synthesis on photosynthesis and respiration activities*

Modification of FA profiles by expression of *cfa* and *desC2* altered the growth rates of *Synechocystis* transformants, especially at 26°C (Fig. 1). To investigate these phenomena, we analyzed photosynthesis and respiration activities in *Synechocystis* cells grown at 34°C and

26°C. Respiration and photosynthesis activities were not significantly altered in cells grown at 380 34°C (Fig. 2). As reported previously [18], the growth rate of the desA⁻/desD⁻ strain was 381severely retarded at low temperature, although photosynthesis and respiration activities were 382not significantly different from those of wild-type cells. However, the respiration and 383 photosynthesis activities in the wild-type cells harboring the cfa or desC2 gene were 384decreased to some extent, particularly at 26°C. Although expression of the desC2 gene 385resulted in recovery of the growth rate of the desA⁻/desD⁻ strain at 26°C, photosynthesis and 386respiration activities were lower than those of the desA⁻/desD⁻ strain. These results suggest 387 that cfa and desC2 expression in wild-type cells slightly decreased the photosynthesis and 388 respiration activities, which may be related to suppression of the growth rate of the 389transformants. However, C16:1^{$\Delta 9$} synthesis in the *desA⁻/desD⁻* strain led to recovery of the 390 391 growth rate at 26°C via promotion of various cellular processes other than photosynthesis and respiration. 392

The cultures in Fig. 1 were grown at 70 μ mole photons m⁻² s⁻¹ and the photosynthetic activity shown in Fig. 2 was measured at 600 μ mole photons m⁻² s⁻¹, which is near the light saturation point in cells, to observe the maximum rate of O₂ evolution. We thought that there was a discrepancy between the two experiments due to a difference in the light conditions. Therefore, we further investigated the photosynthetic activity at various light intensities, including 75 µmol photons/m²/s, which is the closest to the growth condition. As a result,even at a low light intensity, we could not observe clear differences in the photosyntheticactivity in the strains (Fig. S2). Therefore, modification of the FA composition might havealtered the activities of endogenous desaturase in *Synechocystis* and indirectly affected thegrowth of the transformants.

403

404 3.5. Apparent desaturase and cyclopropane FA synthetase activities in Synechocystis strains

To compare apparent desaturase and cyclopropane FA synthetase activities, we 405 determined the total abundance of FAs synthesized by each enzyme (Table 2, Table S3, and 406 Fig. 3). The total abundance of FAs unsaturated by DesC is shown in Fig. 3A. The cfa^+ , 407 $desC2^+$, and $cfa^+/desC2^+$ strains synthesized lower levels of FAs unsaturated by DesC than 408 the wild-type cells did. In addition, the $desA^{-}/desD^{-}/cfa^{+}$, $desA^{-}/desD^{-}/desC2^{+}$, and 409 $desA^{-}/desD^{-}/cfa^{+}/desC2^{+}$ strains synthesized lower levels of FAs unsaturated by DesC than 410 did the *desA⁻/desD⁻* strain. This might be due to a mechanism regulating membrane fluidity. 411 In accordance with previous reports [13], the *desC* gene in *Synechocystis* is constitutively 412

413 expressed irrespective of culture conditions. However, these findings suggest the existence of 414 a novel mechanism of regulating desC expression to prevent excess membrane fluidity. We 415 analyzed expression levels of the desC gene by qPCR using total RNA extracted from the 416 cells of wild-type, cfa^+ , $desC2^+$, and $cfa^+/desC2^+$ Synechocystis strains cultivated at 26°C. We 417 found that the desC gene expression levels in the cfa^+ , $desC2^+$, and $cfa^+/desC2^+$ strains were 418 not remarkably different from those in the wild-type cells (Table S4A). These results suggest 419 that there might be a novel mechanism for regulating DesC activity, perhaps via 420 post-translationally, to maintain the suitable membrane fluidity..

Fig. 3B, C, and D show the total abundance of FAs unsaturated by DesA, DesD, and 421DesB, respectively. These results demonstrated that the apparent activities of DesA, DesD, 422and DesB were decreased to some extent by introduction of the desC2 gene, especially at 42326°C. desA, desD, and desB expression is induced at low temperature to maintain membrane 424fluidity in Synechocystis cells [22]. desC2 expression may downregulate the expression levels 425426of desA, desD, and desB via the regulatory mechanism for maintaining membrane fluidity [13]. We analyzed expression levels of the desA and desD genes by qPCR using total RNA 427 extracted from the cells of wild-type, cfa^+ , $desC2^+$, and $cfa^+/desC2^+$ Synechocystis strains 428cultivated at 26°C. We found that the desA and desD gene expression levels in the cfa^+ , 429 $desC2^+$, and $cfa^+/desC2^+$ strains were not remarkably altered from those in the wild-type cells 430 (Table S4B, C). Alternatively, DesC2 may compete with DesA, DesD, and DesB, and these 431endogenous desaturases may specifically unsaturate C18 FAs attached at the sn-1 position of 432lipids containing C16-saturated FAs at the sn-2 position, but not those containing 433

C16-unsaturated FAs. Fig. 4 summarizes these results, and the data therein suggest that no 434 pathway for unsaturation by DesA, DesD, and DesB after unsaturation by DesC2 exists. 435Fig. 3E shows the total abundance of FAs unsaturated by DesC2. These results 436demonstrated that cells harboring both the cfa and desC2 genes produced lower levels of FAs 437unsaturated by DesC2 than did cells expressing the desC2 gene under both the high- and 438 low-temperature conditions. The total abundance of saturated FAs are shown in Fig. 3G. 439These results demonstrated that Synechocystis cells harboring only desC2 produced lower 440 levels of saturated FAs than did wild-type cells, but that the cells containing both cfa and 441desC2 accumulated large quantities of saturated FAs. Indeed, the levels were almost identical 442to those in wild-type Synechocystis cells. These results suggested that DesC2 might unsaturate 443C16:0 attached at the sn-2 position of lipids possessing C18 unsaturated FAs at the sn-1 444position but not lipids with C18-saturated FAs or C19 cyclopropane FAs (Fig. 4). The 445446 cyclopropane FA yield would be increased if the sn-2-specific desaturase could unsaturate C16:0 attached at the sn-2 position of lipids containing C18-saturated FAs or C19 447cyclopropane FAs at the *sn*-1 position. 448

449

450 4. Conclusions

451 We successfully synthesized cyclopropane FAs in *Synechocystis* at a level comprising

~30% of total FAs. Growth of Synechocystis cells harboring the cfa and desC2 genes was 452altered, particularly under low-temperature conditions, but photosynthesis and respiration 453activities were not significantly affected. C16:1^{$\Delta 9$} synthesis in the *desA⁻/desD⁻* strain positively 454affected growth under low-temperature conditions by promoting various cellular processes 455other than photosynthesis and respiration. Our data suggest that Cfa and desaturases may 456recognize lipid side chains. The cyclopropane FA yield would be increased if the 457sn-2-specific desaturase could unsaturate C16:0 attached at the sn-2 position of lipids 458containing C18-saturated FAs or C19 cyclopropane FAs at the *sn*-1 position. 459

460

461 Acknowledgements

This research was supported in part by the Japanese Society of Promotion of Sciences (JSPS) and the National Research Council of Thailand (NRCT) under the JSPS – NRCT Joint Research Program (IS) and by Core Research for Evolutional Science and Technology (CREST) Japan Science and Technology Agency (JST) (YS).

466

467 **References**

468 [1] G. Bertani, Studies on lysogenesis. I. The mode of phage liberation by lysogenic
 469 *Escherichia coli*, J. Bacteriol. 62 (1951) 293–300.

 471 Chisholm, Bacterial vesicles in marine ecosystems, Science. 10 (2014) 183–186. 472 [3] X. Chi, Q. Yang, F. Zhao, S. Qin, Y. Yang, J. Shen, H. Lin, Comparative anal 	vsis of
472 [3] X. Chi, Q. Yang, F. Zhao, S. Qin, Y. Yang, J. Shen, H. Lin, Comparative anal	vsis of
	J 515 01
473 fatty acid desaturases in cyanobacterial genomes, Comp. Funct. Genomics.	(2008)
474 284508.	
475 [4] S. Chintalapati, J.S. Prakash, P. Gupta, S. Ohtani, I. Suzuki, T. Sakamoto, N. Mu	rata, S.
476 Shivaji, A novel $\Delta 9$ acyl-lipid desaturase, DesC2, from cyanobacteria acts on fatt	y acids
477 esterified to the <i>sn</i> -2 position of glycerolipids, Biochem. J. 398 (2006) 207–214.	
478 [5] Y. Chisti, Biodiesel from microalgae, Biotechnol. Adv. 25 (2007) 294–306.	
479 [6] J.E. Cronan Jr., Phospholipid alterations during growth of <i>Escherichia coli</i> , J. Ba	cteriol.
480 95 (1968) 2054–2061.	
481 [7] K. Hofman, R.A. Lucas, S.M Sax, The chemical nature of the fatty ac	ids of
482 <i>Lactobacillus arabinosus</i> , J. Biol. Chem. 195 (1952) 473–485.	
483 [8] Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirard, M. Posewitz, M. Seibert, A. D	arzins,
484 Microalgal triacylglycerols as feedstocks for biofuel production: perspective	es and
485 advances, Plant J. 54 (2008) 621–639.	
486 [9] T. Ishizuka, T. Shimada, K. Okajima, S. Yoshihara, Y. Ochiai, M. Katayama, M. I	keuchi,
487 Characterization of cyanobacteriochrome TePixJ from a thermophilic cyanobac	terium

Thermosynechococcus elongatus strain BP-1, Plant Cell Physiol. 47 (2006) 1251–1261.

- 489 [10] Y.H. Kim, J. S. Choi, J. S. Yoo, Y. M. Park, M. S. Kim, Structural identification of
- 490 glycerolipid molecular species isolated from cyanobacterium *Synechocystis* sp. PCC
- 491 6803 using fast atom bombardment tandem mass spectrometry, Anal. Biochem. 15
 492 (1999) 260–270.
- [11] T. Kotajima, Y. Shiraiwa, I. Suzuki, Functional screening of a novel $\Delta 15$ fatty acid desaturase from the coccolithophorid *Emiliania huxleyi*, Biochim. Biophys. Acta.
- 495 1842 (2014) 1451–1458.
- 496 [12] K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time 497 quantitative PCR and the $2^{-\Delta\Delta CT}$ Method, Methods. 25 (2001) 402–408.
- 498 [13] D.A. Los, M.K Ray, N. Murata, Differences in the control of the temperature-dependent
- 499 expression of four genes for desaturases in *Synechocystis* sp. PCC 6803, Mol. Microbiol.
- 500 25 (1997) 1167–1175.
- [14] N. Murata, H. Wada, Z. Gombos, Modes of fatty-acid desaturation in cyanobacteria.
 Plant Cell Physiol. 33 (1992) 933–941.
- 503 [15] T. Mizoguchi, Y. Tsukatania, J. Harada, S. Takasakia, T. Yoshitomia, H. Tamiakia,
- 504 Cyclopropane-ring formation in the acyl groups of chlorosome glycolipids is crucial for 505 acid resistance of green bacterial antenna systems, Bioorg. Med. Chem. 21 (2013)

506 3689–3694.

- [16] A. Parmar, N.K. Singh, A. Pandey, E. Gnansounou, D. Madamwar, Cyanobacteria and
 microalgae: a positive prospect for biofuels, Bioresour. Technol. 102 (2011)
 10163–10172.
- [17]R.Y. Stanier, R. Kunisawa, M. Mandel, G. Cohen-Bazire, 1971. Purification and
 properties of unicellular blue–green algae (order Chroococcales), Bacteriol. Rev. 35
 (1971) 171–205.
- 513 [18] Y. Tasaka, Z. Gombos, Y. Nishiyama, P. Mohanty, T. Ohba, K. Ohki, N. Murata,
- 514 Targeted mutagenesis of acyl-lipid desaturases in *Synechocystis*: evidence for the 515 important roles of polyunsaturated membrane lipids in growth, respiration and 516 photosynthesis, EMBO J. 15 (1996) 6416–6425.
- 517 [19] F.R. Taylor, J.E. Cronan Jr., Cyclopropane fatty acid synthase of *Escherichia coli*.
- Stabilization, purification, and interaction with phospholipid vesicles, Biochemistry 18
 (1979) 3292–3300.
- 520 [20] N.F. Tsinoremas, A.K. Kutach, C.A. Strayer, S.S. Golden, Efficient gene transfer in
- 521 *Synechococcus* sp. strains PCC 7942 and PCC 6301 by interspecies conjugation and 522 chromosomal recombination, J. Bacteriol. 176 (1994) 6764–6768.
- 523 [21] H. Wada, N. Murata, Synechocystis PCC6803 Mutants Defective in Desaturation of

29

- 524 Fatty Acids, Plant Cell Physiol. 30 (1989) 971–978.
- 525 [22] H. Wada, N. Murata, Temperature-Induced Changes in the Fatty Acid Composition of
- the Cyanobacterium, *Synechocystis* PCC6803, Plant Physiol. 92 (1990) 1062–1069.
- 527 [23] A.Y. Wang, D.W Grogan, J.E. Cronan Jr., Cyclopropane fatty acid synthase of
- 528 *Escherichia coli*: deduced amino acid sequence, purification, and studies of the enzyme
- 529 active site, Biochemistry 31 (1992) 11020–11028.
- 530 [24] J.G.K. Williams, Construction of specific mutations in photosystem II photosynthetic
- 531 reaction center by genetic engineering methods in *Synechocystis* 6803, Meth. Enzymol.
- 532 167 (1988) 766–778.
- 533 [25] C. Yanisch-Perron, J. Vieira, J. Messing, Improved M13 phage cloning vectors and host
 534 strains: nucleotide sequences of the M13mp18 and pUC19 vectors, Gene. 33 (1985)
- 535 103–119.

537 Figure Captions

538	Fig. 1. Growth of wild-type and mutant cells at 34° C and 26° C. Mean \pm S.D. values of three
539	independent experiments. Closed red circle, Wild-type cells; open red circle, cfa^+ cells; closed
540	green circle, $desC2^+$ cells; open green circle, $cfa^+/desC2^+$ cells; closed purple circle,
541	$desA^{-}/desD^{-}$ cells; open purple circle, $desA^{-}/desD^{-}/cfa^{+}$ cells; closed light blue circle,
542	$desA^{-}/desD^{-}/desC2^{+}$ cells; and open light blue circle, $desA^{-}/desD^{-}/cfa^{+}/desC2^{+}$ cells.
543	
544	Fig. 2. O ₂ evolution and absorption of wild-type and mutant cells at 34°C and 26°C. Cells
545	were cultured at 34°C and 26°C for 2 days, and the activities were measured at the same
546	temperature using an O_2 electrode. Mean \pm S.D. values of three independent experiments.
547	Black and white bars show respiratory and photosynthetic activities, respectively.
548	
549	Fig. 3. Relative amounts of fatty acids produced by each desaturase and cyclopropane FA
550	synthetase. Mean \pm S.D. values of three independent experiments, expressed as mol % of total
551	fatty acids. Red and blue bars indicate cells cultivated at 34°C and 26°C, respectively. A, total
552	production of $\Delta 9$ unsaturated C18 FAs by DesC, the sum of C18:1 ^{$\Delta 9$} , C18:2 ^{$\Delta 9,12$} , C18:3 ^{$\Delta 9,12,15$} ,
553	C18:3 ^{$\Delta 6,9,12$} , C18:4 ^{$\Delta 6,9,12,15$} , and C19:1cyclo ^{$\Delta 9$} ; B, total production of $\Delta 12$ unsaturated C18 FAs
554	by DesA, the sum of C18:2 ^{Δ9,12} , C18:3 ^{Δ9,12,15} , C18:3 ^{Δ6,9,12} , and C18:4 ^{Δ6,9,12,15} ; C, total

555	production of $\Delta 6$ unsaturated C18 FAs by DesD, the sum of C18:3 ^{$\Delta 6,9,12$} and C18:4 ^{$\Delta 6,9,12,15$} ; D,
556	total production of $\Delta 15$ unsaturated C18 FAs by DesB, the sum of C18:3 ^{$\Delta 9,12,15$} and
557	C18:4 ^{$\Delta6,9,12,15$} ; E, total production of $\Delta9$ unsaturated C16 FAs by DesC2, the sum of C16:1 ^{$\Delta9$}
558	and C17:1cyclo ^{$\Delta 9$} ; F, total production of cyclopropane FAs by Cfa, the sum of C17:1cyclo ^{$\Delta 9$}
559	and C19:1cyclo ^{$\Delta 9$} ; and G, total production of saturated FAs, the sum of C16:0 and C18:0.
560	

Fig. 4. Putative pathways of the desaturases and cyclopropane FA synthetases. Arrows
indicate unsaturation by DesA, DesB, DesC, DesC2, and DesD and modification by Cfa.
Doublets indicate that a reaction did not occur.

564

Fig. S1. Construction of the plasmids used in this study. Red, blue, and black arrows indicate PCR amplification using the indicated primers, conjugation, and cyclization of the fragment and vector using the In-Fusion HD Cloning Kit (Takara Bio), and ligation after digestion by the indicated restriction enzymes.

569

Fig. S2. Photosynthesis activities of wild-type and mutant cells. A: Cells were cultured at 34°C and 26°C for 2 d, and the activities were measured at the same temperature using an O_2 electrode. Mean \pm S.D. values of three independent experiments. Red, wild-type cells; green,

573 $desC2^+$ cells; purple, $desA^-/desD^-$ cells; and light blue, $desA^-/desD^-/desC2^+$ cells. B: 574 Magnification of ranges from 0 to 100 µmole photons m⁻² s⁻¹ of the graphs in A. Black allows 575 indicate light intensity at 70 µmole photons m⁻² s⁻¹ for cultivation.

576

577 **Table 1**

					Fatty acid	d (mol %)					
-			Wild type				cfa-ov	verexpressing	strain		
]	Exogenous FA	L		Exogenous FA					
FA	-	18:1 ^{Δ9}	$18:2^{\Delta 9,12}$	18:3 ^{Δ9,12,15}	18:3 ^{\Delta6,9,12}	-	18:1 ^{Δ9}	$18:2^{\Delta 9,12}$	18:3 ^{49,12,15}	$18:3^{\Delta 6,9,12}$	
14:0	6.8 ± 0.2	2.8 ± 1.5	5.3 ± 1.3	5.8 ± 0.6	4.8 ± 1.6	5.5 ± 1.2	3.9 ± 1.2	5.2 ± 0.9	6.4 ± 0.5	4.5 ± 1.0	
16:0	44.9 ± 0.5	44.6 ± 1.3	58.7 ± 2.4	49.4 ± 2.0	41.3 ± 2.6	45.0 ± 0.2	35.8 ± 2.2	53.6 ± 3.1	47.8 ± 1.1	40.5 ± 3.2	
16:1 ^{Δ9}	16.8 ± 4.4	3.0 ± 1.4	3.9 ± 0.9	4.7 ± 1.6	11.0 ± 3.6	3.7 ± 0.8	1.8 ± 0.1	2.4 ± 0.9	2.3 ± 1.0	4.5 ± 1.9	
$16:1^{\Delta7}$	-	2.5 ± 1.2	-	-	-	-	3.8 ± 1.1	-	-	-	
$16:2^{\Delta7,10}$	-	-	2.9 ± 1.0	-	-	-	-	2.1 ± 0.1	-	-	
16:3 ^{∆7,10,13}	-	-	-	5.2 ± 0.4	-	-	-	-	4.5 ± 0.7	-	
16:3 ^{\Delta4,7,10}	-	-	-	-	2.6 ± 1.3	-	-	-	-	2.5 ± 1.0	
17:1cyclo ^{$\Delta 9$}	11.1 ± 5.0	2.1 ± 1.3	6.0 ± 3.8	4.9 ± 2.8	6.4 ± 3.9	22.8 ± 2.1	5.4 ± 1.8	9.5 ± 2.1	10.6 ± 2.5	19.3 ± 3.4	
18:0	3.3 ± 0.7	2.5 ± 0.7	2.7 ± 0.4	3.0 ± 0.8	8.8 ± 5.6	6.8 ± 2.0	6.1 ± 2.2	3.9 ± 0.7	4.2 ± 1.5	5.3 ± 1.9	
$18:1^{\Delta 11}$	15.9 ± 1.4	12.3 ± 2.4	5.5 ± 0.1	5.9 ± 0.6	13.1 ± 1.1	5.5 ± 1.8	12.6 ± 5.7	4.2 ± 1.0	3.3 ± 0.6	7.4 ± 2.0	
$18:1^{\Delta 9}$	-	29.4 ± 1.5	-	-	-	-	12.3 ± 3.6	-	-	-	
$18:2^{\Delta9,12}$	-	-	12.9 ± 3.7	-	-	-	-	7.8 ± 1.1	-	-	
18:3 ^{Δ9,12,15}	-	-	-	17.6 ± 0.4	-	-	-	-	12.3 ± 1.2	-	
18:3 ^{\Delta6,9,12}	-	-	-	-	10.9 ± 2.3	-	-	-	-	8.2 ± 0.6	
19:1cyclo ^{$\Delta 11$}	1.2 ± 1.0	0.4 ± 0.1	1.8 ± 1.3	1.7 ± 0.7	1.1 ± 0.9	10.6 ± 1.0	4.0 ± 1.0	5.9 ± 0.8	6.5 ± 0.5	7.7 ± 1.7	
19:1cyclo ^{$\Delta 9$}	-	0.3 ± 0.1	-	-	-	-	14.5 ± 2.9	-	-	-	
$^*19:2^{\Delta 12}$ cyclo ^{$\Delta 9$}	-	-	0.3 ± 0.1	-	-	-	-	5.4 ± 0.7	-	-	
*19:3 $^{\Delta 12,15}$ cyclo $^{\Delta 9}$	-	-	-	1.7 ± 0.7	-	-	-	-	2.2 ± 0.2	-	
*19:3 ^{Δ6,12} cyclo ^{Δ9}	-	-	-	-	-	-	-	-	-	-	

578 Fatty acid composition of total lipids from wild-type and *cfa*-overexpressing *E. coli* strains

579 The cells were grown at 37° C for 18 h. Exogenous fatty acids (1 mM) were added to the culture. Mean \pm S.D. values of three independent

experiments, expressed as mol % of total fatty acids. "-", not detected. "*", estimated from comparison with 19:1cyclo^{$\Delta 9$}.

582 Table 2

34°C	Fatty acid (mol %)									
Strain	16:0	16:1Δ9	17:1cyclo∆9	18:0	18:1Δ9	18:2Δ9,12	18:3∆6,9,12	18:3Δ9,12,15	18:4\Delta6,9,12,15	19:1cyclo∆9
Wild type	55.0 ± 1.6	-	-	0.8 ± 0.1	18.3 ± 0.6	16.6 ± 0.6	9.2 ± 0.8	-	-	-
cfa^+	55.5 ± 0.8	-	-	2.1 ± 0.1	5.1 ± 0.4	10.7 ± 0.7	7.8 ± 0.6	-	-	18.8 ± 0.4
$desC2^+$	31.3 ± 0.8	25.3 ± 0.7	-	2.6 ± 0.4	15.2 ± 0.7	19.3 ± 1.2	6.3 ± 0.8	-	-	-
$cfa^+/desC2^+$	44.9 ± 0.4	2.3 ± 0.1	7.7 ± 0.5	5.6 ± 1.5	1.9 ± 0.1	11.2 ± 0.3	6.2 ± 0.4	-	-	20.2 ± 0.7
desA ⁻ /desD ⁻	49.0 ± 0.4	-	-	1.2 ± 0.2	49.8 ± 0.5	-	-	-	-	-
desA ⁻ /desD ⁻ /cfa ⁺	59.7 ± 0.4	-	-	3.5 ± 0.2	14.6 ± 0.8	-	-	-	-	22.2 ± 0.6
desA ⁻ /desD ⁻ /desC2 ⁺	35.8 ± 0.4	26.2 ± 1.0	-	4.1 ± 1.6	33.9 ± 1.0	-	-	-	-	-
$desA^{-}/desD^{-}/cfa^{+}/desC2^{+}$	54.6 ± 0.6	1.8 ± 0.1	5.2 ± 0.4	6.4 ± 1.8	3.7 ± 0.7	-	-	-	-	28.2 ± 1.9
26°C					Fatt	acid (mol %	o)			
Strain	16:0	16:1Δ9	17:1cyclo∆9	18:0	18:1Δ9	18:2Δ9,12	18:3∆6,9,12	18:3Δ9,12,15	18:4\Delta6,9,12,15	19:1cyclo∆9
Wild type	52.1 ± 0.1	-	-	1.1 ± 0.3	4.8 ± 0.7	13.5 ± 0.6	21.4 ± 1.0	4.5 ± 0.6	2.6 ± 0.3	-
cfa^+	53.9 ± 0.9	-	-	2.1 ± 0.6	4.3 ± 0.9	10.6 ± 0.8	16.9 ± 2.3	3.1 ± 0.6	1.9 ± 0.4	7.2 ± 2.4
$desC2^+$	26.5 ± 0.3	27.5 ± 0.6	-	3.5 ± 0.3	11.4 ± 1.0	16.7 ± 0.9	12.0 ± 0.7	1.5 ± 0.2	0.9 ± 0.1	-
$cfa^+/desC2^+$	42.5 ± 0.4	4.0 ± 0.2	8.2 ± 0.5	4.1 ± 0.4	4.0 ± 0.3	13.1 ± 1.0	12.5 ± 0.6	1.3 ± 0.2	0.9 ± 0.2	9.4 ± 2.0
desA ⁻ /desD ⁻	54.0 ± 0.7	-	-	1.3 ± 0.3	44.7 ± 0.8	-	-	-	-	-
desA ⁻ /desD ⁻ /cfa ⁺	54.7 ± 1.1	-	-	7.2 ± 3.7	18.8 ± 2.5	-	-	-	-	19.3 ± 1.0
desA ⁻ /desD ⁻ /desC2 ⁺	28.7 ± 0.7	25.4 ± 1.2	-	2.9 ± 0.2	43.1 ± 0.3	-	-	-	-	-
desA ⁻ /desD ⁻ /cfa ⁺ /desC2 ⁺	51.5 ± 1.0	3.3 ± 0.5	2.8 ± 0.1	2.7 ± 0.2	16.3 ± 1.8	-	-	-	-	23.4 ± 1.1

583 Fatty acid compositions of total lipids from *Synechocystis* wild-type and transformants

584 The cells were grown at 34°C and 26°C for 3 d. Mean \pm S.D. values of three independent experiments, expressed as mol % of total fatty

acids. "-", not detected.

586 Table S1

587 Primers used in this study

No.	Name	Sequence (5'-3')
1	pTCHT_Cm_remove_InF_F	TTTTTGCTTCATCGCTTAAGGCAGTTATTG
2	pTCHT_Cm_remove_InF_R	ACTGCCTTAAAAAAAGAAGCAAAAAGCCTA
3	cfa_Nde_F	CATATGATGAGTTCATCGTGTATAGA
4	cfa_Bgl_R	AGATCTTTAGCGAGCCACTCGAAGGC
5	Sp_BamHI_F	GGGGATCCATCAATTCCCCTGCTCGCGC
6	Sp_Bgl_R	GGAGATCTTCCCAATTTGTGTAGGGCTT
7	desC2_F	TCAAGTAGGAGATTAATTCA
8	desC2_R	TTAGCCATGAGTTGCACCTT
9	pTHT_cfaup_inf_R	TAATCTCCTACTTGACATATGATCCTTATCG
10	pTHT_cfadn_inf_R	TAATCTCCTACTTGAGGATCTTTAGCGAGCCACTC
11	pTHT_Sprup_inf_F	GCAACTCATGGCTAAATCAATTCCCCTGCTCGCGC
12	desC_qPCR_F	AAATGCCCCAAATAACGAAGG
13	desC_qPCR_R	AAAGCTGATATTCCCCGCTACA
14	desA_qPCR_F	TATCCCCGTTGGGTGGAA
15	desA_qPCR_R	AAGGTGCGCTCGTAAAGAAAAG
16	desD_qPCR_F	GGTTGATGTGGGGGATTGGA
17	desD_qPCR_R	CCTACTGGGTTGTATGGTTTTGG
18	rnpB_RT_F	GTAAGAGCGCACCAGCAGTATC
19	rnpB_RT_R	TCAAGCGGTTCCACCAATC

588

589

590 Table S2

591 Fatty acid composition in each lipid classes from the wild-type and transformants of

		Fatty acid (mol %)							
Strain	Lipid class	16:0	16:1 ^{Δ9}	$17:1$ cyclo ^{$\Delta 9$}	18:0	$18:1^{\Delta9}$	18:2 ^{Δ9,12}	18:3 ^{\Delta6,9,12}	19:1cyclo ^{$\Delta 9$}
Wild type	MGDG	56.6±7.5	-	-	5.9 ± 3.6	18.3 ± 13.2	15.6 ± 4.5	4.1 ± 1.5	-
	DGDG	64.1 ± 14.2	-	-	11.7 ± 10.8	11.2 ± 5.4	7.9 ± 3.6	2.8 ± 1.9	-
	SQDG	74.4 ± 5.2	-	-	1.3 ± 0.1	18.2 ± 5.0	7.1 ± 1.7	Т	-
	PG	80.4 ± 4.6	-	-	4.7 ± 0.9	8.5 ± 3.6	6.4 ± 2.4	Т	-
	total	58.0 ± 3.9	-	-	3.8 ± 2.5	19.3 ± 2.1	13.6 ± 1.7	5.2 ± 0.7	-
cfa ⁺	MGDG	55.2 ± 6.7	-	-	5.1 ± 1.8	1.8 ± 0.1	2.2 ± 2.5	2.4 ± 1.5	34.4 ± 7.9
	DGDG	57.7 ± 7.1	-	-	3.1 ± 0.4	1.3 ± 0.1	2.4 ±2.2	2.1 ± 1.8	33.9 ±10.6
	SQDG	67 ± 4.1	-	-	5.2 ± 0.6	5.1 ± 3.4	6.6 ± 0.3	1.1 ± 0.4	16 ± 5.0
	PG	59.7 ± 4.0	-	-	15.6 ± 1.6	Т	Т	Т	24.6 ± 4.4
	total	59.5 ± 2.1	-	-	2.1 ± 0.4	5.1 ± 0.9	6.7 ± 1.4	3.8 ± 0.8	22.8 ± 6.4
$desC2^+$	MGDG	25.8 ± 0.3	23.1 ± 1.5	-	7.9 ± 2.3	15.1 ± 1.3	18.3 ± 0.6	10.6 ± 1.4	-
	DGDG	30.9 ± 1.1	25.9 ± 0.8	-	6.2 ± 1.9	13.9 ± 1.2	15.0 ± 3.4	5.7 ± 3.1	-
	SQDG	56.6 ± 3.0	14.5 ± 2.3	-	2.7 ± 1.0	20.8 ± 3.2	2.0 ± 0.4	1.7 ± 1.1	-
	PG	53.3 ± 2.3	11.1 ± 1.3	-	13.2 ± 1.1	13.3 ± 3.0	6.5 ± 2.6	1.4 ± 1.2	-
	total	31.2 ± 2.9	23.5 ± 1.0	-	4.5 ± 0.8	15.6 ± 1.3	16.7 ± 2.1	8.1 ± 1.3	-
$cfa^+/desC2^+$	MGDG	38.5 ± 3.0	1.7 ± 0.8	16.4 ± 1.3	2.8 ± 0.3	1.9 ±0.2	8.6 ± 1.5	4.1 ± 1.3	24.9 ± 2.7
	DGDG	45.0 ± 1.2	1.1 ± 0.6	11.8 ± 0.9	3.8 ± 0.3	1.6 ± 0.5	11.1 ± 0.7	Т	25.7 ± 2.0
	SQDG	72.9 ± 2.0	Т	4.6 ± 1.9	4.6 ± 0.5	2.8 ± 0.8	6.5 ± 1.4	Т	8.6 ± 4.4
	PG	43.4 ± 4.5	10.7 ± 5.4	3.3 ± 1.3	15.8 ± 12.2	2.8 ± 1.0	Т	Т	23.9 ± 1.0
	total	44.5 ± 2.3	2.3 ± 1.9	7.7 ± 0.4	5.6 ± 1.5	1.9 ± 0.8	11.1 ± 1.0	6.2 ± 2.2	20.1 ± 2.8
desA ⁻ /desD ⁻	MGDG	46.3 ± 5.1	-	-	4.4 ± 1.4	49.3 ± 5.4	-	-	-
	DGDG	44.0 ± 2.5	-	-	5.7 ± 1.6	50.7 ± 3.1	-	-	-
	SQDG	82.4 ± 5.0	-	-	2.4 ± 0.8	15.4 ± 5.8	-	-	-
	PG	54.8 ± 2.9	-	-	20.8 ± 5.3	24.3 ± 2.5	-	-	-
	total	48.3 ± 2.1	-	-	1.9 ± 1.2	49.2 ± 2.6	-	-	-
desA ⁻ /desD ⁻	MGDG	51.9 ± 2.0	-	-	5.2 ± 0.8	11.8 ± 5.0	-	-	29.9 ± 7.6
/cfa ⁺	DGDG	57.2 ± 4.9	-	-	4.4 ± 0.8	4.9 ± 2.5	-	-	31.1 ± 6.8

592 Synechocystis

	SQDG	68.9 ± 4.7	-	-	6.2 ± 3.2	15.1 ± 3.1	-	-	10.9 ± 3.2
	PG	53.6 ± 4.8	-	-	19.2 ± 7.4	Т	-	-	27.9 ± 6.6
_	total	53.7 ± 2.9	-	-	4.5 ± 1.1	13.6 ± 1.9	-	-	28.2 ± 2.8
desA ⁻ /desD ⁻	MGDG	22.4 ± 8.2	29.2 ± 3.8	-	7.3 ± 3.3	38.4 ± 7.3	-	-	-
$/desC2^+$	DGDG	21.1 ± 0.2	32.3 ± 1.4	-	6.9 ± 3.5	36.9 ± 2.2	-	-	-
	SQDG	79.8 ± 2.8	6.2 ± 0.1	-	3.7 ± 1.7	9.7 ± 1.4	-	-	-
	PG	71.5 ± 4.2	11.1 ± 0.6	-	9.2 ± 4.7	10.1 ± 0.9	-	-	-
	total	31.1 ± 3.9	25.5 ± 1.2	-	4.7 ± 1.7	32.4 ± 1.8	-	-	-
desA ⁻ /desD ⁻	MGDG	49.4 ± 1.1	1.6 ± 1.0	7.9 ± 1.5	2.8 ± 1.0	3.9 ± 0.1	-	-	34.2 ± 0.7
$/cfa^+/desC2^+$	DGDG	47.8 ± 1.4	Т	6.9 ± 1.1	4.1 ± 0.9	5.1 ± 0.7	-	-	36.1 ± 0.8
	SQDG	78.5 ± 1.6	Т	2.1 ± 0.3	5.1 ± 1.0	3.1 ± 1.6	-	-	14.8 ± 2.7
	PG	40.9 ± 4.5	6.7 ± 2.6	1.7 ± 0.1	6.2 ± 1.2	6.7 ± 2.4	-	-	40.7 ± 2.2
	total	51.0 ± 1.8	2.9 ± 1.1	5.7 ± 0.8	4.4 ± 0.7	3.7 ± 0.6	-	-	31.9 ± 1.1

593 The cells were grown at 34°C for 3 d. Mean \pm S.D. values of three independent experiments,

594 expressed as mol % of total fatty acids. "-", not detected and "T", trace amount.

595

596 **Table S3**

34°C		Percentage of total fatty acids (mol %)						
Strain	DesC	DesA	DesD	DesB	DesC2	Cfa	saturated	
Wild type	44.2 ± 1.5	25.9 ± 1.4	9.2 ± 0.8	-	-	-	55.8 ± 1.5	
cfa^+	42.4 ± 0.8	18.5 ± 1.1	7.8 ± 0.6	-	-	18.8 ± 0.4	57.6 ± 0.8	
$desC2^+$	40.8 ± 1.8	25.6 ± 2.3	6.3 ± 1.0	-	25.3 ± 0.8	-	33.8 ± 1.3	
$cfa^+/desC2^+$	39.5 ± 1.3	17.5 ± 0.8	6.2 ± 0.4	-	10.0 ± 0.6	27.9 ± 1.2	50.5 ± 1.6	
desA ⁻ /desD ⁻	49.8 ± 0.5	-	-	-	-	-	50.2 ± 0.5	
desA ⁻ /desD ⁻ /cfa ⁺	36.8 ± 0.2	-	-	-	-	22.2 ± 0.6	63.2 ± 0.2	
desA ⁻ /desD ⁻ /desC2 ⁺	33.9 ± 1.2	-	-	-	26.2 ± 1.1	-	39.9 ± 2.2	
desA ⁻ /desD ⁻ /cfa ⁺ /desC2 ⁺	31.9 ± 2.7	-	-	-	7.1 ± 0.5	33.5 ± 2.3	61 ± 2.6	

597 Relative amounts of fatty acids produced by each desaturase and cyclopropane	FA synthe	etase
--	-----------	-------

26°C Percentage of total fatty acids (mol %)							
Strain	DesC	DesA	DesD	DesB	DesC2	Cfa	saturated
Wild type	46.8 ± 0.2	42.0 ± 0.8	23.9 ± 0.8	7.1 ± 0.8	-	-	53.2 ± 0.2
cfa ⁺	44.0 ± 1.5	32.5 ± 3.1	18.8 ± 2.5	5.1 ± 1.0	-	7.2 ± 2.4	56.0 ± 1.5
$desC2^+$	42.5 ± 0.9	31.1 ± 0.7	13.0 ± 0.7	2.3 ± 0.3	27.5 ± 0.7	-	30.0 ± 0.5
$cfa^+/desC2^+$	41.3 ± 1.5	27.8 ± 1.3	13.4 ± 0.5	2.2 ± 0.4	12.2 ± 0.8	17.6 ± 1.9	46.5 ± 0.9
desA ⁻ /desD ⁻	44.7 ± 0.8	-	-	-	-	-	55.3 ± 0.8
desA ⁻ /desD ⁻ /cfa ⁺	38.1 ± 2.6	-	-	-	-	19.3 ± 1.0	61.9 ± 2.6
desA ⁻ /desD ⁻ /desC2 ⁺	43.1 ± 0.4	-	-	-	25.4 ± 1.4	-	31.6 ± 1.0
desA ⁻ /desD ⁻ /cfa ⁺ /desC2 ⁺	39.7 ± 1.1	-	-	-	6.1 ± 0.5	26.2 ± 1.3	54.2 ± 1.4

598 The cells were grown at 34°C and 26°C for 3 d. Mean \pm S.D. values of three independent

599 experiments, expressed as mol % of total fatty acids. "-", not detected.

600

601 Table S4

602 Relative quantitation of *Synechocystis* wild-type and transformants

A

Strain	$C_{T \text{ target}}$	$C_{T \; rnpB}$	ΔC_{T}	$\Delta\Delta C_{T}$	Relative amount
Wild type	20.26 ± 2.28	19.18 ± 1.47	1.09 ± 0.85	0	1.00
cfa+	20.27 ± 1.99	19.41 ± 1.19	0.86 ± 0.81	$\textbf{-}0.22\pm0.23$	1.18 ± 0.15
desC2+	20.01 ± 2.42	19.27 ± 1.48	0.74 ± 1.00	$\textbf{-0.35} \pm 0.16$	1.28 ± 0.12
cfa+/desC2+	20.33 ± 2.50	19.56 ± 1.57	0.77 ± 1.36	$\textbf{-}0.31\pm0.60$	1.32 ± 0.44

604 B

Strain	C _{T target}	$C_{T \; rnpB}$	ΔC_{T}	$\Delta\Delta C_{\rm T}$	Relative amount
Wild type	21.37 ± 1.78	19.18 ± 1.47	2.20 ± 0.74	0	1.00
cfa+	21.32 ± 1.73	19.41 ± 1.19	1.92 ± 0.68	$\textbf{-}0.28\pm0.45$	1.25 ± 0.34
desC2+	21.14 ± 1.59	19.27 ± 1.48	1.86 ± 0.72	$\textbf{-}0.33\pm0.13$	1.26 ± 0.09
cfa+/desC2+	21.20 ± 1.79	19.56 ± 1.57	1.64 ± 0.35	-0.55 ± 0.57	1.54 ± 0.44

605

С

Strain	C _{T target}	$C_{T \; \text{rnpB}}$	ΔC_{T}	$\Delta\Delta C_{T}$	Relative amount
Wild type	22.27 ± 2.18	19.18 ± 1.47	3.10 ± 0.71	0	1.00
cfa+	22.24 ± 2.51	19.41 ± 1.19	2.84 ± 1.32	-0.26 ± 61	1.27 ± 0.43
desC2+	22.19 ± 2.28	19.27 ± 1.48	2.92 ± 0.81	$\textbf{-}0.18\pm0.17$	1.14 ± 0.11
cfa+/desC2+	22.61 ± 2.47	19.56 ± 1.57	3.05 ± 0.98	-0.05 ± 0.31	1.05 ± 0.17

606 The cells were grown at 26°C for 1 d. Mean \pm S.D. values of three independent experiments.

A, B, and C show treatment of data when the desC, desA, and desD genes were targeted,

608 respectively. C_{T target} and C_{T mpB} mean the C_T values of the target gene and the *mpB* gene,

609 respectively. $\Delta C_T = C_T \text{ target-} C_T \text{ rnpB}$. $\Delta \Delta C_T = \Delta C_T - \Delta C_T \text{ wild type}$. Relative amounts were

610 calculated from $2^{-\Delta\Delta CT}$ [12].

Fig. 1

Fig. 3

Fig. 4

Fig. S1

Fig. S2

