Syntheses and bioactivities of oxygenated lipid derivatives

SEIJI OGAWA

February 2016

Syntheses and bioactivities of oxygenated lipid derivatives

SEIJI OGAWA
Doctoral Program in Chemistry

Submitted to the Graduate School of
Pure and Applied Sciences
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy in
Science
at the

University of Tsukuba

Contents

Chapter 1 General Introduction
Chapter 2-1 Discovery of G protein-biased EP2 receptor agonists
Chapter 2-2 Structural optimization and structure-functional selectivity relationship studies of G protein-biased EP2 receptor agonists
Chapter 3 Total Synthesis and Bioactivity of Resolvin E2
Chapter 4 Enantioselective Synthesis of Haterumalide NA Methyl Ester and Revised Structure of Haterumalide NA
Chapter 5 Summary

List of publications included in this thesis

List of publications not included in this thesis

Chapter 1

General Introduction

Lipids exert a wide variety of biological functions, like storing energy and signaling. Since the membrane of cell, which is the basic unit of all organs, is consisted of lipid bilayer, the importance of lipids admits of no doubt. Recently, the gene arrangement of a large variety of organism have been revealed, and advancement of technology of proteomics ${ }^{1,2}$ enables us to understand the functions, structures and interactions of proteins. On the other hand, lipids still remain largely unknown, therefore they receive a lot of attention and many studies are performed to investigate their functions and biological roles. The difficulties of studying lipids would come from their low solubility to water and low stability of their natural ligands to light and oxygen. Therefore the establishment of new synthetic method that is efficient and flexible to synthesize natural ligands and their analogues, and development of stable ligands are necessary to promote lipids research and understand the biological and pharmacological roles of lipids.

Prostaglandins are one of the most well-known lipid mediators. A fair amount of researches have been already reported relating to prostaglandins, one of the most important research was performed by Corey et al. in 1969^{3}. They established efficient, diverse and economical synthetic method of prostaglandins and his works made an enormous step forward of prostaglandin research. Actually, $\mathrm{PGF}_{2 \alpha}, \mathrm{PGE}_{2}$ and PGE_{1} were on the market in 1974 as labor induction agents or drugs for improvement of blood circulation. Moreover, his synthetic strategy is still widely applied in prostaglandin research.

Therefore the author aimed to develop new synthetic methods of lipid mediators and discover useful tool compounds for further development of lipid research. In this thesis, the author will report discovery of G protein-biased and highly subtype selective novel EP2 receptor agonists and the first total syntheses of resolvin E2 and haterumalide NA methyl ester.

1) Discovery of G protein-biased EP2 agonists.

Prostaglandin E_{2} is an oxygenated metabolite of arachidonic acid, which is a polyunsaturated $\omega-6$ fatty acid, and exerts a wide variety of biological actions through four receptor subtypes, EP1-EP4, in various tissues. EPs are a family of prostanoid recepters of progtaglandin E type and belong to G protein-coupled recepter (GPCR) which are also known as seven taransmembrane receptors and control the biological action through G protein-mediated signaling. EP1-4 receptors have been already cloned and subtype selective ligands (agonists or anatgonists) of EPs have been developed and used to evaluate a biological role of each receptors. EP2 receptor has been characterized by a relaxation of blood vessels. ${ }^{4}$ Furthermore, EP2 receptor plays important roles in production of cytokines and bone metabolisms by the production of cyclic adenosine monophosphate (cAMP). ${ }^{5,6}$ A number of EP2 agonists have been previously reported. PGE_{2} analogue, butaprost $(\mathbf{1})^{7}$ is well-known as a selective EP2 agonist and widely utilized as a chemical tool compound in many studies for investigation of pharmacological activities mediated by EP2 receptor. In the previous studies, ONO Pharmaceutical developed a highly selective and chemically stable EP2 agonist as $\mathbf{2}^{8}$, which is also a good tool compound for EP2 receptor. A number of non-prostanoid scaffolds of EP2 agonists were also reported to show potent EP2 agonist activities (i.e. PF-4217329 (3) ${ }^{9}$ and $\mathbf{4}^{10}$) (Figure 1-1).

2

4; Asterand's EP2 agonist

Figure 1-1. Reported EP2 agonists

Up to the present time, however, there is no EP2 agonist that is approved for clinical use. Although the true reasons of suspension of clinical trials of EP2 agonists were not clear, the author assume that variety biological actions induced by EP2 agonists cause crucial side effects for crinical use. Therefore, the author focused on the biased ligand of GPCRs to develop the next generation EP2 agonists.

Recently, biased ligands receive a fair amount of attention in drug discovery, ${ }^{11}$ because they have a potential to remove on-target adverse effect and also enhance efficacy. In addition to G protein signaling, GPCRs can also activate other distinct signaling pathways, like β arrestin-mediated signaling. GPCR biased ligands are compounds that selectively engage some signals withour activation of other signals mediated by the same receptor.

A number of studies were performed to understand biological roles of G protein- and β arrestin-mediated signalings of EP2 receptor. In the brain, EP2 receptor modulates beneficial neuroprotective effects in acute models of excitoxicity though G protein-mediated cAMP-PKA signaling. ${ }^{12-15}$ On the other hand, the activation of β arrestin-mediated signaling of EP2 receptor led to deleterious effects, like tumorigenesis and angiogenesis. ${ }^{16-18}$ Therefore, the author supposed that G protein-biased ligands of EP2 receptor have a potential to be a new generation of EP2 agonists that particularly increase the efficacy and avoid deleterious effect of EP2 receptor.

To identify G protein-biased and highly subtype-selective EP2 agonists, a series of bicyclic prostaglandin analogues were designed and synthesized. Structural hybridization of EP2/4 dual agonist 5 and prostacyclin analog 6 , followed by simplification of ω chain led the author to find novel EP2 agonists with a unique prostacyclin-like scaffold. Further optimization of ω chain was performed to improve EP2 agonist activity and subtype selectivity. Phenoxy derivative 7 showed potent agonist activity and excellent subtype selectivity, furthermore a series of compounds were identified as G protein-biased EP2 receptor agonists. The discovery of novel G protein-biased EP2 agonists as well as structure functional selectivity relationship will be discussed in Chapter 2-1.

Figure 1-2. Discovery of G protein-biased ligand 7

Further optimization of novel G protein-biased EP2 agonist 7 was undertaken to improve G protein activity and investigate structure functional selectivity relationship (SFSR). Optimization of substituents on the phenyl group, followed by modification of $11-\mathrm{OH}$ led the author find $\mathbf{8}$ with 100 -fold increase in G protein signaling without increase of β arrestin activity relative to 7. Furthermore, SFSR studies revealed that the combination of meta and para substituents on the phenyl moiety was crucial to regulate its functional selectivity. The synthesis of a series of these derivatives and detail structure-activity relationship and structure functional selectivity relationship will be also discussed in Chapter 2-2.

Figure 1-3. Optimization of G protein-biased ligands

2) Total synthesis and bioactivity of Resolvin E2

Prostaglandins derived from arachidonic acid (AA), $\omega-6$ polyunsaturated fatty acids, are well-known as inflammatory mediators. On the other hand, resolvins are new family of lipid mediators derived from ω - 3 polyunsaturated fatty acids, like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and they are generated during the resolution phase of acute inflammation. ${ }^{19}$ A number of resolvins have been identified and they exert a wide variety of biological actions in various tissues. Resolvin E1 is biosynthesized from EPA via cyclooxygenase (COX)-2- and 5-lipoxygenase-mediated conversion and has been shown to possess significant anti-inflammatory and proresolution properties, thereby protecting organs from collateral damage. ${ }^{20}$ Another E series resolvin, namely, resolvin E2 (1), is formed via reduction of $5 S$-hydroperoxy-18R-hydroxyEPE, an intermediate in the biosynthesis of resolvin E1, and exhibits potent anti-inflammatory properties in murine peritonitis. ${ }^{21}$ It has been hypothesized that these E series resolvins contribute to the beneficial actions
that have been attributed to EPA in certain human diseases, particularly those in which inflammation is suspected as a key component in pathogenesis. Motivated by their therapeutic potential for new treatment of human disorders associated with aberrant inflammation, the author launched the synthetic studies of resolvins as well as other lipid mediators. In Chapter3, the author will report an efficient total synthesis of resolvin E2 by taking advantage of its intrinsic pseudoenantiomeric substructures and using a torquoselective thermal electrocyclic ring-opening reaction of cyclobutene aldehydes $\mathbf{4}$ and $\mathbf{5}$ for constructing the E, Z-olefins at C6 of $\mathbf{2}$ and C17 of $\mathbf{3}$ (Figure 1-4). The biological activities of synthetic resolving E2 will be also shown in this Chapter.

Figure 1-4. Synthetic strategy of resolvin E2

3) Enantioselective Synthesis of Haterumalide NA Methyl Ester and Revised Structure of Haterumalide

 NA.A number of bioactive natural products isolated from marine organisms have received a fair amount of attentions for drug discovery because of their potent and unique biological activities. Recently, exploratory research using halichondrin B^{22}, which was isolated from Halichondrail okadai, as a lead compound was
performed to discovery a new anti-cancer drug by Kishi et al. and Eisai Co. Precise SAR studies of halichondrin B led to discovery of Halaven, which is used as anti-cancer agent in clinical from 2010. ${ }^{23-25}$

Halichondrin B

Halaven

Figure 1-5. Structure of halichondrin B and halaven

The author focused on haterumalide NA^{26} which was isolated from the Okinawan sponge Ircinia sp. Haterumalide NA has a 14-membered macrolide moiety (long fatty acid derivative) and exerts moderate cytotoxicity to mouse P388 leukemia cell and acute toxicity to ddY mouse. The structurally-related haterumalide B^{27} and oocydin A^{28} were isolated from an Okinawan ascidian and a South American epiphyte, respectively, and their stereostructures have not been fully established.

Haterumalide NA

Oocydin A

Figure 1-6. Structure of haterumalide NA and oocydin A

The author launched the synthetic study of haterumalide NA to identify the absolute stereochemistry and supply samples to perform further biological studies. The enantioselective synthesis of haterumalide NA methyl ester by using the stereoselective construction of a chloroolefin unit and the intramolecular Reformatsky-type reaction will be discussed in Chapter 4.

References and notes

1 Anderson, N. L.; Anderson, N. G. Electrophoresis 1998, 19, 1853.

2 Blackstock, W. P.; Weir, M. P. Trends Biotechnol. 1999, 17, 121.
3 Corey, E. J.; Weinshenker, N. M.; Schaaf, T. K.; Huber, W. J. Am. Chem. Soc. 1969, 91, 5675.
4 Coleman, R. A.; Kennedy, I.; Humphrey, P. P. A.; Bunce, K.; Lumley, P. In Comprehensive Medicinal Chemistry; Emmett, J. C., Ed.; Pergamon: Oxford, 1990; Vol. 3, pp 643.

5 Yoshida, K.; Oida, H.; Kobayashi, T.; Maruyama, T.; Tanaka, M.; Katayama, T.; Yamaguchi, K.; Segi, E.; Tsuboyama, T.; Matsushita, M.; Ito, K.; Ito, Y.; Sugimoto, Y.; Ushikubi, F.; Ohuchida, S.; Kondo, K.; Nakamura, T.; Narumiya, S. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4580.

6 Katsuyama, M.; Ikegami, R.; Karahashi, H.; Amano, F.; Sugimoto, Y.; Ichikawa, A. Biochem. Biophys. Res. Commun. 1998, 251, 727.

7 Gardiner, P. J. Br. J. Pharmacol. 1986, 87, 45.
8 Tani, K.; Naganawa, A.; Ishida, A.; Egashira, H.; Sagawa, K.; Harada, H.; Ogawa, M.; Maruyama, T.; Ohuchida, S.;, Nakai, H.; Kondo, K.; Toda, M. Bioorg. Med. Chem. Lett. 2001, 11, 2025.

9 Prasanna,G.; Bosworth, C. F.; Lafontaine, J. A. Int. Pat. Appl. WO2008015517, 2008.
10 Coleman, R.; Middlemiss, D. Int. Pat. Appl. WO2009098458, 2009.

11 Craig, C. C.; Brian, A. M. J. Med. Chem. 2014, 57, 6887
12 Jiang, J.; Dingledine, R. Trends Pharmacol. Sci. 2013, 34, 413.

13 McCullough, L.; Wu, L.; Haughey, N.; Liang, X.; Hand, T.; Wang, Q.; Breyer, R. M.; Andreasson, K. J. Neurosci. 2004, 24, 257.

14 Bilak, M.; Wu, L.; Wang, Q.; Haughey, N.; Conant, K.; St Hillaire, C.; Andreasson, K. Ann. Neurol. 2004, 56, 240.

15 Carrasco, E.; Werner, P.; Casper, D. Neurosci. Lett. 2008, 441, 44.
16 Chun, K. S.; Lao, H. C.; Trempus, C. S.; Okada, M.; Langenbach, R. Carcinogenesis 2009, 30, 1620.
17 Chun, K. S.; Lao, H. C.; Langenbach, R. J Biol. Chem. 2010, 285, 39672.
18 Yun, S. P.; Ryu, J. M.; Jang, M. W.; Han, H. J. J Cell Physiol. 2011, 226, 559.

19 (a) Serhan, C. N.; Chiang, N.; Van Dyke, T. E. Nat. ReV. Immunol. 2008, 8, 349-361. (b) Serhan, C. N.; Chiang, N. Br. J. Pharmacol. 2008, 153, S200.

20 (a) Arita, M.; Bianchini, F.; Aliberti, J.; Sher, A.; Chiang, N.; Hong, S.; Yang, R.; Petasis, N. A.; Serhan, C. N. J. Exp. Med. 2005, 201, 713. (b) Schwab, J. M.; Chiang, N.; Arita, M.; Serhan, C. N. Nature 2007, 447, 869.

21 Tjonahan, E.; Oh, S. F.; Siegelman, J.; Elangovan, S.; Percarpio, K. B.; Hong, S.; Arita, M.; Serhan, C. N. Chem. Biol. 2006, 13, 1193.

22 Hirata, Y.; Uemura, D. Pure Appl. Chem. 1986, 58, 701.

23 Towle, M. J.; Salvato, K. A.; Budrow, J.; Wels, B. F.; Kuznetsov, G.; Aalfs, K. K.; Welsh, S.; Zheng, W.; Seletsk, B. M.; Palme, M. H.; Habgood, G. J.; Singer, L. A.; Dipietro, L. V.; Wang, Y.; Chen, J. J.; Quincy, D. A.; Davis, A.; Yoshimatsu, K.; Kishi, Y.; Yu, M. J.; Littlefield, B. A. Cancer Res.2001, 61, 1013.

24 Yu, M.J.; Kishi, Y.; Littlefield, B.A. In Anticancer agents from natural products. Kingston, G. I., Cragg, G. M., Newman, D. J. Eds, Washington, DC: Taylor \& Francis. ISBN 0-8493-1863-7.

25 Zheng, W.; Seletsky, B.M.; Palme, M. H.; Lydon, P. J.; Singer, L. A.; Chase, C.E.; Lemelin, C. A.; Shen, Y.; Davis, H.; Tremblay, L.; Towle, M. J.; Salvato, K. A.; Wels, B. F.; Aalfs, K. K.; Kishi, Y.; Littlefield, B. A.; Yu, M. J. Bioorg. Med. Chem. Lett. 2004 14, 5551.

26 Takada, N.; Sato, H.; Suenaga, K.; Arimoto, H.; Yamada, K.; Ueda, K.; Uemura, D. Tetrahedron Lett. 1999, 40, 6309.

27 Ueda, K.; Hu, Y. Tetrahedron Lett. 1999, 40, 6305.

28 Strobel, G.; Li, J.-Y.; Sugawara, F.; Koshino, H.; Harper, J.; Hess, W. M. Microbiology 1999, 145, 3557.

Chapter 2-1

Discovery of G protein-biased EP2 receptor agonists

Abstract

:

To identify G protein-biased and highly subtype-selective EP2 receptor agonists, a series of bicyclic prostaglandin analogues were designed and synthesized. Structural hybridization of EP2/4 dual agonist 5 and prostacyclin analog 6 , followed by simplification of the ω chain enabled the author to discover novel EP2 agonists with a unique prostacyclin-like scaffold. Further optimization of the ω chain was performed to improve EP2 agonist activity and subtype selectivity. Phenoxy derivative 27a showed potent agonist activity and excellent subtype selectivity. Furthermore, a series of compounds were identified as G protein-biased EP2 receptor agonists. These are the first examples of biased ligands of prostanoid receptors.

Figure 2-1-1. Outline of Chapter2-1

Introduction

Prostaglandin $\mathrm{E}_{2}\left(\mathrm{PGE}_{2}\right)$ is an oxygenated metabolite of arachidonic acid that exerts a wide variety of biological actions through four receptor subtypes, EP1-EP4, in various tissues, which are G protein-coupled recepter (GPCR), in which their ligands induce signaling through G protein activation. The EP2 receptor has been characterized by relaxation of blood vessels. ${ }^{1}$ Furthermore, EP2 receptor plays important roles in cytokine production and bone metabolism. ${ }^{2,3}$ It has also been reported that activation of EP2 receptor led to neuroprotective effects in ischemic stroke models. ${ }^{4-8}$ EP2 receptor receives a lot of attention as a therapeutic target for various diseases.

4; Asterand's EP2 agonist

Figure 2-1-2. Reported EP2 agonists

A number of EP2 agonists have previously been reported. ${ }^{9-15}$ The PGE_{2} analogue, butaprost (1), is well known as a selective EP2 agonist, and is widely used as a chemical tool compound in many studies on pharmacological activities mediated by EP2 receptor. In previous studies, ONO Pharmaceutical developed the highly selective and chemically stable EP2 agonist, $\mathbf{2},{ }^{10}$ which is a good tool compound for EP2 receptor. A number of non-prostanoid scaffolds of EP2 agonists have also been reported to show a potent EP2 agonist
activity (for example, PF-4217329 (3) ${ }^{13}$ and $\mathbf{4}^{15}$). In recent studies by Pfizer, PF-4217329 (3), an isopropyl ester, showed remarkable intraocular pressure-lowering effects in primary open-angle glaucoma and ocular hypertension. ${ }^{16}$ To date, however, there is no EP2 agonist that is approved for clinical use. Although the true reasons for the suspension of clinical trials of EP2 agonists are not clear, the author assumes that a variety of biological actions induced by EP2 agonists caused crucial side effects for clinical use.

Recently, biased ligands have received a fair amount of attention in drug discovery, ${ }^{17-22}$ because they have the potential to suppress on-target adverse effects and enhance efficacy. In addition to G protein signaling, G protein-coupled receptors (GPCRs) can activate other distinct signaling pathways, like β arrestin-mediated signaling. GPCR-biased ligands are compounds that selectively engage some signals without activation of other signals mediated by the same receptor. A number of studies have been performed to investigate the biological roles of G protein- and β arrestin-mediated EP2 receptor signaling. In the brain, EP2 receptor modulates beneficial neuroprotective effects in acute models of excitotoxicity through G protein-mediated cAMP-PKA signaling. ${ }^{4,5,23,24}$ Conversely, activation of β arrestin-mediated EP2 receptor signaling led to deleterious effects, like tumorigenesis and angiogenesis. ${ }^{25-27}$ Therefore, the author hypothesized that G protein-biased ligands of EP2 receptor have the potential to be next generation EP2 agonists that will overcome the clinical problems of previously reported EP2 agonists. To the best of the author's knowledge, there is no report of biased ligands of prostanoid receptors. Moreover, the author performed screening of in-house EP2 agonists and failed to identify G protein-biased agonists. As the compounds the author evaluated have a similar structure to PGE_{2}, the author aimed to discover G protein-biased EP2 agonists by design and investigation of a new scaffold. In this report, the author describes the discovery of novel, highly selective EP2 agonists with a unique bicyclic scaffold, which were identified as G protein-biased EP2 agonists. The functional selectivity and signaling bias of the compounds are also discussed.

Results and discussion

Identification of initial lead compound

First, to identify novel subtype-selective EP2 agonists with a new scaffold, the author focused on EP2/EP4 dual agonist 5. In ONO's previous study ${ }^{28}$, the thiazole group of $\mathbf{5}$ was one of the key substructures to increase EP2 agonist activity. Introduction of a thiazole group into various reported scaffolds seemed to contribute to the development of novel and potent EP2 agonists. Chemically stable prostacyclin analogue $\mathbf{6},{ }^{29}$ which has been reported by the Upjohn group in the 1970s, showed very weak EP2 agonist activity $\left(\mathrm{EC}_{50}=\right.$ $8900 \mathrm{nM})$. The author designed and synthesized compound 7 with a bicyclic scaffold by hybridization of 6 and the thiazole moiety of 5 (Figure 2-1-3). The resulting 7 exhibited remarkably potent EP2 agonist activity as the author expected, however, it also showed potent agonist activity toward the other receptor subtypes, especially EP1 and EP3 (Table 2-1-1). To increase the subtype selectivity, the author next focused on the ω chain of 7.

Because all the natural prostanoids (for example, $\mathrm{PGE}_{2}, \mathrm{PGI}_{2}$, and $\mathrm{PGF}_{2 \alpha}$) have a hydroxyl group at a particular position in the ω chain, which is supposed to be a crucial moiety for exerting agonist activity toward PG receptors. However, a number of non-prostanoid scaffolds of EP2 agonists without a hydroxyl group have been reported to show potent EP2 agonist activity (for example, $\mathbf{3}^{13}$ and $\mathbf{4}^{15}$). The author hypothesized that the removal of the 15 -hydroxyl group from compound 7 would be effective for decreasing the agonist activity toward all of the receptor subtypes except for EP2. As expected, the dehydroxylated derivative $\mathbf{8}$ dramatically improved the subtype selectivity without any loss of EP2 agonist activity. As a result of the preliminary modification, compound $\mathbf{8}$ was identified as an initial lead compound that is a highly selective EP2 agonist.

Figure 2-1-3. Design of novel EP2 agonists with unique bicyclic scaffold

cmpd		$\mathrm{EC}_{50}(\mathrm{nM})^{\mathrm{a}}$					
	hEP1	hEP2	hEP3	hEP4	hFP	hIP	
$\mathbf{5}$	N.T.	5.6	3000	0.5	N.T.	N.T.	
$\mathbf{6}$	N.T.	8900	N.T.	4600	N.T.	47	
$\mathbf{7}$	1.4	7.9	0.8	33	32	11	
$\mathbf{8}$	160	3.9	260	1900	380	2500	

${ }^{\text {a }}$ Assay protocols are provided in the Supporting Information. EC_{50} values represent the mean of at two experiments.

Table 2-1-1. Subtype selectivity of initial lead compounds

Syntheses of bicyclic derivatives

All test compounds in Tables 2-1-1, 2 and 3 were synthesized as outlined in Schemes 2-1-1, 2 amd 3.

Synthesis of common intermediate 14 is outlined in Scheme 2-1-1. The protected Corey lactone 9 was reduced to a lactol by DIBAL, Wittig olefination of which afforded the vinyl ether $\mathbf{1 0}$. The vinyl ether $\mathbf{1 0}$ was transformed to lactol $\mathbf{1 1}$ under acidic hydrolysis conditions. The lactol $\mathbf{1 1}$ was treated with acetic anhydride, and the resulting diacetate was transformed to $\mathbf{1 2}$ by introducing a cyano group in the presence of Lewis acid catalyst as a diastereomeric mixture $(\beta / \alpha$ ratio $=5 / 1)$. Thioamidation, condensation with bromopyruvate and cyclization by treatment with TFAA generated thiazole 13. Deprotection of the silyl group with TBAF afforded the common intermediate $\mathbf{1 4}$.

Reagents and conditions: (a) DIBAL, toluene, $-78^{\circ} \mathrm{C}$, (b) (methoxymethyl)(triphenyl)phosphonium chloride, $\mathrm{KO} t \mathrm{Bu}, \mathrm{THF},-78^{\circ} \mathrm{C}, 86 \%$ (2 steps), (c) $\mathrm{AcOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, 55^{\circ} \mathrm{C}, 63 \%$, (d) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, \mathrm{rt}$, (e) $\mathrm{TMSCN}, \mathrm{SnCl}_{4}$, MeCN , (f) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}, \mathrm{Py}, 10^{\circ} \mathrm{C}, 55 \%$ (3 steps), (g) ethyl bromopyruvate, $\mathrm{KHCO}_{3}, \mathrm{DME},-25^{\circ} \mathrm{C}$, (h) TFAA, Py, $-25^{\circ} \mathrm{C}, 97 \%$ (2 steps), (i) TBAF, AcOH, THF, rt, 84%.

Scheme 2-1-1. Synthesis of common intermediate 14

Julia-Kocienski reagent $\mathbf{1 7}$ was synthesized as outlined in Scheme 2-1-2. Commercially available halide 15 was treated with potassium carbonate and 1-phenyl-1H-tetrazole-5-thiol, and oxidation of the resulting sulfide

16 afforded compound 17 . Compounds 18 and 19 were synthesized in a similar manner using the corresponding halides.

Reagents and conditions: (a) 1-phenyl-1H-tetrazole-5-thiol, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $60^{\circ} \mathrm{C}, 94 \%$, (b) $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ aq., $\mathrm{Na}_{2} \mathrm{WO}_{4} 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{PhPO}(\mathrm{OH})_{2},\left(\mathrm{C}_{8} \mathrm{H}_{17}\right)_{3} \mathrm{NMe} \mathrm{HCl}, \mathrm{rt}, 71 \%$

Scheme 2-1-2. Synthesis of Julia-Kocienski reagents 17-19

Syntheses of compounds 8, 21a and 21b are outlined in Scheme 2-1-3A. Oxidation of the common intermediate 14, followed by the Julia-Kocienski reaction with reagent 17 and $\mathbf{1 8}$ gave compound 20a and 20b, respectively. Hydrolysis of the both compounds provided compounds $\mathbf{8}$ and 21a. Reduction of the double bond of 20b, followed by hydrolysis gave compound 21b.

Syntheses of compounds 21c and 21d are outlined in Scheme 2-1-3B. Oxidation of the common intermediate 14, followed by the Julia-Kocienski reaction using reagent 19 gave compound 22. Deprotection of the TBS group, followed by the Mitsunobu reaction gave compound 23. Hydrolysis provided compound 21c. Reduction of the double bond of 23 and hydrolysis gave compound 21d.

Synthesis of compound 21e is outlined in Scheme 2-1-3C. Hydrolysis of 13, esterification and protection of the hydroxyl group by a THP moiety, followed by deprotection of the TBDPS gave alcohol $\mathbf{2 4}$. The resulting alcohol 24 was treated with Dess-Martin reagent to give an aldehyde, which was transformed to a vinyl ether by treatment with a phosphoylide. Acidic hydrolysis of the vinyl ether gave compound 25. Acetylation of the hydroxy group, followed by reduction of the aldehyde gave compound 26. Introduction of a phenoxy group by the Mitsunobu reaction and hydrolysis provided compound 21e.

Syntheses of compounds 27a-n were started from commercially available phenols as outlined in Scheme

2-1-3D. Phenol was introduced into 14 by the Mitsunobu reaction, and the product was hydrolyzed under basic conditions to give 27a. Compounds 27b-n were synthesized in a similar manner using the corresponding phenols.

Reagents and conditions: (a) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 77 \%$, (b) $\mathbf{1 7} \mathbf{1 8} \mathbf{1 8} \mathbf{~ o r} \mathbf{1 9}, \mathrm{KHMDS}$, DME, $0^{\circ} \mathrm{C}, 37-66 \%$, (c) $2 \mathrm{~mol} / \mathrm{L} \mathrm{NaOHaq}, \mathrm{DME}, \mathrm{MeOH}, 56-96 \%$, (d) $\mathrm{TsNHNH}_{2}, \mathrm{NaOAc}, \mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}, 55-$ 71%, (e) TBAF, THF, rt, 96% (f) DEAD, $\mathrm{Ph}_{3} \mathrm{P}$, THF, rt, 82%, (g) i-PrI, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, \mathrm{rt}, 54 \%$, (h) PPTS,
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DHP, (i) (methoxymethyl)triphenylphospine chrolide, $\mathrm{KO} t \mathrm{Bu}, \mathrm{THF}$, rt, 64%, (j) TsOH, acetone, $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{rt}, 78 \%$, (k) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Py}, 82 \%$, (l) NaBH_{4}, THF, rt, 61% (m) phenol analogues, TMAD, Bu ${ }_{3} \mathrm{P}, \mathrm{THF}, \mathrm{rt}, 61-92 \%$

Scheme 2-1-3. Syntheses of compounds 8, 21a-e and 27a-n

Optimization of omega chain and evaluation of functional selectivity

Chemical modification of the ω chain was performed to further improve subtype selectivity of the initial lead compound 8. As described in Table 2-1-2, 21a-e and 27a were synthesized to adjust the length between the cyclopentane scaffold and the phenoxy moiety, and to investigate the effect of the double bond of the ω chain.

Compound 21a, which has a longer linker relative to 8, improved subtype selectivity to EP4 and FP receptors, while it showed a 3.3-fold decreased EP2 agonist activity. Conversely, 21c with a shorter linker relative to $\mathbf{8}$ showed potent EP2 agonist activity and improved subtype selectivity. Reduction of the double bond of 21a and 21c gave 21b and 21d with 2.2 and 2.6-fold decreases in EP2 agonist activity, respectively. Compound 21e, with a shorter linker relative to 21c, showed the most potent EP2 agonist activity; however, it also had a potent EP1 agonist activity. The shortest ω chain derivative 27a exhibited an excellent selectivity to all other receptor subtypes with favorable G protein activity.

The author next investigated the functional selectivity of the newly identified EP2 agonists $\mathbf{8 , 2 1 a} \mathbf{e}$ and 27a. The compounds were evaluated by the EP2-mediated β arrestin recruitment Path Hunter assay ${ }^{30}$ (DiscoveRX), to determine their functional selectivity. Surprisingly, none of the compounds exerted full agonist activity toward β arrestin recruitment at $10 \mu \mathrm{M}$, that is, these compounds were identified as G protein-biased EP2 agonists (see Table 2-1-2). To the author's knowledge, these are the first examples of biased ligands of prostanoid receptors

cmpd	R	hEP2				$\begin{gathered} \mathrm{hEP1} \\ \mathrm{EC}_{50}(\mathrm{nM}) \end{gathered}$	$\begin{gathered} \mathrm{hEP3} \\ \mathrm{EC}_{50}(\mathrm{nM}) \end{gathered}$	$\begin{gathered} \mathrm{hEP4} \\ \mathrm{EC}_{50}(\mathrm{nM}) \end{gathered}$	$\begin{gathered} \mathrm{hIP} \\ \mathrm{EC}_{50}(\mathrm{nM}) \end{gathered}$	$\begin{gathered} \mathrm{hFP} \\ \mathrm{EC}_{50}(\mathrm{nM}) \end{gathered}$
		G protein (cAMP)		β arrestin						
		$\mathrm{EC}_{50}(\mathrm{nM})$	$\mathrm{E}_{\max }(\%)$	$\mathrm{EC}_{50}(\mathrm{nM})$	$\mathrm{E}_{\max }(\%)$					
8		3.9	98	>10,000	38	160	260	1900	2500	380
21a		13	91	>10,000	42	970	360	>10,000	>10,000	8600
21b		28	105	$>10,000$	35	N.T.	N.T.	N.T.	N.T.	N.T.
21c		3.8	96	>10,000	11	700	7600	>10,000	>10,000	>10,000
21d		10	107	>10,000	10	4200	5800	>10,000	>10,000	>10,000
21e		1.4	77	>10,000	22	97	1400	>10,000	>10,000	>10,000
27a		13	118	>10,000	28	>10,000	>10,000	>10,000	>10,000	>10,000

${ }^{\text {a }}$ Assay protocols are provided in the Supporting Information. EC_{50} values represent the mean of two experiments.

Table 2-1-2. Optimization of the ω chain for functional and subtype selectivity.

Structure functional selectivity relationship study of 27a

To investigate the structure-functional selectivity relationship ${ }^{19}$ and improve G protein agonist activity, the author performed further optimization of compound 27a. As demonstrated in Table 2-1-3 (27b-d), introduction of steric hindering substituents to the ortho position on the phenyl moiety improved the β arrestin activity, and the electron nature of the ortho substituents had a small effect on its functional selectivity. Introduction of $2-\mathrm{Cl}$ substituent to the phenyl moiety afforded $\mathbf{2 7 b}$, which showed a 3.9 -fold increase in G protein activity, and it dramatically increased β arrestin recruitment. Compound 27c, which has a $2-\mathrm{CF}_{3}$ substituent on the phenyl moiety, also increased the G protein activity and showed a more than 900 -fold
increase in β arrestin recruitment. Conversely, compound 27d, which possesses a 2-F substituent, showed a partial G protein activity without any change in β arrestin recruitment.

As shown in Table 2-1-3 ($\mathbf{2 7} \mathbf{e}-\mathbf{h})$, introduction of meta substituents into the phenyl moiety generally improved G protein activity. Additionally, steric hindrance of meta substituents on the phenyl moiety significantly affected the functional selectivity, that is, bulky substituents enhanced β arrestin recruitment. Compound 27e, which possesses a 3-Me substituent on the phenyl moiety, was 3.6 -fold more potent in G protein activity without an increase of β arrestin activity. Introduction of a $3-\mathrm{Cl}$ substituent gave $\mathbf{2 7 f}$, which retained both G protein and β arrestin activity relative to 27a. However, introduction of $3-\mathrm{OCF}_{3}$ and $3-\mathrm{CF}_{3}$ substituents gave $\mathbf{2 7} \mathbf{g}$ and $\mathbf{2 7 h}$, respectively, both of which showed a 14 -fold increase in G protein activity compared with $\mathbf{2 7 a}$. Additionally, $\mathbf{2 7 g}$ and $\mathbf{2 7 h}$ showed dramatically increased β arrestin activity (144-fold increase for $\mathbf{2 7 g}$ and 1111-fold increase for $\mathbf{2 7 h}$). Compound $\mathbf{2 7 i}$ with a $3-\mathrm{F}$ substituent retained both G protein and β arrestin activity relative to $\mathbf{2 7 a}$.

Introduction of para substituents into the phenyl moiety had little effect on the functional selectivity, namely, all four substituent derivatives were found to be G protein-biased EP2 agonists (see Table 2-1-3, 27j-n). Introduction of a 4-Me moiety ($\mathbf{2 7} \mathbf{j}$) slightly decreased G protein activity with no effect on β arrestin recruitment. $\quad 4-\mathrm{Cl}$ derivative $\mathbf{2 7 k}$ showed a 3.3-fold more potent G protein activity without an increase in β arrestin activity. Compound 271, possessing bulky substituents $\left(\mathrm{OCF}_{3}\right)$ at the para position, showed moderate G protein activity and very weak β arrestin recruitment. In contrast to the ortho or meta position, introduction of a CF_{3} group into the para position of the phenyl moiety ($\mathbf{2 7} \mathbf{m}$) surprisingly lost the β arrestin activity. Compound 27n, possessing a less hindered fluoride at the para position, showed similar profiles to $\mathbf{2 7 a}$

cmpd	R1	R2	R3	hEP2			
				G protein (cAMP)		β arrestin	
				$\mathrm{EC}_{50}(\mathrm{nM})$	$\mathrm{E}_{\text {max }}(\%)$	$\mathrm{EC}_{50}(\mathrm{nM})$	$\mathrm{E}_{\text {max }}(\%)$
27a	H	H	H	13	118	>10,000	28
27b	Cl	H	H	3.3	95	203	78
27c	CF_{3}	H	H	0.5	119	11	121
27d	F	H	H	23	59	>10,000	38
27e	H	Me	H	3.6	100	>10,000	38
27f	H	Cl	H	6.5	65	>10,000	27
27g	H	OCF_{3}	H	0.9	119	69	79
27h	H	CF_{3}	H	0.9	112	9	62
27i	H	F	H	5.4	94	>10,000	35
27j	H	H	Me	27	85	>10,000	20
27k	H	H	Cl	3.9	96	>10,000	12
271	H	H	OCF_{3}	14	110	4500	57
27m	H	H	CF_{3}	13	103	>10,000	23
27n	H	H	F	7	99	>10,000	22

${ }^{\text {a }}$ Assay protocols are provided in the Supporting Information. EC_{50} values represent the mean of two experiments.

Table 2-1-3. Structure functional selectivity relationship study of phenoxy derivatives

Overall, steric hindrance of the ortho and meta positions on the phenyl moiety dramatically enhanced β arrestin recruitment and changed the functional selectivity, though the electron characteristics of the substituents did not show any significant difference in functional selectivity among the analogues. These structure activity relationship studies suggest that the functional selectivity is easily controlled by small chemical modifications of the phenyl moiety.

To confirm the G protein-biased agonism of our EP2 agonists, lead compound $\mathbf{2 7 a}$ and $\mathbf{2 7 k}$ which was the most potent G protein activity in para substituents derivatives were evaluated in an equimolar comparison ${ }^{31}$ of G protein and β arrestin responses. Both compounds showed markedly less β arrestin activity with equivalent G protein activity relative to PGE_{2}, this result indicates $\mathbf{2 7 a}$ and a series of compounds are G protein-biased agonists of EP2 receptor.

Figure 2-1-4. Equimolar comparison of G protein and β arrestin responses of $\mathrm{PGE}_{2}, \mathbf{2 7 a}$ and $\mathbf{2 7 k}$

Figure 2-1-5. Concentration-response curves of $\mathrm{PGE}_{2}, \mathbf{2 7 a}$ and $\mathbf{2 7 k}$

In summary, the author designed a novel EP2 agonist $\mathbf{8}$ by hybridization of the thiazole moiety and the bicyclic scaffold mimicking prostacyclins. Simplification of the ω chain enabled the author to discover the highly selective EP2 phenoxy derivative 27a, which was identified as a G protein-biased EP2 agonist. The substituents on the phenyl group of 27a play an important role in modulating the functional selectivity.

Experimental Section

General Experimental.

Analytical samples were homogeneous as confirmed by TLC, and spectroscopic results were consistent with the assigned structures. NMR spectra were recorded as designated on either a Varian Mercury 300 spectrometer or INOVA-500 spectrometer using deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ or deuterated dimethyl sulfoxide (DMSO- d_{6}) as the solvent. Mass spectral analyses with fast atom bombardment (FABMS, HRMS) and electron ionization (EI) were performed on a JEOL JMS-DX303HF spectrometer. Purity analysis was carried out by the following LC/MS system. LC/MS: Waters ACQUITY UPLC system fitted by with Waters Micromass ZQ-2000 spectrometer. Column; YMC Triart C18 ($2.0 \mathrm{~mm} \times 30 \mathrm{~mm}$). Eluting over 1.5 min with $5-95 \%$ acetonitrile($0.1 \% \mathrm{TFA}$) in water ($0.1 \% \mathrm{TFA}$), flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$, column temperature of $30^{\circ} \mathrm{C}$, detection with UV (PDA) and ELSD. Column chromatography was performed with silica gel [Merck Silica Gel $60(0.063-0.200 \mu \mathrm{~m})$, Wako gel C- 200, or Fuji Silysia PSQ-100B or Fuji Silysia FL60D]. Thin layer chromatography was performed with silica gel (Merck TLC or HPTLC plates, Silica Gel 60 F254). Medium-pressure preparative liquid chromatography was performed with a medium-pressure preparative liquid chromatograph W-prep 2XY (manufactured by Yamazen Corporation; column: main column size S-5L, inject column size SS -2L).

Scheme 2-1-1

(1S,2R,3S,4R)-2-(3-methoxy-2-propen-1-yl)-3-(\{[(2-methyl-2-propanyl)(diphenyl)silyl]oxy\}methyl)-4-(tetr ahydro-2H-pyran-2-yloxy)cyclopentanol (10)

To a solution of $9(422 \mathrm{~g}, 853 \mathrm{mmol})$ in toluene $(1.50 \mathrm{~L})$ at $-78{ }^{\circ} \mathrm{C}$ was added diisobutylaluminium hydride (1.00 M in toluene, $995 \mathrm{~mL}, 995 \mathrm{mmol}$). After stirred at $-78^{\circ} \mathrm{C}$ for 1 h , potassium sodium tartrate (434 g ,
$1.54 \mathrm{~mol})$ in $\mathrm{H}_{2} \mathrm{O}(650 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 20 h and extracted with tert-BuOMe. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave 9-2 (462 g, crude), which was directly used in the next reaction.

To a suspension of 85% potassium tert-butoxide ($298 \mathrm{~g}, 2.26 \mathrm{~mol}$) in THF (2.30 L) was slowly added (methoxymethyl)triphenylphosphonium chloride ($775 \mathrm{~g}, 2.26 \mathrm{~mol}$). After the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~min}, 9-2\left(456 \mathrm{~g}\right.$, crude) in THF (600 mL) was added. After stirred at $0^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave crude mixture (1100 g), which was purified by recrystallization from IPA (400 $\mathrm{mL})$ and hexane (400 mL) to remove triphenylphosphine oxide. After filtration of the phosphine oxide, the filtrate was concentrated, and flash column chromatography (Fuji silicia PSQ-100B, hexane/EtOAc 1:0-10:1-5:1-2:1) gave $10(391 \mathrm{~g})$ in 88% yield over 2 steps.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 6 \mathrm{H}), 6.33(\mathrm{~m}, 0.7 \mathrm{H}), 5.90(\mathrm{~m}, 0.3 \mathrm{H}), 4.73(\mathrm{~m}$, $0.7 \mathrm{H}), 4.70-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~m}, ~ 0.3 \mathrm{H}), 4.36-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.66(\mathrm{~m}, 3 \mathrm{H}), 3.58(\mathrm{~s}$, $0.45 \mathrm{H}), 3.57(\mathrm{~s}, 0.45 \mathrm{H}), 3.55-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 1.05 \mathrm{H}), 3.42(\mathrm{~s}, 1.05 \mathrm{H}), 2.39-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H})$, 2.07-1.67 (m, 4H), 1.57-1.47 (m, 5H), 1.054 (s, 4.5H), $1.045(\mathrm{~s}, 4.5 \mathrm{H})$ (Peak of OH was not observed.).
(4aR,5S,6R,7aS)-5-(\{[(2-methyl-2-propanyl)(diphenyl)silyl]oxy\}methyl)octahydrocyclopenta[b]pyran-2,6diol (11)

To a solution of $\mathbf{1 0}(410 \mathrm{~g}, 781 \mathrm{mmol})$ in THF $(1.50 \mathrm{~L})$ and $\mathrm{H}_{2} \mathrm{O}(600 \mathrm{~mL})$ was added acetic acid (1.20 L). After stirred at $55^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was extracted with toluene. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}, 1.0 \mathrm{M}$ hydrochloric acid and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude product (372 g) was purified by flash column chromatography (Fuji silicia PSQ-100B, hexane/EtOAc 1:0-4:1-2:1-1:3) to give
$11(211 \mathrm{~g})$ in 63% yield.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 6 \mathrm{H}), 5.27(\mathrm{~m}, 0.4 \mathrm{H}), 4.90(\mathrm{~m}, 0.6 \mathrm{H}), 4.65(\mathrm{~m}$, $0.6 \mathrm{H}), 4.40(\mathrm{~m}, 0.4 \mathrm{H}), 4.19-4.09(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 0.4 \mathrm{H}), 3.79(\mathrm{dd}, J=9.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.60(\mathrm{~m}, 1 \mathrm{H})$, $3.54(\mathrm{~m}, 0.6 \mathrm{H}), 2.92(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.81(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.74(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.66(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 2.15-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.87-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.63-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.

(2R,4aR,5S,6R,7aS)-2-cyano-5-(\{[(2-methyl-2-propanyl)(diphenyl)silyl]oxy\}methyl)octahydrocyclopenta[

b]pyran-6-yl acetate (12)

To a solution of $\mathbf{1 1}(211 \mathrm{~g}, 494 \mathrm{mmol})$ in pyridine $(900 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added acetic anhydride $(182 \mathrm{~g}, 1.78$ $\mathrm{mol})$. After stirred at room temperature for 14 h , the reaction mixture was diluted with toluene (500 mL) and $\mathrm{H}_{2} \mathrm{O}(1.8 \mathrm{~L})$ and extracted with toluene. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}, 1.0 \mathrm{M}$ hydrochloric acid, saturated aqueous NaHCO_{3} and brine, successively, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave 11-2 (268 g crude), which was directly used in the next reaction.

To a solution of $\mathbf{1 1 - 2}$ (268 g , crude) and trimethylsilyl cyanide $(91.9 \mathrm{~g}, 889 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1.40 \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{SnCl}_{4}\left(1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 494 \mathrm{~mL}, 494 \mathrm{mmol}\right)$. After stirred at $0^{\circ} \mathrm{C}$ for 40 min , the reaction mixture was poured into a mixture of saturated aqueous NaHCO_{3} and ice. The mixture was extracted with EtOAc. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave $\mathbf{1 2}(230 \mathrm{~g})$ in 97% yield over 2 steps.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 5.17(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H})$, $3.81(\mathrm{dd}, J=10.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.90(\mathrm{~m}, 4 \mathrm{H})$, $2.04(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$.

(2R,4aR,5S,6R,7aS)-2-carbamothioyl-5-(\{[(2-methyl-2-propanyl)(diphenyl)silyl]oxy\}methyl)octahydrocyc

lopenta[b]pyran-6-yl acetate (12-2)

To a solution of $\mathbf{1 2}(230 \mathrm{~g}, 482 \mathrm{mmol})$ in pyridine $(1.20 \mathrm{~L})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{S}\left(\mathrm{NH}_{4}\right)_{2}(20 \%$ in aqueous solution, $163 \mathrm{~g}, 440 \mathrm{mmol})$. After the mixture was stirred under $10{ }^{\circ} \mathrm{C}$ for $22 \mathrm{~h}, \mathrm{~S}\left(\mathrm{NH}_{4}\right)_{2}(20 \%$ in aqueous solution, $82 \mathrm{~g}, 240 \mathrm{mmol}$) was added, and the mixture stirred at $10{ }^{\circ} \mathrm{C}$ for 2 h . Ice (300 g) and $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~L})$ were added, and the mixture was extracted with toluene. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. Concentration and flash column chromatography (Fuji silicia PSQ-100B, hexane/EtOAc 9:1-5:1-4:1-3:1-2:1) gave 12-2 (86.5 g) in 34% yield and diastereomeric mixture (107 g). $\mathbf{1 2 - 2}(71.5 \mathrm{~g})$ and its diastereomeric mixture (167 g) were synthesized in the same procedure using $\mathbf{1 2}(249 \mathrm{~g}, 523 \mathrm{mmol})$. Further purification of diastereomeric mixtures (107 g and 167 g) by flash column chromatography (Fuji silicia PSQ-100B, hexane/EtOAc 9:1-5:1-4:1-3:1-2:1) gave 12-2 (124 g), total 12-2 $(282 \mathrm{~g})$ in 55% yield.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 5.06(\mathrm{~m}, 1 \mathrm{H})$, $4.42(\mathrm{dd}, J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=10.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.2,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.38(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$.

The stereochemistry of C5 position was determined by 2D NMR (ROESY).

12-2

The diastereomer of 12-2

The diastereomer of $\mathbf{1 2 - 2}$ showed ROESY correlation between H5 and H9.

Ethyl 2-[(2R,4aR,5S,6R,7aS)-6-acetoxy-5-(\{[(2-methyl-2-propanyl)(diphenyl)silyl]

-oxy \}methyl)octahydrocyclopenta[b]pyran-2-yl]-1,3-thiazole-4-carboxylate (13)

To a solution of $\mathbf{1 2 - 2}(129 \mathrm{~g}, 252 \mathrm{mmol})$ in 1,2-dimethoxyethane $(1.10 \mathrm{~L})$ at $-25^{\circ} \mathrm{C}$ was added $\mathrm{KHCO}_{3}(202 \mathrm{~g}$, $2.02 \mathrm{~mol})$. Ethyl bromopyruvate ($164 \mathrm{~g}, 756 \mathrm{mmol}$) was added at $-25^{\circ} \mathrm{C}$, and the mixture was stirred for 4 h . Then, pyridine ($160 \mathrm{~g}, 2.02 \mathrm{~mol}$) and trifluoroacetic anhydride ($212 \mathrm{~g}, 1.01 \mathrm{~mol}$) were added at $-25^{\circ} \mathrm{C}$ for 35 min. After stirred at $-25^{\circ} \mathrm{C}$ for 30 min , the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash column chromatography (Fuji silicia BW-820MH, hexane/EtOAc 1:0-10:1-6:1-4:1-3:1) gave $\mathbf{1 3}$ (150 g) in 97% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 6 \mathrm{H}), 5.14(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ $(\mathrm{m}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=10.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=10.2,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.37(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.62-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$.

Ethyl 2-[(2R,4aR,5S,6R,7aS)-6-acetoxy-5-(hydroxymethyl)octahydrocyclopenta[b]

-pyran-2-yl]-1,3-thiazole-4-carboxylate (14)

To a solution of $\mathbf{1 3}(150 \mathrm{~g}, 247 \mathrm{mmol})$ in THF (370 mL) and acetic acid ($38.5 \mathrm{~g}, 642 \mathrm{mmol}$) at room temperature was added tetra- n-butylammonium fluoride (1.00 M in THF, $642 \mathrm{~mL}, 642 \mathrm{mmol}$). After stirred at
$44{ }^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was quenched with saturated aqueous NaHCO_{3} and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash column chromatography (Fuji silicia BW-820MH, hexane / EtOAc 1:1-1:2) gave alcohol 14 (77.3 g) in 84% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dt}, J=8.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.14(\mathrm{~m}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.98$ $(\mathrm{m}, 2 \mathrm{H}), 1.79-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.33,20.79,21.37,24.84$, $37.14,38.75,50.63,61.40,62.63,72.65,73.49,76.38,128.07,147.10,161.42,172.09,173.52 . \operatorname{MS}(\mathrm{FAB}$, Pos.) $m / z 370(\mathrm{M}+\mathrm{H})^{+} . \quad$ HRMS (FAB, Pos. $) \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$calc. mass 370.1324, found 370.1331.

Scheme 2-1-2

5-[(4-phenoxybutyl)thio]-1-phenyl-1H-tetrazole (16)

To a solution of $\mathbf{1 5}(3.00 \mathrm{~g}, 13.1 \mathrm{mmol})$ and 1-phenyl- $1 H$-tetrazole- 5 -thiol ($2.46 \mathrm{~g}, 13.8 \mathrm{mmol}$) in acetone (15.0 $\mathrm{mL})$ at room temperature was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.90 \mathrm{~g}, 13.8 \mathrm{mmol})$. After stirred at $60{ }^{\circ} \mathrm{C}$ for 16 h , the reaction mixture was quenched with 1.0 M hydrochloric acid and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography L, hexane/EtOAc 9:1-2:1) gave 16 $(4.01 \mathrm{~g})$ in 94% yield.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 7.60-7.53(\mathrm{~m}, 5 \mathrm{H}), 7.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H})$.

5-[(4-phenoxybutyl)sulfonyl]-1-phenyl-1H-tetrazole (17)

To a solution of $\mathbf{1 6}(2.00 \mathrm{~g}, 6.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added 3-chloroperoxybenzoic acid ($3.21 \mathrm{~g}, 12.1 \mathrm{mmol}$). After the mixture was stirred at room temperature for $2 \mathrm{~h}, 3$-chloroperoxybenzoic acid $(1.66 \mathrm{~g}, 6.1 \mathrm{mmol})$ was added. After stirred at room temperature for 2 h , the reaction mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash column chromatography (Yamazen W-prep 2XY flash column chromatography L, hexane/EtOAc 9:1-2:1) gave $17(1.55 \mathrm{~g})$ in 71% yield.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.71-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~m}$, 2H).

Scheme 2-1-3A

Ethyl 2-[(2R,4aR,5R,6R,7aS)-6-acetoxy-5-formyloctahydrocyclopenta[b]pyran

-2-yl]-1,3-thiazole-4-carboxylate (14-2)

To a solution of $\mathbf{1 4}(3.00 \mathrm{~g}, 8.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added Dess-Martin periodinane $(4.00 \mathrm{~g}$, 9.43 mmol). After stirred at room temperature for 2 h , the reaction mixture was quenched with saturated aqueous NaHCO_{3} and extracted with EtOAc . The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography, hexane/EtOAc 1:1-0:1) gave 14-2 (2.30 g) in 77\% yield.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.41(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H})$, 2.10-2.00 (m, 2H), $1.72(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Ethyl 2-\{(2R,4aR,5R,6R,7aS)-6-acetoxy-5-[(1E)-5-phenoxy-1-penten-1-yl]

-octahydrocyclopenta[b]pyran-2-yl\}-1,3-thiazole-4-carboxylate (20b)

To a solution of $\mathbf{1 7}(143 \mathrm{mg}, 0.389 \mathrm{mmol})$ in 1,2-dimethoxyethane $(2.0 \mathrm{~mL})$ at $-60{ }^{\circ} \mathrm{C}$ was added potassium bis(trimethylsilyl)amide (0.50 M in toluene, $0.80 \mathrm{~mL}, 0.40 \mathrm{mmol}$). After the mixture was stirred at $-60^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, \mathbf{1 4 - 2}(73.4 \mathrm{mg}, 0.20 \mathrm{mmol})$ in 1,2-dimethoxyethane $(1.0 \mathrm{~mL})$ was added. After stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min, the reaction mixture was quenched with saturated aqueous NaHCO_{3} and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography M, hexane/EtOAc 9:1-3:1-7:3) gave 20b (66.0 mg) in 34% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $5.58(\mathrm{dt}, J=15.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=15.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{q}, J$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~m}, 4 \mathrm{H}), 2.21(\mathrm{~m}, 4 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})$, $1.86(\mathrm{~m}, 3 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

2-\{(2R,4aR,5R,6R,7aS)-6-hydroxy-5-[(1E)-5-phenoxy-1-penten-1-yl]octahydrocyclopenta[b]pyran-2-yl\}-1, 3-thiazole-4-carboxylic acid (21a)

To a solution of $\mathbf{2 0 b}(30 \mathrm{mg}, 0.060 \mathrm{mmol})$ in 1,2-dimethoxyethane $(0.50 \mathrm{~mL})$ and ethanol $(0.50 \mathrm{~mL})$ at room temperature was added 1.0 M sodium hydroxide $(0.50 \mathrm{~mL}, 0.50 \mathrm{mmol})$. After stirred at room temperature for

3 h , the reaction mixture was extracted with tert-BuOMe. The aqueous layer was acidified by 1.0 M hydrochloric acid and extracted with EtOAc. The EtOAc layer was washed with brine and dried over MgSO_{4}. Concentration gave 21a (23.2 mg) in 90% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 5.62(\mathrm{dt}, J=15.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=15.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.08(\mathrm{~m}, 1 \mathrm{H})$, $3.97(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.92-3.86(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.19(\mathrm{~m}, 5 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.83-1.76$ $(\mathrm{m}, 1 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 2 \mathrm{H})$, (Peaks of OH and $\mathrm{CO}_{2} \mathrm{H}$ were not observed.). LCMS (ELSD) $\mathrm{RT}=0.94 \mathrm{~min}$ (97.3\%). MS (FAB, Pos.) $m / z 430(M+H)^{+}$. HRMS (FAB, Pos.) $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$calc. mass 430.1688, found 430.1691 .

Ethyl 2-[(2R,4aR,5R,6R,7aS)-6-acetoxy-5-(5-phenoxypentyl)octahydrocyclopenta

-[b]pyran-2-yl]-1,3-thiazole-4-carboxylate (20c)

20b

20c

To a solution of $\mathbf{2 0 b}(32.0 \mathrm{mg}, 0.064 \mathrm{mmol})$ and sodium acetate $(105 \mathrm{mg}, 1.28 \mathrm{mmol})$ in $\mathrm{EtOH}(0.50 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.00 \mathrm{~mL})$ at room temperature was added p-toluenesulfonyl hydrazide ($119 \mathrm{mg}, 0.64 \mathrm{mmol}$). After the mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for $14.5 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}$ was added and the reaction mixture was extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO_{3} and brine and dried over MgSO_{4}. Concentration and preparative thin layer chromatography gave $\mathbf{2 0 c}(17.7 \mathrm{mg})$ in 55% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 5.13(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.39$ $(\mathrm{m}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.90(\mathrm{~m}, 4 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.38(\mathrm{~m}$, $4 \mathrm{H}), 1.40(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

2-[(2R,4aR,5R,6R,7aS)-6-hydroxy-5-(5-phenoxypentyl)octahydrocyclopenta[b]pyran-2-yl]-1,3-thiazole-4-

 carboxylic acid (21b)

To a solution of $\mathbf{2 0 c}(17.5 \mathrm{mg}, 0.035 \mathrm{mmol})$ in 1,2-dimethoxyethane $(0.50 \mathrm{~mL})$ and $\mathrm{EtOH}(0.50 \mathrm{~mL})$ at room temperature was added 1.0 M sodium hydroxide $(0.50 \mathrm{~mL}, 0.50 \mathrm{mmol})$. After stirred at room temperature for 2 h , the reaction mixture was extracted with tert- BuOMe . The aqueous layer was acidified by 1.0 M hydrochloric acid and extracted with EtOAc. The EtOAc layer was washed with brine and dried over MgSO_{4}. Concentration and column chromatography (Wakogel, chloroform/MeOH 1:0-95:5) gave 21b (8.4 mg) in 56\% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.17(\mathrm{t}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.81$ $(\mathrm{m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.31(\mathrm{~m}, 7 \mathrm{H})\left(\right.$ Peaks of OH and $\mathrm{CO}_{2} \mathrm{H}$ were not observed.). LCMS (ELSD) $\mathrm{RT}=$ $0.99 \min (>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}). m / z 430(\mathrm{M}-\mathrm{H})^{-} . \quad$ HRMS (FAB, Neg.) $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 430.1688, found 430.1691.

8 was synthesized in a similar manner by using Julia Kocienski reagent 19.

2-\{(2R,4aR,5R,6R,7aS)-6-hydroxy-5-[(1E)-4-phenoxy-1-buten-1-yl]octahydrocyclopenta[b]pyran-2-yl\}-1,3 -thiazole-4-carboxylic acid (8)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 5.66(\mathrm{dt}, J=15.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=15.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H})$, $4.00(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.49(\mathrm{~m}, 3 \mathrm{H}), 2.34-2.18(\mathrm{~m}, 3 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.61$ (m, 2H) (Peaks of OH and $\mathrm{CO}_{2} \mathrm{H}$ were not observed.). LCMS (ELSD) $R T=0.89 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}$, Pos.) $m / z 416(M+H)^{+} . \quad$ HRMS (FAB, Pos. $) \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$calc. mass 416.1532, found 416.1531 .

Scheme 2-1-3B

Ethyl 2-\{(2R,4aR,5R,6R,7aS)-6-acetoxy-5-[(1E)-3-\{[dimethyl(2-methyl-2-propanyl)

-silyl]oxy\}-1-propen-1-yl]octahydrocyclopenta[b]pyran-2-yl\}-1,3-thiazole-4-carboxylate (22)

To a solution of $21(501 \mathrm{mg}, 1.36 \mathrm{mmol})$ and $\mathbf{1 4 - 2}(252 \mathrm{mg}, 0.689 \mathrm{mmol})$ in 1,2-dimethoxyethane (6.8 mL) at $60{ }^{\circ} \mathrm{C}$ was added potassium bis(trimethylsilyl)amide (0.50 M in toluene, $2.04 \mathrm{ml}, 1.02 \mathrm{mmol}$) slowly. After stirred at $-60{ }^{\circ} \mathrm{C}$ to $-30{ }^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was quenched with saturated aqueous NaHCO_{3} and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography L, hexane/EtOAc 97:3-85:15-4:1) gave 22 (128 mg) in 18\%.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{dt}, J=15.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=15.3,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18$ $(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~m}$, $2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}$, $6 \mathrm{H})$.

Ethyl 2-\{(2R,4aR,5R,6R,7aS)-6-acetoxy-5-[(1E)-3-phenoxy-1-propen-1-yl]

-octahydrocyclopenta[b]pyran-2-yl\}-1,3-thiazole-4-carboxylate (23)

22

\qquad

22-2

23

To a solution of $\mathbf{2 2}(125 \mathrm{mg}, 0.245 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added tetra- n-butylammonium fluoride (1.0 M in THF, $0.38 \mathrm{~mL}, 0.38 \mathrm{mmol}$). After stirred at room temperature for 2.5 h , the reaction mixture was
quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography M , hexane/EtOAc 1:1-3:7) gave 22-2, which was directly used in the next reaction.

To a solution of 22-2, phenol ($31.1 \mathrm{mg}, 0.330 \mathrm{mmol}$) and triphenyl phosphine ($86.6 \mathrm{mg}, 0.430 \mathrm{mmol}$) in THF $(1.0 \mathrm{~mL})$ at room temperature was added diethyl azodicarboxylate (2.2 M in toluene, $150 \mu \mathrm{~L}, 0.430 \mathrm{mmol}$). After stirred at room temperature for 1 h , the reaction mixture was concentrated. A medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography M , hexane/EtOAc 9:1-3:1-7:3) gave $23(97.3 \mathrm{mg})$ in 84% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $5.81(\mathrm{dt}, J=15.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{dd}, J=15.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J$ $=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H})$, $1.94(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

2-\{(2R,4aR,5R,6R,7aS)-6-hydroxy-5-[(1E)-3-phenoxy-1-propen-1-yl]octahydrocyclopenta[b]pyran-2-yl\}-1

,3-thiazole-4-carboxylic acid (21c)

To a solution of $\mathbf{2 3}(95.0 \mathrm{mg}, 0.201 \mathrm{mmol})$ in 1,2-dimethoxyethane (1.50 mL) and $\mathrm{EtOH}(1.50 \mathrm{~mL})$ at room temperature was added 1.0 M sodium hydroxide $(1.50 \mathrm{~mL}, 1.50 \mathrm{mmol})$. After stirred at room temperature for 2 h , the reaction mixture was extracted with tert-BuOMe. The aqueous layer was acidified by 1.0 M hydrochloric acid and extracted with EtOAc. The EtOAc layer was washed with brine and dried over MgSO_{4}. Concentration gave 21c (56.6 mg) in 70% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~m}, 3 \mathrm{H}), 5.87(\mathrm{dt}, J=15.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.70$
(dd, $J=15.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 2.69$ $(\mathrm{m}, 1 \mathrm{H}), 2.31(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 2 \mathrm{H})\left(\right.$ Peaks of OH and $\mathrm{CO}_{2} H$ were not observed.). LCMS (ELSD) $R T=0.85 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{EI}, \mathrm{Pos}) .\mathrm{m} / \mathrm{z} 401(\mathrm{M})^{+} . \quad \mathrm{HRMS}(\mathrm{EI}$, Pos.) $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO} 5 \mathrm{~S}(\mathrm{M})^{+}$calc. mass 401.1297, found 401.1292.

2-[(2R,4aR,5R,6R,7aS)-6-hydroxy-5-(3-phenoxypropyl)octahydrocyclopenta[b]pyran-2-yl]-1,3-thiazole-4-

 carboxylic acid (21d)

To a solution of $\mathbf{2 3}(75.0 \mathrm{mg}, 0.159 \mathrm{mmol})$ and $\mathrm{AcONa}(262 \mathrm{mg}, 3.20 \mathrm{mmol})$ in $\mathrm{EtOH}(1.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2.0$ mL) at room temperature was added p-toluenesulphonyl hydrazine ($298 \mathrm{mg}, 1.60 \mathrm{mmol}$). After the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 days, $\mathrm{H}_{2} \mathrm{O}$ was added and the reaction mixture was extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO_{3} and brine and dried over MgSO_{4}. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography M, hexane/EtOAc 92:8-3:1-65:35) gave 23-2 (53.7 mg) in 71\% yield.

To a solution of 23-2 ($51.0 \mathrm{mg}, 0.108 \mathrm{mmol}$) in 1,2-dimethoxyethane (1.00 mL) and $\mathrm{EtOH}(1.00 \mathrm{~mL})$ at room temperature was added 1.0 M sodium hydroxide $(1.00 \mathrm{~mL}, 1.00 \mathrm{mmol})$. After stirred at room temperature for 2 h , the reaction mixture was extracted with tert-BuOMe. The aqueous layer was acidified by 1.0 M hydrochloric acid and extracted with EtOAc. The EtOAc layer was washed with brine and dried over MgSO_{4}. Concentration gave 21d (40.4 mg) in 93% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 5.17(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.90$ $(\mathrm{m}, 6 \mathrm{H}), 1.76-1.43(\mathrm{~m}, 4 \mathrm{H})$ (Peaks of OH and $\mathrm{CO}_{2} \mathrm{H}$ were not observed.). LCMS (ELSD) $\mathrm{RT}=0.89 \mathrm{~min}$ (>98\%). 1.5 min. \quad MS ($\mathrm{FAB}, \mathrm{Neg}.) ~ m / z 402(\mathrm{M}-\mathrm{H})^{-} . \quad \mathrm{HRMS}(\mathrm{FAB}, \mathrm{Neg}.) \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass

Scheme 2-1-3C

Isopropyl 2-[(2R,4aR,5R,6R,7aS)-6-hydroxy-5-(\{[(2-methyl-2-propanyl)(diphenyl)
-silyl]oxy\}methyl)octahydrocyclopenta[b]pyran-2-yl]-1,3-thiazole-4-carboxylate
(13-3)

To a solution of $\mathbf{1 3}(44.2 \mathrm{~g}, 72.8 \mathrm{mmol})$ in $\mathrm{MeOH}(900 \mathrm{~mL})$ at room temperature was added 1.0 M sodium hydroxide ($180 \mathrm{~mL}, 180 \mathrm{mmol}$). After stirred at room temperature for 2 h , the reaction mixture was evaporated. The residue was dissolved in THF (400 mL), 1 M hydrochloric acid (210 mL) and EtOAc (400 mL). The mixture was extracted with EtOAc and the organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave 13-2 (40.5 g , crude), which was directly used in the next reaction.

To a solution of 13-2 (40.5 g , crude) and isopropyl iodide ($24.7 \mathrm{~g}, 145 \mathrm{mmol}$) in DMF (190 mL) at room temperature was added $\mathrm{K}_{2} \mathrm{CO}_{3}(20.1 \mathrm{~g}, 145 \mathrm{mmol})$. After the reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 14 h , $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash column chromatography (Fuji silicia BW-820MH, hexane/EtOAc 4:1-3:1-2:1) gave 13-3 (23.1 g) in 54\% yield.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 6 \mathrm{H}), 5.26(\mathrm{sep}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.16(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{dd}, J=9.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=9.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.06(\mathrm{~m}, 4 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.37$ $(\mathrm{d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$.

Isopropyl 2-[(2R,4aR,5R,6R,7aS)-5-(hydroxymethyl)-6-(tetrahydro-2H-pyran-2-

yloxy)octahydrocyclopenta[b]pyran-2-yl]-1,3-thiazole-4-carboxylate (24)

To a solution of $\mathbf{1 3 - 3}(54.8 \mathrm{~g}, 94.5 \mathrm{mmol})$ and pyridinium para-toluenesulfonate ($2.30 \mathrm{~g}, 9.45 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(220 \mathrm{~mL})$ at room temperature was added 3,4-dihydro- $2 H$-pyran ($15.9 \mathrm{~g}, 189 \mathrm{mmol}$). After stirred at room temperature for 14 h , the reaction mixture was quenched with saturated aqueous NaHCO_{3} and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave 13-4 (64.0 g , crude), which was directly used in the next reaction.

To a solution of $\mathbf{1 3 - 4}$ (64.0 g , crude) in THF (160 mL) at room temperature was added tetra- n-butylammonium fluoride (1.00 M in $\mathrm{THF}, 240 \mathrm{~mL}, 240 \mathrm{mmol}$). After stirred at room temperature for 2.5 h , the reaction mixture was evaporated. The residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash column chromatography (Fuji silicia BW-820MH, hexane/EtOAc 1:1-1:2) gave 24 (38.8 g) in 96% yield
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{sep}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~m}, 0.5 \mathrm{H})$, $4.62(\mathrm{~m}, 0.5 \mathrm{H}), 4.24-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{dd}, J=10.8,4.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.71(\mathrm{dd}, J=10.8,5.7$ $\mathrm{Hz}, 0.5 \mathrm{H}), 3.62-3.48(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.23(\mathrm{~m}, 3 \mathrm{H}), 2.19-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.48(\mathrm{~m}, 7 \mathrm{H}), 1.37(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $6 \mathrm{H})$.

Isopropyl 2-[(2R,4aR,5R,6R,7aS)-5-(2-methoxyvinyl)-6-(tetrahydro-2H-pyran-2

-yloxy)octahydrocyclopenta[b]pyran-2-yl]-1,3-thiazole-4-carboxylate (24-3)

To a solution of $\mathbf{2 4}(200 \mathrm{mg}, 0.470 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added Dess-Martin periodinane (259 $\mathrm{mg}, 0.611 \mathrm{mmol}$). After stirred at room temperature for 1 h , the reaction mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO_{3} and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave 24-2, which was directly used in next reaction.

To a suspension of 85%-potassium tert-butoxide $(79.1 \mathrm{mg}, 0.705 \mathrm{~mol})$ in $\mathrm{THF}(4.70 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was slowly added (methoxymethyl)triphenylphosphonium chloride ($242 \mathrm{mg}, 0.705 \mathrm{~mol}$). After the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~min}, \mathbf{2 4 - 2}$ in THF (1.4 mL) was added and the mixture was stirred at room temperature for 2 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography L, hexane/EtOAc 9:1-7:3) gave 24-3 $(137 \mathrm{mg})$ in 64% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 6.40-6.36(\mathrm{~m}, 0.8 \mathrm{H}), 6.03-5.96(\mathrm{~m}, 0.2 \mathrm{H}), 5.26(\mathrm{sep}, J=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.14(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{brs}, 3 \mathrm{H}), 3.48$ $(\mathrm{m}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.45(\mathrm{~m}, 7 \mathrm{H}), 1.37(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $6 \mathrm{H})$.

Isopropyl 2-[($2 R, 4 \mathrm{aR}, 5 R, 6 R, 7 \mathrm{aS})$-6-acetoxy-5-(2-hydroxyethyl)octahydro
-cyclopenta[b]pyran-2-yl]-1,3-thiazole-4-carboxylate (26)

To a solution of $\mathbf{2 4 - 3}(120 \mathrm{mg}, 0.266 \mathrm{mmol})$ in acetone $(4.95 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mu \mathrm{~L})$ at room temperature was added p-toluene sulfonic acid monohydrate $(15.1 \mathrm{mg}, 0.0795 \mathrm{mmol})$. After stirred at room temperature for 3 h , the reaction mixture was quenched with saturated aqueous NaHCO_{3} and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography L, hexane/EtOAc 3:2-1:3-0:100) gave $\mathbf{2 5}(73.0 \mathrm{mg})$ in 78% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.85(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{sep}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{t}, J=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H})$, 2.29-2.16 (m, 3H), $2.04(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H})($ Peak of OH was not observed.).

To a solution of $\mathbf{2 5}(70.0 \mathrm{mg}, 0.198 \mathrm{mmol})$ in pyridine $(1.50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added acetic anhydride ($37.4 \mu \mathrm{~L}$, 0.396 mmol). After stirred at room temperature for 2 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography L, hexane/EtOAc 3:1-1:1) gave 25-2 (64.0 mg) in 82% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.79(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.84(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.18-1.97(\mathrm{~m}, 3 \mathrm{H}), 2.07(\mathrm{~s}$, $3 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H})$.

To a solution of $\mathbf{2 5 - 2}(62.0 \mathrm{mg}, 0.157 \mathrm{mmol})$ in THF $(1.50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(7.1 \mathrm{mg}, 0.188$ mmol). After stirred at room temperature for 1 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography L, hexane/EtOAc 3:2-3:7) gave $26(38.1 \mathrm{mg})$ in 61% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{sep}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~m}, 1 \mathrm{H})$, $4.24(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m}$, $1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H})$ (Peak of OH was not observed.).

Isopropyl 2-[(2R,4aR,5R,6R,7aS)-6-acetoxy-5-(2-phenoxyethyl)octahydro

-cyclopenta[b]pyran-2-yl]-1,3-thiazole-4-carboxylate (26-2)

26

To a solution of $26(35.1 \mathrm{mg}, \quad 0.0883 \mathrm{mmol})$, phenol $(11.3 \mathrm{mg}, 0.120 \mathrm{mmol})$ and 1,1 '-azobis(N, N-dimethylformamide) $(31.7 \mathrm{mg}, 0.184 \mathrm{mmol})$ in THF $(0.90 \mathrm{~mL})$ at room temperature was added tributylphosphine $(45.4 \mu \mathrm{~L}, 0.184 \mathrm{mmol})$. After stirred at room temperature for 16 h , the mixture was concentrated. A medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography M, hexane/EtOAc 9:1-2:3) gave 26-2 (26.4 mg) in 63% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 5.27(\mathrm{sep}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 4.06-3.97(\mathrm{~m}, 2 \mathrm{H})$, 2.50-2.36 (m, 2H), 2.26(m, 1H), $2.17(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H})$, 1.72-1.64 (m, 2H, $1.37(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$.

2-[(2R,4aR,5R,6R,7aS)-6-hydroxy-5-(2-phenoxyethyl)octahydrocyclopenta[b]pyran-2-yl]-1,3-thiazole-4-ca rboxylic acid (21e)

To a solution of $\mathbf{2 6 - 2}(25.0 \mathrm{mg}, 0.0528 \mathrm{mmol})$ in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ at room temperature was added 2.0 M sodium hydroxide $(0.14 \mathrm{~mL}, 0.28 \mathrm{mmol})$. After stirred at room temperature for 1.5 h , the reaction mixture was extracted with tert-BuOMe. The aqueous layer was acidified by 1.0 M hydrochloric acid and extracted with EtOAc. The EtOAc layer was washed with brine and dried over MgSO_{4}. Concentration gave 21e (17.5 mg) in 85\% yield.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.7,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~m}, 3 \mathrm{H}), 5.06(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.81(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 3 \mathrm{H}), 3.66(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{~m}, 5 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~m}$, $2 \mathrm{H})\left(\right.$ Peak of $\mathrm{CO}_{2} \mathrm{H}$ was not observed.). LCMS (ELSD) $R T=0.85 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}) .\mathrm{m} / \mathrm{z} 388$ $(\mathrm{M}-\mathrm{H})^{-} . \quad$ HRMS $(\mathrm{FAB}, \mathrm{Neg}.) \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 388.1219, found 388.1215.

Scheme 2-1-3D

2-[(2R,4aR,5R,6R,7aS)-6-hydroxy-5-(phenoxymethyl)octahydrocyclopenta[b]pyran-2-yl]-1,3-thiazole-4-ca rboxylic acid (27a)

To a solution of $14(50.0 \mathrm{mg}, \quad 0.135 \mathrm{mmol})$, phenol ($38.2 \mathrm{mg}, 0.406 \mathrm{mmol}$) and 1,1'-azobis(N, N-dimethylformamide) ($70.0 \mathrm{mg}, 0.406 \mathrm{mmol}$) in THF $(1.0 \mathrm{~mL})$ at room temperature was added tributylphosphine $(82.5 \mathrm{mg}, 0.406 \mathrm{mmol})$. After the mixture was stirred at $50^{\circ} \mathrm{C}$ for 2 h , concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography M, hexane/EtOAc 9:1-2:3) gave $\mathbf{1 4 - 3}(55.6 \mathrm{mg})$ in 92% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 5.18(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.01(\mathrm{~m}, 2 \mathrm{H})$, 2.57-2.48 (m, 1H), 2.43(m, 1H), 2.32-2.23(m, 1H), 2.18-2.11(m, 1H), 2.09(s, 3H), 2.08-1.97(m, 2H), 1.93 $(\mathrm{m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

To a solution of $\mathbf{1 4 - 3}(44.6 \mathrm{mg}, 0.100 \mathrm{mmol})$ in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ at room temperature was added 2.0 M sodium hydroxide $(0.50 \mathrm{~mL}, 1.0 \mathrm{mmol})$. After stirred at room temperature for 16 h , the reaction mixture was quenched with 1.0 M hydrochloric acid and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave $\mathbf{2 7 a}(36.2 \mathrm{mg})$ in 96% yield
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) 6.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 5.22(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~m}$, $2 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H})\left(\right.$ Peaks of OH and $\mathrm{CO}_{2} \mathrm{H}$ were not observed.). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.52,23.65,40.01,40.91,50.81,68.91,72.83,74.92,75.91,114.45(2 \mathrm{C}), 121.00$, $129.50(2 \mathrm{C}), 129.55,146.08,158.81,163.24,173.64 . \quad$ LCMS (ELSD) $R T=0.82 \mathrm{~min}(>98 \%) . \mathrm{MS}(\mathrm{FAB}$, Neg.) $m / z 374(\mathrm{M}-\mathrm{H})^{-} . \quad$ HRMS (FAB, Neg.) $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 374.1062, found 374.1070.

All compounds in Table 2-1-3 were synthesized in the same procedure.

2-\{(2R,4aR,5R,6R,7aS)-5-[(2-chlorophenoxy)methyl]-6-hydroxyoctahydrocyclopenta[b]pyran-2-yl\}-1,3-th iazole-4-carboxylic acid (27b)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{ddd}, J=8.1,7.5,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{ddd}, J=8.1,7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 2 \mathrm{H})$, $4.02(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.08(\mathrm{~m}, 3 \mathrm{H}), 1.95-1.65(\mathrm{~m}, 5 \mathrm{H})$ (Peaks of OH and $\mathrm{CO}_{2} H$ were not observed.). LCMS (ELSD) $R T=0.87 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}) .\mathrm{m} / \mathrm{z} 408(\mathrm{M}-\mathrm{H})^{-} . \quad \mathrm{HRMS}(\mathrm{FAB}, \mathrm{Neg}$. $\mathrm{C}_{19} \mathrm{H}_{19}{ }^{35} \mathrm{ClNO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 408.0672, found 408.0682.
$2-[(2 R, 4 a R, 5 R, 6 R, 7 a S)-6-h y d r o x y-5-\{[2-(t r i f l u o r o m e t h y l) p h e n o x y] m e t h y l\} o c t a h y d r o c y c l o p e n t a[b] p y r a n-$ 2-yl]-1,3-thiazole-4-carboxylic acid (27c)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=9.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 2 \mathrm{H}), 3.88$ $(\mathrm{m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 3 \mathrm{H}), 1.86(\mathrm{~m}, 3 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H})$ (Peaks of OH and $\mathrm{CO}_{2} \mathrm{H}$ were not observed.). LCMS (ELSD) $R T=0.90 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}). m / z 442(\mathrm{M}-\mathrm{H})^{-} . \quad \mathrm{HRMS}(\mathrm{FAB}, \mathrm{Neg}.) \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}$ - H) ${ }^{-}$calc. mass 442.0936, found 442.0932
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.10$ $(\mathrm{m}, 2 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.04(\mathrm{~m}, 3 \mathrm{H}), 1.96-1.65(\mathrm{~m}, 5 \mathrm{H})$ (Peaks of OH and $\mathrm{CO}_{2} \mathrm{H}$ were not observed.). LCMS (ELSD) $R T=0.83 \mathrm{~min}(>98 \%) . \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}) .\mathrm{m} / \mathrm{z} 392(\mathrm{M}-\mathrm{H})^{-} . \mathrm{HRMS}(\mathrm{FAB}$, Neg.) $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FNO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 392.0968 , found 392.0964

2-\{(2R,4aR,5R,6R,7aS)-6-hydroxy-5-[(3-methylphenoxy)methyl]octahydrocyclopenta[b]pyran-2-yl\}-1,3-th iazole-4-carboxylic acid (27e)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.70(\mathrm{~m}, 3 \mathrm{H}), 5.08(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.88(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.95-3.82(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.08(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.65$ ($\mathrm{m}, 5 \mathrm{H}$) (Peak of $\mathrm{CO}_{2} \mathrm{H}$ was not observed.). LCMS (ELSD) $R T=0.88 \mathrm{~min}(>98 \%) . \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}) \mathrm{m} /$. $388(\mathrm{M}-\mathrm{H})^{-} . \quad$ HRMS (FAB, Neg.) $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 388.1219 , found 388.1212

2-\{(2R,4aR,5R,6R,7aS)-5-[(3-chlorophenoxy)methyl]-6-hydroxyoctahydrocyclopenta[b]pyran-2-yl\}-1,3-th iazole-4-carboxylic acid (27f)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=8.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H})$, $3.86(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.04(\mathrm{~m}, 3 \mathrm{H}), 1.93-1.60(\mathrm{~m}, 5 \mathrm{H})\left(\right.$ Peak of $\mathrm{CO}_{2} \mathrm{H}$ was not observed. $) . \quad$ LCMS (ELSD) $R T=$ $0.90 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}) .\mathrm{m} / \mathrm{z} 408(\mathrm{M}-\mathrm{H})^{-} . \quad \mathrm{HRMS}(\mathrm{FAB}, \mathrm{Neg}.) \mathrm{C}_{19} \mathrm{H}_{19}{ }^{35} \mathrm{ClNO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 408.0672 , found 408.0663

2-[(2R,4aR,5R,6R,7aS)-6-hydroxy-5-\{[3-(trifluoromethoxy)phenoxy]methyl\}octahydrocyclopenta[b]pyran -2-yl]-1,3-thiazole-4-carboxylic acid (27g)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.21(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 2 \mathrm{H})$, $1.87(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H})$ (Peaks of OH and $\mathrm{CO}_{2} \mathrm{H}$ were not observed.). LCMS (ELSD) $\mathrm{RT}=0.95 \mathrm{~min}$ $(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}). m / z 458(\mathrm{M}-\mathrm{H})^{-} . \quad \mathrm{HRMS}(\mathrm{FAB}, \mathrm{Neg}.) \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{6} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass

2-[(2R,4aR,5R,6R,7aS)-6-hydroxy-5-\{[3-(trifluoromethyl)phenoxy]methyl\}octahydrocyclopenta[b]pyran-2-yl]-1,3-thiazole-4-carboxylic acid (27h)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{t}, J$ $=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~m}$, $2 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H})$ (Peaks of OH and $\mathrm{CO}_{2} \mathrm{H}$ were not observed.). LCMS (ELSD) $R T=0.92 \mathrm{~min}$ $(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}$, Neg. $) \mathrm{m} / \mathrm{z} 442(\mathrm{M}-\mathrm{H})^{-} . \quad \mathrm{HRMS}(\mathrm{FAB}, \mathrm{Neg}.) \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 442.0936, found 442.0930

2-\{(2R,4aR,5R,6R,7aS)-5-[(3-fluorophenoxy)methyl]-6-hydroxyoctahydrocyclopenta[b]pyran-2-yl\}-1,3-thi azole-4-carboxylic acid (27i)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.57(\mathrm{~m}, 3 \mathrm{H}), 5.22(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~m}$, $2 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 2.20-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H})$ (Peaks of OH and $\mathrm{CO}_{2} \mathrm{H}$ were not observed.). LCMS (ELSD) $R T=0.85 \mathrm{~min}(>98 \%) . \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}) \mathrm{m} /$. $392(\mathrm{M} \mathrm{-} \mathrm{H})^{-} . \quad$ HRMS (FAB, Neg.) $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FNO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 392.0968 , found 392.0959

2-\{(2R,4aR,5R,6R,7aS)-6-hydroxy-5-[(4-methylphenoxy)methyl]octahydrocyclopenta[b]pyran-2-yl\}-1,3-th iazole-4-carboxylic acid (27j)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.08(\mathrm{t}, J=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H})$, $2.07(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.64(\mathrm{~m}, 5 \mathrm{H})\left(\right.$ Peak of $\mathrm{CO}_{2} \mathrm{H}$ was not observed.). LCMS (ELSD) $R T=0.88 \mathrm{~min}(>98 \%)$. MS (FAB, Neg.) m/z $388(\mathrm{M}-\mathrm{H})^{-} . \quad \mathrm{HRMS}(\mathrm{FAB}, \mathrm{Neg}.) \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 388.1219, found 388.1215
iazole-4-carboxylic acid (27k)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.08(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.07(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.63(\mathrm{~m}, 5 \mathrm{H})$ (Peak of $\mathrm{CO}_{2} H$ was not observed.). LCMS (ELSD) $R T=0.90 \min (>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}) .\mathrm{m} / \mathrm{z} 408(\mathrm{M}-$ H) ${ }^{-}$. HRMS (FAB, Neg.) $\mathrm{C}_{19} \mathrm{H}_{19}{ }^{35} \mathrm{ClNO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})$ - calc. mass 408.0672 , found 408.0677

2-[(2R,4aR,5R,6R,7aS)-6-hydroxy-5-\{[4-(trifluoromethoxy)phenoxy]methyl\}octahydrocyclopenta[b]pyran -2-yl]-1,3-thiazole-4-carboxylic acid (271)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.08(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.64(\mathrm{~m}$, 5H) (Peak of $\mathrm{CO}_{2} \mathrm{H}$ was not observed.). LCMS (ELSD) $R T=0.94 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}) .\mathrm{m} / \mathrm{z} 458$ $(\mathrm{M}-\mathrm{H})^{-} . \quad$ HRMS (FAB, Neg.) $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{6} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 458.0885, found 458.0883

2-[(2R,4aR,5R,6R,7aS)-6-hydroxy-5-\{[4-(trifluoromethyl)phenoxy]methyl\}octahydrocyclopenta[b]pyran-2-yl]-1,3-thiazole-4-carboxylic acid (27m)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.61(\mathrm{~m}$, $5 \mathrm{H})$ (Peak of $\mathrm{CO}_{2} \mathrm{H}$ was not observed.). LCMS (ELSD) $R T=0.93 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}) .\mathrm{m} / \mathrm{z} 442$ $(\mathrm{M}-\mathrm{H})^{-} . \quad \mathrm{HRMS}(\mathrm{FAB}, \mathrm{Neg}.) \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 442.0936 , found 442.0932

$2-\{(2 R, 4 \mathrm{a} R, 5 R, 6 R, 7 \mathrm{aS})-5-[(4-f l u o r o p h e n o x y) m e t h y l]-6-h y d r o x y o c t a h y d r o c y c l o p e n t a[b] p y r a n-2-y l\}-1,3-t h i$ azole-4-carboxylic acid (27n)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 2 \mathrm{H})$, $4.04(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H})$ (Peaks of OH and $\mathrm{CO}_{2} \mathrm{H}$ were not observed.). LCMS (ELSD) $R T=0.83 \mathrm{~min}(>98 \%)$. MS (FAB, Neg.) m / z $392(\mathrm{M}-\mathrm{H})^{-} . \quad$ HRMS (FAB, Neg.) $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FNO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 392.0968 , found 392.0962

Synthesis of 7

Isopropyl 2-[(2R,4aR,5R,6R,7aS)-5-[(1E)-3-oxo-4-phenoxy-1-buten-1-yl]-6-
(tetrahydro-2H-pyran-2-yloxy)octahydrocyclopenta[b]pyran-2-yl]-1,3-thiazole-4-carboxylate (24-4)

To a solution of 24-2 ($450 \mathrm{mg}, 1.06 \mathrm{mmol}$), dimethyl (2-oxo-3-phenoxypropyl)-phosphonate ($549 \mathrm{mg}, 2.13$ $\mathrm{mmol})$ and triethylamine $(0.296 \mathrm{~mL}, 2.13 \mathrm{mmol})$ in $\mathrm{THF}(5.0 \mathrm{~mL})$ at room temperature was added $\mathrm{LiCl}(91 \mathrm{mg}$, 2.13 mmol). After stirred at room temperature for 16 h , the reaction mixture was quenched with 1.0 M hydrochloric acid and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography L SI50, hexane/EtOAc 3:1-1:1) gave 24-4 (309 mg) in 52% yield.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{brs}, 1 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.57(\mathrm{dd}, J=15.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{sep}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~m}$, $0.5 \mathrm{H}), 4.51(\mathrm{~m}, 0.5 \mathrm{H}), 4.21-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~m}, 0.5 \mathrm{H}), 3.71(\mathrm{~m}, 0.5 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}$, $1 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.63-1.45(\mathrm{~m}, 6 \mathrm{H}), 1.37(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H})$.

Isopropyl 2-[(2R,4aR,5R,6R,7aS)-5-[(1E,3R)-3-hydroxy-4-phenoxy-1-buten-1-yl]

-6-(tetrahydro-2H-pyran-2-yloxy)octahydrocyclopenta[b]pyran-2-yl]-1,3-thiazole-4-carboxylate (24-5)

(3aR)-1-methyl-3,3-diphenyl-tetrahydro-3H-pyrrolo[1,2-c][1,3,2]oxazaborole (1.0 M THF solution, 0.182 mL ,
$0.182 \mathrm{mmol})$ in THF $(4.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added borane-dimethyl sulfide complex ($35.6 \mathrm{mg}, 0.468 \mathrm{mmol}$). After stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was quenched with MeOH and $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography L SI50, hexane/EtOAc 3:1-1:1) gave 24-5 (267 mg) in 92% yield.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{brs}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 5.85-5.65(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H})$, $4.17(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.10(\mathrm{~m}, 2 \mathrm{H})$, 1.97-1.76 (m, 3H), 1.72-1.43 (m, 6H), $1.33(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H})$ (Peak of OH was not observed.).

The stereochemistry of C15 position was determined by modified Mosher's method.

Isopropyl

2-\{(2R,4aR,5R,6R,7aS)-6-hydroxy-5-[(1E,3R)-3-hydroxy-4-phenoxy-1-buten-1-yl]octahydro cyclopenta[b]pyran-2-yl\}-1,3-thiazole-4-carboxylate (24-6)

To a solution of $\mathbf{2 4 - 5}(130 \mathrm{mg}, 0.233 \mathrm{mmol})$ in $\mathrm{MeOH}(4.0 \mathrm{~mL})$ at room temperature was added p-toluene sulfonic acid monohydrate $(4.4 \mathrm{mg}, 0.023 \mathrm{mmol})$. After stirred at room temperature for 5 h , the reaction
mixture was quenched with $\mathrm{Et}_{3} \mathrm{~N}$. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography L SI50, hexane/EtOAc 3:1-1:1) gave 24-6 (89.0 mg) in 81% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 5.73(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{dd}$, $J=15.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=15.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.24(\mathrm{~m}$, $3 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H})$ (Peaks of $\mathrm{O} H$ were not observed.).

2-\{(2R,4aR,5R,6R,7aS)-6-hydroxy-5-[(1E,3R)-3-hydroxy-4-phenoxy-1-buten-1-yl]octahydrocyclopenta[b]

 pyran-2-yl\}-1,3-thiazole-4-carboxylic acid (7)

To a solution of $\mathbf{2 4 - 6}(64.0 \mathrm{mg}, 0.135 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ at room temperature was added 2.0 M sodium hydroxide ($1.0 \mathrm{~mL}, 2.0 \mathrm{mmol}$). After stirred at room temperature for 2 h , the reaction mixture was quenched with 1.0 M hydrochloric acid and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave $7(56.2 \mathrm{~m})$ in 96% yield: colorless viscous oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.74(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~m}, 1 \mathrm{H})$, $2.33(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.56(\mathrm{~m}, 2 \mathrm{H})$ (Peaks of OH and $\mathrm{CO}_{2} \mathrm{H}$ were not observed.). LCMS (ELSD) $R T=0.75 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}) .\mathrm{m} / \mathrm{z} 430(\mathrm{M}-\mathrm{H})^{-} . \mathrm{HRMS}(\mathrm{FAB}$, Neg.) $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 430.1324 , found 430.1321 .

Biology In vitro assay

EP2, EP4 and IP cAMP assay

Chinese hamster ovary (CHO) cells $\left(1.25 \times 10^{5}\right.$ cells/well) expressing human EP2 or human EP4 or human IP receptor were harvested and suspended in a 96 -well $1 / 2$ area plate. cAMP concentrations were measured using a cAMP HTRF HiRange kit (Cisbio Bioassays)* after treatment of compounds. The reaction rate (\%) of the compounds relative to the cAMP concentration obtained with PGE_{2} treatment at $1 \mu \mathrm{M}$ was calculated. Furthermore, a non-linear regression analysis was performed using the Sigmoid Emax Model to estimate EC_{50} values.
*http://www.cisbio.com/usa/drug-discovery/membrane-based-assays-camp-hirange-assay-kit (accessed Nov 24, 2015)

EP2 $\boldsymbol{\beta}$ arrestin recruitment assay

PathHunter β-arrestin HEK-293 PTGER2 cell lines (DiscoveRx) were seeded at a density of 5000 cells/well into a 384 -well plate and cultured at $37{ }^{\circ} \mathrm{C}$ in the presence of $5 \% \mathrm{CO}_{2}$ for 24 hours. β-arrestin recruitment were measured using a PathHunter Detection Kit (DiscoveRx)* after treatment of compounds. The reaction rate (\%) of the compounds relative to the β-arrestin recruitment obtained with PGE_{2} treatment at $10 \mu \mathrm{M}$ was calculated. Furthermore, a non-linear regression analysis was performed using the Sigmoid Emax Model to estimate EC_{50} values.

* https://www.discoverx.com/product-data-sheets-3-tab/93-0214c1 (accessed Nov 24, 2015)

EP1, EP3 and FP Ca assay

Chem-1 cells expressing human FP receptor or Chinese hamster ovary (CHO) cells expressing human EP1 or human EP3 were seeded at a density of 1×10^{4} cells per well into 96 -well plates and cultured at $37^{\circ} \mathrm{C}$ in the presence of $5 \% \mathrm{CO}_{2}$ for 2 days. Load buffer (HBSS containing Calcium 5, 10 mM HEPES, $20 \mu \mathrm{M}$ indomethacin, and 2.5 mM probenecid) was added in each well and incubated in the dark at room temperature for 1 hour. After addition of the compounds, intracellular Ca^{2+} concentration was measured using a fluorescence drug screening
system (FDSS-7000 : Hamamatsu Photonics, Tokyo, Japan)*. The reaction rate (\%) of the compounds relative to intracellular Ca^{2+} concentration obtained with maximum increases of PGE_{2} treatment was calculated. Futhermore, a non-linear analysis was performed using the Sigmoid Emax Model to estimate EC_{50} values. * http://www.hamamatsu.com/jp/ja/FDSS7000EX.html (accessed Nov 24, 2015)

References and notes

1 Coleman, R. A.; Kennedy, I.; Humphrey, P. P. A.; Bunce, K.; Lumley, P. In Comprehensive Medicinal Chemistry; Emmett, J. C., Ed.; Pergamon: Oxford, 1990; Vol. 3, pp 643.

2 Yoshida, K.; Oida, H.; Kobayashi, T.; Maruyama, T.; Tanaka, M.; Katayama, T.; Yamaguchi, K.; Segi, E.; Tsuboyama, T.; Matsushita, M.; Ito, K.; Ito, Y.; Sugimoto, Y.; Ushikubi, F.; Ohuchida, S.; Kondo, K.; Nakamura, T.; Narumiya, S. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 4580.

3 Katsuyama, M.; Ikegami, R.; Karahashi, H.; Amano, F.; Sugimoto, Y.; Ichikawa, A. Biochem. Biophys. Res. Commun. 1998, 251, 727.

4 Jiang, J.; Dingledine, R. Trends Pharmacol. Sci. 2013, 34, 413.

5 McCullough, L.; Wu, L.; Haughey, N.; Liang, X.; Hand, T.; Wang, Q.; Breyer, R. M.; Andreasson, K. J. Neurosci. 2004, 24, 257.

6 Liu, D.; Wu, L.; Breyer, R.; Mattson, M. P.; Andreasson, K. Ann. Neurol. 2005, 57, 758.

7 Li, J.; Liang, X.; Wang, Q.; Breyer, R. M.; McCullough, L.; Andreasson, K. Neurosci. Lett. 2008, 438, 210.
8 Ahmad, M.; Saleem, S.; Shah, Z.; Maruyama, T.; Narumiya, S.; Doré, S. Exp. Transl. Stroke Med. 2010, 2, 12.

9 Cameron, K.O.; Lefker, B. A.; Ke, H. Z.; Li, M.; Zawistoski, M. P.; Tjoa, CM.; Wright, A. S.; DeNinno, S. L.; Paralkar, V. M.; Owen, T. A.;, Yu, L.; Thompson, D. D. Bioorg. Med. Chem. Lett. 2009, 19, 2075.

10 Tani, K.; Naganawa, A.; Ishida, A.; Egashira, H.; Sagawa, K.; Harada, H.; Ogawa, M.; Maruyama, T.; Ohuchida, S.; Nakai, H.; Kondo, K.; Toda, M. Bioorg. Med. Chem. Lett. 2001, 11, 2025.

Gardiner, P. J. Br. J. Pharmacol. 1986, 87, 45.

Old, D. W.; Dinh, D. T. Int. Pat. Appl. WO2006098918, 2006.

Prasanna,G.; Bosworth, C. F.; Lafontaine, J. A. Int. Pat. Appl. WO2008015517, 2008.

Hagihara, M.; Yoneda, K.; Okanari, E.; Shigetomi, M. Int. Pat. Appl. WO2010113957, 2010.

Coleman, R.; Middlemiss, D. Int. Pat. Appl. WO2009098458, 2009.
Prasanna, G.; Carreiro, S.; Anderson, S.; Gukasyan, H.; Sartnurak, S.; Younis, H.; Gale, D.; Xiang, C.; Wells, P.; Dinh, D.; Almaden, C.; Fortner, J.; Toris, C.; Niesman, M.; Lafontaine, J.; Krauss,

Exp. Eye Res. 2011, 93, 256.

17 Violin, J. D.; Lefkowitz, R. J. Trends Pharmacol. Sci. 2007, 28, 416.

18 Zhou, L.; Lovell, K. M.; Frankowski, K. J.; Slauson, S. R.; Phillips, A. M.; Streicher, J. M.; Stahl, E.; Schmid, C. L.; Hodder, P.; Madoux, F.; Cameron, M. D.; Prisinzano, T. E.; Aubé, J.; Bohn, L. M. J. Biol. Chem. 2013, 288, 36703.

19 Correll, C. C.; Mckittrick, B. A. J. Med. Chem. 2014, 57, 6887.

20 Chen, X.; Sassano, M. F.; Zheng, L.; Setola, V.; Chen, M.; Bai, X.; Frye, S. V.; Wetsel, W. C.; Roth, B. L.; Jin, J. J. Med. Chem. 2012, 55, 7141.

21 Chen, X. T.; Pitis, P.; Liu, G.; Yuan, C.; Gotchev, D.; Cowan, C. L.; Rominger, D. H.; Koblish, M.; Dewire, S. M.; Crombie, A.L.; Violin, J. D.; Yamashita, D. S. J. Med. Chem. 2013, 56, 8019.

22 Violin, J. D.; DeWire, S. M.; Yamashita, D.; Rominger, D. H.; Nguyen, L.; Schiller, K.; Whalen, E. J.; Gowen, M.; Lark, M.W. J. Pharmacol. Exp. Ther. 2010, 335, 572.

23 Bilak, M.; Wu, L.; Wang, Q.; Haughey, N.; Conant, K.; St Hillaire, C.; Andreasson, K. Ann. Neurol. 2004, 56, 240.

24 Carrasco, E.; Werner, P.; Casper, D. Neurosci. Lett. 2008, 441, 44.

25 Chun, K. S.; Lao, H. C.; Trempus, C. S.; Okada, M.; Langenbach, R. Carcinogenesis 2009, 30, 1620.
26 Chun, K. S.; Lao, H. C.; Langenbach, R. J. Biol. Chem. 2010, 285, 39672.

27 Yun, S. P.; Ryu, J. M.; Jang, M. W.; Han, H. J. J. Cell Physiol. 2011, 226, 559.
Kambe, T.; Maruyama,T.; Nakai, Y.; Yoshida, H.; Oida, H.; Maruyama, T.; Abe, N.; Nishiura, A.; Nakai, H.; Toda, M. Bioorg. Med. Chem. 2012, 20, 2235.

29 Roy, A. J.; Kalarmazoo, M. U.S. Patent, 4490537, 1977.
Path Hunter assay (DiscoveRX homepage). https://www.discoverx.com/arrestin (accessed Nov 12, 2015).
31 Rajagopal, S.; Ahn, S.; Rominger, D. H.; MacDonald, W. G.; Lam, C. M.; DeWire, S. M.; Violin, J. D.; Lefkowitz, R. J. Mol. Pharmacol.2011, 80, 367

Chapter 2-2

Structural optimization and structure-functional selectivity relationship studies of

G protein-biased EP2 receptor agonists

Abstract

:

Further modification of novel G protein-biased EP2 agonist $\mathbf{1}$ was undertaken to improve G protein activity and investigate structure-functional selectivity relationship. Optimization of substituents on phenyl group, followed by modification of $11-\mathrm{OH}$ led the author find 9 with 100 -fold increase in G protein activity relative to $\mathbf{1}$ without increase of β arrestin recruitment. Furthermore, SFSR studies revealed that the combination of meta and para substituents on phenyl moiety was crucial to regulate the functional selectivity.

Figure 2-2-1. Outline of Chapter 2-2

Introduction

G protein-coupled receptors (GPCRs) are the one of the most successful targets of drug discovery. A lot of drugs targeting GPCRs have already been launched as therapeutic agents for a variety of diseases. In addition to G protein activation, GPCRs can also activate other distinct signaling pathways like β arrestin signaling. β arrestins were regarded as negative regulators of G protein-mediated signaling. It is suggested that the β arrestin also have a variety of functions by regulating GPCR internalization and promoting intracellular signaling independently. Recently, GPCR biased ligands are identified to engage signals selectively and also inhibit other signals mediated by the same receptor. Biased ligand received a fair amount of attention in drug discovery, because they might have potentials to enhance efficacy or remove on-target adverse effect. A number of GPCR biased ligands have been revealed ${ }^{1-6}$ and some of them have already tested in clinical development.

Figure 2-2-2; Reported GPCR biased ligands

TRV027 (2) ${ }^{6}$ is a β arrestin-biased agonist of angiotensin II type I receptor. TRV027 exhibited unique pharmacology, distinct from classical angiotensin II receptor blockers (ARBs, i.e. losartan and varsartan). Classical ARBs is known to decrease both blood pressure and cardiac performance in rat. On the other hand, TRV027, which particularly activates β arrestin signaling, exerted potent hypotensive action without decrease of cardiac performance and preserved stroke volume in rat. These findings suggested that TRV027 would be a beneficial therapeutic agent for acute heart failure (AHF). ${ }^{7} \quad$ TRV130 (3) ${ }^{5}$ is reported as G protein-biased agonist of μ opioid receptor to exert desired analgesic effects in mice and rat with reducing morphine's side effects, such
as constipation and respiratory depression. TRV130 is under evaluation in Phase IIb for the treatment of acute severe pain.

In previous study, the author has reported the identification of novel G protein-biased EP2 agonist $\mathbf{1}^{8}$. Recently a number of studies of EP2 receptor signaling and their functions were reported. EP2 receptor exerted beneficial neuroprotective effects in the brain via G protein-mediated cAMP-PKA signaling ${ }^{9-12}$, on the other hand, the activation of β arrestin signaling of EP2 receptor led to deleterious effects, like tumorigenesis and angiogenesis. ${ }^{13-15}$ Therefore, EP2 receptor G protein-biased ligand is expected to be new generation of EP2 agonists that particularly increase the efficacy and avoid deleterious effect of EP2 receptor.

In this chapter, the author describes further optimization of novel G protein-biased agonist $\mathbf{1}$ to increase G protein activity and functional selectivity. Structure-functional selectivity relationship (SFSR) ${ }^{4}$ studies are also reported.

Results and discussion

Optimization of substituents on pheny group

In chapter 2-1 ${ }^{8}$, the author reported the identification of highly selective EP2 agonists $\mathbf{1}$ and investigated SFSR study. The SFSR indicated that introduction of meta substituent into phenyl group of $\mathbf{1}$ remarkably improved G protein activity while it also increased β arrestin activity (4a). On the other hand, introduction of para substituent (4b) showed decreased β arrestin recruitment (Emax $28 \% \rightarrow 12 \%$) without loss of G protein activity. The author supposed that combination of meta substituent and para substituent improved both G protein activity and functional selectivity. Therefore, the author synthesized and evaluated di-substituted analogues $\mathbf{4 c} \mathbf{- j}$. The results are shown in Table2-2-1.

Cpmd	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	hEP2			
						G protein (cAMP)		β arrestin	
						$\mathrm{EC}_{50}(\mathrm{nM})$	$E_{\text {max }}{ }^{\text {b }}$	$\mathrm{EC}_{50}(\mathrm{nM})$	$E_{\text {max }}$
1	H	H	H	H	H	13	118	>10,000	28
4a	H	CF_{3}	H	H	H	0.90	112	9.0	62
4b	H	H	Cl	H	H	3.9	96	>10000	12
4 c	H	CF_{3}	Cl	H	H	0.11	78	>10,000	41
4d	H	Cl	Cl	H	H	0.57	100	>10,000	23
4 e	H	Me	Cl	H	H	0.69	88	>10,000	23
4f	H	Et	Cl	H	H	0.68	95	>10,000	29
4 g	H	iPr	Cl	H	H	2.0	122	>10,000	29
4h	H	OMe	Cl	H	H	1.8	83	>10,000	19
$4 i$	H	Me	Me	H	H	2.9	90	>10,000	36
4j	H	Me	CF_{3}	H	H	3.9	85	>10,000	46
4k	H	Me	Cl	Me	H	0.17	102	2.3	98
41	H	Cl	Cl	H	Cl	0.20	99	3.7	94
4m	Cl	Cl	Cl	H	H	0.21	102	2.3	98

${ }^{\text {a }}$ Assay protocols are provided in the Supporting Information. EC_{50} values represent the mean of two experiments. ${ }^{\mathrm{b}}$ All $\mathrm{E}_{\max }$ were normalized to PGE_{2} results.

Table 2-2-1. Optimization of substituents on the pheny group

As the author expected, compound $\mathbf{4 c}$, which hybridizes the substituents of $\mathbf{4 a}$ and $\mathbf{4 b}$, showed a 35 -fold increased G protein activity compared to $\mathbf{4 b}$ with decreasing β arrestin activity relative to $\mathbf{4 a}$. However, $\mathbf{4 c}$ still modulated β arrestin recruitment (Emax 41\%) while its G protein activity is partial (78\%). Therefore, the author continued further optimization of meta substituents of $\mathbf{4 c}$. Both of $3,4-\mathrm{diCl}$ analogue $\mathbf{4 d}$ and $3-\mathrm{Me}-4-\mathrm{Cl}$ analogue $\mathbf{4 e}$ decreased β arrestin efficacy relative to $\mathbf{4 c}$ (Emax 41% to 23%), retaining potent G protein activity. Introductions of more steric hindered substituent 3 -Et and $3-i \operatorname{Pr}$ group gave $\mathbf{4 f}$ and $\mathbf{4 g}$, both of which also decreased β arrestin activity (Emax 41% to 29\%) without significant loss of G protein activity. Electron donating group 3-MeO analogue $\mathbf{4 h}$ showed less potent G protein activity than $\mathbf{4 c}$ though it decreased β arrestin activity (Emax 41% to 19%). Conversion of para-substituents of $\mathbf{4 e}$ to Me and CF_{3} group gave $\mathbf{4 i}$ and $\mathbf{4 j}$, both of which exerted lower G protein activity and increased β arrestin activity compared to $\mathbf{4 e}$ (Emax 23% to 36% and 46%, respectively). Introduction of 5-Me substituent into another meta position of $\mathbf{4 e}$ gave $\mathbf{4 k}$, which showed significant increase of β arrestin recruitment compared to $4 \mathbf{e}\left(\mathrm{EC}_{50}>10,000 \mathrm{nM}\right.$ to 2.3 nM$)$. The other tri-substituents analogues $\mathbf{4 I}$ and $\mathbf{4 m}$ also showed highly potent β arrestin activity similar to $\mathbf{4 k}$. These results suggested that the combination of meta and para substituent should be essential to satisfy both G protein biased agonist activity and selectivity.

Optimization of α chain of 4 e

In next attempts, transformation of heterocyclic group of α chain was carried out to investigate the effect of thiazole group as outlined in Table 2-2-2. Introduction of oxazole group instead of thiazole of $\mathbf{4 e}$ gave $\mathbf{5}$, which showed a 21 -fold decrease of G protein activity. 2,5-Furan analogue $\mathbf{6}$ showed slightly decreased G protein activity without loss of functional and receptor-subtype selectivity. On the other hand, 2,4-thiophene analogue 7 and 2,4-furan analogue $\mathbf{8}$ significantly decreased G protein activity (167 -fold and 80 -fold). These results indicate that thiazole group should be an optimal moiety of the heterocyclic part for potent EP2 activity.

cmpd	R	hEP2				$\begin{gathered} \mathrm{hEP} 1 \\ \mathrm{EC}_{50}(\mathrm{nM})^{\mathrm{a}} \end{gathered}$	$\begin{gathered} \mathrm{hEP3} \\ \mathrm{EC}_{50}(\mathrm{nM})^{\mathrm{a}} \end{gathered}$	$\begin{gathered} \mathrm{hEP4} \\ \mathrm{EC}_{50}(\mathrm{nM})^{\mathrm{a}} \end{gathered}$	$\begin{gathered} \mathrm{nIP} \\ \mathrm{EC}_{50}(\mathrm{nM})^{\mathrm{a}} \end{gathered}$	$\begin{gathered} \mathrm{hFP} \\ \mathrm{EC}_{50}(\mathrm{nM})^{\mathrm{a}} \end{gathered}$
		G protein(CAMP)		β arrestin						
		$\mathrm{EC}_{50}(\mathrm{nM})^{2}$	$\mathrm{E}_{\text {max }}$ (\%)	$E C_{50}(\mathrm{nM})^{\text {a }}$	$\mathrm{E}_{\text {max }}$ (\%)					
4 e		0.69	88	>10,000	23	>10,000	>10,000	>10,000	4900	>10,000
5		15	127	>10,000	18	>10,000	>10,000	>10,000	7900	>10,000
6		2.2	96	>10,000	17	>10,000	>10,000	>10,000	5300	>10,000
7		114	102	>10,000	28	>10,000	>10,000	>10,000	>10,000	>10,000
8		55	109	>10,000	21	>10,000	>10,000	>10,000	>10,000	>10,000

${ }^{a}$ Assay protocols are provided in the Supporting Information. EC_{50} values represent the mean of two experiments.

Table 2-2-2. Optimization of α chain

Optimization of 11-hydroxyl group

Chemical modification of $11-\mathrm{OH}$ was performed to improve G protein activity and investigate SFSR as shown in Table 2-2-3. Compound $\mathbf{9}$ with 11β-hydroxyl moiety exerted 4.9 -fold more potent G protein activity than $\mathbf{4 e}$ without any change in β arrestin recruitment. On the other hand, 11β-methoxy analogue $\mathbf{1 0}$ and 11β-fluoride analogue $\mathbf{1 1}$ decreased G protein activity relative to compound 9 . These results indicate that hydrogen donating profile of 11β-hydroxyl group would be crucial to show potent G protein activity. To the author's best knowledge, there are no reports of potent EP2 agonist which has unnatural 11β-hydroxyl group, therefore the author supposed that hydroxyl moiety of 9 interacts with EP2 receptor in a different manner from 11α-hydroxyl group of PGE_{2} or previously reported EP2 agonist $\left(\mathrm{PGE}_{2}\right.$ analogues). Furthermore, the interaction of 11β-hydroxyl group with EP2 receptor might cause conformational change of intracellular region to interact with G protein preferentially.

cmpd	R	hEP2				$\begin{gathered} \mathrm{hEP} 1 \\ \mathrm{EC}_{50}(\mathrm{nM})^{\mathrm{a}} \end{gathered}$	$\begin{gathered} \mathrm{hEP} 3 \\ \mathrm{EC}_{50}(\mathrm{nM})^{\mathrm{a}} \end{gathered}$	$\begin{gathered} \mathrm{hEP4} \\ \mathrm{EC}_{50}(\mathrm{nM})^{\mathrm{a}} \end{gathered}$	$\begin{gathered} \mathrm{hIP} \\ \mathrm{EC}_{50}(\mathrm{nM})^{\mathrm{a}} \end{gathered}$	$\begin{gathered} \mathrm{hFP} \\ \mathrm{EC}_{50}(\mathrm{nM})^{\mathrm{a}} \end{gathered}$
		G protein(cAMP)		β arrestin						
		$\mathrm{EC}_{50}(\mathrm{nM})^{\mathrm{a}}$	$\mathrm{E}_{\text {max }}$ (\%)	$\mathrm{EC}_{50}(\mathrm{nM})^{\text {a }}$	$\mathrm{E}_{\max }$ (\%)					
4 e	HO	0.69	88	>10,000	23	>10,000	>10,000	>10,000	4900	>10,000
9	HO	0.14	97	>10,000	21	>10,000	>10,000	>10,000	>10,000	>10,000
10	MeO	23	73	>10,000	-	>10,000	>10,000	>10,000	>10,000	>10,000
11	F	11	110	>10,000	31	>10,000	>10,000	>10,000	1700	>10,000

[^0]Table 2-2-3; Optimization of 11-hydroxyl group

Recently, a fair number of researches on relationship between the structure of GPCRs and biased signaling have been reported. X-ray crystallography and NMR spectroscopy studies give useful information to consider the differences between biased agonist and full agonist, particularly, binding site of biased ligands ${ }^{16,17}$, interactions of receptor with G protein and β arrestin 18, and conformational change of intracellular loop of receptors when biased ligand or unbiased ligands bind to the receptor. ${ }^{19}$ Taking into account these reports, the interaction of ligand with transmembrane 5 (TM5) and TM6 of receptor is considered to play a key role to activate G protein-mediated signaling, and the interaction of ligands with TM7 would result in activating β arrestin recruitment. The author supposes that meta and para substituents of phenyl group obtained a specific hydrophobic or Van der Waals interaction with TM5 and/or TM6 of EP2 receptor, and ortho substituents may interact with TM7. The technical innovation in analyzing the structure of GPCRs (i.e. X-ray crystallography and NMR spectroscopy) makes enormous strides forward in these days. These technologies might reveal three- dimensional structure of EP2 receptor and its structure would enable the author to validate the author hypothesis.

Figure 2-2-3; Proposed interaction between EP2 agonists and receptor.

Syntheses of bicyclic derivatives

All tested compounds in Tables 2-2-1, 2 and 3 were synthesized as outlined in Schemes 2-2-1A-F.

Compounds $\mathbf{4 c}$-l were synthesized by a sequential procedure: step 1 ; introduction of 3 -chloro-4-methylphenol by Mitsunobu reaction, step 2; removal of protecting groups of 11-hydroxyl or carboxylic acid moiety as outlined in

Scheme 2-2-1A.

Syntheses of 6, 7 and $\mathbf{8}$ were described in Scheme 2-2-1B. Transformations of the thiazole part were performed
by coupling reaction of $\mathbf{1 8}$ with Reformatsky type reagents. Deprotection of the TBS group gave alcohols, followed by a sequential procedure afforded compounds 6-8.

Compound 5 couldn't be synthesized in similar manner as described in Scheme 2-2-1B due to instability of Reformatsky reagent, therefore oxazole ring was constructed stepwise procedure as described in Scheme 2-2-1C. Firstly, the acetyl protecting group of $\mathbf{1 3}$ was converted to THP group, which is tolerable to reducing agent. Nitrile 14 was reduced to an aldehyde, Pinnick oxidation of which afforded the carboxylic acid derivative. The resulting product was transformed to serine ester 15 through an acid anhydride intermediate. The oxazoline ring was constructed under dehydration condition, and aromatization under oxidation condition gave oxazole 16. Deprotection of the TBS group, followed by a sequential procedure gave 5 .

As described in Scheme 2-2-1D, the 11ß-hydroxyl group of 9 was introduced by Mitsunobu reaction with 20. Deprotection of the TBDPS group afforded 21, which was transformed to $\mathbf{9}$ by a sequential procedure.

Synthesis of $\mathbf{1 0}$ was outlined in Scheme 2-2-1E. $11 \beta-\mathrm{OH}$ group was introduced in the similar manner of Scheme 1D. Methylation was performed with methyl iodide in the presence of silver oxide.

Synthesis of $\mathbf{1 1}$ was shown in Scheme 2-2-1F. A sequential procedure from $\mathbf{2 5}$ gave $\mathbf{2 6}$. 11β-fluoride was introduced by using Deoxo-Fluor, and hydrolysis of ester gave 11.

C)

D)

25
Reagents \& conditions: (a) TMAD, $\mathrm{Bu}_{3} \mathrm{P}, \mathrm{THF}, \mathrm{rt}, 32-100 \%$, (b) NaOHaq., DME, MeOH, rt, 86-100\%, (c) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{rt}, 85-93 \%$, (d) DHP, PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 92 \%$, (e) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, (f) $\mathrm{NaOCl}, \mathrm{NaH}_{2} \mathrm{PO}_{4}$, t - $\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}$, THF, rt, (g) isobutyl chloroformate, NMM, THF, $-30{ }^{\circ} \mathrm{C}$, (h) L-serine, rt , 42% (4 steps), (i) [bis(2-methoxyethyl)amino]sulfur trifluoride, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20{ }^{\circ} \mathrm{C}, 35 \%$, (j) $\mathrm{BrCCl}_{3}, \mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 89 \%$, (k)
 TBAF, AcOH, THF, 31-86\%, (o) AcOH, DEAD, $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{THF}, \mathrm{rt}$, (p) $\mathrm{HCO}_{2} \mathrm{H}, \mathrm{DEAD}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{rt}, 93 \%$, (q) MeI, $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{MeCN}, \mathrm{rt}, 22 \%$, (r) diethyl-aminosulfur trifluoride, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 57 \%$,

Scheme 2-2-1. Syntheses of G protein-biased EP2 agonists

Overall, precise optimization of substituents on the phenyl group of $\mathbf{1}$ and introduction of 11β hydroxyl group led the author find 100-fold more potent G protein-biased EP2 agonist 9. SFSR studies revealed that structure of ω chain dramatically changes the functional selectivity of EP2 receptor. Particularly, the combination of meta and para substituents on the phenyl group enhanced G protein-biased signaling of EP2 receptor. A series of G protein-biased EP2 agonists showed potent intraocular lowering effect in rabbit and monkey. ${ }^{20}$ Further studies of EP2 biased agonists will be reported in due course.

General Experimental.

Analytical samples were homogeneous as confirmed by TLC, and spectroscopic results were consistent with the assigned structures. NMR spectra were recorded as designated on either a Varian Mercury 300 spectrometer or INOVA-500 spectrometer using deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ or deuterated dimethyl sulfoxide (DMSO- d_{6}) as the solvent. Mass spectral analyses with fast atom bombardment (FABMS, HRMS) and electron ionization (EI) were performed on a JEOL JMS-DX303HF spectrometer. Purity analysis was carried out by the following LC/MS system. LC/MS: Waters ACQUITY UPLC system fitted by with Waters Micromass ZQ-2000 spectrometer. Column; YMC Triart C18 ($2.0 \mathrm{~mm} \times 30 \mathrm{~mm}$). Eluting over 1.5 min with 5-95\% acetonitrile($0.1 \% \mathrm{TFA}$) in water $(0.1 \% \mathrm{TFA})$, flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$, column temperature of $30^{\circ} \mathrm{C}$, detection with UV (PDA) and ELSD. Column chromatography was performed with silica gel [Merck Silica Gel 60 (0.063-0.200 $\mu \mathrm{m}$), Wako gel C- 200, Fuji Silysia PSQ-100B or Fuji Silysia FL60D]. Thin layer chromatography was performed with silica gel (Merck TLC or HPTLC plates, Silica Gel 60 F254). Medium-pressure preparative liquid chromatography was performed with a medium-pressure preparative liquid chromatograph W-prep 2XY (manufactured by Yamazen Corporation; column: main column size S-5L, inject column size SS-2L).

The following abbreviations for solvents and reagents are used: DMF, N, N-dimethylformamide; DMSO, dimethyl sulfoxide; EtOH , ethanol; EtOAc, ethyl acetate; MeOH methanol; THF, tetrahydrofuran; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dichloromethane; tert-BuOMe, tert-butyl methyl ether; $\mathrm{iPr}_{2} \mathrm{O}$, diisopropyl ether; $\mathrm{CH}_{3} \mathrm{CN}$, acetonitrile; $\mathrm{Et}_{3} \mathrm{~N}$, triethylamine; TFA, trifluoroacetic acid; IPA, isopropyl alcohol;

Experimental Procedure

Scheme 2-2-1A

$2-\{(2 R, 4 \mathrm{a} R, 5 S, 6 R, 7 \mathrm{a} S)-5-[(4-c h l o r o-3-m e t h y l p h e n o x y) m e t h y l]-6-h y d r o x y o c t a h y d r o c y c l o p e n t a[b] p y r a n-2-y l\}$ -1,3-thiazole-4-carboxylic acid (4e)

To a solution of $12(30.0 \mathrm{mg}, 0.081 \mathrm{mmol})$, 3-methyl-4-chlorophenol ($15.0 \mathrm{mg}, 0.105 \mathrm{mmol}$) and 1,1'-azobis(N, N-dimethylformamide) ($27.9 \mathrm{mg}, 0.162 \mathrm{mmol}$) in THF $(0.8 \mathrm{~mL})$ at room temperature was added tributylphosphine ($40 \mu \mathrm{~L}, 0.162 \mathrm{mmol})$). After the mixture was stirred at room temperature for 16 h , concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography S, hexane/EtOAc 4:1-3:2) gave 12-2 (26.3 mg) in 66% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.7$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 2 \mathrm{H})$, 2.50-2.43 (m, 1H), 2.41(m, 1H), $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 2 \mathrm{H})$, $1.92(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

To a solution of $\mathbf{1 2 - 2}(26.3 \mathrm{mg}, 0.053 \mathrm{mmol})$ in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ at room temperature was added 2.0 M sodium hydroxide $(0.14 \mathrm{~mL} 0.28 \mathrm{mmol})$. After stirred at room temperature for 16 h , the reaction mixture was quenched with 1.0 M hydrochloric acid and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave $\mathbf{4 e}(25.0 \mathrm{mg})$ in 100% yield.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.7$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$, 2.21-2.04 (m, 3H), 1.90-1.63 (m, 5H). (Peak of $\mathrm{CO}_{2} \mathrm{H}$ was not observed.) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.32$, $20.68,24.19,38.80,41.92,45.65,67.20,72.46,72.79,73.59,113.11,117.08,126.30,129.04,129.70,137.18$, 145.96, 157.12, 162.24, 174.54. LCMS (ELSD) $R T=0.95 \mathrm{~min}(>983 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}). m / z 422(\mathrm{M}-\mathrm{H})^{-}$.

HRMS (FAB, Neg.) $\mathrm{C}_{20} \mathrm{H}_{21}{ }^{35} \mathrm{ClNO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 422.0829, found 422.0829.

All compounds in Table 2-2-3 were synthesized in the same procedure.

2-[(2R,4aR,5S,6R,7aS)-5-\{[4-chloro-3-(trifluoromethyl)phenoxy]methyl\}-6-hydroxyoctahydrocyclopenta[b] pyran-2-yl]-1,3-thiazole-4-carboxylic acid (4c)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.4$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.04(\mathrm{~m}, 3 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 2 \mathrm{H})$, 1.90-1.64 (m, 5H). (Peak of $\mathrm{CO}_{2} \mathrm{H}$ was not observed.) LCMS (ELSD) $R T=0.95 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}$, Neg.) $m / z 476(\mathrm{M}-\mathrm{H})^{-} . \quad$ HRMS (FAB, Neg.) $\mathrm{C}_{20} \mathrm{H}_{18}{ }^{35} \mathrm{ClF}_{3} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 476.0546, found 476.0549.

2-\{(2R,4aR,5S,6R,7aS)-5-[(3,4-dichlorophenoxy)methyl]-6-hydroxyoctahydrocyclopenta[b]pyran-2-yl\}-1,3-t hiazole-4-carboxylic acid (4d)
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, \mathrm{J}=9.0$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}$, $3 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.69(\mathrm{~m}, 5 \mathrm{H})$. (Peak of $\mathrm{CO}_{2} \mathrm{H}$ was not observed.) \quad LCMS (ELSD) $R T=$ $0.96 \min (>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}) .\mathrm{m} / \mathrm{z} 442(\mathrm{M}-\mathrm{H})^{-} . \quad \mathrm{HRMS}(\mathrm{FAB}, \mathrm{Neg}.) \mathrm{C}_{19} \mathrm{H}_{18}{ }^{35} \mathrm{Cl}_{2} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 442.0283, found 442.0278 .
$2-\{(2 R, 4 a R, 5 S, 6 R, 7 a S)-5-[(4-c h l o r o-3-e t h y l p h e n o x y) m e t h y l]-6-h y d r o x y o c t a h y d r o c y c l o p e n t a[b] p y r a n-2-y l\}-1$,3-thiazole-4-carboxylic acid (4f) ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.7$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 2.64$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.04(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.15(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .\left(\right.$ Peak of $\mathrm{CO}_{2} H$ was not observed.) LCMS (ELSD) $R T=0.98 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}). m / z 436(\mathrm{M}-\mathrm{H})^{-} . \quad \mathrm{HRMS}(\mathrm{FAB}, \mathrm{Neg}$. $\mathrm{C}_{21} \mathrm{H}_{23}{ }^{35} \mathrm{ClNO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 436.0985, found 436.0988.

2-\{(2R,4aR,5S,6R,7aS)-5-[(4-chloro-3-isopropylphenoxy)methyl]-6-hydroxyoctahydrocyclopenta[b]pyran-2-yl\}-1,3-thiazole-4-carboxylic acid (4g)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.4$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{sep}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ $(\mathrm{m}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$. (Peaks of OH and $\mathrm{CO}_{2} \mathrm{H}$ were not observed.) LCMS (ELSD) $R T=1.02 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}) .\mathrm{m} / \mathrm{z} 450$ $(\mathrm{M}-\mathrm{H})^{-} . \quad$ HRMS (FAB, Neg.) $\mathrm{C}_{22} \mathrm{H}_{25}{ }^{35} \mathrm{ClNO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 450.1142, found 450.1140.

2-\{(2R,4aR,5S,6R,7aS)-5-[(4-chloro-3-methoxyphenoxy)methyl]-6-hydroxyoctahydrocyclopenta[b]pyran-2-yl\}-1,3-thiazole-4-carboxylic acid (4h)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{dd}, J=9.0$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 2.28$ $(\mathrm{m}, 2 \mathrm{H}), 2.20-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}) .\left(\right.$ Peaks of OH and $\mathrm{CO}_{2} H$ were not observed.) LCMS (ELSD) $R T=0.87 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}). m / z 438(\mathrm{M}-\mathrm{H})^{-} . \quad \mathrm{HRMS}(\mathrm{FAB}, \mathrm{Neg}$. $\mathrm{C}_{20} \mathrm{H}_{18}{ }^{35} \mathrm{ClF}_{3} \mathrm{NO}_{6} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 438,0778, found 438.0779.

2-\{(2R,4aR,5S,6R,7aS)-5-[(3,4-dimethylphenoxy)methyl]-6-hydroxyoctahydrocyclopenta[b]pyran-2-yl\}-1,3-t hiazole-4-carboxylic acid (4i)
${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, ~ D M S O-d_{6}\right) \delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.4$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.03(\mathrm{~m}, 3 \mathrm{H})$, $2.16(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.61(\mathrm{~m}, 5 \mathrm{H})$. (Peak of $\mathrm{CO}_{2} \mathrm{H}$ was not observed.) LCMS (ELSD) $R T=0.94 \mathrm{~min}$ (97.3\%). MS (FAB, Neg.) m/z $402(\mathrm{M}-\mathrm{H})^{-} \quad \mathrm{HRMS}(\mathrm{FAB}, \mathrm{Neg}.) \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 402.1375, found 402.1381 .

2-[(2R,4aR,5S,6R,7aS)-6-hydroxy-5-\{[3-methyl-4-(trifluoromethyl)phenoxy]methyl\}octahydrocyclopenta[b] pyran-2-yl]-1,3-thiazole-4-carboxylic acid (4j)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{t}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.24-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{dd}, J=9.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=9.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~m}$, $3 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}), 2.20-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.88(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}) .\left(\mathrm{Peaks}\right.$ of OH and $\mathrm{CO}_{2} H$ were not observed.) LCMS (ELSD) $R T=0.96 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}). m / z 456(\mathrm{M}-\mathrm{H})^{-} . \quad$ HRMS (FAB, Neg.) $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 456.1093, found 456.1100.

2-\{(2R,4aR,5S,6R,7aS)-5-[(4-chloro-3,5-dimethylphenoxy)methyl]-6-hydroxyoctahydrocyclopenta[b]pyran-2-yl\}-1,3-thiazole-4-carboxylic acid (4k)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H})$, $4.04(\mathrm{dd}, J=9.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=9.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 2.22-2.05(\mathrm{~m}, 3 \mathrm{H})$, 1.91-1.60 (m, 5H). (Peak of $\mathrm{CO}_{2} H$ was not observed.) LCMS (ELSD) $R T=0.98 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}$, Neg.) $m / z 436(\mathrm{M}-\mathrm{H})^{-} . \quad$ HRMS (FAB, Neg.) $\mathrm{C}_{21} \mathrm{H}_{23}{ }^{35} \mathrm{ClNO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 436.0985, found 436.0978 .

2-[(2R,4aR,5S,6R,7aS)-6-hydroxy-5-[(2,4,5-trichlorophenoxy)methyl]octahydrocyclopenta $[b]$ pyran-2-yl\}-1,3 -thiazole-4-carboxylic acid (41)
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~m}, 1 \mathrm{H})$, $4.25(\mathrm{dd}, J=9.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{dt}, \mathrm{J}=7.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.94-1.65(\mathrm{~m}, 5 \mathrm{H})$. (Peak of $\mathrm{CO}_{2} \mathrm{H}$ was not observed.) LCMS (ELSD) $R T=1.01 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}) .\mathrm{m} / \mathrm{z} 476(\mathrm{M}-\mathrm{H})^{-}$. HRMS (FAB, Neg.) $\mathrm{C}_{19} \mathrm{H}_{17}{ }^{35} \mathrm{Cl}_{3} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 475.9893, found 475.9897.

2-[(2R,4aR,5S,6R,7aS)-6-hydroxy-5-[(2,3,4-trichlorophenoxy)methyl]octahydrocyclopenta $[b]$ pyran-2-yl\}-1,3 -thiazole-4-carboxylic acid (4m)
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=9.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.04(\mathrm{~m}, 3 \mathrm{H}), 1.86(\mathrm{~m}, 3 \mathrm{H}), 1.71(\mathrm{~m}$, 2H). (Peaks of OH and $\mathrm{CO}_{2} \mathrm{H}$ were not observed.) LCMS (ELSD) $R T=0.99 \min (97.3 \%) . \mathrm{MS}$ (FAB, Neg.) $m / z 476(\mathrm{M}-\mathrm{H})^{-} . \quad$ HRMS (FAB, Neg.) $\mathrm{C}_{19} \mathrm{H}_{17}{ }^{35} \mathrm{Cl}_{3} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 475.9893, found 475.9897.

Scheme 2-2-1B

Isopropyl4-[(2R,4aR,5S,6R,7aS)-6-acetoxy-5-(hydroxymethyl)octahydrocyclopenta[b]pyran-2-yl]-2-

thiophenecarboxylate (19)

To a solution of $\mathbf{1 8}(490 \mathrm{mg}, \quad 0.960 \mathrm{mmol})$ in acetonitrile $(9.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added bromo-(5-isopropoxycarbonyl-3-thienyl)zinc (1.00 M in acetonitrile, $1.91 \mathrm{~mL}, 1.91 \mathrm{mmol}$). After stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min , aluminum chloride ($256 \mathrm{mg}, 1.91 \mathrm{mmol}$) was added and stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min . The reaction was quenched with saturated aqueous potassium sodium tartrate and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography L, hexane/EtOAc 98:2-85:15) gave 18-2 $(519 \mathrm{mg})$ in 87% yield.

18-2 ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 7 \mathrm{H}), 5.20(\mathrm{sep}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.13(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=10.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=10.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~m}$, $2 \mathrm{H}), 2.10(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H})$.

To a solution of $\mathbf{1 8 - 2}(519 \mathrm{mg}, 0.836 \mathrm{mmol})$ in THF $(5.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added acetic acid $(151 \mathrm{mg}, 2.51 \mathrm{mmol})$ and tetra- n-butylammonium fluoride (1.0 M in THF, $2.51 \mathrm{~mL}, 2.51 \mathrm{mmol}$). After stirred at room temperature for 16 h and stirred at $50^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was quenched with 1.0 M HCl and extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO 3 and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography M, hexane/EtOAc 3:2-1:3) gave $19(317 \mathrm{mg})$ in 99% yield.

4-\{(2R,4aR,5S,6R,7aS)-5-[(4-chloro-3-methylphenoxy)methyl]-6-hydroxyoctahydrocyclopenta[b]pyran-2-yl\}

-2-thiophenecarboxylic acid (7)

To a solution of $19(60.0 \mathrm{mg}, 0.157 \mathrm{mmol})$, 3-methyl-4-chlorophenol ($67.1 \mathrm{mg}, 0.471 \mathrm{mmol}$) and 1,1'-azobis(N, N-dimethylformamide) ($81.0 \mathrm{mg}, 0.471 \mathrm{mmol}$) in THF (1.0 mL) at room temperature was added tributylphosphine ($95.2 \mathrm{mg}, 0.471 \mathrm{mmol}$). After the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 3 h , concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography S, hexane/EtOAc 9:1-2:3) gave 19-2 (75.2 mg) in 95\% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}$, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{sep}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.11(\mathrm{~m}, 1 \mathrm{H}), 4.06-3.98(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H})$, 1.93-1.85(m, 4H), $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H})$.

To a solution of $\mathbf{1 9 - 2}(24.0 \mathrm{mg}, 0.0473 \mathrm{mmol})$ in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ at room temperature was added 2.0 M sodium hydroxide $(0.20 \mathrm{~mL}, 0.40 \mathrm{mmol})$. After stirred at room temperature for 16 h , the reaction mixture was quenched with 1.0 M hydrochloric acid and extracted with EtOAc . The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave $7(17.3 \mathrm{mg})$ in 86% yield
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.18(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.7,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.03(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~m}$, $1 \mathrm{H}), 1.98(\mathrm{~m}, 3 \mathrm{H}), 1.77(\mathrm{~m}, 3 \mathrm{H})$. (Peaks of OH and $\mathrm{CO}_{2} \mathrm{H}$ were not observed.) LCMS (ELSD) $R T=1.01 \mathrm{~min}$ ($>98 \%$). MS (FAB, Neg.) $m / z 421(\mathrm{M}-\mathrm{H})^{-} . \quad \mathrm{HRMS}(\mathrm{FAB}, \mathrm{Neg}.) \mathrm{C}_{21} \mathrm{H}_{22}{ }^{35} \mathrm{ClO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 421.0876, found 421.0870 .

Compound $\mathbf{6}$ and $\mathbf{8}$ were synthesized in the same procedure.

5-\{(2R,4aR,5S,6R,7aS)-5-[(4-chloro-3-methylphenoxy)methyl]-6-hydroxyoctahydrocyclopenta[b]pyran-2-yl\}

-2-furoic acid (6)

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (dd, $J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}$, $3 \mathrm{H}), 2.17(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H})$. (Peak of $\mathrm{CO}_{2} H$ was not observed.) LCMS (ELSD) $R T=0.96 \min (>98 \%) . \quad$ MS (FAB, Neg.) $m / z 405(\mathrm{M}-\mathrm{H})^{-} . \quad$ HRMS (FAB, Neg.) $\mathrm{C}_{21} \mathrm{H}_{22}{ }^{35} \mathrm{ClO}_{6}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 405.1105, found 405.1100.
$4-\{(2 R, 4 \mathrm{a}, 5 S, 6 R, 7 \mathrm{aS})-5-[(4-c h l o r o-3-m e t h y l p h e n o x y) m e t h y l]-6-h y d r o x y o c t a h y d r o c y c l o p e n t a[b] p y r a n-2-y l\}$

-2-furoic acid (8)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.64(\mathrm{dd}, J=9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H})$, $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.60(\mathrm{~m}, 3 \mathrm{H})$. (Peaks of OH and $\mathrm{CO}_{2} \mathrm{H}$ were not observed.) LCMS (ELSD) $R T=0.82 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}) .\mathrm{m} / \mathrm{z} 405(\mathrm{M}-\mathrm{H})^{-} . \quad$ HRMS (FAB, Neg.) $\mathrm{C}_{21} \mathrm{H}_{22}{ }^{35} \mathrm{ClO}_{6}$ $(\mathrm{M}-\mathrm{H})^{-}$calc. mass 405.1105, found 405.1114.

Scheme 2-2-1C

(4aR,5S,6R,7aS)-5-(\{[(2-methyl-2-propanyl)(diphenyl)silyl]oxy\}methyl)-6-(tetrahydro-2H-pyran-2-yloxy)oct ahydrocyclopenta[b]pyran-2-carbonitrile (14)

To a solution of $\mathbf{1 3}(200 \mathrm{mg}, 0.42 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ at room temperature was added $\mathrm{K}_{2} \mathrm{CO}_{3}(69 \mathrm{mg}, 0.50$ $\mathrm{mmol})$. After the reaction mixture was stirred at room temperature for $5 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ was added and the
mixture was extracted with tert-BuOMe. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave 13-2 (196 mg), which was directly used in the next reaction.

To a solution of 13-2 (196 mg, crude) and pyridinium para-toluenesulfonate ($10.0 \mathrm{mg}, 0.040 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.0 \mathrm{~mL})$ at room temperature was added 3,4-dihydro- $2 H$-pyran ($77 \mu \mathrm{~g}, 0.84 \mathrm{mmol}$). After stirred at room temperature for 14 h , the reaction mixture was quenched with saturated aqueous NaHCO_{3} and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography S, hexane/EtOAc 97:3-4:1) gave $14(227 \mathrm{mg})$ in 100% in 2 steps.
$14{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 6 \mathrm{H}), 4.80(\mathrm{~m}, 1 \mathrm{H}), 4.57-4.51(\mathrm{~m}, 1 \mathrm{H})$, 4.33-4.21 (m, 2H), 4.12(m, 1H), 3.91-3.87 (m, 1H), 3.79-3.76(m, 2H), 2.33-2.18 (m, 3H), 2.05-2.00 (m, 2 H$)$, $1.91-1.65(\mathrm{~m}, 6 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$.

Methyl (2R)-3-hydroxy-2-(\{[(2R,4aR,5S,6R,7aS)-5-(\{[(2-methyl-2-propanyl)(diphenyl)silyl]oxy\}methyl)-6-(tetrahydro-2H-pyran-2-yloxy)octahydrocyclopenta[b]pyran-2-yl]carbonyl\}amino)propanoate (15)

To a solution of $\mathbf{1 4}(227 \mathrm{mg}, 0.470 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ at $-7{ }^{\circ} \mathrm{C}$ was added diisobutylaluminiumhydride (1.00 M in toluene, $0.42 \mathrm{~mL}, 0.42 \mathrm{mmol}$). After stirred at $-78^{\circ} \mathrm{C}$ for 1 h , the reaction was quenched with saturated aqueous potassium sodium tartrate and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave 14-2, which was directly used in the next reaction.

To a solution of $\mathbf{1 4 - 2}(166 \mathrm{mg}, 0.320 \mathrm{mmol})$ in tert-butanol $(1.2 \mathrm{~mL})$, THF $(1.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.3 \mathrm{~mL})$ at room temperature was added 2-methyl-2-butene $(152 \mu \mathrm{~L}, 1.4 \mathrm{mmol})$ and sodium chlorite ($72 \mathrm{mg}, 0.80 \mathrm{mmol}$). After stirred for 1 h , the reaction was quenched with 1 M HCl and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and a medium-pressure preparative liquid chromatography
(Yamazen W-prep 2XY flash column chromatography S, hexane/EtOAc 9:1-0:100) gave 14-3 (113 mg), including inseparable compound, which was used in the next reaction.

To a solution of $\mathbf{1 4 - 3}(109 \mathrm{mg}, 0.200 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ was added N -methyl morpholine $(0.46 \mu \mathrm{~L}$, $0.42 \mathrm{mmol})$ and isobutyl chloroformate ($29 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$). After stirred at $-30{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, \mathrm{~L}$-serine methyl ester- $\mathrm{HCl}(34 \mathrm{mg}, 0.22 \mathrm{mmol})$ was added to the reaction mixture. After stirred at room temperature for 14 h , the reaction was quenched with brine and extracted with EtOAc. The organic layer was dried over MgSO_{4}. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography S , hexane/EtOAc 4:1-0:100) gave $15(78 \mathrm{mg})$ in 61%.
$15{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.34(\mathrm{~m}, 6 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 4.59-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~m}$, $2 H), 4.18(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.74(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H})$, 2.24-2.18 (m, 2H), 2.03-1.92(m, 2H), 1.88-1.67 (m, 5H), 1.54-1.40(m, 4H), $1.05(\mathrm{~s}, 9 \mathrm{H}) .($ Peaks of OH and NH were not observed.)

Methyl 2-[(2R,4aR,5S,6R,7aS)-5-(\{[(2-methyl-2-propanyl)(diphenyl)silyl]oxy\}methyl)-6-(tetrahydro-2H-

 pyran-2-yloxy)octahydrocyclopenta[b]pyran-2-yl]-1,3-oxazole-4-carboxylate (16)

To a solution of $\mathbf{1 5}(209 \mathrm{mg}, 0.327 \mathrm{mmol})$ in THF $(3.0 \mathrm{~mL})$ at room temperature was added Burgess reagent (117 $\mathrm{mg}, 0.49 \mathrm{mmol})$. After stirred under reflux for 2.5 h , the reaction mixture was concentrated and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography S, hexane/EtOAc 3:1- MeOH/EtOAc 3:7) gave 15-2 (46 mg) in 22\%

To a solution of $\mathbf{1 5 - 2}(46 \mathrm{mg}, 0.074 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{DBU}(17 \mu \mathrm{~L}, 0.11 \mathrm{mmol})$ and $\mathrm{BrCl}_{3}(11 \mu \mathrm{~L}, 0.11 \mathrm{mmol})$. After stirred at $0{ }^{\circ} \mathrm{C}$ for 8 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$
and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography S, hexane/EtOAc 85:15-65:35) gave 16 (33 mg) in 72%
$16{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 6 \mathrm{H}), 4.64-4.53(\mathrm{~m}, 1 \mathrm{H})$, 4.30-4.05 (m, 2H), $3.92(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.18(\mathrm{~m}, 2 \mathrm{H})$, 2.03-1.91 (m, 2H), 1.83-1.67 (m, 5H), 1.54-1.40(m, 4H), $1.04(\mathrm{~s}, 9 \mathrm{H})$.

Methyl 2-[(2R,4aR,5S,6R,7aS)-5-[(4-chloro-3-methylphenoxy)methyl]-6-(tetrahydro-2H-pyran-2-yloxy

 octa hydrocyclopenta[b]pyran-2-yl]-1,3-oxazole-4-carboxylate (17)

To a solution of $\mathbf{1 6}(58 \mathrm{mg}, 0.090 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ at room temperature was added tetra- n-butylammonium fluoride (1.00 M in THF, $140 \mu \mathrm{~L}, 0.140 \mathrm{mmol}$). After stirred at room temperature for 16 h , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash column chromatography (Fuji silicia BW-820MH, hexane / EtOAc 15:85-0:100) gave alcohol 16-2 (23 g) in 67\% yield.

16-2 ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~m}, 1 \mathrm{H}), 4.76-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$, 3.89-3.74 (m, 2H), 3.60(m, 1H), $3.50(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.23(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.96-1.45(\mathrm{~m}$, 7H). (Peak of OH was not observed.)

To a solution of $\mathbf{1 6 - 2}(36.5 \mathrm{mg}, 0.0962 \mathrm{mmol})$, 3-methyl-4-chlorophenol (41.0 $\mathrm{mg}, 0.288 \mathrm{mmol}$) and 1,1'-azobis $(N, N$-dimethylformamide) ($49.0 \mathrm{mg}, 0.284 \mathrm{mmol}$) in THF $(1.0 \mathrm{~mL})$ at room temperature was added tributylphosphine $(0.071 \mathrm{~mL}, 0.287 \mathrm{mmol})$. After the mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 3 h , concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography S, hexane/EtOAc 9:1-2:3) gave $17(75.2 \mathrm{mg})$ in 95% yield.
$17{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~m}$, $1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, 2.19-2.09 (m, 3H), 1.89-1.68 (m, 4H), 1.68-1.49 (m, 5H).

2-\{(2R,4aR,5S,6R,7aS)-5-[(4-chloro-3-methylphenoxy)methyl]-6-hydroxyoctahydrocyclopenta $[b]$ pyran-2-yl $\}$

-1,3-oxazole-4-carboxylic acid (5)

To a solution of $\mathbf{1 7}(46.5 \mathrm{mg}, 0.0923 \mathrm{mmol})$ in $\mathrm{MeOH}(1.5 \mathrm{~mL})$ at room temperature was added p-toluene sulfonic acid monohydrate ($3.0 \mathrm{mg}, 0.0157 \mathrm{mmol}$). After stirred at room temperature for 4 h , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography S, hexane/EtOAc 4:1-0:100) gave 17-2 (38.9 mg) in 93% yield.

17-2 ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=$ 8.7, 2.7 Hz, 1H), $5.10(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.12(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}$, $1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~m}, 3 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H})$.

To a solution of $\mathbf{1 7 - 2}(10.0 \mathrm{mg}, 0.0237 \mathrm{mmol})$ in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ at room temperature was added 2.0 M sodium hydroxide ($0.20 \mathrm{~mL}, 0.4 \mathrm{mmol}$). After stirred at room temperature for 18 h , the reaction mixture was quenched with 1.0 M hydrochloric acid and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave $\mathbf{5}(8.4 \mathrm{mg})$ in 87% yield.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=8.7$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, $2.20(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H})$. (Peaks of OH and $\mathrm{CO}_{2} H$ were not observed.) LCMS (ELSD) $R T=0.89 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}) ~. m / z 406(\mathrm{M}-\mathrm{H}) \quad$. \quad HRMS (FAB, Neg.)
$\mathrm{C}_{20} \mathrm{H}_{21}{ }^{35} \mathrm{ClNO}_{6}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 406.1057 , found 406.1051 .

Scheme 2-2-1D

Isopropyl 2-[(2R,4aR,5S,6R,7aS)-6-acetoxy-5-(hydroxymethyl)octahydrocyclopenta[b]pyran-2-yl]-1,3-thiazole-4-carboxylate (21)

To a solution of $\mathbf{2 0}(250 \mathrm{mg}, 0.431 \mathrm{mmol})$ and acetic acid ($51.8 \mathrm{mg}, 0.862 \mathrm{mmol}$) in THF (2.0 mL) at room temperature was added triphenylphosphine ($226 \mathrm{mg}, 0.862 \mathrm{mmol}$) and diethyl azodicarboxylate (2.2 M in toluene, $0.391 \mathrm{~mL}, 0.862 \mathrm{mmol})$. After stirred at room temperature for 2 h , the reaction mixture was concentrated. A medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography M, hexane/EtOAc 9:1-7:3-1:1) gave 20-2 (312 mg), including inseparable compound, which was used in the next reaction.

To a solution of 20-2 (268 mg , crude) in THF (2.0 mL) and acetic acid ($77.7 \mathrm{mg}, 1.29 \mathrm{mmol}$) at room temperature was added tetra- n-butylammonium fluoride (1.00 M in THF, $1.29 \mathrm{~mL}, 1.29 \mathrm{mmol}$). After stirred at $50^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was quenched with saturated aqueous NaHCO_{3} and extracted with EtOAc . The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography M, hexane/EtOAc 3:7-0:1) gave 21 (78.9 mg) in 48% yield.

2-\{(2R,4aR,5S,6R,7aS)-5-[(4-chloro-3-methylphenoxy)methyl]-6-hydroxyoctahydrocyclopenta[b]pyran-2-yl\}

-1,3-thiazole-4-carboxylic acid (9)

To a solution of $21(70.0 \mathrm{mg}, 0.182 \mathrm{mmol})$ and 3-methyl-4-chlorophenol (78.1 mg, 0.548 mmol$)$ and 1,1'-azobis(N, N-dimethylformamide) $(94.2 \mathrm{mg}, 0.547 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ at room temperature was added tributylphosphine $(0.140 \mathrm{~mL}, 0.547 \mathrm{mmol})$. After the mixture was stirred at room temperature for 3 h , concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography S, hexane/EtOAc 95:5-3:2-1:4) gave 21-2 (75.2 mg) in 100% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.7$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{sep}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H})$, 4.04-3.90(m, 2H), 2.62(m, 1H), $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.01(\mathrm{~m}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.67$ $(\mathrm{m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H})$.

To a solution of $\mathbf{2 1 - 2}(36.0 \mathrm{mg}, 0.0708 \mathrm{mmol})$ in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ at room temperature was added 2.0 M sodium hydroxide $(0.071 \mathrm{~mL}, 0.142 \mathrm{mmol})$. After stirred at room temperature for 2 h , the reaction mixture was quenched with 1.0 M hydrochloric acid and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave $9(30.8 \mathrm{mg})$ in 100% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=9.0$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.24$ $(\mathrm{m}, 1 \mathrm{H}), 2.20-1.95(\mathrm{~m}, 5 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}) .\left(\right.$ Peaks of OH and $\mathrm{CO}_{2} \mathrm{H}$ were not observed.) ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 20.32,20.68,24.19,38.80,41.92,45.65,67.20,72.46,72.79,73.59,113.11,117.08,126.30,129.04$, $129.70,137.18,145.96,157.12,162.24,174.54 . \quad$ LCMS (ELSD) $R T=0.95 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}) \mathrm{m} /$. $422(\mathrm{M}-\mathrm{H})^{-} . \quad$ HRMS (FAB, Neg.) $\mathrm{C}_{20} \mathrm{H}_{21}{ }^{35} \mathrm{ClNO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 422.0829, found 422.0829.

Scheme 2-2-1E

Ethyl 2-[(2R,4aR,5S,6R,7aS)-6-(formyloxy)-5-(\{[(2-methyl-2-propanyl)(diphenyl)silyl]oxy\}methyl)octa hydrocyclopenta[b]pyran-2-yl]-1,3-thiazole-4-carboxylate (23)

To a solution of $22(3.3 \mathrm{~g}, 5.40 \mathrm{mmol})$ in $\mathrm{MeOH}(27 \mathrm{~mL})$ at room temperature was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.50 \mathrm{~g}, 11.0$ mmol). After the reaction mixture was stirred at room temperature for 5 h , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography L, hexane/EtOAc 19:1-7:3-1:1-0:1) gave 22-2 (2.76 g) in 93% yield.

22-2 ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 6 \mathrm{H}), 5.16(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.20-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{dd}, J=10.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H})$, 2.12-2.05 (m, 5H), 1.96-1.86 (m, 2H), $1.79(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$.

To a solution of 22-2, phenol ($2.70 \mathrm{~g}, 4.89 \mathrm{mmol}$) and triphenyl phosphine ($2.57 \mathrm{~g}, 9.79 \mathrm{mmol}$) in $\mathrm{THF}(20 \mathrm{~mL})$ at room temperature was added diethyl azodicarboxylate (2.2 M in toluene, $4.45 \mathrm{~mL}, 9.79 \mathrm{mmol}$). After stirred at room temperature for 1 h , the reaction mixture was concentrated. A medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography L, hexane/EtOAc 19:1-7:3-1:1-0:1) gave $23(2.99 \mathrm{~g})$, including inseparable compound, which was used in the next reaction.

Ethyl 2-[(2R,4aR,5S,6R,7aS)-6-methoxy-5-(\{[(2-methyl-2-propanyl)(diphenyl)silyl]oxy\}methyl)octahydro

 cyclopenta[b]pyran-2-yl]-1,3-thiazole-4-carboxylate (24)

To a solution of $\mathbf{2 3}(2.84 \mathrm{~g}, 4.89 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ at room temperature was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.35 \mathrm{~g}, 9.79$ mmol). After the reaction mixture was stirred at room temperature for 5 h , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and extracted with EtOAc. The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography L, hexane/EtOAc 19:1-7:3-1:1-0:1) gave 23-2 (2.43 g) in 90\% yield.

23-2 ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 6 \mathrm{H}), 5.03(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.60(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{dd}, J=10.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.94$ $(\mathrm{m}, 7 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$.

To a solution of 23-2 $(400 \mathrm{mg}, 0.725 \mathrm{mmol})$ in acetonitrile $(2.0 \mathrm{~mL})$ at room temperature was added methyliodide ($206 \mathrm{mg}, 1.45 \mathrm{mmol}$) and $\mathrm{Ag}_{2} \mathrm{O}(336 \mathrm{mg}, 1.45 \mathrm{mmol})$. After the reaction mixture was stirred at room temperature for 4 days, filterated wit celite pad and the filtrate was concentrated and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography M, hexane/EtOAc 95:5-6:4-0:1) gave 24 $(89.5 \mathrm{mg})$ in 22% yield.
$24{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 6 \mathrm{H}), 5.05(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.25(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.09(\mathrm{~m}, 4 \mathrm{H}), 1.98-1.87($. (m, 4H), $1.05(\mathrm{~s}, 9 \mathrm{H})$.

2-\{(2R,4aR,5S,6R,7aS)-5-[(4-chloro-3-methylphenoxy)methyl]-6-methoxyoctahydrocyclopenta[b]pyran-2-yl

\}-1,3-thiazole-4-carboxylic acid (10)

To a solution of $\mathbf{2 4}(86 \mathrm{mg}, 0.152 \mathrm{mmol})$ in $\mathrm{THF}(2.0 \mathrm{~mL})$ at room temperature was added tetra- n-butylammonium fluoride (1.00 M in THF, $0.304 \mathrm{~mL}, 0.304 \mathrm{mmol}$). After stirred at room temperature for 2 h , the reaction mixture was quenched with saturated aqueous NaHCO_{3} and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography S, hexane/EtOAc 6:4-0:1) gave alcohol 24-2 (32.5 mg), including inseparable compound, which was used in the next reaction.

To a solution of $\mathbf{2 4 - 2}(32.0 \mathrm{mg}, 0.0977 \mathrm{mmol})$ and 3-methyl-4-chlorophenol ($41.8 \mathrm{mg}, 0.293 \mathrm{mmol}$) and 1,1'-azobis(N, N-dimethylformamide) ($50.5 \mathrm{mg}, 0.293 \mathrm{mmol}$) in THF $(1.0 \mathrm{~mL})$ at room temperature was added tributylphosphine $(59.3 \mathrm{mg}, 0.293 \mathrm{mmol})$. After the mixture was stirred at room temperature for 3 h , concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography S, hexane/EtOAc 95:5-7:3-1:1) gave 24-3 (40.8 mg) in 59% yield in 2 steps.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.7$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H})$.

To a solution of $\mathbf{2 4 - 3}(16.0 \mathrm{mg}, 0.0354 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ at room temperature was added 2.0 M sodium hydroxide $(0.035 \mathrm{~mL}, 0.071 \mathrm{mmol})$. After stirred at room temperature for 2 h , the reaction mixture was quenched with 1.0 M hydrochloric acid and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave $\mathbf{1 0}(15.8 \mathrm{mg})$ in 100% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=9.0$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=9.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=9.3$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H})$. (Peaks of $\mathrm{CO}_{2} \mathrm{H}$ was not observed.) LCMS (ELSD) $R T=1.12 \min (>98 \%) . \quad$ MS (FAB, Neg.) $m / z 436(\mathrm{M}-\mathrm{H})^{-}$.

HRMS (FAB, Neg.) $\mathrm{C}_{21} \mathrm{H}_{23}{ }^{35} \mathrm{ClNO}_{5} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 436.0985, found 436.0988.

Scheme 2-2-1F

Isopropyl 2-\{(2R,4aR,5S,6R,7aS)-5-[(4-chloro-3-methylphenoxy)methyl]-6 hydroxyoctahydrocyclopenta [b] pyran-2-yl\}-1,3-thiazole-4-carboxylate (26)

To a solution of $25(500 \mathrm{mg}, 1.175 \mathrm{mmol})$ and 3-methyl-4-chlorophenol (503 mg, 3.53 mmol) and 1,1'-azobis(N, N-dimethylformamide) ($405 \mathrm{mg}, 2.35 \mathrm{mmol}$) in THF (4.0 mL) at room temperature was added tributylphosphine $(0.587 \mathrm{~mL}, 2.35 \mathrm{mmol})$. After the mixture was stirred at room temperature for 4 h , concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography L, hexane/EtOAc 95:5-75:25) gave 25-2, including inseparable compound, which was used in the next reaction

To a solution of $\mathbf{2 5 - 2}(500 \mathrm{mg}$, crude) in $\mathrm{MeOH}(8.4 \mathrm{~mL} \mathrm{~mL})$ at room temperature was added p-toluene sulfonic acid monohydrate $(19.3 \mathrm{mg}, 0.102 \mathrm{mmol})$. After stirred at room temperature for 2 h , the reaction mixture was quenched with triethylamine. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography L, hexane/EtOAc 3:2-2:3) gave $26(444 \mathrm{mg})$ in 81% yield in 2 steps $26{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=8.7$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{sep}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 3.90$ $(\mathrm{m}, 1 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.17-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}$, $1 \mathrm{H}), 1.38(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H})$.

,3-thiazole-4-carboxylic acid (11)

To a solution of diethylaminofsulfur trifluoride ($103 \mathrm{mg}, 0.643 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added 26 ($100 \mathrm{mg}, 0.215 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$. After stirred at $-78^{\circ} \mathrm{C}$ for 30 min , the reaction was quenched with saturated aqueous NaHCO_{3} and extracted with EtOAc . The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and a medium-pressure preparative liquid chromatography (Yamazen W-prep 2XY flash column chromatography L, hexane/EtOAc 97:3-7:3) gave 26-2 (100 mg) in 57\% yield.

26-2 ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=$ $9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.53-5.19(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{sep}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~m}$, $1 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.22-1.97(\mathrm{~m}, 4 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~d}, J$ $=6.0 \mathrm{~Hz}, 6 \mathrm{H})$.

To a solution of $\mathbf{2 6 - 2}(23.0 \mathrm{mg}, 0.0491 \mathrm{mmol})$ in $\mathrm{MeOH}(0.30 \mathrm{~mL})$ at room temperature was added 2.0 M sodium hydroxide $(0.15 \mathrm{~mL}, 0.300 \mathrm{mmol})$. After stirred at room temperature for 2 h , the reaction mixture was quenched with 1.0 M hydrochloric acid and extracted with EtOAc . The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave $\mathbf{1 1}(18.8 \mathrm{mg})$ in 89% yield.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=9.0$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.48-5.22(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~m}, 1 \mathrm{H})$, $2.49(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.03(\mathrm{~m}, 3 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H})$. (Peak of $\mathrm{CO}_{2} H$ was not observed.) LCMS (ELSD) $R T=1.10 \mathrm{~min}(>98 \%) . \quad \mathrm{MS}(\mathrm{FAB}, \mathrm{Neg}). m / z 424(\mathrm{M}-\mathrm{H})^{-} . \quad \mathrm{HRMS}(\mathrm{FAB}, \mathrm{Neg}$. $\mathrm{C}_{20} \mathrm{H}_{20}{ }^{35} \mathrm{ClFNO}_{4} \mathrm{~S}(\mathrm{M}-\mathrm{H})^{-}$calc. mass 424.0786, found 424.0792.

Biology

In vitro assay

EP2, EP4 and IP cAMP assay

Chinese hamster ovary (CHO) cells $\left(1.25 \times 10^{5}\right.$ cells/well) expressing human EP2 or human EP4 or human IP receptor were harvested and suspended in a 96 -well $1 / 2$ area plate. cAMP concentrations were measured using a cAMP HTRF HiRange kit (Cisbio Bioassays)* after treatment of compounds. The reaction rate (\%) of the compounds relative to the cAMP concentration obtained with PGE_{2} treatment at $1 \mu \mathrm{M}$ was calculated. Furthermore, a non-linear regression analysis was performed using the Sigmoid Emax Model to estimate EC_{50} values
*http://www.cisbio.com/usa/drug-discovery/membrane-based-assays-camp-hirange-assay-kit (accessed Nov 24, 2015)

EP2 β arrestin recruitment assay

PathHunter β-arrestin HEK-293 PTGER2 cell lines (DiscoveRx) were seeded at a density of 5000 cells/well into a 384 -well plate and cultured at $37{ }^{\circ} \mathrm{C}$ in the presence of $5 \% \mathrm{CO}_{2}$ for 24 hours. β-arrestin recruitment were measured using a PathHunter Detection Kit (DiscoveRx)* after treatment of compounds. The reaction rate (\%) of the compounds relative to the β-arrestin recruitment obtained with PGE_{2} treatment at $10 \mu \mathrm{M}$ was calculated. Furthermore, a non-linear regression analysis was performed using the Sigmoid Emax Model to estimate EC_{50} values.

* https://www.discoverx.com/product-data-sheets-3-tab/93-0214c1 (accessed Nov 24, 2015)

EP1, EP3 and FP Ca assay

Chem- 1 cells expressing human FP receptor or Chinese hamster ovary (CHO) cells expressing human EP1 or human EP3 were seeded at a density of 1×10^{4} cells per well into 96 -well plates and cultured at $37^{\circ} \mathrm{C}$ in the presence of $5 \% \mathrm{CO}_{2}$ for 2 days. Load buffer (HBSS containing Calcium 5, 10 mM HEPES, $20 \mu \mathrm{M}$ indomethacin, and 2.5 mM probenecid) was added in each well and incubated in the dark at room temperature for 1 hour. After addition of the compounds, intracellular Ca^{2+} concentration was measured using a fluorescence drug screening
system (FDSS-7000 : Hamamatsu Photonics, Tokyo, Japan)*. The reaction rate (\%) of the compounds relative to intracellular Ca^{2+} concentration obtained with maximum increases of PGE_{2} treatment was calculated. Futhermore, a non-linear analysis was performed using the Sigmoid Emax Model to estimate EC_{50} values.

* http://www.hamamatsu.com/jp/ja/FDSS7000EX.html (accessed Nov 24, 2015)

References and notes

1 Violin, J. D.; Lefkowitz, R. J. Trends Pharmacol. Sci., 2007, 28, 416.

2 Zhou, L.; Lovell, K. M.; Frankowski, K. J.; Slauson, S. R.; Phillips, A. M.; Streicher, J. M.; Stahl, E.; Schmid, C. L.; Hodder, P.; Madoux, F.; Cameron, M. D.; Prisinzano, T. E.; Aubé, J.; Bohn, L. M. J Biol. Chem. 2013, 288, 36703.

3 Correll, C. C.; Mckittrick, B. A. J Med. Chem. 2014, 57, 6887.

4 Chen, X.; Sassano, M. F.; Zheng, L.; Setola, V.; Chen, M.; Bai, X.; Frye, S. V.; Wetsel, W. C.; Roth, B. L.; Jin, J. J Med. Chem. 2012, 55, 7141.

5 Chen, X. T.; Pitis, P.; Liu, G.; Yuan, C.; Gotchev, D.; Cowan, C. L.; Rominger, D. H.; Koblish, M.; Dewire, S. M.; Crombie, A.L.; Violin, J. D.; Yamashita, D. S. J Med. Chem. 2013, 56, 8019.

6 Violin, J. D.; DeWire, S. M.; Yamashita, D.; Rominger, D. H.; Nguyen, L.; Schiller, K.; Whalen, E. J.; Gowen, M.; Lark, M. W. J Pharmacol. Exp. Ther. 2010, 335, 572.

7 David, G. S.; Ruth, A. S.; Ian, E. J.; Conrad, L. C.; Maxine, G.; Michael, W. L. Presented at 2013 American College of Cardiology meeting.

8 Ogawa, S.; Watanabe, T.; Sugimoto, I.; Moriyuki, K.; Goto, Y.; Yamane, S.; Watanabe, A.; Tsuboi, K.; Kinoshita, A.; Kigoshi, H.; Tani, K.; Maruyama, T. ACS Med. Chem. Lett. (submited)

9 Jiang, J.; Dingledine, R. Trends Pharmacol. Sci. 2013, 34, 413.

10 McCullough, L.; Wu, L.; Haughey, N.; Liang, X.; Hand, T.; Wang, Q.; Breyer, R. M.; Andreasson, K. J. Neurosci. 2004, 24, 257.

11 Bilak, M.; Wu, L.; Wang, Q.; Haughey, N.; Conant, K.; St Hillaire, C.; Andreasson, K. Ann. Neurol. 2004, 56, 240.

12 Carrasco, E.; Werner, P.; Casper, D. Neurosci. Lett. 2008, 441, 44.

13 Chun, K. S.; Lao, H. C.; Trempus, C. S.; Okada, M.; Langenbach, R. Carcinogenesis 2009, 30, 1620.

14 Chun, K. S.; Lao, H. C.; Langenbach, R. J. Biol. Chem. 2010, 285, 39672.
15 Yun, S. P.; Ryu, J. M.; Jang, M. W.; Han, H. J. J. Cell Physiol. 2011, 226, 559.

16 Warne, T.; Edwards, P. C.; Leslie, A. G.; Tate, C. G. Structure 2012, 20, 841.

17 Wacker, D.; Wang, C.; Katritch, V.; Han, G. W.; Huang, X. P.; Vardy, E.; McCorvy, J. D.; Jiang, Y.; Chu, M.; Siu, F. Y.; Liu, W.; Xu, H. E.; Cherezov, V.; Roth, B. L.; Stevens, R. C. Science 2013, 340, 615.

18 Liu, J. J.; Horst, R.; Katritch, V.; Stevens, R. C.; Wüthrich, K. Science 2012, 335, 1106.

19 Szczepek, M.; Beyrière, F.; Hofmann, K. P.; Elgeti, M.; Kazmin, R.; Rose, A.; Bartl, F. J.; von Stetten, D.; Heck, M.; Sommer, M. E.; Hildebrand, P. W.; Scheerer, P. Nat. Commun. 2014 Sep 10;5:4801. doi: 10.1038/ncomms5801

20 Ogawa, S.; Watanabe, T.; Watanabe, A.; Kinoshita, A.; Tsuboi, K.; Sugimoto, I.; Moriyuki, K.; Goto, Y.; Yamane, S.; Tani, K.; Maruyama, T. Presented at 250th ACS meeting \& Exposition, Boston, MA, August 2015; poster MEDI523.

Chapter 3

Total Synthesis and Bioactivity of Resolvin E2

Abstract

:

Resolvin E2 is a potent anti-inflammatory compound, derived from eicosapentaenoic acid. The efficient total synthesis of resolvin E2 by taking advantage of its intrinsic pseudoenantiomeric substructures is reported. The synthetic resolvin E2 proved to be biologically active in blocking neutrophil infiltration and reducing proinflammatory cytokines in the acute peritonitis model.

Introduction

Resolvins are a new family of lipid mediators derived from $\omega-3$ polyunsaturated fatty acids, namely, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are generated during the resolution phase of acute inflammation. ${ }^{1}$ Resolvin E1 is biosynthesized from EPA via cycloox ygenase (COX)-2- and 5-lipoxygenase-mediated conversion and has been shown to possess significant anti-inflammatory and proresolution properties, thereby protecting organs from collateral damage. ${ }^{2}$ Another E series resolvin, namely, resolvin E2 (1), is formed via reduction of $5 S$-hydroperoxy-18R-hydroxy-EPE, an intermediate in the biosynthesis of resolvin E1, and exhibits potent anti-inflammatory properties in murine peritonitis. ${ }^{3}$ It has been hypothesized that these E series resolvins contribute to the beneficial actions that have been attributed to EPA in certain human diseases, particularly those in which inflammation is suspected as a key component in pathogenesis. Motivated by their therapeutic potential for new treatment of human disorders associated with aberrant inflammation, the author launched the synthetic studies of resolvins as well as other lipid mediators. In this Chapter, the author reports an efficient total synthesis of resolvin E2 ${ }^{4}$ and its biological activity in reducing neutrophil infiltration and proinflammatory cytokine productions in vivo.

Figure 3-1. Anti-inflamamatory lipid mediators (resolvins) from $\omega-3$ fatty acids.

Results and discussion

Synthetic plan of resolvin E2

The author planned to simplify the synthetic route to resolvin E2 (1) by taking advantage of its two symmetric substructures at C5-10 and C13-18 (Scheme 3-1). Retrosynthetic disconnections at C10-11 and C12-13 provided a C11-12 unit together with pseudo-enantiomeric fragments, $\mathbf{2}$ and $\mathbf{3}$, both of which have the E, Z-conjugated olefin and allylic alcohol groups. Because of their structural similarity, $\mathbf{2}$ and $\mathbf{3}$ would be prepared from enantiomers of $\mathbf{6}$ by applying the same strategy. Specifically, the stereocenters at C5 of $\mathbf{4}$ and C18 of $\mathbf{5}$ would be generated by substrate-controlled stereoselective addition of the corresponding carbon nucleophiles, while the E, Z-olefins at C6 of $\mathbf{2}$ and C17 of $\mathbf{3}$ would be constructed using a torquoselective thermal electrocyclic ring-opening reaction ${ }^{5}$ of cyclobutene aldehydes $\mathbf{4}$ and 5, respectively. ${ }^{6}$ Hence, the stereochemistries of the cyclobutane of (-)- or (+)-6 were envisioned to be transferred to the stereochemistries of the hydroxyl group at C5 or C18 and the diene at C6 or C17. A pair of optically active six-carbon units $\mathbf{6}^{7}$ would be obtained from the known achiral meso anhydride 7^{8} by enantioselective desymmetrization.

Scheme 3-1. Retrosynthesis of resolvin E2

Syntheses of chiral lactones (+)-6 and (-)-6

Both enantiomers of $\mathbf{6}$ were prepared from methyl ester (+)-10 (Scheme 3-2). ${ }^{9} \quad$ The critical desymmetrization of meso- $\mathbf{7}$ into (+)-10 was realized using a catalytic amount of the quinine derivative $\mathbf{9}$, according to the conditions developed by Song. ${ }^{10,11}$ Namely, $1 \mathrm{~mol} \%$ of 9 and 10 equiv of methanol were applied to 7 in $\mathrm{Et}_{2} \mathrm{O}$ to generate (+)-10 in highly enantioselective fashion (95% yield, 87% ee). Interestingly, methanolysis of the same $\mathbf{7}$ using the quinidine derivative $\mathbf{8}$, the pseudo-enantiomer of $\mathbf{9}$, indeed gave the enantiomeric $(-)$ - $\mathbf{1 0}$, albeit in lower enantioselectivity (64% ee). Due to this, the author decided to synthesize $(-)-$ and $(+)-\mathbf{6}$ from the same $(+)-\mathbf{1 0}$ using chemoselective reduction of either the carboxylic acid or the ester. Lactone (-)-6 was prepared from (+)-10 in three steps: conversion of the carboxylic acid of (+)-10 into an acid chloride, followed by chemoselective
NaBH_{4} reduction, ${ }^{12}$ and subsequent acid-mediated cyclization of methyl ester 11. The enantiomer (+)-6 was in turn synthesized by $\mathrm{LiEt}_{3} \mathrm{BH}$ reduction ${ }^{13}$ of the methyl ester of $(+)-\mathbf{1 0}$ and subsequent cyclization of carboxylic acid $\mathbf{1 2}$ under acidic conditions.

Reagents and conditions: (a) $\mathbf{8}(1 \mathrm{~mol} \%), \mathrm{Et}_{2} \mathrm{O}, \mathrm{MeOH}(10 \mathrm{eq})(100 \%, 64 \% \mathrm{ee})$. (b) $\mathbf{9}(1 \mathrm{~mol} \%), \mathrm{Et}_{2} \mathrm{O}, \mathrm{MeOH}(10$ eq) $(95 \%, 87 \%$ ee $)$. (c) (i) $(\mathrm{COCl})_{2}, \mathrm{DMF}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ii) NaBH_{4}, DMF. (d) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(61 \%, 3\right.$ steps). (e) $\mathrm{LiEt}_{3} \mathrm{BH}$, THF. (f) TsOH , benzene $(66 \%, 2$ steps).

Scheme 3-2. Synthesis of both enantiomers of 6 .

Synthesis of C1-10 fragment

Synthesis of the C1-10 fragment $\mathbf{2}$ started with reduction of (-)-6 by DIBAL-H, followed by addition of Grignard reagent of $\mathbf{1 4}$ in one pot, ${ }^{14}$ resulting in stereoselective introduction of the C5-hydroxy group of $\mathbf{1 6}(\mathrm{dr}=6: 1$, Scheme 3-3). ${ }^{15}$ The high diastereoselectivity is attributable to chelation between the magnesium alkoxide and the aldehyde and subsequent nucleophilic attack from the convex face of the 4/7-fused ring system $15 .{ }^{6 b, d}$ Next, 1,4-diol 16 was transformed to alcohol 18 by a protection/deprotection procedure: stepwise introduction of Piv
and TBS groups to the primary and the secondary hydroxy groups, respectively, and subsequent reductive removal of the Piv ester from 17. Swern oxidation of alcohol 18 at $-78{ }^{\circ} \mathrm{C}$ generated aldehyde $\mathbf{4}$, which underwent the crucial torquoselective electrocyclic ring-opening reaction even at room temperature to deliver E, Z-diene 19 as a sole isomer. ${ }^{5}$ Stereoselective formation of the diene of $\mathbf{1 9}$ would originate from strong preference of the electron-accepting aldehyde of $\mathbf{4}$ for the inward rotation (Figure 3-2) ${ }^{6}$. Because of its chemical instability, the resulting $\alpha, \beta, \gamma, \delta$-unsaturated aldehyde 19 was immediately subjected to NaBH_{4} reduction without purification to give allylic alcohol $20 .{ }^{16}$ Finally, bromination of the chemically-sensitive allylic alcohol was realized by the action of CBr_{4} and $\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}$ to give the $\mathrm{C} 1-10$ fragment $\mathbf{2} .{ }^{17}$

Reagents and conditions: (a) DIBAL, THF (b) 14. (c) PivCl, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($68 \%, 2$ steps). (d) TBSOTf, lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (e) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(98 \%\right.$, 2 Steps). (f) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. (g) $\mathrm{NaBH}_{4}, \mathrm{EtOH}(86 \%$, 2 steps). (h) $\mathrm{CBr}_{4},\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2}\right)_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \%)$.

Figure 3-2. Torquoselective electrocyclic ring-opening reaction.

Synthesis of C13-20 fragment

The C13-20 fragment $\mathbf{3}$ was synthesized from (+)-6 similarly to the C1-10 fragment $\mathbf{2}$ (Scheme 3-4). Reduction of (+)-lactone 6 with DIBAL was followed by stereoselective addition of ethyl magnesium bromide in the presence of zinc bromide to afford 21 with the desired C18-stereochemistry $(\mathrm{dr}=7: 1)$. The stereochemistries of 16 and 21 were identified by the modified Mosher's method (Figure 3-3). After protecting group manipulations from $\mathbf{2 1}$ to $\mathbf{2 2}$ in two steps, Swern oxidation of the primary alcohol of $\mathbf{2 2}$ to aldehyde $\mathbf{5}$ accelerated the thermal ring-opening reaction to produce E, Z-diene $\mathbf{2 3}$ as a single isomer. Reduction of the resulting aldehyde of $\mathbf{2 3}$ into alcohol 24, followed by bromination, led to the C13-20 fragment 3 .

Reagents and conditions: (a) DIBAL, toluene. (b) EtMgBr (68\%). (c) PivCl , pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (68%, 2 steps). (d) TBSOTf, lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (e) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \% \text {, } 2 \text { steps). (f) (COCl) })_{2}$, DMSO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$. (g) NaBH_{4}, EtOH ($81 \%, 2$ steps). (h) $\mathrm{CBr}_{4},\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2}\right)_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \%)$.

Scheme 3-4. Synthesis of C13-20 fragment 3

$\Delta \delta=\delta_{S}-\delta R$
30ab
31ab

Reagents and conditions: (a) TBSCl, imidazole, DMAP, DMF. (b) (S) or (R) MTPACl, $\mathrm{Et}_{3} \mathrm{~N}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Figure 3-3. Syntheses of (S) - and (R)-Mosher esters 30a,b and 31a,b and their ${ }^{1} \mathrm{H}$ NMR data

Coupling of each fragments

Final convergent assemblies of the three partial structures utilized two copper-mediated couplings (Scheme 3-5). The bromide of $\mathbf{3}$ was first displaced with the copper acetylide, generated from ethynyl magnesium bromide and $\mathrm{CuCl},{ }^{18}$ delivering the $\mathrm{C} 11-20$ fragment 25. Deprotonation of the C 11 -proton of $\mathbf{2 5}$ by $n-\mathrm{BuLi}$ in the presence of $\mathrm{CuBr}-\mathrm{SMe}_{2}{ }^{19}$ at $-78{ }^{\circ} \mathrm{C}$ then afforded the corresponding copper acetylide, which was treated with the $\mathrm{C} 1-10$ fragment 2, giving rise to the entire structure 26. Intriguingly, only this particular condition produced a sufficient amount of the adduct 26. For instance, use of copper iodide instead of copper bromide for the coupling only gave a mixture of byproducts, in which the C6-E,Z-olefins were reacted or isomerized.

Reagents and conditions: (a) ethynylmagnesium bromide, CuCl , THF (84\%). (b) 2, n - $\mathrm{BuLi}, \mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}, \mathrm{HMPA}$, THF (54\%).

Scheme 3-5. Coupling of each fragments.

Synthesis of resolvin E2 (1).

Four transformations from 26 led to the targeted resolving E2 (Scheme 3-6). Lindlar conditions ${ }^{20}$ enabled partial reduction of the alkyne of $\mathbf{2 6}$ into alkene $\mathbf{2 7}$ without reduction and/or isomerization of the reactive C6- and C17-E,Z-conjugated olefins. Acid-mediated removal of the ketal of 27 was troublesome because of the presence of the acid-labile allylic TBS ethers. After many attempts, the author found that Kita's conditions ${ }^{21}$ were effective for selective reaction of the cyclic ketal. Treatment of $\mathbf{2 7}$ with an excess amount of TMSOTf and lutidine followed by aqueous work-up provided aldehyde 28 in high yield. Lastly, NaClO_{2}-mediated oxidation of the obtained aldehyde 28 into a carboxylic acid and subsequent desilylation with TBAF gave rise to resolvine E2 (1).

Reagents and conditions: (a) $\mathrm{H}_{2}, 5 \% \mathrm{Pd} / \mathrm{BaSO}_{4}$, quinoline, $\operatorname{EtOAc}(54 \%)$. (b) TMSOTf, lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ then $\mathrm{H}_{2} \mathrm{O}$. (c) $\mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 2$-methyl-2-butene, t - $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$. (d) TBAF, THF ($67 \%, 3$ steps).

Scheme 3-6. Synthesis of resolvin E2(1).

Biological evaluation of synthetic resolvin E2 (1).

The author evaluated the bioactivity of synthetic $\mathbf{1}$ using the in vivo inflammation model (Figures 3-4 and 3-5). ${ }^{3}$

Zymosan A, a glucan from the yeast cell wall, was used to induce sterile inflammation characterized by local neutrophil infiltration and proinflammatory cytokine productions. In acute peritonitis with zymosan A, intravenous administration of synthetic resolvin E 2 as low as 0.1 or $1.0 \mu \mathrm{~g}$ significantly blocked neutrophil infiltrations at 2 h in the inflamed peritoneal cavity (Figure 3-4). The potency of resolvin E2's anti-inflammatory action was comparable to that of a higher dose of dexamethasone at $10 \mu \mathrm{~g}$ (data not shown). Also $\mathbf{1}$ (1.0 $\mu \mathrm{g}$ i.v./mouse) markedly reduced production of proinflammatory cytokines such as tumor necrosis factor (TNF)- α (123.2 pg vs $56.7 \mathrm{pg}, p<0.005$) and interleukin (IL)-6 (3.40 ng vs $2.05 \mathrm{ng}, p<0.02$) (Figure 3-5).

Figure 3-4. Synthetic resolvin E2 reduced neutrophil infiltrations.

Figure 3-5. Resolvin E2 reduced productions of TNF- α and IL-6 in zymosan-induced peritonitis.

In summary, the efficient total synthesis of resolvin E2 (1) was achieved by utilizing the intrinsic pseudoenantiomeric nature of the key fragments $\mathbf{2}$ and 3. Most importantly, the two stereochemistries of $\mathbf{6}$ introduced via the desymmetrization step were effectively transferred to those of the hydroxyl group and the diene for preparing 2 and 3. The obtained fragments were assembled into $\mathbf{1}$ in a convergent fashion. Furthermore, the author confirmed synthetic resolving E2 blocked neutrophil infiltrations in the inflamed peritoneal cavity in acute peritonitis with zymosan A. And it also markedly reduced production of proinflammatory cytokines such as tumor necrosis factor (TNF)- α and interleukin (IL)-6.

Experimental Section

General Methods.

All reactions sensitive to air or moisture were carried out under argon atmosphere in dry, freshly distilled solvents under anhydrous conditions, unless otherwise noted. THF was distilled from sodium/benzophenone, pyridine, triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ and 2,6-lutidine from calcium hydride under reduced pressure. All other reagents were used as supplied unless otherwise stated. Analytical thin-layer chromatography (TLC) was performed using E. Merck Silica gel 60 F254 pre-coated plates. Column chromatography was performed using 75-150 $\mu \mathrm{m}$ BW-820MH (Fuji Silysia Co., Inc.). Flash column chromatography was performed using 40-63 $\mu \mathrm{m}$ Silica Gel 60 (Merck Co., Inc.) or 32-53 $\mu \mathrm{m}$ BW-300 (Fuji Silysia Co., Inc.). ${ }^{1} \mathrm{H}-\mathrm{and}{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a JEOL JNM ECA-500 (500 MHz) or JEOL JNM ECX-500 (500 MHz) spectrometer. Chemical shifts are reported in $\delta(\mathrm{ppm})$ with reference to solvent signals [${ }^{1} \mathrm{H}$ NMR: $\mathrm{CHCl}_{3}(7.26), \mathrm{C}_{6} \mathrm{D}_{6}(7.16),\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}(2.05)$, $\mathrm{CD}_{3} \mathrm{OD}(3.30) ;{ }^{13} \mathrm{C} \mathrm{NMR:} \mathrm{CHCl}_{3}(77.0), \mathrm{C}_{6} \mathrm{D}_{6}(128.06),\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}(29.84), \mathrm{CD}_{3} \mathrm{OD}(49.00)$. Signal patterns are indicated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad peak. IR spectra were recorded on a JASCO FT/IR-4100 spectrometer. FAB-MS and EI-MS were on JEOL JMS-700. ESI-MS were on BRUKER DALTONICS Bio TOF-Q. Optical rotations were recorded on a JASCO DIP-1000 polarimeter. Melting points were measured on a Yanaco MP-J3 micro melting point apparatus and uncorrected.

Experimantal procedure

Methyl ester (+)-10.

Methanol ($0.16 \mathrm{~mL}, 4.0 \mathrm{mmol}$) was added to a solution of meso-7 $(50 \mathrm{mg}, 0.40 \mathrm{mmol})$ and quinine derivative 9 $(2.4 \mathrm{mg}, 4.0 \mu \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred at room temperature for 20 h and 1 M HCl solution was added. The mixture was extracted with EtOAc and the organic layer was dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave methyl ester $(+) \mathbf{- 1 0}(60 \mathrm{mg}, 0.38 \mathrm{mmol})$ in 95% yield. The enantiomeric excess was determined to be 87% from ${ }^{1} \mathrm{H}$ NMR analysis of Mosher ester of alcohol 11. pale yellow oil $[\alpha]_{\mathrm{D}}{ }^{25}=3.3\left(c 0.87, \mathrm{CHCl}_{3}\right)$; IR (neat) $v 3475,2956,1728,1573,1210 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 3.65(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.93\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}-\mathrm{CO}_{2} \mathrm{Me}, \mathrm{CH}-\mathrm{CO}_{2} \mathrm{H}\right), 6.22(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{CHA}=\mathrm{CHB}), 6.24(1 \mathrm{H}$, $\mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{CHA}=\mathrm{CHB}), 11.20\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} H\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 48.66,48.74,52.0,136.2$, 136.9, 171.1, 176.8. HRMS (FAB), calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{Cs} 288.9477(\mathrm{M}+\mathrm{Cs})^{+}$, found 288.9470 .

(-)-Lactone 6.

To a solution of methyl ester (+)-10 $(2.12 \mathrm{~g}, 13.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ and $\mathrm{DMF}(0.3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $(\mathrm{COCl})_{2}(1.7 \mathrm{~mL}, 21 \mathrm{mmol})$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h and was transferred to a suspension of $\mathrm{NaBH}_{4}(3.11 \mathrm{~g}, 82.2 \mathrm{mmol})$ in DMF $(120 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for further 1.5 h at $0^{\circ} \mathrm{C}$ and 1 M HCl solution was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration gave methyl ester 11, which was directly used in the next reaction. Trifluoroacetic acid ($2.9 \mathrm{~mL}, 39 \mathrm{mmol}$) was added to a solution of crude methyl ester $\mathbf{1 1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 15 h . Concentration and flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 99: 1-97: 3\right.$ then hexane/EtOAc 4:1-2:1) gave (-)-lactone 6 ($919 \mathrm{mg}, 8.35 \mathrm{mmol}$) in 61% yield over 3 steps.

Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{24}=-272.2\left(c 0.62, \mathrm{CHCl}_{3}\right)$; IR (neat) $v 2974,1759,1170,984 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 3.59\left(1 \mathrm{H}, \mathrm{ddd}, J=6.7,3.9,2.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.62(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}, \mathrm{COCH}), 4.24(1 \mathrm{H}, \mathrm{dd}, J=9.6$, $2.3 \mathrm{~Hz}, \mathrm{OCHAHB}), 4.27(1 \mathrm{H}, \mathrm{dd}, J=9.6,6.7 \mathrm{~Hz}, \mathrm{OCHAHB}), 6.28(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{CHA}=\mathrm{CHB}), 6.33(1 \mathrm{H}, \mathrm{d}$, $J=2.8 \mathrm{~Hz}, \mathrm{CHA}=\mathrm{CHB}) . \quad{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 41.8,46.5,67.9,138.9,141.5,175.4 . \quad$ HRMS (EI), calcd for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2} 110.0368\left(\mathrm{M}^{+}\right)$, found 110.0368.

(+)-Lactone 6.

To a solution of methyl ester (+)-10 (85 mg, 0.55 mmol$)$ in THF $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{LiEt}_{3} \mathrm{BH}(1.0 \mathrm{M}$ in THF, $1.8 \mathrm{ml}, 1.8 \mathrm{mmol})$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and additional $\mathrm{LiEt}_{3} \mathrm{BH}(1.0 \mathrm{M}$ in THF, $2.4 \mathrm{ml}, 2.4 \mathrm{mmol}$) was added. The reaction mixture was stirred for further 10 min at $0^{\circ} \mathrm{C}$ and additional $\mathrm{LiEt}_{3} \mathrm{BH}(1.0 \mathrm{M}$ in THF, $0.82 \mathrm{ml}, 0.82 \mathrm{mmol})$ was added again. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min, and then 1 M HCl solution was added. The resulting solution was neutralized by careful addition of 0.5 M LiOH solution. Concentrated gave carboxylic acid 12, which was directly used in the next reaction. p-Toluenesulfonic acid monohydrate ($400 \mathrm{mg}, 2.11 \mathrm{mmol}$) was added to a solution of crude carboxylic acid $\mathbf{1 2}$ in benzene (40 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was heated at $100^{\circ} \mathrm{C}$ for 1 h and cooled to room temperature, and then $\mathrm{H}_{2} \mathrm{O}$ was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash column chromatography (hexane/EtOAc 6:1-4:1) gave (+)-lactone 6 ($37 \mathrm{mg}, 0.33 \mathrm{mmol}$) in 66% yield over 2 steps.

Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{27} 276.7\left(c 0.22, \mathrm{CHCl}_{3}\right)$; IR (neat) v 2974, 1758, 1171, $983 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 3.60\left(1 \mathrm{H}, \mathrm{ddd}, J=6.8,3.4,2.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.64(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}, \mathrm{COCH}), 4.26(1 \mathrm{H}, \mathrm{dd}, J=9.7,2.3 \mathrm{~Hz}$, OCHAHB), $4.29(1 \mathrm{H}, \mathrm{dd}, J=9.7,6.8 \mathrm{~Hz}$, OCHAHB $), 6.31(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{CHA}=\mathrm{CHB}), 6.35(1 \mathrm{H}, \mathrm{d}, J=2.8$ $\mathrm{Hz}, \mathrm{CHA}=\mathrm{CHB}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 41.8,46.5,68.0,139.0,141.6,175.4$. HRMS (EI), calcd for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2} 110.0368\left(\mathrm{M}^{+}\right)$, found 110.0363 .

Piv ester 17.

To a solution of (-)-lactone $6(239 \mathrm{mg}, 2.17 \mathrm{mmol})$ in THF $(31 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added DIBAL $(1.0 \mathrm{M}$ in hexane, $2.4 \mathrm{ml}, 2.4 \mathrm{mmol}$). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min and a solution of Grignard reagent 14 (ca. 0.6 M in THF, $31 \mathrm{~mL}, 18 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for further 2 h and saturated aqueous potassium sodium tartrate was added. The mixture was extracted with EtOAc and the organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash column chromatography (hexane/EtOAc 1:1-1:2-1:3) gave 1,4-diol 16 (508 mg), and its diastereomer ($46.2 \mathrm{mg}, 0.204 \mathrm{mmol}$) in 9% yield.

To a solution of the impure 1,4 -diol 16 and pyridine $(1.8 \mathrm{~mL}, 22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\operatorname{PivCl}(1.1 \mathrm{ml}, 8.9 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 4 h and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash column chromatography (hexane/EtOAc 9:1-3:1-1:1) gave Piv ester 17 ($463 \mathrm{mg}, 1.48$ $\mathrm{mmol})$ in 68% yield over 3 steps.

Pale yellow oil; $[\alpha]_{\mathrm{D}}{ }^{25}=-19.9\left(c 0.59, \mathrm{CHCl}_{3}\right) ;$ IR (neat) v 3493, 2958, 2908, 2880, 1726, 1480, 1461, 1288, 1149, $967,945 \mathrm{~cm}^{-1} . \quad{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.18$ ($9 \mathrm{H}, \mathrm{s}, t$-Bu of Piv), 1.40-1.58 (2H, m, H-4), 1.56-1.72 (4H, $\mathrm{m}, \mathrm{H}-2, \mathrm{H}-3), 2.93(1 \mathrm{H}, \mathrm{dd}, J=10.1,3.9 \mathrm{~Hz}, \mathrm{H}-6), 3.19(1 \mathrm{H}, \mathrm{ddd}, J=9.5,5.0,3.9 \mathrm{~Hz}, \mathrm{H}-9), 3.68(1 \mathrm{H}, \mathrm{ddd}, J=$ $10.1,8.4,2.8 \mathrm{~Hz}, \mathrm{H}-5), 3.79-3.86\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.91-3.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.11(1 \mathrm{H}, \mathrm{dd}, J=11.8$, $9.5 \mathrm{~Hz}, \mathrm{H} 10), 4.45(1 \mathrm{H}, \mathrm{dd}, J=11.8,5.0 \mathrm{~Hz}, \mathrm{H} 10), 4.84(1 \mathrm{H}, \mathrm{t}, J=4.5 \mathrm{~Hz}, \mathrm{H} 1), 6.02(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{H} 7), 6.06$ $(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{H} 8) . \quad{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.9,27.1,33.7,34.9,38.7,44.7,52.6,64.1,64.8,70.9$, 104.5, 137.1, 138.1, 178.0. HRMS (FAB), calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{5} 313.2015(\mathrm{M}+\mathrm{H})^{+}$, found 313.2000.

Alcohol 18

To a solution of Piv ester $\mathbf{1 7}(406 \mathrm{mg}, 1.30 \mathrm{mmol})$ and 2,6-lutidine $(1.2 \mathrm{~mL}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at
$0{ }^{\circ} \mathrm{C}$ was added TBSOTf ($890 \mu \mathrm{~L}, 3.90 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 2 h and $\mathrm{H}_{2} \mathrm{O}$ was added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, saturated aqueous NaHCO_{3} and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash column chromatography (hexane/EtOAc 100:0-9:1) gave TBS ether (694 mg), including inseparable compound, which was used in the next reaction.

To a solution of the impure TBS ether (694 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-7{ }^{\circ} \mathrm{C}$ was added DIBAL solution $(1.0 \mathrm{M}$ in hexane, $2.60 \mathrm{~mL}, 2.60 \mathrm{mmol}$). The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min and saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and saturated aqueous NaHCO_{3} were added. The resulting suspension was stirred at room temperature for 1 h and was filtrated through a pad of Celite with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Concentration and flash column chromatography (hexane/EtOAc 2:1-1:1) gave alcohol $\mathbf{1 8}(435 \mathrm{mg}, 1.27 \mathrm{mmol})$ in 98% yield over 2 steps.

Pale yellow oil; $[\alpha]_{\mathrm{D}}{ }^{27}=6.9\left(c 0.41, \mathrm{CHCl}_{3}\right)$; IR (neat) v 3421, 2952, 2931, 2886, 2859, 1468, 1254, 1140, 1098, $1031,939,836 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of TBS), $0.10(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of TBS $), 0.88$ ($9 \mathrm{H}, \mathrm{s}, t$-Bu of TBS), 1.46-1.52 (2H, m, H-3), 1.59-1.67 (4H, m, H-2, H-4), $3.11(1 \mathrm{H}, \mathrm{dd}, J=5.0 \mathrm{~Hz}, \mathrm{H}-6)$, 3.17-3.20 (1H, m, H-9), 3.75-3.81 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10$), 3.83-3.87 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.91-3.96 (2H, m, OCH $\mathrm{OH}_{2} \mathrm{O}$), 3.96-4.00 (1H, m, H-5), $4.83(1 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}, \mathrm{H}-1), 5.96(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{H}-7), 6.07(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{H}-8)$. ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta-4.1,-3.7,18.2,19.9,25.9,33.8,35.5,49.6,51.3,61.8,64.82,64.84,72.7,104.2$, 137.0, 137.6. HRMS (FAB), calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}_{4} \mathrm{Si} 343.2305(\mathrm{M}+\mathrm{H})^{+}$, found 343.2307.

Allylic alcohol 20.

Dimethyl sulfoxide (0.95 M in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 7.4 \mathrm{ml}, 6.2 \mathrm{mmol}\right)$ was added to a solution of $(\mathrm{COCl})_{2}(0.21 \mathrm{~mL}, 2.5$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 10 min then a solution of alcohol $\mathbf{1 8}$ (423 mg, 1.24 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.0 \mathrm{~mL})$ was added at $-7{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h and was treated with $\mathrm{Et}_{3} \mathrm{~N}(1.1 \mathrm{~mL}, 7.9 \mathrm{mmol})$. The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for further 1 h ,
warmed to room temperature over 1.5 h , and stirred for further 1 h , and then $\mathrm{H}_{2} \mathrm{O}(8.0 \mathrm{~mL})$ was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$ and the organic layer was poured into a suspension of $\mathrm{NaBH}_{4}(233$ $\mathrm{mg}, 6.18 \mathrm{mmol})$ in $\mathrm{EtOH}(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash column chromatography (hexane/EtOAc 4:1-2:1) gave allylic alcohol 20 ($363 \mathrm{mg}, 1.06 \mathrm{mmol}$) in 86% yield.

Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{27}=4.9\left(c 0.39, \mathrm{CHCl}_{3}\right)$; IR (neat) $v 3420,2952,2929,2884,2857,1685,1643,1254,1141$, $1034,957,837 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.01(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of TBS), 0.04 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of TBS), 0.89 $\left(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}\right.$ of TBS), 1.37-1.60 (6H, m, H-2, H-3, H-4), 3.82-3.85 ($2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.91-3.98 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.17(1 \mathrm{H}, \mathrm{dt}, J=5.7,5.7 \mathrm{~Hz}, \mathrm{H}-5), 4.30(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}-10), 4.83(1 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}, \mathrm{H}-1)$, $5.57(1 \mathrm{H}, \mathrm{dt}, J=11.3,6.8 \mathrm{~Hz}, \mathrm{H}-9), 5.71(1 \mathrm{H}, \mathrm{dd}, J=15.3,5.7 \mathrm{~Hz}, \mathrm{H}-6), 6.06(1 \mathrm{H}, \mathrm{t}, J=11.3 \mathrm{~Hz}, \mathrm{H}-8), 6.41(1 \mathrm{H}$, $\mathrm{dd}, J=15.3,11.3 \mathrm{~Hz}, \mathrm{H} 7) . \quad{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.8-4.4,18.2,19.7,25.8,33.8,38.0,58.8$ (2C), $64.8,72.7,104.5,123.6,128.9,130.3,139.1$. HRMS (FAB), calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{SiCs} 475.1281(\mathrm{M}+\mathrm{Cs})^{+}$, found 475.1274.

C1-10 Fragment (2).

Tetrabromomethane ($406 \mathrm{mg}, 1.27 \mathrm{mmol}$) and DPPE ($504 \mathrm{mg}, 1.27 \mathrm{mmol}$) were successively added to a solution of allylic alcohol $20(144 \mathrm{mg}, 0.422 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 \min at $0{ }^{\circ} \mathrm{C}$ and was directly subjected to flash column chromatography (hexane/EtOAc 9:1) to give $\mathrm{C} 1-10$ fragment (2) ($170 \mathrm{mg}, 0.422 \mathrm{mmol})$ in 100% yield.
$[\alpha]_{\mathrm{D}}{ }^{24}=37.8\left(c 0.24, \mathrm{CHCl}_{3}\right) ;$ IR (neat) v 2952, 2928, 2856, 1652, 1472, 1458, 1252, 1124, 949, 836, $775 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of TBS), $0.08(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of TBS), $1.00(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), 1.43-1.70 (4H, m, H-3, H-4), 1.74-1.79 (2H, m, H-2), 3.34-3.37 (2H, m, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.52-3.55(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.81(1 \mathrm{H}, \mathrm{dd}, J=11.8,8.4 \mathrm{~Hz}, \mathrm{H}-10), 3.90(1 \mathrm{H}, \mathrm{dd}, J=11.8,7.8 \mathrm{~Hz}, \mathrm{H}-10), 4.06(1 \mathrm{H}, \mathrm{dt}, J=6.1$,
$5.5 \mathrm{~Hz}, \mathrm{H}-5), 4.81(1 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}, \mathrm{H} 1), 5.36(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J=10.7,7.8 \mathrm{~Hz}, \mathrm{H} 9), 5.61(1 \mathrm{H}, \mathrm{dd}, J=15.1,6.1 \mathrm{~Hz}$, H6), $5.90(1 \mathrm{H}, \mathrm{br}$ dd, $J=11.2,10.7 \mathrm{~Hz}, \mathrm{H} 8), 6.46(1 \mathrm{H}, \mathrm{dd}, J=15.1,11.2 \mathrm{~Hz}, \mathrm{H} 7) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $-4.6-4.2,18.5,20.2,26.1,34.4,38.4,39.3,64.9(2 C), 73.0,104.8,123.1,125.5,132.6,140.9$.

1,4-Diol 21.

To a solution of (+)-lactone $6(242 \mathrm{mg}, 2.19 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added DIBAL $(1.0 \mathrm{M}$ in hexane, $2.2 \mathrm{ml}, 2.2 \mathrm{mmol}$). The reaction mixture was stirred for 20 min at $-78^{\circ} \mathrm{C}$, then $\mathrm{ZnBr}_{2}(493 \mathrm{mg}, 2.19$ $\mathrm{mmol})$ and $\mathrm{EtMgBr}(0.50 \mathrm{M}$ in THF, $13.1 \mathrm{ml}, 6.57 \mathrm{mmol})$ were added successively. The reaction mixture was warmed to room temperature and stirred for 16 h , and then 1 M HCl solution was added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash column chromatography (hexane/EtOAc 3:1-2:1-1:1-1:2) gave 1,4-diol 21 ($213 \mathrm{mg}, 15.0 \mathrm{mmol}$) in 68% yield and a mixture of 1,4-diol 21 and its diastereomeric isomer in 1:3 ratio in 13\% yield.

White solid; m.p. $53-55^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{24}=28.7\left(c 0.31, \mathrm{CHCl}_{3}\right)$; IR (neat) v 3317, 3044, 2964, 2922, 1461, 1290, 1029, $967 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.00(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{H}-20), 1.37-1.46(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-19), 1.61-1.70(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-19), 2.94(1 \mathrm{H}, \mathrm{dd}, J=10.8,4.0 \mathrm{~Hz}, \mathrm{H} 17), 3.20(1 \mathrm{H}, \mathrm{dt}, J=11.3,4.0 \mathrm{~Hz}, \mathrm{H} 14), 3.63-3.68(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 18), 3.69$ $(1 \mathrm{H}, \mathrm{dd}, J=11.3,11.3 \mathrm{~Hz}, \mathrm{H} 13), 3.75-3.94(2 \mathrm{H}, \mathrm{m}, \mathrm{OH} x 2), 3.82(1 \mathrm{H}, \mathrm{dd}, J=11.3,4.0 \mathrm{~Hz}, \mathrm{H} 13), 6.01(1 \mathrm{H}, \mathrm{d}, J=$ $2.8 \mathrm{~Hz}, \mathrm{H} 15$ or 16$), 6.02(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{H} 15$ or 16$) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.7,27.9,48.2,52.4$, 62.3, 72.6, 137.2, 137.8; HRMS (FAB), calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Cs} 275.0048(\mathrm{M}+\mathrm{Cs})^{+}$, found 275.0039.

TBS ether 22.

To a solution of 1,4-diol $21(291 \mathrm{mg}, 2.04 \mathrm{mmol})$ and 2,6-lutidine ($2.2 \mathrm{~mL}, 20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{PivCl}(0.6 \mathrm{ml}, 6.1 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 2 h and additional $\mathrm{PivCl}(0.2 \mathrm{~mL}, 2.0 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature for further 1 h and cooled to $0^{\circ} \mathrm{C}$, and then TBSOTf $(0.9 \mathrm{~mL}, 4.1 \mathrm{mmol})$ was added. The reaction mixture stirred for 1 h , and additional TBSOTf ($0.9 \mathrm{~mL}, 4.1 \mathrm{mmol}$) was added. The reaction mixture was stirred for further 10 min and $\mathrm{H}_{2} \mathrm{O}$ was added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, saturated aqueous NaHCO_{3} and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash column chromatography (hexane/EtOAc 100:0-9:1) gave product (811 mg), including inseparable compound, which was used in the next reaction.

To a solution of crude product $(811 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added DIBAL (1.0 M in hexane, 4.0 $\mathrm{ml}, 4.0 \mathrm{mmol})$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min and additional DIBALn (1.0 M in hexane, $0.60 \mathrm{ml}, 0.60 \mathrm{mmol}$) was added. The reaction mixture was stirred for further 10 min and a mixture of saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and saturated aqueous NaHCO_{3} was added. The suspension was stirred at room temperature for 1 h and was filtrated through a pad of Celite with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Concentration and flash column chromatography (hexane/EtOAc 9:1-2:1) gave TBS ether $22(529 \mathrm{mg}, 2.05 \mathrm{mmol})$ in 100% yield over 2 steps. Pale yellow oil; $[\alpha]_{\mathrm{D}}{ }^{26}=-8.8(c 0.42, \mathrm{CHCl} 3) ;$ IR (neat) v 3343, 3045, 2957, 2931, 2887, 2858, 1467, 1384, 1254, $1102,1007,836 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.108(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of TBS), $0.112(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of TBS), 0.90 $(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS), $0.93(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{H}-20), 1.59-1.70(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-19), 3.13(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-17), 3.19(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-14), 3.77(1 \mathrm{H}, \mathrm{dd}, J=11.3,6.2 \mathrm{~Hz}, \mathrm{H}-13), 3.84(1 \mathrm{H}, \mathrm{dd}, J=11.3,3.4 \mathrm{~Hz}, \mathrm{H}-13), 3.93(1 \mathrm{H}, \mathrm{dt}, J=6.2,5.6 \mathrm{~Hz}$, $\mathrm{H}-18), 5.97(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{H}-16), 6.09(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{H}-15) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.1,-3.7$, $9.9,18.3,25.9,28.4,49.6,51.0,61.9,74.1,137.1,137.5 . \quad$ HRMS (FAB), calcd for $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si} 257.1937\left(\mathrm{M}+\mathrm{H}^{+}\right)$, found 257.1933.

Allylic alcohol 24.

Dimethyl sulfoxide $\left(0.95 \mathrm{M} \mathrm{in}_{\mathrm{CH}}^{2} \mathrm{Cl}_{2}, 18.2 \mathrm{ml}, 17.4 \mathrm{mmol}\right)$ was added to a solution of $(\mathrm{COCl})_{2}(0.59 \mathrm{~mL}, 7.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min , then a solution of TBS ether $22(891 \mathrm{mg}, 3.48 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$ was added. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and treated with $\mathrm{Et}_{3} \mathrm{~N}(3.1 \mathrm{~mL}, 22 \mathrm{mmol})$. The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for additional 1 h , warmed to room temperature over 1.5 h , and stirred for further1 h , and then $\mathrm{H}_{2} \mathrm{O}(17 \mathrm{~mL})$ was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$ and the organic layer was poured into a suspension of $\mathrm{NaBH}_{4}(659$ $\mathrm{mg}, 17.4 \mathrm{mmol})$ in $\mathrm{EtOH}(85 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash column chromatography (hexane/EtOAc 9:1-4:1) gave allylic alcohol 24 (751 $\mathrm{mg}, 2.93 \mathrm{mmol}$) in 84% yield.

Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{25}=2.7\left(c 0.37, \mathrm{CHCl}_{3}\right) ;$ IR (neat) v 3357, 2956, 2932, 2858, 1679, 1642, 1467, 1362, 1255, $1065,1042,1009,837 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of TBS$), 0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of TBS), $0.87(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{H}-20), 0.90(9 \mathrm{H}, \mathrm{s}, t$-Bu of TBS $), 1.51(2 \mathrm{H}, \mathrm{qd}, J=7.4,6.2 \mathrm{~Hz} \mathrm{H}-19), 4.11(1 \mathrm{H}, \mathrm{td}, J=6.2$, $5.7 \mathrm{~Hz}, \mathrm{H}-18), 4.31(1 \mathrm{H}, \mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, \mathrm{H}-13), 4.33(1 \mathrm{H}, \mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, \mathrm{H}-13), 5.57(1 \mathrm{H}, \mathrm{dt}, J=11.3$, $6.8 \mathrm{~Hz}, \mathrm{H}-14), 5.72(1 \mathrm{H}, \mathrm{dd}, J=14.8,5.7 \mathrm{~Hz}, \mathrm{H}-17), 6.09(1 \mathrm{H}, \mathrm{dd}, J=11.3,11.3 \mathrm{~Hz}, \mathrm{H} 15), 6.43(1 \mathrm{H}, \mathrm{dd}, J=14.8$, 11.3 Hz, H16). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.8,-4.4,9.6,18.3,25.9,31.0,58.8,73.9,123.4,128.8,130.4$, 139.2. HRMS (ESI), calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SiNa} 279.1756(\mathrm{M}+\mathrm{Na})^{+}$, found 279.1765.

C13-20 Fragment (3).

Tetrabromomethane ($129 \mathrm{mg}, 0.391 \mathrm{mmol}$) and DPPE ($156 \mathrm{mg}, 0.391 \mathrm{mmol}$) were successively added to a
solution of allylic alcohol $24(100 \mathrm{mg}, 0.391 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 20 min and was directly subjected to flash column chromatography (hexane/EtOAc 9:1) to give C13-20 fragment (3) ($122 \mathrm{mg}, 0.384 \mathrm{mmol})$ in 98% yield.

Yellow oil ; $[\alpha]_{\mathrm{D}}{ }^{24}=-72.2\left(c 0.47, \mathrm{CHCl}_{3}\right) ;$ IR (neat) v 2957, 2929, 2884, 2857, 1651, 1472, 1362, 1255, 1200, $1044,837,775 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 0.06(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of TBS$), 0.07(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of TBS), $0.86(3 \mathrm{H}$, $\mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{H}-20), 1.01(9 \mathrm{H}, \mathrm{s}, t$-Bu of TBS), $1.38-1.50(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-19), 3.69(1 \mathrm{H}, \mathrm{dd}, J=9.5,8.3 \mathrm{~Hz}, \mathrm{H}-13)$, $3.80(1 \mathrm{H}, \mathrm{dd}, J=9.5,9.5 \mathrm{~Hz}, \mathrm{H}-13), 3.96(1 \mathrm{H}, \mathrm{td}, J=6.2,5.6 \mathrm{~Hz}, \mathrm{H}-18), 5.40(1 \mathrm{H}, \mathrm{br} \mathrm{ddd}, J=10.6,9.5,8.3 \mathrm{~Hz}$, H14), $5.60(1 \mathrm{H}, \mathrm{dd}, J=15.1,5.6 \mathrm{~Hz}, \mathrm{H} 17), 5.87(1 \mathrm{H}, \mathrm{dd}, J=11.2,10.6 \mathrm{~Hz}, \mathrm{H} 15), 6.51(1 \mathrm{H}, \mathrm{dd}, J=15.1,11.2 \mathrm{~Hz}$, H16). ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta-4.6,-4.2,9.7,18.5,26.1,26.9,31.2,74.1,123.1,125.5,132.9,140.7$.

C11-20 Fragment (25).
Ethynyl magnesium bromide (0.50 M in THF, $4.70 \mathrm{ml}, 2.35 \mathrm{mmol}$) was added to a solution of $\mathrm{CuCl}(23 \mathrm{mg}, 0.23$ $\mathrm{mmol})$ in THF $(4.0 \mathrm{~mL})$ at room temperature, and the mixture was stirred for 15 min . A solution of C13-20 fragment (3) ($61 \mathrm{mg}, 0.19 \mathrm{mmol}$) in THF (3.0 mL) was added to the mixture. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 14 h and cooled to room temperature, and then saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash column chromatography (hexane/EtOAc 100:0-98:2) gave C11-20 fragment (25) (43 mg, 0.16 mmol) in 84% yield.

Pale brown oil; $[\alpha]_{\mathrm{D}}{ }^{28}=-21.8(c 0.33, \mathrm{CHCl} 3) ;$ IR (neat) v 3311, 2957, 2931, 2857, 2122, 1466, 1254, 1065, 837 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.03(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of TBS$), 0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of TBS $), 0.87(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}$, $\mathrm{H}-20), 0.91(9 \mathrm{H}, \mathrm{s}, t$-Bu of TBS $), 1.51(2 \mathrm{H}, \mathrm{qd}, J=7.4,5.6 \mathrm{~Hz}, \mathrm{H}-19), 2.00(1 \mathrm{H}, \mathrm{t}, J=2.8 \mathrm{~Hz}, \mathrm{H}-11), 3.07(2 \mathrm{H}$, ddd, $J=6.8,2.8,2.8 \mathrm{~Hz}, \mathrm{H}-13), 4.11(1 \mathrm{H}, \mathrm{dt}, J=6.2,5.6 \mathrm{~Hz}, \mathrm{H}-18), 5.42(1 \mathrm{H}, \mathrm{dt}, J=10.2,6.8 \mathrm{~Hz}, \mathrm{H}-14), 5.71$ (1H, dd, $J=15.3,6.2 \mathrm{~Hz}, \mathrm{H}-17), 6.06(1 \mathrm{H}, \mathrm{ddd}, J=11.3,10.2,2.8 \mathrm{~Hz}, \mathrm{H}-15), 6.38(1 \mathrm{H}, \mathrm{dd}, J=15.3,11.3 \mathrm{~Hz}$, $\mathrm{H}-16) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.8-4.4,9.6,17.2,18.3,25.9,31.0,68.3,74.0,82.4,123.2,124.1,129.9$,
138.7.

Coupling product 26.

n-Buthyl lithium (1.6 M in hexane, $0.21 \mathrm{~mL}, 0.34 \mathrm{mmol}$) was added to a solution of $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(70 \mathrm{mg}, 0.34$ $\mathrm{mmol})$ and C11-20 fragment (25) $(100 \mathrm{mg}, 0.379 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 5 min and then HMPA $(2.0 \mathrm{~mL})$ was added. The resulting mixture was dropped into a solution of C1-10 fragment (2) (76.2 mg, 0.189 mmol$)$ in $\mathrm{THF}(3.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ via cannular. The reaction mixture was stirred at room temperature for 17 h and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash column chromatography (hexane/EtOAc 99:1-98:2-97:3) gave 26 ($59 \mathrm{mg}, 0.10 \mathrm{mmol}$) in 53% yield.

Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{24}=-2.2\left(c 0.35, \mathrm{CHCl}_{3}\right)$; IR (neat) $v 2954,2929,2857,1472,1463,1254,1063,950,836 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 0.07(9 \mathrm{H}, \mathrm{s}$, Me of TBS x 3), $0.09(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of TBS), $0.88(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{H}-20)$, $1.00(18 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of TBS x 2), 1.40-1.57 (3H, m, H-3. H-19), 1.55-1.60 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 1.60-1.70(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$, 1.74-1.77 (2H, m, H2), 2.95-3.08 (4H, m, H10, H13), 3.35-3.37 (2H, m, CH H_{2} of acetal), 3.52-3.55 ($2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.00(1 \mathrm{H}, \mathrm{dt}, J=6.2,6.2 \mathrm{~Hz}, \mathrm{H} 18), 4.08(1 \mathrm{H}, \mathrm{dt}, J=6.2,5.0 \mathrm{~Hz}, \mathrm{H} 5), 4.81(1 \mathrm{H}, \mathrm{t}, J=4.5 \mathrm{~Hz}, \mathrm{H} 1)$, 5.43-5.49 (2H, m, H9, H14), $5.60(2 \mathrm{H}, \mathrm{dd}, J=15.1,6.2 \mathrm{~Hz}, \mathrm{H} 6, \mathrm{H} 17), 5.96(1 \mathrm{H}, \mathrm{dd}, J=11.2,11.2 \mathrm{~Hz}, \mathrm{H} 8$ or 15$)$, $5.98(1 \mathrm{H}, \mathrm{dd}, J=10.6,10.6 \mathrm{~Hz}, \mathrm{H} 8$ or 15$), 6.49(1 \mathrm{H}, \mathrm{dd}, J=15.1,11.2 \mathrm{~Hz}, \mathrm{H} 7$ or 16$), 6.50(1 \mathrm{H}, \mathrm{dd}, J=15.1,11.2$ $\mathrm{Hz}, \mathrm{H} 7$ or 16$).{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta-4.60,-4.57,-4.1,-4.0,9.8,18.0(2 \mathrm{C}), 18.5$ (2C), 20.4, 26.13, $26.15,31.5,34.4,38.6,64.8$ (2C), 73.3, 74.5, 78.5, 78.6, 104.8, 124.1, 124.2, 126.3 (2C), 129.5 (2C), 138.4, 138.6. HRMS (EI), calcd for $\mathrm{C}_{34} \mathrm{H}_{60} \mathrm{O}_{4} \mathrm{Si}_{2} 588.4030\left(\mathrm{M}^{+}\right)$, found 588.4044.

Alkene 27.

A suspension of compound $26(22 \mathrm{mg}, 38 \mu \mathrm{~mol})$, quinoline ($38 \mu \mathrm{~L}, 0.31 \mathrm{mmol}$) and $5 \% \mathrm{Pd}-\mathrm{BaSO}_{4}(22 \mathrm{mg})$ in EtOAc (6.0 mL) was exposed to H_{2} atmosphere (1 atm) and stirred for 10 h at room temperature. Additional 5% $\mathrm{Pd}-\mathrm{BaSO}_{4}(22 \mathrm{mg})$ was added and the reaction mixture was stirred for further 4 h at room temperature.
 temperature. The suspension was filtrated through a pad of Celite with EtOAc. Concentrated and purification by HPLC (Inertsil, SIL 100A, $250 \times 10 \mathrm{~mm}$, UV 254 nm , hexane $/ E t O A c 96 / 4,3.0 \mathrm{~mL} / \mathrm{min}, T R=23 \mathrm{~min}$) gave alkene $27(13 \mathrm{mg}, 22 \mu \mathrm{~mol})$ in 54% yield.

Pale yellow oil; $[\alpha]_{\mathrm{D}}{ }^{23}=1.4\left(c 0.37, \mathrm{CHCl}_{3}\right)$; IR (neat) $v 2955,2928,2856,1471,1463,1255,1142,1063,952$, $836 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 0.10(3 \mathrm{H}, \mathrm{s}$, Me of TBS), $0.11(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of TBS x 2$), 0.12(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$ of TBS), $0.92(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{H} 20), 1.04(18 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}$ of $\mathrm{TBS} \times 2), 1.50-1.58(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 19), 1.60-1.73(4 \mathrm{H}, \mathrm{m}$, $\mathrm{H} 3, \mathrm{H} 4), 1.75-1.82(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 2.94-3.04(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 10, \mathrm{H} 13), 3.35-3.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of acetal), 3.53-3.56(2H, $\mathrm{m}, \mathrm{CH}_{2}$ of acetal), $4.08(1 \mathrm{H}, \mathrm{dt}, J=6.2,5.6 \mathrm{~Hz}, \mathrm{H} 18), 4.17(1 \mathrm{H}, \mathrm{dt}, J=6.2,5.6 \mathrm{~Hz}, \mathrm{H} 5), 4.82(1 \mathrm{H}, \mathrm{t}, J=4.5 \mathrm{~Hz}$, H1), 5.36-5.43 (2H, m, H9, H14), $5.45(2 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}, \mathrm{H} 11, \mathrm{H} 12), 5.67(2 \mathrm{H}, \mathrm{dd}, J=15.1,6.2 \mathrm{~Hz}, \mathrm{H} 6, \mathrm{H} 17)$, $6.06(1 \mathrm{H}, \mathrm{dd}, J=11.2,10.1 \mathrm{~Hz}, \mathrm{H} 8$ or 15$), 6.08(1 \mathrm{H}, \mathrm{dd}, J=11.2,10.1 \mathrm{~Hz}, \mathrm{H} 8$ or 15$), 6.65(1 \mathrm{H}, \mathrm{dd}, J=15.1,11.2$ $\mathrm{Hz}, \mathrm{H} 7$ or 16$), 6.67(1 \mathrm{H}, \mathrm{dd}, J=15.1,11.2 \mathrm{~Hz}, \mathrm{H} 7$ or 16$) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta-4.55,-4.51,-4.1$, $-4.0,9.9,18.8$ (2C), 20.6, 26.29, 26.31, 26.7 (2C), 31.8, 34.7, 39.0, 65.3 (2C), 73.7, 74.9, 105.0, 125.21, 125.24, $128.8(2 \mathrm{C}), 129.2(2 \mathrm{C}), 129.74,129.83,138.1,138.2$. HRMS (EI), calcd for $\mathrm{C}_{34} \mathrm{H}_{62} \mathrm{O}_{4} \mathrm{Si}_{2} 590.4187\left(\mathrm{M}^{+}\right)$, found 590.4165

Resolvin E2 (1).

To a solution of alkene $27(7.0 \mathrm{mg}, 12 \mu \mathrm{~mol})$ and 2,6-lutidine ($33 \mu \mathrm{~L}, 270 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was TMSOTf $(33 \mu \mathrm{~L}, 180 \mu \mathrm{~mol})$. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 1 h and $\mathrm{H}_{2} \mathrm{O}$ was added. The mixture was stirred at room temperature for 1 h and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and flash column chromatography (hexane/EtOAc 9:1) gave the aldehyde $28(7.0 \mathrm{mg}, 13 \mu \mathrm{~mol})$.

A solution of $\mathrm{NaClO}_{2}(8.7 \mathrm{mg}, 96 \mu \mathrm{~mol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot 4 \mathrm{H} 2 \mathrm{O}(16 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ was added to a solution of the crude aldehyde 28 in 2-methyl-2-butene $(0.50 \mathrm{~mL})$ and $t-\mathrm{BuOH}(0.50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added. The reaction mixture was stirred at room temperature for 1 h and brine was added. The mixture was extracted with EtOAc and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration, concentration gave the carboxylic acid 29 (8.2 mg), which was directly used in the next reaction. To a solution of the crude carboxylic acid $\mathbf{2 9}$ in THF (3.0 mL) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{TBAF}(1.0 \mathrm{M}$ in THF, $240 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 11 h and additional TBAF $(60 \mu \mathrm{~L}, 0.06 \mu \mathrm{~mol})$ was added. The reaction mixture was stirred at room temperature for further 2 h and brine and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ were added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration, chromatography (silica gel; BW-820, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 99: 1-97: 3-10: 1$), and further purification by HPLC (Inertsil, ODS-3, $150 \times 4.6 \mathrm{~mm}, \mathrm{UV} 254 \mathrm{~nm}$, $\left.\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH} 60 / 40 / 0.01-90 / 10 / 0.01,1.0 \mathrm{~mL} / \mathrm{min}, T R=17 \mathrm{~min}\right)$ gave resolvin $\mathrm{E} 2(\mathbf{1})(2.60 \mathrm{mg}, 7.8 \mu \mathrm{~mol})$ in 67% yield over 3 steps.

Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{24}=-2.1(c 0.25, \mathrm{MeOH}) ;$ IR (neat) $v 3384,3012,2963,2933,1715,1244,1034,985,954 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.91(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{H} 2), 1.48-1.73(6 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 . \mathrm{H}-4 . \mathrm{H}-19), 2.03(2 \mathrm{H}, \mathrm{t}, J=$ $8.4 \mathrm{~Hz}, \mathrm{H} 2), 2.98(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 10, \mathrm{H} 13), 4.02(1 \mathrm{H}, \mathrm{dt}, J=6.8,6.7 \mathrm{~Hz}, \mathrm{H} 5$ or 18$), 4.11(1 \mathrm{H}, \mathrm{dt}, J=6.8,6.2 \mathrm{~Hz}, \mathrm{H} 5$ or
18), $5.34-5.42(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 9, \mathrm{H} 11, \mathrm{H} 12, \mathrm{H} 14), 5.65(1 \mathrm{H}, \mathrm{dd}, J=15.2,6.8 \mathrm{~Hz}, \mathrm{H} 6$ or 17$), 5.66(1 \mathrm{H}, \mathrm{dd}, J=15.2,6.8$ $\mathrm{Hz}, \mathrm{H} 6$ or 17$), 6.00(2 \mathrm{H}, \mathrm{dd}, J=11.2,10.6 \mathrm{~Hz}, \mathrm{H} 8, \mathrm{H} 15), 6.55(1 \mathrm{H}, \mathrm{dd}, J=15.2,11.2 \mathrm{~Hz}, \mathrm{H} 7$ or 16$), 6.56(1 \mathrm{H}, \mathrm{dd}$, $J=15.2,11.2 \mathrm{~Hz}, \mathrm{H} 7$ or 16$). \quad{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 10.2,22.3,27.0(2 \mathrm{C}), 31.2,35.0,37.8,72.9,74.7$, 126.4 (2C), 129.09, 129.11, 129.4, 129.5, 130.5, 130.6, 137.7 (2C), 177.7. HRMS (FAB), calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{4}$ $333.2066(\mathrm{M}-\mathrm{H})^{-}$, found 333.2072 .

Bioassay

Murine peritonitis was carried out using 7- to 8-week old C57BL/6 male mice (CLEA Japan). Resolvin E2 or vehicle alone was injected into the tail vein followed by 1 mL of zymosan $\mathrm{A}(1 \mathrm{mg} / \mathrm{mL}$; Sigma) injected into the peritoneum. At 2 h , peritoneal lavages were collected and cells were enumerated via light microscopy. Differential leukocyte counts were performed using Wright Giemsa stain. Cytokine levels were determined from peritoneal cell-free exudates using BD OptEIA Kit for mouse TNF α and IL-6 (BD Biosciences)

References and notes

1 (a) Serhan, C. N.; Chiang, N.; Van Dyke, T. E. Nat. ReV. Immunol. 2008, 8, 349. (b) Serhan, C. N.; Chiang, N. Br. J. Pharmacol. 2008, 153, S200.

2 (a) Arita, M.; Bianchini, F.; Aliberti, J.; Sher, A.; Chiang, N.; Hong, S.; Yang, R.; Petasis, N. A.; Serhan, J. Exp. Med. 2005, 201, 713-722. (b) Schwab, J. M.; Chiang, N.; Arita, M.; Serhan, C. N. Nature 2007, 447, 869.

3 Tjonahan, E.; Oh, S. F.; Siegelman, J.; Elangovan, S.; Percarpio, K. B.; Hong, S.; Arita, M.; Serhan, C. N. Chem. Biol. 2006, 13, 1193.

4 Total synthesis of resolvins D2 and D5 were reported. (a) Rodriguez, A. R.; Spur, B. W. Tetrahedron Lett. 2004, 45, 8717. (b) Rodriguez, A. R.; Spur, B. W. Tetrahedron Lett. 2005, 46, 3623. (c) Nicolaou, K. C.; Ramphal, J. Y.; Petasis, N. A.; Serhan, C. N. Angew. Chem., Int. Ed. 1991, 30, 1100.

5 (a) Rudolf, K.; Spellmeyer, D. C.; Houk, K. N. J. Org. Chem. 1987, 52, 3708. (b) Niwayama, S.; Kallel, E. A.; Spellmeyer, D. C.; Sheu, C.; Houk, K. N. J. Org. Chem. 1996, 61, 2813. (c) Dolvier, W. R., Jr.; Koroniak, H.; Houk, K. N.; Sheu, C. Acc. Chem. Res. 1996, 29, 471.

6 (a) Binns, F.; Hayes, R.; Ingham, S.; Saengchantara, S. T.; Turner, R. W.; Wallace, T. W. Tetrahedron 1992,48, 515. (b) Hodgetts, K. J.; Wallis, C. J.; Wallace, T. W. TetrahedronLett. 1994, 35, 4645. (c) Hodgetts, K. J.; Wallis, C. J.; Wallace, T. W. Synlett 1995, 1235. (d) Binns, F.; Hayes, R.; Hodgetts, K. J.; Saengchantara, S. T.; Wallace, T. W.; Wallis, C. J. Tetrahedron 1996, 52, 3631.

7 Gourdel-Martin, M.-E.; Comoy, C.; Huet, F. Tetrahedron: Asymmetry 1999, 10, 40. See also ref 6b and 6c. 8 (a) Koltzenburg, G.; Fuss, P. G.; Leitich, J. Tetrahedron Lett. 1966, 29, 3409. (b) Brauman, J. I.; Archie, W. C., Jr. J. Am. Chem. Soc. 1972, 94, 4262. (c) Gauvry, N.; Comoy, C.; Lescop, C.; Huet, F. Synthesis 1999, 574.

9 Gauvry, N.; Lescop, C.; Huet, F. Eur. J. Org. Chem. 2006, 520, 7.
10 Oh, S. H.; Rho, H. S.; Lee, J. W.; Lee, J. E.; Youk, S. H.; Chin, J.; Song, C. E. Angew. Chem., Int. Ed. 2008, 47, 7872.

11 Chen, Y.; McDaid, P.; Deng, L. Chem. ReV. 2003, 103, 2965.

12 Fujisawa, T.; Mori, T.; Sato, T. Chem. Lett. 1983, 835.
13 Brown, H. C.; Kim, S. C.; Krishnamurthy, S. J. Org. Chem. 1980, 45, 1.

14 Wenkert, D.; Ferguson, S. B.; Porter, B.; Qvarnstrom, A.; McPhail, A. T. J. Org. Chem. 1985, 50, 4114.
15 Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.
16 E,Z-Dienes 20 and $\mathbf{2 4}$ were easily isomerized into E, E-diene uponstanding at room temperature. Thus, organic solution of the reaction mixture from the oxidation was directly used for the reduction.
(a) Leblanc, Y.; Futzsimmons, B. J.; Adams, J.; Perez, F.; Rokach, J. J. Org. Chem. 1986, 51, 789. (b) Schmidt, S. P.; Brooks, D. W. Tetrahedron Lett. 1987, 28, 767.

Bloch, R.; Gasparini, G.; Girard, C. Chem. Lett. 1988, 1927.

19 (a) Kurtz, P. Liebigs Ann. Chem. 1962, 658, 6. (b) Normant, J. F. Synthesis 1972, 63.
20 Lindlar, H. Helv. Chim. Acta 1952, 57, 446.

21 Fujioka, H.; Okitsu, T.; Sawama, Y.; Murata, N.; Li, R.; Kita, Y. J. Am. Chem. Soc. 2006, 128, 5930.

Chapter 4

Enantioselective Synthesis of Haterumalide NA Methyl Ester and Revised Structure of Haterumalide NA

Abstract

:

The enantioselective synthesis of the enantiomer of the haterumalide NA methyl ester, a cytotoxic macrolide from an Okinawan sponge, was achieved from the threitol derivative in 26 steps. The key steps are the stereoselective construction of a chloroolefin unit and the intramolecular Reformatsky-type reaction. This synthesis revised the absolute stereochemistry of haterumalide NA.

Introduction

Haterumalide NA is a macrolide isolated from the Okinawan sponge Ircinia sp. This compound exhibited a cytotoxicity against P388 cells with an IC_{50} of $0.32 \mu \mathrm{~g} / \mathrm{mL} .{ }^{1}$ The gross structure and stereochemistry were elucidated by the spectroscopic analysis and the modified Mosher's method as structural formula 1. The structural features of this compound are a 14-membered macrolide (long chain fatty acid derivative) involving a trans disubstituted tetrahydrofuran ring, a Z-chloroolefin, and a β, γ-unsaturated acid moiety. The structurally related haterumalide B^{2} and oocydin A^{3} were isolated from an Okinawan ascidian and a South American epiphyte, respectively, and their stereostructures have not been fully established. It is noteworthy that haterumalide NA was recently isolated from a soil bacterium. ${ }^{4}$ The author describes in this chapter the enantioselective synthesis of the ent-haterumalide NA methyl ester, which revises the initially assigned stereostructure.

Haterumalide NA (1)

Oocydin A

Figure 4-1. Structure of haterumalide NA and oocydin A

Results and discussion

Retrosynthesis of haterumalide NA

Retrosynthetic analysis of haterumalide NA is outlined in Scheme 4-1. The haterumalide NA methyl ester (1:
$\mathrm{R}=\mathrm{Me}$) can be logically divided into the macrolide unit $\mathbf{2}$ and the side chain unit $\mathbf{3}$. The side chain unit $\mathbf{3}$ can be easily prepared from 3-butyn-1-ol $\mathbf{1 8}$ (see Scheme 4-8). ${ }^{5}$ The macrocyclic structure of $\mathbf{2}$ can be established by lactonization of the seco acid $\mathbf{4}$ or by the intramolecular Reformatsky-type reaction of the bromo ester derivative 5 . These precursors, $\mathbf{4}$ and 5, can be synthesized from a common intermediate 6, which can be prepared from the tetrahydrofuran unit 7 by a coupling reaction with 8 .

Scheme 4-1. Retrosynthesis of haterumalide NA methyl ester

Synthesis of C9-C15 fragment

Scheme 4-2 summarizes the synthesis of the tetrahydrofuran unit 7. The mono-MPM ether $\mathbf{1 0}$ was synthesized
from commercially available (+)-2,3-O-isopropylidene-L-threitol 9. ${ }^{6}$ After transformation into the corresponding iodide, C 1 homologation was effected by using the FAMSO^{7} carbanion to afford sulfoxide $\mathbf{1 1}$ (69\%). Sequential acidic methanolysis ${ }^{8}$ and hydrolysis afforded the hemiacetal $\mathbf{1 3}$ in 41% yield. Wittig reaction of $\mathbf{1 3}$ and cyclization provided the 5.3:1 diastereomeric mixture of tetrahydrofurans, which could be separated after silylation to afford the desired trans-tetrahydrofuran $\mathbf{1 6}(41 \%)$ and the $c i s$-isomer $\mathbf{1 7}$. The latter could be isomerized into the former as a $1: 1$ mixture (isolation yield of $\mathbf{1 4} 42 \%$). The stereochemistry of $\mathbf{1 6}$ and 17 were determined by the coupling constants from their ${ }^{1} \mathrm{H}$ NMR data and the NOE experiments (Figure 4-2). The desired trans-tetrahydrofuran 16 was quantitatively converted into the bromide $\mathbf{7}$ in 3 steps.

Reagents and conditions: (a) MPMCl, $\mathrm{NaH}, \mathrm{DMF}$ (63\%). (b) $p-\mathrm{TsCl}$, pyridine. (c) $\mathrm{NaI}, \mathrm{CaCO}_{3}$, acetone ($89 \%, 2$ steps). (d) FAMSO, n-BuLi, THF-hexanes (69%). (e) conc. $\mathrm{HCl}, \mathrm{MeOH}(8: 92)$ (41%). (f) 1 M HCl aq, THF (99\%). (g) $\mathrm{Ph}_{3} \mathrm{PCHCO}_{2} \mathrm{Me}, \mathrm{MeCN}$. (h) $\mathrm{NaOMe}, \mathrm{MeOH}$. (i) TBSCl , imidazole ($41 \%, 3$ steps). (j) LiAlH_{4}, THF (100\%). (k) p-TsCl, pyridine. (l) LiBr, DMF (100%, 2 steps).

Scheme 4-2. Synthesis of C9-C15 fragment 7

Figure 4-2. ${ }^{1} \mathrm{H}$ NMR data and the observed NOEs of $\mathbf{1 6}$ and $\mathbf{1 7}$

Synthesis of C5-C8 fragment

Synthesis of C5-C8 fragment was started with 3-butyn-1-ol 18 (Scheme 4-3). 3-Butyn-1-ol (18) was transformed into the E-alkenylsilane 21 (52%) following a reported procedure ${ }^{9}$. The E-alkenylsilane 21 was photochemically isomerized to the Z-isomer $\mathbf{8}$ in 99% yield. The stereochemistry of $\mathbf{8}$ was determined by the NOE experiments (Figure 4-3).

18
\qquad
\qquad

19
b

20

21
d \qquad

8

Reagents and conditions: (a) DHP, p - TsOH (86\%). (b) TMSCl, n - BuLi , ether-hexanes (67\%). (c) (i) DIBAL, ether-hexanes; (ii) pyridine, ether; (iii) $\mathrm{Br}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(91 \%)$. (d) $h v, \mathrm{Br}_{2}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \%)$.

Scheme 4-3. Synthesis of C5-C8 fragment

Figure 4-3. NOE experiment of $\mathbf{8}$

Synthesis of Z-chloroolefin 22

The coupling reaction between the tetrahydrofuran unit $\mathbf{7}$ and the carbanion generated from the Z-alkenylsilane $\mathbf{8}$ and sec-butyllithium was accomplished to give compound $\mathbf{6}$ in 68% yield. There are only a few published procedures for the stereoselective preparation of chloroolefins. The author modified the procedure ${ }^{10}$ for conversion of an alkenylsilane to a bromoolefin for preparation of the chloroolefin 22 (Scheme 4-4). After several attempts, the author found that the addition of a catalytic amount of water was important for the reaction to be reproducible.

Reagents and conditions: (e) (i) 8, s-BuLi, THF-hexanes; (ii) 7, HMPA, THF (68\%). (f) NCS, $\mathrm{H}_{2} \mathrm{O}$, DMF (45\%).

Scheme 4-4. Synthesis of 22

Synthesis of seco acid 4 and macrolactonization

Scheme 4-5 summarizes the synthesis of the seco acid 4. Acidic hydrolysis of $\mathbf{2 2}$ gave $\mathbf{2 4}$ and subsequent Dess Martin oxidation afforded a labile aldehyde, which was converted into the Z-conjugated ester $\mathbf{2 5}$ by using the Still's modified Horner-Emmons reaction ${ }^{11}$ (62%, three steps). The regiochemistry at C 4 double bond of $\mathbf{2 5}$ was
determined by the NOE experiment (Figure 4-4). The DIBAL reduction of $\mathbf{2 5}$ gave the allylic alcohol $\mathbf{2 6}$ (100%), which was oxidized to a conjugated aldehyde. The asymmetric aldol reaction ${ }^{12}$ with Corey's sulfoxide $\mathbf{3 1}$ provided a hydroxysulfoxide, amalgam reduction of which gave the desired hydroxyl ester $\mathbf{2 8}$ (49%, three steps). The absolute stereochemistry of the C-3 hydroxyl group in $\mathbf{2 8}$ was established by the modified Mosher's method. ${ }^{14}$ After acetylation, the protecting groups were removed to give the dihydroxyl acid 29 (84%, two steps), the primary hydroxyl group of which was protected as the TBDPS ether to afford the seco acid $4(47 \%$, two steps).

Thus, the precursors for the macrolide unit $\mathbf{2}$ were in hand. However, all attempts at macrolactonization of the dihydroxyl acid 29 or the seco acid $\mathbf{4}$ to $\mathbf{2}$ failed under the Yamaguchi, Keck, and Mukaiyama-Corey conditions (Scheme 4-6).

Reagents and conditions: (a) $\mathrm{AcOH}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}$ (80\%). (b) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (c) 30, KHMDS, 18-crown-6, TH, toluene ($77 \%, 2$ steps). (d) DIBAL, toluene (100\%). (e) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (f) 31, t - BuMgCl , THF ($57 \%, 3 S: 3 R$) 19:1, 2 steps). (g) Al-Hg, THF- $\mathrm{H}_{2} \mathrm{O}$ (86%). (h) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine (86%). (i) HF-py, pyridine, THF (93\%). (j) TMSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (90\%). (k) TBDPSCl, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.(l) AcOH, THF, $\mathrm{H}_{2} \mathrm{O}$ ($47 \%, 2$ steps).

Figure 4-5. NOE experiment of $\mathbf{2 5}$

Reagents and conditions: (a) 2,4,6-trichlorobenzoylchloride, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (b) DCC, DMAP, CSA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (c) dipyridyl disulfide, PPh_{3}, benzene

Scheme 4-6. Macrolactonization with seco acid 4 and 29

Synthesis of macrolactone 35

The author next tried to cyclize the 14-membered ring using the intramolecular Reformatsky-type reaction (Scheme 4-7). The hydroxy group of the allylic alcohol 26 was protected as an MMTr ether to quantitatively afford compound 32. The silyl group in $\mathbf{3 2}$ was removed, and the resulting alcohol $\mathbf{3 3}$ (99%) was converted into the bromo ester 34. The MMTr group was removed to give allylic alcohol intermediate (82%, two steps), which was oxidized to afford the conjugated aldehyde 5, a precursor of the intramolecular Reformatsky-type reaction, in 93\% yield. Attempts toward the intramolecular Reformatsky-type reaction are summarized in Table 4-5. The cyclization with $\mathrm{SmI}_{2}{ }^{15}$ provided the cyclic compounds in good yields $(86 \%, 3 S: 3 R=1: 1)$; however, the stereochemistry of the C-4 double bond was totally isomerized into trans (entry 1). The reaction at lower temperature also gave the same trans-products in a lower yield (entry 2). The molecular mechanics calculation indicated that the desired cis compound $\mathbf{3 4}$ was less stable ($7.5 \mathrm{~kJ} / \mathrm{mol}$) than the trans compound. (The
calculations were executed by MacroModel (Version 6.0) with the MM2* force field.) This isomerization might be due to the allylic radical nature of the transition state and/or the reactive intermediates. Therefore, the author investigated the cyclization with zinc reagents apt to effect the two-electron reduction. The reactions under the standard conditions ${ }^{16,17}$ afforded no cyclized compounds (entries 3 and 4). The reaction under Honda's conditions ${ }^{18}$ with $\mathrm{Et}_{2} \mathrm{Zn}-\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ resulted in the decomposition of the starting material; however, the author found by TLC monitoring the generation of an intermediate, the β-hydroxy lactone 36, which decomposed upon workup (entry 5). The addition of $\mathrm{Ac}_{2} \mathrm{O}$ to trap the reactive products allowed the author to isolate the desired cyclized product ($3 S, 4 Z$)-35 in 9% yield along with the ($3 R, 4 Z$)- and ($4 E$)-isomers (entry 6).

Reagents and conditions: (a) MMTrCl, pyridine (100\%). (b) TBAF, THF (99\%). (c) $\mathrm{BrCH}_{2} \mathrm{COBr}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (d) $\mathrm{AcOH}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$ (82% in 2 steps). (e) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (93\%). (f) (i) $\mathrm{Et}_{2} \mathrm{Zn}$, $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$, THF-hexane; (ii) $\mathrm{Ac}_{2} \mathrm{O}(9 \%)$.

Scheme 4-7. Synthesis of macrolactone 35.

a After $4 \mathrm{~h}, \mathrm{Ac}_{2} \mathrm{O}$ was added to trap the reactive product 36. b Complex mixture. c Noncyclized reduced products were obtained: debromo-5 (65\%) and the corresponding debromo-allyl alcohol (23\%).

Table 4-5. Intramolecular Reformatsky type reaction of bromoesrter 5

The stereochemistry at the C-4 double bond was easily determined by the NOE experiments (Figure 4-6). On the other hand, the stereochemistry at C-3 was determined by the modified Mosher's method. The minor isomer, (3S,4Z)-35, could not be transformed into the corresponding MTPA esters because of the instability during the methanolysis of the acetyl group. However, the modified Mosher's method could be applied to ($3 R, 4 Z$)-37-2 that was obtained by methanolysis of the major isomer, $(3 R, 4 Z)-37$, establishing that the major isomer possessed the undesired stereochemistry $3 R$, i.e., the minor isomer was the desired ($3 S$)-compound (Figure 4-7).

35

$37 \mathrm{R}=\mathrm{Ac}$
37-2 R=H

Figure 4-6. NOE studies of $\mathbf{3 5}$ and $\mathbf{3 7}$

Figure 4-7. Determination of the stereochemistry of $\mathbf{3 7}$ by modified Mosher's method

Synthesis of haterumalide NA methyl ester

Scheme $4-8$ summarizes the synthesis of the haterumalide NA methyl ester $\mathbf{4 1}$. The MPM group in $(3 S, 4 Z)$ - $\mathbf{3 5}$ was removed to give the alcohol 39 in 88% yield, which was oxidized with the Dess-Martin periodinane to afford an unstable aldehyde 40. The Nozaki-Hiyama-Kishi coupling reaction ${ }^{19}$ of the aldehyde and iodide 3, prepared from 18, ${ }^{5}$ afforded the coupling product $41(57 \%, S: R=11: 1)$, and the diastereomers were separated with HPLC. The major isomer, (15S)-41, was found to be identical with the naturally occurring sample upon comparison of their spectral data (Figure 4-8) and chromatographic behavior except for the sign of the CD spectrum (Figure 4-9).

Reagents and conditions: (a) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-phosphate buffer (pH 5.9) (88%). (b) Dess-Martin periodinane,
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (c) $\mathbf{3}, \mathrm{CrCl}_{2}, \mathrm{NiCl}_{2}$, $\mathrm{DMSO}\left(57 \%, 15 S: 15 R=11: 1,2\right.$ steps). (d) $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}, \mathrm{Me}_{3} \mathrm{Al}$, then $\mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(89 \%)$.
(e) $\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$, acetone (68%). (f) $\mathrm{TMSCHN}_{2}, \mathrm{MeOH}$, benzene (74%).

Scheme 4-8. Synthesis of haterumalide NA methyl ester

Figure 4-8. Comparison of ${ }^{1} \mathrm{H}$ NMR spectrum of synthetic haterumalide NA methyl ester (41) and natural haterumalide NA methyl ester 1 ($800 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

Figure 4-9 Comparison of CD spectrum of synthetic haterumalide NA methyl ester (41) and natural haterumalide NA methyl ester 1

Revised the absolute stereochemistry of Haterumalide NA

The author revised the absolute stereochemistry of haterumalide NA 1 (Figure 4-10). The stereochemistry of the $\mathrm{C}-3, \mathrm{C}-11, \mathrm{C}-13$, and $\mathrm{C}-14$ in synthetic 41 was undoubtedly constructed by the organic synthetic method, and the final product was the enantiomer of haterumalide NA methyl ester. As a result, the author unambiguously determined the absolute stereochemistry of $\mathrm{C}-3, \mathrm{C}-11, \mathrm{C}-13$, and $\mathrm{C}-14$ in natural $\mathbf{1}$ to be R, R, R, and R. On the other hand, since the absolute stereochemistry of C-15 in natural $\mathbf{1}$ was already determined to be R by the modified Mosher's method, the total absolute stereochemistry of haterumalide NA was revealed, which revised the previously reported structure. ${ }^{1}$ To confirm these results, 41 was converted into the (R)-MTPA ester, which was found to be the enantiomer of the (S-MTPA ester of the natural haterumalide NA methyl ester on comparison of their ${ }^{1} \mathrm{H}$ NMR spectra. In a previous paper, ${ }^{1}$ in light of the abnormal $\Delta \delta$ values in the experiments of the modified Mosher's method for $\mathbf{1}(\mathrm{R}=\mathrm{Me})$, Uemura et al. postulated the folded conformation of the side chain in
the Mosher esters of $\mathbf{1}$, which led the author to the wrong conclusion that the stereochemistry at C14-C15 was threo (Figure 4-11). The generally accepted zigzag conformation of the side chain in the Mosher esters of $\mathbf{1}$ is consistent with the revised stereostructure, in which the stereochemistry at C14-C15 is erythro, from the viewpoint of the coupling constants and the NOESY correlations of $\mathbf{1}$.

In summary, the enantioselective synthesis of haterumalide NA methyl ester (41) has been achieved from the threitol derivative 10 in 26 steps. This synthesis revises the absolute stereochemistry of haterumalide NA.

Figure 4-10. Determination of complete structure of haterumalide NA

Figure 4-11. Relative stereochemistry of the C14-C15 part of haterumalide NA

Experimental Section

General Methods.

All reactions sensitive to air or moisture were carried out under argon atmosphere in dry, freshly distilled solvents under anhydrous conditions, unless otherwise noted. THF was distilled from sodium/benzophenone, pyridine, triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ and 2,6-lutidine from calcium hydride under reduced pressure. All other reagents were used as supplied unless otherwise stated. Analytical thin-layer chromatography (TLC) was performed using E. Merck Silica gel 60 F254 pre-coated plates. Column chromatography was performed using BW-820MH or FL60D (Fuji Silysia Co., Inc.). ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on a JEOL JNM ECP800 (800 MHz), JNM A600 (600 MHz), JNM A400 (400 MHz) or JNM EX270 (270 MHz) spectrometer. Chemical shifts are reported in $\delta(\mathrm{ppm})$ with reference to solvent signals [${ }^{1} \mathrm{H}$ NMR: $\mathrm{CHCl}_{3}(7.26), \mathrm{C}_{6} \mathrm{D}_{6}(7.16)$, $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}(2.05), \mathrm{CD}_{3} \mathrm{OD}(3.30) ;{ }^{13} \mathrm{C}$ NMR: CHCl_{3} (77.0), $\mathrm{C}_{6} \mathrm{D}_{6}$ (128.06), $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}(29.84), \mathrm{CD}_{3} \mathrm{OD}(49.00)$. Signal patterns are indicated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad peak. IR spectra were recorded on a JASCO FT/IR-230 spectrometer. FAB-MS and EI-MS were on JEOL JMS-LG2000 or JMS-700. Optical rotations were recorded on a JASCO DIP-1000 polarimeter. CD spectra were recorded on a JEOL J-720WN. FT/IR-230 spectrometer.

Experimental procedure

Synthesis of C9-C15 fragment

Mono MPM ether 10

To a suspension of 60% sodium hydride $(1.54 \mathrm{~g}, 38.5 \mathrm{mmol})$ in dry $\mathrm{DMF}(51 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $9(3.0 \mathrm{~g}$, $18.5 \mathrm{mmol})$ in dry DMF (33 mL) slowly. MPMCl ($2.77 \mathrm{~mL}, 20.4 \mathrm{mmol}$) was added and stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h and stirred at room temperature for 2 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with $\mathrm{H}_{2} \mathrm{O}$ (140
mL) and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed with brine and dried over MgSO_{4}. Concentration and flash column chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 3:1-2:1-3:4-1:2) gave $10(3.28 \mathrm{~g})$ in 69% yield.
$R_{\mathrm{f}}=0.38(1: 1$ hexane $/ \mathrm{EtOAc}) .[\alpha]_{\mathrm{D}}^{29}+13.2^{\circ}\left(c 0.28, \mathrm{CHCl}_{3}\right) . \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 3590,3460,1615,1515,1460,1375$, $1245,1080,1040,845 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{br} \mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ (br.d, $J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{dd}, J=9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.52$ (dd, $J=9.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=8.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4$, 129.6, 129.4 (2C), 113.9 (2C), 109.3, 79.8, 77.2, 73.4, 70.0, 62.5, 55.3, 26.9 (2C). MS (FAB) $m / z 305(\mathrm{M}+$ $\mathrm{Na})^{+}$. HRMS $(\mathrm{FAB}) \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$calc.305.1365, observed $305.1353(\Delta-1.2 \mathrm{mmu})$.

Iodide 10-3

To a solution of $\mathbf{1 0}(3.28 \mathrm{~g}, 11.6 \mathrm{mmol})$ in pyridine $(6.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added p-toluenesulfonyl chloride $(4.01 \mathrm{~g}$, 21.0 mmol). After stirred at $0{ }^{\circ} \mathrm{C}$ for 7.5 h , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine and dried over MgSO_{4}. Concentration gave $\mathbf{1 0 - 2}(4.95 \mathrm{~g})$ which was directly used in the next reaction.

To a solution of $\mathbf{1 0 - 2}$ in acetone $(24.4 \mathrm{~mL})$ at room temperature was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.15 \mathrm{~g}, 21.5 \mathrm{mmol})$ and NaI ($4.75 \mathrm{~g}, 31.7 \mathrm{mmol}$). After stirred for 16.5 h under reflux, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and column chromatography (silicagel, hexane/ $\mathrm{Et}_{2} \mathrm{O}, 11: 1-5: 1$) gave $\mathbf{1 0 - 3}(4.04 \mathrm{~g})$ in 89% yield.
$R_{\mathrm{f}}=0.63\left(1: 1\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) . \quad[\alpha]_{\mathrm{D}}{ }^{30}-9.3^{\circ}\left(c 0.35, \mathrm{CHCl}_{3}\right) . \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 1615,1515,1460,1375,1245,1190$, $1135,820 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{br} \mathrm{d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{br} \mathrm{d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~s}$, $2 \mathrm{H}), 3.95(\mathrm{ddd}, J=7.6,5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{ddd}, J=7.6,5.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{dd}, J=12.9,5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=12.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=10.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=10.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}$,
$3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,129.9,129.3(2 \mathrm{C}), 113.9(2 \mathrm{C}), 109.8,80.1,77.8,73.3$, 70.2, 55.3, 27.4, 27.3, 6.4. MS (FAB) $m / z 415(\mathrm{M}+\mathrm{Na})^{+}$. HRMS (FAB) $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{Na} \mathrm{IO} 4(\mathrm{M}+\mathrm{Na})^{+}:$ calc.415.0382, found $415.0357(\Delta-2.5 \mathrm{mmu})$.

FAMSO 11

To a solution of formaldehyde dimethyl dithioacetal S-Oxide ($2.15 \mathrm{~mL}, 20.6 \mathrm{mmol}$) in THF (26 mL) at $0{ }^{\circ} \mathrm{C}$ was added n-butyllithium ($13.6 \mathrm{~mL}, 1.51 \mathrm{M}$ THF solution, 20.6 mmol). $\quad \mathbf{1 0 - 3}(4.04 \mathrm{~g}, 10.3 \mathrm{mmol})$ in THF (13.0 mL) was added to the reaction mixture. After stirred at room temperature for 12.5 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and column chromatography (silicagel, hexane/EtOAc, 1:1-1:5) gave $1 \mathbf{1}$ $(2.77 \mathrm{~g})$ in 69% yield. Diastereomer ratio of 11 was $3: 3: 2: 2$.
$R_{\mathrm{f}}=0.21$ (1:5 hexane/EtOAc). IR $\left(\mathrm{CHCl}_{3}\right) ; 1615,1515,1460,1375,1245,1080,1040,845 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.56-4.44(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H})$, $3.96(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 0.9 \mathrm{H}), 2.56(\mathrm{~s}, 0.6 \mathrm{H}), 2.53(\mathrm{~s}, 0.9 \mathrm{H})$, $2.53(\mathrm{~s}, 0.6 \mathrm{H}), 2.27(\mathrm{~s}, 0.9 \mathrm{H}), 2.17(\mathrm{~s}, 0.6 \mathrm{H}), 2.16(\mathrm{~s}, 0.6 \mathrm{H}), 2.10(\mathrm{~s}, 0.9 \mathrm{H}), 2.09-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.39(\mathrm{~m}, 6 \mathrm{H})$. MS (FAB) m/z $411(\mathrm{M}+\mathrm{Na})^{+}$. HRMS (FAB) $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NaS}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{Na})^{+}$calc. : 411.1276, found : 411.1269 (Δ - 0.7 mmu).

Methyl acetal 12

To a solution of $\mathbf{1 1}(638 \mathrm{mg}, 1.64 \mathrm{mmol})$ in $\mathrm{MeOH}(33 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added conc. $\mathrm{HCl}(2.6 \mathrm{~mL})$. After stirred at room temperature for 14 h , the reaction mixture was quenched by saturated aqueous NaHCO_{3} and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and column chromatography (silcagel, hexane/EtOAc, 3:1-2:1-1:1) gave $12(182 \mathrm{mg})$ in 41% yield. $R_{\mathrm{f}}=0.55\left(1: 5\right.$ hexane/EtOAc). IR $\left(\mathrm{CHCl}_{3}\right) ; 3500(\mathrm{br}), 1615,1515,1440,1360,1250,1090,1055,830 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{H}), 6.88(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}$, $0.75 \mathrm{H}), 5.05(\mathrm{br} \mathrm{d}, J=3.3 \mathrm{~Hz}, 0.25 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.52-4.47(\mathrm{~m}, 0.75 \mathrm{H}), 4.33-4.23(\mathrm{~m}, 0.25 \mathrm{H}), 4.11(\mathrm{dt}, J=5.0$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~m}, 0.25 \mathrm{H}), 3.77(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1.5 \mathrm{H}), 3.64(\mathrm{dd}, J=10.2,6.9 \mathrm{~Hz}, 0.25 \mathrm{H}), 3.36(\mathrm{~s}$, $3 \mathrm{H}), 2.87(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 0.25 \mathrm{H}), 2.78(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 0.75 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 291(\mathrm{M}+\mathrm{Na})^{+}$. HRMS (FAB) $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$calc. : 291.1208, found : $291.1225(\Delta+1.7 \mathrm{mmu})$.

Hemiacetal 13

To a solution of $\mathbf{1 2}(1.36 \mathrm{~g}, 5.07 \mathrm{mmol})$ in THF $(46 \mathrm{~mL})$ at room temperature was added $1 \mathrm{M} \mathrm{HCl}(46 \mathrm{~mL}, 46$ mmol). After stirred at room temperature for 4 h , the reaction mixture was quenched by saturated aqueous NaHCO_{3} and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and column chromatography (silcagel, hexane/EtOAc, 5:1-3:1-2:1-1:1-1:5) gave 13 (1.27 g) in 90\% yield.

Melting point; 70-73 ${ }^{\circ} \mathrm{C} . \quad R_{\mathrm{f}}=0.36\left(1: 2\right.$ hexane/EtOAc). IR $\left(\mathrm{CHCl}_{3}\right) 3590,3360,1615,1515,1460,1440$, $1360,1250,1105,1065,1035 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{br} \mathrm{d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{dt}, J=4.0,3.3 \mathrm{~Hz}, 0.3 \mathrm{H}), 5.44(\mathrm{ddd}, J=8.6,3.3,1.7 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.54(\mathrm{~s}, 1.4 \mathrm{H}), 4.52(\mathrm{~s}, 0.6 \mathrm{H})$, $4.49(\mathrm{~m}, 0.3 \mathrm{H}), 4.42(\mathrm{~m}, 0.7 \mathrm{H}), 4.27(\mathrm{dd}, J=10.9,5.0 \mathrm{~Hz}, 0.3 \mathrm{H}), 4.07(\mathrm{dd}, J=9.6,5.6 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.84-3.80(\mathrm{~m}$, $1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.63(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1.4 \mathrm{H}), 3.09(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 0.7 \mathrm{H}), 2.71(\mathrm{~d}, J=5.6$
$\mathrm{Hz}, 0.3 \mathrm{H}), 2.66(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 0.3 \mathrm{H}), 2.17(\mathrm{t}, J=4.3 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.11(\mathrm{~m}, 1.4 \mathrm{H}) . \quad \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 277(\mathrm{M}+\mathrm{Na})^{+}$. HRMS (FAB) $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$calc.: 277.1052, found: $277.1074(\Delta+2.2 \mathrm{mmu})$.

α, β-unsaturated ester 14

To a solution of $\mathbf{1 3}(113 \mathrm{mg}, 0.446 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2.2 \mathrm{~mL})$ at room temperature was added methyl (triphenylphosphoranylidene) acetate ($247 \mathrm{mg}, 0.738 \mathrm{mmol}$). After stirred at room temperature for 2.5 h , the reaction mixture was evaporated and column chromatography (silcagel, hexane/acetone, 5:1-3:1-2:1-1:1 and silcagel FL60D, hexane/acetone, 5:1-2:1) gave $14(128 \mathrm{mg})$ in 92% yield.
$R_{\mathrm{f}}=0.53$ (1:1 hexane/acetone). IR $\left(\mathrm{CHCl}_{3}\right) ; 3560,1715,1660,1615,1515,1305,1280,1250,1120,1035 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{brd}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{dt}, J=15.6,7.3 \mathrm{~Hz}, 0.75 \mathrm{H}), 6.89(\mathrm{brd}, J=8.8$, $2 \mathrm{H}), 6.38(\mathrm{dt}, J=11.5,7.8 \mathrm{~Hz}, 0.25 \mathrm{H}), 5.91(\mathrm{br} \mathrm{d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 2.25 \mathrm{H}), 3.80(\mathrm{~s}, 0.75 \mathrm{H}), 3.72(\mathrm{~s}, 2.25 \mathrm{H}), 3.71(\mathrm{~s}, 0.75 \mathrm{H}), 3.68-3.56(\mathrm{~m}, 3 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 2.70$ $(\mathrm{d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS}(\mathrm{FAB}) m / z 333(\mathrm{M}+\mathrm{Na})^{+} . \quad \mathrm{HRMS}(\mathrm{FAB})$ $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NaO}_{6}(\mathrm{M}+\mathrm{Na})^{+}$calc. : 333.1314 , found : $333.1307(\Delta-0.7 \mathrm{mmu})$.

Tetrahydrofurna 15

To a solution of $\mathbf{1 4}(122 \mathrm{mg}, 0.393 \mathrm{mmol})$ in $\mathrm{MeOH}(4.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added sodium methoxide $(28.2 \mathrm{mg}$, 0.520 mmol). After stirred at $-20^{\circ} \mathrm{C}$ for 38 h , the reaction mixture was quenched by saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over MgSO_{4}. Concentration and column chromatography (silcagel, hexane/acetone, 5:1-4:1-1:1) gave 15 (68.3 mg) in 56%
yield.
$R_{\mathrm{f}}=0.44$ (3:2 hexane/acetone). $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 3460,1735,1615,1515,1300,1250,1170,1135,825 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~m}, 0.9 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H})$, $4.51(\mathrm{~m}, 0.1 \mathrm{H}), 4.49(\mathrm{~m}, 0.9 \mathrm{H}), 4.39(\mathrm{~m}, 0.1 \mathrm{H}), 4.27(\mathrm{~m}, 0.1 \mathrm{H}), 4.09(\mathrm{~m}, 0.9 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~d}, J=5.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=15.2,6.9 \mathrm{~Hz}, 0.9 \mathrm{H}), 2.72(\mathrm{~m}, 0.1 \mathrm{H}), 2.50(\mathrm{dd}, J=15.2$, $5.4 \mathrm{~Hz}, 0.9 \mathrm{H}), 2.39(\mathrm{~m}, 0.1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{ddd}, J=13.9,9.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}) . \quad \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 447(\mathrm{M}+$ $\mathrm{Na})^{+} . \quad$ HRMS $(\mathrm{FAB}) \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NaO}_{6}(\mathrm{M}+\mathrm{Na})^{+}$calc. : 333.1314 , found : $333.1331(\Delta+1.7 \mathrm{mmu})$.

TBS 16

To a solution of $15(444 \mathrm{mg}, 1.43 \mathrm{mmol})$ and imidazole ($390 \mathrm{mg}, 5.78 \mathrm{mmol}$) in DMF (10.6 mL) at room temperature was added tert-butyldimethylsilyl chloride ($431 \mathrm{mg}, 2.8 \mathrm{mmol}$). After stirred at room temperature for 10 h , the reaction mixture was quenched by $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over MgSO_{4}. Concentration and column chromatography (silcagel, hexane/acetone, 5:1-3:1-1:3 and silcagel FL60D, hexane/acetone, 5:1-1:1) gave $16(494 \mathrm{mg})$ in 81% yield and $\mathbf{1 7}(93 \mathrm{mg})$ in 15%. $R_{\mathrm{f}}=0.65\left(1: 1\right.$ benzene $\left./ \mathrm{Et}_{2} \mathrm{O}\right) . \quad[\alpha]_{\mathrm{D}}{ }^{26}+22.7^{\circ}\left(c 0.42, \mathrm{CHCl}_{3}\right) . \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 1735,1615,1515,1300,1250,1170$, $835 \mathrm{~cm}^{-1} . \quad{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \delta 7.25(\mathrm{br} \mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{br} \mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H})$, $4.50(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{br} \mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 3.57(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{dd}, J=15.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=15.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{ddd}, J=12.9,5.6,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.76(\mathrm{ddd}, J=12.9,9.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 171.5,159.1,130.4,129.6(2 \mathrm{C}), 113.7$ (2C), 81.8, 73.9, 73.1, 73.0, 68.8, 55.3, 51.6, 41.9, 40.4, 25.7 (3 C), 18.0, -4.7, -5.2 MS (FAB) $m / z 447(\mathrm{M}+\mathrm{Na})^{+}$; HRMS (FAB) $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{NaO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}$calc.: 447.2179, found : $447.2207(\Delta+2.8 \mathrm{mmu})$.
$17 R_{\mathrm{f}}=0.59(1: 1$ benzene/Et 2 O$) . \quad[\alpha]_{\mathrm{D}}{ }^{30}+23.4^{\circ}\left(c 0.42, \mathrm{CHCl}_{3}\right) . \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 3500,1615,1515,1460,1440$,
$1360,1250,1180,1070,1035,835 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \delta 7.26(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{br} \mathrm{d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.30(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{ddd}, J=6.6,5.3$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{dd}, J=9.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=$ $15.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=15.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{ddd}, J=13.5,7.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{ddd}, J=13.5,5.0$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.8,159.1,130.3,129.5$ (2C), 113.7 (2C), 82.3, 74.2, 73.1, 72.6, 69.1, 55.3, 51.5, 41.5, 41.0, 25.7 (3 C), 18.0, -4.7, -5.3. MS (FAB) m / z $447(\mathrm{M}+\mathrm{Na})^{+}$

Alcohol 16-2

To a solution of 16 ($491 \mathrm{mg}, 1.16 \mathrm{mmol}$) in THF $(7.2 \mathrm{~mL})$ at room temperature was added lithiumaluminium hydride (1.0 M , THF solution, $2.31 \mathrm{~mL}, 2.31 \mathrm{mmol}$). After stirred at room tempareture for 50 min , the reaction mixture was quenched by MeOH and 0.5 M potassium sodium tartartrate (30 mL). After stirred at room temperature for 30 min , the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and column chromatography (silcagel, hexane/acetone, 5:1-3:1-1:3 and silcagel FL60D, hexane/acetone, 3:1-2:1-1:1-1:3) gave 16-2 (458 mg) in 100% yield.
$R_{\mathrm{f}}=0.39(1: 1$ hexane/EtOAc $) \quad[\alpha]_{\mathrm{D}}{ }^{30}+17.4^{\circ}\left(c 0.34, \mathrm{CHCl}_{3}\right) . \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 3500,1615,1515,1460,1440$, 1360, 1250, 1180, 1070, 1035, $835 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{br} \mathrm{d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 4.43-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.84-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{dd}, J=9.9$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=9.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{ddd}, J=12.9,5.6,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.83-1.66(\mathrm{~m}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2,130.4,129.5$ (2C), 113.7 (2C), 81.7, 77.7, 73.1, 72.6, 68.8, 61.5, 55.3, 42.4, 37.5, 25.7 (3C), 18.0, -4.7, -5.2 MS (FAB) m/z $419(\mathrm{M}+\mathrm{Na})^{+}$; HRMS (FAB) $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NaO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}$calc.: 419.2230, found : $419.2207(\Delta-2.3 \mathrm{mmu})$.

Bromide 7

To a solution of $\mathbf{1 6 - 2}(48.1 \mathrm{mg}, 0.121 \mathrm{mmol})$ in pyridine $(0.6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{TsCl}(46.9 \mathrm{~g}, 0.246 \mathrm{mmol})$. After stirred at $0{ }^{\circ} \mathrm{C}$ for 7 h , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine and dried over MgSO_{4}. Concentration gave $\mathbf{1 6 - 3}$ (69.0 mg) which was directly used in the next reaction.

To a solution of $\mathbf{1 6 - 3}$ in DMF (1.0 mL) at room tempareture was added lithium bromide ($52.5 \mathrm{~m} \mathrm{~g}, 0.605 \mathrm{mmol}$). After stirred for 1 h under reflux, the reaction mixture was dilluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over MgSO_{4}. Concentration and column chromatography (silicagel, hexane $/ \mathrm{Et}_{2} \mathrm{O}$ 5:1-3:1) gave 7 (48.6 mg) in 87% yield in 2 steps.
$R_{\mathrm{f}}=0.60\left(1: 1\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) . \quad[\alpha]_{\mathrm{D}}{ }^{26}+11.1^{\circ}\left(c 0.43, \mathrm{CHCl}_{3}\right) . \quad$ IR $\left(\mathrm{CHCl}_{3}\right) ; 1610,1515,1460,1440,1360,1250$, $1170,1080,935,835 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.52(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{ddd}, J=6.6,5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{dd}, J=9.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.47(\mathrm{~m}, 2 \mathrm{H}), 2.19-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.67(\mathrm{ddd}, J=$ $12.5,9.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.1,129.6$, 129.6 (2C), 113.7 (2C), 81.6, 75.9, 73.1, 73.0, 68.9, 55.3, 41.8, 39.3, 30.0, 25.7 (3C), 18.0, -4.7, -5.2. MS (FAB) $\mathrm{m} / \mathrm{z} 481(\mathrm{M}+\mathrm{Na})^{+} . \quad$ HRMS $(\mathrm{FAB}) \mathrm{C}_{21} \mathrm{H}_{35}{ }^{79} \mathrm{BrNaO}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}$calc.: 481.1386, found : $81.1361(\Delta-2.5 \mathrm{mmu})$.

Synthesis of C5-C8 fragment

18

19

THP 19

To a mixture of $\mathbf{1 8}(9.71 \mathrm{~g}, 139 \mathrm{mmol})$ and p-toluenesulfonic acid ($270 \mathrm{mg}, 1.42 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ was added 3,4-dihydro- $2 H$-pyrane ($15.2 \mathrm{~mL}, 166 \mathrm{mmol}$). After stirred at room temperature for 30 min , the reaction mixture was quenched with saturated aqueous NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and distillation gave $\mathbf{1 9}(18.3 \mathrm{~g})$ in 86% yeild.
$R_{\mathrm{f}}=0.61$ (3:1 hexane/Et $\mathrm{E}_{2} \mathrm{O}$). boiling point; $86-89^{\circ} \mathrm{C} / 19 \mathrm{mmHg} . \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 3310,2120,1455,1440,1350$, $1130,1030,980,905,870,815 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.65(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.84$ (dt, $J=9.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dtt}, J=9.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{dt}, J=2.6,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{t}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.91-1.48(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 98.7,81.4,69.2,65.5,62.2,30.5,25.4,19.9,19.4$. HRMS (ESI) $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na})^{+}$calc.: 177.0891 , found : $177.0866(\Delta-2.5 \mathrm{mmu})$.

TMS 20

To a solution of $\mathbf{1 9}(4.99 \mathrm{~g}, 32.4 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(32.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added n-butyl lithium (1.58 M , hexane solution, $24.6 \mathrm{~mL}, 38.8 \mathrm{mmol}$). Trimethylsilyl chloride ($4.93 \mathrm{~mL}, 38.8 \mathrm{mmol}$) was added to the reaction mixture. After stirred at room temperature for 2.5 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extractedvwith $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over MgSO_{4}. Concentration and column chromatography (silicagel, hexane $/ \mathrm{Et}_{2} \mathrm{O}$ 59:1-39:1-1:1) gave $20(4.90 \mathrm{~g})$ in 67% yield.
$R_{\mathrm{f}}=0.52\left(19: 1\right.$ hexane/EtOAc) IR $\left(\mathrm{CHCl}_{3}\right) 2170,1455,1440,1355,1250,1220,1180,1120,1080,1030,905$, $845 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.66(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dt}, J=9.6,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.55(\mathrm{dt}, J=9.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.47(\mathrm{~m}, 6 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 104.0,98.2,85.1,65.6,60.3,30.6,25.7,20.2,19.4,0.3$ (3C) HRMS (ESI) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}$ $+\mathrm{Na})^{+}$calc. : 249.1278 , found : $249.1259(\Delta-1.9 \mathrm{mmu})$.

Vinyl bromide 21

To a solution of $20(4.91 \mathrm{~g}, 21.6 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(47.2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added diisobutylaluminium hydride (0.95 M , THF solution, $25.0 \mathrm{~mL}, 23.8 \mathrm{mmol}$). After stirred at $40^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{Et}_{2} \mathrm{O}(22 \mathrm{~mL})$ and pyridine $(3.48 \mathrm{~mL}, 43.2 \mathrm{mmol})$ were added. The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and bromine ($2.2 \mathrm{M}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, $14.0 \mathrm{~mL}, 32.4 \mathrm{mmol}$) was added and stirred for 2 h . The reaction mixture was quenched with 1 M NaOH and $\mathrm{H}_{2} \mathrm{O}$ and extracted with hexane. The organic layer was washed with 1 M HCl , saturated aqueous NaHCO_{3} and brine and dried over MgSO_{4}. Concentration and column chromatography (silicagel, hexane $/ \mathrm{Et}_{2} \mathrm{O}, 99: 1-49: 1$) gave $21(6.07 \mathrm{~g})$ in 91% yield.
$R_{\mathrm{f}}=0.19\left(1: 1\right.$ hexane/benzene) $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right) ; 1605,1455,1440,1250,1140,1120,1070,1030,985905,845$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.79(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{dt}, J=$ $9.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{dt}, J=9.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dt}, J=7.9,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.47(\mathrm{~m}, 6 \mathrm{H})$, $0.28(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.3,129.4,98.8,66.1,62.1,32.8,30.6,25.4,19.4,0.3$ (3C) HRMS (ESI) $\mathrm{C}_{12} \mathrm{H}_{23}{ }^{79} \mathrm{BrNaO} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}$calc. : 329.0548 , found : 329.0527 ($\Delta-2.1 \mathrm{mmu}$).

Z-alkenylsilane 8

To a solution of $21(10.5 \mathrm{~g}, 34.2 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(35.0 \mathrm{~mL})$ at $20-30^{\circ} \mathrm{C}$ was added pyridine $(0.97 \mathrm{~mL}, 12.0 \mathrm{mmol})$ and bromine ($1.92 \mathrm{M}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, $0.88 \mathrm{~mL}, 0.18 \mathrm{mmol}$). The reaction mixture was stirred and irradiated at $20-30{ }^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with hexane. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over MgSO_{4}. Concentration and column 137
chromatography (silicagel, hexane /benzene 1:1-1:2) gave $\mathbf{8}(10.6 \mathrm{~g})$ in 100% yield.
$R_{\mathrm{f}}=0.65\left(3: 1\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) . \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 1615,1455,1440,1350,1250,1135,1120,1075,1030,980890,840$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.33(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{dt}, J=$ $9.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{dt}, J=9.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dt}, J=6.6,6.9, \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.46(\mathrm{~m}, 6 \mathrm{H})$, $0.18(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.6,138.5,98.6,65.3,62.1,33.1,30.6,25.5,19.4,-1.9$ (3C) HRMS (FAB) $\mathrm{C}_{12} \mathrm{H}_{23}{ }^{79} \mathrm{BrNaO}_{2} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}$calc.: 329.0548 , found : 329.0527 (Δ - 2.1 mmu).

Synthesis of Z-chloroolefin 22

7

8

6

23

Coupling product 6

To a solution of $\mathbf{8}(1.28 \mathrm{~g}, 4.23 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(21.2 \mathrm{~mL})$ at $-7{ }^{\circ} \mathrm{C}$ was added sec -butyl lithium (1.01 M , THF solution, $8.37 \mathrm{~mL}, 8.45 \mathrm{mmol})$. After stirred at $-78^{\circ} \mathrm{C}$ for $2 \mathrm{~h}, 7(485 \mathrm{mg}, 1.06 \mathrm{mmol})$ in THF (4.5 mL) and hexamethylphosphoric triamide ($1.47 \mathrm{~mL}, 8.45 \mathrm{mmol}$) were added at $-78^{\circ} \mathrm{C}$. After stirred at $-78{ }^{\circ} \mathrm{C}$ for 20.5 h and the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over MgSO_{4}. Concentration and column chromatography (silicagel, hexane/Et $\left.{ }_{2} \mathrm{O}, 23: 2-11: 1-9: 1-7: 1-5: 1\right)$ gave $6(435 \mathrm{mg})$ in 68% yield and $23(115 \mathrm{mg})$ in 29% yield.
$6 R_{\mathrm{f}}=0.41\left(2: 1\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) \quad[\alpha]_{\mathrm{D}}{ }^{26}+17.2^{\circ}\left(c 0.23, \mathrm{CHCl}_{3}\right) \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 1610,1585,1515,1465,1440$, $1340,1250,1170,1120,1030,835 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{br} \mathrm{d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{br} \mathrm{d}, J$ $=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.74(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.90-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.37(\mathrm{~m}, 4 \mathrm{H}), 2.42(\mathrm{dt}, J=$ $6.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.47(\mathrm{~m}, 7 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$,
$0.15(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,142.6,136.1,130.5,129.5$ (2C), 113.7 (2C), $98.6,81.4,73.2,73.1,69.0,66.9,62.1,55.2,42.0,36.4,30.7,30.0,29.0,26.0,25.8$ (3 C) $, 25.5,19.5,18.0,-1.2$ (3C), -4.7, -5.2 MS (FAB) $m / z 629(\mathrm{M}+\mathrm{Na})^{+} . \mathrm{HRMS}(\mathrm{FAB}) \mathrm{C}_{33} \mathrm{H}_{58} \mathrm{NaO}_{6} \mathrm{Si}_{2}(\mathrm{M}+\mathrm{Na})^{+}$calc. : 629.3670, found : $629.3667(\Delta-0.3 \mathrm{mmu})$.
$23 R_{\mathrm{f}}=0.77\left(2: 1\right.$ hexane/Et $\left.\mathrm{t}_{2} \mathrm{O}\right) \quad[\alpha]_{\mathrm{D}}{ }^{26}+15.2^{\circ}\left(c 0.72, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{br} \mathrm{d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{br} \mathrm{d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{ddd}, J=17.2,10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{ddd}, J=17.2,1.7,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.09(\mathrm{ddd}, J=10.2,1.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39$ $(\mathrm{m}, 1 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{dd}, J=9.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{ddd}, J=12.9,5.6,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$

Chloroolefin 22

To a solution of $6(970 \mathrm{mg}, 1.60 \mathrm{mmol})$ in $\mathrm{DMF}(40 \mathrm{~mL})$ was added $\mathrm{H}_{2} \mathrm{O}(16 \mathrm{M}$, DMF solution, $0.02 \mathrm{~mL}, 0.272$ mmol) and N-chlorosuccinimide ($427 \mathrm{mg}, 3.20 \mathrm{mmol}$). After stirred at $50^{\circ} \mathrm{C}$ for 6 h under shading condition, the reaction mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over MgSO_{4}. Concentration and column chromatography FL60D (hexane $/ \mathrm{Et}_{2} \mathrm{O}, 11: 1-5: 1-1: 1$) gave $22(407 \mathrm{mg})$ in 45% yield.
$R_{\mathrm{f}}=0.51\left(3: 2\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) . \quad[\alpha]_{\mathrm{D}}{ }^{26}+15.1^{\circ}\left(c 0.54, \mathrm{CHCl}_{3}\right) \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 1610,1515,1460,1360,1250,1170$, 1140, 1120, 1030, $835 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 5.57(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H})$, $4.20(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.38(\mathrm{~m}, 4 \mathrm{H}), 2.29-2.01(\mathrm{~m}, 4 \mathrm{H}), 1.93$ (ddd, $J=12.7,5.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.63(\mathrm{~m}, 9 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (67.8 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.1,135.9,130.4,129.5$ (2C), 122.0, 113.7 (2C), 98.7, 81.4, 77.2, 73.1, 73.1, 69.0, 65.9, 62.3,
$55.3,42.0,36.3,33.9,30.7,29.7,25.7(3 \mathrm{C}), 25.4,19.5,18.0,-4.7,-5.2 \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 591(\mathrm{M}+\mathrm{Na})^{+}$; HRMS(FAB) $\mathrm{C}_{30} \mathrm{H}_{49}{ }^{35} \mathrm{ClNaO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}$calc. : 591.2885, found : 591.2864 (Δ - 2.1 mmu).

${ }^{+}$Synthesis of seco acid

Alcohol 24

To a solution of $\mathbf{2 2}(150 \mathrm{mg}, 0.263 \mathrm{mmol})$ in $\mathrm{THF}(2.8 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.4 \mathrm{~mL})$ was added acetic acid (5.6 mL). After stirred at $45{ }^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was quenched with saturated aqueous NaHCO_{3} and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over MgSO_{4}. Concentration and column chromatography FL60D (hexane $/ \mathrm{Et}_{2} \mathrm{O} 7: 1-5: 1$) gave $24(102 \mathrm{mg})$ in 80% yield.
$R_{\mathrm{f}}=0.25(2: 1$ hexane/EtOAc $) \quad[\alpha]_{\mathrm{D}}{ }^{26}+18.0^{\circ}\left(c 0.45, \mathrm{CHCl}_{3}\right) . \quad$ IR $\left(\mathrm{CHCl}_{3}\right) ; 3610,3460,1610,1515,1460,1360$, $1250,1170,1080,835 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{br} \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{br} \mathrm{d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 5.57(\mathrm{brt}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H})$, $4.03(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.50(\mathrm{~m}, 4 \mathrm{H}), 2.61-2.30(\mathrm{~m}, 5 \mathrm{H}), 1.93(\mathrm{br} \mathrm{dd}, J=12.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.54(\mathrm{~m}$, $3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,136.8,130.4,129.6$ (2C), $121.6,113.7$ (2C), $81.4,76.7,76.5,73.1,69.0,61.6,55.3,41.9,36.4,33.8,32.1,25.7$ (3C), 18.0, -4.7, -5.1 MS (FAB) $m / z 507(\mathrm{M}+\mathrm{Na})^{+} ; \operatorname{HRMS}(\mathrm{FAB}) \mathrm{C}_{25} \mathrm{H}_{41}{ }^{35} \mathrm{ClNaO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}$calc. : 507.2310, found : 507.2296 (Δ-1.4 mmu).

unsaturated ester 25

To a solution of $\mathbf{2 4}(277 \mathrm{mg}, 0.572 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added Dess-Martin periodinane $(364 \mathrm{~g}$, 0.858 mmol). After stirred at room temperature for 30 min , the reaction mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO_{4}. Concentration gave 24-2 (299 mg) which was directly used in the next reaction.

To a solution of $\mathbf{3 0}(284 \mathrm{mg}, 0.858 \mathrm{mmol})$ and 18 -crown-6 ether $(226 \mathrm{mg}, 2.86 \mathrm{mmol})$ in $\mathrm{THF}(1.0 \mathrm{~mL})$ at room tempareture was added potassium hexamethylphosphorictriamide $(0.5 \mathrm{M}$, toluene solution, $1.72 \mathrm{~mL}, 0.858 \mathrm{mmol})$. After stirred for $10 \mathrm{~min}, \mathbf{2 4 - 2}$ in THF (5.0 mL) was added to the reaction mixture. After stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and column chromatography (silicagel, hexane $\left./ \mathrm{Et}_{2} \mathrm{O}, 5: 1-4: 1-3: 1-1: 1\right)$ gave $25(243 \mathrm{mg})$ in 77% yield in 2 steps.
$R_{\mathrm{f}}=0.60\left(1: 1\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) \quad[\alpha]_{\mathrm{D}}{ }^{28}+13.0^{\circ}\left(c 0.11, \mathrm{CHCl}_{3}\right) \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 1710,1615,1515,1460,1250,1135$, $1075,1035,835 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.88(\mathrm{dt}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ $(\mathrm{m}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{dd}, J=16.8,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=16.8$, $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.97-1.56(\mathrm{~m}$, $4 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) . \quad \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 575(\mathrm{M}+\mathrm{Na})^{+}$; HRMS (FAB) $\mathrm{C}_{29} \mathrm{H}_{45}{ }^{35} \mathrm{ClNaO}_{6} \mathrm{Si}$ $(\mathrm{M}+\mathrm{Na})^{+}$calcu: 527.2572 , found : $527.2549(\Delta-2.3 \mathrm{mmu})$.

Alcohol 26

To a solution of $\mathbf{2 5}(23.3 \mathrm{mg}, 42.1 \mu \mathrm{~mol})$ in toluene $(0.86 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added diisobutylaluminium hydride (1.0M, hexane solution, $0.126 \mathrm{~mL}, 0.126 \mathrm{mmol}$). After stirred at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h , the reaction mixture was quenched by MeOH . $\quad 0.5 \mathrm{M}$ potassium sodium tartartrate $(4.9 \mathrm{~mL})$ was added to the reaction mixture and stirred at room temperature for 1 h and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and column chromatography (silcagel, hexane/acetone, 5:1-3:1-1:1) gave 26 (24.3 mg) in 100% yield.
$R_{\mathrm{f}}=0.28\left(1: 1\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) . \quad[\alpha]_{\mathrm{D}}^{29}+16.9^{\circ}\left(c 0.20, \mathrm{CHCl}_{3}\right) . \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 3600,3480,1615,15851515,1460$, $1250,1070,1035,835 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{br} \mathrm{d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{br} \mathrm{d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 5.45(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{br} \mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36$ $(\mathrm{m}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{dd}, J=16.5,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=16.5$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{brt}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.54(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{ddd}, J=12.9,5.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=1.3$ $\mathrm{Hz}, 3 \mathrm{H}), 1.82-1.56(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (67.8 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.1$, $135.6,134.7,130.4,129.5,129.5$ (2C), 123.7, 113.7 (2C), 81.4, 77.3, 77.2, 73.1, 69.0, 61.5, 55.3, 41.9, 36.1, 33.8, 27.3, $25.7(3 \mathrm{C}), 21.2,18.0,-4.7,-5.2 \mathrm{MS}(\mathrm{FAB}) m / z 547(\mathrm{M}+\mathrm{Na})^{+} . \quad$ HRMS (FAB) $\mathrm{C}_{28} \mathrm{H}_{45}{ }^{35} \mathrm{ClNaO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}$ calc. : 547.2623, found : $547.2596(\Delta-2.7 \mathrm{mmu})$.

Sulfoxide 27

To a solution of $\mathbf{2 6}(24.6 \mathrm{mg}, 46.8 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.94 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added Dess-Martin periodinane (29.6 $\mathrm{mg}, 698 \mu \mathrm{~mol})$. After stirred at room temperature for 30 min , the reaction mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over MgSO_{4}. Concentration gave 26-2 which was directly used in the next reaction.

To a solution of $31(59.4 \mathrm{mg}, 0.234 \mathrm{mmol})$ in THF $(1.2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added tert- butyl magnesium (0.93 M , THF solution, $0.25 \mathrm{~mL}, 0.234 \mathrm{mmol}) . \quad \mathbf{2 6 - 2}$ in THF $(0.8 \mathrm{~mL})$ was dropwised to the reaction mixture at $-78{ }^{\circ} \mathrm{C}$. After stirred at $-78^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and column chromatography (silicagel, hexane /EtOAc 11:1-7:1-5:1-1:1) gave $27(20.9 \mathrm{mg})$ in 57% yield in 2 steps. $R_{\mathrm{f}}=0.56(3: 2$ hexane/EtOAc $) .[\alpha]_{\mathrm{D}}{ }^{28}+105^{\circ}\left(c 0.33, \mathrm{CHCl}_{3}\right) . \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 3595,3480,1720,1515,1460$, $1370,1250,1145,1060,1035,835 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53(\mathrm{brd}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{br} \mathrm{d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{br} \mathrm{t}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=7.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~m}$, $1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~m}$, $1 \mathrm{H}), 2.83(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{ddd}, J=12.9,5.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$, $1.83-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.8$, $159.2,141.9,138.7,135.3,133.1,130.5,129.5,129.8$ (2C), 129.8 (2C) 127.7 (2C), 124.7, 123.0, 113.7 (2C), 83.4, $81.4,77.3,76.7,73.1,73.1,72.4,69.0,67.7,55.3,41.9,36.1,33.9,27.9$ (3C), 27.2, 25.7 (3C), 21.4, 18.0, -4.7, -5.2. $\mathrm{MS}(\mathrm{FAB}) m / z 799(\mathrm{M}+\mathrm{Na})^{+}$.

t-butyl ester 28

To a solution of $27(19.4 \mathrm{mg}, 0.0250 \mathrm{mmol})$ in THF $(1.8 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ at room temperature was added aluminium amalgam (80 mg). The reaction mixture was sonicated for 1.5 h and stirred at room temperature for 14 h . The reaction mixture was filterated though celite pad and washed with CHCl_{3}. Concentration of filtarate and column chromatography (silicagel, hexane $/ \mathrm{Et}_{2} \mathrm{O}$ 5:1-2:1-1:1) gave $\mathbf{2 8}(13.7 \mathrm{mg})$ in 86% yield.. $R_{\mathrm{f}}=0.51(3: 2$ hexane/EtOAc $) .[\alpha]_{\mathrm{D}}{ }^{28}+9.2^{\circ}\left(c 0.056, \mathrm{CHCl}_{3}\right) \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 3520,1715,1595,1515,1460$, 1370, 1250, 1150, 1075, 1030, $835 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{br} \mathrm{d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{br} \mathrm{d}, J$ $=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{br} \mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=9.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{dd}, J=17.2,9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=17.2,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{dd}, J=16.2,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=16.2$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{ddd}, J=11.6,5.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.71(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.47(\mathrm{~s}$, $9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) \quad \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 661(\mathrm{M}+\mathrm{Na})^{+}$

Acetate 28-2

To a solution of $28(7.0 \mathrm{mg}, 11.0 \mu \mathrm{~mol})$ in pyridine $(0.60 \mathrm{~mL})$ at room temperature was added acetic anhydride $(0.30 \mathrm{~mL}, 0.32 \mathrm{mmol})$. After stirred at room temperature for 7.5 h , the reaction mixture was concentrated with toluene. Column chromatography (silicagel, hexane $/ \mathrm{Et}_{2} \mathrm{O}, 7: 1-3: 1-1: 1$) gave 28-2 (7.4 mg) in 99% yield.. $R_{\mathrm{f}}=0.38$ (3:1 hexane/EtOAc). $[\alpha]_{\mathrm{D}}{ }^{30}-31.7^{\circ}\left(c 0.011, \mathrm{CHCl}_{3}\right) \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 1735,1590,1515,1460,1370$, 1230, 1150, 1080, 1030, $835 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{br} \mathrm{d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 5.95(\mathrm{dd}, J=9.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{br} \mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{dd}, J=17.5,9.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.55(\mathrm{dd}, J=17.5,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{dd}, J=15.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=15.2,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.53-2.35 (m, 2H), $2.20(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{ddd}, J=11.6,5.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.66(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.43(\mathrm{~s}$, $9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) \quad \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 703(\mathrm{M}+\mathrm{Na})^{+}$

Secondary alcohol 28-3

To a solution of $\mathbf{2 8 - 2}(10.9 \mathrm{mg}, 16.0 \mu \mathrm{~mol})$ in THF $(0.80 \mathrm{~mL})$ and pyridine $(0.30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $70 \% \mathrm{HF}$-pyridiene $(0.50 \mathrm{~mL})$. After stirred at room temperature for 3 h , the reaction mixture was diluted with EtOAc and poured into saturated aqueous NaHCO_{3} and extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over MgSO_{4}. Concentration and column chromatography (silicagel, hexane/EtOAc, 3:1-2:1-1:1-1:2) gave 28-3 (8.4 mg) in 93% yield.
$R_{\mathrm{f}}=0.33(1: 1$ hexane/EtOAc $) . \quad[\alpha]_{\mathrm{D}}{ }^{29}+11.3^{\circ}\left(c 0.043, \mathrm{CHCl}_{3}\right) \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 3480,1730,1610,1510,1370$, $1250,1160,1100,1035,835 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{br} \mathrm{d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{brd}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 5.95(\mathrm{dd}, J=9.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dt}, J=6.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.46$ $(\mathrm{m}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) 3.07(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.69(\mathrm{dd}, J=15.2,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{dd}, J=15.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{ddd}, J=12.9,5.6,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.82-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) \quad \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 589(\mathrm{M}+\mathrm{Na})^{+}$

Seco acid 29

To a solution of $\mathbf{2 8 - 3}(2.1 \mathrm{mg}, 3.8 \mu \mathrm{~mol})$ in THF $(0.50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added trimethylsilyl
trifuluoromethanesulfonate $(20 \mu \mathrm{~L}, 0.010 \mathrm{mmol})$. After stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was quenched with 1 M HCl and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and column chromatography (ODS , $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} 7: 1$, and silicagel, $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ 39:1-29:1) gave 29 (1.3 mg) in 90% yeild.
$R_{\mathrm{f}}=0.30\left(5: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH}\right) . \quad[\alpha]_{\mathrm{D}}{ }^{28}+13.8^{\circ}\left(c 0.058, \mathrm{CHCl}_{3}\right) . \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 3680,3420,1730,1610,1460$, $1280,1170,970 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.01(\mathrm{dd}, J=10.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.65(\mathrm{brt}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 1 \mathrm{H})$, 2.93-2.80 (m, 2H), $2.86(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=12.9,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, J=13.4$, $6.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.63(\mathrm{~m}, 3 \mathrm{H})$ Peaks of $\mathrm{CO}_{2} \mathrm{H}$ and OH were not found. MS $(\mathrm{FAB}) m / z 413(\mathrm{M}+\mathrm{Na})^{+}$

Synthesis of macrolactone 34

MMTr 32

To a solution of $26(182 \mathrm{mg}, 0.347 \mathrm{mmol})$ in pyridine $(9.70 \mathrm{~mL})$ at room temperature was added 4-methoxytriphenylmethyl chloride ($1.49 \mathrm{~g}, 4.82 \mathrm{mmol}$). After stirred at $50^{\circ} \mathrm{C}$ for 15 min , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried over MgSO_{4}. Concentration and column chromatography (ODS , $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ 80:20:1-1:0:0) gave 32 (261 mg) in 94% yield..
$R_{\mathrm{f}}=0.31\left(1: 1\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) . \quad[\alpha]_{\mathrm{D}}{ }^{29}+11.4^{\circ}\left(c 0.090, \mathrm{CHCl}_{3}\right) \quad$ IR $\left(\mathrm{CHCl}_{3}\right) ; 1615,1515 \mathrm{~cm}^{-1} . \quad{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{br} \mathrm{d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.35(\mathrm{br} \mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{br} \mathrm{dd}, J=7.9,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{br}$ $\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{br} \mathrm{d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{br} \mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{br} \mathrm{t}, J$
$=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{brt}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 4.16$ $(\mathrm{m}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.58(\mathrm{dd}, J=9.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=9.7$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{br} \mathrm{dd}, J=7.3,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{br} \mathrm{dd}, J=11.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85$ (br s, 3H), $1.75(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) . \quad \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 547$ $(\mathrm{M}+\mathrm{Na})^{+}$; HRMS (ESI) $\mathrm{C}_{48} \mathrm{H}_{61}{ }^{35} \mathrm{ClNaO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}$calc. : 819.3824, found : 819.3814 ($\Delta-1.0 \mathrm{mmu}$).

Alcohol 33

To a solution of $\mathbf{3 2}(299 \mathrm{mg}, 0.375 \mathrm{mmol})$ in THF $(10.8 \mathrm{~mL})$ at room temperature was added tetrabutylammonium fluoride (1.0 M , THF solution, $0.75 \mathrm{~mL}, 0.75 \mathrm{mmol}$). After stirred at room temperature for 2 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and column chromatography (silicagel, hexane/EtOAc, 3:1-2:1-1:1) gave $33(251 \mathrm{mg})$ in 98% yield.
$R_{\mathrm{f}}=0.13\left(1: 1\right.$ hexane/Et $\left.\mathrm{E}_{2} \mathrm{O}\right) . \quad[\alpha]_{\mathrm{D}}{ }^{31}+0.0^{\circ}\left(c 0.19, \mathrm{CHCl}_{3}\right) . \quad$ IR $\left(\mathrm{CHCl}_{3}\right) ; 1615,1515 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{br} \mathrm{d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.35(\mathrm{br} \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{br} \mathrm{dd}, J=8.0,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.24(\mathrm{br}$ $\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{br} \mathrm{d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{br} \mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{br} \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.34(\mathrm{br} \mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{brt}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 4.20$ $(\mathrm{m}, 1 \mathrm{H}), 4.03(\mathrm{br} \mathrm{dd}, J=9.2,5.3,1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.90(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{br} \mathrm{dd}, J=8.3,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{br} \mathrm{dd}, J=13.4,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.85(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 3 \mathrm{H}) . \quad \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 547(\mathrm{M}+\mathrm{Na})^{+}$HRMS (ESI) $\mathrm{C}_{42} \mathrm{H}_{47}{ }^{35} \mathrm{ClNaO}_{6}(\mathrm{M}+\mathrm{Na})^{+}$ calc. : 705.2959, found : $705.2975(\Delta+1.6 \mathrm{mmu})$.

Bromoacetate 34-2

To a solution of $\mathbf{3 3}(14.7 \mathrm{mg}, 21.5 \mu \mathrm{~mol})$ in pyridine $(0.30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added bromoacetyl bromide ($20 \mu \mathrm{~L}$, 0.230 mmol). After stirred at room temperature for 1 h , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extractedvwith EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, saturated aqueous NaHCO_{3} and brine and dried over MgSO_{4}. Concentration gave $\mathbf{3 4}$ which was directly used in the next reaction.

A solution of $34(20.0 \mathrm{mg})$ in acetic acid $(1.6 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.40 \mathrm{~mL})$ stirred at room temperature for 4 h , the reaction mixture was evaporated and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, saturated aqueous NaHCO_{3} and brine and dried over MgSO_{4}. Concentration and column chromatography (silicagel, hexane/EtOAc 5:1-3:1-2:1) gave 34-2 $(8.7 \mathrm{mg})$ in 89% yield in 2 steps.
$R_{\mathrm{f}}=0.28(1: 1$ hexane/Et O$) . \quad[\alpha]_{\mathrm{D}}{ }^{32}+53.4^{\circ}\left(c 0.027, \mathrm{CHCl}_{3}\right) . \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 1735,1615,1515 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{br} \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{br} \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{br} \mathrm{dd}, J=9.0$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 2 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{brt}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{br} \mathrm{dd}, J=13.9,5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.88-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) \quad \mathrm{MS}(\mathrm{FAB}) m / z 547(\mathrm{M}+\mathrm{Na})^{+} ; \operatorname{HRMS}(\mathrm{ESI})$ $\mathrm{C}_{24} \mathrm{H}_{32}{ }^{79} \mathrm{Br}^{35} \mathrm{ClO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$calc. : 553.0968 , found : $553.0967(\Delta-0.1 \mathrm{mmu})$.

Aldehyde 5

To a solution of 34-2 $(1.8 \mathrm{mg}, 3.4 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added Dess-Martin periodinane (2.9 mg , $6.8 \mu \mathrm{~mol}$). After stirred at room temperature for 30 min , the reaction mixture was quenched with saturated
aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and column chromatography (silicagel, hexane $/ \mathrm{Et}_{2} \mathrm{O}, 1: 1-1: 2$) gave $5(1.7 \mathrm{mg})$ in 95% yield.
$R_{\mathrm{f}}=0.28\left(1: 1\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) . \quad[\alpha]_{\mathrm{D}}{ }^{32}+21.0^{\circ}\left(c 0.053, \mathrm{CHCl}_{3}\right) . \quad$ IR $\left(\mathrm{CHCl}_{3}\right) ; 1740,1685,1615,1515 \mathrm{~cm}^{-1} . \quad{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.40(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{br} \mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{br} \mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{br} \mathrm{dd}, J=$ $6.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{br} \mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{brt}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.58(\mathrm{dd}, J=6.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J$ $=13.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{brt}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.79$ (br s, 3H). MS (FAB) $m / z 547(\mathrm{M}+\mathrm{Na})^{+} ; \operatorname{HRMS}(\mathrm{ESI}) \mathrm{C}_{24} \mathrm{H}_{30}{ }^{79} \mathrm{Br}^{35} \mathrm{ClNaO}_{6}(\mathrm{M}+\mathrm{Na})^{+}$calc. : 551.0812, found : $551.0814(\Delta+0.2 \mathrm{mmu})$.

Regioisomer 38-1, 38-2

To a solution of samarium iodide $(0.10 \mathrm{M}$, THF solution, $4.8 \mathrm{~mL}, 0.48 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ was dropwised $\mathbf{5}$ (4.1 mg , $0.108 \mu \mathrm{~mol})$ in THF (9.6 mL) for 3.5 h . After stirred at room temperature for 30 min , and the reaction mixture was quenched in the air and evaporated. Saturated aqueous NaHCO_{3} was added to the reaction mixture and extracted with EtOAc. The organic layer was washed with saturated aqueous NaHCO_{3} and brine and dried over MgSO_{4}. Concentration and column chromatography (silicagel, hexane/EtOAc 3:1-2:1-1:1-1:2-0:1), preparative TLC (hexane / EtOAc 1:2) gave 38-1 (1.52 mg) in 44% yield and $\mathbf{3 8 - 2}(1.48 \mathrm{mg})$ in 42% yield.

38-1 $\quad R_{\mathrm{f}}=0.57\left(1: 1\right.$ hexane/EtOAc). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{brd}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{br} \mathrm{d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.53(\mathrm{br} \mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=10.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{br} \mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~m}, 2 \mathrm{H})$, $3.56(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=14.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=14.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H})$, 2.52-2.40 (m, 2H), $2.20(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H})$ Peak of OH was not found. MS
(ESI) $m / z 473(\mathrm{M}+\mathrm{Na})^{+}$

38-2 $R_{\mathrm{f}}=0.57(1: 1$ hexane/EtOAc $) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{br} \mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{br} \mathrm{d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J=11.0,3.4,1 \mathrm{H}), 5.15(\mathrm{brt}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44$ $(\mathrm{m}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~m}$, $1 \mathrm{H}), 2.52-2.46(\mathrm{~m}, 3 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~m}, 2 \mathrm{H}) . \quad \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ $473(\mathrm{M}+\mathrm{Na})^{+}$

Macrolide 35

To a solution of Wilkinson's catalyst ($5.37 \mathrm{mg}, 5.38 \mu \mathrm{~mol}$) in THF $(4.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added diethyl zinc $(1.0 \mathrm{M}$, hexane solution, $2.37 \mathrm{~mL}, 2.37 \mathrm{mmol}) . \quad 5(57.1 \mathrm{mg}, 0.108 \mathrm{mmol})$ in THF $(18 \mathrm{~mL})$ was dropwised to the reaction mixture at $0{ }^{\circ} \mathrm{C}$ for 4 h then acetic acid anhydride $(0.1 \mathrm{~mL}, 5.29 \mathrm{mmol})$ was added. After stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was quenched with saturated aqueous NaHCO_{3} and filterated though celite pad with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and column chromatography (silicagel, hexane/EtOAc 11:1-9:1-7:1-5:1-3:1-0:1), preparative TLC (hexane / $\mathrm{Et}_{2} \mathrm{O} 1: 3$) gave $35(4.5 \mathrm{mg}$) in 9\% and $\mathbf{3 7}$ and $\mathbf{3 8}(18.4 \mathrm{mg})$ in 33% yield.
$35 R_{\mathrm{f}}=0.58(1: 1$ hexane/EtOAc $) .[\alpha]_{\mathrm{D}}{ }^{33}+43.7^{\circ}\left(c 0.016, \mathrm{CHCl}_{3}\right) . \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 1740,1615,1515 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 7.24(\mathrm{brd}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{br} \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.70(\mathrm{dd}, J=11.5,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.69(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{br} \mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{br} \mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dt}, J=6.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{dd}, J=6.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{~m}$, $1 \mathrm{H}), 2.68(\mathrm{dd}, J=11.7,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=11.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H})$, $2.01(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.52(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 547(\mathrm{M}+\mathrm{Na})^{+} . \mathrm{HRMS}(\mathrm{ESI})$ $\mathrm{C}_{26} \mathrm{H}_{33}{ }^{35} \mathrm{ClNaO}_{7}(\mathrm{M}+\mathrm{Na})^{+}$calc. : 515.1812 , found : $515.1817(\Delta+0.5 \mathrm{mmu})$.
$37 R_{\mathrm{f}}=0.57\left(1: 1\right.$ hexane/EtOAc). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.25(\mathrm{brd}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{br} \mathrm{d}, J=$
$8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{~m}, 2 \mathrm{H}), 5.54(\mathrm{brt}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{brt}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ $(\mathrm{d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{dt}, J=7.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~m}, 1 \mathrm{H}), 2.81$ $(\mathrm{dd}, J=12.2,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=12.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.26(\mathrm{~m}, 3 \mathrm{H}), 2.17(\mathrm{~m}, 1 \mathrm{H}), 2.00$ $(\mathrm{s}, 3 \mathrm{H}), 1.65(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.49(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~m}, 1 \mathrm{H})$.

Secondary alcohol 37-2

To a solution of $\mathbf{3 7}(5.3 \mathrm{mg}, 11 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(1.8 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{mg}$, 0.189 mmol). After stirred at $0^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}$ and NaCl were added to the reaction mixture and extracted with EtOAc. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and preparative TLC (hexane / EtOAc 1:1) gave 37-2 (2.2 mg) in 45% yield.
$R_{\mathrm{f}}=0.58\left(1: 1\right.$ hexane/EtOAc). ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.27(\mathrm{br} \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{br} \mathrm{d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 5.53(\mathrm{br} \mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{brt}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{br} \mathrm{dd}, J=8.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{br} \mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{dd}$, $J=10.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{dd}, J=14.6,8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.41(\mathrm{dd}, J=14.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{ddd}, J=13.2,5.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$ Peak of OH was not found.

Synthesis of Haterumalide NA Methyl ester

Vinyl iodide 18-2

To a solution of zirconocene dichloride (4.82 g, 16.5 mmol) in 1,2-dichloroethane (130 mL).

Trimethylaluminum (2.0 M , touluene solution, $99.0 \mathrm{~mL}, 198 \mathrm{mmol}$) was added to the reaction mixture. A solution of 3-butyn-1-ol $18(4.63 \mathrm{~g}, 66.0 \mathrm{mmol})$ in 1,2-dichloroethane (35 mL) was also dropwised to the reaction mixture. After stirred at room temperature for 14 h , the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ ans iodine $(20.0 \mathrm{~g}$, 79.2 mmol) in THF (65 mL) was added. After stirred at room temperature for 40 min , the reaction mixture was quenched with saturated aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and filterated with celite pad and washed with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was concentrated and column chromatography (silicagel, hexane/EtOAc 5:1-3:1) gave 18-2 (8.7 mg) in 89\% yield.
$R_{\mathrm{f}}=0.41\left(1: 1\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{brt}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.47$ (br t, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$.

Carboxylic acid 18-3

To a solution of chromic acid ($2.61 \mathrm{~g}, 26.2 \mathrm{mmol}$) in 1.5 M sulfuric acid $(43 \mathrm{~mL})$ at $5-10{ }^{\circ} \mathrm{C}$ was dropwised $\mathbf{1 8 - 2}$ $(1.46 \mathrm{~g}, 6.88 \mathrm{mmol})$ in acetone $(80 \mathrm{~mL})$ for 30 min . After stirred at room temperature for 4 h , the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and dried over MgSO_{4}. Concentration gave crude mixture and diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and extracted with 1 M NaOH . Aqueous layer was acidified with 6.0 M HCl and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and column chromatography (silicagel, hexane/Et $\mathrm{E}_{2} \mathrm{O}: 0-1: 1$) gave 18-3 (1.06 g) in 68% yield. $R_{\mathrm{f}}=0.23\left(1: 1\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) .{ }^{\mathrm{l}} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.25(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.96(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$. Peak of $\mathrm{CO}_{2} \mathrm{H}$ was not found.

C16-19 fragment 3

To a solution of $\mathbf{1 8 - 3}(1.06 \mathrm{~g}, 5.25 \mathrm{mmol})$ in benzene $(50 \mathrm{~mL})$ and $\mathrm{MeOH}(10 \mathrm{~mL})$ was added (trimethylsilyl) diazomethane ($12.0 \mathrm{~mL}, 6.93 \mathrm{mmol}$). After stirred at room temperature for 5 min , the reaction mixture was concentrated and column chromatography (silicagel, hexane/ $\mathrm{Et}_{2} \mathrm{O}, 49: 1-9: 1$) gave $\mathbf{3}(0.930 \mathrm{~g})$ in 74% yield. $R_{\mathrm{f}}=0.79\left(1: 2\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) . \quad{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.94$ (br s, 3H).

Alcohol 39

To a solution of $\mathbf{3 5}(1.1 \mathrm{mg}, 2.2 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$, tert-butyl alcohol $(0.1 \mathrm{~mL})$ and 1.0 M phosphate buffer $(\mathrm{pH}=5.91)$ at $0{ }^{\circ} \mathrm{C}$ was added 2,3-dichloro-5,6-dicyanoquinone $(4.0 \mathrm{mg}, 17.8 \mu \mathrm{~mol})$. After stirred at room temperature for $1.5 \mathrm{~h}, 2,3$-dichloro-5,6-dicyanoquinone ($4.0 \mathrm{mg}, 17.8 \mu \mathrm{~mol}$) was added again. After stirred at room temperature for 1 h , the reaction mixture was quenched with saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine and dried over MgSO_{4}. Concentration and column chromatography (silicagel, hexane/acetone, 5:1-3:1-1:1) gave 39 (1.10 mg) in 100%.
$R_{\mathrm{f}}=0.17(1: 1$ hexane/EtOAc $) . \quad[\alpha]_{\mathrm{D}}{ }^{33}+7.7^{\circ}\left(c 0.019, \mathrm{CHCl}_{3}\right) . \quad \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) ; 3500(\mathrm{br}), 1730 \mathrm{~cm}^{-1} . \quad{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.76(\mathrm{dd}, J=10.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{br} \mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{brt}, J=3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H}), 2.30$ $(\mathrm{m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.52(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H})$ Peak of OH was not found. HRMS (ESI) $\mathrm{C}_{18} \mathrm{H}_{25}{ }^{35} \mathrm{ClNaO}_{6}(\mathrm{M}+\mathrm{Na})^{+}$calc. : 395.1237 , found : $395.1251(\Delta+1.4 \mathrm{mmu})$.

15-epi-haterumalideNA menthyl ester 41
To a solution of $\mathbf{3 9}(0.80 \mathrm{mg}, 2.15 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added Dess-Martin periodinane (5.20 $\mathrm{mg}, 12.3 \mu \mathrm{~mol}$). After stirred at room temperature for 30 min , the reaction mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine and dried over MgSO_{4}. Concentration gave $40(0.90 \mathrm{mg})$ which was directly used in the next reaction.

A solution of $40(0.90 \mathrm{mg})$ and $\mathbf{3}(41.0 \mathrm{mg}, 0.170 \mathrm{mmol})$ in DMSO $(0.50 \mathrm{~mL})$ was degassed by freeze-pump-thaw. To a reaction mixture was added $\mathrm{CrCl}_{2}(58.0 \mathrm{mg}, 0.472 \mathrm{mmol})$ and catalytic amount of NiCl_{2}. After stirred at room temperature for 20 h , the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ and extractedvwith $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with saturated aqueous NaHCO_{3} and brine and dried over MgSO_{4}. Concentration and column chromatography (silicagel, hexane $/ \mathrm{Et}_{2} \mathrm{O}, 5: 1-\mathrm{EtOAc}$), preparative TLC (hexane/EtOAc, 1:2) gave 41 (15R : 15S $=11: 1) .41(15 \mathrm{R}: 15 \mathrm{~S}=11: 1)$ was purified by HPLC (Develosil ODS HG-5 $\varphi 4.6 \times 250 \mathrm{~mm}$), MeOH : H2O $=3: 2)$ and $40(0.59 \mathrm{mg})$ was obtained in 57% yield in 2 steps.
$R_{\mathrm{f}}=0.38\left(1: 2\right.$ hexane/EtOAc). ${ }^{1} \mathrm{H}$ NMR $\left(800 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.79(\mathrm{dd}, J=11.4,4.6,1 \mathrm{H}), 5.70(\mathrm{br} \mathrm{dd}, J=9.2$, $7.4,1 \mathrm{H}), 5.37(\mathrm{br} \mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{br} \mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{br} \mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{br} \mathrm{t}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.93(\mathrm{br} \mathrm{tt}, J=11.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=8.7,3.71 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 2 \mathrm{H}), 2.82$ $(\mathrm{dd}, J=11.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=11.5,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{br} \mathrm{dd}, J=12.8,3.2$, $1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.52(\mathrm{br} \mathrm{dt}, J=12.8,3.2,1 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H}) \quad$ HRMS (ESI) $\mathrm{C}_{24} \mathrm{H}_{33}{ }^{35} \mathrm{ClNaO}_{8}(\mathrm{M}+\mathrm{Na})^{+}$calc. : 507.1762 , found : $507.1753(\Delta-0.9 \mathrm{mmu}) . \quad \mathrm{CD}(\mathrm{MeOH}) \lambda_{\text {ext }} 220 \mathrm{~nm}(\Delta \varepsilon$ -0.72)

References and notes

1 Takada, N.; Sato, H.; Suenaga, K.; Arimoto, H.; Yamada, K.; Ueda, K.; Uemura, D. Tetrahedron Lett. 1999, 40, 6309.

2 Ueda, K.; Hu, Y. Tetrahedron Lett. 1999, 40, 6305.
3 Strobel, G.; Li, J.-Y.; Sugawara, F.; Koshino, H.; Harper, J.; Hess, W. M. Microbiology 1999, 145, 3557.
4 Thaning, C.; Welch, C. J.; Borowicz, J. J.; Hedman, R.; Gerhardson, B. Soil Biol. Biochem. 2001, 33, 1817.
5 Thibonnet, J.; Launay, V.; Abarbri, M.; Duchene, A.; Parrain, J.-L. Tetrahedron Lett. 1998, 39, 4277.

6 Yadav, J. S.; Deshpande, P. K.; Sharma, G. V. M. Tetrahedron 1990, 46, 7033.
7 Ogura, K.; Tsuchihashi, G. Tetrahedron Lett. 1971, 34, 3151.
8 Dondoni, A.; Fantin, G.; Foganolo, M.; Merino, P. Tetrahedron Lett. 1990, 31, 4513.
9 (a) Miller, R. B.; Al-Hassan, M. I. J. Org. Chem. 1983, 48, 4113. (b) Zweifel, G.; Lewis, W. J. Org. Chem. 1978, 43, 2739.

10 Tamao, K.; Akita, M.; Maeda, K.; Kumada, M. J. Org. Chem. 1987, 52, 1100.
11 Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405.
12 (a) Corey, E. J.; Weigel, L. O.; Chamberlin, R.; Cho, H.; Hua, D. H. J. Am. Chem. Soc. 1980, 102, 6613.
(b) Mioskowski, C.; Solladie, G. Tetrahedron 1980, 36, 227. (c) Solladie, G.; Moghadam, F.-M. J. Org.

Chem. 1982, 47, 91.

13 Mioskowski, C.; Solladie, G. Tetrahedron Lett. 1975, 3341.

14 Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092.
15 (a) Tabuchi, T.; Kawamura, K.; Inagawa, J.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 3889. (b)
Molander, G. A.; Etter, J. B.; Harring, L. S.; Thorel, P.-J. J. Am. Chem. Soc. 1991, 113, 8036.

17 Maruoka, K.; Hashimoto, S.; Kitagawa, Y.; Yamamoto, H.; Nozaki, H. Bull. Chem. Soc. Jpn. 1980, 53, 3301.
18 Kanai, K.; Wakabayashi, H.; Honda, T. Org. Lett. 2000, 2, 2549.

19 Takai, K.; Tagashira, M.; Kuroda, T.; Oshima, K.; Utimoto, K.; Nozaki, H. J. Am. Chem. Soc. 1986, 108, 6048.

Chapter 5

Summary

In conclusion, the author identified G protein-biased and highly subtype selective EP2 receptor agonists and reported the first total synthesis of resolvin E2 and haterumalide NA methyl ester.

As described in Chapter 2, the author discovered G protein-biased and highly subtype selective novel EP2 agonist 27a by hybridization of a thiazole moiety and a bicyclic scaffold of prostacyclin. Optimization of α chain, 11-hydroxyl group and ω-chain led the author to identify compound $\mathbf{9}$ with 100 -fold increase in G protein signaling without increase of β arrestin activity relative to $\mathbf{2 7 a}$. Furthermore, structure functional selectivity relationship studies revealed that the combination of meta and para substituents on the phenyl moiety was crucial to regulate its functional selectivity (Figure 5-1).

5

6

Figure 5-1. Outline of discovery of G protein-biased EP2 agonists.

The author reported the efficient total synthesis of resolvin E2 by using its intrinsic pseudoenantiomeric substructure as shown in Chapter 3 (Figure 5-2). Moreover, biological evaluation in the acute peritonitis model revealed that resolvin E2 exerts potent activity in blocking neutrophil infiltration and reducing proinflammatory cytokines.

Figure 5-2. Outline of the first total synthesis of Resolvin E2

As described in Chapter 4, the author also reported the first total synthesis of haterumalide NA methyl ester.
14-membered macrolide and Z-chloroolefin moieties of haterumalide NA were synthesized by the intramolecular Reformatsky-type reaction and the stereoselective taransformation from E-vinylsilane moiety. The author revised the absolute stereochemistry of haterumalide NA.

Figure 5-3. Outline of the total synthesis of 15-epi-Haterumalide NA methyl ester.

Overall, the author identified the first examples of G protein-biased EP2 receptor agonists and these compounds would be a good tool compounds to investigate the biological role of G protein- and β arrestin-mediated signaling for EP2 receptor. And efficient synthetic routes of lipid mediators (resolvin E2 and haterumalide NA) should be helpful strategy for further investigation of resolvins and haterumalides.

Acknowledgments

The studies in this thesis have been performed under the direction of Professor Hideo Kigoshi at Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba.

First of all, I am deeply grateful to Professor Kigoshi for his valuable advices and helpful encouragement for carrying out this work and giving me pleasure of organic chemistry when I was a graduate student at Nagoya University. I would like to express my sincere thanks to Professor Daisuke Uemura for his hearty encouragement and teaching me an importance of organic chemistry at Nagoya University. I also appreciate Associate Professor Masaki Kita for his proper advice for this studies and giving me experimental skills of organic chemistry. I would like to offer my heartfelt thanks to Professor Masayuki Inoue for his excellent suggestion and giving me strategies for rational synthesis when I was a visiting researcher at Tokyo University and thank Assistant Professor Daisuke Urabe for his valuable suggestion.

The investigations at ONO Pharmaceutical described in this thesis were performed under the direction of Dr. Kazuhito Kawabata, general manager of research department, Dr Takuya Seko, a former manager of medicinal chemistry research laboratory. I would like to offer them my sincere thanks for their kind direction and encouragement. The collaborations of Dr Toshihide Watanabe, Mr Isamu Sugimoto, Ms Kazumi Moriyuki, Dr Yoshikazu Goto, Mr Shinsaku Yamane, Dr. Akio Watanabe, Mr Kzuma Tsuboi, Dr Atsushi Kinoshita, Dr Kousuke Tani and Dr Toru Maruyama and other members in "EP2 agonist project" are greatly acknowledged. Particularly, I wish to thank to Dr Maruyama and Dr Tani for their kind and excellent suggestion for these studies.

Finally, I would like to dedicate this doctoral dissertation to all my family, my wife Hitomi for her hearty encouragement, my son Hiroya and daughter Sumire for giving power to perform these works.

List of publications and patents included in this thesis

1) Ogawa, S.; Watanabe, T.; Sugimoto, I.; Moriyuki, K.; Goto, Y.; Yamane, S.; Watanabe, A.; Tsuboi, K.; Kinoshita, A.; Kigoshi, H.; Tani, K.; Maruyama, T. Discovery of G protein-biased EP2 receptor agonists. ACS Med.Chem. Lett. DOI; 10.1021/acsmedchemlett.5b00455 (in press)
2) Ogawa, S.; Urabe, D.; Yokokura, Y.; Arai, H.; Arita, M.; Inoue, M. Total synthesis and bioactivity of resolvin E2. Org. Lett. 2009, 11, 3602-3605.
3) Kigoshi, H.; Kita, M.; Ogawa, S.; Itoh, M.; Uemura, D. Enantioselective synthesis of 15-epi-haterumalide NA methyl ester and revised structure of haterumalide NA. Org. Lett. 2003, 5, 957-960.
4) Ogawa, S.; Watanabe, T.; Sugimoto, I.; Tani, K.; Moriyuki, K.; Goto, Y.; Yamane, S. Compound exhibiting selective EP2 agonist activity. PCT Int. Appl., WO 201515129782, 2015

List of publications and patents not included in this thesis

1) Kambe, T.; Maruyama, T.; Nagase, T.; Ogawa, S.; Minamoto, C.; Sakata, K.; Maruyama, T.; Nakai, H.; Toda, M. Synthesis and evaluation of novel modified γ-lactam prostanoids as EP4 subtype-selective agonists. Bioorg Med Chem. 2012, 20, 702-713
2) Iwahashi, M.; Naganawa, A.; Kinoshita, A.; Shimabukuro, A.; Nishiyama, T.; Ogawa, S.; Matsunaga, Y.; Tsukamoto, K.; Okada, Y.; Matsumoto, R.; Nambu, F.; Oumi, R.; Odagaki, Y.; Katagi, J.; Yano, K.; Tani, K.; Nakai, H.; Toda M. Discovery of new orally active prostaglandin D2 receptor antagonists. Bioorg Med Chem. 2011, 19, 6935-6948.
3) Iwahashi, M.; Kawauchi, S.; Kinoshita, A.; Kishida, Y.; Kobayashi, K.; Matsunaga, Y.; Naganawa, A.; Nambu, F.; Ogawa, S.; Okada, Y.; Shimabukuro, A.; Tsukamoto, K.; Yano, K. Carboxylic acid compounds and medicinal compositions containing the same as the active ingredient. PCT Int. Appl., WO 2005028455, 2005

[^0]: ${ }^{a}$ Assay protocols are provided in the Supporting Information. EC_{50} values represent the mean of two experiments.

