Selective Syntheses of Difluoromethylene Compounds via Difluorocarbene Catalyses

Tatsuya Aono

February 2016

Selective Syntheses of Difluoromethylene Compounds via Difluorocarbene Catalyses

Tatsuya Aono
Doctoral Program in Chemistry

Submitted to the Graduate School of Pure and Applied Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Science at the University of Tsukuba

Contents

Chapter 1
General Introduction 1
Chapter 2
O-Selective Difluoromethylation of Amides with Free Difluorocarbene 20
2.1. Introduction 21
2.2. Synthesis of Difluoromethyl Imidates 24
2.3. Mechanistic Considerations on O-Selective Difluoromethylation of Amides 31
2.4. Conclusion 33
2.5. Experimental Section 34
2.6. Reference 38
Chapter 3
Regioselective Syntheses of gem-Difluorocyclopentanone Derivatives with Transition Metal Difluorocarbene Complexes 39
3.1. Introduction 40
3.2. Domino Difluorocyclopropanation/Ring Expansion with Nickel Difluorocarbene Complex 45
3.3. [4+1] Cycloaddition with Copper Difluorocarbene Complex 58
3.4. Conclusion 66
3.5. Experimental Section 67
3.6. Reference 101
Chapter 4
Conclusion 104
List of Publications 105
Acknowledgement 106

Chapter 1

1. General Introduction

Organofluorine compounds often exhibit unique properties and behaviors in comparison with nonfluorinated parent compounds, playing important roles as pharmaceuticals and agrochemicals. Because of the high bond dissociation energy of C-F bonds, organofluorine compounds are resistant to heat and chemicals, and stable to metabolism. In addition, organofluorine compounds have high lipophilicity. Water has a large Hildebrand's solubility parameter $\delta(\sim 48)$, while organic solvents such as toluene have medium δ values (~ 20). ${ }^{[1]}$ Having small δ values (~ 12), fluorous solvents are immiscible to water and organic solvents. The introduction of fluorine atom into molecules thus results in alternation of the behaviors of fluorinated molecules in vivo. Fortheremore, being the smallest substituents next to hydrogen, fluorine has been recognized as a mimic of hydrogen.

Among organofluorine compounds, difluoromethylene compounds containing a - CHF_{2} group or a $-\mathrm{CF}_{2^{-}}$group have recently attracted particular attention. For example, "Primisulfuron-methyl" possessing two difluoromethyloxy groups acts as herbicides (Figure 1). ${ }^{[2 a]}$ Difluorocyclopentanone derivatives $\mathbf{1}$ and $\mathbf{2}$ which a difluoromethylene moiety have antimalarial effect and anti-bronchitis effect, respectively. ${ }^{[2 b, c]}$ In spite of their utility, synthetic methods for the preparation of difluoromethylene compounds still remains to be underdeveloped.

Primisulfuron-methyl (herbicides)

1 (antimalarial effect)

2 (anti-bronchitis effect)

Figure 1

The synthetic methods of difluoromethylene compounds reported to date can be classified into two categories: introduction of (i) two fluorine substituents and (ii) a difluoromethylene moiety.

Concerning the introduction of fluorine substituents both electrophilic and nucleophilic fluorinating agents have been used. ${ }^{[3]}$ For example, treatment of diketone $\mathbf{3}$ with xenon difluoride gives α, α-difluoroketone $\mathbf{4}$ in 43% yield (eq. 1). ${ }^{[4]}$ Treatment of ketone $\mathbf{6}$ with N-F-sultam $\mathbf{5}$ in the presence of potassium bis(trimethylsilyl)amide (KHMDS) affords α, α-difluoroketone 7 in 64%
yield (eq. 2). ${ }^{[5]}$ In these reactions, electrophilic fluorine was attacked by nucleophiles (enols or enolates). On the other hand, by using N, N-diethylaminosulfur trifluoride (DAST), aldehyde $\mathbf{8}$ is transformed into difluoromethyl compound 9 in 80% yield (eq. 3). ${ }^{[6]}$ Dithioacetal $\mathbf{1 0}$ reacts with tetrabutylammonium dihydrogen trifluoride in the presence of N -iodosuccinimide (NIS) to give $\mathbf{1 1}$ in 82% yield (eq. 4). ${ }^{[7]}$ These reactions proceed via nucleophilic attack of fluoride ion. Both of these methods for fluorine introduction, (i) and (ii) require expensive reagents and more importantly, construction of the corresponding carbon skeleton is required prier to fluorination.
(i)-1. Electrophilic Introduction of Fluorine Substituents

(i)-2. Nucleophilic Introduction of Fluorine Substituents

Introduction of a difluoromethylene moiety using fluorinated building blocks is convenient, since there are many kinds of difluorinated building blocks of various carbon numbers. The simplest example, difluorocarbene, generated from chlorodifluoromethane and sodium hydroxide, is a representative one-carbon building block. Difluorocarbene reacts with phenoxide to afford difluoromethoxybenzene in 65% yield (eq. 5). ${ }^{[8]}$ Sulfonium salt $\mathbf{1 2}$ serves as difluoromethyl cation equivalent and reacts with sulfonate $\mathbf{1 3}$ to afford difluoromethyl ester $\mathbf{1 4}$ in 77% yield (eq. 6) ${ }^{[9]}$ Acetylide, prepared by deprotonation of phenylacetylene with butyllithium, reacts with dibromodifluoromethane to give bromodifluoromethylacetylene 15 in 77% yield (eq. 7). ${ }^{[10]}$ Treatment of 1-octene with dibromodifluoromethane in the presence of copper(I) chloride ($1 \mathrm{~mol} \%$) affords radical addition product $\mathbf{1 6}$ in 77% yield (eq. 8). ${ }^{[11]}$ On treatment with peroxide $\mathbf{1 7}$ toluene was chlorodifluoromethylated to give 18 in 91% yield via chlorodifluoromethyl radical (eq. 9). ${ }^{[12]}$ Recently, cross coupling reactions have been employed for installing difluoromethylene units. For instance, treatment of iodoarene 19 with trimethyl(difluoromethyl)silane in the presence of a stoichiometric amount of copper(I) iodide affords difluoromethylarene 20 in 90% yield (eq. 10). ${ }^{[13]}$ In a similar manner, difluoromethylation of iodoarene 21 is effected with tributyl(difluoromethyl)tin in the presence of copper(I) iodide (1.3 eq) to afford difluoromethylarene 22 in 61% yield (eq. 11). ${ }^{[14]}$ 2-Phenylbenzaldehyde undergoes a Wittig-type difluoromethylenation reaction with dibromodifluoromethane and tris(dimethylamino)phosphine to give 1,1-difluoroalkene 23 in 87% yield (eq. 12). ${ }^{[15]}$ Difluoroenolate 25, generated from acylsilane 24 and trimethyl(trifluoromethyl)silane via Brook rearrangement, undergoes Michael reaction with methyl vinyl ketone with in the presence of $3 \mathrm{~mol} \%$ of ytterbium(III) catalyst to afford difluoroketone $\mathbf{2 6}$ in 67% yield (eq. 13). ${ }^{[16]}$ In addition to these efforts, versatile reagents have been developed for difluoromethylenation. For example, deprotonation of difluoromethylphosphonate 27 with lithium diisopropylamine (LDA) generates cabanion 28, which reacts with aldehyde 29 to give 1,1-difluoroalkene $\mathbf{3 0}$ in 67% yield (eq. 14a). ${ }^{[17 a]}$ Carbanion $\mathbf{2 8}$ also reacts with triflate $\mathbf{3 1}$ to give alkylated difluoromethylphosphonate 32 in 56% yield via nucleophilic substitution (eq. 14b). ${ }^{[17 b]}$ Organoselen compound 33, prepared from 28 and a selenyl chloride (eq. 14c), reacts with alkene 34 in the presence of $2,2^{\prime}$-azobis(isobutyronitrile) (AIBN) and tributyltin hydride. Difluorophosphonate 35 is obtained through radical process in 82% yield (eq. 14 d). ${ }^{[17 \mathrm{c}]}$
(ii)-1. Introduction of Difluoromethylene Moiety with One-Carbon Building Blocks

65\%

15 77\%

16 77\%

18 91\% (o:m:p=51:26:23)

21

23 87\%

Two-carbon building blocks are also adopted for difluoromethylene introduction. For example, Barton ester 36 reacts with dichlorodifluoroethene under irradiation by a 500 W tungsten lamp to afford dichlorodifluoroethane 37 in 40% yield via photo-induced radical process (eq. 15). ${ }^{[18]}$ Hydrolysis of $\mathbf{3 7}$ reacts with silver(I) nitrate affords difluorocarboxylic acid $\mathbf{3 8}$ in 68% yield. On treatment with methyl difluoroiodoacetate in the presence of copper metal, ester 39 gives difluoroiodoester 40 in 88% yield via addition of difluoroacetate radical (eq. 16). ${ }^{[19]}$ Nucleophic methods are available for the introduction of difluorinated two-carbon units. Treatment of aldehyde 41 with ethyl bromodifluoroacetate in the presence of zinc metal affords alcohol $\mathbf{4 2}$ in 57% yield (eq. 17). ${ }^{[20]}$ Cross coupling reaction with ethyl difluoro(trimethylsilyl)acetate 43 allows difluoromethylation. Treatment of iodoarene $\mathbf{4 4}$ with $\mathbf{4 3}$ in the presence of a stoichiometric amount of copper(I) iodide affords acetate 45 (eq. 18), ${ }^{[21]}$ where hydrolysis followed by decarboxylation leads to difluoromethylarene 46 in 84% yield. Our group has already developed a wide variety of difluorinated C 2 building blocks with sp^{2} system. 2,2,2-Trifluoroethyl tosylate 47 is successively treated with LDA and trialkylborane to generate 2,2-difluorovinylborane 48 via alkyl group
migration. Protonolysis of 48 with acetic acid affords 1,1-difluoroalkene 49 in 81% yield (eq. 19a). ${ }^{[22 a]}$ On treatment with bromine and sodium methoxide, difluoroborane 48 gives 1,1-difluoroalkene 50 in 65% yield via the second alkyl group migration (eq. 19b). ${ }^{[22 b]}$ Furthermore, oxidation of $\mathbf{4 8}$ with alkaline hydrogen peroxide affords (difluoromethyl)ketone $\mathbf{5 1}$ in 81% yield (eq. 19c). ${ }^{[22 c]}$ On treatment with trifluoroiodoethene and LDA (2.0 eq) followed by treatment with ketone 52 and then acetic anhydride, affords difluoroalkene 53 in 85% yield (eq. 20). ${ }^{[23]}$ Treatment of $\mathbf{5 3}$ with zinc metal affords the difluorovinylidenation product, 1,1-difluoroallene $\mathbf{5 4}$ in $\mathbf{9 6 \%}$ yield. More recently, we have reported the Negishi cross coupling reaction of (difluorovinyl)zinc(II) 55 (eq. 21). ${ }^{[24]}$ Treatment of difluoroethylene with sec-butyllithium in the presence of $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine (TMEDA) generates (difluorovinyl)zinc(II) 55 in 95% yield. $\mathrm{Zinc}(\mathrm{II})$ reagent 55 reacts with 2-naphthyl triflate in the presence of a catalytic amount of tetrakis(triphenylphosphine)palladium to give 1,1-difluoroalkene 56 in 90% yield.
(ii)-2. Introduction of Difluoromethylene Moiety with Two-Carbon Building Blocks

$\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Ph}$
36

40 88\%

$$
\begin{aligned}
& \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OTs} \xrightarrow[\substack{\text { 2) } \mathrm{BR}_{3}(1.1 \mathrm{eq}) \\
-78^{\circ} \mathrm{C}, 1 \mathrm{~h} \text { then } \mathrm{RT}, 10 \mathrm{~h}}]{\substack{\text { 1) } \mathrm{LDA}(2.1 \mathrm{eq}) \\
\mathrm{THF},-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}}} \\
& 48 \\
& \text { (b) }
\end{aligned}
$$

For difluorinated building blocks with three or more carbons, some representative examples are shown below. Treatment of 3,3,3-trifluoro-1-propene with disilane 57 in the presence of fluoride ion (10 $\mathrm{mol} \%$) promotes $\mathrm{S}_{\mathrm{N}} 2$ '-type reaction to afford difluoroalkene $\mathbf{5 8}$ in 85% yield (eq. 22). ${ }^{[25]}$ In our research group, trifluoropropenes have been also employed as building blocks. The $\mathrm{S}_{\mathrm{N}} 1$ '-type reaction of trifluoromethylalkene 59 with p-xylene is promoted by a stoichiometric amount of ethylaluminium(III) dichloride to afford difluoroalkene $\mathbf{6 0}$ in 84% yield (eq. 23). ${ }^{[26]}$ Dienol silyl ether 61 undergoes Diels-Alder reaction with fluorinated vinylsulfone 62 to give alcohol 63 in 77% yield (eq. 24). ${ }^{[27]}$ Treatment of α, α-difluorinated unsaturated ketone 64 (a four-carbon difluorinated building block) with zinc metal generates organozinc reagent $\mathbf{6 5}$, which reacts with benzaldehyde.

The resulting alkoxide $\mathbf{6 5}$ undergoes 6 -endo-trig ring closure to give cyclic ether $\mathbf{6 6}$ in 46% yield (eq. 25). ${ }^{[28]}$
(ii)-3. Introduction of Difluoromethylene Moiety with Three- or More-Carbon Building Blocks

63 77\%

The building block methods presented so far are mostly based on stoichiometric or substoichiometric reactions in terms of promoters. Thus, I envisioned catalytic introduction of a difluoromethylene moiety, which was directed toward synthesis of difluoromethylene compounds. My

Figure 2 attention was particularly focused on the simple difluorinated building block, difluorocarbene, containing two categories of free difluorocarbene (: $\left.\mathrm{CF}_{2}\right)$ and transition metal difluorocarbene complexes $\left(\mathrm{L}_{\mathrm{n}} \mathrm{M}=\mathrm{CF}_{2}\right.$, Figure 2).

Free difluorocarbene has been widely used as a one-carbone difluorinated building block for synthesis of difluoromethylene compounds. ${ }^{[29]}$ Although many methods for generation of difluorocarbene have been reported, there remains drawbacks in its generation, as well as higher loadings. As mentioned above, treatment of phenol with excess amounts of chlorodifluoromethane in the presence of sodium hydroxide (5 eq) affords difluoromethoxybenzene in 65% yield (eq. 5). ${ }^{[8]}$ Sodium hydroxide deprotonates chlorodifluoromethane to generate chlorodifluoromethyl anion, which undergoes elimination of chloride ion to generate difluorocarbene. Difluorocarbene thus formed causes difluoromethylation of the peroxide. Thus, strongly basic conditions are required for this methods.

Internal alkene $\mathbf{6 7}$ reacts with excess amounts of sodium chlorodifluoroacetate (8.0 eq) at $160{ }^{\circ} \mathrm{C}$ (boiling point of diglyme) to give difluorocyclopropane 68 in 58% yield (eq. 26). ${ }^{[30]}$ Difluorocyclopropanation of alkene 69 proceeds with smaller amounts (2.0 eq) of sodium bromodifluoroacetate at $165{ }^{\circ} \mathrm{C}$ to afford 70 in 99% yield (eq. 27). ${ }^{[31]}$ The reaction of alkene 71 with hexafluoropropylene oxide (HFPO) proceeds at $170-200^{\circ} \mathrm{C}$ to afford difluorocyclopropane 72 in 50% yield (eq. 28). ${ }^{[32]}$ High reaction temperature is necessary for these difluorocarbene generation.

Cyclohexene reacts with trimethyl(trifluoromethyl)tin(IV) in the presence of sodium iodide to afford difluorocyclopropane 73 in 89% yield (eq. 29). ${ }^{[33]}$ On treatment with phenyl(trifluoromethyl)mercury(II) in the presence of sodium iodide, cyclohexene also affords difluorocyclopropane 73 in 83% yield (eq. 30). ${ }^{[34]}$ Use of highly toxic reagents, tin or mercury compounds is the drawback to these methods.

We adopted trimethylsilyl 2,2-difluoro-2-(fluorosulfonyl)acetate (TFDA) for a catalytic and selective generation of difluorocarbene. This reagent was originally developed by Dolbier, ${ }^{[35]}$ to generate difluorocarbene in the presence of a fluoride ion. It is proposed that the fluoride ion attacks the silicon atom of TFDA to promote its decomposition (eq. 31). Thus generated difluorocarbene is employed in difluorocyclopropanation of alkene 74 under nearly neutral conditions to give difluorocyclopropane 75 in 74% yield with regeneration of a fluoride ion (eq. 32). ${ }^{[35 a]}$

While being catalytic, the generation of difluorocarbene from TFDA is rapid, which might cause an overreaction. When alkylketone 76 was treated with TFDA and $10 \mathrm{~mol} \%$ sodium fluoride, the formed enol difluoromethyl ether 77 further undergoes undesigned difluorocyclopropanation with the second molecule of difluorocarbene, affording difluorocyclopropane 78 in 70% yield (eq. 33). ${ }^{[36]}$

To suppress the overreaction, the generation rate of difluorocarbene should be controlled. Thus, we adopted an organocatalyst, N-heterocyclic carbene (NHC), as an activator of TFDA. NHCs are stable and nucleophilic carbenes ${ }^{[37]}$ that act as nucleophilic catalysts in synthetic reactions. ${ }^{[38]}$ For instance, benzaldehyde reacts with trimethy(trifluoromethyl)silane in the presence of NHC 79 to afford alcohol $\mathbf{8 0}$ in 73% yield (eq. 34). ${ }^{[39]}$ Treatment of benzaldehyde with trimethylsilylcyanide in the presence of NHC $\mathbf{8 1}$ affords silyl ether $\mathbf{8 2}$ in 91% yield (eq. 35). ${ }^{[40]}$ In these reactions, NHCs nucleophilically activate the silicon reagents to promote the trifluoromethylation and cyanosilylation. Advantageously, reactivity of NHCs can be tuned by altering the central heterocyclic core and the substituents on the nitrogen. Therefore, NHCs are promising candidates for the catalyst that can regulate the generation rate of difluorocarbene from TFDA.

Our preliminary results have revealed that treatment of cyclic ketone $\mathbf{8 3}$ with TFDA in the presence of 1,3-bis(2,4,6-trimethylphenyl)imidazolinium chloride (IMes $\cdot \mathrm{HCl}, \mathrm{NHC}$ precursor) and sodium carbonate affords difluoromethyl ether $\mathbf{8 5}$ in 74% yield without formation of cyclopropane (eq. 36). ${ }^{[41]}$ This difluoromethylation of ketone $\mathbf{8 3}$ can be explained by the proposed mechanism shown in Scheme 1. 1,3-Dimesitylimidazolylidene (IMes), generated in situ from $\mathrm{IMes} \cdot \mathrm{HCl}$ and sodium carbonate, attacks the silicon atom of TFDA. Decomposition of TFDA generates the key intermediate, difluorocarbene accompanied by formation of $\mathrm{CO}_{2}, \mathrm{SO}_{2}$, and fluoride ion. Difluorocarbene thus generated electrophilically gives oxycarbenium salt $\mathbf{8 4}$, followed by H -shift, to afford the product $\mathbf{8 5}$. The formed silylimidazolium salt $\mathbf{8 6}$ undergoes desilylation with the released fluoride ion to regenerate free IMes.

Scheme 1

In chapter 2, I describe the organocatalyzed syntheses of difluoromethyl imidates and difluoromethoxypyridines. Generation of free difluorocarbene from TFDA under nearly neutral conditions was accomplished by using organocatalysts, NHCs to realize the O-selective difluoromethylation of amides (eq. 37).

Transition metal carbene complexes are established in organic synthesis as shown below. Treatment of alkene $\mathbf{8 7}$ with diazo compound $\mathbf{8 8}$ in the presence of $1 \mathrm{~mol} \%$ rhodium(II) carboxylate affords cyclopropane 89 in 94% yield (cyclopropanation, eq. 38). ${ }^{[42]}$ Diazo compound 91 reacts
with rhodium(II) dimer catalyst 90 to afford lactam 93 in 100\% yield via rhodium(II) carbene complex 92 (C-H activation, eq. 39). ${ }^{[43]}$ Diene 95 undergoes ring-closing metathesis in the presence of ruthenium(II) carbene complex 94 to afford oxacyclohexene 96 in 90% yield (eq. 40). ${ }^{[44]}$ On the basis of these achievement, transition metal difluorocarbene complexes are promising intermediates for catalytic synthesis of difloromethylene compounds.

Despite of their potential utility in organic synthesis, two issues are remained unsolved. First, only a limited number of preparations of transition metal difluorocarbene complexes are known. Ruthenium(0) complex 97 reacts with bis(trifluoromethyl)cadmium(II) to afford ruthenium(0) difluorocarbene complex 99 via elimination of trifluoromethylcadmium(II) fluoride from ruthenium-cadmium binuclear complex 98 (eq. 41). ${ }^{[45 a]}$ Treatment of rhodium(I) fluoride $\mathbf{1 0 0}$ with trimethyl(trifluoromethyl)silane affords rhodium(I) difluorocarbene complex $\mathbf{1 0 2}$ in 85% yield via α-fluorine elimination from rhodium(I) complex 101 (eq. 42). ${ }^{[45 b]}$ Ruthenium(II) carbene complex 103 undergoes olefin metathesis with difluoroethene to afford ruthenium(II) difluorocarbene complex 104 in 86% yield (eq. 43). ${ }^{[45 c]}$ In addition to these difluorocarbene complexes, 13 complexes were isolated and 3 complexes were spectroscopically observed (Figure 3,4). ${ }^{[45,46]}$ However, preparations of difluorocarbene complexes which are suitable especially for catalytic systems are still severely limited.

97
98
99

Figure 3. Isolated Difluorocarbene Complexes

Figure 4. Observed Difluorocarbene Complexes

Second, only two applications of difluorocarbene complexes in organic synthesis are reported. In the presence of $5 \mathrm{~mol} \%$ of ruthenium(II) difluorocarbene complex 104, cyclooctadiene undergoes ring-opening metathesis polymerization (ROMP) to produce polymer $\mathbf{1 0 5}$ in 92% yield (eq. 44), which the difluorocarbene complex is used as an initiator and not regenerated. ${ }^{[45 c]}$ Cross olefin metathesis of tetrafluoroethene with vinyl ether $\mathbf{1 0 7}$ proceeds under catalytsis by $10 \mathrm{~mol} \%$ of ruthenium(II) carbene complex 106, which affords difluorovinyl ether 108 in 64% yield (eq. 45). ${ }^{[47]}$

105 92\%

In chapter 3, I describe the regioselective syntheses of α, α - and β, β-difluorinated cyclopentanone derivatives, depending on two unprecedented catalytic systems. Namely, a pincer-type $\mathrm{Ni}(\mathrm{II})$ catalyst in combination with TFDA afforded 5,5-difluorocyclopent-1-en-1-yl silyl ethers (Scheme 2a). A $\mathrm{Cu}(\mathrm{I})$-phenanthroline catalyst in combination with sodium bromodifluoroacetate afforded 4,4-difluorocyclopent-1-en-1-yl silyl ethers (Scheme 2b). The generation of the key $\mathrm{Ni}(\mathrm{II})$ - and $\mathrm{Cu}(\mathrm{I})$-difluorocarbene complexes were supported by the observation of their aminolysis products by HRMS analysis. These achivements will contribute to new chemistry of difluorocarbene complexes as well as synthesis of difluoromethylene compounds.

Scheme 2

Reference

[1] Kiss, L. E.; Kövesdi, I.; Rábai, J. J. Fluorine Chem. 2001, 108, 95.
[2] (a) Brachi, I.; Pusino, A.; Gessa, C.; Bollag, J.-M. J. Agric. Food. Chem. 2000, 48, 2565. (b) Fäh, C.; Hardegger, L. A.; Baitsch, L.; Schweizer, W. B.; Meyer, S.; Bur, D.; Diederich, F. Org. Biomol. Chem. 2009, 7, 3947. (c) Takahashi, S.; Domon, Y.; Kitano, Y.; Shinozuka, T. WO 2014/142221 A1, 2014.
[3] Rozen, S.; Filler, R. Tetrahedron 1985, 41, 1110.
[4] Zajc, B.; Zupan, M. J. Org. Chem. 1982, 47, 573.
[5] Differding, E.; Rüegg, G. M.; Lang, R. W. Tetrahedron Lett. 1991, 32, 1779.
[6] Middleton, W. J. J. Org. Chem. 1975, 40, 574.
[7] Kuroboshi, M.; Hiyama, T. Synlett 1991, 909.
[8] Miller, T. G.; Thanassi, J. W. J. Org. Chem. 1960, 25, 2009.
[9] Pracash, G. K. S.; Weber, C.; Chacko, S.; Olah, G. A. Org. Lett. 2007, 9, 1863.
[10] Rico, I.; Cantacuzene, D.; Wakselman, C. J. Chem. Soc., Perkin trans. 1 1982, 1063.
[11] Gonzalez, J.; Foti, C. J.; Elsheimer, S. J. Org. Chem. 1991, 56, 4322.
[12] Yoshida, M.; Morinaga, Y.; Ueda, M.; Kamigata, N.; Iyoda, M. Chem. Lett. 1992, 21, 227.
[13] Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 5524.
[14] Prakash, G. K. S.; Ganesh, S. K.; Jones, J.-P.; Kulkarni, A.; Masood, K.; Swaheck, J. K.; Olah, G. A. Angew. Chem., Int. Ed. 2012, 51, 12090.
[15] Naae, D. G.; Burton, D. J. Synth. Commun. 1973, 3, 197.
[16] Lefebvre, O.; Brigaud, T.; Portella, C. Tetrahedron 1998, 54, 5939.
[17] (a) Obayashi, M.; Ito, E.; Matsui, K.; Kondo, K. Tetrahedron Lett. 1982, 23, 2323. (b) Berkowitz, D. B.; Sloss, D. G. J. Org. Chem. 1995, 60, 7047. (c) Pignard, S.; Lopin, C.; Gouhier, G.; Piettre, S. R. J. Org. Chem. 2006, 71, 31.
[18] Okano, T.; Takakura, N.; Nakano, Y.; Okajima, A.; Eguchi, S. Tetrahedron 1995, 51, 1903.
[19] Kitagawa, O.; Miura, A.; Kobayashi, Y. Taguchi, T. Chem. Lett. 1990, 19, 1011.
[20] Hallinan, E. A.; Fried, J. Tetrahedron Lett. 1984, 25, 2301.
[21] Fujikawa, K.; Fujioka, Y.; Kobayashi, A.; Amii, H. Org. Lett. 2011, 13, 5560.
[22] (a) Ichikawa, J.; Sonoda, T.; Kobayashi, H. Tetrahedron Lett. 1989, 30, 1641. (b) Ichikawa, J.; Sonoda, T.; Kobayashi, H. Tetrahedron Lett. 1989, 30, 6379. (c) Ichikawa, J.; Sonoda, T.; Kobayashi, H. Tetrahedron Lett. 1989, 30, 5437.
[23] Yokota, M.; Fuchibe, K.; Ueda, M.; Mayumi, Y.; Ichikawa, J. Org. Lett. 2009, 11, 3994.
[24] Fujita, T.; Ichitsuka, T.; Fuchibe, K.; Ichikawa, J. Chem. Lett. 2011, 40, 986.
[25] Hiyama, T.; Obayashi, M.; Sawahata, M. Tetrahedron Lett. 1983, 24, 4113.
[26] Unpublished result.
[27] Butt, A. H.; Kariuki, B. M.; Percy, J. M.; Spencer, N. S. Chem. Commun. 2002, 682.
[28] Lang, R. W.; Schaub, B. Tetrahedron Lett. 1988, 29, 2943.
[29] (a) Brahms, D. L. S.; Dailey, W. P. Chem. Rev. 1996, 96, 1585. (b) Ni, C.; Hu, J. Synthesis 2014, 46, 842.
[30] Knox, L. H.; Velarge, E.; Berger, S.; Cuadriello, D.; Landis, P. W.; Cross, A. D. J. Am. Chem. Soc. 1963, 85, 1851.
[31] Oshiro, K.; Morimoto, Y.; Amii, H. Synthesis 2010, 2080.
[32] Brase, W. R.; Cripps, H. N.; Bottonley, C. G.; Farlow, M. W.; Krespan, C. G. J. Org. Chem. 1965, 30, 4188.
[33] Seyferth, D.; Dertouzos, H.; Suzuki, R.; Mui, J. Y. P. J. Org. Chem. 1967, 32, 2980.
[34] Seyferth, D.; Hopper, S. H.; Darragh, K. V. J. Am. Chem. Soc. 1969, 91, 6536.
[35] (a) Tian, F.; Kruger, N.; Bautista, O.; Duan, J.-X.; Li, A.-R.; Dolbier, W. R., Jr. Org. Lett. 2000, 2, 563. (b) Dolbier, W. R., Jr.; Tian, F.; Duan, J.; Li, A.-R.; Ait-Mohand, S.; Bautista, O.; Buathong, S.; Baker, J. M.; Crawford, J.; Anselme, P.; Cai, X. H.; Modzelewska, A.; Koroniak, H.; Battiste, M. A.; Chen, Q. J. Fluorine Chem. 2004, 125, 459.
[36] Cai, X.; Zhai, Y.; Ghiviriga, I.; Abboud, K. A.; Dolbier, W. R., Jr. J. Org. Chem. 2004, 69, 4210.
[37] (a) Nolan, S. P. (Ed.), N-Heterocyclic Carbenes in Synthesis, Wiley-VCH, Weinheim, 2006. (b) Marion, N.; Díez-Gonzá lez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988. (c) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606.
[38] (a) Grasa, G. A.; Güveli, T.; Singh, R.; Nolan, S. P. J. Org. Chem. 2003, 68, 2812. (b) Liu, R. Li, Y.-K.; Yue, L.; Li, B.-J.; Chen, Y.-C.; Wu, Y.; Ding, L.-S. Org. Lett. 2006, 8, 1521. (c) Takikawa, H.; Suzuki, K. Org. Lett. 2007, 9, 2713. (d) Kayaki, Y.; Yamamoto, M.; Ikariya, T. Angew. Chem., Int. Ed. 2009, 48, 4194. (e) O’Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 7712.
[39] Song, J. J.; Tan, Z.; Reeves, J. T.; Gallou, F.; Yee, N. K.; Senanayake, C. H. Org. Lett. 2005, 7, 2193.
[40] Song, J. J.; Gallou, F.; reeves, J. T.; Tan, Z.; Yee, N. K.; Senanayake, C. H. J. Org. Chem. 2006, 71, 1273.
[41] (a) Fuchibe, K.; Koseki, Y.; Sasagawa, H.; Ichikawa, J. Chem. Lett. 2011, 40, 1189. (b) Fuchibe, K.; Koseki, Y.; Aono, T.; Sasagawa, H.; Ichikawa, J. J. Fluorine Chem. 2012, 133, 52.
[42] Doyle, M. P.; Leusen, D. V.; Tamblyn, W. H. Synthesis 1981, 787.
[43] Miah, S.; Slawin, A. M. Z.; Moody, C. J.; Sheehan, S. M.; Marino, J. P., Jr.; Semones, M. A.; Padwa, A.; Richards, I. C. Tetrahedron 1996, 52, 2489.
[44] Wildemann, H.; Dünkelmann, P.; Müller, M.; Schmidt, B. J. Org. Chem. 2003, 68, 799.
[45] (a) Clark, G. R.; Hoskins, S. V.; Jones, T. C.; Roper, W. R. J. Chem. Soc., Chem. Commun. 1983, 719. (b) Goodman, J.; Grushin, V. V.; Larichev, R. B.; Macgregor, S. A.; Marshall, W. J.; Roe, D. C. J. Am. Chem. Soc. 2009, 131, 4236. (c) Truka, T. M.; Day, M. W.; Grubbs, R. H. Angew. Chem., Int. Ed. 2001, 40, 3441. (d) Koola, J. D.; Roddick, D. M. Organometallics 1991, 10, 591. (e) Crark, G. R.; Hoskins, S. V; Roper, W. R. J. Organomet. Chem. 1982, 234, C9. (f) Huang, D.; Koren, P. R.; Folting, K.; Davidson, E. R.; Caulton, K. G. J. Am. Chem. Soc. 2000, 122, 8916. (g) Clark, G. R.; Greene, T. R.; Roper, W. R. Aust. J. Chem. 1986, 39, 1315. (h) Hughes, R. P.; Laritchev, R. B.; Yuan, J.; Golen, J. A.; Rucker, A. N.; Rheingold, A. L. J. Am. Chem. Soc. 2005, 127, 15020. (i) Btothers, P. J.; Burrell, A. K.; Clark, G. R.; Rickard, C. E. F.; Roper, W. R. J. Organomet. Chem. 1990, 394, 615. (j) Martinez-Salvador, A.; Menjon, B.; Fornies, J.; Martin, A.; Uson, I. Angew. Chem., Int. Ed. 2010, 49, 4286. (k) Harrison, D. J.; Gorelsky, S. I.; Lee, G. M.; Korobkov, I.; Baker, R. T. Organometallics 2013, 32, 12. (1) Crespi, A. M.; Shriver, D. F. Organometallics 1985, 4, 1830.
[46] (a) Reger, D. L.; Dukes, M. D. J. Organomet. Chem. 1978, 153, 67. (b) Richmond, T. G.; Cresoi, A. M.; Shriver, D. F. Organometallics 1984, 3, 314.
[47] Takahira, Y.; Morizawa, Y. J. Am. Chem. Soc. 2015, 137, 7031.

Chapter 2

O-Selective Difluoromethylation of Amides with Free Difluorocarbene

2.1. Introduction

Difuoromethyl imidates are important structural motifs of agrochemicals (Fig. 5,6). ${ }^{[1]}$ For example, "Primisulfuron-methyl" and 2-difluoromethoxypyridine 109, each possessing a difluoromethyl imidate moiety in their substructures, function as herbicides.

Figure 5
furon-methyl (herbicides)
Figure 6

Difluoromethyl imidates have been synthesized by electrophilic O-difluoromethylation of secondary amides 110 with difluorocarbene (eq. 46). ${ }^{[2]}$ Namely, when secondary amide $\mathbf{1 1 0}$ was treated with chlorodifluoromethane in the presence of quartenary ammonium salt under alkaline conditions (NaOH), O-difluoromethylated product (difluoromethyl imidate, 112) was obtained in 19% yield, accompanied by formation of the undesired N-difluoromethylated product 113 in 26% yield. Difluoromethoxypyridines are also synthesized by difluoromethylation of pyridones with difluorocarbene. Treatment of 2-pyridone $\mathbf{1 1 4}$ with sodium chlorodifluoroacetate affords O-difluoromethylated product 115 and N -difluoromethylated product 116 in 72% and 8% yields, respectively (eq. 47). ${ }^{[3]}$

Concerning synthesis of difluoromethyl imidates and difluoromethoxypyridines, there are two issues to address. The first one is formation of a regioisomeric mixture of O - and N-difluoromethylated products 112 and 113. The strongly basic conditions, required for the generation of difluorocarbene, cause deprotonation of the amides (eq. 46). The resulting, highly nucleophilic amidate ion $\mathbf{1 1 1}$ allows the formation of not only O-difluoromethylation product $\mathbf{1 1 2}$ but also N-difluoromethylation product 113. Second, the yields in difluoromethylation of amides are generally poor, which is presumably due to consumption of difluorocarbene by dimerization (eq. 48).

$$
\begin{equation*}
2: \mathrm{CF}_{2} \longrightarrow \text { C } \tag{48}
\end{equation*}
$$

In order to achieve the high regioselectivity, we adopted the NHC-catalyzed generation of difluorocarbene, which might be conducted under nearly neutral conditions (eq. 36). In general, amide alkylation with alkyl halides under basic conditions proceeds preferentially on the nitrogen atom. Thus, treatment of amide $\mathbf{1 1 7}$ with methyl iodide in the presence of sodium hydride (1.5 eq) affords a mixture of methyl imidate $\mathbf{1 1 9}$ and N-methylamide $\mathbf{1 2 0}$ via amidate ion $\mathbf{1 1 8}$ in $\mathbf{4 3} \%$ and 53% yields, respectively (eq. 49). ${ }^{[4]}$ On the other hand, under neutral conditions amides undergo alkylation with alkyl halide on the oxygen atom, because the more electronegative oxygen center is more nucleophilic than the nitrogen center. For example, amide $\mathbf{1 2 1}$ reacts with methyl iodide in the presence of silver(I) oxide (2.0 eq) to afford methyl imidate $\mathbf{1 2 3}$ exclusively in 72% yield via iminium salt 122 (eq. 50). ${ }^{[5]}$ High selectivity would be also obtained by performing difluoromethylation of amides with difluorocarbene under nonbasic conditions.

Organocatalyzed generation of difluorocarbene would have another beneficial effect on the control of the generation rate of difluorocarbene, leading to the high yields of the difluoromethylated products by suppressing tetrafluoroethene formation. Reactivity of NHC can be tuned by altering the central heterocyclic core and the substituents on the nitrogen. ${ }^{[6]}$ For instance, 1,3-dimesitylimidazolinylidene (SIMes) has a large Mayr's nucleophilicity parameter N (23.35), and 1,3-dimesitylimidazolylidene (IMes) has a medium N value (21.72). Triazolylidene 126 has a smaller N value (14.07, Scheme 3). ${ }^{[66]}$ Nucleophilic benzylation of these NHCs with benzyl bromide $\mathbf{1 2 4}$ occurs to afford 125 in 86% (SIMes), 75% (IMes), and 60% (126) yields, respectively. ${ }^{[6 c]}$ In these reactions, NHC with larger N value affords the product in higher yield.

Scheme 3

Choosing suitable the NHC-catalyzed generation of difluorocarbene, I expected that catalytic and O-selective difluoromethylation of secondary amides would be facilitated, leading to the selective synthesis of difluoromethyl imidates and difluoromethoxypyridines. Amides $\mathbf{1 2 8}$ reacted with TFDA (2.0 equive) in the presence of $5 \mathrm{~mol} \%$ of triazolium salt $\mathbf{1 2 7}$ and $20 \mathrm{~mol} \%$ of sodium carbonate to afford difluoromethyl imidates $\mathbf{1 2 9}$ selectively in good to high yield (eq. 51). The details of the synthetic method are described in the following sections.

2.2. Synthesis of Difluoromethyl Imidates

2.2.1 Optimization of Reaction Conditions

Secondary amide 128a was selected as a model substrate for optimization of the desired O-difluoromethylation. A toluene solution of amide 128a was treated with TFDA (2 equiv) in the presence of a catalyst ($5 \mathrm{~mol} \%$) for TFDA and heated to $80^{\circ} \mathrm{C}$. The yields of the produced difluoromethyl imidate 129a and the undesired N-difluoromethylated product 130a, if generated, were determined by ${ }^{19} \mathrm{~F}$ NMR spectroscopy. The results of the examination were summarized in Table 1.

Treatment of amide 128a with TFDA in the presence of SIMes $\cdot \mathrm{HCl}$ and sodium carbonate (20 $\mathrm{mol} \%$) afforded the O-difluoromethylated product (difluoromethyl imidate) 129a in 56% yield (Entry 1). The reaction site (O vs. N) of the difluoromethylation was determined by ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectroscopies. The isolated product exhibited a ${ }^{13} \mathrm{C}$ NMR signal at $\delta 157.3$ and a ${ }^{19} \mathrm{~F}$ NMR signal at $71.0(\mathrm{~d}, J=72 \mathrm{~Hz}, 2 \mathrm{~F})$. Meanwhile, imidate $\mathbf{1 2 9 b}$ and amide 130b in literatures ${ }^{[2]}$ exhibit signals in their ${ }^{13} \mathrm{C}$ NMR spectra at $\delta 157.2$ and $\delta 171.2$ and in their ${ }^{19} \mathrm{~F}$ NMR spectra at δ $76.2(\mathrm{~d}, J=72 \mathrm{~Hz}, 2 \mathrm{~F})$ and $\delta 65.4(\mathrm{~d}, J=61 \mathrm{~Hz}, 2 \mathrm{~F})$, respectively (Figure 7). On the basis of the comparison of these data, I concluded that O-difluoromethylation, and not N-difluoromethylation, occurred to give imidate 129a. Thus, as expected, N-difluoromethylation was effectively suppressed.

The use of other imidazolium salts ($\mathrm{IMes} \cdot \mathrm{HCl}, \mathrm{IPr} \cdot \mathrm{HCl}$, and thiazolium salt 131) also resulted in formation of 129a in moderate yields (Entries 2-4). Amang the salts examined, triazolium salt 127 was found to be most suitable to afford 80% yield of 129a (Entry 5). On the other hand, fluoride ion, the activator originally employed by Dolbier at $105-120{ }^{\circ} \mathrm{C},{ }^{[7]}$ gave none of $\mathbf{1 2 9 a}$ at $80{ }^{\circ} \mathrm{C}$ (Entry 6). The use of bromide ion (sodium bromide or tetrabutylammonium bromide) afforded 129a only in low yields (0% and 46%, Entries 7,8 , respectively).

Difluoromethyl imidate $\mathbf{1 2 9}$ a was obtained as a single diastereomer, which was confirmed by NMR spectroscopy. This imidate 129a was probably thermodynamic stable E-isomer. In general, the E-isomer of imidate is stabler than the Z-isomer (Table 2), ${ }^{[8]}$ because dipole moments of E-isomer $(\mathrm{MeN}=\mathrm{C}(\mathrm{OMe}) \mathrm{Me}, 1.14 \mathrm{D})$ is lower than that of Z-isomer $(2.40 \mathrm{D})$. Imidates having more bulky groups increase the ratio of Z-isomer for steric reasons. It is become activation barriers to E Z interconversion of imidates are rather low $15.9-20.8 \mathrm{kcal} / \mathrm{mol}$.

a: ${ }^{19} \mathrm{~F}$ NMR yield based on $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} p-\mathrm{CH}_{3}\right)_{2}$. b : Isolated yield.

29b (Observed)	129b (Reported) ${ }^{[2]}$	130b (Reported) ${ }^{[2]}$
57.3	$\delta_{C}=157.2$	$\delta_{C}=171.2$
1.0 (d, J = $72 \mathrm{~Hz}, 2 \mathrm{~F}$)	$\delta_{\mathrm{F}}=76.2(\mathrm{~d}, \mathrm{~J}=72 \mathrm{~Hz}, 2 \mathrm{~F})$	$\delta_{\mathrm{F}}=65.4(\mathrm{~d}, \mathrm{~J}=61 \mathrm{~Hz}, 2 \mathrm{~F})$

Figure 7

Table 2

R^{1}	R^{2}	R^{3}	E / Z	$\Delta G^{\ddagger} / \mathrm{kcal} / \mathrm{mol}{ }^{a}$
H	Me	t-Bu	$100: 0$	-
Me	Me	Me	$100: 0$	-
Me	Ph	Me	$69: 31$	19.8
Me	p-Tol	Me	$69: 31$	20.4
t-Bu	Me	Me	$87: 13$	15.9
Ph	Me	Me	$89: 11$	18.9
Ph	Me	i-Pr	$82: 18$	18.7

a: Activation barriers to $E-Z$ interconversion of imidates.

It should be noted that the best catalyst depends on structures of substrates to some extent (Table 3). Namely, among SIMes $\cdot \mathrm{HCl}$, $\mathrm{IMes} \cdot \mathrm{HCl}$ and triazolium salt 127, SIMes $\cdot \mathrm{HCl}$ was the most suitable for difluoromethylation of acetamide ($\mathrm{R}^{1}=\mathrm{Me}$, Entries 2 and 3). Decomposition of TFDA was initiated by the nucleophilic attack of free NHC generated in situ. As illustrated in Section 2.1, Scheme 3, SIMes has the highest Mayer's N value, suggesting most nucleophilic among the examined catalysts. It is likely that the nucleophilic SIMes realized the facile generation of difluorocarbene, leading to a high yield of the product. Undesired carbene dimerization did not matter because acetamide 128b is nucleophilic enough to capture difluorocarbene guickly. In contrast, aromatic amide 128a in Table 1 is less nucleophilic than $\mathbf{1 2 8 b} \mathbf{d}$,d and less reactive to difluorocarbene. Triazolylidene with low N value slowly generates difluorocarbene and prevents undesired loss of carbene by dimerization. Fortunately, triazolylidene is found to be suitable for difluoromethylation of other aliphatic amides such as $\mathbf{1 2 8 h}$. As a result of Table 1 and 3, I adopted triazolium salt $\mathbf{1 2 7}$ as a catalyst.
Cable 3

[^0]Effects of solvents were also examined, using $5 \mathrm{~mol} \%$ of $\mathrm{SIMes} \cdot \mathrm{HCl}$ as a catalyst (Table 4). Conducting the reaction in toluene afforded 129a in 56% yield (Entry 1). Chlorinated and fluorinated solvents (Entries 2-6 and Entries 7,8, respectively) gave inferior results. Reaction in ethereal solvents (1,4-dioxane or diglyme) did not work well, either (Entries 9 and 10).

a: ${ }^{19} \mathrm{~F}$ NMR yield based on $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} p-\mathrm{CH}_{3}\right)_{2}$. b : Table 1, Entry 1.

Bases for the in situ-generation of NHC catalyst were also optimized (Table 5). O-Difluoromethylation of amide 128a using sodium carbonate as a base afforded difluoromethyl imidate 129a in 52% yield (Entry 1). The use of potassium carbonate afforded 129a in slightly decreased yield (50%, Entry 2). Potassium phosphate and potassium tert-butoxide also afforded 129a in 48% and 49% yields, respectively (Entries 3 and 4). When the reaction was conducted with sodium hydride, 48% yield of 129a was obtained (Entry 5). Thus, Sodium carbonate was found to be a sutable base.

a: ${ }^{19} \mathrm{~F}$ NMR yield based on $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} p-\mathrm{CH}_{3}\right)_{2}$. b: Table 4, Entry 5.

2.2.2. Substrate Scope of Difluoromethyl Imidates

Various difluoromethyl imidates were efficiently synthesized by the triazolium salt 127-based catalytic system (Table 6). Namely, not only benzoic acid-derived amides but also aliphatic acid-derived amides afforded the corresponding imidates in high yields as single diastereomers. Amides 128a-h gave imidates 129a-h in $62-84 \%$ isolated yields. Electron-donating and -withdrawing groups on the N-aryl groups did not affect the reaction (Entries 3-6). In these cases, partial decomposition of the products during purification by column chromatography was observed and ${ }^{19}$ F NMR analysis of crude mixtures suggested that $\mathbf{1 2 9} \mathbf{c}-\mathbf{f}$ were formed in $69-83 \%$ yields. It must be emphasized that the undesired N-difluoromethylated products were not observed at all by ${ }^{19} \mathrm{~F}$ NMR analysis of the crude mixtures.
Table 6

[^1]This difluoromethylation method was successfully applied to the synthesis of 2-difluoromethoxypyridines (eq. 52). When pyridone $\mathbf{1 3 2}$ was subjected to the TFDA/NHC system, the desired 133 was obtained in 60% yield, albeit accompanied by a 9% yield of N-difluoromethylated product 134. The sequential difluoromethylation-dehydrogenation process is also effective for difluoromethoxy heteroarene synthesis: 2-difluoromethoxyquinoline $\mathbf{1 3 6}$ was synthesized from dihydroquinolinone 135 in 92% yield in a one-pot operation (eq. 53).

2.3. Mechanistic Considerations on \boldsymbol{O}-Selective Difluoromethylation of Amides

The O-difluoromethylation of secondary amide $\mathbf{1 2 8}$ can be explained by the proposed mechanism shown in Scheme 4. Triazolylidene 137, generated in situ from triazolium salt 127 and sodium carbonate, attacks the silicon atom of TFDA. Decomposition of TFDA generats the key intermediate, difluorocarbene, accompanied by formation of $\mathrm{CO}_{2}, \mathrm{SO}_{2}$, and a fluoride ion. Electrophilic difluorocarbene thus generated is attacked by the amide oxygen to give iminium 139, which in turn undergoes H-shift to afford the product 129 (eq. 54). The formed silyltriazolium salt $\mathbf{1 3 8}$ is desilylated with the released fluoride ion to regenerate free triazolylidene 137.

Scheme 4

To elucidate the O-selectivity observed under the nearly neutral conditions, theoretical calculations were performed (DFT, B3LYP/6-31G*) by using N-methylated amide. The neutral amide, in both Z and E forms (Z form is more stable), has its HOMO orbital mainly on its O atom (Figure 8). In addition, the O atom of the neutral amide is more negatively charged (electrostatic, Z : $-0.49 ; E:-0.52$), compared to the N atom ($Z:-0.38 ; E:-0.46$). These results can explain the O-selectivity under neutral conditions, which were realized by the organocatalytic system. It should be mentioned that HOMO of the corresponding amidate ion, in both Z and E forms, locates both on its O and N atoms. The charge values of the $O(Z:-0.71 ; E:-0.71)$ and the $N(Z:-0.72 ; E:-0.78)$ atoms of the amidate ion are similar. These results rationalize the formation of a mixture of O - and N -difluoromethylated products under strongly basic conditions as described in eq. 46.

Figure 8. HOMO Orbital and Electrostatic Charge Values (Oxygen and Nitrogen) of Amide

Figure 9. HOMO Orbital and Electrostatic Charge Values (Oxygen and Nitrogen) of Amidate

2.4. Conclusion

In summary, I have developed a synthetic method for difluoromethyl imidates and difluoromethoxypyridines. The NHC-catalyzed generation of difluorocarbene under nearly neutral conditions led to an efficient, regioselective O-difluoromethylation of secondary amides. Difluoromethoxypyridines were also synthesized in high yields by applying this method to lactams.

2.5. Experimental Section

2.5.1. General

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker Avance 500. Chemical shift values are given in ppm relative to internal $\mathrm{Me}_{4} \mathrm{Si}$ (for ${ }^{1} \mathrm{H}$ NMR: $\delta=0.00 \mathrm{ppm}$), CDCl_{3} (for ${ }^{13} \mathrm{C}$ NMR: $\delta=77.0 \mathrm{ppm}$), and $\mathrm{C}_{6} \mathrm{~F}_{6}$ (for ${ }^{19} \mathrm{~F}$ NMR: $\delta=0.00 \mathrm{ppm}$). IR spectra were recorded on a Horiba FT-300S spectrometer by the attenuated total reflectance (ATR) method. Mass spectra were measured on a JEOL JMS-T100GCV. Elemental analyses were carried out at the Elemental Analysis Laboratory, Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba. All reactions were carried out under argon. Column chromatography was performed on silica gel (Kanto Chemical Co. Inc., Silica Gel 60). Toluene was purified by a solvent-purification system (GlassContour) equipped with columns of activated alumina and supported-copper catalyst (Q-5) before use. All solvents were distilled before used. Amides $\mathbf{1 2 8 a}-\mathbf{f}, \mathbf{1 3 5}$ were purchased and recrystallized before used. Amides $\mathbf{1 2 8 g}, \mathrm{h}$ were prepared according to the literatures. ${ }^{[9]}$ SIMes $\cdot \mathrm{HCl}$, IMes $\cdot \mathrm{HCl}, \mathrm{IPr} \cdot \mathrm{HCl}$ were prepared according to the literatures. ${ }^{[10]}$ Triazolium salt $\mathbf{1 2 7}$ and thiazolium salt 131 were purchased and were not purification before use. Trimethylsilyl 2,2-difluoro-2-fluorosulfonylacetate (TFDA) was prepared according to the literature. ${ }^{[76]}$ 1,1,1,3,3,3-hexafluoro-2,2-di(p-tolyl)propane (internal standard for ${ }^{19} \mathrm{~F}$ NMR) was purchased from Tokyo Chemical Industry Co., Ltd.

2.5.2. Synthesis of dfluoromethyl imidates and difluoromethoxypyridines

(A) Typical procedure for the synthesis of difluoromethyl imidates 129a-h, difluoromethoxypyridine 133.

To a toluene solution (1.5 mL) of $127(3.4 \mathrm{mg}, 0.0098 \mathrm{mmol})$, sodium carbonate $(4.2 \mathrm{mg}$, 0.040 mmol), and N-phenylcyclohexanecarboxamide $\mathbf{1 2 8 h}(39 \mathrm{mg}, 0.19 \mathrm{mmol})$ was added TFDA $(75 \mathrm{~mL}, 0.38 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred and heated at $80^{\circ} \mathrm{C}$ for 20 min . After cooling the resulting mixture to room temperature, aquaus NaOH was added to quench the reaction. Extraction with dichloromethane and purification by column chromatography (SiO_{2}, hexane: $\mathrm{AcOEt}=50: 1,0^{\circ} \mathrm{C}$) gave $\mathbf{1 2 9 h}(39 \mathrm{mg}, 81 \%$ yield $)$.
(B) Typical procedure for the synthesis of 2-difluoromethoxyquinoline (136)

To a toluene solution (2.0 mL) of $127(6.9 \mathrm{mg}, 0.0198 \mathrm{mmol})$, sodium carbonate $(8.5 \mathrm{mg}$, 0.080 mmol), and dihydroquinolinone $135(58 \mathrm{mg}, 0.39 \mathrm{mmol})$ was added TFDA ($154 \mathrm{~mL}, 0.78$ mmol) at room temperature. The reaction mixture was stirred and heated at $80^{\circ} \mathrm{C}$ for 20 min . After cooling the resulting mixture, 2,3-dichloro-5,6-dicyano-p-benzoquinon (DDQ, $87 \mathrm{mg}, 0.38 \mathrm{mmol}$) was added and heated at $100{ }^{\circ} \mathrm{C}$ for 50 min . After cooling the resulting mixture to room temperature, aquaus NaOH was added to quench the reaction. Extraction with dichloromethane and purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane: $\left.\mathrm{AcOEt}=50: 1,0^{\circ} \mathrm{C}\right)$ gave $\mathbf{1 3 6}(70 \mathrm{mg}, 92 \%$ yield).
(C) Spectral data of difluoromethyl imidates and difluoromethoxypyridines.

Difluoromethyl N-phenyl-1-phenylmethanimidate (129a)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.48\left(\mathrm{t}, J=72.8 \mathrm{~Hz},{ }^{1} \mathrm{H}\right.$, broad), $7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-$ $7.29(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 153.4 (broad), 146.0, 131.2, 129.5, 129.2, 128.2, 123.9, 120.9, 113.6 (t, $J=255 \mathrm{~Hz}$). ${ }^{19}$ FNMR (470 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=70.8$ (d, $J=73 \mathrm{~Hz}, 2 \mathrm{~F}$). IR (neat): $\boldsymbol{v}^{\sim}=2929,1687,1267,1113,912,744 \mathrm{~cm}^{-1}$. HRMS (70 eV, EI+): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{NO}\left([\mathrm{M}]^{+}\right):$247.0809; Found: 247.0812.

Difluoromethyl N-phenylethan-1-imidate (129b)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37(\mathrm{t}, J=72.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.3,146.3$, $129.2,124.1,120.5,113.0(\mathrm{t}, J=255 \mathrm{~Hz}), 15.6 .{ }^{19}$ FNMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=71.0(\mathrm{~d}, J=72 \mathrm{~Hz}$, 2F). IR (neat): $v^{\sim}=1701,1238,1105,1086,912 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~F}_{2} \mathrm{NO}\left([\mathrm{M}]^{+}\right): 185.0652$; found: 185.0653.

Difluoromethyl N-(p-tolyl)ethan-1-imidate (129c)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.36(\mathrm{t}, J=72.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.32(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.2,143.7,133.6,129.7$, 120.4, $113.0(\mathrm{t}, J=255 \mathrm{~Hz}), 20.8,15.5 .{ }^{19} \mathrm{FNMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=71.1(\mathrm{~d}, J=72 \mathrm{~Hz}, 2 \mathrm{~F})$. IR (neat): $v^{\sim}=2925,1699,1508,1230,1065 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{NO}$ ([M] ${ }^{+}$): 199.0809; Found: 199.0808.

Difluoromethyl N-(p-methoxyphenyl)ethan-1-imidate (129d)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.36(\mathrm{t}, J=72.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.79(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.4,156.4,139.5,121.6$, 114.4, $113.0(\mathrm{t}, J=255 \mathrm{~Hz}), 55.4,15.5 .{ }^{19} \mathrm{FNMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=70.6(\mathrm{~d}, J=72 \mathrm{~Hz}, 2 \mathrm{~F})$. IR (neat): $v^{\sim}=2956,1699,1506,1230,1103 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. For $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{NO}_{2}\left([\mathrm{M}]^{+}\right): 215.0758$; Found: 215.0760.

Difluoromethyl N-(p-fluorophenyl)ethan-1-imidate (129e)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34(\mathrm{t}, J=72.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{dd}, J=$ $4.0,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.7(\mathrm{~d}, J=242 \mathrm{~Hz}), 157.9$, $142.4(\mathrm{~d}, J=3 \mathrm{~Hz}), 121.9,115.4(\mathrm{~d}, J=23 \mathrm{~Hz}), 112.9(\mathrm{t}, J=255 \mathrm{~Hz}), 15.6 .{ }^{19}$ FNMR (470 MHz , CDCl_{3}): $\delta=70.5$ (d, $J=72 \mathrm{~Hz}, 2 \mathrm{~F}$), $42.0(\mathrm{tt}, J=8.5,4.0 \mathrm{~Hz}, 1 \mathrm{~F})$. IR (neat): $v^{\sim}=1705,1506,1240$, $1109,914 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}\left([\mathrm{M}]^{+}\right): ~ 203.0558$; found: 203.0553 .

Difluoromethyl N-(p-chlorophenyl)ethanimidate (129f)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33(\mathrm{t}, J=72.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.8,144.9,129.6,129.3,121.9,112.9(\mathrm{t}$, $J=256 \mathrm{~Hz}$), 15.6. ${ }^{19} \mathrm{FNMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=70.4$ (d, $J=72 \mathrm{~Hz}, 2 \mathrm{~F}$). IR (neat): $v^{\sim}=1703$, 1240, 1136, 1088, $914 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClF}_{2} \mathrm{NO}$ ([M] $]^{+}$): 219.0262; found: 219.0260.

Difluoromethyl N-phenyl-2-methylpropan-1-imidate (129g)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33(\mathrm{t}, J=72.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.72$ (septet, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.0,146.2,129.2,123.8,120.3,113.4(\mathrm{t}, J=254 \mathrm{~Hz}$, 28.6 , 19.2. ${ }^{19}$ FNMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=70.3$ (d, $J=73 \mathrm{~Hz}, 2 \mathrm{~F}$). IR (neat): $v^{\sim}=2978,1695,1244,1109$, $912 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~F}_{2} \mathrm{NO}\left([\mathrm{M}]^{+}\right): 213.0965$; Found: 213.0968.

Difluoromethyl N-pheny-1-cyclohexylmethanimidate (129h)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.31(\mathrm{t}, J=72.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.15-$ $1.23(\mathrm{~m}, 1 \mathrm{H}), 1.07-1.13(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.2,146.1,129.2,123.7$, $120.4,113.4(\mathrm{t}, J=254 \mathrm{~Hz}), 38.4,29.0,25.4,25.2 .{ }^{19} \mathrm{FNMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=70.5(\mathrm{~d}, J=73$ $\mathrm{Hz}, 2 \mathrm{~F}$). IR (neat): $v^{\sim}=2935,1697,1238,1124,912 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{NO}\left([\mathrm{M}]^{+}\right): 253.1278$; found: 253.1282.

2-Difluoromethoxypyridine (133)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.20(\mathrm{dd}, J=5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=$ $73.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{ddd}, J=7.5,5.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=159.1,147.0,140.0,120.0,114.0(\mathrm{t}, J=255 \mathrm{~Hz}), 111.5 .{ }^{19} \mathrm{FNMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=72.8(\mathrm{~d}, J=74 \mathrm{~Hz}, 2 \mathrm{~F})$. IR (neat): $v^{\sim}=2925,1261,1219,1099,773 \mathrm{~cm}^{-1} . \mathrm{HRMS}(70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}_{2} \mathrm{NO}\left([\mathrm{M}]^{+}\right)$: 145.0339; found: 145.0341.

2-Difluoromethoxyquinoline (136)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.13(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}, J=$ $7.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.74(\mathrm{t}, J=72.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68 (ddd, $J=7.7,7.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.48 (ddd, $J=7.7$, 7.7, 3.0 Hz, 1H), $7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.3,145.5,140.5$, $130.3,127.8,127.6,126.1,125.7,113.9(\mathrm{t}, J=255 \mathrm{~Hz}), 111.8 .{ }^{19} \mathrm{FNMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 72.1 (d, $J=73 \mathrm{~Hz}, 2 \mathrm{~F}$). IR (neat): $v^{\sim}=1604,1311,1232,1065,912 \mathrm{~cm}^{-1} . \mathrm{HRMS}(70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~F}_{2} \mathrm{NO}\left([\mathrm{M}]^{+}\right): 195.0496$; found: 195.0496.

2.6. Reference

[1] (a) Brachi, I.; Pusino, A.; Gessa, C.; Bollag, J.-M. J. Agric. Food. Chem. 2000, 48, 2565. (b)Selby, T. P.; Dei, W. US5389600, 1995.
[2] Nawrot, E.; Jończyk, A. J. Fluorine Chem. 2006, 127, 943.
[3] Ando, M.; Wada, T.; Sato, N. Org. Lett. 2006, 8, 3805.
[4] Ototake, N.; Nakamura, M.; Dobashi, Y.; Fukaya, H.; Kitagawa, O. Chem. Eur. J. 2009, 15, 5090.
[5] Wenkert, E.; Bhattacharyya, N. K.; Reid, T. L. Stevens, T. E. J. Am. Chem. Soc. 1956, 78, 797.
[6] (a) Melaimi, M.; Soleilhavoup, M.; Bertrand, G. Angew. Chem., Int. Ed. 2010, 49, 8810. (b) Maji, B.; Breugst, M.; Mayr, H. Angew. Chem., Int. Ed. 2011, 50, 6915. (c) Maji, B.; Horn, M.; Mayr, H. Angew. Chem., Int. Ed. 2012, 51, 6231.
[7] (a) Tian, F.; Kruger, N.; Bautista, O.; Duan, J.-X.; Li, A.-R.; Dolbier, W. R., Jr. Org. Lett. 2000, 2, 563. (b) Dolbier, W. R., Jr.; Tian, F.; Duan, J.; Li, A.-R.; Ait-Mohand, S.; Bautista, O.; Buathong, S.; Baker, J. M.; Crawford, J.; Anselme, P.; Cai, X. H.; Modzelewska, A.; Koroniak, H.; Battiste, M. A.; Chen, Q. J. Fluorine Chem. 2004, 125, 459.
[8] (a) Ahlberg, P.; Alfassi, Z. B.; Boyd, G. V.; Busko-Oszczapowicz, I.; Frnarini, S.; Häfelinger, G.; Jaworski, J. S.; Kalinowski, M. K.; Kojima, S.; Krygowski, T. M.; Kuske, F. K. H.; Mikhailov, I. E.; Minkin, V. I.; Neilson, D. G. Oszczapowicz, J. Perin, C. L.; Pihlaja, K.; Shorter, J.; Swahn, L.; Wozniak, K.; Yamamoto, Y. The chemistry of amidines and imidates; Eds: Patai, S.; Rappoport, Z. John Wiley \& Sons: West Sussex, 1991. (b) Gonzalez, O. C.; Gallis, D. E.; Crist, D. R. J. Org. Chem. 1986, 51, 3266. (c) Meese, C. O.; Walter, W.; Berger, M. J. Am. Chem. Soc. 1974, 96, 2259. (c) Satterthwait, A. C.; Jencks, W. P. J. Am. Chem. Soc. 1974, 96, 7045. (d) Walter, W.; Meese, C. O. Chem. Ber. 1977, 110, 2463. (e) Parks, J. E.; Balch, A. L. J. Organomet. Chem. 1974, 71, 453.
[9] Ueda, S.; Nagasawa, H. J. Org. Chem. 2009, 74, 4272.
[10] (a) Arduengo, III, A. J.; Dias, H. V. R.; Harlow, L.; Kline, M. J. Am. Chem. Soc. 1992, 114, 5530. (b) Furuya, Y.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 11240.

Chapter 3

Regioselective Syntheses of gem-Difluorocyclopentanone Derivatives with Transition Metal Difluorocarbene Complexes

3.1. Introduction

Difluorocyclopentanones are important motifs of pharmaceuticals (Figure 10). ${ }^{[1]}$ For example, α-fluorocyclopentanone derivatives $\mathbf{1 4 0}$ and $\mathbf{1 4 1}$ have antimalarial and antileukemic effects, respectively. ${ }^{[1 a, b]} \beta$-Fluorocyclopentanone derivative $\mathbf{1 4 2}$ has an anti-bronchitis effect. ${ }^{[1 c]}$ Thus, regioselective synthesis of difluorocyclopentanones is of importance and has been required. These facts prompted me to achieve conduct regioselective synthesis of both α, α - and β, β-difluorocyclopentanone derivatives.

140 (antimalarial effect)

141 (antileukemic effect)

142 (anti-bronchitis effect)

Figure 10

To date, α, α-difluorocyclopentanone derivatives have been synthesized via two fluorine introductions: double-electrophilic fluorination of cyclopentanones ${ }^{[2]}$ and deoxygenative fluorination of alkoxy cyclopentanones followed by oxidation. ${ }^{[3]}$ For instance, treatment of lactone 143 with N-fluorobenzensulfonimide in the presence of N, N-bis(trimethylsilyl)amide and manganese(II) bromide at $-60{ }^{\circ} \mathrm{C}$ affords difluorolactone 144 in 57% yield (eq. 55). ${ }^{[2 a]}$ Cyclopentanone $\mathbf{1 4 5}$ is treated with DAST (2.2 equiv) to afford difluorocyclopentane $\mathbf{1 4 6}$ in 67% yield. The subsequent hydrolysis and oxidation provide α, α-difluorocyclopentanone (eq. 56). ${ }^{[1 \mathrm{a}]}$ These strategies involve considerable effort because they require the construction of the carbon skeleton and the introduction of fluorine. Thus, I envisioned that the concise synthesis of α, α-difluorinated cyclopentanones would be facilitated by the combination of the metal-catalyzed difluorocyclopropanation of dienol silyl ethers (simultaneous fluorine introduction and $\mathrm{C}-\mathrm{C}$ bond formation) and vinylcyclopropane-cyclopentene rearrangement (VCP rearrangement, five-membered ring construction). ${ }^{[4]}$ When dienol silyl ethers prepared from α, β-unsaturated ketone are subjected to difluorocyclopropanation, the resulting 1,1-difluoro-2-vinylcyclopropanes bearing a siloxy group would be obtained and then undergo VCP rearrangement to afford silyl 5,5-difluorocyclopent-1-en-1-yl ethers (i.e., the domino synthesis of α, α-difluorocyclopentanone derivatives, eq. 57).

In the first step, the difluorocyclopropanation of silyl enol ethers is an issue to be addressed in this strategy. In general, difluorocyclopropanations of alkenes have been extensively studied for decades using systems such as $\mathrm{CHClF}_{2} / \mathrm{KOH}$ (eq. 5), ${ }^{[5]} \mathrm{CClF}_{2} \mathrm{CO}_{2} \mathrm{Na}$ (eq. 26), ${ }^{[6]}$ or $\mathrm{PhHgCF}_{3} / \mathrm{NaI}$ (eq. 30) ${ }^{[7]}$ to generate free difluorocarbene; these methods are affected by strongly basic conditions, high reaction temperature, and the need for toxic reagents, respectively. Although useful methods for the generation of free difluorocarbene have been reported in the past few years, systems suitable for the difluorocyclopropanation of silyl enol ethers are still limited, probably due to their instabilities to hydrolysis.

On the other hand, metal-catalyzed cyclopropanation of alkenes under mild conditions has been reported. ${ }^{[8]}$ For instance, treatment of alkene 147 with diazoester 148 in the presence $1.0 \mathrm{~mol} \%$ of rhodium(II) acetate at $25^{\circ} \mathrm{C}$ affords cyclopropane 149 in 94% yield (eq. 58). ${ }^{[8 b]}$ Alkene $\mathbf{1 5 0}$ reacts with diazomethane in the presence of $0.5 \mathrm{~mol} \%$ palladium(II) acetate at $0{ }^{\circ} \mathrm{C}$ to afford cyclopropane $\mathbf{1 5 1}$ in 73% yield (eq. 59). ${ }^{[8 c]}$ Treatment of alkene $\mathbf{1 5 2}$ with a stoichiometric amount of diazomethane in the presence of $10 \mathrm{~mol} \%$ of tetrakis(triphenylphosphine)nickel(0) affords cyclopropane 153 in 72% yield (eq. 60). ${ }^{[8 d]}$ I expected that transition metal difluorocarbene complexes such as those of $\mathrm{Rh}(\mathrm{II}), \mathrm{Pd}(\mathrm{II})$, and $\mathrm{Ni}(0)$ would realize the difluorocyclopropanation of the dienol silyl ethers.

$$
\begin{equation*}
\underbrace{\mathrm{OMe}_{\mathrm{Ph}}}_{147} \xrightarrow[\mathrm{Et}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 50 \mathrm{~h}]{\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1.0 \mathrm{~mol} \%)}{ }_{14994 \%}^{\mathrm{EtOCOCH}_{2}} \tag{58}
\end{equation*}
$$

Concerning the second ring-opening step, VCP rearrangements of fluorine-free vinylcyclopropanes, including siloxy-substituted ones, are typically conducted at high temperatures $\left(300-550{ }^{\circ} \mathrm{C}\right) .{ }^{[46]}$ For example, vinylcyclopropane 154 undergoes to rearrangement at $330{ }^{\circ} \mathrm{C}$ to give cyclopentene $\mathbf{1 5 5}$ in 89% yield (eq. 61). ${ }^{[4 c]}$ As an advantage, fluorine substitution allows the rearrangement conditions to be benign and renders the $\mathrm{C}-\mathrm{C}$ bond cleavage regioselective. Dolbier reported that 1,1-difluoro-2-vinylcyclopropanes readily underwent VCP rearrangement to selectively afford 3,3-difluorocyclopent-1-enes, albeit at $200-275^{\circ} \mathrm{C}$. When heating to $194-224{ }^{\circ} \mathrm{C}$, vinyldifluorocyclopropane 156 affords difluorocyclopentenes 157 and 158 in 96% and 4% yields, respectively (eq. 62). ${ }^{[4 \mathrm{dd}]}$ Recently, Percy conducted the reaction of the difluorinated vinylcyclopropanes with an ester moiety at $100{ }^{\circ} \mathrm{C}$ (eq. 63). ${ }^{[4 \mathrm{e}]}$ Namely, difluorovinylcyclopropane $\mathbf{1 5 9}$ reacts at $100{ }^{\circ} \mathrm{C}$ to afford difluorocyclopentene $\mathbf{1 6 0}$ in 99% yield. These advantages of fluorine substitution on cyclopropane rings are ascribed to two primary reasons: (i) increased ring strain and (ii) elongation of the $\mathrm{C}-\mathrm{C}$ bond distal to the geminal fluorine substituents (Figure 11). ${ }^{[9]}$ I expected that the VCP rearrangement of 2-siloxy-substituted 1,1-difluoro-2-vinylcyclopropanes would readily proceed, providing the desired domino synthesis of α, α-difluorocyclopentanone derivatives.

Figure 11

For the synthesis of the regioisomeric β, β-difluorocyclopentanone derivatives, I envisaged to adopt $[4+1]$ cycloaddition (eq. 64). Dienol silyl ethers would electrophilically attack the CF_{2} carbon of difluorocarbene complex to generate the corresponding difluoroalkylmetal, whose Michael-type ring closure would afford 4,4-difluorocyclopent-1-en-1-yl silyl ethers. Although the chemistry of [4+1] cycloaddition has been relatively undeveloped compared to other cyclizations in $[3+2]$ and $[2+2+1]$ fashions, I expected that the $[4+1]$ cycloaddition of silyl dienol ethers with transition metal difluorocarbene complexes would facilitate the construction of β, β-difluorocyclopentanone skeletons.

In order to conduct the desired [4 + 1] cycloaddition, two issues must be addressed: (i) generation of transition metal difluorocarbene complexes and (ii) promotion of cycloaddition in a $[4+1]$ manner. To settle these issues, I adopted copper(I) as a metal species (M) and halodifluoroacetate as a carbene source $\left(\mathrm{XCF}_{2} \mathrm{CO}_{2}^{-}\right)$. Decarboxylation of copper(I) carboxylate is known to proceed readily as shown in the following example: ${ }^{[10]}$ cross coupling reaction of
potassium pentafluorobenzoate 161 and phenyl iodide in the presence $10 \mathrm{~mol} \%$ of copper(I) iodide proceeds to afford biphenyl 162 in 99% yield (eq. 65). ${ }^{[10 a]}$ The resulting (halodifluoromethyl)copper(I) species would undergo elimination of a halide ion (X^{-}) to generate the required difluorocarbene complexes. ${ }^{[11]}$ On treatment of trifluoromethylmanganese(II) $\mathbf{1 6 3}$ with trimethylsilyl trifllate (2.0 equiv) affords manganese(II) difluorocarbene complex 164 in 87% yield (eq. 66). ${ }^{[11 b]}$ Furthermore, there have been several reports on copper-catalyzed [4+1] cycloaddition of α, β-unsaturated ketones with diazo compounds, affording the desired five-membered cyclic products. Namely, on treatment with diazo compound $\mathbf{1 6 6}$ in the presence of $1 \mathrm{~mol} \%$ of copper(I) triflate ketone $\mathbf{1 6 5}$ affords 2,3-dihydrofuran 168 in 79% yield (eq. 67). ${ }^{[12]}$ Copper(I) complex 167 is proposed as intermediate. I expected that the [4 +1] cycloaddition of dienol silyl ether with copper(I) difluorocarbene complex would readily proceed to provide the desired synthesis of β, β-difluorocyclopentanone derivatives.

CuOTf ($1.0 \mathrm{~mol} \%$)

3.2. Domino Difluorocyclopropanation/Ring Expansion with Nickel Difluorocarbene Complex

3.2.1. Preparation of silyl enol ethers

Silyl enol ethers $\mathbf{1 7 0}$ were prepared from the corresponding ketones by using two synthetic methods (Table 7). ${ }^{[13]}$ Treatment of ketones $\mathbf{1 6 9 a}, \mathbf{c}, \mathbf{d}$ with tert-butyl(dimethyl)silyl chloride (TBSCl, 1.0-1.2 equiv) in the presence of triethylamine (1.2-1.5 equiv) and sodium iodide (1.0-1.2 equiv) afforded silyl enol ethers 170a,c,d in good yields (method A). Silylation of ketone 169b with tert-butyl(dimethyl)silyl trifluoromethanesulfonate (TBSOTf, 1.3 equiv) in place of TBSCl proceeded to give silyl enol ether 170b in 64% yield (method B).

Method A
$\mathrm{TBSCI}(1.0-1.2 \mathrm{eq})$
$\mathrm{NEt}_{3}(1.2-1.5 \mathrm{eq})$
$\mathrm{NaI}(1.0-1.2 \mathrm{eq})$

169
$\mathrm{CH}_{3} \mathrm{CN}, 45^{\circ} \mathrm{C}, 9-15 \mathrm{~h}$
Method B
TBSOTf (1.3 eq)

$\mathrm{NEt}_{3}(2.0 \mathrm{eq})$
THF, $0^{\circ} \mathrm{C}$ to RT, 13 h
Table 7
Entry

The silylation of ketones 169 was successfully applied to the reaction of α, β-unsaturated ketones $\mathbf{1 7 1}$ (Table 8). Treatment of ketones 171a-I with a silylating reagent (TBSCl or TBSOTf) gave the corresponding dienol silyl ethers 172a-l in good to moderate yields.

Method A

TBSCI (1.0-1.2 eq)
$\mathrm{NEt}_{3}(1.2-1.5 \mathrm{eq})$

Table 8

$$
-78^{\circ} \mathrm{C} \text { to } \mathrm{RT}, 3-20 \mathrm{~h}
$$

Entry

3.2.2. Difluorocyclopropanation of Alkenes with Nickel Difluorocarbene Complex

Silyl enol ether 170a was selected as a model substrate for optimization of the difluorocyclopropanation under metal catalysis. I expected that transmetalation of TFDA would proceed to give the transition metal carboxylate (eq. 68). Its decarboxylation followed by elimination of sulfur dioxide and fluoride ion would generate the desired metal difluorocarbene complex.

Although silyl enol ether 170a was treated with TFDA (2.0 equiv) in the presence of $5 \mathrm{~mol} \%$ of rhodium(II) acetate at $100^{\circ} \mathrm{C}$, difluorocyclopropane 173a was not obtained and TFDA remained unreacted (97%, Entry 1). The use of tris(triphenylphosphine)rhodium(I) chloride (so-called wilkinson's catalyst) afforded 173a in 57\% yield (Entry 2). Nickel (Entries 3-5), palladium (Entries 6-9), and platinum (Entries 10,11) catalysts having electron-rich ligands such as phosphines and NHCs afforded 173a in $30-72 \%, 59-64 \%$, and $12-68 \%$ yields, respectively. NHC-copper(I) complex also afforded 173a in 40\% yield (Entry 12). Especially, a pincer-type NHC-nickel(II) complex 174, which was developed for Heck-type coupling reactions by Inamoto, ${ }^{[14 a]}$ afforded 173a in 72% yield (Entry 4).

TFDA was originally designed to generate free difluorocarbene upon treatment with a fluoride ion at $100{ }^{\circ} \mathrm{C}$. ${ }^{[15]}$ Treatment of 170a with TFDA (2.0 equiv) in the presence of sodium fluoride (5 mol\%) at $100{ }^{\circ} \mathrm{C}$ afforded 173a, albeit only in 31% yield (${ }^{19} \mathrm{~F}$ NMR). A substantial amount of TFDA (0.62 equiv) remained unreacted, while silyl enol ether 170a was completely consumed (Entry 13). Since our research group previously reported the NHC-catalyzed generation of free difluorocarbene, ${ }^{[16]}$ 170a was treated with TFDA in the presence of SIMes $\cdot \mathrm{HCl}$, IMes $\cdot \mathrm{HCl}$, or triazolium salt 127 ($5 \mathrm{~mol} \%$) along with sodium carbonate ($20 \mathrm{~mol} \%$) to afford 173a in $53 \%, 56 \%$, and 46% yields, respectively (Entries $14-16$). To rule out the possibility that the pincer-type NHC ligand served as a catalyst for the decomposition of TFDA, 170a was treated with TFDA in the presence of NHC-salt $\mathbf{1 8 0}(5 \mathrm{~mol} \%)$ and sodium carbonate ($20 \mathrm{~mol} \%$, entry 17). The product 173a was obtained in 45% yield, suggesting that the difluorocyclopropanation was more efficiently promoted by the nickel catalyst.

The Ni catalyst 174, possessing a rigid and highly electron-rich ligand, showed remarkable effects in this difluorocyclopropanation. This is presumably because the key difluorocarbene complex is stabilized by the ligand. Shriver reported that triphenylphosphine stabilized a difluorocarbene complex. ${ }^{[17]}$ Namely, iron(III) difluorocarbene complex 181 was detected by NMR
spectroscopy only at $-78{ }^{\circ} \mathrm{C}$ and decomposed above $-78{ }^{\circ} \mathrm{C}$. On the other hand, difluorocarbene complex 182 with a triphenylphosphine ligand was successfully isolated at room temperature and was characterized by single-crystal X-ray analysis (Figure 4).

a: ${ }^{19} \mathrm{~F}$ NMR yield based on $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} p-\mathrm{CH}_{3}\right)_{2}$. b: Isolated yield.

Ni complex 174

Ni complex 175

Pd complex 176

Pd complex 177

Pd complex 178

Pt complex 179

IPrCuCl

NHC-salt 180

Figure 12. List of Catalyst Candidates

Figure 13. Stablization of Iron(III) Difluorocarbene Complexes by Phosphine Ligand

This difluorocyclopropanation method was successfully applied to other substrates in a diastereospecific fashion (Table 10). Silyl enol ether $\mathbf{1 7 0 b}(E / Z=4: 96)$ afforded the corresponding product 173b with $11: 89$ diastereomer ratio (Entry 2). Sterically hindered 170c afforded the corresponding product 173c in 63% yield (Entry 3). Cyclic silyl enol ether 170d gone also the corresponding product 173d in 78\% yield (Entry 4). Furthermore, alkyl vinyl ether 170e underwent difluorocyclopropanation, albeit in 40\% yield (Entry 5).

Table 10			 173	
Entry	Substrate 170	Product		Yield / \%
$1^{\text {a }}$			173a	73
2			173b	$\begin{gathered} 68 \\ \text { (d.r. }=11: 89 \text {) } \end{gathered}$
3			173c	63
4	 170d		173d	78
5			173e	40

It was reported that nickel carbene complex reacted with alkenes to generate metallacyclobutanes, which subsequently underwent reductive elimination providing cyclopropanes diastereospecificially. ${ }^{[18]}$ Treatment of $(E) \mathbf{- 1 8 4}$ with dibromomethane (1.0 equiv) in the presence of nickel(0) complex $\mathbf{1 8 3}$ (1.0 eq), zinc metal (1.0 equiv), and sodium iodide (1.0 equiv) affords a trans-isomer $\mathbf{1 8 5}$ exclusively in 59% yield. On the other hand, (Z) - $\mathbf{1 8 4}$ undergoes cyclopropanation to give the mixture of cis- and trans-isomers $\mathbf{1 8 5}$ in 71% and 7% yields (Scheme 5). ${ }^{[18 b]}$ In this reported case, stereospecificity is slightly reduced presumably because of steric effect, which was similarly observed in substrate 170b.

Scheme 5

3.2.3. Synthesis of 5,5-Difluorocyclopent-1-en-1-yl Silyl Ethers

Having the facile nickel-catalyzed difluorocyclopropanation of silyl enol ethers in hand, the domino difluorocyclopropanation/VCP rearrangement sequence was examined (Table 11). On treatment with TFDA (2.0 equiv) in the presence of $5 \mathrm{~mol} \%$ of $\mathbf{1 7 4}$ at $80^{\circ} \mathrm{C}$, dienol silyl ether 172a afforded difluoro(vinyl)cyclopropane 186a and the desired 5,5-difluorocyclopent-1-en-1-yl silyl ether $\mathbf{1 8 7}$ a in 22% and 31%, respectively, accompanied by a 34% yield of the desilylated product 171a (Entry 1). Chemoselective cyclopropanation occuerred on the oxygenated electron-rich alkene moiety, and regioselective VCP rearrangement subsequently proceeded to give $\mathbf{1 8 7}$. The
vinylcyclopropane intermediate 186a was completely converted to 187a by conducting the reaction at higher temperatures (Entries 2-5). Conducting of the reaction at $140^{\circ} \mathrm{C}$ resulted in the highest 82% yield of $\mathbf{1 8 7 a}$ (Entry 4).

 172a		Solvent, Temp., Tim				 171a		
Table 11								
Entry	Solvent			Temp. $/{ }^{\circ} \mathrm{C}$	Time / min	186a / \% ${ }^{\text {a }}$	187a / \% ${ }^{\text {a }}$	171a/ $\%^{\text {b }}$
1	Toluene	80	60	22	31	34		
2	Toluene	100	60	0	74	21		
3	p-Xylene	120	30	0	72	6		
4	p-Xylene	140	30	0	$82\left(83^{c}\right)$	15		
5	mesitylene	160	10	0	84	9		

a: ${ }^{19} \mathrm{~F}$ NMR yield based on $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} p-\mathrm{CH}_{3}\right)_{2}$. b : ${ }^{1} \mathrm{H}$ NMR yield based on 187a. c : Isolated yield.

Various 5,5 -difluorocyclopent-1-en-1-yl silyl ethers 187 were efficiently synthesized by the nickel(II) 174-based catalyst system (Table 12). Dienol silyl ether 172a reacted with TFDA (2.0 equiv) in the presence of $5 \mathrm{~mol} \%$ of $\mathbf{1 7 2}$ at $140{ }^{\circ} \mathrm{C}$ to afford $\mathbf{1 8 7 a}$ in 83% yield (Entry 1). Dienol silyl ethers 172b,d bearing electron-rich and -deficient aryl groups (R^{1}) smoothly underwent the domino process to afford the corresponding products $\mathbf{1 8 7 b}, \mathbf{d}$ in 80% and 79% yields, respectively (Entries 2 and 3). The reaction of the alkylated substrate $\mathbf{1 7 2 g}$ also worked well to give the product $\mathbf{1 8 7} \mathbf{g}$ in 71% yield (Entry 4). Substrates $\mathbf{1 7 2 h} \mathbf{- j}$, which bear substituents at the internal position (R^{2}), similarly afforded the products $\mathbf{1 8 7} \mathbf{h} \mathbf{- j}$ in $73-74 \%$ yields (Entries 5-7). Dienol silyl ether $\mathbf{1 7 2 k}$, derived from cyclohexenyl methyl ketone, afforded bicyclic silyl enol ether 187k in 49% yield (two-step yield, Entry 8). The lower yield than those of other substrates was probably due to partial decomposition of intermediary vinylcyclopropane 186k. In order to prevent the acid-promoted ring opening of $\mathbf{1 8 6 k}, \mathbf{1 7 2 k}$ was treated with TFDA (2.0 equiv) in the presence of $20 \mathrm{~mol} \%$ of $\mathbf{1 7 4}$ and sodium hydride (2.0 equiv) at $100^{\circ} \mathrm{C}$, which afforded difluorocyclopropane $\mathbf{1 8 6 k}$ in 60% yield (eq. 69). VCP rearrangement of the obtained $\mathbf{1 8 6 k}$ with sodium hydride (2.0 equiv) at $100{ }^{\circ} \mathrm{C}$ afforded the final product $\mathbf{1 8 7 k}$ in quantitative yield. When the substrate $\mathbf{1 7 2 1}$ bearing a methyl group as R^{3} was employed, the corresponding product 1871 was obtained in 54% yield as a single trans diastereomer along with siloxydiene 188 (27\%) as a 1,5-hydrogen shift product (Entry 9). It was reported that cis-vinylcylopropane 189 underwent exclusively 1,5-hydrogen shift to afford diene 190 in 95% yield (eq. 70), ${ }^{[4 \mathrm{~d}]}$ while trans-vinylcylopropane $\mathbf{1 8 9}$ underwent not only 1,5-hydrogen
shift but also VCP rearrangement to give a mixture of diene 190 and cyclopentene 191 (1:1.9, eq. 71). Whereas dienol silyl ether $\mathbf{1 7 2 1}$ mainly consisting of Z form $(E / Z=5: 95)$ was employed, the desired product $\mathbf{1 8 7 1}$ was obtained in 56% yield along with the undesired product $\mathbf{1 8 8}$ in 20% yields, respectively (Entry 10).
Table 12 (

[^2]

188

187k quant
(60\%: 2 steps $)$

trans-189

(190:191 $=1: 1.9)$

3.2.4. Mechanistic Study on Difluorocyclopropanation

The difluorocyclopropanation of silyl enol ethers can be explained by a generation of nickel(II) difluorocarbene complex and its methylene transfer reaction (Scheme 6). Transmetalation of nickel(II) complex 174 and TFDA proceeds to generate nickel(II) carboxylate A. This complex A eliminates carbon dioxide, sulfer dioxide, and a fluoride ion to generate nickel(II) difluorocarbene complex B. Silyl enol ethers $\mathbf{1 7 0}$ reacts with \mathbf{B} to generate nickelacyclobutane \mathbf{C}, then reductive elimination of nickel(IV) complex proceeds to give difluorocyclopropanes $\mathbf{1 7 3}$ and the catalyst $\mathbf{1 7 4}$ is regenerated. Cyclopropanation of alkenes with nickel(II) carbene complex was reported by Barefield. ${ }^{[18 c]}$ Treatment of cyclooctene with nickel(II) carbene complex 192 to afford cyclopropanation product 193 in 49% yield (eq. 72).

Scheme 6

Nickel(II) difluorocarbene complex B was tried to be captured by aminolysis. Roper reported that ruthenium(0) difluorocarbene complex 99 reacted with methylamine to afford ruthenium(0) isonitrile complex 194, liberating two molecules of hydrogen fluoride (eq. 73). ${ }^{[19]}$ On the basis of this fact, nickel(II) complex 175 was treated with TFDA (1.5 equiv) in the presence of 2,6-dimethylphenylamine (10 equiv). As expected, nickel(II) isonitrile complex 195 was observed by ESI mass spectroscopy (eq. 74). In particular the isotope pattern of the observed fragment ion $\left(\mathrm{M}^{2+}, \mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{Ni}\right)$ was in complete agreement with its computer simulation (Figure 14). Thus, this operation stlongly supports the aforementioned mechanism.

Figure 14

3.2.5. Derivatization of 5,5-Difluorocyclopent-1-en-1-yl Silyl Ethers into

 α-Fluorocyclopentanone DerivativesCyclic silyl enol ethers 187a were transformed to substituted α, α-difluorocyclopentanones to demonstrate their utility in synthesis. Treatment of $\mathbf{1 8 7} \mathbf{a}$ with tetrabutylmmonium fluoride (2.0 equiv) in THF/formic acid/water (6:3:1) at $55{ }^{\circ} \mathrm{C}$ afforded a 80% yield (${ }^{19} \mathrm{~F}$ NMR) of α, α-difluorocyclopentanone 196, which was not isolated because of its instability toward chromatographic (silica gel and basic alumina) purification. Treatment of $\mathbf{1 9 6}$ with sodium borohydride (2.0 equiv) afforded cyclopentanol 197 in quantitative yield (eq. 74). Cyclopentanone 196 was also treated with tosylhydrazine to afford the corresponding hydrazone 198 in 74% yield (eq. 75). The single-crystal X-ray analysis of $\mathbf{1 9 8}$ confirmed that the difluoromethylene unit was introduced at the position adjacent to the carbonyl group (Figure 15). Furthermore, oxime 199 was obtained from cyclic silyl enol ether 187a by treating the in situ-generated ketone 196 with hydroxylamine hydrochloride (2.0 equiv) in a one-pot operation (87% yield, two-steps, eq. 76).

Figure 15

Oxidative treatment of $\mathbf{1 8 7 a}$ afforded functionalized fluorine-containing cyclopentenones. Treatment of $\mathbf{1 8 7 a}$ with N -bromosuccinimide (NBS) under highly diluted conditions (7×10^{-4} $\mathrm{mol} / \mathrm{L}$) gave difluorinated cyclopentenone 200 in 86% yield (eq. 77). Oxidation of $\mathbf{1 8 7 a}$ with m-chloroperbenzoic acid (m CPBA, 3.0 equiv) gave the corresponding epoxide 201 in 85% yield as a diastereomeric mixture (78:22). Its desilylation with potassium hydrodifluoride (2.0 equiv) led to the formation of 3-fluorinated 2-hydroxycyclopent-2-en-1-one 202 in 54% yield (eq. 78). The oxygenated cyclopentenone skeleton of $\mathbf{2 0 2}$ is found in cyclotene that is used as a food additive with a caramel-like flavor. ${ }^{[20]}$

187a

3.3. [4+1] Cycloaddition with Copper Difluorocarbene Complex

3.3.1. Synthesis of 4,4-Difluorocyclopent-1-en-1-yl Silyl Ethers

Dienol silyl ether 172a was selected as a model substrate to examine the desired cyclopentanone ring construction via (i) the generation of the transition metal difluorocarbene complexes and (ii) promotion of the [4 + 1] cycloaddition. I adopted copper(I) as a metal species (M) and halodifluoroacetate as a carbene source $\left(\mathrm{XCF}_{2} \mathrm{CO}_{2}^{-}\right.$, eq. 80). Decarboxylation of copper(I) carboxylates is known to proceed readily. Elimination of a halide ion (X^{-}) from the resulting (halodifluoromethyl)copper(I) species would generate the required difluorocarbene complexes. The copper(I)-catalyzed [$4+1]$ cycloaddition was exemplified by the reaction of α, β-unsaturated ketones with diazo compounds as described in Section 3.1 (eq. 67).

Dienol silyl ether 172a was treated with sodium bromodifluoroacetate in the absence of copper(I) complex in acetonitrile at $50{ }^{\circ} \mathrm{C}$ (Table 13, Entry 1). Vinylcyclopropane 186a and α, α-difluorocyclopentanone-based silyl enol ether 187a were obtained in 35% and 5% yields, respectively. Cyclopropane 186a was generated via free difluorocarbene and cyclic silyl enol ether 187a was obtained from 186a via VCP rearrangement. To my delight, treatment of 172a with sodium bromodifluoroacetate (1.1 equiv) in the presence a stoichiometric amount of $\operatorname{copper}(\mathrm{I})$ bromide at $50^{\circ} \mathrm{C}$ afforded the desired 4,4-difluorocyclopent-1-en-1-yl silyl ether 203a and 186a in 25% and 3% yields, respectively (Entry 2). Copper(I) acetylide and SIMesCuCl also gave the desired 203a in 37% and 10% yields, respectively (Entries 3 and 4).

	$\xrightarrow[\mathrm{CH}_{3} \mathrm{CN}, 50^{\circ} \mathrm{C}, 12-18 \mathrm{~h}]{\substack{\text { Catalyst }(1.0 \mathrm{eq}) \\ \mathrm{BrCF}_{2} \mathrm{CO}_{2} \mathrm{Na}(1.1 \mathrm{eq})}}$			
172a		203a	186a	187a
Table 13				
Entry	Catalyst	203a / \% ${ }^{\text {a }}$	186a / $\%^{\text {a }}$	187a / \% ${ }^{\text {a }}$
1	None	0	35	5
2	CuBr	25	3	0
3	$\mathrm{CCu}=\mathrm{CPh}$	37	10	0
4	SIMesCuCl	10	19	<1

a: ${ }^{19} \mathrm{~F}$ NMR yield based on $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} p-\mathrm{CH}_{3}\right)_{2}$.

The catalyst system was optimized in detail (Table 14 and Figure 16). The reaction proceeded smoothly with $5 \mathrm{~mol} \%$ of $\mathrm{Cu}\left(\mathrm{Phen}^{2}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right.$ to afford 203a in 49% yield (Entry 1). Copper(I) catalysts with bromide or iodide ions promoted the reaction to give 203a in 62% and 58% yields, respectively (Entries 2,3). Electron-donating 4,7-dimethylphenanthroline complex 204b afforded 203a in the highest 72% yield (Entry 4), whereas 3,4,7,8-tetramethylphenanthroline complex 204c gave 203a in lower yield (59%, Entry 5), presumably because of the low solubility of this complex in acetonitrile. Sterically hindered complexes, 204d and 204e, led to poor results: 203a was obtained in 16% and 33% yields (Entries 6 and 7), respectively. Complex 204f bearing a bipyridyl ligand afforded 203a only in 39\% yield and difluorocyclopropanation proceeded to form 186a and 187a in 40% and 2% yields, respectively (Entry 8). The dimethylphenanthroline ligand in complex 204a probably stabilized the presumed difluorocarbene complex by its electron-donating property and rigid structure.

Table 14

Entry	Catalyst	203a $/ \%^{a}$	186a $/ \%^{a}$	187a $/ \%^{a}$
1	$\mathrm{Cu}(\mathrm{Phen})\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}$	49	6	2
2	$\mathrm{Cu}(\mathrm{Phen})\left(\mathrm{PPh}_{3}\right) \mathrm{Br} \mathbf{2 0 4 a}$	62	7	3
3	$\mathrm{Cu}\left(\mathrm{Phen}^{\mathbf{a}}\left(\mathrm{PPh}_{3}\right) \mathrm{l}\right.$	58	5	2
4	$\mathbf{2 0 4 b}$	$72\left(71^{b}\right)$	7	2
5	$\mathbf{2 0 4 c}$	59	17	0
6	$\mathbf{2 0 4 d}$	16	7	9
7	$\mathbf{2 0 4 e}$	33	18	0
8	$\mathbf{2 0 4 f}$	39	40	2

a: ${ }^{19} \mathrm{~F}$ NMR yield based on $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} p-\mathrm{CH}_{3}\right)_{2}$. b: Isolated yield.

204a

204b

204c

204d

204e

204f

Figure 16

Effects of difluorocarbene sources were also examined, using $5 \mathrm{~mol} \%$ of 204a as a catalyst (Table 15). Conducting the reaction with potassium bromodifluoroacetate afforded the [4 + 1] cycloaddition product 203a, difluorocyclopropane 186a, and the VCP rearrangement product $\mathbf{1 8 7 a}$ in $64 \%, 4 \%$, and 2% yields, respectively (Entry 2). Cesium salt afforded 203a in 32% yield (Entry 3). Sodium salts with leaving groups such as chlorine (Entry 4), fluorine (Entry 5), and a fluorosulfonyl group (Entry 6) did not promote the [$4+1]$ cycloaddition.

Table 15		$\xrightarrow[\mathrm{CH}_{3} \mathrm{CN}, \text { Temp.,Time }]{\stackrel{\text { 204a }(5.0 \mathrm{~mol} \%)}{: \mathrm{CF}_{2} \text { Sources (1.1 eq) }}}$					 187a
	$15^{172 a}$						
Entry	: CF_{2} Sources	Temp $/{ }^{\circ} \mathrm{C}$	Time / h	203a / \% ${ }^{\text {a }}$	186a / \% ${ }^{\text {a }}$	187a / \% ${ }^{\text {a }}$	Recovery of : CF_{2} Sources ${ }^{/ \%^{a}}$
$1^{\text {b }}$	$\mathrm{BrCF}_{2} \mathrm{CO}_{2} \mathrm{Na}$	50	12	62	9	2	0
2	$\mathrm{BrCF}_{2} \mathrm{CO}_{2} \mathrm{~K}$	50	12	64	4	2	0
3	$\mathrm{BrCF}_{2} \mathrm{CO}_{2} \mathrm{Cs}$	50	12	32	4	3	0
4	$\mathrm{ClCF}_{2} \mathrm{CO}_{2} \mathrm{Na}$	80	11	0	0	0	0
5	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Na}$	80	3	0	0	0	94
6	$\mathrm{FSO}_{2} \mathrm{CF}_{2} \mathrm{CO}_{2} \mathrm{Na}$	50	16	0	0	0	0

a: ${ }^{19} \mathrm{~F}$ NMR yield based on $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} p-\mathrm{CH}_{3}\right)_{2}$. b: Table 14, Entry 2.
Effects of phosphine ligands on the yield of 203a were examined (Table 16). Electron-rich and -deficient triarylphosphine complex 204g-j afforded 203a in 39-67\% yields (Entries 2-5). Use of tricyclohexylphosphine compex 204k resulted in the formation of 203a in 51% yield (Entry 6). However, the effects of phosphine ligands were not clear.
Table 16 172a

[^3]Various 4,4-difluorocyclopent-1-en-1-yl silyl ethers 203 were efficiently synthesized by the copper(I) 204b-based catalyst system (Table 17). Dienol silyl ether 172a reacted with sodium bromodifluoroacetate (1.1 equiv) in the presence of $5 \mathrm{~mol} \%$ of $\mathbf{2 0 4 b}$ at $50{ }^{\circ} \mathrm{C}$ to afford $\mathbf{1 7 2 a}$ in $\mathbf{7 1 \%}$ yield (Entry 1). Dienol silyl ethers $\mathbf{1 7 2 b}, \mathbf{c}, \mathbf{e}$, bearing electron-rich and -deficient aryl groups (R^{1}), smoothly underwent the $[4+1]$ cycloaddition to afford the corresponding products $\mathbf{2 0 3 b}, \mathbf{c}, \mathbf{e}$ in 70%, 61%, and 59% yields, respectively (Entries 2-4). Dienol silyl ethers $\mathbf{1 7 2 f}, \mathrm{g}$ with 2-naphthyl and propyl groups (R^{1}) afforded 203f,g in 59% yields each (Entries 5 and 6). Substrate $\mathbf{1 7 2 h}$ bearing a substituent at the internal position $\left(\mathrm{R}^{2}\right)$ similarly afforded the product $\mathbf{2 0 3 h}$ in 69% yield (Entry 7). Dienol silyl ether 172k, derived from cyclohexenyl methyl ketone, afforded bicyclic silyl enol ether 203k in 63\% yield (Entry 8).

The copper(I)-catalyzed difluoromethylene transfer could not be applied to simple silyl enol ether. Treatment of silyl enol ether 170a with sodium bromodifluoroacetate (1.1 equiv) in the presence of $5 \mathrm{~mol} \%$ of 204a did not afford difluorocyclopropane 173a (eq. 81).

3.3.2. Mechanistic Study on [4+1] Cycloaddition with Copper Difluorocarbene Complex

The $[4+1]$ cycloaddition of silyl enol ethers can be explained by the generation of copper(I) difluorocarbene complex (Scheme 7). Transmetalation of copper(I) complex D lacking a phosphine ligand with sodium bromodifluoroacetate proceeds to generate copper(I) carboxylate \mathbf{E}. The formed complex \mathbf{E} eliminates carbon dioxide to generate (bromodifluoromethyl)copper(I) complex \mathbf{F}. Then, loss of a bromide ion from \mathbf{F} generates the key copper(I) difluorocarbene complex G. Dienol silyl ethers $\mathbf{1 7 2}$ nucleophilically attack the CF_{2} carbon of difluorocarbene complex \mathbf{G} to generate the corresponding difluoroalkylcopper(I) complex \mathbf{H}, whose Michael-type 5-endo-trig ring closure provides 4,4-difluorocyclopent-1-en-1-yl silyl ethers 203. In this final step the catalyst \mathbf{D} is regenerated. It should be noted that another migration mechanism for formation of \mathbf{H} is also possible. Nucleophilic attack of $\mathbf{1 7 2}$ to the metal center of \mathbf{G}, followed by metal carbene migratory insertion, generates $\mathbf{H} .{ }^{[21]}$
204b
$\mathrm{PPh}_{3} \xlongequal{4}-\mathrm{PPh}_{3}$

E
172

Difluorocarbene Complex G

172

Scheme 7

Copper(I) difluorocarbene complex \mathbf{G} was captured by aminolysis as mentioned in section 3.2.4 (eq. 73 to support the above mechanism). When copper(I) complex 204b was treated with sodium bromodifluoroacetate (5.5 equiv) in the presence of butylamine (10 equiv), $\operatorname{copper}(\mathrm{I})$ isonitrile complex 205, lacking a phosphine ligand was observed by ESI mass spectroscopy (eq. 82). In particular, the isotope pattern of the observed fragment ion $\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{CuN}_{3}\right)$ was in complete agreement with its computer simulation (Figure 17).

Figure 17

The reaction was truly affected by the addition of extra triphenylphosphine (eq. 83). Specifically, dienol silyl ether 172a was treated with bromodifluoroacetate (1.1 equiv) in the presence of catalyst 204b ($5 \mathrm{~mol} \%$) and triphenylphosphine (0.2 equiv). ${ }^{19} \mathrm{~F}$ NMR analysis indicated that the yield of 203a decreased to 32% (v.s. 72% yield in Table 14, Entry 4), accompanied by formation of difluorocyclopropane 186a (25% yield) and isomeric 187a (18% yield).

3.3.3. Derivatization of 4,4-Difluorocyclopent-1-en-1-yl Silyl Ethers into $\boldsymbol{\beta}$-Fluorocyclopentanone Derivatives

Hydroysis of 203a was effected with tetrabutylmmonium fluoride (2.0 equiv) in THF/formic acid (5:1), which was accompanied by elimination of hydrogen fluoride to afford β-fluorocyclopentenone 206 in 70\% yield (eq. 84).

Treatment of β-fluorocyclopentenone 206 with methyl lithium (2.0 eq) at $-78{ }^{\circ} \mathrm{C}$ caused 1,2-addition, followed by migration and hydrolysis, to give cyclopentenone 207 in 36% yield (eq. 85). ${ }^{[22]}$ A different synthetic route to 207 was reported by Murakami and Ito, ${ }^{[23 a]}$ and the position of the introducted fluorine was confirmed by the comparison of spectral data.

3.4. Conclusion

I have developed the regioselective syntheses of both α, α - and β, β-difluorocyclopentanone derivatives by using unprecedented transition metal difluorocarbene complexes as catalytic species. Dienol silyl ethers underwent the domino difluorocyclopropanation and VCP rearrangement with a nickel(II) difluorocarbene complex to afford 5,5-difluorocyclopent-1-en-1-yl silyl ethers. Copper(I) difluorocarbene complex promoted the $[4+1]$ cycloaddition of the same dienol silyl ethers with sodium bromodifluoroacetate to afford 4,4-difluorocyclopent-1-en-1-yl silyl ethers. The two key difluorocarbene complexes of nickel and copper were captured as aminolysis products, which were observed by HRMS analysis.

3.5 Experimental Section

3.5.1. General

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker Avance 500. Chemical shift values are given in ppm relative to internal $\mathrm{Me}_{4} \mathrm{Si}$ (for ${ }^{1} \mathrm{H}$ NMR: $\delta=0.00 \mathrm{ppm}$), CDCl_{3} (for ${ }^{13} \mathrm{C}$ NMR: $\delta=77.0 \mathrm{ppm}$), and $\mathrm{C}_{6} \mathrm{~F}_{6}$ (for ${ }^{19} \mathrm{~F}$ NMR: $\delta=0.00 \mathrm{ppm}$). IR spectra were recorded on a Horiba FT-300S spectrometer by the attenuated total reflectance (ATR) method. Mass spectra were measured on a JEOL JMS-T100GCV. Elemental analyses were carried out at the Elemental Analysis Laboratory, Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba. All reactions were carried out under argon. Column chromatography was performed on silica gel (Kanto Chemical Co. Inc., Silica Gel 60) and alumina (Aluminium Oxide 90 Active Basic, Merck KGaA for column chromatography). Ethyl bromodifluoracetate supplied by KANTO DENKA KOGYO CO., LTD. and Central Glass Co., Ltd. tert-Butyldimethylsilyl chloride (TBSCl) supplied by Shin-Etsu Chemical Co., Ltd. Toluene, Tetrahydrofuran (THF), dichloromethane were purified by a solvent-purification system (GlassContour) equipped with columns of activated alumina and supported-copper catalyst (Q-5) before use. Acetonitrile was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ and CaH_{2} before used. p-Xylene and mesitylene were distilled from CaCl_{2}. Methanol was distilled from magnesium and iodine. Pincer-type NHC complexes and salt 174-180 were prepared according to the literature. ${ }^{[14]}$ Trimethylsilyl 2,2-difluoro-2-fluorosulfonylacetate (TFDA) was prepared according to the literature. ${ }^{[15]}$ SIMes $\cdot \mathrm{HCl}$ and $\mathrm{IMes} \cdot \mathrm{HCl}$ were prepared according to the literatures. ${ }^{[24]}$ Copper complex $\mathrm{Cu}(\mathrm{Phen})\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}, \mathrm{Cu}(\mathrm{Phen})\left(\mathrm{PPh}_{3}\right) \mathrm{I}, ~ 204 a-k$ were prepared according to the literature. ${ }^{[25]}$ Silyl enol ether 170a,c,d were prepared according to the literature. ${ }^{[13]}$ Enol ether 170e was purchased from Aldrich and was distilled before use. 1,1,1,3,3,3-hexafluoro-2,2-di(p-tolyl)propane (internal standard for ${ }^{19} \mathrm{~F}$ NMR) was purchased from Tokyo Chemical Industry Co., Ltd.

3.5.2. Synthesis of Silyl enol ether and dienol silyl ether.

(A) Typical procedure for the synthesis of silyl enol ether 170a-d and dienol silyl ether 172a-l.

Method A (TBSCl)

To an acetonitrile solution (13 mL) of 4-phenylbut-3-en-2-one 171a ($1.47 \mathrm{~g}, 10.0 \mathrm{mmol}$), tertbutyl(dimethyl)silyl chloride ($1.54 \mathrm{~g}, 10.2 \mathrm{mmol}$), and sodium iodide ($1.51 \mathrm{~g}, 10.0 \mathrm{mmol}$) was added triethylamine $(1.67 \mathrm{~mL}, 12.0 \mathrm{mmol})$ at room temperature. The reaction mixture was heated to $45{ }^{\circ} \mathrm{C}$, stirred overnight, and then cooled to $0{ }^{\circ} \mathrm{C}$. After being diluted with cold hexane $\left(0^{\circ} \mathrm{C}, 10\right.$ mL), the reaction mixture was poured into a mixture of ice (30 g) and a saturated aqueous solution $(15 \mathrm{~mL})$ of sodium hydrogen carbonate to prevent decomposition of the product. Organic materials were extracted with cold hexane $\left(0^{\circ} \mathrm{C}\right)$ three times. The combined extracts were washed with brine
and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on basic alumina (hexane) to give silyl dienol ether 172a as a colorless liquid ($1.94 \mathrm{~g}, 74 \%$ yield).

Method B (TBSOTf)

To a dichloromethane solution (10 mL) of hept-3-en-2-one $\mathbf{1 7 1 g}$ ($739 \mathrm{mg}, 6.59 \mathrm{mmol}$) were added triethylamine ($1.84 \mathrm{~mL}, 13.2 \mathrm{mmol}$) and tert-butyl(dimethyl)silyl trifluoromethanesulfonate (1.96 $\mathrm{mL}, 8.53 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was slowly warmed to room temperature, stirred overnight, and then cooled to $0{ }^{\circ} \mathrm{C}$. After being diluted with cold hexane $\left(0^{\circ} \mathrm{C}, 10 \mathrm{~mL}\right)$, the reaction mixture was poured into a mixture of ice (30 g) and a saturated aqueous solution (15 mL) of sodium hydrogen carbonate to prevent decomposition of the product. Organic materials were extracted with cold hexane $\left(0^{\circ} \mathrm{C}, 5 \mathrm{~mL}\right)$ three times. The combined extracts were washed with brine and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by distillation under reduced pressure (bp. $45{ }^{\circ} \mathrm{C}, 0.38$ mmHg) to give silyl dienol ether $\mathbf{1 7 2 g}$ as a colorless liquid ($867 \mathrm{mg}, 58 \%$ yield).
(B) Spectral data of silyl enol ether and dienol silyl ether 1-[tert-Butyl(dimethyl)silyloxy]-1-phenylprop-1-ene 170b ($E / Z=5: 95$)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (Z-isomer) $\delta=-0.03(\mathrm{~s}, 6 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 1.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $5.21(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (Z-isomer) $\delta=-4.0,11.7,18.3,25.9,105.8,125.7,127.2,127.9$, 139.8, 150.2. IR (neat): $v^{\sim}=2929,1321,1254,1059,866,837,779,735 . \operatorname{HRMS}(70 \mathrm{eV}, \mathrm{EI}+): m / z$ (Z-isomer) calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{OSi}[\mathrm{M}]^{+}: 248.1596$; Found: 248.1596.

3-[tert-Butyl(dimethyl)silyloxy]-1-phenylbuta-1,3-diene 172a
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.20(\mathrm{~s}, 6 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) 7.39(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.6,18.4,25.9,96.7,126.5,126.7,127.6,128.6$, 129.2, 136.8, 155.2. IR (neat): $\boldsymbol{v}^{\sim}=2929,2857,1589,1327,1022,733 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{OSi}[\mathrm{M}]^{+}: 260.1596$; Found: 260.1594.

3-[tert-Butyl(dimethyl)silyloxy]-1-(p-methylphenyl)buta-1,3-dien 172b
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.22(\mathrm{~s}, 6 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H})$, $6.54(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.6,18.4,21.2,25.9,96.3,125.6,126.7,129.2,129.3$,
134.0, 137.5, 155.4. IR (neat): $\boldsymbol{v}^{\sim}=2956,2929,1587,1323,1003,837 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{OSi}[\mathrm{M}]^{+}: 274.1753$; Found: 274.1755.
3-(tert-Butyldimethylsiloxy)-4-(p-methoxyphenyl)-1,3-butadiene 172c
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.22(\mathrm{~s}, 6 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 3.81,(\mathrm{~s}, 3 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H})$, $6.46(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.6,18.4,25.9,55.3,95.8,114.0,124.5,128.0,128.7$, 129.6, 155.4, 159.3. IR (neat); $v^{\sim}=2929,1510,1250,1173,1024,823 \mathrm{~cm}^{-1} . \operatorname{HRMS}(70 \mathrm{eV}, \mathrm{EI}+)$: m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{OSi}\left([\mathrm{M}]^{+}\right)$: 290.1702; found: 290.1701.

3-[tert-Butyl(dimethyl)silyloxy]-1-(p-chlorophenyl)buta-1,3-diene 172d
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.22(\mathrm{~s}, 6 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=-4.6,18.4,25.9,97.1,127.2,127.9,128.7,133.2,135.3,155.0$. IR (neat); $v^{\sim}=2929,1597,1489,1323,1022,812 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClOSi}[\mathrm{M}]^{+}: 294.1207$; Found: 294.1203.

3-(tert-Butyldimethylsiloxy)-1-(p-bromophenyl)-1,3-butadiene 172e
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.22(\mathrm{~s}, 6 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.6,18.4,25.9,97.2,121.4,127.3,127.9,128.2,131.7,135.8,155.0$. IR (neat); $v^{\sim}=2929,1487,1321,1254,1024,1009,810 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BrOSi}\left([\mathrm{M}]^{+}\right): 338.0702$; found: 338.0705 .

3-(tert-Butyldimethylsiloxy)-4-(2-naphtyl)-1,3-butadiene 172f
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.26(\mathrm{~s}, 6 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-$ $7.84(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.6,18.4,25.9,96.9,123.7,125.9,126.3,126.9$, $126.9,127.6,128.0,128.2,129.3,133.0,133.7,134.3,155.3$. IR (neat); $v^{\sim}=2954,1585,1311$, 1254, 1020, $808 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{OSi}\left([\mathrm{M}]^{+}\right): 310.1753$; found: 310.1755 .

2-[tert-Butyl(dimethyl)silyloxy]hepta-1,3-diene 172g
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.18(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{qt}, J=$ $7.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{dt}, J=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{dt}, J=15.0,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.00(\mathrm{dt}, J=15.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.7,13.7,18.3,22.4,25.8$,
34.2, $93.8,127.9,131.7,155.2$. IR (neat); $v^{\sim}=2958,2929,1672,1593,1254,1022,835 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{OSi}[\mathrm{M}]^{+}: 226.1753$; Found: 226.1755.
3-[tert-Butyl(dimethyl)silyloxy]-2-methyl-1-phenylbuta-1,3-diene 172h
${ }^{1}{ }^{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.20(\mathrm{~s}, 6 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H})$, $7.08(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-4.6,14.6,18.4,25.9,93.0,126.5,127.2,128.1,129.3,133.0,138.1,157.5$. IR (neat): $v^{\sim}=2956,2858,1601,1254,1018,827 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{OSi}[\mathrm{M}]^{+}: 274.1753$; Found: 274.1754.

2-Bromo-3-[tert-butyl(dimethyl)silyloxy]-1-phenylbuta-1,3-diene 172i
H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.24(\mathrm{~s}, 6 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=-4.7,18.3,25.8,97.5,120.2,128.1,128.1,129.0,129.5,135.9,153.7$. IR (neat): $v^{\sim}=$ 2954, 2856, 1603, 1254, 1022, $825 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrOSi}[\mathrm{M}-$ $t-\mathrm{Bu}]^{+}: 280.9997$; Found: 280.9995 .

3-[tert-Butyl(dimethyl)silyloxy]-1,2-diphenylbuta-1,3-diene 172j
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.26(\mathrm{~s}, 6 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 6.84-6.87(\mathrm{~m}$, $2 \mathrm{H}), 7.05-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.19$ (dd, $J=8.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.39(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.6,18.4,26.0,97.6,126.8,127.3,127.9,128.6,129.6,130.1$, 136.6, 138.8, 139.0, 157.8. IR (neat): $v^{\sim}=2956,2858,1589,1269,1020,829 \mathrm{~cm}^{-1} . \operatorname{HRMS}(70 \mathrm{eV}$, EI): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{OSi}[\mathrm{M}]^{+}: 336.1909$; Found: 336.1905.

1-\{1-[tert-Butyl(dimethyl)silyloxy]ethenyl\} cyclohex-1-ene 172k
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.17(\mathrm{~s}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 1.54-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.69(\mathrm{~m}, 2 \mathrm{H})$, 2.11-2.27 (m, 4H), 4.17 ($\mathrm{s}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 6.23-6.27(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $-4.6,18.3,22.1,22.7,25.0,25.5,25.9,89.4,125.3,133.2,156.8$. IR (neat): $v^{\sim}=2929,2858,1664$, 1255, $831 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}$): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{OSi}[\mathrm{M}]^{+}: 238.1753$; Found: 238.1755 .

1-\{1-[tert-Butyl(dimethyl)silyloxy]ethenyl $\}$ cyclohex-1-ene 1721
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.18(\mathrm{~s}, 6 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.73(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 5.03(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-3.6,12.1,18.5,26.0$, $111.0,126.3,126.6,127.1,127.5,128.6,137.3,149.5$. IR (neat): $v^{\sim}=2929,1338,1254,1024,777$, $688 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}$): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{OSi}[\mathrm{M}]^{+}: 274.1753$; Found: 274.1756.

3.5.3. Synthesis of difluorocyclopropane

(A) Typical procedure for the synthesis of difluorocyclopropane

To a toluene solution (5 mL) of nickel(II) complex $174(45 \mathrm{mg}, 0.097 \mathrm{mmol})$ and $1,1,1,3,3,3$-hexafluoro-2,2-di(p-tolyl)propane ($62 \mathrm{mg}, 0.19 \mathrm{mmol}$) was added a toluene solution (5 $\mathrm{mL})$ of silyl enol ether $\mathbf{1 7 0 a}(469 \mathrm{mg}, 2.00 \mathrm{mmol})$ at room temperature. The solution was heated to $100{ }^{\circ} \mathrm{C}$ and TFDA ($788 \mathrm{~mL}, 4.00 \mathrm{mmol}$) was added. The resulting mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 1 h and then cooled to room temperature. ${ }^{19} \mathrm{~F}$ NMR analysis of the mixture revealed that difluorocyclopropane 173a was formed in 72% yield. The solution was diluted with ethyl acetate $(10 \mathrm{~mL})$ and a saturated aqueous solution $(10 \mathrm{~mL})$ of sodium hydrogen carbonate was added. Organic materials were extracted with ethyl acetate three times. The combined extracts were washed with brine and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane) to afford difluorocyclopropane 173a as a colorless liquid ($415 \mathrm{mg}, 73 \%$ yield).
(B) Spectral data of difluorocyclopropane.

1-[tert-Butyl(dimethyl)silyloxy]-2,2-difluoro-1-phenylcyclopropane 173a
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.10(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 1.68(\mathrm{ddd}, J=16.0,9.0$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{ddd}, J=16.0,9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=-4.3,-4.1,17.9,23.4(\mathrm{t}, J=9 \mathrm{~Hz}), 25.5,62.3(\mathrm{dd}, J=12,10 \mathrm{~Hz})$, $112.1(\mathrm{t}, J=296 \mathrm{~Hz}), 128.3,128.5,136.2 .{ }^{19} \mathrm{FNMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.2(\mathrm{ddd}, J=154,16$, $6 \mathrm{~Hz}, 1 \mathrm{~F}$), 28.5 (ddd, $J=154,16,5 \mathrm{~Hz}, 1 \mathrm{~F}$). IR (neat): $v^{\sim}=2931,1460,1228,1173,827,698 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}$): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{OSi}[\mathrm{M}]^{+}: 284.1408$; Found: 284.1404.

1-[tert-Butyl(dimethyl)silyloxy]-2,2-difluoro-3-methyl-1-phenylcyclopropane 173b
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-0.26(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 1.26$ (ddd, J $=6.5,3.0,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.61-1.71(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-4.6(\mathrm{~d}, J=3 \mathrm{~Hz}),-4.3,18.3,25.6,27.7(\mathrm{t}, J=9 \mathrm{~Hz}), 62.4(\mathrm{t}, J=10 \mathrm{~Hz})$, 114.0 (dd, $J=301,295 \mathrm{~Hz}$), 128.3, 128.4, 129.5, 138.0. ${ }^{19} \mathrm{FNMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=12.2(\mathrm{~d}, J$ $=155 \mathrm{~Hz}, 1 \mathrm{~F}), 34.1$ (ddd, $J=155,18,3 \mathrm{~Hz}, 1 \mathrm{~F})$. IR (neat): $\boldsymbol{v}^{\sim}=2931,2860,1473,1167,839 \mathrm{~cm}^{-1}$. HRMS (70 eV, EI): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{OSi}[\mathrm{M}]^{+}: 298.1564$; Found: 298.1563.

1-[tert-Butyl(dimethyl)silyloxy]-2,2-difluoro-3,3-dimethyl-1-phenylcyclopropane 173c
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.43(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{t}, J=$ $2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{dd}, J=2.0,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-4.9(\mathrm{~d}, J=4 \mathrm{~Hz}),-4.5,12.9(\mathrm{dd}, J=7,1 \mathrm{~Hz}), 16.8(\mathrm{~d}, J=7 \mathrm{~Hz}), 18.2$, 25.6, $29.4(\mathrm{t}, J=9 \mathrm{~Hz}), 64.0(\mathrm{dd}, J=10,9 \mathrm{~Hz}), 115.8(\mathrm{dd}, J=313,301 \mathrm{~Hz}), 128.1,128.1,130.2$, $136.0(\mathrm{~d}, J=2 \mathrm{~Hz}) .{ }^{19} \mathrm{FNMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=17.5(\mathrm{~d}, J=154 \mathrm{~Hz}, 1 \mathrm{~F}), 22.9(\mathrm{~d}, J=154 \mathrm{~Hz}$, 1F). IR (neat): $v^{\sim}=2929,1471,1250,1165,866,700 \mathrm{~cm}^{-1} . \operatorname{HRMS}(70 \mathrm{eV}, \mathrm{EI}): m / z$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{OSi}[\mathrm{M}]^{+}: 312.1721$; Found: 312.1717.

2-[tert-Butyl(dimethyl)silyloxy]-7,7-difluorobicyclo[4.1.0]heptane 173d
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.12(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.20-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.42-$ $1.56(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{dd}, J=13.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.99(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.21(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.2(\mathrm{~d}, J=3 \mathrm{~Hz}),-3.9,17.1(\mathrm{~d}, J=3 \mathrm{~Hz}), 17.9,20.7,21.0$ $(\mathrm{d}, J=3 \mathrm{~Hz}), 25.7,26.4(\mathrm{dd}, J=11,8 \mathrm{~Hz}), 27.3,57.4(\mathrm{dd}, J=11,10 \mathrm{~Hz}), 114.6(\mathrm{dd}, J=302,297$ $\mathrm{Hz}) .{ }^{19} \mathrm{FNMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=15.7(\mathrm{~d}, J=157 \mathrm{~Hz}, 1 \mathrm{~F}), 26.1$ (dd, $\left.J=157,19 \mathrm{~Hz}, 1 \mathrm{~F}\right)$.
IR (neat): $v^{\sim}=2931,2858,1473,1252,1192,837 \mathrm{~cm}^{-1}$. EA: calcd. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{OSi}$: C $59.50 \%, \mathrm{H}$ 9.22%; Found: C 59.10%, H 9.38%.

1-dodecyloxy-2,2-difluorocyclopropane 173e
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.42(\mathrm{~m}, 19 \mathrm{H}), 1.42-1.52(\mathrm{~m}, 1 \mathrm{H})$, $1.59(\mathrm{dt}, J=14.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.61(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=14.1,17.9$, $18.0(\mathrm{t}, J=10 \mathrm{~Hz}), 22.7,25.9,29.3,29.4,29.5,29.6,29.6,29.6,31.9,56.9(\mathrm{dd}, J=14,9 \mathrm{~Hz}), 71.8$, $111.5(\mathrm{dd}, J=290,289 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=12.8(\mathrm{dddd}, J=165,16,6,2 \mathrm{~Hz}, 1 \mathrm{~F})$, 31.4 (dddd, $J=165,15,10,5 \mathrm{~Hz}, 1 \mathrm{~F}$). IR (neat): $v^{\sim}=2924,2854,1468,1225,1018,735 \mathrm{~cm}^{-1}$.

3.5.4. Synthesis of 5,5-difluorocyclopent-1-en-1-yl silyl ethers

(A) Typical procedure for the synthesis of 5,5-difluorocyclopent-1-en-1-yl silyl ethers.

To a p-xylene solution (0.5 mL) of nickel complex $174(4.8 \mathrm{mg}, 0.011 \mathrm{mmol})$ and $1,1,1,3,3,3$-hexafluoro-2,2-di(p-tolyl)propane ($6.2 \mathrm{mg}, 0.019 \mathrm{mmol}$) were added silyl dienol ether 172a ($53 \mathrm{mg}, 0.20 \mathrm{mmol}$) and p-xylene $\left(0.5 \mathrm{~mL}\right.$). The mixture was heated to $140^{\circ} \mathrm{C}$ and TFDA (80 $\mu \mathrm{L}, 0.41 \mathrm{mmol}$) was added. The resulting mixture was stirred at $140^{\circ} \mathrm{C}$ for 30 min and then cooled to room temperature. ${ }^{19} \mathrm{~F}$ NMR analysis of the mixture revealed that silyl enol ether $\mathbf{1 8 7 a}$ was formed in 82% yield. The mixture was diluted with dichloromethane $(2 \mathrm{~mL})$ and a saturated aqueous solution (10 mL) of sodium hydrogen carbonate was added. Organic materials were
extracted with dichloromethane three times. The combined extracts were washed with brine and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane) to afford silyl 5,5-difluorocyclopent-1-en-1-yl ether $\mathbf{1 8 7 a}$ as a yellow liquid (52 mg , 83% yield).
(B) Spectral data of 5,5-difluorocyclopent-1-en-1-yl silyl ethers.

1-[tert-Butyl(dimethyl)silyloxy]-5,5-difluoro-3-phenylcyclopent-1-ene 187a
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.22(\mathrm{~s}, 6 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 2.17$ (dddd, $J=17.5,15.5,14.0,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.82(\mathrm{ddt}, J=17.5,15.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.88(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $-4.8,18.2,25.5,40.6(\mathrm{t}, J=3 \mathrm{~Hz}), 41.9(\mathrm{dd}, J=25,25 \mathrm{~Hz}), 115.4(\mathrm{t}, J=7 \mathrm{~Hz}), 126.9,127.0,127.2$ $(\mathrm{t}, J=244 \mathrm{~Hz}), 128.7,144.0(\mathrm{~d}, J=5 \mathrm{~Hz}), 148.5(\mathrm{t}, J=24 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 64.4 (dddd, $J=248,15,14,2 \mathrm{~Hz}, 1 \mathrm{~F}), 69.1$ (dddd, $J=248,16,11,8 \mathrm{~Hz}, 1 \mathrm{~F})$.

IR (neat): $v^{\sim}=2931,2860,1655,1255,1024,742 \mathrm{~cm}^{-1}$.
HRMS (70 eV, EI +): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{OSi}[\mathrm{M}-t-\mathrm{Bu}]^{+}: 253.0859$; Found: 253.0855.

1-[tert-Butyl(dimethyl)silyloxy]-5,5-difluoro-3-(4-methylphenyl)cyclopent-1-ene 187b
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.22(\mathrm{~s}, 6 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 2.14(\mathrm{dddd}, J=18.0,15.5,14.0,4.0 \mathrm{~Hz}$, 1H) $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{ddt}, J=18.0,15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.83(\mathrm{~m}, 1 \mathrm{H}) 5.17(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.8,18.2$, $21.0,25.5,40.2(\mathrm{t}, J=3 \mathrm{~Hz}), 42.0(\mathrm{dd}, J=25,22 \mathrm{~Hz}), 115.7(\mathrm{t}, J=7 \mathrm{~Hz}), 126.9$, $127.3(\mathrm{t}, J=245$ $\mathrm{Hz}), 129.4,136.5,141.0(\mathrm{~d}, J=5 \mathrm{~Hz}), 148.4(\mathrm{t}, J=24 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=64.3$ (dddd, $J=247,16,14,2 \mathrm{~Hz}, 1 \mathrm{~F}), 69.1$ (dddd, $J=247,16,11,8 \mathrm{~Hz}, 1 \mathrm{~F}$). IR (neat): $v^{\sim}=2931,2860$, $1655,1174,650 \mathrm{~cm}^{-1}$. HRMS (70 eV, EI+): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{OSi}[\mathrm{M}-t-\mathrm{Bu}]^{+}: 267.1016$; Found: 267.1015.

1-[tert-Butyl(dimethyl)silyloxy]-3-(4-chlorophenyl)-5,5-difluorocyclopent-1-ene 187d
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.22(\mathrm{~s}, 6 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 2.06-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.81$ (ddt, $J=17.5$, $15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.84(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.8,18.2,25.5,40.0(\mathrm{t}, J=3 \mathrm{~Hz}$), $41.8(\mathrm{dd}, J=25$, $22 \mathrm{~Hz}), 114.8(\mathrm{t}, J=7 \mathrm{~Hz}), 126.9(\mathrm{t}, J=244 \mathrm{~Hz}), 128.3,128.9,132.6,142.5(\mathrm{~d}, J=5 \mathrm{~Hz}), 148.9(\mathrm{t}$, $J=24 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=64.1$ (dt, $J=248,15 \mathrm{~Hz}, 1 \mathrm{~F}$), 69.3 (dddd, $J=248,18$, $10,8 \mathrm{~Hz}, 1 F)$. IR (neat): $v^{\sim}=2956,2860,1655,1491,1363,1255,841 \mathrm{~cm}^{-1} . \operatorname{HRMS}(70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClF}_{2} \mathrm{OSi}[\mathrm{M}-t-\mathrm{Bu}]^{+}: 287.0470$; Found: 287.0468.

1-[tert-Butyl(dimethyl)silyloxy]-5,5-difluoro-3-propylcyclopent-1-ene 187g ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.18(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H})$, $1.25-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.86$ (dddd, $J=18.5,14.7,12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (ddt, $J=18.0,14.7,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.53-2.63(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.9,14.1$, 18.2, 20.5, 25.5, 34.5 (t, $J=3 \mathrm{~Hz}$), 38.7 (t, $J=5 \mathrm{~Hz}$), 38.9 (dd, $J=27,22 \mathrm{~Hz}), 116.4(\mathrm{t}, J=8 \mathrm{~Hz})$, $127.2(\mathrm{t}, J=244 \mathrm{~Hz}), 147.4(\mathrm{t}, J=25 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=65.7$ (dddd, $J=247$, $18,13,3 \mathrm{~Hz}, 1 \mathrm{~F}$), 69.5 (dddd, $J=247,19,11,8 \mathrm{~Hz}, 1 \mathrm{~F}$). IR (neat): $v^{\sim}=2931,2859,1655,1365$, 1242, 1176, 1099, $841 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{OSi}[\mathrm{M}-t-\mathrm{Bu}]^{+}$: 219.1016; Found: 219.1014.

1-[tert-Butyl(dimethyl)silyloxy]-5,5-difluoro-2-methyl-3-phenylcyclopent-1-ene $\mathbf{1 8 7 h}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.22(\mathrm{~s}, 6 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H}), 1.46(\mathrm{t}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.21(\mathrm{dddd}, \mathrm{J}=$ $18.0,15.0,10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{ddt}, J=18.0,15.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=10.0,8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.4,11.2,18.3,25.7,41.4(\mathrm{t}, J=24 \mathrm{~Hz}), 45.3(\mathrm{t}, J=2 \mathrm{~Hz})$, $126.9,127.2(\mathrm{t}, J=11 \mathrm{~Hz}), 127.4,127.5(\mathrm{t}, J=242 \mathrm{~Hz}), 128.8,142.5(\mathrm{t}, J=25 \mathrm{~Hz}), 143.0(\mathrm{~d}, J=5$ $\mathrm{Hz}) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=68.3(\mathrm{dm}, J=245 \mathrm{~Hz}, 1 \mathrm{~F}), 73.3(\mathrm{dm}, J=245 \mathrm{~Hz}, 1 \mathrm{~F})$. IR (neat): $v^{\sim}=2931,1691,1346,1215,862 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{OSi}$ $[\mathrm{M}-t-\mathrm{Bu}]^{+}: 267.1016$; Found: 267.1014.

2-Bromo-1-[tert-butyl(dimethyl)silyloxy]-5,5-difluoro-3-phenylcyclopent-1-ene 187i
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.29(\mathrm{~s}, 6 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 2.38(\mathrm{dddd}, J=18.0,15.0,9.0,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.91(\mathrm{ddt}, J=18.0,15.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{ddt}, J=11.0,9.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.2,18.4,25.6,42.0(\mathrm{t}, J=24 \mathrm{~Hz}), 46.4,113.1(\mathrm{t}, J=10 \mathrm{~Hz})$, $125.0(\mathrm{t}, J=246 \mathrm{~Hz}), 127.5,128.9,141.27,141.31,145.8(\mathrm{t}, J=25 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=68.2(\mathrm{ddd}, J=244,18,9 \mathrm{~Hz}, 1 \mathrm{~F}), 73.2(\mathrm{ddd}, J=244,18,11,9$ $\mathrm{Hz}, 1 \mathrm{~F})$. IR (neat): $\boldsymbol{v}^{\sim}=2860,1670,1340,1190,1041,845 \mathrm{~cm}^{-1}$.
HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrF}_{2} \mathrm{OSi}[\mathrm{M}-t-\mathrm{Bu}]^{+}: 330.9965$; Found: 330.9962.

1-[tert-Butyl(dimethyl)silyloxy]-5,5-difluoro-2,3-diphenylcyclopent-1-ene 187j
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.09(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 2.27(\mathrm{dddd}, J=17.5,15.0$, $9.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.91 (dddd, $J=18.5,15.0,11.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{tdd}, J=9.0,3.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.11-7.25 (m, 8H), $7.37(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.3,-4.3,18.4$, 25.7, $41.6(\mathrm{t}, J=24 \mathrm{~Hz}), 43.5,125.9,126.6,127.0(\mathrm{t}, J=8 \mathrm{~Hz}), 127.3(\mathrm{t}, J=243 \mathrm{~Hz}), 127.3,127.4$, $128.3,128.6,133.4,143.5(\mathrm{~d}, J=4 \mathrm{~Hz}), 143.5(\mathrm{t}, J=25 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 69.3 (ddd, $J=247,19,9 \mathrm{~Hz}, 1 \mathrm{~F}$), 74.2 (ddt, $J=247,18,11 \mathrm{~Hz}, 1 \mathrm{~F}$). IR (neat): $v^{\sim}=2931,1653$, 1367, 1182, 1038, $858 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z : calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{FOSi}[\mathrm{M}-\mathrm{HF}]^{+}: 366.1815$; Found: 366.1816.

9-[tert-Butyl(dimethyl)silyloxy]-8,8-difluorobicyclo[4.3.0]non-9-ene (187k)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.15(\mathrm{~s}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 1.15-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.88(\mathrm{~m}, 4 \mathrm{H})$, $1.95-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=13.0,4.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.7,-4.5,18.3,24.3,25.5,25.6,25.7,35.1(\mathrm{~d}, J=6 \mathrm{~Hz}), 35.8$ $(\mathrm{d}, J=5 \mathrm{~Hz}), 38.9(\mathrm{~d}, J=26,22 \mathrm{~Hz}), 127.8(\mathrm{t}, J=243 \mathrm{~Hz}), 130.3(\mathrm{t}, J=8 \mathrm{~Hz}), 138.1(\mathrm{t}, J=25 \mathrm{~Hz})$. ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=71.0(\mathrm{dm}, J=244 \mathrm{~Hz}, 1 \mathrm{~F}), 72.3(\mathrm{dm}, J=244 \mathrm{~Hz}, 1 \mathrm{~F}) . \mathrm{IR}$ (neat): $v^{\sim}=2929,2858,1693,1371,1169,995,837 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m/z: calcd. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{FOSi}[\mathrm{M}-\mathrm{HF}]^{+}: 268.1659$; Found: 268.1660 .
trans-1-[tert-Butyl(dimethyl)silyloxy]-5,5-difluoro-4-methyl-3-phenylcyclopent-1-ene 1871 and 4-[tert-Butyl(dimethyl)silyloxy]-3,3-difluoro-6-phenylhexa-1,4-diene $\mathbf{1 8 8}$
(d.r. $=79: 21$ isomeric mixture)
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: (187l) $\delta=0.23(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 1.16(\mathrm{dd}, J=7.0$, $2.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.12-2.24(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.30(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.36(\mathrm{~m}, 5 \mathrm{H})$; (188) $\delta=0.14(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 3.55(\mathrm{dt}, J=8.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}$, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{dt}, J=17.5,2.5 \mathrm{~Hz} 1 \mathrm{H}), 6.07(\mathrm{ddt}, J=17.5,10.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ($\mathbf{1 8 7 1}$) $\delta=-4.9,-4.8,10.7(\mathrm{~d}, J=9 \mathrm{~Hz}), 18.2,25.5,31.4(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}), 48.6(\mathrm{dd}, J=24,21 \mathrm{~Hz}), 114.6(\mathrm{dd}$, $J=9,7 \mathrm{~Hz}), 117.3(\mathrm{t}, J=241 \mathrm{~Hz}), 127.0,127.2,128.7143 .0(\mathrm{~d}, J=4 \mathrm{~Hz}), 148.6(\mathrm{dd}, J=26,23$ $\mathrm{Hz})$; (188) $\delta=-4.6,18.0,25.6,49.6(\mathrm{~d}, J=7 \mathrm{~Hz}), 112.2,119.5(\mathrm{t}, J=9 \mathrm{~Hz}), 126.0,126.5(\mathrm{t}, J=$ $247 \mathrm{~Hz})$, 128.3, 128.4, $132.2\left(\mathrm{t}, J=28 \mathrm{~Hz}\right.$), 140.9, $144.4(\mathrm{t}, J=30 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR (470 MHz , CDCl_{3}): (1871) $\delta=51.7$ (ddd, $\left.J=247,14,2 \mathrm{~Hz}, 1 \mathrm{~F}\right), 63.1$ (ddd, $\left.J=247,18,10 \mathrm{~Hz}, 1 \mathrm{~F}\right) ;$ (188) $\delta=$ 66.2 (d, $J=11 \mathrm{~Hz}$). IR (neat): $v^{\sim}=2931,2860,1655,1363,837,731 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z (1871) calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{FOSi}[\mathrm{M}-\mathrm{HF}]^{+}: 304.1659$; Found: 304.1656; (188) calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{FOSi}[\mathrm{M}-\mathrm{HF}]^{+}: 304.1659$; Found: 304.1655.

1871

3.5.5. Aminolysis of Nickel(II) Difluorocarbene Complex

To a toluene solution (4 mL) of nickel complex $\mathbf{1 7 5}(52 \mathrm{mg}, 0.083 \mathrm{mmol})$ were added 2,6-dimethylaniline ($100 \mathrm{~mL}, 0.809 \mathrm{mmol}$) and TFDA ($20 \mathrm{~mL}, 0.10 \mathrm{mmol}$) at room temperature. After stirring overnight, the resulting solid was collected by paper filtration, washed with ether, and dissolved in methanol. High-resolution mass-analysis (ESI ${ }^{+}$) revealed that the ion ($z=2$) corresponding to the aminolysis product of the nickel(II) difluorocarbene complex, $\mathrm{LNi}=\mathrm{C}=\mathrm{NAr}^{2+}$ ($\mathrm{L}=$ pincer-type NHC ligand, $\mathrm{Ar}=2,6$-dimethylphenyl) 195, was observed.

3.5.6. Derivatization of $\mathbf{5 , 5}$-difluorocyclopent-1-en-1-yl silyl ether

(A) Synthesis of ketone 196

To a THF solution (6 mL) of cyclic silyl enol ether $\mathbf{1 8 7 a}$ ($31 \mathrm{mg}, 0.10 \mathrm{mmol}$) and 1,1,1,3,3,3-hexafluoro-2,2-di(p-tolyl)propane ($4.0 \mathrm{mg}, 0.012 \mathrm{mmol}$) were added distilled water (1 mL), formic acid ($87 \mathrm{wt} \%, 3 \mathrm{~mL}$), and a THF solution of tetrabutylammonium fluoride ($1.0 \mathrm{~mol} / \mathrm{L}$, 0.20 mmol) at room temperature. The resulting solution was heated to $55^{\circ} \mathrm{C}$, stirred for 41 h , and then cooled to room temperature. A saturated aqueous solution (20 mL) of sodium hydrogen carbonate was added and organic materials were extracted with dichloromethane three times. The combined extracts were washed with a saturated aqueous solution of sodium hydrogen carbonate and brine, and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the filtrate was concentrated under reduced pressure. ${ }^{19}$ F NMR analysis of the resulting oil revealed that 0.080 mmol of ketone 196 was formed (80% yield).
(B) Synthesis of alcohol 197

A methanol solution (3 mL) containing ketone $196(0.192 \mathrm{mmol})$ was prepared by the method described in the section 3-5-6 (A). To this solution was added sodium borohydride ($15 \mathrm{mg}, 0.39$ mmol) at room temperature. The resulting mixture was heated to reflux, stirred for 2 h , and then cooled to room temperature. Water (5 mL) was added and organic materials were extracted with ethyl acetate three times. The combined extracts were washed with brine and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (pentane/dichloromethane $=5 / 1$ then dichloromethane) to give alcohol 197 as a colorless liquid (39 mg , quant, cis/trans $=64: 36$).

2,2-Difluoro-4-phenylcyclopentan-1-ol 197 (cis/trans $=67: 33$ diastereomeric mixture)
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: (cis isomer) $\delta=1.83$ (dddd, $\left.J=14.0,10.0,7.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.20-$ $2.36(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.64(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{tt}, J=10.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{tt}, J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 2 \mathrm{H})$; (trans isomer) $\delta=2.01-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.36(\mathrm{~m}, 3 \mathrm{H})$, 2.71 (ddddd, $J=18.0,15.0,13.5,10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{tt}, J=10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.30(\mathrm{~m}$, $1 \mathrm{H}), 7.21-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (cis isomer) $\delta=37.0(\mathrm{dd}$, $J=7,2 \mathrm{~Hz}), 39.4(\mathrm{~d}, J=2 \mathrm{~Hz}), 40.2(\mathrm{t}, J=23 \mathrm{~Hz}), 74.2(\mathrm{dd}, J=31,21 \mathrm{~Hz}), 126.7,127.0,128.2$ (dd, $J=256,251 \mathrm{~Hz}$), 128.7, 143.1; (trans isomer) $\delta=39.1$ (dd, $J=6,3 \mathrm{~Hz}$), 39.4 (d, $J=2 \mathrm{~Hz}$), $40.3(\mathrm{t}, J=24 \mathrm{~Hz}), 74.7(\mathrm{dd}, J=33,21 \mathrm{~Hz}), 126.6,126.9,128.7,129.8(\mathrm{dd}, J=256,251 \mathrm{~Hz}), 143.8$. ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (cis isomer) $\delta=50.2(\mathrm{dm}, J=233 \mathrm{~Hz}, 1 \mathrm{~F}), 58.1(\mathrm{ddt}, J=233,24,12$ $\mathrm{Hz}, 1 \mathrm{~F})$; (trans isomer) $\delta=47.1$ (dt, $J=236,10 \mathrm{~Hz}, 1 \mathrm{~F}), 63.8$ (ddddd, $J=236,22,18,8,3 \mathrm{~Hz}, 1 \mathrm{~F})$. IR (neat): $v^{\sim}=3396,3030,1496,1140,1061,698 \mathrm{~cm}^{-1} . \operatorname{HRMS}(70 \mathrm{eV}, \mathrm{EI}): m / z:(c i s$ isomer) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}[\mathrm{M}]^{+}$: 198.0856; Found: 198.0856; (trans isomer) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}[\mathrm{M}]^{+}$: 198.0856; Found: 198.0856.

cis-197

trans-197
(C) Synthesis of hydrazone 198

A methanol solution (5 mL) containing ketone $196(0.498 \mathrm{mmol})$ was prepared by the method described in the section 3-5-6 (A). To this solution was added tosylhydrazine ($136 \mathrm{mg}, 0.730 \mathrm{mmol}$) at room temerature. The resulting mixture was heated to reflux, stirred for 21 h , and then cooled to room temperature. The formed precipitates were seperated by filtration and washed with hexane. Removal of the remained solvents under reduced pressure gave hydrazone 198 as a colorless crystals ($93 \mathrm{mg}, 51 \%$ yield, the first crop). The filtrate was concentrated under reduced pressure and recystalization from chloroform gave 198 ($32 \mathrm{mg}, 18 \%$ yield, the second crop). The third crop of 198 was also obtained in a similar manner ($8 \mathrm{mg}, 5 \%$ yield).

2,2-Difluoro-4-phenylcyclopentan-1-one 4-methylbenzenesulfonylhydrazone 198
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.24$ (dddd, $\left.J=26.0,13.5,13.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.36$ (ddd, $J=18.2$, $11.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{td}, J=13.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=18.2,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.35-3.45(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.77(\mathrm{~s}$, $1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=21.7,33.3,37.3(\mathrm{~d}, J=7 \mathrm{~Hz}), 42.2$ (dd, $J=25,20 \mathrm{~Hz}$), 122.4 (dd, $J=257,246 \mathrm{~Hz}$), 126.6, 127.5, 128.1, 129.0, 129.7, 134.8, 140.4, 144.7, $152.1(\mathrm{t}, J=22 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=55.9(\mathrm{dd}, J=254,10 \mathrm{~Hz}, 1 \mathrm{~F}), 66.8$ (dddd, $J=254,26,14,4 \mathrm{~Hz}, 1 \mathrm{~F})$. IR (neat): $v^{\sim}=3205,1597,1496,1348,1165,769 \mathrm{~cm}^{-1}$. EA: Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$: C 59.33\%, H 4.98\%, N 7.69\%; Found: C 59.32\%, H 5.00\%, N 7.58\%.

Crystallographic Information for $\mathbf{1 9 8}$
data_at001
_audit_creation_method
SHELXL-97
_chemical_name_systematic
;
?
;
_chemical_name_common ?
_chemical_melting_point ?
_chemical_formula_moiety ?
_chemical_formula_sum
'C18 H18 F2 N2 O2 S'
chemical_formula_weight
364.40
loop_
_atom_type_symbol
_atom_type_description
_atom_type_scat_dispersion_real
_atom_type_scat_dispersion_imag
_atom_type_scat_source
'C' 'C 0.00330 .0016
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
$\begin{array}{lll} & \text { 'H' 'H' } 0.0000 \quad 0.0000\end{array}$
'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
$\begin{array}{llll} & \text { 'N' } & \text { 'N' } & 0.0061\end{array} 0.0033$

```
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'O' 'O' 0.0106 0.0060
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'F' 'F' 0.0171 0.0103
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'S' 'S' 0.1246 0.1234
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting ?
_symmetry_space_group_name_H-M ?
loop_
    _symmetry_equiv_pos_as_xyz
    'x, y, z'
    '-x, y+1/2, -z'
_cell_length_a 12.438(10)
_cell_length_b 5.549(4)
_cell_length_c 13.435(11)
_cell_angle_alpha 90.00
_cell_angle_beta 109.323(10)
_cell_angle_gamma 90.00
_cell_volume 875.0(12)
_cell_formula_units_Z 2
_cell_measurement_temperature 120(2)
_cell_measurement_reflns_used ?
_cell_measurement_theta_min ?
_cell_measurement_theta_max ?
_exptl_crystal_description ?
_exptl_crystal_colour ?
_exptl_crystal_size_max 0.11
_exptl_crystal_size_mid 0.03
_exptl_crystal_size_min 0.02
_exptl_crystal_density_meas ?
_exptl_crystal_density_diffrn 1.383
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 380
_exptl_absorpt_coefficient_mu 0.219
```

```
_exptl_absorpt_correction_type
_exptl_absorpt_correction_T_min
_exptl_absorpt_correction_T_max
_exptl_absorpt_process_details
_exptl_special_details
;
?
;
_diffrn_ambient_temperature 120(2)
_diffrn_radiation_wavelength 0.71073
_diffrn_radiation_type MoK¥a
_diffrn_radiation_source 'fine-focus sealed tube'
_diffrn_radiation_monochromator graphite
_diffrn_measurement_device_type ?
_diffrn_measurement_method ?
_diffrn_detector_area_resol_mean ?
_diffrn_standards_number ?
_diffrn_standards_interval_count ?
_diffrn_standards_interval_time ?
_diffrn_standards_decay_% ?
_diffrn_reflns_number 5040
_diffrn_reflns_av_R_equivalents 0.0559
_diffrn_reflns_av_sigmaI/netI 0.1273
_diffrn_reflns_limit_h_min -16
_diffrn_reflns_limit_h_max 15
_diffrn_reflns_limit_k_min -6
_diffrn_reflns_limit_k_max 7
_diffrn_reflns_limit_1_min -17
_diffrn_reflns_limit_1_max 14
_diffrn_reflns_theta_min 1.61
_diffrn_reflns_theta_max 27.52
_reflns_number_total 3447
_reflns_number_gt 1964
_reflns_threshold_expression >2sigma(I)
_computing_data_collection ?
```

```
_computing_cell_refinement ?
_computing_data_reduction ?
_computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)'
_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)'
_computing_molecular_graphics ?
_computing_publication_material ?
_refine_special_details
;
```

Refinement of $\mathrm{F}^{\wedge} 2^{\wedge}$ against ALL reflections. The weighted R -factor wR and goodness of fit S are based on $\mathrm{F}^{\wedge} 2^{\wedge}$, conventional R -factors R are based on F , with F set to zero for negative $\mathrm{F}^{\wedge} 2^{\wedge}$. The threshold expression of $\mathrm{F}^{\wedge} 2^{\wedge}>2 \operatorname{sigma}\left(\mathrm{~F}^{\wedge} 2^{\wedge}\right)$ is used only for calculating R -factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on $\mathrm{F}^{\wedge} 2^{\wedge}$ are statistically about twice as large as those based on F , and R factors based on ALL data will be even larger.

```
,
```

_refine_ls_structure_factor_coef Fsqd
_refine_1s_matrix_type full
_refine_1s_weighting_scheme calc
_refine_ls_weighting_details
'calc $\mathrm{w}=1 /\left[¥ \mathrm{~s}^{\wedge} 2^{\wedge}\left(\mathrm{Fo}^{\wedge} 2^{\wedge}\right)+(0.1000 \mathrm{P})^{\wedge} 2^{\wedge}+0.0000 \mathrm{P}\right]$ where $\mathrm{P}=\left(\mathrm{Fo}^{\wedge} 2^{\wedge}+2 \mathrm{Fc}^{\wedge} 2^{\wedge}\right) / 3^{\prime}$
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
_refine_1s_hydrogen_treatment mixed
_refine_ls_extinction_method none
_refine_ls_extinction_coef ?
_refine_ls_abs_structure_details
'Flack H D (1983), Acta Cryst. A39, 876-881'
_refine_ls_abs_structure_Flack 0.38(18)
_refine_ls_number_reflns 3447
_refine_ls_number_parameters 265
_refine_ls_number_restraints 1
_refine_ls_R_factor_all 0.1318
_refine_ls_R_factor_gt 0.0632

refine_ls_wR_factor_ref _refine_ls_wR_factor_gt				0.1810		
				0.1392		
_refine_1s_goodness_of_fit_ref				0.895		
refine_ls_restrained_S_all				0.895		
_refine_ls_shift/su_max				0.428		
_refine_ls_shift/su_mean				0.003		
loop_						
_atom_site_label						
_atom_site_type_symbol						
atom_site_fract_x						
atom_site_fract_y						
atom_site_fract_z						
_atom_site_U_iso_or_equiv						
_atom_site_adp_type						
_atom_site_occupancy						
atom_site_symmetry_multiplicity						
_atom_site_calc_flag						
_atom_site_refinement_flags						
_atom_site_disorder_assembly						
_atom_site_disorder_group						
S1	S	0.34681(10)	0.7761(3)	0.49203(10)	0.0289(3)	Uani $11 \mathrm{~d} \ldots$
O1	O	0.4640(3)	0.7748(9)	0.5566(3)	0.0339(8)	Uani $11 \mathrm{~d} .$.
O 2	O	0.2913(3)	0.9987 (7)	0.4513(3)	0.0340(10)	Uani $11 \mathrm{~d} \ldots$
F1	F	0.0599(3)	0.5454(7)	0.1287(3)	$0.0498(10)$	Uani $11 \mathrm{~d} \ldots$
N1	N	0.3444(4)	0.6052(9)	0.3924(4)	0.0295(12)	Uani $11 \mathrm{~d} \ldots$
H30	H	0.382(5)	0.499(12)	$0.403(5)$	0.027(19)	Uiso $11 \mathrm{~d} \ldots$
N6	N	0.2350(3)	0.5574(9)	0.3230(4)	$0.0315(11)$	Uani $11 \mathrm{~d} \ldots$
F4	F	0.0370(2)	0.2581(8)	0.2264(3)	0.0438(9)	Uani $11 \mathrm{~d} \ldots$
C8	C	0.2257(4)	$0.3885(10)$	0.2563(5)	$0.0269(13)$	Uani 11 d . A.
C9	C	0.2676(4)	0.6309(9)	0.5598(4)	$0.0263(12)$	Uani $11 \mathrm{~d} \ldots$
C10	C	0.1095(5)	$0.3395(11)$	0.1782(5)	$0.0362(16)$	Uani 11 d . A .
	C	0.0983 (5)	0.5900(12)	0.6049(5)	$0.0375(15)$	Uani $11 \mathrm{~d} \ldots$
	H	0.0241	0.6447	0.5993	0.045	Uiso 11 calc R
	C	0.3099 (5)	0.2269(11)	0.2338(5)	0.0321(15)	Uani $11 \mathrm{~d} \ldots$
H29	H	0.385(7)	0.312(18)	0.230(6)	0.10(3)	Uiso $11 \mathrm{~d} \ldots$

atom_site_aniso_U_23 atom_site_aniso_U_13						
_atom_site_aniso_U_12						
S1	0.0278(6)	0.0311(7)	0.0290(7)	-0.0028(8)	0.0111(5)	$-0.0030(7)$
O1	0.0185(16)	0.044(2)	0.035(2)	-0.004(2)	0.0034(15)	-0.007(2)
O 2	0.045(2)	0.027(2)	0.034(2)	$0.0022(18)$	0.017(2)	0.0021(18)
F1	0.0393(19)	0.059(3)	0.041(2)	0.011(2)	$0.0008(17)$	-0.0043(19)
N1	0.026(3)	0.027(3)	0.034(3)	-0.013(2)	0.008(2)	-0.001(2)
N6	0.022(2)	0.038(3)	0.031(3)	-0.007(2)	0.004(2)	-0.003(2)
F4	0.0282(15)	0.048(2)	0.058(2)	-0.003(2)	$0.0179(15)$	-0.0084(19)
C8	0.021(3)	0.026 (3)	0.033(3)	-0.003(3)	0.009(2)	-0.002(2)
C9	0.032(3)	0.020(3)	0.029(3)	-0.003(2)	0.013(2)	-0.007(2)
C10	0.027(3)	0.039(5)	0.044(4)	-0.010(3)	0.014(3)	-0.002(2)
C11	0.031(3)	0.042(4)	0.045(4)	-0.004(3)	0.020(3)	-0.007(3)
C12	0.027(3)	0.035(4)	0.032(3)	0.000(3)	0.007(3)	0.002(3)
C13	0.035(3)	0.025(3)	0.049(4)	0.000(3)	0.019(3)	-0.006(3)
C14	0.032(3)	0.029(4)	0.036(3)	0.002(2)	0.012(2)	0.003(2)
C15	0.052(3)	0.033(4)	0.044(4)	0.005(3)	0.020(3)	-0.007(3)
C16	0.045(4)	0.038(4)	0.041(4)	-0.006(3)	0.023(3)	-0.008(3)
C17	0.059(4)	0.046(4)	0.065(4)	0.001(4)	0.036(3)	-0.015(4)
C18	0.036(3)	0.045(4)	0.055(4)	-0.007(4)	0.019(3)	0.008(3)
C19	0.044(4)	0.041(4)	0.078(6)	0.003(4)	0.035(4)	0.004(3)
C20	0.061(5)	$0.056(5)$	0.072(6)	-0.022(4)	0.043(4)	-0.005(4)
C21	0.040(4)	0.067(5)	0.042(4)	-0.023(4)	0.005(3)	0.014(3)
C22	0.056(5)	0.061(5)	0.052(5)	-0.023(4)	0.005(4)	0.014(3)
C24	0.072(5)	0.071(7)	0.057(5)	-0.020(4)	0.031(4)	0.003(4)
C25	0.030(4)	0.112(8)	0.088(6)	-0.076(6)	0.015(4)	-0.006(4)
C1	0.030(6)	0.032(9)	0.023(7)	-0.007(6)	0.011(5)	-0.003(5)
C26	0.042(8)	0.017(10)	0.030(9)	-0.002(7)	0.015(7)	0.012(7)

_geom_special_details
;
All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

```
;
loop_
    _geom_bond_atom_site_label_1
    _geom_bond_atom_site_label_2
    _geom_bond_distance
    _geom_bond_site_symmetry_2
    _geom_bond_publ_flag
S1 O1 1.429(3). ?
S1 O2 1.433(4). ?
S1 N1 1.632(5). ?
S1 C9 1.744(5). ?
F1 C10 1.362(7). ?
N1 N6 1.397(6). ?
N1 H30 0.73(6). ?
N6 C8 1.275(7). ?
F4 C10 1.351(6). ?
C8 C12 1.484(8). ?
C8 C10 1.504(7). ?
C9 C14 1.384(7). ?
C9 C13 1.392(8). ?
C10 C25 1.495(9). ?
C11 C14 1.386(8). ?
C11 C16 1.389(9). ?
C11 H1 0.9500. ?
C12 C26 1.506(14). ?
C12 C1 1.606(13). ?
C12 H29 1.06(9). ?
C12 H28 0.89(7). ?
C13 C15 1.383(8). ?
C13 H2 0.9500. ?
C14 H3 0.9500. ?
C15 C16 1.382(9). ?
C15 H4 0.9500. ?
```

C16	C17	1.503(9) .	?
C17	H5	0.9800	?
C17	H6	0.9800	?
C17	H7	0.9800	?
C18	C21	1.367(9) .	?
C18	C19	1.372(9) .	?
C18	H8	0.9500	?
C19	C20	1.386(10)	?
C19	H9	0.9500 .	?
C20	C24	$1.350(10)$.	?
C20	H10	0.9500 .	?
C21	C22	1.384(10) .	?
C21	C26	$1.518(14)$.	?
C21	C1	1.583(13) .	?
C22	C24	1.366(10)	?
C22	H11	0.9500 .	?
C24	H12	0.9500 .	?
C25	C1	$1.372(14)$.	?
C25	C26	1.497(18)	?
C25	H25	0.94(5) .	?
C25	H31	1.35(15) .	?
C1	H13	1.13(8) .	?
C26	H26	0.95(12) .	?
loop _geo	n_ang n_ang n_ang __ang n_ang n_ang n_ang	_atom_site _atom_site _atom_site __site_symm __site_symm _publ_flag	_1 1 l_2 el_3 _1 _3
O1	S1	O2 120.2	$?$
O1	S1	N1 103.5	
O2	S1	N1 108.2	?
O1	S 1	C9 108.6(. ?

O2 S1 C9 108.3(2).. ?
N1 S1 C9 107.4(3).. ?
N6 N1 S1 114.0(4).. ?
N6 N1 H30 113(5).. ?

S1 N1 H30 118(5).. ?
C8 N6 N1 116.7(4) . . ?
N6 C8 C12 133.0(5).. ?
N6 C8 C10 117.8(5).. ?
C12 C8 C10 109.2(5).. ?
C14 C9 C13 120.4(5).. ?
C14 C9 S1 120.5(4).. ?
C13 C9 S1 119.1(4).. ?
F4 C10 F1 104.4(4).. ?
F4 C10 C25 111.9(6).. ?
F1 C10 C25 112.7(6).. ?
F4 C10 C8 111.5(5).. ?
F1 C10 C8 111.4(5).. ?
C25 C10 C8 105.2(5).. ?
C14 C11 C16 121.3(5).. ?
C14 C11 H1 119.3.. ?
C16 C11 H1 119.3.. ?
C8 C12 C26 104.2(6).. ?
C8 C12 C1 100.7(5).. ?
C26 C12 C1 34.8(6).. ?
$\mathrm{C} 8 \quad \mathrm{C} 12 \mathrm{H} 29$ 115(5).. ?
C26 C12 H29 102(4).. ?
C1 C12 H29 131(5).. ?
C8 C12 H28 120(4).. ?
C26 C12 H28 120(4).. ?
C1 C12 H28 95(4).. ?
H29 C12 H28 94(6).. ?
C15 C13 C9 119.5(6).. ?
C15 C13 H2 120.2.. ?
C9 C13 H2 120.2.. ?
C11 C14 C9 119.0(5) .. ?

C11	C14	H3	120.5
C9	C14	H3	120.5
C13	C15	C16	121.0(6)
C13	C15	H4	119.5
C16	C15	H4	119.5
C15	C16	C11	118.7(6)
C15	C16	C17	120.3(
C11	C16	C17	121.0(6)
C16	C17	H5	109.5
C16	C17	H6	109.5
H5	C17	H6	109.5
C16	C17	H7	109.5
H5	C17	H7	109.5
H6	C17	H7	109.5
C21	C18	C19	120.6(6)
C21	C18	H8	119.7
C19	C18	H8	119.7
C18	C19	C20	120.2(7)
C1	C19	H9	119.9..
C20	C19	H9	119.9
C24	C20	C19	119.5(7)
C24	C20	H10	120.3..
C19	C20	H10	120.3
C18	C21	C22	118.1(6)
C18	C21	C26	125.6(8)
C22	C21	C26	113.6(8)
C18	C21	C1	115.7(7)
C22	C21	C1	123.1(7)
C26	C21	C1	35.0(6)
C24	C22	C21	121.5(7)
C24	C22	H11	119.3
C21	C22	H11	119.3
C20	C24	C22	120.1(7)
C20	C24	H12	119.9
C22	C24	H12	119.9

| C 1 | C 25 | C 26 | $37.7(6) \ldots$ |
| :--- | :--- | :--- | :--- | :--- |
| C 1 | C 25 | C 10 | $107.5(7) \ldots$ |$?$

C9	S1	N1	N6	58.5(5).
S1	N1	N6	C8	-166.4(4)
N1	N6	C8	C12	-1.4(9)
N1	N6	C8	C10	-177.8(5)
O1	S1	C9	C14	142.3(5)
O2	S1	C9	C14	10.3(5)
N1	S1	C9	C14	-106.3(5).
O1	S1	C9	C13	-39.3(5)
O2	S1	C9	C13	-171.4(4).
N1	S1	C9	C13	72.0(5)
N6	C8	C10	F4	-65.4(7)
C12	C8	C10	F4	117.3(5)
N6	C8	C10	F1	50.7(7)
C12	C8	C10	F1	-126.5(5)
N6	C8	C10	C25	173.1(6)
C12	C8	C10	C25	-4.2(7)
N6	C8	C12	C26	-155.5(10)
C10	C8	C12	C26	21.1(11)
N6	C8	C12	C1	169.0(9)
C10	C8	C12	C1	-14.4(9)
C14	C9	C13	C15	0.0(9)
S1	C9	C13	C15	-178.4(5).
C16	C11	C14	C9	1.2(9)
C13	C9	C14	C11	-0.4(8)
S1	C9	C14	C11 1	77.9(4)
C9	C13	C15	C16	-0.3(10)
C13	C15	C16	C11	1.1(10)
C13	C15	C16	C17	179.8(6)
C14	C11	C16	C15	-1.5(10) .
C14	C11	C16	C17	179.8(6)
C21	C18	C19	C20	0.7(11) .
C18	C19	C20	C24	-1.4(11).
C19	C18	C21	C22	$1.0(11)$
C19	C18	C21	C26	-158.9(12)
C19	C18	C21	C1	161.7(9)

C18	C21	C22	C24	-2.0(12)
C26	C21	C22	C24	160.3(11)
C1	C21	C22	C24	-161.2(10)
C19	C20	C24	C22	0.4(12)
C21	C22	C24	C20 1	.3(12)
F4	C10	C25	C1	-96.4(10)
F1	C10	C25	C1	146.4(10)
C8	C10	C25	C1	$24.8(11)$
F4	C10	C25	C26	$-136.0(10$
F1	C10	C25	C26	106.8(10)
C8	C10	C25	C26	-14.8(11)
C26	C25	C1	C21	-58.9(13)
C10	C25	C1	C21	-154.6(10
C26	C25	C1	C12	61.3(13)
C10	C25	C1	C12	-34.3(12)
C18	C21	C1	C25	-179.7(10)
C22	C21	C1	C25	-20.0(18)
C26	C21	C1	C25	64.3(15)
C18	C21	C1	C12	61.0(13)
C22	C21	C1	C12	$-139.4(8)$
C26	C21	C1	C12	-55.1(12)
C8	C12	C1	C25	30.2(12)
C26	C12	C1	C25	-69.3(15)
C8	C12	C1	C21	155.8(8)
C26	C12	C1	C21	56.2(11)
C1	C25	C26	C12	-68.6(13)
C10	C25	C26	C12	28.0(14)
C1	C25	C26	C21	60.3(13)
C10	C25	C26	C21	156.9(10)
C8	C12	C26	C25	-29.8(13)
C1	C12	C26	C25	$58.6(14)$
C8	C12	C26	C21	-156.2(12)
C1	C12	C26	C21	-67.9(14)
C18	C21	C26	C25	-138.1(10)
C22	C21	C26	C25	61.2(16)

C 1	C 21	C 26	C 25	$-53.4(14) \ldots$	$?$
C 18	C 21	C 26	C 12	$-16(2) \ldots$	$?$
C 22	C 21	C 26	C 12	$-176.2(11) \ldots$	$?$
C 1	C 21	C 26	C 12	$69.1(15) \ldots$	$?$

loop_

```
_geom_hbond_atom_site_label_D
_geom_hbond_atom_site_label_H
_geom_hbond_atom_site_label_A
_geom_hbond_distance_DH
_geom_hbond_distance_HA
_geom_hbond_distance_DA
_geom_hbond_angle_DHA
_geom_hbond_site_symmetry_A
N1 H30 O1 0.73(6) 2.20(6) 2.903(7) 161(6) 2_646
_diffrn_measured_fraction_theta_max 0.984
_diffrn_reflns_theta_full 27.52
_diffrn_measured_fraction_theta_full 0.984
_refine_diff_density_max 0.248
_refine_diff_density_min -0.450
_refine_diff_density_rms 0.068
```

(D) Synthesis of oxime 199

To a THF solution (6 mL) of cyclic silyl enol ether $187 \mathrm{a}(311 \mathrm{mg}, 1.00 \mathrm{mmol})$ were added formic acid $(87 \%, 3 \mathrm{~mL})$, distiled water (1 mL), and a THF solution (2.00 mL) of tetrabutylammonium fluoride ($1.0 \mathrm{~mol} / \mathrm{L}, 2.0 \mathrm{mmol}$). The resulting mixture was heated to $55^{\circ} \mathrm{C}$ stirred for 3.5 d , and then cooled to room temperature. Hydroxyamine hydrochloride ($106 \mathrm{mg}, 1.52$ mmol) was added and the mixture was heated to $50^{\circ} \mathrm{C}$, stirred for 24 h , and then cooled to room temperature. A saturated aqueous solution (20 mL) of sodium hydrogen carbonate was added and organic materials were extracted with ethyl acetate three times. The combined extracts were washed with a saturated aqueous solution of sodium hydrogen carbonate and brine, and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by columnchromatography on silica gel (hexane/ethyl acetate $=10 / 1$) to give oxime 199 as yellow crystals ($184 \mathrm{mg}, 87 \%$ yield).

2,2-Difluoro-4-phenylcyclopentan-1-one oxime 199

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.31$ (dddd, $J=26.0,14.0,14.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (ddd, $J=19.0$, $11.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{tdd}, J=14.0,7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{ddt}, J=19.0,7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{tt}$, $J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $8.22(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=32.9,37.4(\mathrm{~d}, J=7 \mathrm{~Hz}), 42.8(\mathrm{dd}, J=25,20 \mathrm{~Hz})$, 123.2 (dd, $J=256,246 \mathrm{~Hz}$), 126.7, 127.3, 128.9, 141.0, $156.6(\mathrm{t}, J=21 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR (470 MHz , CDCl_{3}): $\delta=56.7$ (dd, $J=252,10 \mathrm{~Hz}, 1 \mathrm{~F}$), 67.6 (dddd, $J=252,26,14,2 \mathrm{~Hz}, 1 \mathrm{~F}$). IR (neat): $v^{\sim}=$ $3269,1456,1180,912,748 \mathrm{~cm}^{-1}$. HRMS (70 eV, EI): m/z calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{2} \mathrm{NO}[\mathrm{M}]^{+}: 211.0809$; Found: 211.0809.

(E) Synthesis of enone 200

To a dichloromethane solution (300 mL) of cyclic silyl enol ether 187 ($64 \mathrm{mg}, 0.21 \mathrm{mmol}$) was added N-bromosuccinimide ($38 \mathrm{mg}, 0.22 \mathrm{mmol}$) at room temperature. The resulting mixture was stirred for 96 h . A saturated aqueous solution (30 mL) of sodium hydrogen carbonate was added and most of the organic solvent was removed under reduced pressure. Organic materials were extracted with dichloromethane three times. The combined extracts were washed with brine and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=10 / 1$) to give enone $\mathbf{2 0 0}$ as colorless crystals ($34 \mathrm{mg}, 86 \%$ yield).

5,5-Difluoro-3-phenylcyclopent-2-en-1-one $\mathbf{2 0 0}$

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.44(\mathrm{td}, J=12.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{tt}, J=2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=39.0(\mathrm{t}, J=26 \mathrm{~Hz}), 115.5(\mathrm{t}, J=255 \mathrm{~Hz}), 123.3(\mathrm{t}, J=3 \mathrm{~Hz}), 127.2,129.3$, 132.3, 133.1, 169.2 ($\mathrm{t}, J=6 \mathrm{~Hz}$), $192.9(\mathrm{t}, J=26 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=50.6(\mathrm{td}, J=12,2 \mathrm{~Hz}) . \mathrm{IR}$ (neat): $v^{\sim}=3101,2927,1736,1593,1338,1057,906 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}$): m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}[\mathrm{M}]^{+}$: 194.0543; Found: 194.0544.
(F) Synthesis of epoxide 201

To a dichloromethane solution (4 mL) of cyclic silyl enol ether $\mathbf{1 8 7 a}$ ($237 \mathrm{mg}, 0.763 \mathrm{mmol}$) was added a dichloromethane solution (6 mL) of m-chloroperbenzoic acid ($m \mathrm{CPBA}, 417 \mathrm{mg}, 2.42$ $\mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. The resulting mixture was slowly warmed to room temperature and stirred for 41 h. A saturated aqueous solution (10 mL) of sodium hydrogen carbonate was added and organic materials were extracted with dichloromethane three times. The combined extracts were washed with brine and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the
filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=10 / 1$) to give epoxide 201 as a colorless liquid ($212 \mathrm{mg}, 85 \%$ yield).

2-[tert-Butyl(dimethyl)silyloxy]-2,3-epoxy-1,1-difluoro-4-phenylcyclopentane 201 (81:19 diastereomeric mixture)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (major isomer) $\delta=0.15(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 2.24$ (ddd, $J=20.0,15.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dtd}, J=24.0,15.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=10.0,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.66(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.38(\mathrm{~m}, 5 \mathrm{H})$; (minor isomer) $\delta=0.18(\mathrm{~s}, 3 \mathrm{H}), 0.23(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}$, 9H), 2.09 (dddd, $J=26.0,14.0,12.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37-2.46 (m, 1H), 3.37 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.81(\mathrm{dd}, \mathrm{J}=2.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.38(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.1,-4.2$, 17.8, 25.4, 37.6 (t, $J=23 \mathrm{~Hz}$), 38.3 (t, $J=23 \mathrm{~Hz}$), 39.9 (d, $J=7 \mathrm{~Hz}$), 40.9 (d, $J=7 \mathrm{~Hz}$), 64.5 (d, $J=$ $6 \mathrm{~Hz}), 65.7$ (d, $J=6 \mathrm{~Hz}$), 83.3 (dd, $J=36,26 \mathrm{~Hz}$), 85.0 (dd, $J=36,26 \mathrm{~Hz}$), 124.0 (dd, $J=262,245$ Hz), 124.1 (dd, $J=258,246 \mathrm{~Hz}$), 127.4, 127.4 127.6, 127.6, 128.8, 129.0, 138.9, 139.5. ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): (major isomer) $\delta=45.6$ (ddd, $J=243,15,3 \mathrm{~Hz}, 1 \mathrm{~F}$), 62.5 (dddd, $J=243,24$, $20,3 \mathrm{~Hz}, 1 \mathrm{~F})$; (minor isomer) $\delta=43.7(\mathrm{dd}, J=243,12 \mathrm{~Hz}, 1 \mathrm{~F}), 54.8(\mathrm{ddd}, J=243,26,18 \mathrm{~Hz}, 1 \mathrm{~F})$. IR (neat): $v^{\sim}=2931,1437,1254,1174,1059,837 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}$): m / z (major isomer) Calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{Si}$ [M-t-Bu] ${ }^{+}$: 269.0809; Found: 269.0809; (minor isomer) calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}-\mathrm{t}-\mathrm{Bu}]^{+}: 269.0809$; Found: 269.0807.
(G) Synthesis of enone 202

To a THF solution (1 mL) of epoxide $201(27 \mathrm{mg}, 0.083 \mathrm{mmol})$ was added an aqueous solution (1 mL) of potassium hydrogen difluoride ($6.2 \mathrm{mg}, 0.079 \mathrm{mmol}$) at room temperature. The resulting mixture was stirred for 46 h . A saturated aqueous solution (5 mL) of sodium hydrogen carbonate was added and organic materials were extracted with ethyl acetate three times. The combined extracts were washed with brine and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=5 / 1$) to give enone 202 as colorless crystals ($8.6 \mathrm{mg}, 54 \%$ yield).

3-Fluoro-2-hydroxy-5-phenylcyclopent-2-en-1-one 202
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.74(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=18.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}$,
$2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=31.7(\mathrm{~d}, J=14 \mathrm{~Hz}), 48.2,127.5,127.7,129.1,132.8,137.2$, $164.9(\mathrm{~d}, J=299 \mathrm{~Hz}), 199.7(\mathrm{~d}, J=11 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=56.0(\mathrm{~s})$. IR (neat): v^{\sim} $=3257,1734,1660,1381,1329,1219,1101 \mathrm{~cm}^{-1}$. HRMS (ESI, negative): m / z clcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{FO}_{2}$ [M-H] : 191.0508; Found: 191.0508.

3.5.7. Preparation of metal bromodifluoroacetate

(A) Typical procedure for the preparation of sodium bromodifluoroacetate.

To a methanol (30 mL) solution of sodium hydroxide ($1.99 \mathrm{~g}, 49.8 \mathrm{mmol}$) was added ethyl bromodifluoroacetate $(6.5 \mathrm{~mL}, 50.3 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred for 12 h at room temperature, and then heated at $60^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 3 h at $60^{\circ} \mathrm{C}$, the reaction mixture was concentrated in vacuo. The residue was azeotropic removal of water with toluene to give sodium bromodifluoroacetate $(9.17 \mathrm{~g}, 93 \%)$ and stored in glove box.

3.5.8. Synthesis of 4,4-difluorocyclopent-1-en-1-yl silyl ether

(A) Typical procedure for the synthesis of 4,4-difluorocyclopent-1-en-1-yl silyl ethers.

To an acetonitrile (1.00 mL) suspension of copper(I) catalyst 204b ($10 \mathrm{mg}, 0.016 \mathrm{mmol}$) and sodium bromodifluoroacetae ($72 \mathrm{mg}, 0.366 \mathrm{mmol}$), was added an acetonitrile $(1.8 \mathrm{~mL})$ solution of dienol silyl ether $\mathbf{1 8 7 a}(87.6 \mathrm{mg}, 0.336 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred and heated at $50^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 12 h at $50^{\circ} \mathrm{C}$, hexane $(5.0$ $\mathrm{mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(5.0 \mathrm{~mL})$ were added at $0{ }^{\circ} \mathrm{C}$ to quench the reaction at room temperature. Organic materials were extracted with hexane five times, the combined extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo. The residue was purified by column chromatography (SiO_{2} deactivated by $\mathrm{H}_{2} \mathrm{O} 15 \mathrm{vol} \%$, hexane only) to give five-membered difluoroenol silyl ether 203a ($74.0 \mathrm{mg}, 71 \%$) as a colorless oil.
(B) Spectral data of 4,4-difluorocyclopent-1-en-1-yl silyl ethers.

1-[tert-Butyl(dimethyl)silyloxy]-4,4-difluoro-3-phenylcyclopent-1-ene 203a
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.23(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 2.86(\mathrm{t}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.17(\mathrm{dd}, J=19.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.74(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.31-$ $7.37(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.6,18.1,25.6,43.5(\mathrm{t}, J=27 \mathrm{~Hz}), 56.1(\mathrm{dd}, J=$ $27,24 \mathrm{~Hz}), 103.3(\mathrm{~d}, J=3 \mathrm{~Hz}), 127.0(\mathrm{dd}, J=256,253 \mathrm{~Hz}), 127.5,128.3,128.7,136.8,151.0 .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=63.9$ (dtdd, $J=228,14,8,2 \mathrm{~Hz}, 1 \mathrm{~F}$), 71.6 (ddtd, $J=228,20,14,2$ $\mathrm{Hz}, 1 \mathrm{~F})$. IR (neat); $v^{\sim}=2931,1645,1255,906,731 \mathrm{~cm}^{-1}$. HRMS (70 eV, EI): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{OSi}\left([\mathrm{M}]^{+}\right): 310.1565$; found: 310.1580.

1-[tert-Butyl(dimethyl)silyloxy]-4,4-difluoro-3-(4-methylphenyl)cyclopent-1-ene 203b
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.23(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{t}, J=$ $14.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{dd}, J=20.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.73(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.17(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-4.6,18.1,21.1,25.6,43.4(\mathrm{t}, J=28 \mathrm{~Hz}), 55.7(\mathrm{dd}, J=27,23 \mathrm{~Hz}), 103.4(\mathrm{~d}$, $J=3 \mathrm{~Hz}$), $127.0(\mathrm{dd}, J=256,253 \mathrm{~Hz}), 128.5,129.0,133.7(\mathrm{t}, J=4 \mathrm{~Hz}), 137.2,150.8(\mathrm{t}, J=7 \mathrm{~Hz})$. ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=64.9$ (dtdd, $J=227,14,8,3 \mathrm{~Hz}$), 72.7 (ddtd, $J=227,20,14,2$ Hz). IR (neat); $v^{\sim}=2956,2931,2860,1645,1340,835 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}$): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{OSi}\left([\mathrm{M}]^{+}\right): 324.1721$; found: 324.1716 .

1-[tert-Butyl(dimethyl)silyloxy]-4,4-difluoro-3-(4-methoxyphenyl)cyclopent-1-ene 203c
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.23(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 2.84(\mathrm{t}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{dd}, J=19.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.6,18.1,25.6,43.4(\mathrm{t}, J=27 \mathrm{~Hz}$), $55.3(\mathrm{dd}, J=27,23$ $\mathrm{Hz}), 55.2,103.4(\mathrm{~d}, J=3 \mathrm{~Hz}), 127.0(\mathrm{dd}, J=255,253 \mathrm{~Hz}), 128.7(\mathrm{dd}, J=5,3 \mathrm{~Hz}), 150.8(\mathrm{t}, J=7$ $\mathrm{Hz}), 159.0 .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=60.2(\mathrm{dtdd}, J=227,14,7,2 \mathrm{~Hz}$), $71.2(\mathrm{ddt}, J=227$, $19,14 \mathrm{~Hz}$). IR (neat); $\boldsymbol{v}^{\sim}=2956,2931,2860,1647,1514,1342,1252,837 \mathrm{~cm}^{-1} . \operatorname{HRMS}(70 \mathrm{eV}$, EI): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{O}_{2} \mathrm{Si}\left([\mathrm{M}]^{+}\right): 340.1670$; found: 340.1667 .

1-[tert-Butyl(dimethyl)silyloxy]-3-(4-bromophenyl)-4,4-difluorocyclopent-1-ene 203e
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.22(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 2.76-2.92(\mathrm{~m}, 2 \mathrm{H}), 4.12$ (dd, $J=19.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.69(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.60,-4.57,18.1,25.6,43.5(\mathrm{t}, J=27 \mathrm{~Hz}$), $55.6(\mathrm{dd}, J=27,24$ $\mathrm{Hz}), 102.7,121.5,126.6(\mathrm{dd}, J=256,254 \mathrm{~Hz}), 130.3,131.4,135.8,151.4(\mathrm{t}, J=7 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=64.1$ (dtdd, $\left.J=228,14,8,3 \mathrm{~Hz}, 1 \mathrm{~F}\right), 71.3$ (ddtd, $\left.J=228,19,14,3 \mathrm{~Hz}, 1 \mathrm{~F}\right)$. IR (neat); $v^{\sim}=2931,1645,1487,1342,904,729 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}$): m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{BrF}_{2} \mathrm{OSi}\left([\mathrm{M}]^{+}\right): 388.0670$; found: 388.0667 .

1-[tert-Butyl(dimethyl)silyloxy]-4,4-difluoro-3-(2-naphthyl)cyclopent-1-ene 203f
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.26(\mathrm{~s}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 2.91(\mathrm{t}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.34(\mathrm{dd}, J=19.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.83(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.49(\mathrm{~m}, 2 \mathrm{H})$, $7.70(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.6,-4.5,18.1,25.6,43.6(\mathrm{t}, J$ $=27 \mathrm{~Hz}), 56.2(\mathrm{dd}, J=27,23 \mathrm{~Hz}), 103.3(\mathrm{~d}, J=3 \mathrm{~Hz}), 125.8,126.0,126.9,127.1(\mathrm{dd}, J=256,253$
$\mathrm{Hz}), 127.3,127.6,127.8,127.9,132.9,133.3,134.3(\mathrm{dd}, J=5,3 \mathrm{~Hz}), 151.1(\mathrm{t}, J=7 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=64.2$ (dtdd, $J=228,14,8,3 \mathrm{~Hz}$), 72.4 (ddtd, $J=228,20,14,2 \mathrm{~Hz}$). IR (neat); $v^{\sim}=2956,2931,1647,1342,836,734 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}$): m/z calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{OSi}\left([\mathrm{M}]^{+}\right): 360.1721$; found: 360.1719 .

1-[tert-Butyl(dimethyl)silyloxy]-4,4-difluoro-3-propylcyclopent-1-ene 203g
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.16(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.87-0.95(\mathrm{~m}, 12 \mathrm{H}), 1.23-1.32(\mathrm{~m}, 1 \mathrm{H})$, $1.31-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.63(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.90(\mathrm{~m}, 1 \mathrm{H}), 4.55-4.60(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-4.7,14.2,18.1,20.5,25.5,31.4(\mathrm{dd}, J=8,2 \mathrm{~Hz}), 43.7(\mathrm{t}, J=27$ $\mathrm{Hz}), 49.6(\mathrm{dd}, J=25,22 \mathrm{~Hz}), 104.2(\mathrm{~d}, J=4 \mathrm{~Hz}), 128.6(\mathrm{dd}, J=256,251 \mathrm{~Hz}), 149.1(\mathrm{t}, J=7 \mathrm{~Hz})$. ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=56.6$ (dtd, $J=229,15,8 \mathrm{~Hz}, 1 \mathrm{~F}$), 71.7 (ddtd, $J=229,20,15,2$ $\mathrm{Hz}, 1 \mathrm{~F})$. IR (neat); $\boldsymbol{v}^{\sim}=2931,1647,1340,1254,1122,835,781 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}$): m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{OSi}\left([\mathrm{M}]^{+}\right): 276.1721$; found: 276.1710.

1-[tert-Butyl(dimethyl)silyloxy]-4,4-difluoro-2-methyl-3-phenylcyclopent-1-ene 203h
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.21(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.87(\mathrm{~m}$, $1 \mathrm{H}), 2.85-2.96(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=21.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $\delta=-4.1,-4.0,10.3,18.1,25.6,43.3(\mathrm{t}, J=27 \mathrm{~Hz}), 60.1(\mathrm{dd}, J=27,23$ $\mathrm{Hz}), 113.5(\mathrm{~d}, J=1 \mathrm{~Hz}), 126.3(\mathrm{dd}, J=256,251 \mathrm{~Hz}), 127.5,128.3,129.1,135.6(\mathrm{t}, J=4 \mathrm{~Hz}), 143.3$ $(\mathrm{dd}, J=8,4 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=63.0(\mathrm{ddt}, J=228,15,5 \mathrm{~Hz}, 1 \mathrm{~F}), 74.2(\mathrm{dtd}, J=$ $228,22,15 \mathrm{~Hz}, 1 \mathrm{~F})$. IR (neat); $\boldsymbol{v}^{\sim}=2931,1687,1254,1124,881,698 \mathrm{~cm}^{-1} . \operatorname{HRMS}(70 \mathrm{eV}, \mathrm{EI}):$ m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{OSi}\left([\mathrm{M}]^{+}\right): 324.1721$; found: 324.1722.

9-[tert-Butyl(dimethyl)silyloxy]-7,7-difluorobicyclo[4.3.0]non-9-ene 203k
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.13(\mathrm{~s}, 6 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 1.07-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.32(\mathrm{~m}, 2 \mathrm{H})$, $1.61-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.93(\mathrm{~d}, 2 \mathrm{H}), 2.52-2.76(\mathrm{~m}, 3 \mathrm{H}), 2.77-2.89(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=-4.3,-4.2,18.1,23.5,24.7,25.4,25.5,25.7(\mathrm{~d}, J=11 \mathrm{~Hz}), 44.1(\mathrm{t}, J=28 \mathrm{~Hz}), 50.0(\mathrm{dd}$, $J=26,24 \mathrm{~Hz}), 116.5(\mathrm{~d}, J=4 \mathrm{~Hz}), 127.7(\mathrm{dd}, J=254,250 \mathrm{~Hz}), 137.8(\mathrm{dd}, J=6,5 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=60.2$ (dddd, $J=231,21,14,8 \mathrm{~Hz}$), 71.4 (dddd, $J=231,20,18,8 \mathrm{~Hz}$). IR (neat); $v^{\sim}=2933,2858,1693,1119,856,837,779 \mathrm{~cm}^{-1}$. HRMS (70 eV, EI): m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{OSi}\left([\mathrm{M}]^{+}\right): 288.1721$; found: 288.1758 .

3.5.8. Aminolysis of Copper(I) Difluorocarbene Complex

To a acetonitrile solution (3 mL) of copper(I) complex 204b ($8 \mathrm{mg}, 0.013 \mathrm{mmol}$) were added butylamine ($14 \mathrm{~mL}, 0.142 \mathrm{mmol}$) and sodium bromodifluoroacetae ($14 \mathrm{mg}, 0.071 \mathrm{mmol}$) at room temperature. After stirring for 24 h , the resulting mixture was dissolved in acetonitrile. High-resolution mass-analysis $\left(\mathrm{ESI}^{+}\right)$revealed that the ion $(z=1)$ corresponding to the aminolysis product of the copper(I) difluorocarbene complex, $\mathrm{LCu}=\mathrm{C}=\mathrm{NBu}^{+} \quad(\mathrm{L} \quad=$ 4,7-dimethyl-1,10-phenanthroline) 205, was observed.

3.5.9. Derivatization of 4,4-difluorocyclopent-1-en-1-yl silyl ether

(A) Synthesis of enone 206

To a tetrahydrofuran (THF) solution (5.0 mL) of 203a ($63.4 \mathrm{mg}, 0.204 \mathrm{mmol}$), was added aqueous formic acid ($87 \mathrm{wt} \%, 2.0 \mathrm{~mL}, 19 \mathrm{mmol}$) at room temperature. The reaction solution was cooled to $0{ }^{\circ} \mathrm{C}$ and tetrabutylammonium fluoride solution (1.0 M in THF, $0.40 \mathrm{~mL}, 0.40 \mathrm{mmol}$) was added. After the reaction mixture was stirred for 25 min at $0^{\circ} \mathrm{C}$, it was allowed to be warmed up to room temperature. After the reaction mixture was stirred for 10 h at room temperature, $\mathrm{pH}=7$ phosphate buffer (10 mL) was added to quench the reaction at room temperature. Organic materials were extracted with ethyl acetate four times, the combined extracts were washed with brine three times, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate, 10:1) to give fluorocyclopentenone $\mathbf{2 0 6}(25.1 \mathrm{mg}, 70 \%)$ as a pale yellow oil.

3-Fluoro-4-phenylcyclopent-2-en-1-one 206
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.58(\mathrm{dt}, J=18.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{ddd}, J=18.5,7.5,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=45.1(\mathrm{~d}, J=16 \mathrm{~Hz}), 45.6$, $112.2(\mathrm{~d}, J=5 \mathrm{~Hz}), 127.1,128.0,129.2,137.4,191.2(\mathrm{~d}, J=309 \mathrm{~Hz}), 202.6(\mathrm{~d}, J=15 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=81.6(\mathrm{~s}, 1 \mathrm{~F})$. IR (neat); $\boldsymbol{v}^{\sim}=1714,1637,1323,912,742 \mathrm{~cm}^{-1}$. HRMS ($70 \mathrm{eV}, \mathrm{EI}+$): m / z calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{FO}\left([\mathrm{M}]^{+}\right): 176.0637$; found: 176.0638.
(B) Synthesis of enone 207

To a tetrahydrofuran (THF) solution (3.0 mL) of $206(35.2 \mathrm{mg}, 0.200 \mathrm{mmol})$, was added methyllithium (1.2 M in $\mathrm{Et}_{2} \mathrm{O}, 0.35 \mathrm{~mL}, 0.413 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}, \mathrm{pH}=7$ phosphate buffer $(5 \mathrm{~mL})$ was added to quench the reaction at $-78^{\circ} \mathrm{C}$. It was allowed to be warmed up to room temperature. Organic materials were extracted with ethyl acetate three times, the combined extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate, 30:1) to give cyclopentenone 207 ($12.3 \mathrm{mg}, 36 \%$) as a pale yellow oil.

3.6. Reference

[1] (a) Fäh, C.; Hardegger, L. A.; Baitsch, L.; Schweizer, W. B.; Meyer, S.; Bur, D.; Diederich, F. Org. Biomol. Chem. 2009, 7, 3947. (b) Iguchi, K.; Kaneta, S.; Tsune, C.; Yamada, Y. Chem. Pharm. Bull. 1989, 37, 1173. (c) Takahashi, S.; Domon, Y.; Kitano, Y.; Shinozuka, T. WO 2014/142221 A1, 2014.
[2] (a) Nakano, T.; Makino, M.; Morizawa, Y.; Matsumura, Y. Angew. Chem., Int. Ed. 1996, 35, 1019. (b) Pravst, I.; Zupan, M.; Stavber, S. Synthesis 2005, 3140. (c) Baudoux, J.; Cahard, D. Org. React. 2007, 69, 347.
[3] (a) Meegalla, S. K.; Doller, D.; Liu, R.; Sha, D.; Lee, Y.; Soll, R. M.; Wisnewski, N.; Silver, G. M.; Dhanoa, D. Bioorg. Med. Chem. Lett. 2006, 16, 1702. (b) Fah, C.; Hardegger, L. A.; Baitsch, L.; Schweizer, W. B.; Meyer, S.; Bur, D.; Diederich, F. Org. Biomol. Chem. 2009, 7, 3947.
[4] (a) Goldschmidt, Z.; Crammer, B. Chem. Soc. Rev. 1988, 17, 229. (b) Wong, H. N. C.; Hon, M. Y.; Tse, C. W.; Yip, Y. C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165. (c) Trost, B. M.; Bogdanowicz, M. J. J. Am. Chem. Soc. 1973, 95, 289. (d) Dolbier, W. R., Jr.; Sellers, S. F. J. Org. Chem. 1982, 47, 1. (e) Orr, D.; Percy, J. M.; Tuttle, T.; Kennedy, A. R.; Harrison, Z. A. Chem. Eur. J. 2014, 20, 14305. (f) Ryu, I.; Ikura, K.; Tamura, Y.; Maenaka, J.; Ogawa, A.; Sonoda, N. Synlett 1994, 941
[5] Miller, T. G.; Thanassi, J. W. J. Org. Chem. 1960, 25, 2009.
[6] Knox, L. H.; Velarge, E.; Berger, S.; Cuadriello, D.; Landis, P. W.; Cross, A. D. J. Am. Chem. Soc. 1963, 85, 1851.
[7] Seyferth, D.; Hopper, S. H.; Darragh, K. V. J. Am. Chem. Soc. 1969, 91, 6536.
[8] (a) Doyle, M. P.; Forbes, M. P. Chem. Rev. 1998, 98, 911. (b) Doyle, M. P.; Leusen, D. V.; Tamblyn, W. H. Synthesis 1981, 787. (c) Vallgårda, J.; Hacksell, U. Tetrahedron Lett. 1991, 32, 5625. (d) Nakamura, A.; Yoshida, T.; Cowie, M.; Otsuka, S.; Ibers, J. A. J. Am. Chem. Soc. 1977, 99, 2108. (e) Davidson, J. G.; Barefield, E. K.; Derveer, D. G. V. Organometallics 1985, 4, 1178.
[9] (a) Dolbier, W. R., Jr.; Battiste, M. A. Chem. Rev. 2003, 103, 1071. (b) Boggs, J. E.; Fan, K. Acta. Chem. Scand. A 1988, 42, 595. (c) Zeiger, D. N.; Liebman, J. F. J. Mol. Structure 2000, 556, 83. (d) Tian, F.; Bartberger, M. D.; Dolbier, W. R., Jr. J. Org. Chem. 1999, 64, 540.
[10] (a) Shang, R.; Fu, Y.; Wang, Y.; Xu, Q.; Yu, H.-Z.; Liu, L. Angew. Chem., Int. Ed. 2009, 48, 9350. (b) Ambler, B. R.; Altman, R. A. Org. Lett. 2013, 15, 5578.
[11] (a) Clark, G. R.; Hoskins, S. V.; Roper, W. R. J. Organomet. Chem. 1982, 234, C9. (b) Koola, J. D.; Roddick, D. M. Organometallics 1991, 10, 591.
[12] Son, S.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 1046.
[13] (a) Fang, J.; Ren, J.; Wang, Z. Tetrahedron Lett. 2008, 49, 6659. (b) Kusama, H.; Karibe, Y.; Imai, R.; Onizawa, Y.; Yamabe, H.; Iwasawa, N. Chem. Eur. J. 2011, 17, 4839.
[14] (a) Inamoto, K.; Kuroda, J.; Hiroya, K.; Noda, Y.; Watanabe, M.; Sakamoto, T. Organometallics 2006, 25, 3095. (b) Inamoto, K.; Kuroda, J.; Kwon, E.; Hiroya, K.; Doi, T. J. Organomet. Chem. 2009, 694, 389. (c) Peris, E.; Loch, J. A.; Mata, J.; Crabtree, R. H. Chem. Commun. 2001, 201. (d) Loch, J. A.; Albrecht, M.; Peris, E.; Mata, J.; Faller, J. W.; Crabtree, R. H. Organometallics 2002, 21, 700. (e) Danopoulos, A. A.; Tulloch, A. A. D.; Winston, S.; Eastham, G.; Hursthouse, M. B. Dalton Trans. 2003, 1009. (f) Serra, D.; Cao, P.; Cabrera, J.; Padilla, R.; Rominger, F.; Limbach, M. Organometallics 2011, 30, 1885.
[15] (a) Tian, F.; Kruger, N.; Bautista, O.; Duan, J.-X.; Li, A.-R.; Dolbier, W. R., Jr. Org. Lett. 2000, 2, 563. (b) Dolbier, W. R., Jr.; Tian, F.; Duan, J.; Li, A.-R.; Ait-Mohand, S.; Bautista, O.; Buathong, S.; Baker, J. M.; Crawford, J.; Anselme, P.; Cai, X. H.; Modzelewska, A.; Koroniak, H.; Battiste, M. A.; Chen, Q. J. Fluorine Chem. 2004, 125, 459.
[16] (a) Fuchibe, K.; Koseki, Y.; Sasagawa, H.; Ichikawa, J. Chem. Lett. 2011, 40, 1189. (b) Fuchibe, K.; Koseki, Y.; Aono, T.; Sasagawa, H.; Ichikawa, J. J. Fluorine Chem. 2012, 133, 52.
[17] (a) Richmond, T. G.; Cresoi, A. M.; Shriver, D. F. Organometallics 1984, 3, 314. (b) Crespi, A. M.; Shriver, D. F. Organometallics 1985, 4, 1830.
[18] (a) Zhang, X.; Geng, Z.-Y.; Wang, Y.-C.; Li, W.-Q.; Wang, Z.; Liu, F.-X. J. Mol. Struct.: theochem 2009, 893, 56. (b) Kanai, H.; Nishiguchi, Y.; Matsuda, H. Bull. Chem. Soc. Jpn. 1983, 56, 1592. (c) Davidson, J. G.; Barefield, E. K.; Derveer, D. G. V. Organometallics 1985, 4, 1178.
[19] Clark, G. R.; Hoskins, S. V.; Jones, T. C.; Roper, W. R. J. Chem. Soc., Chem. Commun. 1983, 719.
[20] Naoshima, Y.; Yamaguchi, M.; Kawai, M.; Ichimoto, I.; Ueda, H. Agric. Biol. Chem. 1974, 38, 2273.
[21] (a) Zhang, Z.; Zhou, Q.; Yu, W.; Li, T.; Wu, G.; Zhang, Y.; Wang, J. Org. Lett. 2015, 17, 2474. (b) Xia, Y.; Zhang, Y.; Wang, J. ACS Catal. 2013, 3, 2586.
[22] Ichikawa, J.; Fujiwara, M.; Miyazaki, S.; Ikemoto, M.; Okauchi, T.; Minami, T. Org. Lett. 2001, 3, 2345.
[23] (a) Murakami, M.; Takahashi, K.; Amii, H.; Ito, Y. J. Am. Chem. Soc. 1997, 119, 9308. (b) Yan, B.; Spilling, C. J. Org. Chem. 2008, 73, 5385.
[24] (a) Arduengo, III, A. J.; Dias, H. V. R.; Harlow, L.; Kline, M. J. Am. Chem. Soc. 1992, 114, 5530. (b) Furuya, Y.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 11240.
[25] (a) Sampath, K. H. C.; Rudresha, B. J.; Ramachandra, B. B.; Reji, P.; Guru, R. T. N. AIP Conf.

Proc. 2011, 1391, 671. (b) Ignatenko, V. A.; Deligonul, N. and Viswanathan, R. Org. Lett. 2010, 12, 3594.

Chapter 4

Conclusion

I have achieved catalytic and selective syntheses of difluoromethyl and difluoromethylene compounds (i) free difluorocarbene and (ii) metal difluorocarbene complexes.

In chapter 2, syntheses of difluoromethyl imidates and difluoromethoxypyridines were described. The NHC-catalyzed generation of free difluorocarbene was effected under mild conditions, which enable an efficient and regioselective O-difluoromethylation of secondary amides and pyridons.

In chapter 3 , regioselective syntheses of both α, α - and β, β-difluorocyclopentanone derivatives by unprecedented transition metal difluorocarbene complexes were described. Dienol silyl ethers, readly prepared from α, β-unsaturated ketones, underwent a sequence of difluorocyclopropanation and VCP rearrangement catalyzed by a nickel(II) difluorocarbene complex to selectively afford 5,5-difluorocyclopent-1-en-1-yl silyl ethers. Copper(I) difluorocarbene complex catalyzed an efficient $[4+1]$ cycloaddition of the same dienol silyl ethers with sodium bromodifluoroacetate, which provided 4,4-difluorocyclopent-1-en-1-yl silyl ethers in a selective manner. The key $\mathrm{Ni}(\mathrm{II})-$ and $\mathrm{Cu}(\mathrm{I})$-difluorocarbene complexes were captured as aminolysis products, which were detected by mass spectroscopy.

Through these studies, advantages of catalytic introduction of difluorocarbene moiety in synthesis were successfully demonstrated. These results provide a variety of difluoromethylene compounds, which are sufliciently promising in pharmaceutical and agricultural sciences as well as materials sciences.

List of Publications

[1] "NHC-catalyzed generation of difluorocarbene and its application to difluoromethylation of oxygen nucleophiles"

Fuchibe, K.; Koseki, Y.; Aono, T.; Sasagawa, H.; Ichikawa, J.

Journal of Fluorine Chemistry. 2012, 133, 52-60.
[2] "Regioselective Synthesis of α, α-Difluorocyclopentanone Derivatives: Domino Nickel-Catalyzed Difluorocyclopropanation/Ring-Expansion Sequence of Silyl Dienol Ethers"

Aono, T.; Sasagawa, H.; Fuchibe, K.; Ichikawa, J.

Organic Letter 2015, 17, 5736-5739.

Acknowledgement

The studies described in this thesis have been performed under the direction of Professor Junji Ichikawa at the Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, from April 2011 to March 2016.

The author is deeply grateful to Professor Junji Ichikawa for his helpful discussions, experimental guidance, hearty advice, contribution to revising the author's manuscripts, and encouragement throughout the course of the studies. He would like to express his deep gratitude to Associate Professor Kohei Fuchibe for the helpful discussion, experimental guidance, and contribution to revising the author's manuscript. He is deeply grateful to Dr. Takeshi Fujita for his practical guidance, helpful discussions, considerate suggestions, and single-crystal X-ray analysis in this dissertation.

The author wishes to thank the member of Ichikawa laboratory. Dr. Tomohiro, Ichitsuka, Mr. Hisashi Sasagawa, and Mr. Yuta Koseki are appreciated for their technical advices and helphul suggestions. Mr. Masaki Bando, Mr. Ryo Takayama, Mr. Ji Hu, Mr. Keisuke Watanabe, and Mr. Tomohiro, Hidano are acknowledged for helpful suggestions and kind assistance. Mr. Naoto Suzuki, Mr. Ikko Takahashi, Mr. Hiroto Matsuno, Mr. Ryu Ueda, Mr. Tsuyoshi Takanohashi, and Mr. Keisuke Miura are acknowledged for their continuous encouragement and kind assistance.

Finally, the author wishes to express his deep gratitude to his parents and brother, Mr. Yuzuru Aono, Ms. Taemi Aono, and Mr. Yoshiaki Aono for their financial support or continuous and heart-worming encouragement through the research.

[^0]: a: ${ }^{19} \mathrm{~F}$ NMR yield based on $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} p-\mathrm{CH}_{3}\right)_{2}$. : Table 1, Entries $1,2,5$.

[^1]: a: Single diastereomer. b: Table 1, Entry 5. c: Table 3, Entry 2. d: Table 3, Entry 3. e: Table 3, Entry 4. f. ${ }^{19}$ F NMR yield based on $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} p-\mathrm{CH}_{3}\right)_{2}$.

[^2]: a: Table 11, Entry 4. b : single trans diastereomer. c : 188 was obtained in 27% yield. d: 188 was obtained in 20% yield.

[^3]: a: ${ }^{19} \mathrm{~F}$ NMR yield based on $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} p-\mathrm{CH}_{3}\right)_{2} . b$:Table 14, Entry 2.

