Selective Syntheses of Difluoromethylene Compounds via Difluorocarbene Catalyses

Tatsuya Aono

February 2016

Selective Syntheses of Difluoromethylene Compounds via Difluorocarbene Catalyses

Tatsuya Aono Doctoral Program in Chemistry

Submitted to the Graduate School of Pure and Applied Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Science

> at the University of Tsukuba

Contents

Chapter 1	
General Introduction	1
Chapter 2	
O -Selective Difluoromethylation of Amides with Free Difluorocarbene	20
2.1. Introduction	21

2.2. Synthesis of Difluoromethyl Imidates	24
2.3. Mechanistic Considerations on O-Selective Difluoromethylation	
of Amides	31
2.4. Conclusion	33
2.5. Experimental Section	34
2.6. Reference	38

Chapter 3

Regioselective Syntheses of gem-Difluorocyclopentanone Derivatives	5
with Transition Metal Difluorocarbene Complexes	39
3.1. Introduction	40
3.2. Domino Difluorocyclopropanation/Ring Expansion	
with Nickel Difluorocarbene Complex	45
3.3. [4 + 1] Cycloaddition with Copper Difluorocarbene Complex	58
3.4. Conclusion	66
3.5. Experimental Section	67
3.6. Reference	101
Chapter 4 Conclusion	104
Conclusion	104
List of Publications	105
Acknowledgement	106

Chapter 1

1. General Introduction

Organofluorine compounds often exhibit unique properties and behaviors in comparison with nonfluorinated parent compounds, playing important roles as pharmaceuticals and agrochemicals. Because of the high bond dissociation energy of C–F bonds, organofluorine compounds are resistant to heat and chemicals, and stable to metabolism. In addition, organofluorine compounds have high lipophilicity. Water has a large Hildebrand's solubility parameter δ (~48), while organic solvents such as toluene have medium δ values (~20).^[1] Having small δ values (~12), fluorous solvents are immiscible to water and organic solvents. The introduction of fluorine atom into molecules thus results in alternation of the behaviors of fluorinated molecules in vivo. Fortheremore, being the smallest substituents next to hydrogen, fluorine has been recognized as a mimic of hydrogen.

Among organofluorine compounds, difluoromethylene compounds containing a -CHF₂ group or a -CF₂- group have recently attracted particular attention. For example, "Primisulfuron-methyl" possessing two difluoromethyloxy groups acts as herbicides (Figure 1).^[2a] Difluorocyclopentanone derivatives **1** and **2** which a difluoromethylene moiety have antimalarial effect and anti-bronchitis effect, respectively.^[2b,c] In spite of their utility, synthetic methods for the preparation of difluoromethylene compounds still remains to be underdeveloped.

Figure 1

The synthetic methods of difluoromethylene compounds reported to date can be classified into two categories: introduction of (i) two fluorine substituents and (ii) a difluoromethylene moiety.

Concerning the introduction of fluorine substituents both electrophilic and nucleophilic fluorinating agents have been used.^[3] For example, treatment of diketone **3** with xenon difluoride gives α, α -difluoroketone **4** in 43% yield (eq. 1).^[4] Treatment of ketone **6** with *N*-F-sultam **5** in the presence of potassium bis(trimethylsilyl)amide (KHMDS) affords α, α -difluoroketone **7** in 64%

yield (eq. 2).^[5] In these reactions, electrophilic fluorine was attacked by nucleophiles (enols or enolates). On the other hand, by using *N*,*N*-diethylaminosulfur trifluoride (DAST), aldehyde **8** is transformed into difluoromethyl compound **9** in 80% yield (eq. 3).^[6] Dithioacetal **10** reacts with tetrabutylammonium dihydrogen trifluoride in the presence of *N*-iodosuccinimide (NIS) to give **11** in 82% yield (eq. 4).^[7] These reactions proceed via nucleophilic attack of fluoride ion. Both of these methods for fluorine introduction, (i) and (ii) require expensive reagents and more importantly, construction of the corresponding carbon skeleton is required prior to fluorination.

(i)-1. Electrophilic Introduction of Fluorine Substituents

(i)-2. Nucleophilic Introduction of Fluorine Substituents

Introduction of a difluoromethylene moiety using fluorinated building blocks is convenient, since there are many kinds of difluorinated building blocks of various carbon numbers. The simplest example, difluorocarbene, generated from chlorodifluoromethane and sodium hydroxide, is a representative one-carbon building block. Difluorocarbene reacts with phenoxide to afford difluoromethoxybenzene in 65% yield (eq. 5).^[8] Sulfonium salt 12 serves as difluoromethyl cation equivalent and reacts with sulfonate 13 to afford difluoromethyl ester 14 in 77% yield (eq. 6).^[9]Acetylide, prepared by deprotonation of phenylacetylene with butyllithium, reacts with dibromodifluoromethane to give bromodifluoromethylacetylene 15 in 77% yield (eq. 7).^[10] Treatment of 1-octene with dibromodifluoromethane in the presence of copper(I) chloride (1 mol%) affords radical addition product 16 in 77% yield (eq. 8).^[11] On treatment with peroxide 17 toluene was chlorodifluoromethylated to give **18** in 91% yield via chlorodifluoromethyl radical (eq. 9).^[12] Recently, cross coupling reactions have been employed for installing difluoromethylene units. For instance, treatment of iodoarene 19 with trimethyl(difluoromethyl)silane in the presence of a stoichiometric amount of copper(I) iodide affords difluoromethylarene **20** in 90% yield (eq. 10).^[13] difluoromethylation of iodoarene 21 is effected In a similar manner, with tributyl(difluoromethyl)tin in the presence of copper(I) iodide (1.3 eq) to afford difluoromethylarene 22 in 61% yield (eq. 11).^[14] 2-Phenylbenzaldehyde undergoes a Wittig-type difluoromethylenation reaction with dibromodifluoromethane and tris(dimethylamino)phosphine to give 1,1-difluoroalkene 23 in 87% yield (eq. 12).^[15] Difluoroenolate 25, generated from acylsilane 24 and trimethyl(trifluoromethyl)silane via Brook rearrangement, undergoes Michael reaction with methyl vinyl ketone with in the presence of 3 mol% of ytterbium(III) catalyst to afford difluoroketone 26 in 67% yield (eq. 13).^[16] In addition to these efforts, versatile reagents have been developed for difluoromethylenation. For example, deprotonation of difluoromethylphosphonate 27 with lithium diisopropylamine (LDA) generates cabanion 28, which reacts with aldehyde 29 to give 1,1-difluoroalkene **30** in 67% yield (eq. 14a).^[17a] Carbanion **28** also reacts with triflate **31** to give alkylated difluoromethylphosphonate **32** in 56% yield via nucleophilic substitution (eq. 14b).^[17b] Organoselen compound 33, prepared from 28 and a selenyl chloride (eq. 14c), reacts with alkene 34 of 2,2'-azobis(isobutyronitrile) (AIBN) and tributyltin hydride. in the presence Difluorophosphonate **35** is obtained through radical process in 82% yield (eq. 14d).^[17c]

(ii)-1. Introduction of Difluoromethylene Moiety with One-Carbon Building Blocks

Two-carbon building blocks are also adopted for difluoromethylene introduction. For example, Barton ester **36** reacts with dichlorodifluoroethene under irradiation by a 500 W tungsten lamp to afford dichlorodifluoroethane **37** in 40% yield via photo–induced radical process (eq. 15).^[18] Hydrolysis of **37** reacts with silver(I) nitrate affords difluorocarboxylic acid **38** in 68% yield. On treatment with methyl difluoroiodoacetate in the presence of copper metal, ester **39** gives difluoroiodoester **40** in 88% yield via addition of difluoroacetate radical (eq. 16).^[19] Nucleophic methods are available for the introduction of difluorinated two-carbon units. Treatment of aldehyde **41** with ethyl bromodifluoroacetate in the presence of zinc metal affords alcohol **42** in 57% yield (eq. 17).^[20] Cross coupling reaction with ethyl difluoro(trimethylsilyl)acetate **43** allows difluoromethylation. Treatment of iodoarene **44** with **43** in the presence of a stoichiometric amount of copper(I) iodide affords acetate **45** (eq. 18),^[21] where hydrolysis followed by decarboxylation leads to difluoromethylarene **46** in 84% yield. Our group has already developed a wide variety of difluorinated C2 building blocks with sp² system. 2,2,2-Trifluoroethyl tosylate **47** is successively treated with LDA and trialkylborane to generate 2,2-difluorovinylborane **48** via alkyl group

migration. Protonolysis of **48** with acetic acid affords 1,1-difluoroalkene **49** in 81% yield (eq. 19a).^[22a] On treatment with bromine and sodium methoxide, difluoroborane **48** gives 1,1-difluoroalkene **50** in 65% yield via the second alkyl group migration (eq. 19b).^[22b] Furthermore, oxidation of **48** with alkaline hydrogen peroxide affords (difluoromethyl)ketone **51** in 81% yield (eq. 19c).^[22c] On treatment with trifluoroiodoethene and LDA (2.0 eq) followed by treatment with ketone **52** and then acetic anhydride, affords difluoroalkene **53** in 85% yield (eq. 20).^[23] Treatment of **53** with zinc metal affords the difluorovinylidenation product, 1,1-difluoroallene **54** in 96% yield. More recently, we have reported the Negishi cross coupling reaction of (difluorovinyl)zinc(II) **55** (eq. 21).^[24] Treatment of difluoroethylene with *sec*-butyllithium in the presence of *N*,*N*,*N*°,*N*°-tetramethylethylenediamine (TMEDA) generates (difluorovinyl)zinc(II) **55** in 95% yield. Zinc(II) reagent **55** reacts with 2-naphthyl triflate in the presence of a catalytic amount of tetrakis(triphenylphosphine)palladium to give 1,1-difluoroalkene **56** in 90% yield.

For difluorinated building blocks with three or more carbons, some representative examples are shown below. Treatment of 3,3,3-trifluoro-1-propene with disilane **57** in the presence of fluoride ion (10 mol%) promotes S_N2^{2} -type reaction to afford difluoroalkene **58** in 85% yield (eq. 22).^[25] In our research group, trifluoropropenes have been also employed as building blocks. The S_N1^{2} -type reaction of trifluoromethylalkene **59** with *p*-xylene is promoted by a stoichiometric amount of ethylaluminium(III) dichloride to afford difluoroalkene **60** in 84% yield (eq. 23).^[26] Dienol silyl ether **61** undergoes Diels–Alder reaction with fluorinated vinylsulfone **62** to give alcohol **63** in 77% yield (eq. 24).^[27] Treatment of α, α -difluorinated unsaturated ketone **64** (a four-carbon difluorinated building block) with zinc metal generates organozinc reagent **65**, which reacts with benzaldehyde.

The resulting alkoxide **65** undergoes 6-*endo-trig* ring closure to give cyclic ether **66** in 46% yield (eq. 25).^[28]

(ii)-3. Introduction of Difluoromethylene Moiety with Three- or More-Carbon Building Blocks

The building block methods presented so far are mostly based on stoichiometric or substoichiometric reactions in terms of promoters. Thus, I envisioned *catalytic* introduction of a difluoromethylene moiety, which was directed toward synthesis of difluoromethylene compounds. My attention was particularly focused on the simple Figure 2

difluorinated building block, difluorocarbene, containing two categories of free difluorocarbene (: CF_2) and transition metal difluorocarbene complexes ($L_nM=CF_2$, Figure 2).

Free difluorocarbene has been widely used as a one-carbone difluorinated building block for synthesis of difluoromethylene compounds.^[29] Although many methods for generation of difluorocarbene have been reported, there remains drawbacks in its generation, as well as higher loadings. As mentioned above, treatment of phenol with excess amounts of chlorodifluoromethane in the presence of sodium hydroxide (5 eq) affords difluoromethoxybenzene in 65% yield (eq. 5).^[8] Sodium hydroxide deprotonates chlorodifluoromethane to generate chlorodifluoromethyl anion, which undergoes elimination of chloride ion to generate difluorocarbene. Difluorocarbene thus formed causes difluoromethylation of the peroxide. Thus, strongly basic conditions are required for this methods.

Internal alkene **67** reacts with excess amounts of sodium chlorodifluoroacetate (8.0 eq) at 160 °C (boiling point of diglyme) to give difluorocyclopropane **68** in 58% yield (eq. 26).^[30] Difluorocyclopropanation of alkene **69** proceeds with smaller amounts (2.0 eq) of sodium bromodifluoroacetate at 165 °C to afford **70** in 99% yield (eq. 27).^[31] The reaction of alkene **71** with hexafluoropropylene oxide (HFPO) proceeds at 170–200 °C to afford difluorocyclopropane **72** in 50% yield (eq. 28).^[32] High reaction temperature is necessary for these difluorocarbene generation.

Cyclohexene reacts with trimethyl(trifluoromethyl)tin(IV) in the presence of sodium iodide to afford difluorocyclopropane **73** in 89% yield (eq. 29).^[33] On treatment with phenyl(trifluoromethyl)mercury(II) in the presence of sodium iodide, cyclohexene also affords difluorocyclopropane **73** in 83% yield (eq. 30).^[34] Use of highly toxic reagents, tin or mercury compounds is the drawback to these methods.

We adopted trimethylsilyl 2,2-difluoro-2-(fluorosulfonyl)acetate (TFDA) for a catalytic and selective generation of difluorocarbene. This reagent was originally developed by Dolbier, ^[35] to generate difluorocarbene in the presence of a fluoride ion. It is proposed that the fluoride ion attacks the silicon atom of TFDA to promote its decomposition (eq. 31). Thus generated difluorocarbene is employed in difluorocyclopropanation of alkene **74** under nearly neutral conditions to give difluorocyclopropane **75** in 74% yield with regeneration of a fluoride ion (eq. 32).^[35a]

$$F = F = CO_2, -SO_2, -FSiMe_3 \qquad (31)$$

$$F = F = CO_2, -SO_2, -FSiMe_3 \qquad (31)$$

$$F = F = F$$

$$n-C_{6}H_{13} \xrightarrow{FSO_{2}CF_{2}CO_{2}SiMe_{3} (TFDA, 2.0 eq)}_{Tolunen, 105 °C, 2 h} \xrightarrow{F}_{n-C_{6}H_{13}} (32)$$
74

While being catalytic, the generation of difluorocarbene from TFDA is rapid, which might cause an overreaction. When alkylketone **76** was treated with TFDA and 10 mol% sodium fluoride, the formed enol difluoromethyl ether **77** further undergoes undesigned difluorocyclopropanation with the second molecule of difluorocarbene, affording difluorocyclopropane **78** in 70% yield (eq. 33).^[36]

To suppress the overreaction, the generation rate of difluorocarbene should be controlled. Thus, we adopted an organocatalyst, *N*-heterocyclic carbene (NHC), as an activator of TFDA. NHCs are stable and nucleophilic carbenes^[37] that act as nucleophilic catalysts in synthetic reactions.^[38] For instance, benzaldehyde reacts with trimethy(trifluoromethyl)silane in the presence of NHC **79** to afford alcohol **80** in 73% yield (eq. 34).^[39] Treatment of benzaldehyde with trimethylsilylcyanide in the presence of NHC **81** affords silyl ether **82** in 91% yield (eq. 35).^[40] In these reactions, NHCs nucleophilically activate the silicon reagents to promote the trifluoromethylation and cyanosilylation. Advantageously, reactivity of NHCs can be tuned by altering the central heterocyclic core and the substituents on the nitrogen. Therefore, NHCs are promising candidates for the catalyst that can regulate the generation rate of difluorocarbene from TFDA.

$$\begin{array}{cccc} & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$$

Our preliminary results have revealed that treatment of cyclic ketone **83** with TFDA in the presence of 1,3-bis(2,4,6-trimethylphenyl)imidazolinium chloride (IMes·HCl, NHC precursor) and sodium carbonate affords difluoromethyl ether **85** in 74% yield without formation of cyclopropane (eq. 36).^[41] This difluoromethylation of ketone **83** can be explained by the proposed mechanism shown in Scheme 1. 1,3-Dimesitylimidazolylidene (IMes), generated in situ from IMes·HCl and sodium carbonate, attacks the silicon atom of TFDA. Decomposition of TFDA generates the key intermediate, difluorocarbene accompanied by formation of CO₂, SO₂, and fluoride ion. Difluorocarbene thus generated electrophilically gives oxycarbenium salt **84**, followed by H-shift, to afford the product **85**. The formed silylimidazolium salt **86** undergoes desilylation with the released fluoride ion to regenerate free IMes.

Scheme 1

In chapter 2, I describe the organocatalyzed syntheses of difluoromethyl imidates and difluoromethoxypyridines. Generation of free difluorocarbene from TFDA under nearly neutral conditions was accomplished by using organocatalysts, NHCs to realize the *O*-selective difluoromethylation of amides (eq. 37).

Transition metal carbene complexes are established in organic synthesis as shown below. Treatment of alkene **87** with diazo compound **88** in the presence of 1 mol% rhodium(II) carboxylate affords cyclopropane **89** in 94% yield (cyclopropanation, eq. 38).^[42] Diazo compound **91** reacts

with rhodium(II) dimer catalyst **90** to afford lactam **93** in 100% yield via rhodium(II) carbene complex **92** (C–H activation, eq. 39).^[43] Diene **95** undergoes ring-closing metathesis in the presence of ruthenium(II) carbene complex **94** to afford oxacyclohexene **96** in 90% yield (eq. 40).^[44] On the basis of these achievement, transition metal difluorocarbene complexes are promising intermediates for catalytic synthesis of difloromethylene compounds.

Despite of their potential utility in organic synthesis, two issues are remained unsolved. First, only a limited number of preparations of transition metal difluorocarbene complexes are known. Ruthenium(0) complex **97** reacts with bis(trifluoromethyl)cadmium(II) to afford ruthenium(0) difluorocarbene complex **99** via elimination of trifluoromethylcadmium(II) fluoride from ruthenium–cadmium binuclear complex **98** (eq. 41).^[45a] Treatment of rhodium(I) fluoride **100** with trimethyl(trifluoromethyl)silane affords rhodium(I) difluorocarbene complex **102** in 85% yield via α -fluorine elimination from rhodium(I) complex **101** (eq. 42).^[45b] Ruthenium(II) carbene complex **103** undergoes olefin metathesis with difluoroethene to afford ruthenium(II) difluorocarbene complexes, 13 complexes were isolated and 3 complexes were spectroscopically observed (Figure 3,4).^[45,46] However, preparations of difluorocarbene complexes which are suitable especially for catalytic systems are still severely limited.

102 85%

Figure 4. Observed Difluorocarbene Complexes

Second, only two applications of difluorocarbene complexes in organic synthesis are reported. In the presence of 5 mol% of ruthenium(II) difluorocarbene complex **104**, cyclooctadiene undergoes ring-opening metathesis polymerization (ROMP) to produce polymer **105** in 92% yield (eq. 44), which the difluorocarbene complex is used as an initiator and not regenerated.^[45c] Cross olefin metathesis of tetrafluoroethene with vinyl ether **107** proceeds under catalytsis by 10 mol% of ruthenium(II) carbene complex **106**, which affords difluorovinyl ether **108** in 64% yield (eq. 45).^[47]

In chapter 3, I describe the regioselective syntheses of α,α - and β,β -difluorinated cyclopentanone derivatives, depending on two unprecedented catalytic systems. Namely, a pincer-type Ni(II) catalyst in combination with TFDA afforded 5,5-difluorocyclopent-1-en-1-yl silyl ethers (Scheme 2a). A Cu(I)-phenanthroline catalyst in combination with sodium bromodifluoroacetate afforded 4,4-difluorocyclopent-1-en-1-yl silyl ethers (Scheme 2b). The generation of the key Ni(II)- and Cu(I)-difluorocarbene complexes were supported by the observation of their aminolysis products by HRMS analysis. These achivements will contribute to new chemistry of difluorocarbene complexes as well as synthesis of difluoromethylene compounds.

Scheme 2

Reference

- [1] Kiss, L. E.; Kövesdi, I.; Rábai, J. J. Fluorine Chem. 2001, 108, 95.
- [2] (a) Brachi, I.; Pusino, A.; Gessa, C.; Bollag, J.-M. J. Agric. Food. Chem. 2000, 48, 2565. (b)
 Fäh, C.; Hardegger, L. A.; Baitsch, L.; Schweizer, W. B.; Meyer, S.; Bur, D.; Diederich, F. Org. Biomol. Chem. 2009, 7, 3947. (c) Takahashi, S.; Domon, Y.; Kitano, Y.; Shinozuka, T. WO 2014/142221 A1, 2014.
- [3] Rozen, S.; Filler, R. Tetrahedron 1985, 41, 1110.
- [4] Zajc, B.; Zupan, M. J. Org. Chem. 1982, 47, 573.
- [5] Differding, E.; Rüegg, G. M.; Lang, R. W. Tetrahedron Lett. 1991, 32, 1779.
- [6] Middleton, W. J. J. Org. Chem. 1975, 40, 574.
- [7] Kuroboshi, M.; Hiyama, T. Synlett 1991, 909.
- [8] Miller, T. G.; Thanassi, J. W. J. Org. Chem. 1960, 25, 2009.
- [9] Pracash, G. K. S.; Weber, C.; Chacko, S.; Olah, G. A. Org. Lett. 2007, 9, 1863.
- [10] Rico, I.; Cantacuzene, D.; Wakselman, C. J. Chem. Soc., Perkin trans. 1 1982, 1063.
- [11] Gonzalez, J.; Foti, C. J.; Elsheimer, S. J. Org. Chem. 1991, 56, 4322.
- [12] Yoshida, M.; Morinaga, Y.; Ueda, M.; Kamigata, N.; Iyoda, M. Chem. Lett. 1992, 21, 227.
- [13] Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 5524.
- [14] Prakash, G. K. S.; Ganesh, S. K.; Jones, J.-P.; Kulkarni, A.; Masood, K.; Swaheck, J. K.; Olah,
 G. A. Angew. Chem., Int. Ed. 2012, 51, 12090.
- [15] Naae, D. G.; Burton, D. J. Synth. Commun. 1973, 3, 197.
- [16] Lefebvre, O.; Brigaud, T.; Portella, C. Tetrahedron 1998, 54, 5939.
- [17] (a) Obayashi, M.; Ito, E.; Matsui, K.; Kondo, K. *Tetrahedron Lett.* 1982, 23, 2323. (b) Berkowitz, D. B.; Sloss, D. G. J. Org. Chem. 1995, 60, 7047. (c) Pignard, S.; Lopin, C.; Gouhier, G.; Piettre, S. R. J. Org. Chem. 2006, 71, 31.
- [18] Okano, T.; Takakura, N.; Nakano, Y.; Okajima, A.; Eguchi, S. Tetrahedron 1995, 51, 1903.
- [19] Kitagawa, O.; Miura, A.; Kobayashi, Y. Taguchi, T. Chem. Lett. 1990, 19, 1011.
- [20] Hallinan, E. A.; Fried, J. Tetrahedron Lett. 1984, 25, 2301.
- [21] Fujikawa, K.; Fujioka, Y.; Kobayashi, A.; Amii, H. Org. Lett. 2011, 13, 5560.
- [22] (a) Ichikawa, J.; Sonoda, T.; Kobayashi, H. *Tetrahedron Lett.* 1989, 30, 1641. (b) Ichikawa, J.;
 Sonoda, T.; Kobayashi, H. *Tetrahedron Lett.* 1989, 30, 6379. (c) Ichikawa, J.; Sonoda, T.;
 Kobayashi, H. *Tetrahedron Lett.* 1989, 30, 5437.
- [23] Yokota, M.; Fuchibe, K.; Ueda, M.; Mayumi, Y.; Ichikawa, J. Org. Lett. 2009, 11, 3994.
- [24] Fujita, T.; Ichitsuka, T.; Fuchibe, K.; Ichikawa, J. Chem. Lett. 2011, 40, 986.
- [25] Hiyama, T.; Obayashi, M.; Sawahata, M. Tetrahedron Lett. 1983, 24, 4113.
- [26] Unpublished result.

- [27] Butt, A. H.; Kariuki, B. M.; Percy, J. M.; Spencer, N. S. Chem. Commun. 2002, 682.
- [28] Lang, R. W.; Schaub, B. Tetrahedron Lett. 1988, 29, 2943.
- [29] (a) Brahms, D. L. S.; Dailey, W. P. Chem. Rev. 1996, 96, 1585. (b) Ni, C.; Hu, J. Synthesis 2014, 46, 842.
- [30] Knox, L. H.; Velarge, E.; Berger, S.; Cuadriello, D.; Landis, P. W.; Cross, A. D. J. Am. Chem. Soc. 1963, 85, 1851.
- [31] Oshiro, K.; Morimoto, Y.; Amii, H. Synthesis 2010, 2080.
- [32] Brase, W. R.; Cripps, H. N.; Bottonley, C. G.; Farlow, M. W.; Krespan, C. G. J. Org. Chem. 1965, 30, 4188.
- [33] Seyferth, D.; Dertouzos, H.; Suzuki, R.; Mui, J. Y. P. J. Org. Chem. 1967, 32, 2980.
- [34] Seyferth, D.; Hopper, S. H.; Darragh, K. V. J. Am. Chem. Soc. 1969, 91, 6536.
- [35] (a) Tian, F.; Kruger, N.; Bautista, O.; Duan, J.-X.; Li, A.-R.; Dolbier, W. R., Jr. Org. Lett. 2000, 2, 563. (b) Dolbier, W. R., Jr.; Tian, F.; Duan, J.; Li, A.-R.; Ait-Mohand, S.; Bautista, O.; Buathong, S.; Baker, J. M.; Crawford, J.; Anselme, P.; Cai, X. H.; Modzelewska, A.; Koroniak, H.; Battiste, M. A.; Chen, Q. J. Fluorine Chem. 2004, 125, 459.
- [36] Cai, X.; Zhai, Y.; Ghiviriga, I.; Abboud, K. A.; Dolbier, W. R., Jr. J. Org. Chem. 2004, 69, 4210.
- [37] (a) Nolan, S. P. (Ed.), N-Heterocyclic Carbenes in Synthesis, Wiley-VCH, Weinheim, 2006.
 (b) Marion, N.; Díez-Gonzá lez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988. (c) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606.
- [38] (a) Grasa, G. A.; Güveli, T.; Singh, R.; Nolan, S. P. J. Org. Chem. 2003, 68, 2812. (b) Liu, R. Li, Y.-K.; Yue, L.; Li, B.-J.; Chen, Y.-C.; Wu, Y.; Ding, L.-S. Org. Lett. 2006, 8, 1521. (c) Takikawa, H.; Suzuki, K. Org. Lett. 2007, 9, 2713. (d) Kayaki, Y.; Yamamoto, M.; Ikariya, T. Angew. Chem., Int. Ed. 2009, 48, 4194. (e) O'Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 7712.
- [39] Song, J. J.; Tan, Z.; Reeves, J. T.; Gallou, F.; Yee, N. K.; Senanayake, C. H. Org. Lett. 2005, 7, 2193.
- [40] Song, J. J.; Gallou, F.; reeves, J. T.; Tan, Z.; Yee, N. K.; Senanayake, C. H. J. Org. Chem. 2006, 71, 1273.
- [41] (a) Fuchibe, K.; Koseki, Y.; Sasagawa, H.; Ichikawa, J. Chem. Lett. 2011, 40, 1189. (b)
 Fuchibe, K.; Koseki, Y.; Aono, T.; Sasagawa, H.; Ichikawa, J. J. Fluorine Chem. 2012, 133, 52.
- [42] Doyle, M. P.; Leusen, D. V.; Tamblyn, W. H. Synthesis 1981, 787.
- [43] Miah, S.; Slawin, A. M. Z.; Moody, C. J.; Sheehan, S. M.; Marino, J. P., Jr.; Semones, M. A.; Padwa, A.; Richards, I. C. *Tetrahedron* 1996, *52*, 2489.

- [44] Wildemann, H.; Dünkelmann, P.; Müller, M.; Schmidt, B. J. Org. Chem. 2003, 68, 799.
- [45] (a) Clark, G. R.; Hoskins, S. V.; Jones, T. C.; Roper, W. R. J. Chem. Soc., Chem. Commun. 1983, 719. (b) Goodman, J.; Grushin, V. V.; Larichev, R. B.; Macgregor, S. A.; Marshall, W. J.; Roe, D. C. J. Am. Chem. Soc. 2009, 131, 4236. (c) Truka, T. M.; Day, M. W.; Grubbs, R. H. Angew. Chem., Int. Ed. 2001, 40, 3441. (d) Koola, J. D.; Roddick, D. M. Organometallics 1991, 10, 591. (e) Crark, G. R.; Hoskins, S. V; Roper, W. R. J. Organomet. Chem. 1982, 234, C9. (f) Huang, D.; Koren, P. R.; Folting, K.; Davidson, E. R.; Caulton, K. G. J. Am. Chem. Soc. 2000, 122, 8916. (g) Clark, G. R.; Greene, T. R.; Roper, W. R. Aust. J. Chem. 1986, 39, 1315. (h) Hughes, R. P.; Laritchev, R. B.; Yuan, J.; Golen, J. A.; Rucker, A. N.; Rheingold, A. L. J. Am. Chem. Soc. 2005, 127, 15020. (i) Btothers, P. J.; Burrell, A. K.; Clark, G. R.; Rickard, C. E. F.; Roper, W. R. J. Organomet. Chem. 1990, 394, 615. (j) Martinez-Salvador, A.; Menjon, B.; Fornies, J.; Martin, A.; Uson, I. Angew. Chem., Int. Ed. 2010, 49, 4286. (k) Harrison, D. J.; Gorelsky, S. I.; Lee, G. M.; Korobkov, I.; Baker, R. T. Organometallics 2013, 32, 12. (l) Crespi, A. M.; Shriver, D. F. Organometallics 1985, 4, 1830.
- [46] (a) Reger, D. L.; Dukes, M. D. J. Organomet. Chem. 1978, 153, 67. (b) Richmond, T. G.;
 Cresoi, A. M.; Shriver, D. F. Organometallics 1984, 3, 314.
- [47] Takahira, Y.; Morizawa, Y. J. Am. Chem. Soc. 2015, 137, 7031.

Chapter 2

O-Selective Difluoromethylation of Amides with Free Difluorocarbene

2.1. Introduction

Difuoromethyl imidates are important structural motifs of agrochemicals (Fig. 5,6).^[1] For example, "Primisulfuron-methyl" and 2-difluoromethoxypyridine **109**, each possessing a difluoromethyl imidate moiety in their substructures, function as herbicides.

Difluoromethyl imidates have been synthesized by electrophilic *O*-difluoromethylation of secondary amides **110** with difluorocarbene (eq. 46).^[2] Namely, when secondary amide **110** was treated with chlorodifluoromethane in the presence of quartenary ammonium salt under alkaline conditions (NaOH), *O*-difluoromethylated product (difluoromethyl imidate, **112**) was obtained in 19% yield, accompanied by formation of the undesired *N*-difluoromethylated product **113** in 26% yield. Difluoromethoxypyridines are also synthesized by difluoromethylation of pyridones with difluorocarbene. Treatment of 2-pyridone **114** with sodium chlorodifluoroacetate affords *O*-difluoromethylated product **115** and *N*-difluoromethylated product **116** in 72% and 8% yields, respectively (eq. 47).^[3]

Concerning synthesis of difluoromethyl imidates and difluoromethoxypyridines, there are two issues to address. The first one is formation of a regioisomeric mixture of *O*- and *N*-difluoromethylated products **112** and **113**. The strongly basic conditions, required for the generation of difluorocarbene, cause deprotonation of the amides (eq. 46). The resulting, highly nucleophilic amidate ion **111** allows the formation of not only *O*-difluoromethylation product **112** but also *N*-difluoromethylation product **113**. Second, the yields in difluoromethylation of amides are generally poor, which is presumably due to consumption of difluorocarbene by dimerization (eq. 48).

$$2 : CF_2 \longrightarrow F F F (48)$$

In order to achieve the high regioselectivity, we adopted the NHC-catalyzed generation of difluorocarbene, which might be conducted under nearly neutral conditions (eq. 36). In general, amide alkylation with alkyl halides under basic conditions proceeds preferentially on the nitrogen atom. Thus, treatment of amide **117** with methyl iodide in the presence of sodium hydride (1.5 eq) affords a mixture of methyl imidate **119** and *N*-methylamide **120** via amidate ion **118** in 43% and 53% yields, respectively (eq. 49).^[4] On the other hand, under neutral conditions amides undergo alkylation with alkyl halide on the oxygen atom, because the more electronegative oxygen center is more nucleophilic than the nitrogen center. For example, amide **121** reacts with methyl iodide in the presence of silver(I) oxide (2.0 eq) to afford methyl imidate **123** exclusively in 72% yield via iminium salt **122** (eq. 50).^[5] High selectivity would be also obtained by performing difluoromethylation of amides with difluorocarbene under nonbasic conditions.

Organocatalyzed generation of difluorocarbene would have another beneficial effect on the control of the generation rate of difluorocarbene, leading to the high yields of the difluoromethylated products by suppressing tetrafluoroethene formation. Reactivity of NHC can be tuned by altering the central heterocyclic core and the substituents on the nitrogen.^[6] For instance, 1,3-dimesitylimidazolinylidene (SIMes) has a large Mayr's nucleophilicity parameter N (23.35), and 1,3-dimesitylimidazolylidene (IMes) has a medium N value (21.72). Triazolylidene **126** has a smaller N value (14.07, Scheme 3).^[6b] Nucleophilic benzylation of these NHCs with benzyl bromide **124** occurs to afford **125** in 86% (SIMes), 75% (IMes), and 60% (**126**) yields, respectively.^[6c] In these reactions, NHC with larger N value affords the product in higher yield.

Choosing suitable the NHC-catalyzed generation of difluorocarbene, I expected that catalytic and *O*-selective difluoromethylation of secondary amides would be facilitated, leading to the selective synthesis of difluoromethyl imidates and difluoromethoxypyridines. Amides **128** reacted with TFDA (2.0 equive) in the presence of 5 mol% of triazolium salt **127** and 20 mol% of sodium carbonate to afford difluoromethyl imidates **129** selectively in good to high yield (eq. 51). The details of the synthetic method are described in the following sections.

2.2. Synthesis of Difluoromethyl Imidates

2.2.1 Optimization of Reaction Conditions

Secondary amide **128a** was selected as a model substrate for optimization of the desired *O*-difluoromethylation. A toluene solution of amide **128a** was treated with TFDA (2 equiv) in the presence of a catalyst (5 mol%) for TFDA and heated to 80 °C. The yields of the produced difluoromethyl imidate **129a** and the undesired *N*-difluoromethylated product **130a**, if generated, were determined by ¹⁹F NMR spectroscopy. The results of the examination were summarized in Table 1.

Treatment of amide **128a** with TFDA in the presence of SIMes·HCl and sodium carbonate (20 mol%) afforded the *O*-difluoromethylated product (difluoromethyl imidate) **129a** in 56% yield (Entry 1). The reaction site (O vs. N) of the difluoromethylation was determined by ¹³C NMR and ¹⁹F NMR spectroscopies. The isolated product exhibited a ¹³C NMR signal at δ 157.3 and a ¹⁹F NMR signal at 71.0 (d, *J* = 72 Hz, 2F). Meanwhile, imidate **129b** and amide **130b** in literatures^[2] exhibit signals in their ¹³C NMR spectra at δ 157.2 and δ 171.2 and in their ¹⁹F NMR spectra at δ 76.2 (d, *J* = 72 Hz, 2F) and δ 65.4 (d, *J* = 61 Hz, 2F), respectively (Figure 7). On the basis of the comparison of these data, I concluded that *O*-difluoromethylation, and not *N*-difluoromethylation, occurred to give imidate **129a**. Thus, as expected, *N*-difluoromethylation was effectively suppressed.

The use of other imidazolium salts (IMes·HCl, IPr·HCl, and thiazolium salt **131**) also resulted in formation of **129a** in moderate yields (Entries 2–4). Among the salts examined, triazolium salt **127** was found to be most suitable to afford 80% yield of **129a** (Entry 5). On the other hand, fluoride ion, the activator originally employed by Dolbier at 105–120 °C,^[7] gave none of **129a** at 80 °C (Entry 6). The use of bromide ion (sodium bromide or tetrabutylammonium bromide) afforded **129a** only in low yields (0% and 46%, Entries 7,8, respectively).

Difluoromethyl imidate **129a** was obtained as a single diastereomer, which was confirmed by NMR spectroscopy. This imidate **129a** was probably thermodynamic stable *E*-isomer. In general, the *E*-isomer of imidate is stabler than the *Z*-isomer (Table 2),^[8] because dipole moments of *E*-isomer (MeN=C(OMe)Me, 1.14 D) is lower than that of *Z*-isomer (2.40 D). Imidates having more bulky groups increase the ratio of *Z*-isomer for steric reasons. It is become activation barriers to *E*-*Z* interconversion of imidates are rather low 15.9–20.8 kcal/mol.

	O Ph II	Catalyst (5 mol%) Base (20 mol%) TFDA (2.0 eq)	(CHF₂	O Ph II
	· [™] N [™] Ph H	Toluene, 80 °C, 15–30 min	P N I Ph	FII +	CHF ₂
Table 1	128a		1	29a	130a
Entry	Catalyst	Base	129a / % ^a	130a / % ^a	Recovery of TFDA / % ^a
1		CI- Na ₂ CO ₃	56	0	1
	SIMes·HCI				
2		CI- Na ₂ CO ₃	53	0	1
	IMes·HCI				
3	i-Pr N N i-Pr i-Pr	CI- Na ₂ CO ₃	42	0	7
4	IPr·HCl ✓_+ S _✓ NMe	Na₂CO₃ I⁻	5	0	71
	131				
5	N=(+ PhN √NPh B	n- Na ₂ CO ₃	80 (80 ^b)	0	2
	127				
6	NaF	none	0	0	100
7	NaBr	none	0	0	91
8	(<i>n</i> -Bu) ₄ NBr	none	46	0	1

a: $^{19}\mathsf{F}\ \mathsf{NMR}\ \mathsf{yield}\ \mathsf{based}\ \mathsf{on}\ (\mathsf{CF}_3)_2\mathsf{C}(\mathsf{C}_6\mathsf{H}_4\textit{p}\text{-}\mathsf{CH}_3)_2.$ b: Isolated yield.

OCH**F**2 ОСН**F**2 | ∧^{_∕}Č_{`Me} ∣ Ph **с** `Ме Ph N ́ ∣ Ph 129b (Observed) 129b (Reported)^[2] 130b (Reported)^[2] $\delta_{\rm C} = 171.2$ $\delta_{\rm C}$ = 157.3 $\delta_{\rm C}$ = 157.2 $\delta_{\rm F}$ = 71.0 (d, J = 72 Hz, 2F) $\delta_{\rm F}$ = 76.2 (d, J = 72 Hz, 2F) $\delta_{\rm F}$ = 65.4 (d, J = 61 Hz, 2F)

	$N^{N^2}_{R^3} R^1$		R	³ NR ¹
Table 2	<i>E</i> -isomer			Z-isomer
R ¹	R ²	R ³	E/Z	ΔG^{\ddagger} / kcal/mol ^a
Н	Ме	<i>t</i> -Bu	100:0	-
Me	Me	Me	100:0	_
Me	Ph	Ме	69:31	19.8
Me	<i>p</i> -Tol	Ме	69:31	20.4
<i>t</i> -Bu	Me	Ме	87:13	15.9
Ph	Me	Me	89:11	18.9
Ph	Ме	<i>i</i> -Pr	82:18	18.7

a: Activation barriers to E-Z interconversion of imidates.

It should be noted that the best catalyst depends on structures of substrates to some extent (Table 3). Namely, among SIMes·HCl, IMes·HCl and triazolium salt **127**, SIMes·HCl was the most suitable for difluoromethylation of acetamide ($\mathbb{R}^1 = \mathbb{M}e$, Entries 2 and 3). Decomposition of TFDA was initiated by the nucleophilic attack of free NHC generated in situ. As illustrated in Section 2.1, Scheme 3, SIMes has the highest Mayer's *N* value, suggesting most nucleophilic among the examined catalysts. It is likely that the nucleophilic SIMes realized the facile generation of difluorocarbene, leading to a high yield of the product. Undesired carbene dimerization did not matter because acetamide **128b** is nucleophilic enough to capture difluorocarbene guickly. In contrast, aromatic amide **128a** in Table 1 is less nucleophilic than **128b**,d and less reactive to difluorocarbene. Triazolylidene with low *N* value slowly generates difluorocarbene and prevents undesired loss of carbene by dimerization. Fortunately, triazolylidene is found to be suitable for difluoromethylation of other aliphatic amides such as **128h**. As a result of Table 1 and 3, I adopted triazolium salt **127** as a catalyst.

	\mathbb{R}^2	C Na	atalyst (5 mol%) a ₂ CO ₃ (20 mol%) TFDA (2.0 eq)				
	'N R' H	Toluer	ne, 80 °C, 15–30 min	l Ph			
Table 3	128			129			
Finter	Outrates 40		129 / % ^a				
Entry	Substrate 12	8	SIMes·HCI (N = 23)	IMes·HCI (<i>N</i> = 22)	127 (<i>N</i> = 14)		
1 ^{<i>b</i>}	N H N H	128a	56	53	80		
2	N H Me	128b	92	71	80		
3	MeO O N H Me	128d	80	85	69		
4	N H H	128h	51	21	85		

a: ¹⁹F NMR yield based on $(CF_3)_2C(C_6H_4p-CH_3)_2$. *b*: Table 1, Entries 1,2,5.

Effects of solvents were also examined, using 5 mol% of SIMes·HCl as a catalyst (Table 4). Conducting the reaction in toluene afforded **129a** in 56% yield (Entry 1). Chlorinated and fluorinated solvents (Entries 2–6 and Entries 7,8, respectively) gave inferior results. Reaction in ethereal solvents (1,4-dioxane or diglyme) did not work well, either (Entries 9 and 10).

	O Ph、↓	SIMes·HCl (5 mol%) Na ₂ CO ₃ (20 mol%) TFDA (2.0 eq)		OCHF₂ N ← Ph
	`N´ `Ph H	Solvent, 8	0 °C, 15–30 min	l Ph
Table 4	128a			129a
Entry	Solve	ent	129a / % ^a	Recovery of TFDA / % ^a
1 <i>b</i>	Tolue	ene	56	1
2	o-Dichloro	o-Dichlorobenzene		1
3	СС	CCI ₄		56
4	CICH ₂ C	CICH ₂ CH ₂ CI		<1
5	Cl ₂ CHC	Cl ₂ CHCH ₂ Cl		1
6	Cl ₂ CHC	Cl ₂ CHCHCl ₂		1
7	C ₆ F	C_6F_6		45
8	C ₆ H ₅	$C_6H_5CF_3$		1
9	1,4-Dio	1,4-Dioxane		15
10	Diglyme		3	2

a: ¹⁹F NMR yield based on $(CF_3)_2C(C_6H_4p-CH_3)_2$. *b*: Table 1, Entry 1.

Bases for the in situ-generation of NHC catalyst were also optimized (Table 5). *O*-Difluoromethylation of amide **128a** using sodium carbonate as a base afforded difluoromethyl imidate **129a** in 52% yield (Entry 1). The use of potassium carbonate afforded **129a** in slightly decreased yield (50%, Entry 2). Potassium phosphate and potassium *tert*-butoxide also afforded **129a** in 48% and 49% yields, respectively (Entries 3 and 4). When the reaction was conducted with sodium hydride, 48% yield of **129a** was obtained (Entry 5). Thus, Sodium carbonate was found to be a sutable base.

	0	SIMe	OCHF₂	
	Ph N Ph	Cl ₂ CHCł	H_2 Cl, 80 °C, 15–30 min	N ^M Ph I Ph
Table 5	128a			129a
Entry	Base	e (mol%)	129a / % ^a	Recovery of TFDA / % ^a
1 <i>^b</i>	Na ₂ 0	CO ₃ (20)	52	1
2	K ₂ C	O ₃ (20)	50	1
3	K ₃ P	O ₄ (13)	48	<1
4	<i>t</i> -Bu	OK (40)	49	2
5	Na	H (40)	48	<1

a: ¹⁹F NMR yield based on $(CF_3)_2C(C_6H_4p-CH_3)_2$. *b*: Table 4, Entry 5.

2.2.2. Substrate Scope of Difluoromethyl Imidates

Various difluoromethyl imidates were efficiently synthesized by the triazolium salt **127**-based catalytic system (Table 6). Namely, not only benzoic acid-derived amides but also aliphatic acid-derived amides afforded the corresponding imidates in high yields as single diastereomers. Amides **128a–h** gave imidates **129a–h** in 62–84% isolated yields. Electron-donating and -withdrawing groups on the *N*-aryl groups did not affect the reaction (Entries 3–6). In these cases, partial decomposition of the products during purification by column chromatography was observed and ¹⁹F NMR analysis of crude mixtures suggested that **129c–f** were formed in 69–83% yields. It must be emphasized that the undesired *N*-difluoromethylated products were not observed at all by ¹⁹F NMR analysis of the crude mixtures.

a: Single diastereomer. *b*: Table 1, Entry 5. *c*: Table 3, Entry 2. *d*: Table 3, Entry 3. *e*: Table 3, Entry 4. *f*. ¹⁹F NMR yield based on (CF₃)₂C(C₆H₄*p*-CH₃)_{2.}

This difluoromethylation method was successfully applied to the synthesis of 2-difluoromethoxypyridines (eq. 52). When pyridone 132 was subjected to the TFDA/NHC system, the desired 133 was obtained in 60% yield, albeit accompanied by a 9% yield of N-difluoromethylated product 134. The sequential difluoromethylation–dehydrogenation process is also effective for difluoromethoxy heteroarene synthesis: 2-difluoromethoxyquinoline 136 was synthesized from dihydroquinolinone 135 in 92% yield in a one-pot operation (eq. 53).

2.3. Mechanistic Considerations on O-Selective Difluoromethylation of Amides

The *O*-difluoromethylation of secondary amide **128** can be explained by the proposed mechanism shown in Scheme 4. Triazolylidene **137**, generated in situ from triazolium salt **127** and sodium carbonate, attacks the silicon atom of TFDA. Decomposition of TFDA generats the key intermediate, difluorocarbene, accompanied by formation of CO_2 , SO_2 , and a fluoride ion. Electrophilic difluorocarbene thus generated is attacked by the amide oxygen to give iminium **139**, which in turn undergoes H-shift to afford the product **129** (eq. 54). The formed silyltriazolium salt **138** is desilylated with the released fluoride ion to regenerate free triazolylidene **137**.

Scheme 4

To elucidate the *O*-selectivity observed under the nearly neutral conditions, theoretical calculations were performed (DFT, B3LYP/6-31G*) by using *N*-methylated amide. The neutral amide, in both *Z* and *E* forms (*Z* form is more stable), has its HOMO orbital mainly on its *O* atom (Figure 8). In addition, the *O* atom of the neutral amide is more negatively charged (electrostatic, *Z*: -0.49; *E*: -0.52), compared to the *N* atom (*Z*: -0.38; *E*: -0.46). These results can explain the *O*-selectivity under neutral conditions, which were realized by the organocatalytic system. It should be mentioned that HOMO of the corresponding amidate ion, in both *Z* and *E* forms, locates both on its *O* and *N* atoms. The charge values of the *O* (*Z*: -0.71; *E*: -0.71) and the *N* (*Z*: -0.72; *E*: -0.78) atoms of the amidate ion are similar. These results rationalize the formation of a mixture of *O*- and *N*-difluoromethylated products under strongly basic conditions as described in eq. 46.

Figure 8. HOMO Orbital and Electrostatic Charge Values (Oxygen and Nitrogen) of Amide

Figure 9. HOMO Orbital and Electrostatic Charge Values (Oxygen and Nitrogen) of Amidate

2.4. Conclusion

In summary, I have developed a synthetic method for difluoromethyl imidates and difluoromethoxypyridines. The NHC-catalyzed generation of difluorocarbene under nearly neutral conditions led to an efficient, regioselective *O*-difluoromethylation of secondary amides. Difluoromethoxypyridines were also synthesized in high yields by applying this method to lactams.
2.5. Experimental Section

2.5.1. General

¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded on a Bruker Avance 500. Chemical shift values are given in ppm relative to internal Me₄Si (for ¹H NMR: $\delta = 0.00$ ppm), CDCl₃ (for ¹³C NMR: $\delta = 77.0$ ppm), and C₆F₆ (for ¹⁹F NMR: $\delta = 0.00$ ppm). IR spectra were recorded on a Horiba FT-300S spectrometer by the attenuated total reflectance (ATR) method. Mass spectra were measured on a JEOL JMS-T100GCV. Elemental analyses were carried out at the Elemental Analysis Laboratory, Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba. All reactions were carried out under argon. Column chromatography was performed on silica gel (Kanto Chemical Co. Inc., Silica Gel 60). Toluene was purified by a solvent-purification system (GlassContour) equipped with columns of activated alumina and supported-copper catalyst (Q-5) before use. All solvents were distilled before used. Amides 128a-f, 135 were purchased and recrystallized before used. Amides **128g,h** were prepared according to the literatures.^[9] SIMes·HCl. IMes·HCl, IPr·HCl were prepared according to the literatures.^[10] Triazolium salt 127 and thiazolium salt 131 were purchased and were not purification before use. Trimethylsilyl 2,2-difluoro-2-fluorosulfonylacetate (TFDA) was prepared according to the literature.^[7b] 1,1,1,3,3,3-hexafluoro-2,2-di(p-tolvl)propane (internal standard for ¹⁹F NMR) was purchased from Tokyo Chemical Industry Co., Ltd.

2.5.2. Synthesis of dfluoromethyl imidates and difluoromethoxypyridines

(A) Typical procedure for the synthesis of difluoromethyl imidates **129a-h**, difluoromethoxypyridine **133**.

To a toluene solution (1.5 mL) of **127** (3.4 mg, 0.0098 mmol), sodium carbonate (4.2 mg, 0.040 mmol), and *N*-phenylcyclohexanecarboxamide **128h** (39 mg, 0.19 mmol) was added TFDA (75 mL, 0.38 mmol) at room temperature. The reaction mixture was stirred and heated at 80 °C for 20 min. After cooling the resulting mixture to room temperature, aquaus NaOH was added to quench the reaction. Extraction with dichloromethane and purification by column chromatography (SiO₂, hexane:AcOEt = 50:1, 0 °C) gave **129h** (39 mg, 81% yield).

(B) Typical procedure for the synthesis of 2-difluoromethoxyquinoline (136)

To a toluene solution (2.0 mL) of **127** (6.9 mg, 0.0198 mmol), sodium carbonate (8.5 mg, 0.080 mmol), and dihydroquinolinone **135** (58 mg, 0.39 mmol) was added TFDA (154 mL, 0.78 mmol) at room temperature. The reaction mixture was stirred and heated at 80 °C for 20 min. After cooling the resulting mixture, 2,3-dichloro-5,6-dicyano-*p*-benzoquinon (DDQ, 87 mg, 0.38 mmol) was added and heated at 100 °C for 50 min. After cooling the resulting mixture to room temperature, aquaus NaOH was added to quench the reaction. Extraction with dichloromethane and purification by column chromatography (SiO₂, hexane:AcOEt = 50:1, 0 °C) gave **136** (70 mg, 92% yield).

(C) Spectral data of difluoromethyl imidates and difluoromethoxypyridines.

Difluoromethyl *N*-phenyl-1-phenylmethanimidate (129a)

¹H NMR (500 MHz, CDCl₃): δ = 7.48 (t, *J* = 72.8 Hz, ¹H, broad), 7.38 (t, *J* = 7.5 Hz, 2H), 7.22– 7.29 (m, 5H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.78 (d, *J* = 7.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ = 153.4 (broad), 146.0, 131.2, 129.5, 129.2, 128.2, 123.9, 120.9, 113.6 (t, *J* = 255 Hz). ¹⁹FNMR (470 MHz, CDCl₃): δ = 70.8 (d, *J* = 73 Hz, 2F). IR (neat): v^{\sim} = 2929, 1687, 1267, 1113, 912, 744 cm⁻¹. HRMS (70 eV, EI+): *m/z* calcd. for C₁₄H₁₁F₂NO ([M]⁺): 247.0809; Found: 247.0812.

Difluoromethyl *N*-phenylethan-1-imidate (129b)

¹H NMR (500 MHz, CDCl₃): $\delta = 7.37$ (t, J = 72.1 Hz, 1H), 7.32 (t, J = 7.6 Hz, 2H), 7.11 (t, J = 7.6 Hz, 1H), 6.78 (d, J = 7.6 Hz, 2H), 1.94 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): $\delta = 157.3$, 146.3, 129.2, 124.1, 120.5, 113.0 (t, J = 255 Hz), 15.6. ¹⁹FNMR (470 MHz, CDCl₃): $\delta = 71.0$ (d, J = 72 Hz, 2F). IR (neat): $v^{\sim} = 1701$, 1238, 1105, 1086, 912 cm⁻¹. HRMS (70 eV, EI+): m/z calcd. for C₉H₉F₂NO ([M]⁺): 185.0652; found: 185.0653.

Difluoromethyl *N*-(*p*-tolyl)ethan-1-imidate (**129c**)

¹H NMR (500 MHz, CDCl₃): δ = 7.36 (t, *J* = 72.3 Hz, 1H), 7.12 (d, *J* = 7.8 Hz, 2H), 6.68 (d, *J* = 7.8 Hz, 2H), 2.32 (s, 3H), 1.94 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ = 157.2, 143.7, 133.6, 129.7, 120.4, 113.0 (t, *J* = 255 Hz), 20.8, 15.5. ¹⁹FNMR (470 MHz, CDCl₃): δ = 71.1 (d, *J* = 72 Hz, 2F). IR (neat): v^{\sim} = 2925, 1699, 1508, 1230, 1065 cm⁻¹. HRMS (70 eV, EI+): *m/z* calcd. for C₁₀H₁₁F₂NO ([M]⁺): 199.0809; Found: 199.0808.

Difluoromethyl *N*-(*p*-methoxyphenyl)ethan-1-imidate (**129d**)

¹H NMR (500 MHz, CDCl₃): $\delta = 7.36$ (t, J = 72.4 Hz, 1H), 6.86 (d, J = 8.6 Hz, 2H), 6.72 (d, J = 8.6 Hz, 2H), 3.79 (s, 3H), 1.95 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): $\delta = 157.4$, 156.4, 139.5, 121.6, 114.4, 113.0 (t, J = 255 Hz), 55.4, 15.5. ¹⁹FNMR (470 MHz, CDCl₃): $\delta = 70.6$ (d, J = 72 Hz, 2F). IR (neat): $v^{\sim} = 2956$, 1699, 1506, 1230, 1103 cm⁻¹. HRMS (70 eV, EI+): m/z calcd. For C₁₀H₁₁F₂NO₂ ([M]⁺): 215.0758; Found: 215.0760.

Difluoromethyl N-(p-fluorophenyl)ethan-1-imidate (129e)

¹H NMR (500 MHz, CDCl₃): δ = 7.34 (t, *J* = 72.1 Hz, 1H), 7.02 (dd, *J* = 8.5 Hz, 2H), 6.74 (dd, *J* = 4.0, 8.5 Hz, 2H), 1.95 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ = 159.7 (d, *J* = 242 Hz), 157.9, 142.4 (d, *J* = 3 Hz), 121.9, 115.4 (d, *J* = 23 Hz), 112.9 (t, *J* = 255 Hz), 15.6. ¹⁹FNMR (470 MHz, CDCl₃): δ = 70.5 (d, *J* = 72 Hz, 2F), 42.0 (tt, *J* = 8.5, 4.0 Hz, 1F). IR (neat): v^{\sim} = 1705, 1506, 1240, 1109, 914 cm⁻¹. HRMS (70 eV, EI+): *m/z* calcd. for C₉H₈F₃NO ([M]⁺): 203.0558; found: 203.0553.

Difluoromethyl N-(p-chlorophenyl)ethanimidate (129f)

¹H NMR (500 MHz, CDCl₃): δ = 7.33 (t, *J* = 72.0 Hz, 1H), 7.29 (d, *J* = 8.5 Hz, 2H), 6.72 (d, *J* = 8.5 Hz, 2H), 1.95 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ = 157.8, 144.9, 129.6, 129.3, 121.9, 112.9 (t, *J* = 256 Hz), 15.6. ¹⁹FNMR (470 MHz, CDCl₃): δ = 70.4 (d, *J* = 72 Hz, 2F). IR (neat): v^{\sim} = 1703, 1240, 1136, 1088, 914 cm⁻¹. HRMS (70 eV, EI+): *m*/*z* calcd. for C₉H₈ClF₂NO ([M]⁺): 219.0262; found: 219.0260.

Difluoromethyl N-phenyl-2-methylpropan-1-imidate (129g)

¹H NMR (500 MHz, CDCl₃): δ = 7.33 (t, *J* = 72.6 Hz, 1H), 7.31 (t, *J* = 8.0 Hz, 2H), 7.09 (t, *J* = 8.0 Hz, 1H), 6.75 (d, *J* = 8.0 Hz, 2H), 2.72 (septet, *J* = 6.5 Hz, 1H), 1.14 (d, *J* = 6.5 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃): δ = 163.0, 146.2, 129.2, 123.8, 120.3, 113.4 (t, *J* = 254 Hz), 28.6, 19.2. ¹⁹FNMR (470 MHz, CDCl₃): δ = 70.3 (d, *J* = 73 Hz, 2F). IR (neat): v[~] = 2978, 1695, 1244, 1109, 912 cm⁻¹. HRMS (70 eV, EI+): *m/z* calcd. for C₁₁H₁₃F₂NO ([M]⁺): 213.0965; Found: 213.0968.

Difluoromethyl N-pheny-1-cyclohexylmethanimidate (129h)

¹H NMR (500 MHz, CDCl₃): δ = 7.31 (t, *J* = 72.6 Hz, 1H), 7.31 (t, *J* = 8.0 Hz, 2H), 7.10 (t, *J* = 8.0 Hz, 1H), 6.74 (d, *J* = 8.0 Hz, 2H), 2.37–2.42 (m, 1H), 1.68–1.74 (m, 4H), 1.57–1.65 (m, 3H), 1.15–1.23 (m, 1H), 1.07–1.13 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): δ = 162.2, 146.1, 129.2, 123.7, 120.4, 113.4 (t, *J* = 254 Hz), 38.4, 29.0, 25.4, 25.2. ¹⁹FNMR (470 MHz, CDCl₃): δ = 70.5 (d, *J* = 73 Hz, 2F). IR (neat): v^{\sim} = 2935, 1697, 1238, 1124, 912 cm⁻¹. HRMS (70 eV, EI+): *m/z* calcd. for C₁₄H₁₇F₂NO ([M]⁺): 253.1278; found: 253.1282.

2-Difluoromethoxypyridine (133)

¹H NMR (500 MHz, CDCl₃): δ = 8.20 (dd, *J* = 5.0, 1.5 Hz, 1H), 7.73 (t, *J* = 7.5 Hz, 1H), 7.48 (t, *J* = 73.5 Hz, 1H), 7.10 (ddd, *J* = 7.5, 5.0, 1.5 Hz, 1H), 6.90 (d, *J* = 7.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ = 159.1, 147.0, 140.0, 120.0, 114.0 (t, *J* = 255 Hz), 111.5. ¹⁹FNMR (470 MHz, CDCl₃): δ = 72.8 (d, *J* = 74 Hz, 2F). IR (neat): v^{\sim} = 2925, 1261, 1219, 1099, 773 cm⁻¹. HRMS (70 eV, EI+): *m/z* calcd. for C₆H₅F₂NO ([M]⁺): 145.0339; found: 145.0341.

2-Difluoromethoxyquinoline (136)

¹H NMR (500 MHz, CDCl₃): δ = 8.13 (d, *J* = 8.8 Hz, 1H), 7.87 (d, *J* = 7.7 Hz, 1H), 7.77 (dd, *J* = 7.7, 3.0 Hz, 1H), 7.74 (t, *J* = 72.7 Hz, 1H), 7.68 (ddd, *J* = 7.7, 7.7, 3.0 Hz, 1H), 7.48 (ddd, *J* = 7.7, 7.7, 3.0 Hz, 1H), 7.00 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ = 157.3, 145.5, 140.5, 130.3, 127.8, 127.6, 126.1, 125.7, 113.9 (t, *J* = 255 Hz), 111.8. ¹⁹FNMR (470 MHz, CDCl₃): δ = 72.1 (d, *J* = 73 Hz, 2F). IR (neat): v^{\sim} = 1604, 1311, 1232, 1065, 912 cm⁻¹. HRMS (70 eV, EI+): *m/z* calcd. for C₁₀H₇F₂NO ([M]⁺): 195.0496; found: 195.0496.

2.6. Reference

- [1] (a) Brachi, I.; Pusino, A.; Gessa, C.; Bollag, J.-M. J. Agric. Food. Chem. 2000, 48, 2565.
 (b)Selby, T. P.; Dei, W. US5389600, 1995.
- [2] Nawrot, E.; Jończyk, A. J. Fluorine Chem. 2006, 127, 943.
- [3] Ando, M.; Wada, T.; Sato, N. Org. Lett. 2006, 8, 3805.
- [4] Ototake, N.; Nakamura, M.; Dobashi, Y.; Fukaya, H.; Kitagawa, O. Chem. Eur. J. 2009, 15, 5090.
- [5] Wenkert, E.; Bhattacharyya, N. K.; Reid, T. L. Stevens, T. E. J. Am. Chem. Soc. 1956, 78, 797.
- [6] (a) Melaimi, M.; Soleilhavoup, M.; Bertrand, G. Angew. Chem., Int. Ed. 2010, 49, 8810. (b)
 Maji, B.; Breugst, M.; Mayr, H. Angew. Chem., Int. Ed. 2011, 50, 6915. (c) Maji, B.; Horn,
 M.; Mayr, H. Angew. Chem., Int. Ed. 2012, 51, 6231.
- [7] (a) Tian, F.; Kruger, N.; Bautista, O.; Duan, J.-X.; Li, A.-R.; Dolbier, W. R., Jr. Org. Lett.
 2000, 2, 563. (b) Dolbier, W. R., Jr.; Tian, F.; Duan, J.; Li, A.-R.; Ait-Mohand, S.; Bautista, O.; Buathong, S.; Baker, J. M.; Crawford, J.; Anselme, P.; Cai, X. H.; Modzelewska, A.; Koroniak, H.; Battiste, M. A.; Chen, Q. J. Fluorine Chem. 2004, 125, 459.
- [8] (a) Ahlberg, P.; Alfassi, Z. B.; Boyd, G. V.; Busko-Oszczapowicz, I.; Frnarini, S.; Häfelinger, G.; Jaworski, J. S.; Kalinowski, M. K.; Kojima, S.; Krygowski, T. M.; Kuske, F. K. H.; Mikhailov, I. E.; Minkin, V. I.; Neilson, D. G. Oszczapowicz, J. Perin, C. L.; Pihlaja, K.; Shorter, J.; Swahn, L.; Wozniak, K.; Yamamoto, Y. *The chemistry of amidines and imidates*; Eds: Patai, S.; Rappoport, Z. John Wiley & Sons: West Sussex, 1991. (b) Gonzalez, O. C.; Gallis, D. E.; Crist, D. R. *J. Org. Chem.* **1986**, *51*, 3266. (c) Meese, C. O.; Walter, W.; Berger, M. *J. Am. Chem. Soc.* **1974**, *96*, 2259. (c) Satterthwait, A. C.; Jencks, W. P. *J. Am. Chem. Soc.* **1974**, *96*, 7045. (d) Walter, W.; Meese, C. O. *Chem. Ber.* **1977**, *110*, 2463. (e) Parks, J. E.; Balch, A. L. *J. Organomet. Chem.* **1974**, *71*, 453.
- [9] Ueda, S.; Nagasawa, H. J. Org. Chem. 2009, 74, 4272.
- [10] (a) Arduengo, III, A. J.; Dias, H. V. R.; Harlow, L.; Kline, M. J. Am. Chem. Soc. 1992, 114, 5530. (b) Furuya, Y.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 11240.

Chapter 3

Regioselective Syntheses of *gem*-Difluorocyclopentanone Derivatives with Transition Metal Difluorocarbene Complexes

3.1. Introduction

Difluorocyclopentanones are important motifs of pharmaceuticals (Figure 10).^[1] For example, α -fluorocyclopentanone derivatives **140** and **141** have antimalarial and antileukemic effects, respectively.^[1a,b] β -Fluorocyclopentanone derivative **142** has an anti-bronchitis effect.^[1c] Thus, regioselective synthesis of difluorocyclopentanones is of importance and has been required. These facts prompted me to achieve conduct regioselective synthesis of both α , α - and β , β -difluorocyclopentanone derivatives.

To date, α, α -difluorocyclopentanone derivatives have been synthesized via two fluorine introductions: double-electrophilic fluorination of cyclopentanones^[2] and deoxygenative fluorination of alkoxy cyclopentanones followed by oxidation.^[3] For instance, treatment of lactone 143 with N-fluorobenzensulfonimide in the presence of N,N-bis(trimethylsilyl)amide and manganese(II) bromide at -60 °C affords difluorolactone 144 in 57% yield (eq. 55).^[2a] Cyclopentanone 145 is treated with DAST (2.2 equiv) to afford difluorocyclopentane 146 in 67% yield. The subsequent hydrolysis and oxidation provide α, α -difluorocyclopentanone (eq. 56).^[1a] These strategies involve considerable effort because they require the construction of the carbon skeleton and the introduction of fluorine. Thus, I envisioned that the concise synthesis of α,α -difluorinated cyclopentanones would be facilitated by the combination of the metal-catalyzed difluorocyclopropanation of dienol silvl ethers (simultaneous fluorine introduction and C-C bond vinylcyclopropane-cyclopentene rearrangement and (VCP formation) rearrangement, five-membered ring construction).^[4] When dienol silvl ethers prepared from α,β -unsaturated ketone are subjected to difluorocyclopropanation, the resulting 1,1-difluoro-2-vinylcyclopropanes bearing a siloxy group would be obtained and then undergo VCP rearrangement to afford silyl 5,5-difluorocyclopent-1-en-1-yl ethers (*i.e.*, the domino synthesis of α,α -difluorocyclopentanone derivatives, eq. 57).

In the first step, the difluorocyclopropanation of silyl enol ethers is an issue to be addressed in this strategy. In general, difluorocyclopropanations of alkenes have been extensively studied for decades using systems such as CHClF₂/KOH (eq. 5),^[5] CClF₂CO₂Na (eq. 26),^[6] or PhHgCF₃/NaI (eq. 30)^[7] to generate free difluorocarbene; these methods are affected by strongly basic conditions, high reaction temperature, and the need for toxic reagents, respectively. Although useful methods for the generation of free difluorocarbene have been reported in the past few years, systems suitable for the difluorocyclopropanation of silyl enol ethers are still limited, probably due to their instabilities to hydrolysis.

On the other hand, metal-catalyzed cyclopropanation of alkenes under mild conditions has been reported.^[8] For instance, treatment of alkene **147** with diazoester **148** in the presence 1.0 mol% of rhodium(II) acetate at 25 °C affords cyclopropane **149** in 94% yield (eq. 58).^[8b] Alkene **150** reacts with diazomethane in the presence of 0.5 mol% palladium(II) acetate at 0 °C to afford cyclopropane **151** in 73% yield (eq. 59).^[8c] Treatment of alkene **152** with a stoichiometric amount of diazomethane in the presence of 10 mol% of tetrakis(triphenylphosphine)nickel(0) affords cyclopropane **153** in 72% yield (eq. 60).^[8d] I expected that transition metal difluorocarbene complexes such as those of Rh(II), Pd(II), and Ni(0) would realize the difluorocyclopropanation of the dienol silyl ethers.

Concerning the second ring-opening step, VCP rearrangements of fluorine-free vinylcyclopropanes, including siloxy-substituted ones, are typically conducted at high temperatures (300-550 °C).^[4b] For example, vinylcyclopropane 154 undergoes to rearrangement at 330 °C to give cyclopentene 155 in 89% yield (eq. 61).^[4c] As an advantage, fluorine substitution allows the rearrangement conditions to be benign and renders the C-C bond cleavage regioselective. Dolbier reported that 1,1-difluoro-2-vinylcyclopropanes readily underwent VCP rearrangement to selectively afford 3,3-difluorocyclopent-1-enes, albeit at 200-275 °C. When heating to 194-224 °C, vinyldifluorocyclopropane 156 affords difluorocyclopentenes 157 and 158 in 96% and 4% yields, respectively (eq. 62).^[4d] Recently, Percy conducted the reaction of the difluorinated vinvlcvclopropanes with an ester moiety at 100 °C (eq. 63).^[4e] Namely, difluorovinylcyclopropane 159 reacts at 100 °C to afford difluorocyclopentene 160 in 99% yield. These advantages of fluorine substitution on cyclopropane rings are ascribed to two primary reasons: (i) increased ring strain and (ii) elongation of the C–C bond distal to the geminal fluorine substituents (Figure 11).^[9] I expected that the VCP rearrangement of 2-siloxy-substituted 1,1-difluoro-2-vinylcyclopropanes would readily proceed, providing the desired domino synthesis of α , α -difluorocyclopentanone derivatives.

For the synthesis of the regioisomeric β , β -difluorocyclopentanone derivatives, I envisaged to adopt [4 + 1] cycloaddition (eq. 64). Dienol silyl ethers would electrophilically attack the CF₂ carbon of difluorocarbene complex to generate the corresponding difluoroalkylmetal, whose Michael-type ring closure would afford 4,4-difluorocyclopent-1-en-1-yl silyl ethers. Although the chemistry of [4 + 1] cycloaddition has been relatively undeveloped compared to other cyclizations in [3 + 2] and [2 + 2 + 1] fashions, I expected that the [4 + 1] cycloaddition of silyl dienol ethers with transition metal difluorocarbene complexes would facilitate the construction of β , β -difluorocyclopentanone skeletons.

In order to conduct the desired [4 + 1] cycloaddition, two issues must be addressed: (i) generation of transition metal difluorocarbene complexes and (ii) promotion of cycloaddition in a [4 + 1] manner. To settle these issues, I adopted copper(I) as a metal species (M) and halodifluoroacetate as a carbene source (XCF₂CO₂⁻). Decarboxylation of copper(I) carboxylate is known to proceed readily as shown in the following example:^[10] cross coupling reaction of

potassium pentafluorobenzoate 161 and phenyl iodide in the presence 10 mol% of copper(I) iodide 65).^[10a] The resulting 162 99% in vield (eq. proceeds to afford biphenyl (halodifluoromethyl)copper(I) species would undergo elimination of a halide ion (X⁻) to generate the required difluorocarbene complexes.^[11] On treatment of trifluoromethylmanganese(II) 163 with trimethylsilyl trifllate (2.0 equiv) affords manganese(II) difluorocarbene complex 164 in 87% yield (eq. 66).^[11b] Furthermore, there have been several reports on copper-catalyzed [4+1]cycloaddition of α,β -unsaturated ketones with diazo compounds, affording the desired five-membered cyclic products. Namely, on treatment with diazo compound 166 in the presence of 1 mol% of copper(I) triflate ketone 165 affords 2,3-dihydrofuran 168 in 79% yield (eq. 67).^[12] Copper(I) complex 167 is proposed as intermediate. I expected that the [4 + 1] cycloaddition of dienol silvl ether with copper(I) difluorocarbene complex would readily proceed to provide the desired synthesis of β , β -difluorocyclopentanone derivatives.

3.2. Domino Difluorocyclopropanation/Ring Expansion with Nickel Difluorocarbene Complex 3.2.1. Preparation of silyl enol ethers

Silyl enol ethers **170** were prepared from the corresponding ketones by using two synthetic methods (Table 7).^[13] Treatment of ketones **169a,c,d** with *tert*-butyl(dimethyl)silyl chloride (TBSCl, 1.0–1.2 equiv) in the presence of triethylamine (1.2–1.5 equiv) and sodium iodide (1.0–1.2 equiv) afforded silyl enol ethers **170a,c,d** in good yields (method A). Silylation of ketone **169b** with *tert*-butyl(dimethyl)silyl trifluoromethanesulfonate (TBSOTf, 1.3 equiv) in place of TBSCl proceeded to give silyl enol ether **170b** in 64% yield (method B).

		Metho	od A			
	0		TBSCI (1.0- NEt ₃ (1.2- Nal (1.0-1 CH ₃ CN, 45 °(-1.2 eq) 1.5 eq) .2 eq) C, 9–15 h	OTBS	
	R	Metho	od B		R	
	169		TBSOTf (1 NEt₂ (2.0	l.3 eq)) ea)	170	
Table 7			THF, 0 °C to	RT, 13 h		
Entry	Substrate	e 169	Method	Produc	t 170	Yield / %
1	O Ph	169a	A	OTBS Ph	170a	69
2	O Ph	169b	В	OTBS	170b	64 (<i>E</i> / <i>Z</i> = 4:96)
3	O Ph	169c	A	OTBS Ph	170c	71
4	o L	169d	A	OTBS	170d	86

TBS = Si(t-Bu)Me₂

The silulation of ketones 169 was successfully applied to the reaction of α , β -unsaturated ketones 171 (Table 8). Treatment of ketones 171a–l with a silulating reagent (TBSCl or TBSOTf) gave the corresponding dienol silul ethers 172a–l in good to moderate yields.

		М	lethod A						
			Т	BSCI (1.0-	-1.2 eg)				
				NEt ₃ (1.2–	1.5 eq)				
	0			Nal (1.0-1	.2 eq)		OTBS		
	R³ Ŭ	R ²	CH	l₃CN, 45 °(C, 6–16 h	R ³	\downarrow R ²		
	\sim	ſ` –		0 ,		~/~	\sim		
	l	Ļ _{р1} М	lethod B				ال R1		
	4-4	IX .		TBSOTf (1	.3 eq)		172		
	1/1			NEt ₃ (2.0) eq)		172		
				CH ₂ Cl ₂ or	r THF				
Table 8			-7	78 °C to RT	, 3–20 h				
Entry	Substrat	e 171		Method		Product	172	Yield / %	
Entry	Cubblin			Method		1100000			
	0	_	4		OTBS				
1	Ĭ	R = H	171a	A			172a	74	
2		R = Me	171b	В			1720	76	
3		R = OMe	171c	В			172c	60	
4		R = CI	1/1d	A			172d	63	
5	R	R = Br	1/1e	В	\sim	R	1/2e	62	
	0				OTBS				
6		171f		В		\checkmark	172f	40	
	\sim \sim				\sim				
	0				OTBS				
7		171g		В			172g	58	
	^{''} <i>n</i> -Pr				n	-Pr			
	0				OTRS				
8	Ць	R = Me	171h	в		-	172h	83	
9	K	R = Br	171i	B	· · · · · · · · · · · · · · · · · · ·	٦	172i	97	
10		R = Ph	171j	А	I,		172j	57	
	PN		-		I	-n	-		
	Q				OTBS				
11		4741		B			172k	65	
	Í Ì Ì	1/1K		Б	- T			00	
					·				
	0				OTB	s			
40	, Ĵ			٨	~ 1	-		70 / 5/7 - 04	66)
12	\sim	1711		A P			172I	13(E/Z = 34)	00)
15	الر Ph			D	ΙĻ	`Ph		00(E/Z = 5)	90)

3.2.2. Difluorocyclopropanation of Alkenes with Nickel Difluorocarbene Complex

Silyl enol ether **170a** was selected as a model substrate for optimization of the difluorocyclopropanation under metal catalysis. I expected that transmetalation of TFDA would proceed to give the transition metal carboxylate (eq. 68). Its decarboxylation followed by elimination of sulfur dioxide and fluoride ion would generate the desired metal difluorocarbene complex.

Although silyl enol ether **170a** was treated with TFDA (2.0 equiv) in the presence of 5 mol% of rhodium(II) acetate at 100 °C, difluorocyclopropane **173a** was not obtained and TFDA remained unreacted (97%, Entry 1). The use of tris(triphenylphosphine)rhodium(I) chloride (so-called wilkinson's catalyst) afforded **173a** in 57% yield (Entry 2). Nickel (Entries 3–5), palladium (Entries 6–9), and platinum (Entries 10,11) catalysts having electron-rich ligands such as phosphines and NHCs afforded **173a** in 30–72%, 59–64%, and 12–68% yields, respectively. NHC–copper(I) complex also afforded **173a** in 40% yield (Entry 12). Especially, a pincer-type NHC–nickel(II) complex **174**, which was developed for Heck-type coupling reactions by Inamoto, ^[14a] afforded **173a** in 72% yield (Entry 4).

TFDA was originally designed to generate free difluorocarbene upon treatment with a fluoride ion at 100 °C.^[15] Treatment of **170a** with TFDA (2.0 equiv) in the presence of sodium fluoride (5 mol%) at 100 °C afforded **173a**, albeit only in 31% yield (¹⁹F NMR). A substantial amount of TFDA (0.62 equiv) remained unreacted, while silyl enol ether **170a** was completely consumed (Entry 13). Since our research group previously reported the NHC-catalyzed generation of free difluorocarbene,^[16] **170a** was treated with TFDA in the presence of SIMes·HCl, IMes·HCl, or triazolium salt **127** (5 mol %) along with sodium carbonate (20 mol%) to afford **173a** in 53%, 56%, and 46% yields, respectively (Entries 14–16). To rule out the possibility that the pincer-type NHC ligand served as a catalyst for the decomposition of TFDA, **170a** was treated with TFDA in the presence of NHC-salt **180** (5 mol %) and sodium carbonate (20 mol%, entry 17). The product **173a** was obtained in 45% yield, suggesting that the difluorocyclopropanation was more efficiently promoted by the nickel catalyst.

The Ni catalyst **174**, possessing a rigid and highly electron-rich ligand, showed remarkable effects in this difluorocyclopropanation. This is presumably because the key difluorocarbene complex is stabilized by the ligand. Shriver reported that triphenylphosphine stabilized a difluorocarbene complex.^[17] Namely, iron(III) difluorocarbene complex **181** was detected by NMR

spectroscopy only at -78 °C and decomposed above -78 °C. On the other hand, difluorocarbene complex **182** with a triphenylphosphine ligand was successfully isolated at room temperature and was characterized by single-crystal X-ray analysis (Figure 4).

	Catalyst (5 m OTBS TFDA (2.0	nol%) F eq) F ↓	OTBS
	Ph Toluene, 100 °	C, 1 h	Ph
Table 9	170a		173a
Entry	Catalyst	173a / % ^a	Recovery of TFDA / % ^a
1	Rh ₂ (OAc) ₄	0	97
2	RhCl(PPh ₃) ₃	57	<1
3	Ni(PPh ₃) ₄	30	19
4	Ni complex 174	72 (73 ^b)	0
5	175	37	0
6	Pd(PPh ₃) ₄	59	7
7	176	64	0
8	177	62	0
9	178	62	0
10	Pt(PPh ₃) ₄	12	0
11	179	68	0
12	IPrCuCl	40	33
13	NaF	31	62
14	SIMes·HCl + Na ₂ CO ₃ (20 mol%)	56	0
15	IMes·HCl + Na ₂ CO ₃ (20 mol%)	53	0
16	127 + Na ₂ CO ₃ (20 mol%)	46	0
17	180 + Na ₂ CO ₃ (20 mol%)	45	0

a: ¹⁹F NMR yield based on $(CF_3)_2C(C_6H_4p-CH_3)_2$. *b*: Isolated yield.

Ni complex 174

Ni complex 175

Pd complex 176

Pd complex 177

Pd complex 178

Pt complex 179

Br

Mes

↓ 2Br N N N N N Me Me

NHC-salt 180

Figure 12. List of Catalyst Candidates

Figure 13. Stablization of Iron(III) Difluorocarbene Complexes by Phosphine Ligand

This difluorocyclopropanation method was successfully applied to other substrates in a diastereospecific fashion (Table 10). Silyl enol ether **170b** (E/Z = 4:96) afforded the corresponding product **173b** with 11:89 diastereomer ratio (Entry 2). Sterically hindered **170c** afforded the corresponding product **173c** in 63% yield (Entry 3). Cyclic silyl enol ether **170d** gone also the corresponding product **173d** in 78% yield (Entry 4). Furthermore, alkyl vinyl ether **170e** underwent difluorocyclopropanation, albeit in 40% yield (Entry 5).

a: Table 9, Entry 4.

It was reported that nickel carbene complex reacted with alkenes to generate metallacyclobutanes, which subsequently underwent reductive elimination providing cyclopropanes diastereospecificially.^[18] Treatment of (*E*)-**184** with dibromomethane (1.0 equiv) in the presence of nickel(0) complex **183** (1.0 eq), zinc metal (1.0 equiv), and sodium iodide (1.0 equiv) affords a *trans*-isomer **185** exclusively in 59% yield. On the other hand, (*Z*)-**184** undergoes cyclopropanation to give the mixture of *cis*- and *trans*-isomers **185** in 71% and 7% yields (Scheme 5).^[18b] In this reported case, stereospecificity is slightly reduced presumably because of steric effect, which was similarly observed in substrate **170b**.

3.2.3. Synthesis of 5,5-Difluorocyclopent-1-en-1-yl Silyl Ethers

Having the facile nickel-catalyzed difluorocyclopropanation of silyl enol ethers in hand, the domino difluorocyclopropanation/VCP rearrangement sequence was examined (Table 11). On treatment with TFDA (2.0 equiv) in the presence of 5 mol% of **174** at 80 °C, dienol silyl ether **172a** afforded difluoro(vinyl)cyclopropane **186a** and the desired 5,5-difluorocyclopent-1-en-1-yl silyl ether **187a** in 22% and 31%, respectively, accompanied by a 34% yield of the desilylated product **171a** (Entry 1). Chemoselective cyclopropanation occuerred on the oxygenated electron-rich alkene moiety, and regioselective VCP rearrangement subsequently proceeded to give **187a**. The

vinylcyclopropane intermediate **186a** was completely converted to **187a** by conducting the reaction at higher temperatures (Entries 2–5). Conducting of the reaction at 140 °C resulted in the highest 82% yield of **187a** (Entry 4).

OTI	BS 17 TF Ph	74 (5 mol%) EDA (2.0 eq) nt, Temp., Time	F OTB	8S F + F Ph	OTBS + Ph	O Ph
172	2a		186a	18	7a	171a
Table 11						
Entry	Solvent	Temp. / °C	Time / min	186a / % ^a	187a / % ^a	171a / % ^b
1	Toluene	80	60	22	31	34
2	Toluene	100	60	0	74	21
3	<i>p</i> -Xylene	120	30	0	72	6
4	<i>p</i> -Xylene	140	30	0	82 (83 <i>°</i>)	15
5	mesitylene	160	10	0	84	9

a: ¹⁹F NMR yield based on (CF₃)₂C(C₆H₄p-CH₃)₂. b: ¹H NMR yield based on **187a**. c: Isolated yield.

Various 5,5-difluorocyclopent-1-en-1-yl silyl ethers 187 were efficiently synthesized by the nickel(II) 174-based catalyst system (Table 12). Dienol silyl ether 172a reacted with TFDA (2.0 equiv) in the presence of 5 mol% of 172 at 140 °C to afford 187a in 83% yield (Entry 1). Dienol silvl ethers **172b**, d bearing electron-rich and -deficient aryl groups (R¹) smoothly underwent the domino process to afford the corresponding products 187b,d in 80% and 79% yields, respectively (Entries 2 and 3). The reaction of the alkylated substrate 172g also worked well to give the product 187g in 71% yield (Entry 4). Substrates 172h-j, which bear substituents at the internal position (R²), similarly afforded the products 187h-j in 73-74% yields (Entries 5-7). Dienol silvl ether 172k, derived from cyclohexenyl methyl ketone, afforded bicyclic silyl enol ether 187k in 49% yield (two-step yield, Entry 8). The lower yield than those of other substrates was probably due to partial decomposition of intermediary vinylcyclopropane 186k. In order to prevent the acid-promoted ring opening of 186k, 172k was treated with TFDA (2.0 equiv) in the presence of 20 mol% of 174 and sodium hydride (2.0 equiv) at 100 °C, which afforded difluorocyclopropane 186k in 60% yield (eq. 69). VCP rearrangement of the obtained 186k with sodium hydride (2.0 equiv) at 100 °C afforded the final product 187k in quantitative yield. When the substrate 172l bearing a methyl group as R^3 was employed, the corresponding product 1871 was obtained in 54% yield as a single trans diastereomer along with siloxydiene 188 (27%) as a 1,5-hydrogen shift product (Entry 9). It was reported that *cis*-vinylcylopropane 189 underwent exclusively 1,5-hydrogen shift to afford diene **190** in 95% yield (eq. 70),^[4d] while *trans*-vinylcylopropane **189** underwent not only 1,5-hydrogen

shift but also VCP rearrangement to give a mixture of diene 190 and cyclopentene 191 (1:1.9, eq. 71). Whereas dienol silvl ether 1721 mainly consisting of Z form (E/Z = 5.95) was employed, the desired product 1871 was obtained in 56% yield along with the undesired product 188 in 20% yields, respectively (Entry 10).

186k 60%

187k quant (60%: 2 steps)

3.2.4. Mechanistic Study on Difluorocyclopropanation

The difluorocyclopropanation of silyl enol ethers can be explained by a generation of nickel(II) difluorocarbene complex and its methylene transfer reaction (Scheme 6). Transmetalation of nickel(II) complex **174** and TFDA proceeds to generate nickel(II) carboxylate **A**. This complex **A** eliminates carbon dioxide, sulfer dioxide, and a fluoride ion to generate nickel(II) difluorocarbene complex **B**. Silyl enol ethers **170** reacts with **B** to generate nickelacyclobutane **C**, then reductive elimination of nickel(IV) complex proceeds to give difluorocyclopropanes **173** and the catalyst **174** is regenerated. Cyclopropanation of alkenes with nickel(II) carbene complex was reported by Barefield.^[18c] Treatment of cyclooctene with nickel(II) carbene complex **192** to afford cyclopropanation product **193** in 49% yield (eq. 72).

Scheme 6

Nickel(II) difluorocarbene complex **B** was tried to be captured by aminolysis. Roper reported that ruthenium(0) difluorocarbene complex **99** reacted with methylamine to afford ruthenium(0) isonitrile complex **194**, liberating two molecules of hydrogen fluoride (eq. 73).^[19] On the basis of this fact, nickel(II) complex **175** was treated with TFDA (1.5 equiv) in the presence of 2,6-dimethylphenylamine (10 equiv). As expected, nickel(II) isonitrile complex **195** was observed by ESI mass spectroscopy (eq. 74). In particular the isotope pattern of the observed fragment ion $(M^{2+}, C_{38}H_{38}N_6N_i)$ was in complete agreement with its computer simulation (Figure 14). Thus, this operation stlongly supports the aforementioned mechanism.

Figure 14

3.2.5. Derivatization of 5,5-Difluorocyclopent-1-en-1-yl Silyl Ethers into α-Fluorocyclopentanone Derivatives

Cyclic silyl enol ethers **187a** were transformed to substituted α, α -difluorocyclopentanones to demonstrate their utility in synthesis. Treatment of **187a** with tetrabutylmmonium fluoride (2.0 equiv) in THF/formic acid/water (6:3:1) at 55 °C afforded a 80% yield (¹⁹F NMR) of α, α -difluorocyclopentanone **196**, which was not isolated because of its instability toward chromatographic (silica gel and basic alumina) purification. Treatment of **196** with sodium borohydride (2.0 equiv) afforded cyclopentanol **197** in quantitative yield (eq. 74). Cyclopentanone **196** was also treated with tosylhydrazine to afford the corresponding hydrazone **198** in 74% yield (eq. 75). The single-crystal X-ray analysis of **198** confirmed that the difluoromethylene unit was introduced at the position adjacent to the carbonyl group (Figure 15). Furthermore, oxime **199** was obtained from cyclic silyl enol ether **187a** by treating the in situ-generated ketone **196** with hydroxylamine hydrochloride (2.0 equiv) in a one-pot operation (87% yield, two-steps, eq. 76).

Oxidative treatment of **187a** afforded functionalized fluorine-containing cyclopentenones. Treatment of **187a** with *N*-bromosuccinimide (NBS) under highly diluted conditions (7×10^{-4} mol/L) gave difluorinated cyclopentenone **200** in 86% yield (eq. 77). Oxidation of **187a** with *m*-chloroperbenzoic acid (*m*CPBA, 3.0 equiv) gave the corresponding epoxide **201** in 85% yield as a diastereomeric mixture (78:22). Its desilylation with potassium hydrodifluoride (2.0 equiv) led to the formation of 3-fluorinated 2-hydroxycyclopent-2-en-1-one **202** in 54% yield (eq. 78). The oxygenated cyclopentenone skeleton of **202** is found in cyclotene that is used as a food additive with a caramel-like flavor.^[20]

3.3. [4 + 1] Cycloaddition with Copper Difluorocarbene Complex

3.3.1. Synthesis of 4,4-Difluorocyclopent-1-en-1-yl Silyl Ethers

Dienol silyl ether **172a** was selected as a model substrate to examine the desired cyclopentanone ring construction via (i) the generation of the transition metal difluorocarbene complexes and (ii) promotion of the [4 + 1] cycloaddition. I adopted copper(I) as a metal species (M) and halodifluoroacetate as a carbene source (XCF₂CO₂⁻, eq. 80). Decarboxylation of copper(I) carboxylates is known to proceed readily. Elimination of a halide ion (X⁻) from the resulting (halodifluoromethyl)copper(I) species would generate the required difluorocarbene complexes. The copper(I)-catalyzed [4 + 1] cycloaddition was exemplified by the reaction of α , β -unsaturated ketones with diazo compounds as described in Section 3.1 (eq. 67).

$$M \xrightarrow{\text{XCF}_2\text{CO}_2^-}_{-\text{CO}_2, -X^-}$$

$$M \xrightarrow{\text{OSiR'}_3}_{\text{II}} \xrightarrow{\text{M=CF}_2} \xrightarrow{\text{OSiR'}_3}_{\text{F}_{\text{F}}} (80)$$

Dienol silyl ether **172a** was treated with sodium bromodifluoroacetate in the absence of copper(I) complex in acetonitrile at 50 °C (Table 13, Entry 1). Vinylcyclopropane **186a** and α,α -difluorocyclopentanone-based silyl enol ether **187a** were obtained in 35% and 5% yields, respectively. Cyclopropane **186a** was generated via free difluorocarbene and cyclic silyl enol ether **187a** was obtained from **186a** via VCP rearrangement. To my delight, treatment of **172a** with sodium bromodifluoroacetate (1.1 equiv) in the presence a stoichiometric amount of copper(I) bromide at 50 °C afforded the desired 4,4-difluorocyclopent-1-en-1-yl silyl ether **203a** and **186a** in 25% and 3% yields, respectively (Entry 2). Copper(I) acetylide and SIMesCuCl also gave the desired **203a** in 37% and 10% yields, respectively (Entries 3 and 4).

OTBS Ph	Catalyst (1.0 eq) BrCF ₂ CO ₂ Na (1.1 eq) CH ₃ CN, 50 °C, 12–18 h	OTBS F F Ph +	F OTBS +	OTBS F F Ph
172a		203a	186a	187a
Table 13				
Entry	Catalyst	203a / % ^a	186a / % ^a	187a / % ^a
1	None	0	35	5
2	CuBr	25	3	0
3	CCu≡CPh	37	10	0
4	SIMesCuCl	10	19	<1

a: ¹⁹F NMR yield based on (CF₃)₂C(C₆H₄p-CH₃)₂.

The catalyst system was optimized in detail (Table 14 and Figure 16). The reaction proceeded smoothly with 5 mol % of Cu(Phen)(PPh₃)Cl to afford **203a** in 49% yield (Entry 1). Copper(I) catalysts with bromide or iodide ions promoted the reaction to give **203a** in 62% and 58% yields, respectively (Entries 2,3). Electron-donating 4,7-dimethylphenanthroline complex **204b** afforded **203a** in the highest 72% yield (Entry 4), whereas 3,4,7,8-tetramethylphenanthroline complex **204c** gave **203a** in lower yield (59%, Entry 5), presumably because of the low solubility of this complex in acetonitrile. Sterically hindered complexes, **204d** and **204e**, led to poor results: **203a** was obtained in 16% and 33% yields (Entries 6 and 7), respectively. Complex **204f** bearing a bipyridyl ligand afforded **203a** only in 39% yield and difluorocyclopropanation proceeded to form **186a** and **187a** in 40% and 2% yields, respectively (Entry 8). The dimethylphenanthroline ligand in complex **204a** probably stabilized the presumed difluorocarbene complex by its electron-donating property and rigid structure.

OTBS	Catalyst (5.0 mol%) BrCF ₂ CO ₂ Na (1.1 eq) CH ₃ CN, 50 °C, 12–18 h	OTBS F Ph +	F OTBS +	OTBS F F Ph
172a		203a	186a	187a
Table 14				
Entry	Catalyst	203a / % ^a	186a / % ^a	187a / % ^a
1	Cu(Phen)(PPh ₃)Cl	49	6	2
2	Cu(Phen)(PPh ₃)Br 204a	62	7	3
3	Cu(Phen)(PPh ₃)I	58	5	2
4	204b	72 (71 <i>^b</i>)	7	2
5	204c	59	17	0
6	204d	16	7	9
7	204e	33	18	0
8	204f	39	40	2

a: ¹⁹F NMR yield based on (CF₃)₂C(C₆H₄p-CH₃)₂. b: Isolated yield.

Figure 16

Effects of difluorocarbene sources were also examined, using 5 mol% of **204a** as a catalyst (Table 15). Conducting the reaction with potassium bromodifluoroacetate afforded the [4 + 1] cycloaddition product **203a**, difluorocyclopropane **186a**, and the VCP rearrangement product **187a** in 64%, 4%, and 2% yields, respectively (Entry 2). Cesium salt afforded **203a** in 32% yield (Entry 3). Sodium salts with leaving groups such as chlorine (Entry 4), fluorine (Entry 5), and a fluorosulfonyl group (Entry 6) did not promote the [4 + 1] cycloaddition.

a: ¹⁹F NMR yield based on $(CF_3)_2C(C_6H_4p-CH_3)_2$. *b*: Table 14, Entry 2.

Effects of phosphine ligands on the yield of **203a** were examined (Table 16). Electron-rich and -deficient triarylphosphine complex **204g–j** afforded **203a** in 39–67% yields (Entries 2–5). Use of tricyclohexylphosphine compex **204k** resulted in the formation of **203a** in 51% yield (Entry 6). However, the effects of phosphine ligands were not clear.

OTBS	Catalyst (5.0 mol%) BrCF ₂ CO ₂ Na (1.1 eq) CH ₃ CN, 50 °C, 12–18 h	OTBS F F Ph	F F C	PTBS F + F Ph	OTBS Ph
Table 16 172a		203a	186	a	187a
Entry	Catalyst		203a / % ^a	186a / % ^a	187a / % ^a
1	R = Ph	204a	62	7	3
2	$R = C_6H_4\rho\text{-}CH_3$	204g	66	7	0
3	$R = C_6 H_4 p - OCH_3$	204h	47	7	0
4 Cu	$R = C_6 H_4 p - CI$	204i	67	10	0
5 R ₃ r E	$R = C_6 H_4 p - CF_3$	204j	39	12	0
6	R = Cy	204k	51	4	0

a: ¹⁹F NMR yield based on (CF₃)₂C(C₆H₄*p*-CH₃)₂. *b* :Table 14, Entry 2.

Various 4,4-difluorocyclopent-1-en-1-yl silyl ethers **203** were efficiently synthesized by the copper(I) **204b**-based catalyst system (Table 17). Dienol silyl ether **172a** reacted with sodium bromodifluoroacetate (1.1 equiv) in the presence of 5 mol% of **204b** at 50 °C to afford **172a** in 71% yield (Entry 1). Dienol silyl ethers **172b**, **c**, **e**, bearing electron-rich and -deficient aryl groups (\mathbb{R}^1), smoothly underwent the [4 + 1] cycloaddition to afford the corresponding products **203b**, **c**, **e** in 70%, 61%, and 59% yields, respectively (Entries 2–4). Dienol silyl ethers **172f**, **g** with 2-naphthyl and propyl groups (\mathbb{R}^1) afforded **203f**, **g** in 59% yields each (Entries 5 and 6). Substrate **172h** bearing a substituent at the internal position (\mathbb{R}^2) similarly afforded the product **203h** in 69% yield (Entry 7). Dienol silyl ether **172k**, derived from cyclohexenyl methyl ketone, afforded bicyclic silyl enol ether **203k** in 63% yield (Entry 8).

a: Table 14, Entry 4. b: Reaction time was 36 h.

The copper(I)-catalyzed difluoromethylene transfer could not be applied to simple silyl enol ether. Treatment of silyl enol ether **170a** with sodium bromodifluoroacetate (1.1 equiv) in the presence of 5 mol% of **204a** did not afford difluorocyclopropane **173a** (eq. 81).

3.3.2. Mechanistic Study on [4 + 1] Cycloaddition with Copper Difluorocarbene Complex

The [4 + 1] cycloaddition of silyl enol ethers can be explained by the generation of copper(I) difluorocarbene complex (Scheme 7). Transmetalation of copper(I) complex **D** lacking a phosphine ligand with sodium bromodifluoroacetate proceeds to generate copper(I) carboxylate **E**. The formed complex **E** eliminates carbon dioxide to generate (bromodifluoroacethyl)copper(I) complex **F**. Then, loss of a bromide ion from **F** generates the key copper(I) difluorocarbene complex **G**. Dienol silyl ethers **172** nucleophilically attack the CF₂ carbon of difluorocarbene complex **G** to generate the corresponding difluoroalkylcopper(I) complex **H**, whose Michael–type 5-*endo-trig* ring closure provides 4,4-difluorocyclopent-1-en-1-yl silyl ethers **203**. In this final step the catalyst **D** is regenerated. It should be noted that another migration mechanism for formation of **H** is also possible. Nucleophilic attack of **172** to the metal center of **G**, followed by metal carbene migratory insertion, generates **H**.^[21]

Scheme 7

Copper(I) difluorocarbene complex **G** was captured by aminolysis as mentioned in section 3.2.4 (eq. 73 to support the above mechanism). When copper(I) complex **204b** was treated with sodium bromodifluoroacetate (5.5 equiv) in the presence of butylamine (10 equiv), copper(I) isonitrile complex **205**, lacking a phosphine ligand was observed by ESI mass spectroscopy (eq. 82). In particular, the isotope pattern of the observed fragment ion (M^+ , $C_{19}H_{21}CuN_3$) was in complete agreement with its computer simulation (Figure 17).

The reaction was truly affected by the addition of extra triphenylphosphine (eq. 83). Specifically, dienol silyl ether **172a** was treated with bromodifluoroacetate (1.1 equiv) in the presence of catalyst **204b** (5 mol%) and triphenylphosphine (0.2 equiv). ¹⁹F NMR analysis indicated that the yield of **203a** decreased to 32% (v.s. 72% yield in Table 14, Entry 4), accompanied by formation of difluorocyclopropane **186a** (25% yield) and isomeric **187a** (18% yield).

3.3.3. Derivatization of 4,4-Difluorocyclopent-1-en-1-yl Silyl Ethers into β-Fluorocyclopentanone Derivatives

Hydroysis of **203a** was effected with tetrabutylmmonium fluoride (2.0 equiv) in THF/formic acid (5:1), which was accompanied by elimination of hydrogen fluoride to afford β -fluorocyclopentenone **206** in 70% yield (eq. 84).

Treatment of β -fluorocyclopentenone **206** with methyl lithium (2.0 eq) at -78 °C caused 1,2-addition, followed by migration and hydrolysis, to give cyclopentenone **207** in 36% yield (eq. 85).^[22] A different synthetic route to **207** was reported by Murakami and Ito,^[23a] and the position of the introducted fluorine was confirmed by the comparison of spectral data.

3.4. Conclusion

I have developed the regioselective syntheses of both α,α - and β,β -difluorocyclopentanone derivatives by using unprecedented transition metal difluorocarbene complexes as catalytic species. Dienol silyl ethers underwent the domino difluorocyclopropanation and VCP rearrangement with a nickel(II) difluorocarbene complex to afford 5,5-difluorocyclopent-1-en-1-yl silyl ethers. Copper(I) difluorocarbene complex promoted the [4 + 1] cycloaddition of the same dienol silyl ethers with sodium bromodifluoroacetate to afford 4,4-difluorocyclopent-1-en-1-yl silyl ethers. The two key difluorocarbene complexes of nickel and copper were captured as aminolysis products, which were observed by HRMS analysis.

3.5 Experimental Section

3.5.1. General

¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded on a Bruker Avance 500. Chemical shift values are given in ppm relative to internal Me₄Si (for ¹H NMR: $\delta = 0.00$ ppm), CDCl₃ (for ¹³C NMR: $\delta = 77.0$ ppm), and C₆F₆ (for ¹⁹F NMR: $\delta = 0.00$ ppm). IR spectra were recorded on a Horiba FT-300S spectrometer by the attenuated total reflectance (ATR) method. Mass spectra were measured on a JEOL JMS-T100GCV. Elemental analyses were carried out at the Elemental Analysis Laboratory, Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba. All reactions were carried out under argon. Column chromatography was performed on silica gel (Kanto Chemical Co. Inc., Silica Gel 60) and alumina (Aluminium Oxide 90 Active Basic, Merck KGaA for column chromatography). Ethyl bromodifluoracetate supplied by KANTO DENKA KOGYO CO., LTD. and Central Glass Co., Ltd. tert-Butyldimethylsilyl chloride (TBSCl) supplied by Shin-Etsu Chemical Co., Ltd. Toluene, Tetrahydrofuran (THF), dichloromethane were purified by a solvent-purification system (GlassContour) equipped with columns of activated alumina and supported-copper catalyst (Q-5) before use. Acetonitrile was distilled from P₂O₅ and CaH₂ before used. *p*-Xylene and mesitylene were distilled from CaCl₂. Methanol was distilled from magnesium and iodine. Pincer-type NHC complexes and salt 174–180 were prepared according to the literature.^[14] Trimethylsilyl 2,2-difluoro-2-fluorosulfonvlacetate (TFDA) was prepared according to the literature.^[15] SIMes·HCl and IMes·HCl were prepared according to the literatures.^[24] Copper complex Cu(Phen)(PPh₃)Cl, Cu(Phen)(PPh₃)I, **204a-k** were prepared according to the literature.^[25] Silyl enol ether **170a**,c,d were prepared according to the literature.^[13] 170e Enol ether was purchased from Aldrich and was distilled before use. 1,1,1,3,3,3-hexafluoro-2,2-di(p-tolyl)propane (internal standard for ¹⁹F NMR) was purchased from Tokyo Chemical Industry Co., Ltd.

3.5.2. Synthesis of Silyl enol ether and dienol silyl ether.

(*A*) Typical procedure for the synthesis of silyl enol ether **170a–d** and dienol silyl ether **172a–l**. *Method A* (TBSCI)

To an acetonitrile solution (13 mL) of 4-phenylbut-3-en-2-one **171a** (1.47 g, 10.0 mmol), tertbutyl(dimethyl)silyl chloride (1.54 g, 10.2 mmol), and sodium iodide (1.51 g, 10.0 mmol) was added triethylamine (1.67 mL, 12.0 mmol) at room temperature. The reaction mixture was heated to 45 °C, stirred overnight, and then cooled to 0 °C. After being diluted with cold hexane (0 °C, 10 mL), the reaction mixture was poured into a mixture of ice (30 g) and a saturated aqueous solution (15 mL) of sodium hydrogen carbonate to prevent decomposition of the product. Organic materials were extracted with cold hexane (0 °C) three times. The combined extracts were washed with brine

and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on basic alumina (hexane) to give silyl dienol ether **172a** as a colorless liquid (1.94 g, 74% yield).

Method B (TBSOTf)

To a dichloromethane solution (10 mL) of hept-3-en-2-one **171g** (739 mg, 6.59 mmol) were added triethylamine (1.84 mL, 13.2 mmol) and *tert*-butyl(dimethyl)silyl trifluoromethanesulfonate (1.96 mL, 8.53 mmol) at 0 °C. The resulting mixture was slowly warmed to room temperature, stirred overnight, and then cooled to 0 °C. After being diluted with cold hexane (0 °C, 10 mL), the reaction mixture was poured into a mixture of ice (30 g) and a saturated aqueous solution (15 mL) of sodium hydrogen carbonate to prevent decomposition of the product. Organic materials were extracted with cold hexane (0 °C, 5 mL) three times. The combined extracts were washed with brine and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by distillation under reduced pressure (bp. 45 °C, 0.38 mmHg) to give silyl dienol ether **172g** as a colorless liquid (867 mg, 58% yield).

(B) Spectral data of silyl enol ether and dienol silyl ether

1-[tert-Butyl(dimethyl)silyloxy]-1-phenylprop-1-ene 170b (E/Z = 5:95)

¹H NMR (500 MHz, CDCl₃): (*Z*-isomer) $\delta = -0.03$ (s, 6H), 1.00 (s, 9H), 1.74 (d, *J* = 7.0 Hz, 3H), 5.21 (q, *J* = 7.0 Hz, 1H), 7.23 (t, *J* = 7.0 Hz, 1H), 7.28 (t, *J* = 7.0 Hz, 2H), 7.43 (d, *J* = 7.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): (*Z*-isomer) $\delta = -4.0$, 11.7, 18.3, 25.9, 105.8, 125.7, 127.2, 127.9, 139.8, 150.2. IR (neat): $v^{\sim} = 2929$, 1321, 1254, 1059, 866, 837, 779, 735. HRMS (70 eV, EI+): *m/z* (*Z*-isomer) calcd. for C₁₅H₂₄OSi [M]⁺: 248.1596; Found: 248.1596.

3-[tert-Butyl(dimethyl)silyloxy]-1-phenylbuta-1,3-diene 172a

¹H NMR (500 MHz, CDCl₃): $\delta = 0.20$ (s, 6H), 1.01 (s, 9H), 4.40 (s, 1H), 4.43 (s, 1H), 6.56 (d, J = 15.6 Hz, 1H), 6.84 (d, J = 15.6 Hz, 1H), 7.20 (t, J = 7.5 Hz, 1H) 7.29 (t, J = 7.5 Hz, 2H) 7.39 (d, J = 7.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.6$, 18.4, 25.9, 96.7, 126.5, 126.7, 127.6, 128.6, 129.2, 136.8, 155.2. IR (neat): $v^{\sim} = 2929$, 2857, 1589, 1327, 1022, 733 cm⁻¹. HRMS (70 eV, EI+): m/z calcd. for C₁₆H₂₄OSi [M]⁺: 260.1596; Found: 260.1594.

3-[tert-Butyl(dimethyl)silyloxy]-1-(p-methylphenyl)buta-1,3-dien 172b

¹H NMR (500 MHz, CDCl₃): $\delta = 0.22$ (s, 6H), 1.02 (s, 9H), 2.34 (s, 3H), 4.39 (s, 1H), 4.42 (s, 1H), 6.54 (d, J = 15.6 Hz, 1H), 6.83 (d, J = 15.6 Hz, 1H), 7.12 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.6$, 18.4, 21.2, 25.9, 96.3, 125.6, 126.7, 129.2, 129.3,

134.0, 137.5, 155.4. IR (neat): $v^{\sim} = 2956$, 2929, 1587, 1323, 1003, 837 cm⁻¹. HRMS (70 eV, EI+): *m*/*z* calcd. for C₁₇H₂₆OSi [M]⁺: 274.1753; Found: 274.1755.

3-(tert-Butyldimethylsiloxy)-4-(p-methoxyphenyl)-1,3-butadiene 172c

¹H NMR (500 MHz, CDCl₃): $\delta = 0.22$ (s, 6H), 1.02 (s, 9H), 3.81, (s, 3H), 4.37 (s, 1H), 4.40 (s, 1H), 6.46 (d, J = 15.7 Hz, 1H), 6.81 (d, J = 15.7 Hz, 1H), 6.86 (d, J = 8.8 Hz, 2H), 7.35 (d, J = 8.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.6$, 18.4, 25.9, 55.3, 95.8, 114.0, 124.5, 128.0, 128.7, 129.6, 155.4, 159.3. IR (neat); $v^{\sim} = 2929$, 1510, 1250, 1173, 1024, 823 cm⁻¹. HRMS (70 eV, EI+): m/z calcd. for C₁₇H₂₆OSi ([M]⁺): 290.1702; found: 290.1701.

3-[tert-Butyl(dimethyl)silyloxy]-1-(p-chlorophenyl)buta-1,3-diene 172d

¹H NMR (500 MHz, CDCl₃): δ = 0.22 (s, 6H), 1.02 (s, 9H), 4.43 (s, 1H), 4.45 (s, 1H), 6.54 (d, *J* = 15.6 Hz, 1H), 6.80 (d, *J* = 15.6 Hz, 1H), 7.28 (d, *J* = 8.5 Hz, 2H), 7.33 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ = -4.6, 18.4, 25.9, 97.1, 127.2, 127.9, 128.7, 133.2, 135.3, 155.0. IR (neat); v^{\sim} = 2929, 1597, 1489, 1323, 1022, 812 cm⁻¹. HRMS (70 eV, EI+): *m/z* calcd. for C₁₆H₂₃ClOSi [M]⁺: 294.1207; Found: 294.1203.

3-(*tert*-Butyldimethylsiloxy)-1-(*p*-bromophenyl)-1,3-butadiene 172e

¹H NMR (500 MHz, CDCl₃): $\delta = 0.22$ (s, 6H), 1.02 (s, 9H), 4.44 (s, 1H), 4.46 (s, 1H), 6.56 (d, J = 15.6 Hz, 1H), 6.78 (d, J = 15.6 Hz, 1H), 7.27 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.6$, 18.4, 25.9, 97.2, 121.4, 127.3, 127.9, 128.2, 131.7, 135.8, 155.0. IR (neat); v = 2929, 1487, 1321, 1254, 1024, 1009, 810 cm⁻¹. HRMS (70 eV, EI+): *m/z* calcd. for C₁₆H₂₃BrOSi ([M]⁺): 338.0702; found: 338.0705.

3-(tert-Butyldimethylsiloxy)-4-(2-naphtyl)-1,3-butadiene 172f

¹H NMR (500 MHz, CDCl₃): $\delta = 0.26$ (s, 6H), 1.07 (s, 9H), 4.46 (s, 1H), 4.51 (s, 1H), 6.73 (d, J = 16.0 Hz, 1H), 7.04 (d, J = 16.0 Hz, 1H), 7.42–7.49 (m, 2H), 7.63 (dd, J = 8.5, 1.5 Hz, 1H), 7.76–7.84 (m, 4H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.6$, 18.4, 25.9, 96.9, 123.7, 125.9, 126.3, 126.9, 126.9, 127.6, 128.0, 128.2, 129.3, 133.0, 133.7, 134.3, 155.3. IR (neat); $v^{\sim} = 2954$, 1585, 1311, 1254, 1020, 808 cm⁻¹. HRMS (70 eV, EI+): m/z calcd. for C₂₀H₂₆OSi ([M]⁺): 310.1753; found: 310.1755.

2-[tert-Butyl(dimethyl)silyloxy]hepta-1,3-diene 172g

¹H NMR (500 MHz, CDCl₃): $\delta = 0.18$ (s, 6H), 0.91 (t, J = 7.5 Hz, 3H), 0.97 (s, 9H), 1.43 (qt, J = 7.5, 7.0 Hz, 2H), 2.07 (dt, J = 7.0, 7.0 Hz, 2H), 4.20 (s, 1H), 4.21 (s, 1H), 5.88 (dt, J = 15.0, 1.2 Hz, 1H), 6.00 (dt, J = 15.0, 7.0 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.7$, 13.7, 18.3, 22.4, 25.8,
34.2, 93.8, 127.9, 131.7, 155.2. IR (neat); $v^{\sim} = 2958$, 2929, 1672, 1593, 1254, 1022, 835 cm⁻¹. HRMS (70 eV, EI+): *m/z* calcd. for C₁₃H₂₆OSi [M]⁺: 226.1753; Found: 226.1755.

3-[tert-Butyl(dimethyl)silyloxy]-2-methyl-1-phenylbuta-1,3-diene 172h

¹H NMR (500 MHz, CDCl₃): $\delta = 0.20$ (s, 6H), 0.99 (s, 9H), 1.96 (s, 3H), 4.41 (s, 1H), 4.59 (s, 1H), 7.08 (s, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.25 (d, J = 7.5 Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.6$, 14.6, 18.4, 25.9, 93.0, 126.5, 127.2, 128.1, 129.3, 133.0, 138.1, 157.5. IR (neat): $v^{\sim} = 2956$, 2858, 1601, 1254, 1018, 827 cm⁻¹. HRMS (70 eV, EI+): m/z calcd. for C₁₇H₂₆OSi [M]⁺: 274.1753; Found: 274.1754.

2-Bromo-3-[*tert*-butyl(dimethyl)silyloxy]-1-phenylbuta-1,3-diene 172i

H NMR (500 MHz, CDCl₃): $\delta = 0.24$ (s, 6H), 1.01 (s, 9H), 4.64 (s, 1H), 5.22 (s, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.38 (t, J = 7.5 Hz, 2H), 7.53 (s, 1H), 7.64 (d, J = 7.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.7$, 18.3, 25.8, 97.5, 120.2, 128.1, 128.1, 129.0, 129.5, 135.9, 153.7. IR (neat): $v^{\sim} = 2954$, 2856, 1603, 1254, 1022, 825 cm⁻¹. HRMS (70 eV, EI+): m/z calcd. for C₁₂H₁₄BrOSi [M-t-Bu]⁺: 280.9997; Found: 280.9995.

3-[tert-Butyl(dimethyl)silyloxy]-1,2-diphenylbuta-1,3-diene 172j

¹H NMR (500 MHz, CDCl₃): $\delta = 0.26$ (s, 6H), 1.06 (s, 9H), 4.07 (s, 1H), 4.48 (s, 1H), 6.84–6.87 (m, 2H), 7.05–7.12 (m, 3H), 7.14 (s, 1H), 7.19 (dd, J = 8.0, 2.0 Hz, 2H), 7.31–7.39 (m, 3H).

¹³C NMR (126 MHz, CDCl₃): $\delta = -4.6$, 18.4, 26.0, 97.6, 126.8, 127.3, 127.9, 128.6, 129.6, 130.1, 136.6, 138.8, 139.0, 157.8. IR (neat): $v^{\sim} = 2956$, 2858, 1589, 1269, 1020, 829 cm⁻¹. HRMS (70 eV, EI): *m/z* calcd. for C₂₂H₂₈OSi [M]⁺: 336.1909; Found: 336.1905.

1-{1-[*tert*-Butyl(dimethyl)silyloxy]ethenyl}cyclohex-1-ene 172k

¹H NMR (500 MHz, CDCl₃): $\delta = 0.17$ (s, 6H), 0.97 (s, 9H), 1.54–1.60 (m, 2H), 1.63–1.69 (m, 2H), 2.11–2.27 (m, 4H), 4.17 (s, 1H), 4.33 (s, 1H), 6.23–6.27 (m, 1H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.6$, 18.3, 22.1, 22.7, 25.0, 25.5, 25.9, 89.4, 125.3, 133.2, 156.8. IR (neat): $v^{\sim} = 2929$, 2858, 1664, 1255, 831 cm⁻¹. HRMS (70 eV, EI): *m/z* calcd. for C₁₄H₂₆OSi [M]⁺: 238.1753; Found: 238.1755.

1-{1-[*tert*-Butyl(dimethyl)silyloxy]ethenyl}cyclohex-1-ene 1721

¹H NMR (500 MHz, CDCl₃): δ = 0.18 (s, 6H), 1.08 (s, 9H), 1.73 (d, *J* = 7.0 Hz, 3H), 5.03 (q, *J* = 7.0 Hz, 1H), 6.58 (d, *J* = 15.5 Hz, 1H), 6.66 (d, *J* = 15.5 Hz, 1H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.39 (d, *J* = 7.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ = -3.6, 12.1, 18.5, 26.0, 111.0, 126.3, 126.6, 127.1, 127.5, 128.6, 137.3, 149.5. IR (neat): v^{\sim} = 2929, 1338, 1254, 1024, 777, 688 cm⁻¹. HRMS (70 eV, EI): *m/z* calcd. for C₁₇H₂₆OSi [M]⁺: 274.1753; Found: 274.1756.

3.5.3. Synthesis of difluorocyclopropane

(A) Typical procedure for the synthesis of difluorocyclopropane

To a toluene solution (5 mL) of nickel(II) complex **174** (45 mg, 0.097 mmol) and 1,1,1,3,3,3-hexafluoro-2,2-di(*p*-tolyl)propane (62 mg, 0.19 mmol) was added a toluene solution (5 mL) of silyl enol ether **170a** (469 mg, 2.00 mmol) at room temperature. The solution was heated to 100 °C and TFDA (788 mL, 4.00 mmol) was added. The resulting mixture was stirred at 100 °C for 1 h and then cooled to room temperature. ¹⁹F NMR analysis of the mixture revealed that difluorocyclopropane **173a** was formed in 72% yield. The solution was diluted with ethyl acetate (10 mL) and a saturated aqueous solution (10 mL) of sodium hydrogen carbonate was added. Organic materials were extracted with ethyl acetate three times. The combined extracts were washed with brine and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane) to afford difluorocyclopropane **173a** as a colorless liquid (415 mg, 73% yield).

(B) Spectral data of difluorocyclopropane.

1-[tert-Butyl(dimethyl)silyloxy]-2,2-difluoro-1-phenylcyclopropane 173a

¹H NMR (500 MHz, CDCl₃): $\delta = -0.10$ (s, 3H), -0.04 (s, 3H), 0.84 (s, 9H), 1.68 (ddd, J = 16.0, 9.0, 5.0 Hz, 1H), 1.91 (ddd, J = 16.0, 9.0, 6.0 Hz, 1H), 7.31-7.40 (m, 3H), 7.46 (d, J = 7.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.3, -4.1, 17.9, 23.4$ (t, J = 9 Hz), 25.5, 62.3 (dd, J = 12, 10 Hz), 112.1 (t, J = 296 Hz), 128.3, 128.5, 136.2. ¹⁹FNMR (470 MHz, CDCl₃): $\delta = 21.2$ (ddd, J = 154, 16, 6 Hz, 1F), 28.5 (ddd, J = 154, 16, 5 Hz, 1F). IR (neat): $v^{\sim} = 2931, 1460, 1228, 1173, 827, 698$ cm⁻¹. HRMS (70 eV, EI): m/z calcd. for C₁₅H₂₂F₂OSi [M]⁺: 284.1408; Found: 284.1404.

1-[tert-Butyl(dimethyl)silyloxy]-2,2-difluoro-3-methyl-1-phenylcyclopropane 173b

¹H NMR (500 MHz, CDCl₃): $\delta = -0.26$ (s, 3H), 0.02 (d, J = 1.0 Hz, 3H), 0.81 (s, 9H), 1.26 (ddd, J = 6.5, 3.0, 1.0 Hz, 3H), 1.61–1.71 (m, 1H), 7.29–7.38 (m, 3H), 7.46 (d, J = 8.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.6$ (d, J = 3 Hz), -4.3, 18.3, 25.6, 27.7 (t, J = 9 Hz), 62.4 (t, J = 10 Hz), 114.0 (dd, J = 301, 295 Hz), 128.3, 128.4, 129.5, 138.0. ¹⁹FNMR (470 MHz, CDCl₃): $\delta = 12.2$ (d, J = 155 Hz, 1F), 34.1 (ddd, J = 155, 18, 3 Hz, 1F). IR (neat): $v^{\sim} = 2931, 2860, 1473, 1167, 839$ cm⁻¹. HRMS (70 eV, EI): m/z calcd. for C₁₆H₂₄F₂OSi [M]⁺: 298.1564; Found: 298.1563.

1-[tert-Butyl(dimethyl)silyloxy]-2,2-difluoro-3,3-dimethyl-1-phenylcyclopropane 173c

¹H NMR (500 MHz, CDCl₃): $\delta = -0.43$ (s, 3H), 0.07 (d, J = 1.8 Hz, 3H), 0.79 (s, 9H), 0.81 (t, J = 2.0 Hz, 3H), 1.30 (dd, J = 2.0, 1.8 Hz, 3H), 7.27–7.35 (m, 3H), 7.37 (d, J = 7.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.9$ (d, J = 4 Hz), -4.5, 12.9 (dd, J = 7, 1 Hz), 16.8 (d, J = 7 Hz), 18.2, 25.6, 29.4 (t, J = 9 Hz), 64.0 (dd, J = 10, 9 Hz), 115.8 (dd, J = 313, 301 Hz), 128.1, 128.1, 130.2, 136.0 (d, J = 2 Hz). ¹⁹FNMR (470 MHz, CDCl₃): $\delta = 17.5$ (d, J = 154 Hz, 1F), 22.9 (d, J = 154 Hz, 1F). IR (neat): $v^{\sim} = 2929$, 1471, 1250, 1165, 866, 700 cm⁻¹. HRMS (70 eV, EI): *m/z* calcd. for C₁₇H₂₆F₂OSi [M]⁺: 312.1721; Found: 312.1717.

2-[tert-Butyl(dimethyl)silyloxy]-7,7-difluorobicyclo[4.1.0]heptane 173d

¹H NMR (500 MHz, CDCl₃): $\delta = 0.12$ (s, 3H), 0.13 (s, 3H), 0.88 (s, 9H), 1.20–1.40 (m, 3H), 1.42– 1.56 (m, 2H), 1.63 (dd, J = 13.5, 7.5 Hz, 1H), 1.76–1.86 (m, 1H), 1.87–1.99 (m, 1H), 2.09–2.21 (m, 1H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.2$ (d, J = 3 Hz), -3.9, 17.1 (d, J = 3 Hz), 17.9, 20.7, 21.0 (d, J = 3 Hz), 25.7, 26.4 (dd, J = 11, 8 Hz), 27.3, 57.4 (dd, J = 11, 10 Hz), 114.6 (dd, J = 302, 297 Hz). ¹⁹FNMR (470 MHz, CDCl₃): $\delta = 15.7$ (d, J = 157 Hz, 1F), 26.1 (dd, J = 157, 19 Hz, 1F). IR (neat): $v^{\sim} = 2931$, 2858, 1473, 1252, 1192, 837 cm⁻¹. EA: calcd. for C₁₃H₂₄F₂OSi: C 59.50%, H 9.22%; Found: C 59.10%, H 9.38%.

1-dodecyloxy-2,2-difluorocyclopropane 173e

¹H NMR (500 MHz, CDCl₃): $\delta = 0.88$ (t, *J* = 7.0 Hz, 3H), 1.20–1.42 (m, 19H), 1.42–1.52 (m, 1H), 1.59 (dt, *J* = 14.5, 7.0 Hz, 2H), 3.53–3.61 (m, 3H). ¹³C NMR (126 MHz, CDCl₃): $\delta =$ 14.1, 17.9, 18.0 (t, *J* = 10 Hz), 22.7, 25.9, 29.3, 29.4, 29.5, 29.6, 29.6, 29.6, 31.9, 56.9 (dd, *J* = 14, 9 Hz), 71.8, 111.5 (dd, *J* = 290, 289 Hz). ¹⁹F NMR (470 MHz, CDCl₃): $\delta =$ 12.8 (dddd, *J* = 165, 16, 6, 2 Hz, 1F), 31.4 (dddd, *J* = 165, 15, 10, 5 Hz, 1F). IR (neat): $v^{\sim} =$ 2924, 2854, 1468, 1225, 1018, 735 cm⁻¹.

3.5.4. Synthesis of 5,5-difluorocyclopent-1-en-1-yl silyl ethers

(A) Typical procedure for the synthesis of 5,5-difluorocyclopent-1-en-1-yl silyl ethers.

To a *p*-xylene solution (0.5 mL) of nickel complex **174** (4.8 mg, 0.011 mmol) and 1,1,1,3,3,3-hexafluoro-2,2-di(*p*-tolyl)propane (6.2 mg, 0.019 mmol) were added silyl dienol ether **172a** (53 mg, 0.20 mmol) and *p*-xylene (0.5 mL). The mixture was heated to 140 °C and TFDA (80 μ L, 0.41 mmol) was added. The resulting mixture was stirred at 140 °C for 30 min and then cooled to room temperature. ¹⁹F NMR analysis of the mixture revealed that silyl enol ether **187a** was formed in 82% yield. The mixture was diluted with dichloromethane (2 mL) and a saturated aqueous solution (10 mL) of sodium hydrogen carbonate was added. Organic materials were

extracted with dichloromethane three times. The combined extracts were washed with brine and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane) to afford silyl 5,5-difluorocyclopent-1-en-1-yl ether **187a** as a yellow liquid (52 mg, 83% yield).

(B) Spectral data of 5,5-difluorocyclopent-1-en-1-yl silyl ethers.

1-[tert-Butyl(dimethyl)silyloxy]-5,5-difluoro-3-phenylcyclopent-1-ene 187a

¹H NMR (500 MHz, CDCl₃): $\delta = 0.22$ (s, 6H), 0.98 (s, 9H), 2.17 (dddd, J = 17.5, 15.5, 14.0, 4.0 Hz, 1H), 2.82 (ddt, J = 17.5, 15.0, 7.5 Hz, 1H), 3.80–3.88 (m, 1H), 5.19 (d, J = 2.0 Hz, 1H), 7.19 (d, J = 7.5 Hz, 2H), 7.24 (t, J = 7.5 Hz, 1H), 7.32 (t, J = 7.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.8$, 18.2, 25.5, 40.6 (t, J = 3 Hz), 41.9 (dd, J = 25, 25 Hz), 115.4 (t, J = 7 Hz), 126.9, 127.0, 127.2 (t, J = 244 Hz), 128.7, 144.0 (d, J = 5 Hz), 148.5 (t, J = 24 Hz). ¹⁹F NMR (470 MHz, CDCl₃): $\delta = 64.4$ (dddd, J = 248, 15, 14, 2 Hz, 1F), 69.1 (dddd, J = 248, 16, 11, 8 Hz, 1F).

IR (neat): $v^{\sim} = 2931$, 2860, 1655, 1255, 1024, 742 cm⁻¹.

HRMS (70 eV, EI+): *m/z* calcd. for C₁₃H₁₅F₂OSi [M-*t*-Bu]⁺: 253.0859; Found: 253.0855.

1-[tert-Butyl(dimethyl)silyloxy]-5,5-difluoro-3-(4-methylphenyl)cyclopent-1-ene 187b

¹H NMR (500 MHz, CDCl₃): $\delta = 0.22$ (s, 6H), 0.98 (s, 9H), 2.14 (dddd, J = 18.0, 15.5, 14.0, 4.0 Hz, 1H) 2.33 (s, 3H), 2.80 (ddt, J = 18.0, 15.5, 7.5 Hz, 1H), 3.76–3.83 (m, 1H) 5.17 (d, J = 2.4 Hz, 1H), 7.08 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.8, 18.2, 21.0, 25.5, 40.2$ (t, J = 3 Hz), 42.0 (dd, J = 25, 22 Hz), 115.7 (t, J = 7 Hz), 126.9, 127.3 (t, J = 245 Hz), 129.4, 136.5, 141.0 (d, J = 5 Hz), 148.4 (t, J = 24 Hz). ¹⁹F NMR (470 MHz, CDCl₃): $\delta = 64.3$ (dddd, J = 247, 16, 14, 2 Hz, 1F), 69.1 (dddd, J = 247, 16, 11, 8 Hz, 1F). IR (neat): $v^{\sim} = 2931, 2860, 1655, 1174, 650$ cm⁻¹. HRMS (70 eV, EI+): m/z calcd. for C₁₄H₁₇F₂OSi [M–*t*-Bu]⁺: 267.1016; Found: 267.1015.

1-[tert-Butyl(dimethyl)silyloxy]-3-(4-chlorophenyl)-5,5-difluorocyclopent-1-ene 187d

¹H NMR (500 MHz, CDCl₃): δ = 0.22 (s, 6H), 0.98 (s, 9H), 2.06–2.18 (m, 1H), 2.81 (ddt, J = 17.5, 15.5, 7.5 Hz, 1H), 3.77–3.84 (m, 1H), 5.14 (d, J = 2.5 Hz, 1H), 7.12 (d, J = 8.0 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ = -4.8, 18.2, 25.5, 40.0 (t, J = 3 Hz), 41.8 (dd, J = 25, 22 Hz), 114.8 (t, J = 7 Hz), 126.9 (t, J = 244 Hz), 128.3, 128.9, 132.6, 142.5 (d, J = 5 Hz), 148.9 (t, J = 24 Hz). ¹⁹F NMR (470 MHz, CDCl₃): δ = 64.1 (dt, J = 248, 15 Hz, 1F), 69.3 (dddd, J = 248, 18, 10, 8 Hz, 1F). IR (neat): $v^{\sim} = 2956$, 2860, 1655, 1491, 1363, 1255, 841 cm⁻¹. HRMS (70 eV, EI+): m/z calcd. for C₁₃H₁₄ClF₂OSi [M–*t*-Bu]⁺: 287.0470; Found: 287.0468.

1-[tert-Butyl(dimethyl)silyloxy]-5,5-difluoro-3-propylcyclopent-1-ene 187g

¹H NMR (500 MHz, CDCl₃): $\delta = 0.18$ (s, 3H), 0.19 (s, 3H), 0.91 (t, J = 7.0 Hz, 3H), 0.95 (s, 9H), 1.25–1.45 (m, 4H), 1.86 (dddd, J = 18.5, 14.7, 12.5, 4.0 Hz, 1H), 2.46 (ddt, J = 18.0, 14.7, 8.0 Hz, 1H), 2.53–2.63 (m, 1H), 5.12 (d, J = 2.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.9$, 14.1, 18.2, 20.5, 25.5, 34.5 (t, J = 3 Hz), 38.7 (t, J = 5 Hz), 38.9 (dd, J = 27, 22 Hz), 116.4 (t, J = 8 Hz), 127.2 (t, J = 244 Hz), 147.4 (t, J = 25 Hz). ¹⁹F NMR (470 MHz, CDCl₃): $\delta = 65.7$ (dddd, J = 247, 18, 13, 3 Hz, 1F), 69.5 (dddd, J = 247, 19, 11, 8 Hz, 1F). IR (neat): $v^{\sim} = 2931$, 2859, 1655, 1365, 1242, 1176, 1099, 841 cm⁻¹. HRMS (70 eV, EI+): m/z calcd. for C₁₀H₁₇F₂OSi [M–*t*-Bu]⁺: 219.1016; Found: 219.1014.

1-[tert-Butyl(dimethyl)silyloxy]-5,5-difluoro-2-methyl-3-phenylcyclopent-1-ene 187h

¹H NMR (500 MHz, CDCl₃): $\delta = 0.22$ (s, 6H), 1.00 (s, 9H), 1.46 (t, J = 3.0 Hz, 3H), 2.21 (dddd, J = 18.0, 15.0, 10.0, 4.0 Hz, 1H), 2.79 (ddt, J = 18.0, 15.0, 8.5 Hz, 1H), 3.60 (dd, J = 10.0, 8.5 Hz, 1H), 7.14 (d, J = 7.0 Hz, 2H), 7.25 (t, J = 7.0 Hz, 1H), 7.32 (t, J = 7.0 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃): $\delta = -4.4$, 11.2, 18.3, 25.7, 41.4 (t, J = 24 Hz), 45.3 (t, J = 2 Hz), 126.9, 127.2 (t, J = 11 Hz), 127.4, 127.5 (t, J = 242 Hz), 128.8, 142.5 (t, J = 25 Hz), 143.0 (d, J = 5Hz). ¹⁹F NMR (470 MHz, CDCl₃): $\delta = 68.3$ (dm, J = 245 Hz, 1F), 73.3 (dm, J = 245 Hz, 1F). IR (neat): $v^{\sim} = 2931$, 1691, 1346, 1215, 862 cm⁻¹. HRMS (70 eV, EI+): m/z calcd. for C₁₄H₁₇F₂OSi [M–*t*-Bu]⁺: 267.1016; Found: 267.1014. 2-Bromo-1-[tert-butyl(dimethyl)silyloxy]-5,5-difluoro-3-phenylcyclopent-1-ene 187i

¹H NMR (500 MHz, CDCl₃): $\delta = 0.29$ (s, 6H), 1.02 (s, 9H), 2.38 (dddd, J = 18.0, 15.0, 9.0, 3.5 Hz, 1H), 2.91 (ddt, J = 18.0, 15.0, 9.0 Hz, 1H), 3.90 (ddt, J = 11.0, 9.0, 3.5 Hz, 1H), 7.18 (d, J = 7.5 Hz, 2H), 7.29 (t, J = 7.5 Hz, 1H), 7.35 (t, J = 7.5 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃): δ = -4.2, 18.4, 25.6, 42.0 (t, *J* = 24 Hz), 46.4, 113.1 (t, *J* = 10 Hz), 125.0 (t, *J* = 246 Hz), 127.5, 128.9, 141.27, 141.31, 145.8 (t, *J* = 25 Hz).

¹⁹F NMR (470 MHz, CDCl₃): δ = 68.2 (ddd, *J* = 244, 18, 9 Hz, 1F), 73.2 (dddd, *J* = 244, 18, 11, 9 Hz, 1F). IR (neat): ν[~] = 2860, 1670, 1340, 1190, 1041, 845 cm⁻¹.

HRMS (70 eV, EI+): *m/z* calcd. for C₁₃H₁₄BrF₂OSi [M–*t*-Bu]⁺: 330.9965; Found: 330.9962.

1-[tert-Butyl(dimethyl)silyloxy]-5,5-difluoro-2,3-diphenylcyclopent-1-ene 187j

¹H NMR (500 MHz, CDCl₃): $\delta = 0.09$ (s, 3H), 0.17 (s, 3H), 0.94 (s, 9H), 2.27 (dddd, J = 17.5, 15.0, 9.0, 3.5 Hz, 1H), 2.91 (dddd, J = 18.5, 15.0, 11.0, 9.0 Hz, 1H), 4.23 (tdd, J = 9.0, 3.5, 2.5 Hz, 1H), 7.11–7.25 (m, 8H), 7.37 (d, J = 7.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.3, -4.3, 18.4, 25.7, 41.6$ (t, J = 24 Hz), 43.5, 125.9, 126.6, 127.0 (t, J = 8 Hz), 127.3 (t, J = 243 Hz), 127.3, 127.4, 128.3, 128.6, 133.4, 143.5 (d, J = 4 Hz), 143.5 (t, J = 25 Hz). ¹⁹F NMR (470 MHz, CDCl₃): $\delta = 69.3$ (ddd, J = 247, 19, 9 Hz, 1F), 74.2 (ddt, J = 247, 18, 11 Hz, 1F). IR (neat): $v^{\sim} = 2931, 1653, 1367, 1182, 1038, 858 \text{ cm}^{-1}$. HRMS (70 eV, EI+): m/z: calcd. for C₂₃H₂₇FOSi [M–HF]⁺: 366.1815; Found: 366.1816.

9-[*tert*-Butyl(dimethyl)silyloxy]-8,8-difluorobicyclo[4.3.0]non-9-ene (187k)

¹H NMR (500 MHz, CDCl₃): $\delta = 0.15$ (s, 6H), 0.97 (s, 9H), 1.15–1.45 (m, 3H), 1.69–1.88 (m, 4H), 1.95–2.02 (m, 1H), 2.29–2.40 (m, 1H), 2.42–2.53 (m, 1H), 2.61 (dd, J = 13.0, 4.5 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃): $\delta = -4.7$, -4.5, 18.3, 24.3, 25.5, 25.6, 25.7, 35.1 (d, *J* = 6 Hz), 35.8 (d, *J* = 5 Hz), 38.9 (d, *J* = 26, 22 Hz), 127.8 (t, *J* = 243 Hz), 130.3 (t, *J* = 8 Hz), 138.1 (t, *J* = 25 Hz). ¹⁹F NMR (470 MHz, CDCl₃): $\delta = 71.0$ (dm, *J* = 244 Hz, 1F), 72.3 (dm, *J* = 244 Hz, 1F). IR (neat): $v^{\sim} = 2929$, 2858, 1693, 1371, 1169, 995, 837 cm⁻¹. HRMS (70 eV, EI+): *m/z*: calcd. for C₁₅H₂₅FOSi [M–HF]⁺: 268.1659; Found: 268.1660. *trans*-1-[*tert*-Butyl(dimethyl)silyloxy]-5,5-difluoro-4-methyl-3-phenylcyclopent-1-ene **1871** and 4-[*tert*-Butyl(dimethyl)silyloxy]-3,3-difluoro-6-phenylhexa-1,4-diene **188** (d.r. = 79:21 isomeric mixture)

¹H NMR (500 MHz, CDCl₃): (**1871**) $\delta = 0.23$ (s, 3H), 0.24 (s, 3H), 0.99 (s, 9H), 1.16 (dd, J = 7.0, 2.0 Hz, 3H), 2.12–2.24 (m, 1H), 3.24–3.30 (m, 1H), 5.16 (t, J = 2.0 Hz, 1H), 7.17–7.36 (m, 5H); (**188**) $\delta = 0.14$ (s, 6H), 0.91 (s, 9H), 3.55 (dt, J = 8.5, 2.5 Hz, 2H), 5.13 (t, J = 8.5 Hz, 1H), 5.47 (d, J = 10.8 Hz, 1H), 5.72 (dt, J = 17.5, 2.5 Hz 1H), 6.07 (ddt, J = 17.5, 10.8, 10.8 Hz, 1H), 7.18 (d, J = 7.0 Hz, 2H), 7.25 (t, J = 7.0 Hz, 1 H), 7.33 (t, J = 7.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): (**1871**) $\delta = -4.9$, -4.8, 10.7 (d, J = 9 Hz), 18.2, 25.5, 31.4 (d, J = 5 Hz), 48.6 (dd, J = 24, 21 Hz), 114.6 (dd, J = 9, 7 Hz), 117.3 (t, J = 241 Hz), 127.0, 127.2, 128.7 143.0 (d, J = 4 Hz), 148.6 (dd, J = 26, 23 Hz); (**188**) $\delta = -4.6$, 18.0, 25.6, 49.6 (d, J = 7 Hz), 112.2, 119.5 (t, J = 9 Hz), 126.0, 126.5 (t, J = 247 Hz), 128.3, 128.4, 132.2 (t, J = 28 Hz), 140.9, 144.4 (t, J = 30 Hz). ¹⁹F NMR (470 MHz, CDCl₃): (**1871**) $\delta = 51.7$ (ddd, J = 247, 14, 2 Hz, 1F), 63.1 (ddd, J = 247, 18, 10 Hz, 1F); (**188**) $\delta = 66.2$ (d, J = 11 Hz). IR (neat): $v^{\sim} = 2931$, 2860, 1655, 1363, 837, 731 cm⁻¹. HRMS (70 eV, EI+): m/z (**1871**) calcd. for C₁₈H₂₅FOSi [M–HF]⁺: 304.1659; Found: 304.1656; (**188**) calcd. for C₁₈H₂₅FOSi [M–HF]⁺: 304.1659; Found: 304.1656;

187I

3.5.5. Aminolysis of Nickel(II) Difluorocarbene Complex

To a toluene solution (4 mL) of nickel complex **175** (52 mg, 0.083 mmol) were added 2,6-dimethylaniline (100 mL, 0.809 mmol) and TFDA (20 mL, 0.10 mmol) at room temperature. After stirring overnight, the resulting solid was collected by paper filtration, washed with ether, and dissolved in methanol. High-resolution mass-analysis (ESI⁺) revealed that the ion (z = 2) corresponding to the aminolysis product of the nickel(II) difluorocarbene complex, LNi=C=NAr²⁺ (L = pincer-type NHC ligand, Ar = 2,6-dimethylphenyl) **195**, was observed.

3.5.6. Derivatization of 5,5-difluorocyclopent-1-en-1-yl silyl ether

(A) Synthesis of ketone 196

To a THF solution (6 mL) of cyclic silyl enol ether **187a** (31 mg, 0.10 mmol) and 1,1,1,3,3,3-hexafluoro-2,2-di(*p*-tolyl)propane (4.0 mg, 0.012 mmol) were added distilled water (1 mL), formic acid (87 wt%, 3 mL), and a THF solution of tetrabutylammonium fluoride (1.0 mol/L, 0.20 mmol) at room temperature. The resulting solution was heated to 55 °C, stirred for 41 h, and then cooled to room temperature. A saturated aqueous solution (20 mL) of sodium hydrogen carbonate was added and organic materials were extracted with dichloromethane three times. The combined extracts were washed with a saturated aqueous solution of sodium hydrogen carbonate and brine, and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the filtrate was concentrated under reduced pressure. ¹⁹F NMR analysis of the resulting oil revealed that 0.080 mmol of ketone **196** was formed (80% yield).

(B) Synthesis of alcohol 197

A methanol solution (3 mL) containing ketone **196** (0.192 mmol) was prepared by the method described in the section 3-5-6 (*A*). To this solution was added sodium borohydride (15 mg, 0.39 mmol) at room temperature. The resulting mixture was heated to reflux, stirred for 2 h, and then cooled to room temperature. Water (5 mL) was added and organic materials were extracted with ethyl acetate three times. The combined extracts were washed with brine and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (pentane/dichloromethane = 5/1 then dichloromethane) to give alcohol **197** as a colorless liquid (39 mg, quant, *cis/trans* = 64:36).

2,2-Difluoro-4-phenylcyclopentan-1-ol **197** (*cis/trans* = 67:33 diastereomeric mixture)

¹H NMR (500 MHz, CDCl₃): (*cis* isomer) $\delta = 1.83$ (dddd, J = 14.0, 10.0, 7.0, 3.0 Hz, 1H), 2.20–2.36 (m, 2H), 2.47–2.64 (m, 2H), 3.21 (tt, J = 10.5, 8.0 Hz, 1H), 4.20 (tt, J = 12.0, 6.0 Hz, 1H), 7.21–7.28 (m, 3H), 7.30–7.35 (m, 2H); (*trans* isomer) $\delta = 2.01–2.10$ (m, 1H), 2.20–2.36 (m, 3H), 2.71 (ddddd, J = 18.0, 15.0, 13.5, 10.5, 1.5 Hz, 1H), 3.68 (tt, J = 10.0, 8.0 Hz, 1H), 4.24–4.30 (m, 1H), 7.21–7.28 (m, 3H), 7.30–7.35 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): (*cis* isomer) $\delta = 37.0$ (dd, J = 7, 2 Hz), 39.4 (d, J = 2 Hz), 40.2 (t, J = 23 Hz), 74.2 (dd, J = 31, 21 Hz), 126.7, 127.0, 128.2 (dd, J = 256, 251 Hz), 128.7, 143.1; (*trans* isomer) $\delta = 39.1$ (dd, J = 6, 3 Hz), 39.4 (d, J = 2 Hz), 40.2 (t, J = 23 Hz), 126.6, 126.9, 128.7, 129.8 (dd, J = 256, 251 Hz), 143.8. ¹⁹F NMR (470 MHz, CDCl₃): (*cis* isomer) $\delta = 50.2$ (dm, J = 233 Hz, 1F), 58.1 (ddt, J = 233, 24, 12 Hz, 1F); (*trans* isomer) $\delta = 47.1$ (dt, J = 236, 10 Hz, 1F), 63.8 (ddddd, J = 236, 22, 18, 8, 3 Hz, 1F). IR (neat): $v^{\sim} = 3396$, 3030, 1496, 1140, 1061, 698 cm⁻¹. HRMS (70 eV, EI): *m/z*: (*cis* isomer) Calcd. for C₁₁H₁₂F₂O [M]⁺: 198.0856; Found: 198.0856; (*trans* isomer) Calcd. for C₁₁H₁₂F₂O [M]⁺: 198.0856.

(C) Synthesis of hydrazone 198

A methanol solution (5 mL) containing ketone **196** (0.498 mmol) was prepared by the method described in the section 3-5-6 (*A*). To this solution was added tosylhydrazine (136 mg, 0.730 mmol) at room temerature. The resulting mixture was heated to reflux, stirred for 21 h, and then cooled to room temperature. The formed precipitates were seperated by filtration and washed with hexane. Removal of the remained solvents under reduced pressure gave hydrazone **198** as a colorless crystals (93 mg, 51% yield, the first crop). The filtrate was concentrated under reduced pressure and recystalization from chloroform gave **198** (32 mg, 18% yield, the second crop). The third crop of **198** was also obtained in a similar manner (8 mg, 5% yield).

2,2-Difluoro-4-phenylcyclopentan-1-one 4-methylbenzenesulfonylhydrazone 198

¹H NMR (500 MHz, CDCl₃): $\delta = 2.24$ (dddd, J = 26.0, 13.5, 13.5, 10.0 Hz, 1H), 2.36 (ddd, J = 18.2, 11.0, 4.5 Hz, 1H), 2.44 (s, 3H), 2.69 (td, J = 13.5, 6.5 Hz, 1H), 2.87 (dd, J = 18.2, 8.0 Hz, 1H), 3.35– 3.45 (m, 1H), 7.18 (d, J = 7.5 Hz, 2H), 7.28 (d, J = 7.0 Hz, 1H), 7.30–7.37 (m, 4H), 7.77 (s, 1H), 7.87 (d, J = 8.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): $\delta = 21.7$, 33.3, 37.3 (d, J = 7 Hz), 42.2 (dd, J = 25, 20 Hz), 122.4 (dd, J = 257, 246 Hz), 126.6, 127.5, 128.1, 129.0, 129.7, 134.8, 140.4, 144.7, 152.1 (t, J = 22 Hz). ¹⁹F NMR (470 MHz, CDCl₃): $\delta = 55.9$ (dd, J = 254, 10 Hz, 1F), 66.8 (dddd, J = 254, 26, 14, 4 Hz, 1F). IR (neat): $v^{\sim} = 3205$, 1597, 1496, 1348, 1165, 769 cm⁻¹. EA: Calcd. for C₁₈H₁₈F₂N₂O₂S: C 59.33%, H 4.98%, N 7.69%; Found: C 59.32%, H 5.00%, N 7.58%.

Crystallographic Information for 198

data at001 audit creation method SHELXL-97 chemical name systematic ; ? chemical name common ? ? chemical melting point chemical formula moiety ? chemical formula sum 'C18 H18 F2 N2 O2 S' chemical formula weight 364.40 loop_ atom type symbol atom type description atom type scat dispersion real atom type scat dispersion imag _atom_type_scat source 'C' 'C' 0.0016 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033

'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'F' 'F' 0.0171 0.0103 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'S' 'S' 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' ? symmetry cell setting _symmetry_space_group name H-M ? loop symmetry equiv pos as xyz 'x, y, z' '-x, y+1/2, -z' _cell_length a 12.438(10) _cell_length_b 5.549(4)cell length c 13.435(11) 90.00 cell angle alpha cell angle beta 109.323(10) _cell_angle_gamma 90.00 cell volume 875.0(12) cell formula units Z 2 cell measurement temperature 120(2) _cell_measurement_reflns used ? cell measurement theta min ? ? _cell_measurement_theta_max ? exptl crystal description ? exptl crystal colour _exptl_crystal_size max 0.11 exptl crystal size mid 0.03 exptl crystal size min 0.02 ? _exptl_crystal_density_meas _exptl_crystal_density diffrn 1.383 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 380 exptl absorpt coefficient mu 0.219

_exptl_absorpt_correction_type?_exptl_absorpt_correction_T_min0.9763_exptl_absorpt_correction_T_max0.9956_exptl_absorpt_process_details?_exptl_special_details?

- ;
- ?
- ;

_diffrn_ambient_temperature	120(2)
_diffrn_radiation_wavelength	0.71073
_diffrn_radiation_type	MoK¥a
_diffrn_radiation_source	'fine-focus sealed tube'
_diffrn_radiation_monochromator	graphite
_diffrn_measurement_device_type	?
_diffrn_measurement_method	?
_diffrn_detector_area_resol_mean	?
_diffrn_standards_number	?
_diffrn_standards_interval_count	?
_diffrn_standards_interval_time	?
_diffrn_standards_decay_%	?
_diffrn_reflns_number	5040
_diffrn_reflns_av_R_equivalents	0.0559
_diffrn_reflns_av_sigmaI/netI	0.1273
_diffrn_reflns_limit_h_min	-16
_diffrn_reflns_limit_h_max	15
_diffrn_reflns_limit_k_min	-6
_diffrn_reflns_limit_k_max	7
_diffrn_reflns_limit_l_min	-17
_diffrn_reflns_limit_l_max	14
_diffrn_reflns_theta_min	1.61
_diffrn_reflns_theta_max	27.52
_reflns_number_total	3447
_reflns_number_gt	1964
_reflns_threshold_expression	>2sigma(I)
_computing_data_collection	?

_computing_cell_refinement	?
_computing_data_reduction	?
_computing_structure_solution	'SHELXS-97 (Sheldrick, 1990)'
_computing_structure_refinement	'SHELXL-97 (Sheldrick, 1997)
_computing_molecular_graphics	?
_computing_publication_material	?
_refine_special_details	

;

;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of $F^2^> 2 \operatorname{sigma}(F^2^>)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

_refine_ls_structure_factor_coef	Fsqd
_refine_ls_matrix_type	full
_refine_ls_weighting_scheme	calc
_refine_ls_weighting_details	
'calc w=1/[¥s^2^(Fo^2^)+(0.1000P)^2^-	+0.0000P] where P=(Fo^2^+2Fc^2^)/3'
_atom_sites_solution_primary	direct
_atom_sites_solution_secondary	difmap
_atom_sites_solution_hydrogens	geom
_refine_ls_hydrogen_treatment	mixed
_refine_ls_extinction_method	none
_refine_ls_extinction_coef	?
_refine_ls_abs_structure_details	
'Flack H D (1983), Acta Cryst. A39, 876	5-881'
_refine_ls_abs_structure_Flack	0.38(18)
_refine_ls_number_reflns	3447
_refine_ls_number_parameters	265
_refine_ls_number_restraints	1
_refine_ls_R_factor_all	0.1318
refine ls R factor gt	0.0632

_refine_ls_wR_factor_ref			0.1810					
_refine_ls_wR_factor_gt			0.1392					
_refine_ls_goodness_of_fit_ref				0.895				
_refi	ne_ls_	_restrained_S_al	1	0.895				
_refi	ne_ls_	_shift/su_max		0.428				
_refi	ne_ls_	_shift/su_mean		0.003				
loop	_							
_ato	om_si	te_label						
_ato	om_si	te_type_symbol						
_ato	om_si	te_fract_x						
_ato	om_si	te_fract_y						
_ato	om_si	te_fract_z						
_ato	om_si	te_U_iso_or_equ	uiv					
_ato	om_si	te_adp_type						
_ato	om_si	te_occupancy						
_ato	om_si	te_symmetry_m	ultiplicity					
_ato	om_si	te_calc_flag						
_ato	om_si	te_refinement_fl	ags					
_ato	om_si	te_disorder_asse	mbly					
_ato	om_si	te_disorder_grou	ıp					
S 1	S	0.34681(10)	0.7761(3)	0.49203(10)	0.0289(3)	Uani 1 1 d		
01	0	0.4640(3)	0.7748(9)	0.5566(3)	0.0339(8)	Uani 1 1 d		
02	0	0.2913(3)	0.9987(7)	0.4513(3)	0.0340(10)	Uani 1 1 d		
F1	F	0.0599(3)	0.5454(7)	0.1287(3)	0.0498(10)	Uani 1 1 d		
N1	Ν	0.3444(4)	0.6052(9)	0.3924(4)	0.0295(12)	Uani 1 1 d		
H30	Н	0.382(5)	0.499(12)	0.403(5)	0.027(19)	Uiso 1 1 d		
N6	Ν	0.2350(3)	0.5574(9)	0.3230(4)	0.0315(11)	Uani 1 1 d		
F4	F	0.0370(2)	0.2581(8)	0.2264(3)	0.0438(9)	Uani 1 1 d		
C8	С	0.2257(4)	0.3885(10)	0.2563(5)	0.0269(13)	Uani 1 1 d . A .		
C9	С	0.2676(4)	0.6309(9)	0.5598(4)	0.0263(12)	Uani 1 1 d		
C10	С	0.1095(5)	0.3395(11)	0.1782(5)	0.0362(16)	Uani 1 1 d . A .		
C11	С	0.0983(5)	0.5900(12)	0.6049(5)	0.0375(15)	Uani 1 1 d		
H1	Н	0.0241	0.6447	0.5993	0.045	Uiso 1 1 calc R		
C12	С	0.3099(5)	0.2269(11)	0.2338(5)	0.0321(15)	Uani 1 1 d		
H29	Н	0.385(7)	0.312(18)	0.230(6)	0.10(3)	Uiso 1 1 d		

H28	Н	0.348(5)	0.118(13)	0.282(5)	0.044(19)	Uiso 1 1 d
C13	С	0.3124(5)	0.4262(10)	0.6188(5)	0.0356(15)	Uani 1 1 d
H2	Н	0.3859	0.3693	0.6235	0.043	Uiso 1 1 calc R
C14	С	0.1605(5)	0.7143(10)	0.5529(5)	0.0323(14)	Uani 1 1 d
H3	Н	0.1300	0.8546	0.5130	0.039	Uiso 1 1 calc R
C15	С	0.2491(5)	0.3061(13)	0.6707(5)	0.0417(15)	Uani 1 1 d
H4	Н	0.2795	0.1659	0.7107	0.050	Uiso 1 1 calc R
C16	С	0.1422(5)	0.3871(12)	0.6652(5)	0.0392(15)	Uani 1 1 d
C17	С	0.0744(5)	0.2538(15)	0.7217(5)	0.0529(18)	Uani 1 1 d
Н5	Н	0.0968	0.3090	0.7951	0.079	Uiso 1 1 calc R
H6	Н	0.0891	0.0806	0.7203	0.079	Uiso 1 1 calc R
H7	Н	-0.0070	0.2850	0.6867	0.079	Uiso 1 1 calc R
C18	С	0.3901(5)	-0.2039(14)	0.1391(5)	0.0442(16)	Uani 1 1 d . A .
H8	Н	0.4259	-0.1764	0.2124	0.053	Uiso 1 1 calc R
C19	С	0.4366(6)	-0.3660(13)	0.0878(6)	0.0507(19)	Uani 1 1 d
H9	Н	0.5038	-0.4513	0.1259	0.061	Uiso 1 1 calc R
C20	С	0.3857(6)	-0.4057(15)	-0.0195(6)	0.058(2)	Uani 1 1 d . A .
H10	Н	0.4187	-0.5152	-0.0554	0.069	Uiso 1 1 calc R
C21	С	0.2926(6)	-0.0815(14)	0.0856(6)	0.0517(19)	Uani 1 1 d
C22	С	0.2418(6)	-0.1289(15)	-0.0208(6)	0.060(2)	Uani 1 1 d . A .
H11	Н	0.1727	-0.0495	-0.0588	0.072	Uiso 1 1 calc R
C24	С	0.2888(7)	-0.2875(15)	-0.0725(6)	0.064(2)	Uani 1 1 d
H12	Н	0.2531	-0.3146	-0.1459	0.077	Uiso 1 1 calc R A.
C25	С	0.1283(6)	0.1576(18)	0.1036(7)	0.078(3)	Uani 1 1 d
H25	Н	0.062(4)	0.099(10)	0.053(4)	0.028(15)	Uiso 1 1 d
C1	С	0.2266(9)	0.035(3)	0.1561(10)	0.028(4)	Uani 0.55(3) 1 d P A 1
H13	Н	0.184(6)	-0.079(14)	0.202(6)	0.000(19)	Uiso 0.55(3) 1 d P A 1
C26	С	0.2535(13)	0.153(3)	0.1206(12)	0.029(5)	Uani 0.45(3) 1 d P A 2
H26	Н	0.250(8)	0.31(2)	0.087(8)	0.00(2)	Uiso 0.45(3) 1 d P A 2
H31	Н	0.163(12)	0.30(3)	0.038(11)	0.20(6)	Uiso 1 1 d

loop_

_atom_site_aniso_label

_atom_site_aniso_U_11

_atom_site_aniso_U_22

_atom_site_aniso_U_33

_ato	om_site_aniso	_U_23				
_ato	om_site_anisc	_U_13				
_ato	om_site_anisc	_U_12				
S 1	0.0278(6)	0.0311(7)	0.0290(7)	-0.0028(8)	0.0111(5)	-0.0030(7)
01	0.0185(16)	0.044(2)	0.035(2)	-0.004(2)	0.0034(15)	-0.007(2)
02	0.045(2)	0.027(2)	0.034(2)	0.0022(18)	0.017(2)	0.0021(18)
F1	0.0393(19)	0.059(3)	0.041(2)	0.011(2)	0.0008(17)	-0.0043(19)
N1	0.026(3)	0.027(3)	0.034(3)	-0.013(2)	0.008(2)	-0.001(2)
N6	0.022(2)	0.038(3)	0.031(3)	-0.007(2)	0.004(2)	-0.003(2)
F4	0.0282(15)	0.048(2)	0.058(2)	-0.003(2)	0.0179(15)	-0.0084(19)
C8	0.021(3)	0.026(3)	0.033(3)	-0.003(3)	0.009(2)	-0.002(2)
C9	0.032(3)	0.020(3)	0.029(3)	-0.003(2)	0.013(2)	-0.007(2)
C10	0.027(3)	0.039(5)	0.044(4)	-0.010(3)	0.014(3)	-0.002(2)
C11	0.031(3)	0.042(4)	0.045(4)	-0.004(3)	0.020(3)	-0.007(3)
C12	0.027(3)	0.035(4)	0.032(3)	0.000(3)	0.007(3)	0.002(3)
C13	0.035(3)	0.025(3)	0.049(4)	0.000(3)	0.019(3)	-0.006(3)
C14	0.032(3)	0.029(4)	0.036(3)	0.002(2)	0.012(2)	0.003(2)
C15	0.052(3)	0.033(4)	0.044(4)	0.005(3)	0.020(3)	-0.007(3)
C16	0.045(4)	0.038(4)	0.041(4)	-0.006(3)	0.023(3)	-0.008(3)
C17	0.059(4)	0.046(4)	0.065(4)	0.001(4)	0.036(3)	-0.015(4)
C18	0.036(3)	0.045(4)	0.055(4)	-0.007(4)	0.019(3)	0.008(3)
C19	0.044(4)	0.041(4)	0.078(6)	0.003(4)	0.035(4)	0.004(3)
C20	0.061(5)	0.056(5)	0.072(6)	-0.022(4)	0.043(4)	-0.005(4)
C21	0.040(4)	0.067(5)	0.042(4)	-0.023(4)	0.005(3)	0.014(3)
C22	0.056(5)	0.061(5)	0.052(5)	-0.023(4)	0.005(4)	0.014(3)
C24	0.072(5)	0.071(7)	0.057(5)	-0.020(4)	0.031(4)	0.003(4)
C25	0.030(4)	0.112(8)	0.088(6)	-0.076(6)	0.015(4)	-0.006(4)
C1	0.030(6)	0.032(9)	0.023(7)	-0.007(6)	0.011(5)	-0.003(5)
C26	0.042(8)	0.017(10)	0.030(9)	-0.002(7)	0.015(7)	0.012(7)

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

;

loop_

_geo	m_bond	l_atom_site_lab	el_1
_geo	m_bond	l_atom_site_lab	el_2
_geo	m_bond	l_distance	
_geo	m_bond	l_site_symmetr	y_2
_geo	m_bond	l_publ_flag	
S 1	01	1.429(3).	?
S 1	O2	1.433(4) .	?
S 1	N1	1.632(5).	?
S 1	C9	1.744(5).	?
F1	C10	1.362(7).	?
N1	N6	1.397(6).	?
N1	H30	0.73(6).	?
N6	C8	1.275(7).	?
F4	C10	1.351(6).	?
C8	C12	1.484(8).	?
C8	C10	1.504(7).	?
C9	C14	1.384(7).	?
C9	C13	1.392(8).	?
C10	C25	1.495(9).	?
C11	C14	1.386(8).	?
C11	C16	1.389(9).	?
C11	H1	0.9500.	?
C12	C26	1.506(14).	?
C12	C1	1.606(13).	?
C12	H29	1.06(9).	?
C12	H28	0.89(7).	?
C13	C15	1.383(8).	?
C13	H2	0.9500.	?
C14	H3	0.9500.	?
C15	C16	1.382(9).	?
C15	H4	0.9500.	?

C16	C17	1.5	03(9).	?
C17	Н5	0.9	800.	?
C17	H6	0.9	800.	?
C17	H7	0.9	800.	?
C18	C21	1.3	67(9).	?
C18	C19	1.3	72(9).	?
C18	H8	0.9	500.	?
C19	C20	1.3	86(10).	?
C19	H9	0.9	500.	?
C20	C24	1.3	50(10).	?
C20	H10	0.9	500.	?
C21	C22	1.3	84(10).	?
C21	C26	1.5	18(14) .	?
C21	C1	1.5	83(13).	?
C22	C24	1.3	66(10) .	?
C22	H11	0.9	500.	?
C24	H12	0.9	500.	?
C25	C1	1.3	72(14).	?
C25	C26	1.4	97(18) .	?
C25	H25	0.9	4(5).	?
C25	H31	1.3	5(15).	?
C1	H13	1.1	3(8).	?
C26	H26	0.9	5(12).	?
loop_				
_geo	m_angle	_ator	m_site_lab	el_1
_geo	m_angle	_ator	m_site_lab	el_2
_geo	m_angle	_ator	m_site_lab	el_3
_geo	m_angle			
_geo	m_angle	_site	_symmetr	y_1
_geo	m_angle	_site	_symmetr	y_3
_geo	m_angle	_pub	ol_flag	
01	S 1	02	120.2(3)	?
01	S 1	N1	103.5(3)	?
02	S 1	N1	108.2(3)	?
01	S 1	C9	108.6(3)	?

02	S 1	C9	108.3(2)	?
N1	S 1	C9	107.4(3)	?
N6	N1	S 1	114.0(4)	?
N6	N1	H30	113(5)	?
S 1	N1	H30	118(5)	?
C8	N6	N1	116.7(4)	?
N6	C8	C12	133.0(5)	?
N6	C8	C10	117.8(5)	?
C12	C8	C10	109.2(5)	?
C14	C9	C13	120.4(5)	?
C14	C9	S 1	120.5(4)	?
C13	C9	S 1	119.1(4)	?
F4	C10	F1	104.4(4)	?
F4	C10	C25	111.9(6)	?
F1	C10	C25	112.7(6)	?
F4	C10	C8	111.5(5)	?
F1	C10	C8	111.4(5)	?
C25	C10	C8	105.2(5)	?
C14	C11	C16	121.3(5)	?
C14	C11	H1	119.3	?
C16	C11	H1	119.3	?
C8	C12	C26	104.2(6)	?
C8	C12	C1	100.7(5)	?
C26	C12	C1	34.8(6)	?
C8	C12	H29	115(5)	?
C26	C12	H29	102(4)	?
C1	C12	H29	131(5)	?
C8	C12	H28	120(4)	?
C26	C12	H28	120(4)	?
C1	C12	H28	95(4)	?
H29	C12	H28	94(6)	?
C15	C13	C9	119.5(6)	?
C15	C13	H2	120.2	?
C9	C13	H2	120.2	?
C11	C14	C9	119.0(5)	?

C11	C14	H3	120.5	?
C9	C14	Н3	120.5	?
C13	C15	C16	121.0(6)	?
C13	C15	H4	119.5	?
C16	C15	H4	119.5	?
C15	C16	C11	118.7(6)	?
C15	C16	C17	120.3(6)	?
C11	C16	C17	121.0(6)	?
C16	C17	Н5	109.5	?
C16	C17	H6	109.5	?
Н5	C17	Н6	109.5	?
C16	C17	H7	109.5	?
Н5	C17	H7	109.5	?
H6	C17	H7	109.5	?
C21	C18	C19	120.6(6)	?
C21	C18	H8	119.7	?
C19	C18	H8	119.7	?
C18	C19	C20	120.2(7)	?
C18	C19	H9	119.9	?
C20	C19	Н9	119.9	?
C24	C20	C19	119.5(7)	?
C24	C20	H10	120.3	?
C19	C20	H10	120.3	?
C18	C21	C22	118.1(6)	?
C18	C21	C26	125.6(8)	?
C22	C21	C26	113.6(8)	?
C18	C21	C1	115.7(7)	?
C22	C21	C1	123.1(7)	?
C26	C21	C1	35.0(6)	?
C24	C22	C21	121.5(7)	?
C24	C22	H11	119.3	?
C21	C22	H11	119.3	?
C20	C24	C22	120.1(7)	?
C20	C24	H12	119.9	?
C22	C24	H12	119.9	?

```
C1
      C25
             C26 37.7(6)..
                             ?
C1
                              ?
      C25
             C10 107.5(7)...
C26
      C25
             C10 107.1(7)...
                             ?
                              ?
C1
      C25
             H25 129(4)..
C26
      C25
                              ?
             H25 137(3)..
C10
      C25
             H25 115(3)..
                             ?
C1
                             ?
      C25
             H31 102(6)..
C26
                             ?
      C25
             H31 65(6)..
C10
      C25
                              ?
             H31 101(7)..
                              ?
H25
      C25
             H31 97(7)..
C25
      C1
             C21 116.4(10) . . ?
C25
      C1
             C12 106.2(9)...
                             ?
C21
                             ?
      C1
             C12 108.0(8)...
C25
                              ?
      C1
             H13 93(4)..
C21
      C1
             H13 122(4)..
                             ?
                             ?
C12
      C1
             H13 110(4)..
C25
             C12 105.2(11) . . ?
      C26
C25
      C26
             C21 113.0(12)..?
C12
      C26
             C21 117.1(10) ... ?
                             ?
C25
      C26
             H26 92(6)..
C12
      C26
             H26 100(6)...
                             ?
C21
                             ?
      C26
             H26 126(6)..
loop
 geom torsion atom site label 1
 _geom_torsion_atom_site_label_2
 _geom_torsion_atom_site_label_3
 geom torsion atom site label 4
 _geom_torsion
 geom torsion site symmetry 1
 geom torsion site symmetry 2
 _geom_torsion_site_symmetry_3
 _geom_torsion_site_symmetry 4
 _geom_torsion_publ_flag
01
      S1
             N1
                   N6
                          173.4(4) . . . .
O2
      S1
             N1
                   N6
                         -58.1(5) . . . .
```

?

?

C9	S 1	N1	N6	58.5(5)	?
S 1	N1	N6	C8	-166.4(4)	?
N1	N6	C8	C12	-1.4(9)	?
N1	N6	C8	C10	-177.8(5)	?
01	S 1	C9	C14	142.3(5)	?
02	S 1	C9	C14	10.3(5)	?
N1	S 1	C9	C14	-106.3(5)	?
01	S 1	C9	C13	-39.3(5)	?
02	S 1	C9	C13	-171.4(4)	?
N1	S 1	C9	C13	72.0(5)	?
N6	C8	C10	F4	-65.4(7)	?
C12	C8	C10	F4	117.3(5)	?
N6	C8	C10	F1	50.7(7)	?
C12	C8	C10	F1	-126.5(5)	?
N6	C8	C10	C25	173.1(6)	?
C12	C8	C10	C25	-4.2(7)	?
N6	C8	C12	C26	-155.5(10)	?
C10	C8	C12	C26	21.1(11)	?
N6	C8	C12	C1	169.0(9)	?
C10	C8	C12	C1	-14.4(9)	?
C14	C9	C13	C15	0.0(9)	?
S 1	C9	C13	C15	-178.4(5)	?
C16	C11	C14	C9	1.2(9)	?
C13	C9	C14	C11	-0.4(8)	?
S 1	C9	C14	C11 1	77.9(4)	?
C9	C13	C15	C16	-0.3(10)	?
C13	C15	C16	C11	1.1(10)	?
C13	C15	C16	C17	179.8(6)	?
C14	C11	C16	C15	-1.5(10)	?
C14	C11	C16	C17	179.8(6)	?
C21	C18	C19	C20	0.7(11)	?
C18	C19	C20	C24	-1.4(11)	?
C19	C18	C21	C22	1.0(11)	?
C19	C18	C21	C26	-158.9(12)	?
C19	C18	C21	C1	161.7(9)	?

C18	C21	C22	C24	-2.0(12)	?
C26	C21	C22	C24	160.3(11)	?
C1	C21	C22	C24	-161.2(10)	?
C19	C20	C24	C22	0.4(12)	?
C21	C22	C24	C20 1	.3(12)	?
F4	C10	C25	C1	-96.4(10)	?
F1	C10	C25	C1	146.4(10)	?
C8	C10	C25	C1	24.8(11)	?
F4	C10	C25	C26	-136.0(10)	?
F1	C10	C25	C26	106.8(10)	?
C8	C10	C25	C26	-14.8(11)	?
C26	C25	C1	C21	-58.9(13)	?
C10	C25	C1	C21	-154.6(10)	?
C26	C25	C1	C12	61.3(13)	?
C10	C25	C1	C12	-34.3(12)	?
C18	C21	C1	C25	-179.7(10)	?
C22	C21	C1	C25	-20.0(18)	?
C26	C21	C1	C25	64.3(15)	?
C18	C21	C1	C12	61.0(13)	?
C22	C21	C1	C12	-139.4(8)	?
C26	C21	C1	C12	-55.1(12)	?
C8	C12	C1	C25	30.2(12)	?
C26	C12	C1	C25	-69.3(15)	?
C8	C12	C1	C21	155.8(8)	?
C26	C12	C1	C21	56.2(11)	?
C1	C25	C26	C12	-68.6(13)	?
C10	C25	C26	C12	28.0(14)	?
C1	C25	C26	C21	60.3(13)	?
C10	C25	C26	C21	156.9(10)	?
C8	C12	C26	C25	-29.8(13)	?
C1	C12	C26	C25	58.6(14)	?
C8	C12	C26	C21	-156.2(12)	?
C1	C12	C26	C21	-67.9(14)	?
C18	C21	C26	C25	-138.1(10)	?
C22	C21	C26	C25	61.2(16)	?

C1	C21	C26	C25	-53.4(14).	• • •	?			
C18	C21	C26	C12	-16(2)		?			
C22	C21	C26	C12	-176.2(11)		?			
C1	C21	C26	C12	69.1(15)		?			
loop_									
_geo	om_hbo	ond_ator	n_site_l	abel_D					
_geo	om_hbo	ond_ator	n_site_l	abel_H					
_geo	om_hbo	ond_ator	n_site_l	abel_A					
_geom_hbond_distance_DH									
_geom_hbond_distance_HA									
_geom_hbond_distance_DA									
_geom_hbond_angle_DHA									
_geo	om_hbo	ond_site	_symme	etry_A					
N1	H30	01	0.73(6)	2.20(6)	2.903	3(7)	161(6)	2_646	
_diffrn_measured_fraction_theta_max						0.984			
_diffrn_reflns_theta_full						27.52			
_diffrn_measured_fraction_theta_full						0.984			
_refine_diff_density_max						0.248			
_refine_diff_density_min						-0.450			
_refine_diff_density_rms						0.068			

(D) Synthesis of oxime 199

To a THF solution (6 mL) of cyclic silyl enol ether **187a** (311 mg, 1.00 mmol) were added formic acid (87%, 3 mL), distiled water (1 mL), and a THF solution (2.00 mL) of tetrabutylammonium fluoride (1.0 mol/L, 2.0 mmol). The resulting mixture was heated to 55 °C stirred for 3.5 d, and then cooled to room temperature. Hydroxyamine hydrochloride (106 mg, 1.52 mmol) was added and the mixture was heated to 50 °C, stirred for 24 h, and then cooled to room temperature. A saturated aqueous solution (20 mL) of sodium hydrogen carbonate was added and organic materials were extracted with ethyl acetate three times. The combined extracts were washed with a saturated aqueous solution of sodium hydrogen carbonate and brine, and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by columnchromatography on silica gel (hexane/ethyl acetate = 10/1) to give oxime **199** as yellow crystals (184 mg, 87% yield).

2,2-Difluoro-4-phenylcyclopentan-1-one oxime 199

¹H NMR (500 MHz, CDCl₃): $\delta = 2.31$ (dddd, J = 26.0, 14.0, 14.0, 10.5 Hz, 1H), 2.63 (ddd, J = 19.0, 11.0, 5.0 Hz, 1H), 2.73 (tdd, J = 14.0, 7.0, 2.0 Hz, 1H), 3.24 (ddt, J = 19.0, 7.0, 2.0 Hz, 1H), 3.42 (tt, J = 11.0, 7.0 Hz, 1H), 7.25 (d, J = 7.0 Hz, 2H), 7.28 (t, J = 7.0 Hz, 1H), 7.36 (t, J = 7.0 Hz, 2H), 8.22 (s, 1H). ¹³C NMR (126 MHz, CDCl₃): $\delta = 32.9$, 37.4 (d, J = 7 Hz), 42.8 (dd, J = 25, 20 Hz), 123.2 (dd, J = 256, 246 Hz), 126.7, 127.3, 128.9, 141.0, 156.6 (t, J = 21 Hz). ¹⁹F NMR (470 MHz, CDCl₃): $\delta = 56.7$ (dd, J = 252, 10 Hz, 1F), 67.6 (dddd, J = 252, 26, 14, 2 Hz, 1F). IR (neat): $v^{\sim} = 3269$, 1456, 1180, 912, 748 cm⁻¹. HRMS (70 eV, EI): *m/z* calcd. for C₁₁H₁₁F₂NO [M]⁺: 211.0809; Found: 211.0809.

(E) Synthesis of enone 200

To a dichloromethane solution (300 mL) of cyclic silyl enol ether **187a** (64 mg, 0.21 mmol) was added *N*-bromosuccinimide (38 mg, 0.22 mmol) at room temperature. The resulting mixture was stirred for 96 h. A saturated aqueous solution (30 mL) of sodium hydrogen carbonate was added and most of the organic solvent was removed under reduced pressure. Organic materials were extracted with dichloromethane three times. The combined extracts were washed with brine and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate = 10/1) to give enone **200** as colorless crystals (34 mg, 86% yield).

5,5-Difluoro-3-phenylcyclopent-2-en-1-one 200

¹H NMR (500 MHz, CDCl₃): δ = 3.44 (td, *J* = 12.0, 2.0 Hz, 2H), 6.70 (tt, *J* = 2.0, 2.0 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 2H), 7.59 (t, *J* = 7.5 Hz, 1H), 7.67 (d, *J* = 7.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ = 39.0 (t, *J* = 26 Hz), 115.5 (t, *J* = 255 Hz), 123.3 (t, *J* = 3 Hz), 127.2, 129.3, 132.3, 133.1, 169.2 (t, *J* = 6 Hz), 192.9 (t, *J* = 26 Hz). ¹⁹F NMR (470 MHz, CDCl₃): δ = 50.6 (td, *J* = 12, 2 Hz). IR (neat): v^{\sim} = 3101, 2927, 1736, 1593, 1338, 1057, 906 cm⁻¹. HRMS (70 eV, EI): *m/z* calcd. for C₁₁H₈F₂O [M]⁺: 194.0543; Found: 194.0544.

(F) Synthesis of epoxide 201

To a dichloromethane solution (4 mL) of cyclic silyl enol ether **187a** (237 mg, 0.763 mmol) was added a dichloromethane solution (6 mL) of *m*-chloroperbenzoic acid (*m*CPBA, 417 mg, 2.42 mmol) at -20 °C. The resulting mixture was slowly warmed to room temperature and stirred for 41 h. A saturated aqueous solution (10 mL) of sodium hydrogen carbonate was added and organic materials were extracted with dichloromethane three times. The combined extracts were washed with brine and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the

filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate = 10/1) to give epoxide **201** as a colorless liquid (212 mg, 85% yield).

2-[tert-Butyl(dimethyl)silyloxy]-2,3-epoxy-1,1-difluoro-4-phenylcyclopentane 201

(81:19 diastereomeric mixture)

¹H NMR (500 MHz, CDCl₃): (major isomer) $\delta = 0.15$ (s, 3H), 0.19 (s, 3H), 0.92 (s, 9H), 2.24 (ddd, J = 20.0, 15.0, 1.0 Hz, 1H), 2.46 (dtd, J = 24.0, 15.0, 10.0 Hz, 1H), 3.41 (dd, J = 10.0, 3.0 Hz, 1H), 3.66 (d, J = 3.0 Hz, 1H), 7.24–7.38 (m, 5H); (minor isomer) $\delta = 0.18$ (s, 3H), 0.23 (s, 3H), 0.93 (s, 9H), 2.09 (dddd, J = 26.0, 14.0, 12.0, 10.0 Hz, 1H), 2.37–2.46 (m, 1H), 3.37 (d, J = 9.0 Hz, 1H), 3.81 (dd, J = 2.5, 1.0 Hz, 1H), 7.24–7.38 (m, 5H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.1, -4.2, 17.8, 25.4, 37.6$ (t, J = 23 Hz), 38.3 (t, J = 23 Hz), 39.9 (d, J = 7 Hz), 40.9 (d, J = 7 Hz), 64.5 (d, J = 6 Hz), 65.7 (d, J = 6 Hz), 83.3 (dd, J = 36, 26 Hz), 85.0 (dd, J = 36, 26 Hz), 124.0 (dd, J = 262, 245 Hz), 124.1 (dd, J = 258, 246 Hz), 127.4, 127.4 127.6, 127.6, 128.8, 129.0, 138.9, 139.5. ¹⁹F NMR (470 MHz, CDCl₃): (major isomer) $\delta = 43.7$ (dd, J = 243, 15, 3 Hz, 1F), 62.5 (dddd, J = 243, 24, 20, 3 Hz, 1F); (minor isomer) $\delta = 43.7$ (dd, J = 243, 12 Hz, 1F), 54.8 (ddd, J = 243, 26, 18 Hz, 1F). IR (neat): $v^{\sim} = 2931, 1437, 1254, 1174, 1059, 837$ cm⁻¹. HRMS (70 eV, EI): *m/z* (major isomer) Calcd. for C₁₃H₁₅F₂O₂Si [M–t-Bu]⁺: 269.0809; Found: 269.0809; (minor isomer) calcd. for C₁₃H₁₅F₂O₂Si [M–t-Bu]⁺: 269.0809; Found: 269.0807.

(G) Synthesis of enone 202

To a THF solution (1 mL) of epoxide **201** (27 mg, 0.083 mmol) was added an aqueous solution (1 mL) of potassium hydrogen difluoride (6.2 mg, 0.079 mmol) at room temperature. The resulting mixture was stirred for 46 h. A saturated aqueous solution (5 mL) of sodium hydrogen carbonate was added and organic materials were extracted with ethyl acetate three times. The combined extracts were washed with brine and dried over anhydrous sodium sulfate. The sulfate was removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate = 5/1) to give enone **202** as colorless crystals (8.6 mg, 54% yield).

3-Fluoro-2-hydroxy-5-phenylcyclopent-2-en-1-one 202

¹H NMR (500 MHz, CDCl₃): $\delta = 2.74$ (d, J = 18.0 Hz, 1H), 3.18 (dd, J = 18.0, 6.5 Hz, 1H), 3.76 (d, J = 6.5 Hz, 1H), 6.06 (s, 1H), 7.16 (d, J = 7.5 Hz, 2H), 7.28 (t, J = 7.5 Hz, 1H), 7.34 (t, J = 7.5 Hz, 1H), 7

2H). ¹³C NMR (126 MHz, CDCl₃): δ = 31.7 (d, *J* = 14 Hz), 48.2, 127.5, 127.7, 129.1, 132.8, 137.2, 164.9 (d, *J* = 299 Hz), 199.7 (d, *J* = 11 Hz). ¹⁹F NMR (470 MHz, CDCl₃): δ = 56.0 (s). IR (neat): v^{\sim} = 3257, 1734, 1660, 1381, 1329, 1219, 1101 cm⁻¹. HRMS (ESI, negative): *m*/*z* clcd. for C₁₁H₈FO₂ [M–H]⁻: 191.0508; Found: 191.0508.

3.5.7. Preparation of metal bromodifluoroacetate

(A) Typical procedure for the preparation of sodium bromodifluoroacetate.

To a methanol (30 mL) solution of sodium hydroxide (1.99 g, 49.8 mmol) was added ethyl bromodifluoroacetate (6.5 mL, 50.3 mmol) at room temperature. The reaction mixture was stirred for 12 h at room temperature, and then heated at 60 °C. After the reaction mixture was stirred for 3 h at 60 °C, the reaction mixture was concentrated in vacuo. The residue was azeotropic removal of water with toluene to give sodium bromodifluoroacetate (9.17 g, 93%) and stored in glove box.

3.5.8. Synthesis of 4,4-difluorocyclopent-1-en-1-yl silyl ether

(A) Typical procedure for the synthesis of 4,4-difluorocyclopent-1-en-1-yl silyl ethers.

To an acetonitrile (1.00 mL) suspension of copper(I) catalyst **204b** (10 mg, 0.016 mmol) and sodium bromodifluoroacetae (72 mg, 0.366 mmol), was added an acetonitrile (1.8 mL) solution of dienol silyl ether **187a** (87.6 mg, 0.336 mmol) at room temperature. The reaction mixture was stirred and heated at 50 °C. After the reaction mixture was stirred for 12 h at 50 °C, hexane (5.0 mL) and saturated aqueous NaHCO₃ (5.0 mL) were added at 0 °C to quench the reaction at room temperature. Organic materials were extracted with hexane five times, the combined extracts were washed with brine and dried over anhydrous Na₂SO₄, filtered, and then concentrated in vacuo. The residue was purified by column chromatography (SiO₂ deactivated by H₂O 15 vol%, hexane only) to give five-membered difluoroenol silyl ether **203a** (74.0 mg, 71%) as a colorless oil.

(B) Spectral data of 4,4-difluorocyclopent-1-en-1-yl silyl ethers.

1-[tert-Butyl(dimethyl)silyloxy]-4,4-difluoro-3-phenylcyclopent-1-ene 203a

¹H NMR (500 MHz, CDCl₃): $\delta = 0.23$ (s, 3H), 0.25 (s, 3H), 0.97 (s, 9H), 2.86 (t, J = 14.0 Hz, 2H), 4.17 (dd, J = 19.5, 7.8 Hz, 1H), 4.68–4.74 (m, 1H), 7.22–7.27 (m, 2H), 7.22–7.31 (m, 1H), 7.31– 7.37 (m, 2H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.6$, 18.1, 25.6, 43.5 (t, J = 27 Hz), 56.1 (dd, J = 27, 24 Hz), 103.3 (d, J = 3 Hz), 127.0 (dd, J = 256, 253 Hz), 127.5, 128.3, 128.7, 136.8, 151.0. ¹⁹F NMR (470 MHz, CDCl₃): $\delta = 63.9$ (dtdd, J = 228, 14, 8, 2 Hz, 1F), 71.6 (ddtd, J = 228, 20, 14, 2 Hz, 1F). IR (neat); v = 2931, 1645, 1255, 906, 731 cm⁻¹. HRMS (70 eV, EI): *m/z* calcd. for C₁₇H₂₄F₂OSi ([M]⁺): 310.1565; found: 310.1580.

1-[tert-Butyl(dimethyl)silyloxy]-4,4-difluoro-3-(4-methylphenyl)cyclopent-1-ene 203b

¹H NMR (500 MHz, CDCl₃): $\delta = 0.23$ (s, 3H), 0.24 (s, 3H), 0.96 (s, 9H), 2.34 (s, 3H), 2.84 (t, J = 14.0 Hz, 2H), 4.13 (dd, J = 20.0, 8.0 Hz, 1H), 4.69–4.73 (m, 1H), 7.13–7.17 (m, 4H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.6$, 18.1, 21.1, 25.6, 43.4 (t, J = 28 Hz), 55.7 (dd, J = 27, 23 Hz), 103.4 (d, J = 3 Hz), 127.0 (dd, J = 256, 253 Hz), 128.5, 129.0, 133.7 (t, J = 4 Hz), 137.2, 150.8 (t, J = 7 Hz). ¹⁹F NMR (470 MHz, CDCl₃): $\delta = 64.9$ (dtdd, J = 227, 14, 8, 3 Hz), 72.7 (ddtd, J = 227, 20, 14, 2 Hz). IR (neat); $v^{\sim} = 2956$, 2931, 2860, 1645, 1340, 835 cm⁻¹. HRMS (70 eV, EI): *m/z* calcd. for C₁₈H₂₆F₂OSi ([M]⁺): 324.1721; found: 324.1716.

1-[tert-Butyl(dimethyl)silyloxy]-4,4-difluoro-3-(4-methoxyphenyl)cyclopent-1-ene 203c

¹H NMR (500 MHz, CDCl₃): δ = 0.23 (s, 3H), 0.24 (s, 3H), 0.96 (s, 9H), 2.84 (t, *J* = 14.0 Hz, 2H), 3.80 (s, 3H), 4.12 (dd, *J* = 19.0, 7.0 Hz, 1H), 4.70 (s, 1H), 6.88 (d, *J* = 8.6 Hz, 2H), 7.16 (d, *J* = 8.6 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ = -4.6, 18.1, 25.6, 43.4 (t, *J* = 27 Hz), 55.3 (dd, *J* = 27, 23 Hz), 55.2, 103.4 (d, *J* = 3 Hz), 127.0 (dd, *J* = 255, 253 Hz), 128.7 (dd, *J* = 5, 3 Hz), 150.8 (t, *J* = 7 Hz), 159.0. ¹⁹F NMR (470 MHz, CDCl₃): δ = 60.2 (dtdd, *J* = 227, 14, 7, 2 Hz), 71.2 (ddt, *J* = 227, 19, 14 Hz). IR (neat); v^{\sim} = 2956, 2931, 2860, 1647, 1514, 1342, 1252, 837 cm⁻¹. HRMS (70 eV, EI): *m/z* calcd. for C₁₈H₂₆F₂O₂Si ([M]⁺): 340.1670; found: 340.1667.

1-[tert-Butyl(dimethyl)silyloxy]-3-(4-bromophenyl)-4,4-difluorocyclopent-1-ene 203e

¹H NMR (500 MHz, CDCl₃): δ = 0.22 (s, 3H), 0.24 (s, 3H), 0.96 (s, 9H), 2.76–2.92 (m, 2H), 4.12 (dd, J = 19.2, 8.2 Hz, 1H), 4.64–4.69 (m, 1H), 7.11 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ = -4.60, -4.57, 18.1, 25.6, 43.5 (t, J = 27 Hz), 55.6 (dd, J = 27, 24 Hz), 102.7, 121.5, 126.6 (dd, J = 256, 254 Hz), 130.3, 131.4, 135.8, 151.4 (t, J = 7 Hz). ¹⁹F NMR (470 MHz, CDCl₃): δ = 64.1 (dtdd, J = 228, 14, 8, 3 Hz, 1F), 71.3 (ddtd, J = 228, 19, 14, 3 Hz, 1F). IR (neat); $v^{\sim} = 2931$, 1645, 1487, 1342, 904, 729 cm⁻¹. HRMS (70 eV, EI): *m/z* calcd. for C₁₇H₂₃BrF₂OSi ([M]⁺): 388.0670; found: 388.0667.

1-[*tert*-Butyl(dimethyl)silyloxy]-4,4-difluoro-3-(2-naphthyl)cyclopent-1-ene **203f**

¹H NMR (500 MHz, CDCl₃): $\delta = 0.26$ (s, 3H), 0.29 (s, 3H), 0.99 (s, 9H), 2.91 (t, J = 14.0 Hz, 2H), 4.34 (dd, J = 19.0, 8.0 Hz, 1H), 4.80–4.83 (m, 1H), 7.38 (d, J = 8.5 Hz, 1H), 7.43–7.49 (m, 2H), 7.70 (s, 1H), 7.79–7.85 (m, 3H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.6$, -4.5, 18.1, 25.6, 43.6 (t, J = 27 Hz), 56.2 (dd, J = 27, 23 Hz), 103.3 (d, J = 3 Hz), 125.8, 126.0, 126.9, 127.1 (dd, J = 256, 253 Hz), 127.3, 127.6, 127.8, 127.9, 132.9, 133.3, 134.3 (dd, J = 5, 3 Hz), 151.1 (t, J = 7 Hz). ¹⁹F NMR (470 MHz, CDCl₃): $\delta = 64.2$ (dtdd, J = 228, 14, 8, 3 Hz), 72.4 (ddtd, J = 228, 20, 14, 2 Hz). IR (neat); $v^{\sim} = 2956$, 2931, 1647, 1342, 836, 734 cm⁻¹. HRMS (70 eV, EI): m/z calcd. for C₂₁H₂₆F₂OSi ([M]⁺): 360.1721; found: 360.1719.

1-[tert-Butyl(dimethyl)silyloxy]-4,4-difluoro-3-propylcyclopent-1-ene 203g

¹H NMR (500 MHz, CDCl₃): δ = 0.16 (s, 3H), 0.17 (s, 3H), 0.87–0.95 (m, 12H), 1.23–1.32 (m, 1H), 1.31-1.41 (m, 2H), 1.53–1.63 (m, 1H), 2.68–2.78 (m, 2H), 2.79–2.90 (m, 1H), 4.55–4.60 (m, 1H). ¹³C NMR (126 MHz, CDCl₃): δ = -4.7, 14.2, 18.1, 20.5, 25.5, 31.4 (dd, *J* = 8, 2 Hz), 43.7 (t, *J* = 27 Hz), 49.6 (dd, *J* = 25, 22 Hz), 104.2 (d, *J* = 4 Hz), 128.6 (dd, *J* = 256, 251 Hz), 149.1 (t, *J* = 7 Hz). ¹⁹F NMR (470 MHz, CDCl₃): δ = 56.6 (dtd, *J* = 229, 15, 8 Hz, 1F), 71.7 (ddtd, *J* = 229, 20, 15, 2 Hz, 1F). IR (neat); v^{\sim} = 2931, 1647, 1340, 1254, 1122, 835, 781 cm⁻¹. HRMS (70 eV, EI): *m/z* calcd. for C₁₄H₂₆F₂OSi ([M]⁺): 276.1721; found: 276.1710.

1-[*tert*-Butyl(dimethyl)silyloxy]-4,4-difluoro-2-methyl-3-phenylcyclopent-1-ene **203h**

¹H NMR (500 MHz, CDCl₃): $\delta = 0.21$ (s, 3H), 0.21 (s, 3H), 0.99 (s, 9H), 1.48 (s, 3H), 2.75–2.87 (m, 1H), 2.85–2.96 (m, 1H), 3.91 (dd, J = 21.5, 4.5 Hz, 1H), 7.14–7.18 (m, 2H), 7.27–7.37 (m, 3H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.1$, -4.0, 10.3, 18.1, 25.6, 43.3 (t, J = 27 Hz), 60.1 (dd, J = 27, 23 Hz), 113.5 (d, J = 1 Hz), 126.3 (dd, J = 256, 251 Hz), 127.5, 128.3, 129.1, 135.6 (t, J = 4 Hz), 143.3 (dd, J = 8, 4 Hz). ¹⁹F NMR (470 MHz, CDCl₃): $\delta = 63.0$ (ddt, J = 228, 15, 5 Hz, 1F), 74.2 (dtd, J = 228, 22, 15 Hz, 1F). IR (neat); $\nu^{\sim} = 2931$, 1687, 1254, 1124, 881, 698 cm⁻¹. HRMS (70 eV, EI): m/z calcd. for C₁₈H₂₆F₂OSi ([M]⁺): 324.1721; found: 324.1722.

9-[tert-Butyl(dimethyl)silyloxy]-7,7-difluorobicyclo[4.3.0]non-9-ene 203k

¹H NMR (500 MHz, CDCl₃): $\delta = 0.13$ (s, 6H), 0.93 (s, 9H), 1.07–1.17 (m, 1H), 1.18–1.32 (m, 2H), 1.61–1.78 (m, 2H), 1.80–1.93 (d, 2H), 2.52–2.76 (m, 3H), 2.77–2.89 (m, 1H). ¹³C NMR (126 MHz, CDCl₃): $\delta = -4.3$, -4.2, 18.1, 23.5, 24.7, 25.4, 25.5, 25.7 (d, *J* = 11 Hz), 44.1 (t, *J* = 28 Hz), 50.0 (dd, *J* = 26, 24 Hz), 116.5 (d, *J* = 4 Hz), 127.7 (dd, *J* = 254, 250 Hz), 137.8 (dd, *J* = 6, 5 Hz). ¹⁹F NMR (470 MHz, CDCl₃): $\delta = 60.2$ (dddd, *J* = 231, 21, 14, 8 Hz), 71.4 (dddd, *J* = 231, 20, 18, 8 Hz). IR (neat); $v^{\sim} = 2933$, 2858, 1693, 1119, 856, 837, 779 cm⁻¹. HRMS (70 eV, EI): *m/z* calcd. for C₁₅H₂₆F₂OSi ([M]⁺): 288.1721; found: 288.1758.

3.5.8. Aminolysis of Copper(I) Difluorocarbene Complex

To a acetonitrile solution (3 mL) of copper(I) complex **204b** (8 mg, 0.013 mmol) were added butylamine (14 mL, 0.142 mmol) and sodium bromodifluoroacetae (14 mg, 0.071 mmol) at room temperature. After stirring for 24 h, the resulting mixture was dissolved in acetonitrile. High-resolution mass-analysis (ESI⁺) revealed that the ion (z = 1) corresponding to the aminolysis product of the copper(I) difluorocarbene complex, LCu=C=NBu⁺ (L = 4,7-dimethyl-1,10-phenanthroline) **205**, was observed.

3.5.9. Derivatization of 4,4-difluorocyclopent-1-en-1-yl silyl ether

(A) Synthesis of enone **206**

To a tetrahydrofuran (THF) solution (5.0 mL) of **203a** (63.4 mg, 0.204 mmol), was added aqueous formic acid (87 wt%, 2.0 mL, 19 mmol) at room temperature. The reaction solution was cooled to 0 °C and tetrabutylammonium fluoride solution (1.0 M in THF, 0.40 mL, 0.40 mmol) was added. After the reaction mixture was stirred for 25 min at 0 °C, it was allowed to be warmed up to room temperature. After the reaction mixture was stirred for 10 h at room temperature, pH=7 phosphate buffer (10 mL) was added to quench the reaction at room temperature. Organic materials were extracted with ethyl acetate four times, the combined extracts were washed with brine three times, dried over anhydrous Na₂SO₄, filtered, and then concentrated in vacuo. The residue was purified by column chromatography (SiO₂, hexane–ethyl acetate, 10:1) to give fluorocyclopentenone **206** (25.1 mg, 70%) as a pale yellow oil.

3-Fluoro-4-phenylcyclopent-2-en-1-one 206

¹H NMR (500 MHz, CDCl₃): $\delta = 2.58$ (dt, J = 18.5, 2.5 Hz, 1H), 3.10 (ddd, J = 18.5, 7.5, 1.5 Hz, 1H), 4.18 (d, J = 7.5 Hz, 1H), 5.83 (d, J = 1.5 Hz, 1H), 7.22 (d, J = 7.0 Hz, 2H), 7.32 (t, J = 7.0 Hz, 1H), 7.38 (dd, J = 7.0, 7.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): $\delta = 45.1$ (d, J = 16 Hz), 45.6, 112.2 (d, J = 5 Hz), 127.1, 128.0, 129.2, 137.4, 191.2 (d, J = 309 Hz), 202.6 (d, J = 15 Hz). ¹⁹F NMR (470 MHz, CDCl₃): $\delta = 81.6$ (s, 1F). IR (neat); v = 1714, 1637, 1323, 912, 742 cm⁻¹. HRMS (70 eV, EI+): m/z calcd. for C₁₁H₉FO ([M]⁺): 176.0637; found: 176.0638.

(B) Synthesis of enone 207

To a tetrahydrofuran (THF) solution (3.0 mL) of **206** (35.2 mg, 0.200 mmol), was added methyllithium (1.2 M in Et₂O, 0.35 mL, 0.413 mmol) at -78 °C. After the reaction mixture was stirred for 2 h at -78 °C, pH=7 phosphate buffer (5 mL) was added to quench the reaction at -78 °C. It was allowed to be warmed up to room temperature. Organic materials were extracted with ethyl acetate three times, the combined extracts were washed with brine, dried over anhydrous Na₂SO₄, filtered, and then concentrated in vacuo. The residue was purified by column chromatography (SiO₂, hexane–ethyl acetate, 30:1) to give cyclopentenone **207** (12.3 mg, 36%) as a pale yellow oil.

3.6. Reference

- [1] (a) Fäh, C.; Hardegger, L. A.; Baitsch, L.; Schweizer, W. B.; Meyer, S.; Bur, D.; Diederich, F. *Org. Biomol. Chem.* 2009, *7*, 3947. (b) Iguchi, K.; Kaneta, S.; Tsune, C.; Yamada, Y. *Chem. Pharm. Bull.* 1989, *37*, 1173. (c) Takahashi, S.; Domon, Y.; Kitano, Y.; Shinozuka, T. WO 2014/142221 A1, 2014.
- [2] (a) Nakano, T.; Makino, M.; Morizawa, Y.; Matsumura, Y. Angew. Chem., Int. Ed. 1996, 35, 1019. (b) Pravst, I.; Zupan, M.; Stavber, S. Synthesis 2005, 3140. (c) Baudoux, J.; Cahard, D. Org. React. 2007, 69, 347.
- [3] (a) Meegalla, S. K.; Doller, D.; Liu, R.; Sha, D.; Lee, Y.; Soll, R. M.; Wisnewski, N.; Silver, G. M.; Dhanoa, D. *Bioorg. Med. Chem. Lett.* 2006, *16*, 1702. (b) Fah, C.; Hardegger, L. A.; Baitsch, L.; Schweizer, W. B.; Meyer, S.; Bur, D.; Diederich, F. *Org. Biomol. Chem.* 2009, *7*, 3947.
- [4] (a) Goldschmidt, Z.; Crammer, B. Chem. Soc. Rev. 1988, 17, 229. (b) Wong, H. N. C.; Hon, M. Y.; Tse, C. W.; Yip, Y. C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165. (c) Trost, B. M.; Bogdanowicz, M. J. J. Am. Chem. Soc. 1973, 95, 289. (d) Dolbier, W. R., Jr.; Sellers, S. F. J. Org. Chem. 1982, 47, 1. (e) Orr, D.; Percy, J. M.; Tuttle, T.; Kennedy, A. R.; Harrison, Z. A. Chem. Eur. J. 2014, 20, 14305. (f) Ryu, I.; Ikura, K.; Tamura, Y.; Maenaka, J.; Ogawa, A.; Sonoda, N. Synlett 1994, 941
- [5] Miller, T. G.; Thanassi, J. W. J. Org. Chem. 1960, 25, 2009.
- [6] Knox, L. H.; Velarge, E.; Berger, S.; Cuadriello, D.; Landis, P. W.; Cross, A. D. J. Am. Chem. Soc. 1963, 85, 1851.
- [7] Seyferth, D.; Hopper, S. H.; Darragh, K. V. J. Am. Chem. Soc. 1969, 91, 6536.
- [8] (a) Doyle, M. P.; Forbes, M. P. Chem. Rev. 1998, 98, 911. (b) Doyle, M. P.; Leusen, D. V.; Tamblyn, W. H. Synthesis 1981, 787. (c) Vallgårda, J.; Hacksell, U. Tetrahedron Lett. 1991, 32, 5625. (d) Nakamura, A.; Yoshida, T.; Cowie, M.; Otsuka, S.; Ibers, J. A. J. Am. Chem. Soc. 1977, 99, 2108. (e) Davidson, J. G.; Barefield, E. K.; Derveer, D. G. V. Organometallics 1985, 4, 1178.
- [9] (a) Dolbier, W. R., Jr.; Battiste, M. A. Chem. Rev. 2003, 103, 1071. (b) Boggs, J. E.; Fan, K. Acta. Chem. Scand. A 1988, 42, 595. (c) Zeiger, D. N.; Liebman, J. F. J. Mol. Structure 2000, 556, 83. (d) Tian, F.; Bartberger, M. D.; Dolbier, W. R., Jr. J. Org. Chem. 1999, 64, 540.
- [10] (a) Shang, R.; Fu, Y.; Wang, Y.; Xu, Q.; Yu, H.-Z.; Liu, L. Angew. Chem., Int. Ed. 2009, 48, 9350. (b) Ambler, B. R.; Altman, R. A. Org. Lett. 2013, 15, 5578.
- [11] (a) Clark, G. R.; Hoskins, S. V.; Roper, W. R. J. Organomet. Chem. 1982, 234, C9. (b) Koola, J. D.; Roddick, D. M. Organometallics 1991, 10, 591.
- [12] Son, S.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 1046.

- [13] (a) Fang, J.; Ren, J.; Wang, Z. *Tetrahedron Lett.* 2008, 49, 6659. (b) Kusama, H.; Karibe, Y.;
 Imai, R.; Onizawa, Y.; Yamabe, H.; Iwasawa, N. *Chem. Eur. J.* 2011, 17, 4839.
- [14] (a) Inamoto, K.; Kuroda, J.; Hiroya, K.; Noda, Y.; Watanabe, M.; Sakamoto, T. Organometallics 2006, 25, 3095. (b) Inamoto, K.; Kuroda, J.; Kwon, E.; Hiroya, K.; Doi, T. J. Organomet. Chem. 2009, 694, 389. (c) Peris, E.; Loch, J. A.; Mata, J.; Crabtree, R. H. Chem. Commun. 2001, 201. (d) Loch, J. A.; Albrecht, M.; Peris, E.; Mata, J.; Faller, J. W.; Crabtree, R. H. Organometallics 2002, 21, 700. (e) Danopoulos, A. A.; Tulloch, A. A. D.; Winston, S.; Eastham, G.; Hursthouse, M. B. Dalton Trans. 2003, 1009. (f) Serra, D.; Cao, P.; Cabrera, J.; Padilla, R.; Rominger, F.; Limbach, M. Organometallics 2011, 30, 1885.
- [15] (a) Tian, F.; Kruger, N.; Bautista, O.; Duan, J.-X.; Li, A.-R.; Dolbier, W. R., Jr. Org. Lett. 2000, 2, 563. (b) Dolbier, W. R., Jr.; Tian, F.; Duan, J.; Li, A.-R.; Ait-Mohand, S.; Bautista, O.; Buathong, S.; Baker, J. M.; Crawford, J.; Anselme, P.; Cai, X. H.; Modzelewska, A.; Koroniak, H.; Battiste, M. A.; Chen, Q. J. Fluorine Chem. 2004, 125, 459.
- [16] (a) Fuchibe, K.; Koseki, Y.; Sasagawa, H.; Ichikawa, J. *Chem. Lett.* 2011, 40, 1189. (b)
 Fuchibe, K.; Koseki, Y.; Aono, T.; Sasagawa, H.; Ichikawa, J. J. *Fluorine Chem.* 2012, 133, 52.
- [17] (a) Richmond, T. G.; Cresoi, A. M.; Shriver, D. F. *Organometallics* 1984, *3*, 314. (b) Crespi, A. M.; Shriver, D. F. *Organometallics* 1985, *4*, 1830.
- [18] (a) Zhang, X.; Geng, Z.-Y.; Wang, Y.-C.; Li, W.-Q.; Wang, Z.; Liu, F.-X. J. Mol. Struct.: theochem 2009, 893, 56. (b) Kanai, H.; Nishiguchi, Y.; Matsuda, H. Bull. Chem. Soc. Jpn. 1983, 56, 1592. (c) Davidson, J. G.; Barefield, E. K.; Derveer, D. G. V. Organometallics 1985, 4, 1178.
- [19] Clark, G. R.; Hoskins, S. V.; Jones, T. C.; Roper, W. R. J. Chem. Soc., Chem. Commun. 1983, 719.
- [20] Naoshima, Y.; Yamaguchi, M.; Kawai, M.; Ichimoto, I.; Ueda, H. Agric. Biol. Chem. 1974, 38, 2273.
- [21] (a) Zhang, Z.; Zhou, Q.; Yu, W.; Li, T.; Wu, G.; Zhang, Y.; Wang, J. Org. Lett. 2015, 17, 2474.
 (b) Xia, Y.; Zhang, Y.; Wang, J. ACS Catal. 2013, 3, 2586.
- [22] Ichikawa, J.; Fujiwara, M.; Miyazaki, S.; Ikemoto, M.; Okauchi, T.; Minami, T. Org. Lett.
 2001, 3, 2345.
- [23] (a) Murakami, M.; Takahashi, K.; Amii, H.; Ito, Y. J. Am. Chem. Soc. 1997, 119, 9308. (b)
 Yan, B.; Spilling, C. J. Org. Chem. 2008, 73, 5385.
- [24] (a) Arduengo, III, A. J.; Dias, H. V. R.; Harlow, L.; Kline, M. J. Am. Chem. Soc. 1992, 114, 5530. (b) Furuya, Y.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 11240.
- [25] (a) Sampath, K. H. C.; Rudresha, B. J.; Ramachandra, B. B.; Reji, P.; Guru, R. T. N. AIP Conf.

Proc. 2011, *1391*, 671. (b) Ignatenko, V. A.; Deligonul, N. and Viswanathan, R. *Org. Lett.* 2010, *12*, 3594.

Chapter 4

Conclusion

I have achieved catalytic and selective syntheses of difluoromethyl and difluoromethylene compounds (i) free difluorocarbene and (ii) metal difluorocarbene complexes.

In chapter 2, syntheses of difluoromethyl imidates and difluoromethoxypyridines were described. The NHC-catalyzed generation of free difluorocarbene was effected under mild conditions, which enable an efficient and regioselective *O*-difluoromethylation of secondary amides and pyridons.

In chapter 3, regioselective syntheses of both α,α - and β,β -difluorocyclopentanone derivatives by unprecedented transition metal difluorocarbene complexes were described. Dienol silyl ethers, readly prepared from α,β -unsaturated ketones, underwent a sequence of difluorocyclopropanation and VCP rearrangement catalyzed by a nickel(II) difluorocarbene complex to selectively afford 5,5-difluorocyclopent-1-en-1-yl silyl ethers. Copper(I) difluorocarbene complex catalyzed an efficient [4 + 1] cycloaddition of the same dienol silyl ethers with sodium bromodifluoroacetate, which provided 4,4-difluorocyclopent-1-en-1-yl silyl ethers in a selective manner. The key Ni(II)and Cu(I)-difluorocarbene complexes were captured as aminolysis products, which were detected by mass spectroscopy.

Through these studies, advantages of catalytic introduction of difluorocarbene moiety in synthesis were successfully demonstrated. These results provide a variety of difluoromethylene compounds, which are sufficiently promising in pharmaceutical and agricultural sciences as well as materials sciences.

List of Publications

[1] "NHC-catalyzed generation of difluorocarbene and its application to difluoromethylation of oxygen nucleophiles"

Fuchibe, K.; Koseki, Y.; Aono, T.; Sasagawa, H.; Ichikawa, J.

Journal of Fluorine Chemistry. 2012, 133, 52–60.

[2] "Regioselective Synthesis of α,α-Difluorocyclopentanone Derivatives: Domino Nickel-Catalyzed Difluorocyclopropanation/Ring-Expansion Sequence of Silyl Dienol Ethers"

Aono, T.; Sasagawa, H.; Fuchibe, K.; Ichikawa, J.

Organic Letter 2015, 17, 5736–5739.
Acknowledgement

The studies described in this thesis have been performed under the direction of Professor Junji Ichikawa at the Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, from April 2011 to March 2016.

The author is deeply grateful to Professor Junji Ichikawa for his helpful discussions, experimental guidance, hearty advice, contribution to revising the author's manuscripts, and encouragement throughout the course of the studies. He would like to express his deep gratitude to Associate Professor Kohei Fuchibe for the helpful discussion, experimental guidance, and contribution to revising the author's manuscript. He is deeply grateful to Dr. Takeshi Fujita for his practical guidance, helpful discussions, considerate suggestions, and single-crystal X-ray analysis in this dissertation.

The author wishes to thank the member of Ichikawa laboratory. Dr. Tomohiro, Ichitsuka, Mr. Hisashi Sasagawa, and Mr. Yuta Koseki are appreciated for their technical advices and helphul suggestions. Mr. Masaki Bando, Mr. Ryo Takayama, Mr. Ji Hu, Mr. Keisuke Watanabe, and Mr. Tomohiro, Hidano are acknowledged for helpful suggestions and kind assistance. Mr. Naoto Suzuki, Mr. Ikko Takahashi, Mr. Hiroto Matsuno, Mr. Ryu Ueda, Mr. Tsuyoshi Takanohashi, and Mr. Keisuke Miura are acknowledged for their continuous encouragement and kind assistance.

Finally, the author wishes to express his deep gratitude to his parents and brother, Mr. Yuzuru Aono, Ms. Taemi Aono, and Mr. Yoshiaki Aono for their financial support or continuous and heart-worming encouragement through the research.

Tatsuya Aono