Hausdorft dimension of asymptotic
self-similar sets

Daruhan Wu

February 2016






Hausdorft dimension of asymptotic
self-similar sets

Daruhan Wu

Doctoral Program in Mathematics

Submitted to the Graduate School of
Pure and Applied Sciences
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy in

Science

at the
University of Tsukuba






Acknowledgement

My deepest gratitude goes first and foremost to Professor Takao Yamaguchi for his con-
stant encouragement, discussions and advice on my research. He has walked me through
all the stages of finishing this dissertation. I also thanks for my professor to instructed
and helped me a lot in the past five years, including 2 years’ master program and 3 years’
doctor program. Thanks a million. I also have enjoyed my life in Japan.

Second, T would like to express gratitude to my supervisor Professor Hiroyuki Tasaki
who have instructed me a lot on my research in the past several years.

Thirdly, I would like to thank my associate supervisor Professor Koichi Nagano for his
lectures which are very helpful to enrich my knowledge.

I would like to thank Professor Ayato Mitsuishi for a comment on Example 4.2.3 in
this dissertation.

Last, I also owe my sincere gratitude to my friends who gave me their help.



Abstract

In the present dissertation, we introduce the notion of almost similarity maps extending
that of similarity maps in order to construct asymptotic self-similar sets on curved metric
spaces, and determine the Hausdorff dimensions of such asymptotic self-similar sets.

Let X be a complete doubling metric space. Let U O V be bounded domains in X
homeomorphic to each other, where U and V denote the closures of the open subsets U
and V. Fix constants 0 < A < 1, 0 < v < 1 and a continuous monotone non-decreasing
function ¢ : (0,00) — [0, 00) with lim,_,,¢¢(2) = 0. We call a homeomorphism f : U —
Va (A o(|U]), v)-almost similarity map if for every x,y € U

W —/\‘ < Ae(U)),
V| < v|U].

Where |U]| is the diameter of U. Then the set V is called a (X, p(]U]), v)-almost similar
set of U.
For a fixed positive integer k, we denote by Z = Z* the set of all ordered multi-indices
=dy---i, withn > 1,1 <4¢; <k forevery 1 <j<n. Weset |I| =|i;---i,] =n and
call it the length of I. Let Z, denote the set of all I € Z of length n.
An asymptotic self-similar set is defined under the following hypothesis: For 0 < v <1
and a > 0, let ¢ : (0,00) — [0,00) be a continuous function with }gxg) @(x) = 0 satisfying

conditions (1) and (2) in introduction.

Definition 1. ([51]) Suppose that ratio coefficients 0 < X\; < 1, (i = 1,...,k) together
with a non-empty open subset V' C X are given for which we have

(1) for each 1 <i <k, a (A, o(|]V|), v)-almost similarity map
fi: VoV,cV,
is given in such a way that V; N V; = 0 for every 1 <i # j < k, where V; := f;(V);
(2) for each 1 <i,j <k, a ()\;, o(|Vi]), v)-almost similarity map
Jij Vi — Vij cV,
is given in such a way that V;;NV;; = 0 for every 1 < j # j' < k, where V;; := f;;(Vi);
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(3) foreach I' € 7,y and 1 <4, < k with I := I'i,,, a (\;,, ©(|]Vr]), v)-almost similarity
map

fI3VI’%VICVI’7

is defined in such a way that Vy; N Vp; = 0 for every 1 < i # j < k, where
Vi= fi(Vp).

We call {(V7, f1)}rer an ({\}E, o, v)-asymptotic similarity system. Then the set K
defined as

is called an asymptotic self-similar set in X.

Our main results in the present dissertation are stated as follows.

Theorem 2. ([51]) Let X be a complete doubling metric space and let K be the asymptotic
self-similar set associated with a ({\}X_,, @, v)-asymptotic similarity system {(Vy, f1)}rez.
Then the Hausdorff and the box dimensions of the asymptotic self-similar set K are given
as
dimy K = dimp K = s,
k

where s 1 a unique number satisfying Z Al =1.

i=1

Theorem 3. ([51]) If a geodesic triangle domain A in a conver domain on a surface is
asymptotically non-degenerate, then

(1) for some 0 < v < 1 there exists a ({1/2,1/2,1/2}, ¢, v)-asymptotic similarity system
{(Ar, f1)}iezs associated with A, where p(x) = cx? for some constant ¢ > 0;

(2) the Hausdorff and box dimensions of the Sierpinski gasket Ka associated with A are
given by
log 3

dimyg KA = dimp KA = )
log 2

Corollary 4. ([51]) A geodesic triangle domain A in a conver domain on a surface
15 asymptotically non-degenerate if and only if for some 0 < v < 1 there exists a
({1/2,1/2,1/2}, ¢, v)-asymptotic similarity system {(Ar, f1)}1ezs associated with A, where
o(z) = cx? for some constant ¢ > 0.

— 11 —
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Chapter 0O

Introduction and Main results

A fractal is a set whose Hausdorff dimension is not an integer. A bijective map f : R? —
R? is called a contracting similarity map if there exists a real number 0 < A < 1, such
that d(f(z), f(y)) = Ad(z,y) for every x, y € R% The notion of self-similar sets or gen-
eral Cantor sets have played significant roles in fractal geometry. These sets are usually
defined by means of iterated function systems {fi,--- , fi} consisting of contracting sim-
ilarity maps on a complete metric space as the unique nonempty compact set K, called
an attractor or an invariant set, satisfying K = (J;_, f;(/&). Moran constructed general
cantor sets in R? by using the notion of contracting similarity maps, and determined the
Hausdorff dimension of them as the similarity dimension (see [41], for instance). Hutchin-
son [21] (cf. Kigami [27], Schief [45]) introduced the notion of the open set condition and
determined the Hausdorff dimension of self-similar sets in Euclidean space RY satisfying
the open set condition. Balogh and Rohner extended Hutchinson’s result to doubling
metric spaces ([7]). However, it is difficult to construct a contracting similarity map in
general metric spaces. Actually, similarity maps do not always exist on curved metric
spaces. To overcome this difficulty, in the present dissertation we introduce the notion of
(A, o, v)-almost similarity maps extending that of A-similarity maps, that is defined as fol-
lows: Let U D V be bounded domains in a metric space X homeomorphic to each other,
where U and V' denote the closures of the open subsets U and V. Fix constants 0 < A < 1,
0 < v < 1 and a continuous monotone non-decreasing function ¢ : (0,00) — [0,00) with
lim,_, o ¢(z) = 0. We call a homeomorphism f : U — V a (X, (|U|), v)-almost similarity
map if for every x,y € U,

W —/\‘ < e(U)),
V| <v|U|

Where |U] is the diameter of U. Then the set V is called a (A, p(]U]), v)-almost similar
set of U.

In the present dissertation, we extend both Balogh and Rohner ’s result.



A metric space X is said to be doubling if there exists a number C such that for any
x € X and any r > 0, there exist {z;}¢, C X such that

C

B(x,r) C UB(mi,T/Q)

=1

Note that C', called the doubling constant of X, does not dependent on the choices of x
or r.

In the present dissertation, we investigate asymptotic self-similar sets on the doubling
metric spaces, that are defined by using the notion of (X, ¢, v)-almost similarity maps,
and as applications, we construct asymptotic self-similar sets on Riemannian manifolds
and surfaces.

In recent years, geomeric analysis on doubling metric measure spaces has been very
active (see for instance Assouad [1], Gromov[20], Heinonen [23], Villani[48]), and therefore
it is quite natural to study self-similarity sets in such doubling metric spaces.

In the present dissertation, all spaces are assumed to be proper complete metric spaces.
We first introduce the notion of (\, ¢, v)-similarity maps to define asymptotically gener-
alized Cantor sets, and determine the Hausdorff dimension of such an asymptotically
generalized Cantor set. Let X be a metric space. Let U D V be bounded domains in X
homeomorphic to each other, where U and V denote the closures of the open subsets U
and V. Fix constants 0 < A < 1,¢>0,and 0 < v < 1.

Definition 1. ([50]) We call a homeomorphism f : U — V is a (A, ¢, v)-similarity map if

for every x,y € U,

d(f(x), f(y))
d(z,y)
V| < v|U]

— A < Ac|U]

Then the set V is called a (), ¢, v)-similar set of the set U.

Using this notation, we can define an asymptotically generalized Cantor set in X as
follows:

Definition 2. ([50]) Suppose that ratio coefficients 0 < \; < 1, (i = 1,...,k) and
constants ¢ > 0, 0 < v < 1 are given for which we have

(1) Consider k subsets Ay, -+, Ay of X, each of which is bounded and closed, satisfying
(A=A, AiNA; =0 (1<i#j<k), where A’ and A denote the interior and
the closure of A respectively. These sets are called basic sets.

(2) For any 1 <i,5 <k, let A;; be (\;, ¢, v)-similar sets of A; such that A;; (A =0
(G #7) <5, <h).

(3) For any n > 2 and wy, - ,w, € {1,2,---,k}, construct (A, ,c,v)-similar sets
Ay, OF Dy, such that Ay o, N Aupwr, =0 (1 S wy, #w), < k).

~ 9



Then the set C' defined as

is called an asymptotically generalized Cantor set in X.

Theorem 3. ([50]) Let X be a complete doubling metric space. Let C' be an asymptoti-
cally generalized Cantor set in X with ratio coefficients A1, ..., \p defined above. Then the
Hausdorff dimension of C' is equal to the similarity dimension. Namely it is equal to t

k
such that Z No=1.

=1

For a fixed positive integer k, we denote by Z = Z* the set of all ordered multi-indices
I'=iy- i, withn >1,1<4; <k forevery 1 <j<n. Weset|[|=|iy--i,] =n and
call it the length of I. Let Z, denote the set of all I € Z of length n.

As an application of Theorem 3 , we consider an asymptotically generalized Cantor
set on a complete Riemannian manifold, which is constructed as follows. Fix constants
0 < A < 1. Let B(r) be a closed ball of radius r on a Riemannian manifold M, k be an
integer. First, we take k disjoint closed balls B;(Ar) of radius A\r in B(r) (1 < i < k).
Next, we also take k disjoint closed balls B;;(A?*r) of radius A?r in each B;(A\r) (1 < j < k).
Repeating this procedure for each B;;(A*r) infinitely many times, we obtain a family of
disjoint closed balls {B; (A7)} ;cz«. The asymptotically generalized Cantor set Kz on
M associated with {B;(Alr)} ;.2 is defined as

Kp =) (U B[()\”T))
n=1 \I€Z,
If r is sufficiently small, then the Hausdorff dimension of Kp is given by

log k

diHlHKB = —log/\

Next, we introduce the notion of (A, ¢, v)-almost similarity maps in doubling metric
spaces to define asymptotic self-similar sets satisfying the generalized open set condition,
and determine their Hausdorff dimensions.

Fix a continuous monotone non-decreasing function ¢ : (0, 00) — [0, c0) with 11120 o(x)
T—
= 0.

In this dessertation, we assume the following conditions for ¢ :

(1) ¢:(0,00) = [0,00) is non-decreasing with lim,_, ¢ ¢(x) = 0;
(2) / p(av®) dx < oo for some constants a > 0 and 0 < v < 1.
1
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Note that the second condition (2) above does not depend on the choice of @ > 0 and
0 < v < 1, and that for any o« > 0 and any positive integer n, the following functions
satisfy the above conditions:

oY) =y, ¢(y) = —(logy) "=,

An asymptotic self-similar set in X is defined under the following hypothesis: For
0<v<landa>0,let ¢:(0,00) = (0,00) be a continuous function satisfying the
above conditions (1) and (2).

Definition 4. ([51]) Suppose that ratio coefficients 0 < X\; < 1, (i = 1,...,k) together
with a non-empty open subset V' C X are given for which we have

(1) for each 1 < i <k, a (A, p(|V]), v)-almost similarity map
fi:V=V,CV,
is given in such a way that V; N V; = 0 for every 1 <i # j < k, where V; := f;(V)
are open subsets.
(2) for each 1 <i,j <k, a (A\;, ¢(|Vi]), v)-almost similarity map
fij :Vi= Vi C Vi,
is given in such a way that V;;NV;; = 0 for every 1 < j # j' < k, where Vj; := f;;(V;)
are open subsets.

(3) foreach I' € 7,y and 1 < i, < k with I := I'i,,, a (\;,, ©(|]Vr]), v)-almost similarity
map

fI:‘7I’_>‘7IC‘7I’7

is defined in such a way that Vp; N Vp; = 0 for every 1 < i # j < k, where
Vi := f1(V) are open subsets.

We call {(V7, f1)}rer an ({\}E, o, v)-asymptotic similarity system. Then the set K

defined as .
w-n(un)

n=1 [EI’rL

is called an asymptotic self-similar set in X.

In some sense, asymptotic self-similar sets are generalization of asymptotically gener-
alized cantor sets satisfying open set condition.

Let us consider the case of iterated function system {fi,..., fi} of contracting simi-
larity maps with open set condition

(1) VO AV)U---U fi(V);



(2) fi(V) N [;(V) =0 for every i #

for some non-empty open set V-.C X. For I = iy---ip, let V; := f; o---0o f, (V) and
let f; := f;, : Vi — V; where I’ = iy ---i,_1. Then this gives a ({\;}*_1, ¢ = 0, Anax)-
asymptotic similarity system {(V7, f1)}rez, where Apax = max);. Thus the notion of
({\}F,, @, v)-asymptotic similarity system is an extension of iterated function system of
contracting similarity maps with open set condition.

Theorem 5. ([51]) Let X be a complete doubling metric space and let K be the asymptotic
self-similar set associated with a ({\;}¥_,, o, v)-asymptotic similarity system {(V1, f1)}1ez.
Then the Hausdorff and the box dimensions of K are given as

dimy K = dimp K = s,
k
where s is a unique number satisfying Z Al =1.
i=1
In [7], Balogh and Rohner suggested a problem: What happens if an iterated func-
tion system {f1,..., fx} of contracting similarity maps is replaced by one of contracting
asymptotically similarity maps in the sense that for all [ =4;---i, € Z

N\, < |f1(x), fr(y)]

a [, 9]

where f; = f; o---0 fi,, A\ = Ay -+ A\, and ¢p, ¢y are uniform positive constants. Our
({\}r_,, @, v)-asymptotic similarity system {(V7, f1)}rez is closely related with the above
iterated function system of contracting asymptotically similarity maps under the open set
condition (see Lemma 3.3.2 ). Thus Theorem 5 can be thought of as a partial answer to
the question raised by Balogh and Rohner in a more general situation than an iterated
function system.

As an application of Theorem 5, we consider a Sierpinski gasket on a complete surface
M, which is naturally defined in a geometric way as follows. Let A be a closed domain
bounded by a geodesic triangle. By joining the midpoints of the edges of A, we divide
A into four triangles, and remove the center triangle to get three triangles Ay, A, and
Aj. Repeating this procedure for each A; infinitely many times, we obtain a system of
geodesic triangles {A;};czs. The generalized Sierpinski gasket K on M associated with

A is defined as .
Ka = ﬂ (U AI) ;

n=1 \I€Z,

S CQAfa

A geodesic triangle region A is called d-non-degenerate if each angle & of a comparison
triangle A of A in R? satisfies § < & < 7™ — d, where a comparison triangle means that
A has the same side-length as A. We say that A is asymptotically non-degenerate if
all the divided small triangles A; are d-non-degenerate for some constant 6 > 0. For
example, every geodesic triangle region A of perimeter less than 27 on a unit sphere
is asymptotically non-degenerate (see Example 4.2.3). We show that a small geodesic
triangle region on a surface is asymptotically non-degenerate (see Lemma 4.2.9).
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Theorem 6. ([51]) If a geodesic triangle domain A in a conver domain on a surface is
asymptotically non-degenerate, then

(1) for some 0 < v < 1 there exists a ({1/2,1/2,1/2}, ¢, v)-asymptotic similarity system
{(A1, f1)}1ezs associated with A, where p(x) = cx?® for some constant ¢ > 0;

(2) the Hausdorff and box dimensions of the Sierpinski gasket Ka associated with A are
given by
log 3

dimHKAZdimBKAZ .
log 2

The following result gives a condition for A to be asymptotically non-degenerate.

Corollary 7. ([51]) A geodesic triangle domain A in a conver domain on a surface
s asymptotically non-degenerate if and only if for some 0 < v < 1 there exists a
({1/2,1/2,1/2}, ¢, v)-asymptotic similarity system {(Ar, f1)}1ezs associated with A, where
o(z) = cx?® for some constant ¢ > 0.

In the present dissertation, we also investigate self-similar sets by using A-similarity
maps in some trees. Indeed, this is also the special cases of asymptotic self-similar sets.
In these cases, ¢ =0, and v = %

Let us consider a tree X, with vertices { Py, Py, | wi € {1,2}, 1 =1,2,--- [k, k>
1, } defined as follows. First we fix a constant 0 < A < 1. We begin with the two
edges [Py P1], [PoP] of length 3. For each w € {1,2}, the edge [P,P,] branches at P,
into two edges [Py Pyu1], [PuPu2] of length (3)% In general, for wy,---,w, € {1,2},
the edge [Py, wy_y Puyws-w,) branches at Py, int0 two edges [Puyws-wy, Puwyws w1
[Py ws--wy, Punws--wy,2) of length (%)k“. In this way, we construct the infinite tree X,. The
distance on X is naturally defined by using the length of edges. Let X be the completion
of Xy, and let 90X be the set of points of X at which some shortest path cannot extend
anymore. We define

C = 0X = X\ X,.

Obviously, X is a CAT(0) space. Next, we consider C' as a self-similar set ([49], [7]).
Let Xyywsy--w, be the union of shortest paths from Py, y,..., to C. For each w € {1,2},
we define the map f, : X — X, by

fw(PO) = Pwa
fw(Pwlwg---wk) = wa1w2“'wk'

It is a %—similarity map. From the iterated function system {fi, fo}, we have a self-similar

set C. In a terminology of asymptotic self-similar sets, we proceed as follows.
In general, for wy,ws,--- ,wy € {1,2}, we define the map fu wy-awy, @ Xwywowey —
Xuwiwe-wy, DY

fw1w2'~~’wk - fwk ’lew?"“’k—l .

-0 —



A

It is also a §-similarity map. We define C as the limiting set

C= U Xurw)

k=1 wi,...,wp=1

Let X be a metric space. We denote by I'som(X) the set of all isometries on X. We
say that A C X is homogeneous in X if for any x,y € A there is a isometry g € Isom(X)
such that g(z) = y and g(A) = A.

We have the following results.

Proposition 8. For any constant s with 0 < s < 1, there exists some 1-dimensional
CAT(0) space X such that

(1) dimy(0X) = s.
(2) 0X is a self-similar set.
(8) 0X is homogeneous in X .

(4) L(X) < oo, where L denote the length of X.
Proposition 9. For s = 1, there ezists some 1-dimensional CAT(0) space X such that
(1) dimg(0X) =1.
(2) 0X is a self-similar set.
(2) 0X is homogeneous in X.

Corollary 10. For any given natural number n, there exists some n-dimensional C AT (0)
space Y such that

(1) dimydY =n, and

(2) 0Y is homogeneous in'Y .

0.1 Organization of the paper

The organization of this dissertation is as follows.

This dissertation consists of six chapters.

In chapter 1, we give several basic definitions on metric spaces, self-similar sets, Haus-
dorff and box dimensions, self-similar measures and CAT(0)-spaces. We also recall some
results in Riemannian geometry.

In chapter 2, using the properties of doubling metric spaces, we prove Theorem 3.

In chapter 3, using the properties of the generalized open set condition and Borel
probability measures, we give the proof of Theorem 5.

In chapter 4, we give several examples of asymptotic self-similar sets on the curved
spaces by using asymptotic similarity maps, and determine their Hausdorff dimensions.

In chapter 5, we give self-simialr sets by using similarity maps in some tree.

-7 -






Chapter 1

Preliminaries

In this chapter, we give several basic definitions and results on metric spaces and com-
plete Riemannian manifolds. We will mainly present the definitions of, Hausdorff and
box dimensions, CAT(0)-spaces, Rauch comparison theorem, Bishop-Gromov comparison
theorem and self-similar sets.

1.1 Definitions and Notations

In this section, we give some definitions and notations.

Let X be a metric space, z,y € X, A,B C X. The distance between z and y is
denoted by |z, y|. We denote the diameter of A by |A| = sup{ |z,y| | z, y € A }, and the
distance between = and A by |z, A| = inf{ |z,y| | y € A }, and the distance between A
and B by |A, B| =inf{ |z,y| | z € A, y € B }. The interior and the closure of A in X is
denoted by AY and A, respectively. For each r > 0, the closed metric ball with radius r
and center x is denoted by B(z,7) = {y € X | |y,z| <r }, and the r-neighborhood of A
by U.(A) ={ye X ||y, Al <r }. The Hausdorff distance between A and B, denoted
by dy(A, B), is defined as

dg(A,B)=inf{r>0| ACU.(B) and B C U,(A) }.
An e-cover {U;} of A is a finite or countable collection of sets U; covering A with |U;| < e.

Let o be a nonnegative real number . The a-dimensional Hausdorff measure of A, denoted

by H*(A), is defined by the formula
HY(A) = lig(l)inf { z; U:|* | {U;} : e-cover of A},

and The Hausdorff dimension of A, denoted by dimgy A, is defined as
dimpy A :=sup{a > 0|HY(A) = oo} = inf{a > 0|H*(A) = 0}.

-9 -



Let N.(A) denote the minimal number of subsets of diameter < ¢ needed to cover A. The
lower box dimension and the upper box dimension of A are defined respectively as

log N.(A
dim ;A — Tim 108N
—o0 —loge
S — log N.(A
dimgpA = lim Og—e().
—0 —loge

When both the lower and the upper box dimensions are equal, the common value
log N.(A
dimp A = lim 08 YA (4)
—0 —loge
is called the box dimension of A.
Also, the lower and the upper box dimensions can be defined as follows: Let D=D(A, ¢)

be the collection of all countable open covers U of A such that |U| = € for every U € U.
We define r(A, a) and 7(A, a) respectively by

r(A,«) = liminf Ul,
() = iy 0
(A, o) = lim HDIfZ \U|“,
then the lower box dimension and the upper box dimension of A are defined respectively
as
dimzA =inf{a > 0| r(4,a) =0}
=sup{a >0 | r(A, o) = o},
dimpA = inf{a > 0 | 7(A,a) = 0}
= sup{a > 0 | 7(A4, a) = co}.
The following is an immediate consequence.

Lemma 1.1.1. (cf. [41]) L
dimy A < dimgA < dimpgA.

Proof. By the definitions of the Hausdorff dimension and the Box dimension, we have
HYA) <r(Aa) <T(A a),
from which the conclusion follows immediately. O]

For a metric space X and 0 < A < 1, amap f : X — X is called a A-contracting
similarity map if |f(x), f(y)| < Az, y| holds for every x, y € X.
Let M(X) be the set of all Borel probability measures on X. Define the metric on

M(X) by
/Xasdul—/xwm},

where ¢ : X — R runs over all Lipschitz function with Lipschitz constant L(¢) < 1. By
Riesz’s representation formula, we have the following.

dpm(p, o) = szl)p{

~10 -



Lemma 1.1.2. (cf. [25]) M(X) is a complete metric space.
In the proof of the lemma 1.1.4, the following lemma will be used.

Lemma 1.1.3. (cf. [4]) Let X be a compact metric space, and let A, B, C, and D be
subsets in X. Then

dy(AUB, CUD) <max{dy(A,C),dy(B,D)}.

Lemma 1.1.4. (cf. [25]) Let {f;}*, be a family of contracting similarity maps in a
complete metric space X :
|fi(x), fi(y)]

<\ <1,
|,y

for every 1 <1i < k. Then

(1) there exists a compact subset K of X such that K = fi(K)U---U f,(K);

(2) for any positive numbers q;, i = 1,--- ,m, with Y ;" ¢; = 1, there exists a unique
Borel probability measure py with support K such that

po(A) = qiuo(fiH(A) + - + gmpto (S (A))

for every measurable subset A C X. In other words,
Ho = Z qi(fi)«(o),
i=1

where (f;)«(1o) is the push-forward measure of po by f;.

The measure g is called a self-similar measure.

Proof of Lemma 1.1.4. (1). Let C(X) denote the set of nonempty compact subsets of
X equipped with the Hausdorff distance dy. Then we see that the C'(X) is a complete
metric space.

For A € C(X), let f(A) denote f(A) = {f(z) : © € A}. If f is a A-contracting
similarity map on X, then f is also an A-contracting similarity map on C'(X).

For \;-contracting similarity map f;, i = 1, ---, m, we define the map F : C(X) —
C(X) by

F(A) = fi(A)U--- U fin(A).

Since

dg(AUB, CUD) <max{dy(A,C),dy(B, D)},

the map F is a max{\;,---, A\, }-contracting map. Since A, F(A), F?*(A), --- is a
Cauchy sequence in C'(X), for any A € C(X), and it converges to a set K € C'(X) with
F(K) = K, that is

K =F(K) = fi(K)U- U fn(K).

—11 =



Such a set K is unique because
dH<F(A)7 F<B)) S max{rl, e >Tm}dH(A7 B)7
for any A, B € C(X).

(2). Let M(X) and M(K) denote the sets of Borel probability measures with supports
on X and K, respectively. Then M (X) is a complete metric space.
Define Fi(p1, -+ ,pm) : M(X) — M(X) by

(Fe(pr, -+ s pm) i) (A) = prp(f(A) + -+ + pae(fr ' (A)),

for any p € M(X).

Then Fi(pi,---,pm) is a contracting map. Also, by the Riesz representation theo-

rem, we see that M(K) is a complete metric space, and for any p € M(K), we have

Fi(pi, - ,pm)pp € M(K), and Fi(p1, -+ ,pm) : M(K) — M(K) is a contracting map.

Therefore there exists a unique g € M(K), such that Fi(p1,- -+, pm) o = Mo- O
To prove Theorems 3 and 5, we need the following.

Lemma 1.1.5. (cf. [7]) Let X be a doubling metric space with doubling constant C'. For
any 0 < 0 < 1, there exists a constant Cy = Cy(C, ) such that the number of mutually
disjoint balls B(x;, 0r) in a ball B(z,r) of X is bounded by Cy(C,0).

1.2 CAT(0)-spaces

In this section, we give some definition in the geodesic metric spaces. We will mainly
review the definitions of, geodesic, geodesic metric spaces, CAT(0)-spaces. In this section,
we mainly refer to [4], [3].

Let X be a metric space, z,y € X. Let 0 : [0,]] C R — X be a map which satisfies
c(0) =z, o(l) = y. o is called a geodesic path joining = to y if |o(t),o(s)| = |t — s| for
every t,s € [0,1]. Then we say the image v of o a geodesic segment with endpoint x and
y. A geodesic segment joining x and y is denoted by [z,y]. Three points z,y,z € X, and
three geodesic segments [z, y], [y.2], [z, 2| joining them is called a geodesic triangle, which
is denoted by A([z,y], [y, 2], [z, x]) or A(x,y, z). For a point ¢ € X, ¢ € A means that ¢
lies in the union of [z,y], [y, z] and |z, z].

A triangle A = A(Z,7,2) of an Euclidean space R™ is a comparison triangle of
A(z,y, 2) if |2,9] = |z,y|, |9,2] = |y, 2|, |2, %] = |z,2|. A point ¢ € [Z,7] is a com-
parison point of q € [z, y] if |z, q| = |7, q|.

A map o : [0,00) — X is called a geodesic ray if |o(t),0(s)] = [t — s| for every
t,s € [0,00). Amap o:R — X is called a geodesic line if |o(t),0(s)| = |t — s| for every
t,s € R. A metric space X is called geodesic metric space if any two points in X are
joined by a geodesic.

A subset A of X is convex if any z,y € A can be joined by a unique geodesic v of X
such that the image of v is included in A.
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Let X be a geodesic metric space, A C X a geodesic triangle, and A a comparison
triangle of A in R2. For any x € A, Z denotes a comparison point on A

Definition 1.2.1. (cf. [3]) We say that X is a CAT(0)-space if any A satisfies
|7,y < |2, 7].
for any x,y € A and comparison points z,y € A respectively.

For example, in geodesic metric spaces, a tree is a CAT(0)-space. Indeed, any com-
parison triangle of trees is degenerate.

The following is a basic property of CAT(0)-spaces. This follows from the definitions
immediately. This will be used in Chapter 5.

Proposition 1.2.2. (cf. [3]). The product of CAT(0)-spaces is a CAT(0)-space.

1.3 Rauch Comparison Theorem

The Rauch comparison theorem is very important tool when we determine the Hausdorff
dimension of a generalized Sierpinski gasket constructed on surfaces. In this section, we
mainly refer to [9]

Let M be a smooth finite-dimensional manifold, p € M. T,M denote the tangent
space of M at p, and T'M denote the tangent bundle of M. For v,v € T,M, by (v,v) we
donote the riemannian scalar product between v and v.

Let 7, : [0,b] — M be a geodesic of M satisfying v, (0) = p, 3,(0) = v, and 1 € [0, b].

The exponential map exp,, : T,M — M is defined by

exp,(v) = 7(1)

for any v € T,M.

The following Gauss lemma is also very useful when we determine the Hausdorff di-
mension of the generalized Sierpinski gasket on a surface, and will be used in Chapter
4.

Lemma 1.3.1. (cf. [9]) Given a point p € M. Suppose v,v € T,M. Then we have.

d(exp,)ov =7'(1),  (7,(1), d(exp,)ov) = (v, v).

The following theorem is very important for considering asymptotic self-similar sets
on curved spaces, and will be used in Chapter 4.

Theorem 1.3.2. (cf. [9]) Let M, N be riemannian manifolds such that dim N > dim M,
and let v1, 72 : [0,{] — M, N be normal geodesics, and put v; = Ty, v = To. Given
t € [0,1], and two tangent vectors X1, Xy such that X1 € M, ), X2 € Ny, Suppose
that the sectional curvatures o1, 09 spanned by Ty, X1 and Ty, Xo satisfy K(o3) > K(o7).
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Assume further that for no t € [0,1] is v2(t) conjugate to v2(0) along 1. Let Vi, Vy be
Jacobi fields along 1,72 such that V1(0), V5(0) are tangent to v1, v2 and

VA (0) [I=I1'Va(0) I, (Th, Vi(0)) = (T2, V5(0)), [ Vi(0) 1= V2(0) |-

Then we have

I Vi(t) 1] Va(t) |l

for every t € [0,1].

1.4 Bishop-Gromov Comparison Theorem

The Bishop-Gromov Comparison Theorem is very important tool when we consider con-
structions of asymptotic self-similar sets on Riemannian manifolds, and will be used in
Chapter 4. In this section, we mainly refer to [4].

Fix a constant x € R. For an integer n > 2, we denote by M the n-dimensional
space form of curvature x, where a space form is a simply connected complete space
whose curvature is constant k. Spheres, Euclidean spaces and hyperbolic spaces are space
forms. For a fixed positive integer n, V.'(r) denotes the volume of a r-ball in M.

Let X be a metric space, z,y € X. For any € > 0, =,y are e-close if |z,y| < e X
is called a intrinsic metric space if for any € > 0, x,y € X, there is a finite sequence
{1, 29, -+ ,xx} such that every two neighboring points in this sequence are e-close, and
S s, Tiga| < |z, 2] + e

Let X be a metric space. For z,y,z € X, we denote by Zyxz the angle at the
vertex  of the comparison triangle Ayxz in M of a triangle Ayxz in X, where we set
Ayzz = Njiz.

Definition 1.4.1. We say that X is a Alexandrov space of curvature > k if X is a locally
complete intrinsic metric space such that for any point x € X, there is a neighborhood
U, such that

Zbac + Zcad + Zdab <27

for any point a € U, and any b,¢,d € U, — {a}.
The following theorem will be used in the proof of Example 4.1.2 in Chapter 4.

Theorem 1.4.2. (cf. [4]) If X is an n-dimensional complete Alexandrov space of curvature
> Kk, then we have

foranyp e X and R>r > 0.
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1.5 Self-similar sets

In this section, we give a definition of a self-similar set. We mainly refer to [21],[7]. Let
X be a complete metric space.

Definition 1.5.1. We say that the compact set K C X is a self-similar set if there is a

finite family F = {f1, -, fx} of contracting similarity maps on X such that
k
K =] f(K)
i=1

The following is called the open set condition introduced by Hutchinson.
Let F = {f1,---, fx} is a family of contracting similarity maps. We say that F
satisfies the open set condition if there is a non-empty open set A C X such that

(1) AD fi(A)U---U fi(A);
(2) fi(A) N f;(A) =0 for every i # j.

Hutchinson proved the following theorem for self-similar sets satisfying the open set
conditions in Fuclidean spaces. Balogh and Roner proved this theorem for self-similar
sets satisfying the open set conditions in the doubling metric spaces.

Theorem 1.5.2. (cf. [7]) Let X be a metric space and let K be the self-similar set with
respect to ({\i}_,)- contracting similarity maps f;. Then the Hausdorff dimension of the
self-similar set K is given as
dimy K = s,
k
where s is a unique number satisfying Z Al =1.
i=1
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Chapter 2

Proof of Theorem 3

In this chapter, we prove Theorem 3. In the section 2.1, we show dimy C' < t. In the
section 2.2, we show dimy C' > t. We will use the properties of the doubling metric spaces
in the proof of dimy C' > t.

2.1 Proof of dimgC <t
Let n the depth of the basic set A,,..., of C.
Lemma 2.1.1. dimy C < t.

Proof. Let ¢ be the constant in the definition of a (), ¢, v)-similarity map in Introduc-
tion. By the construction of C', we have

VAR . VA VE | 2
Obviously there exists a number ng(ng > 1) such that
Ay | < 1,
For any € > 0, let n be sufficiently large (n > ng) such that
U={Apw, |1 <w; <k 1<j<n}

is an e-cover of C'. By the definition of (), ¢, v)-similarity map f : Ay o,y = Dy s
we have

|Aw1---wn’ < Awn(l + C|Aw1---wn71 D‘Aw1---wn71|‘

Let n = ng + m, then
Ay, | < C|Aw1-~wn0|Vm_1 <yt
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Thus we see

m(Cite) < Y A, |

(w1, wn)

- Z ( |Aw1~~wn711|t +- T+ |Aw1---wn71k|t )
(w1, ywn—1)

< S B ) A [ 4 AL
(w1, ywn—1)

< O o A Vi VS |

(]

(wlz"':wn—l)

= (14" Z AVE—

(w1, wn—1)

<< (1 + Vm—l)t . (1 + I/)t2t Z |Aw1'-~wn0 |t'

W1, ,Wnyg

Here when m — oo the sequence a,, = (1+v™ 1) -+ (1+v)2f converges. Hence m(C t) <
K, for some constant K, and therefore dimy C' < t. ]

2.2 Proof of dimgC >t

To prove dimy C' > t, we first show Lemmas 2.2.1 and 2.2.5.

Lemma 2.2.1. There exists a constant Ky, chosen independently of any cover, such that
if U={U;} is any cover of C' such that each U; is a basic set, then

U = Ky > 0.

)

Let U be a cover of C. U is called minimal if no proper subcollection of U covers C.

Proof of Lemma 2.2.1. Let U={U;} be any cover of C' by basic sets. Because C' is
compact, it suffices to eatablish

Z|Ui|t2K>0

for U is finite and minimal.

Let n be the maximum of the depths of all basic sets in U, and let A, ..., be a basic
set of maximal depth in ¢/. Since ¢ is minimal, it does not contain the basic set A,,,..,,,_,-
It follows that each of the basic set A, ...,,, ,; for j =1,---  k is contained in U.

Thus the sum Z |U;|" contains the partial sum

7

|Aw1"~wn711|t +oeee |AW1"'wn71k t'
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By the definition of (A, ¢, v)-similarity map and ¢, we see

AN L e o VA VA L
> M1 —c|Auow, DA o, |
VA G e VA W LI VAV
=\ 4+ A = Ay DA o, |
= (1 —c|Auwo, DA o, [
> (1 — v YA, |

We replace {A,,.w,_, j}le by Ay, .., ,- In this way we replace all the basic sets in U of
depth n by the corresponding sets of depth n — 1, to obtain a new covering U’ by basic
sets. We may assume that ¢’ is minimal. Then we can repeat the previous argument, and
obtain

Z Uil > (1= ™) (1= ) (L = ] Aoy ) [ Dy |-

But in the last expression, a,, = (1 — ™ 1... (1 — v)! converges to a positive number
and (1 — ¢|Ay; .,y D) Au; -, | is uniformly bounded from below. Therefore

for a uniform positive number Kj. O
To show Lemma 2.2.5, we first show the following Lemmas 2.2.2, 2.2.3, and Lemma
2.24.

Lemma 2.2.2. Let Apy,=min{ A, -+, \x}. For each r >0, set

r

V(T) = { Awl---wn ‘ r)\min < ’Awl---wn| < N

1, (2.2.1)

and given x € X, define
Viir)={ VeV |lzeV }.

Let N be the number of elements of V,(r). Then N < M, where M is independent of x
and r.

Proof. First we consider the case x € C'. We can write given x € C as

{2} =[] Aurooion-

n>1
For the infinite sequence wy, wa, -+, Wy, - -, define the set E as
r
E={n|r\m < |Au.0,| < }. (2.2.2)
/\min
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Then the number of elements of E is equal to the number N of elements of V,(r). Now
let = min F, n” = max F, and let n” =n' +m,n” > ng, n’ > ny. Beacause

|AUJ1"'W //| = |A | S |Aw1-~~w /|Vma
n n

W1 Wyl 4o,

by the definition of n’ , n”, we have

r
r/\min S |Aw1~~~wn//| S |Aw1~~-wn/|ym S Vm-
/\min
Therefore,
r
T Amin < v,
R )\min
Hence,
log A
m S 2 g Amin - M
log v

Next, we consider the general case z € X. For any z€ X, define I as
E={Auw, [2€ A0, }

If n = 1, there exits unique w; such that x € A, ; if n = 2, there exits unique wy such
that x € Ay,.,; similarly there exits unique w, such that x € A,,..,, . If E is an infinite

set, then = € C'. Because there exits unique infinite sequence wy, wy, ---, wy, - such
that

x € Ay w,,
and

{QE} - ﬂ Awr--wn

n>1

for any n(n > 1). Therefore, x€C'
If F is a finite set, namely,

E= { AwMAwaz? T aAw1---wn }7

then we have

‘/;Y(T> = { Awl"'wn()’ T 7Aw1'"wno+m }

for suitable ng and m. Thus by an argument similar to Lemma 2.2.2, the number of
elements of V,(r) is bounded above by a constant M (which is independent of x and
r). O

Lemma 2.2.3. Ifb,,...,, = max{ r | B(z,7) C Ay,...,, }, then

By won = Ao by —1 (1 — | Ay, 1 |)

— 90 —



Proof. Let = be the center point of a largest ball included in A, ..., _,. By the definition
of (A, , ¢, v)-similarity map f: Ay .w,_, = Dw,.w,, We have

B(.f@j)? )‘wnbwl“wn—1<1 - ClAwl“~wn—1|)) C f(B(ZL’, bwl“'wn—l))

Thus we see
B(f(:v), Aoy Oy, (1 — C\Awl...wn_lD) C Ay,

Therefore we obtain
bwl-"wn > )‘wnbm---wnfl(l - C|Aw1"'wn—1’)'

]

Lemma 2.2.4. If b,,..,, = max{ r | B(x,r) C Ay, .., }, then there exists a constant ko

such that A
—’ r-+on] < ko, (2.2.3)

Doy oo,

for any n and any wy,ws, -+, Wy.
Proof. By the definition of (A, , ¢, v)-similarity map f : Ay, .,y — Auyow,, We have
Ay wn | < A (14| Auyion DA |

Therefore we obtain

|Auy | (1T +c|lAuywn DAy s
<
N € O VAV ) [ o

There exists ng such that for any n > ng

L+ c|lAuyw, |
1- C‘Awl“'wn—l’

<14 3c|Auyw, 4]

Thus we have A A
| wl--~wn| < | Wl"'w"71|(1—|—3C’Aw1---wn71|)'

T

By the construction of C', we have
VAN I VA VS 1 2
Hence, there exists ny > ng such that
3c|lApy o, | < 1.
Now let n = n; + m, then we get
[Auyion| 1Ay V™
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Therefore we obtain
3¢ Auyaon | < 3| Ay, P <M

and hence
14+ 3c|Au,w, | < 1T+

Thus we have
|AW1"'UJn’ < |Awl“‘wn—1|

(1401,

by oown  buyeew, o
Therefore we obtain
’Awl“'w ‘ |Aw1"'w 71| -1
S beoy w4
AV
< ‘ 1 n72|(1+ym72>(1+ym71>
beoy oy
[ Ay, | m—2 m—1
< S (L ) (L) (LY,
W1 Wny

Here when m — oo the sequence a,, = 2(1+v)--- (14+v™!) converges. Thus there exists
a constant k; such that

|A

Wl"'wn‘
erren] <k
Do,
for any n > ny. Let
k2 = max { |Aw1|, |Aw1w2| I |AW1~~~wn1| } ,
bwl bwlwg bW1"'UJn1
and let kg = max{k;, k2}. Then we have
AV
Bl (2.2.4)
bwr--wn
for any n and any wq,ws, -+, Wy. O]

Next, we shall prove the follwing lemma.

Lemma 2.2.5. Let U be a bounded subset of X, and write r = |U|. Then U intersects at
most M' = C(6)M elements of V (r), where M 1is the constant given in Lemma 2.2.2 and

5 — /\I2nin

2ko+2koAmin+A2,

min

Proof. Fix an arbitrary point zy € U, and consider the ball

1
B(x0,<1+)\ _ )7") c X
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Then we have

1
UcB(%(ﬁ+A )ﬁ,
and choose maximal points {z;}Y, C B (:zco, <1 + %)r) such that

r)\min

d(ﬂfi, x]) Z kO

for any ¢ # j, where kg is a constant defined in Lemma 2.2.4.
Next, we show

Sublemma 2.2.6.
N < Cy(C,9),
)\2

where § = 2ko+2koj\nr:n+kfmn’ and Cy(C, ) is the constant given Lemma 1.1.5.

2k

UB( i 22?1) B(‘”O’ <1+AL)T“§X“)'

Proof. We consider the ball B(xz, m“‘), and the ball B (%, ( )r i T;?om)'

Then we have

Since
B ) (VB 75) =0 (0 3).

Thus, by lemma 1.1.5 we have
N S OO(Cv 5>a

AI?I'lll\
where 5 2ko +2k0)\mm+)‘mm

Next we are going to show

Sublemma 2.2.7. If V € V(r) intersects U, then it must contain one of {z;}.

Proof. We take a point y such that

ye V(U

Let x be the center point of a largest ball included in V. Then we have
d(xu LE(]) < d(.ﬁl}, y) + d(y7 x(])

1

< <

<WVI+Ul < (5

+ 1>7“.

1
r€eB (xo, <1 + )\mm>r> )

~ 923

Therefore, we obtain




Furthermore, we have

N

B (xo, (1 + Aim)r> c UB(@-, %’:“)

=1

Thus there exists a point x; (i = 1,2,---, N) such that

)\min
xGB(zi,rkO )

Hence we see

7 Amin
T; € B(x, ko )
By Lemma 2.2.4, we have
Wi,
b(V)
Therefore, we obtain
)2 V15 P
0 ko
Then we see
Vo B(m,b(V)) 5 B(m, szi“)
0

Hence, z; € V. Because each of {z;} is contained in at most M such sets V, it follows

that the total number of elements V' of V(r) which intersect U is bounded above by

M' = Cy(C,)M. O
Now, we can show the following.

Lemma 2.2.8. dimy C >t

Proof. LetU = {U;} be any e-cover of C. For each U;, write r; = |U;|, and let U1, - -+, U; (s
be the basic sets in V(r;) which intersect U;. By Lemma 2.2.5, we have

m(i) < M.
Furthermore, from 2.2.1, we see
1%
Uil < -
and o
m( Ul t M/
>0l < mi s < S
j=1 )\min /\min

Then we have 0
t m(?

)
)\min
Uil > A > Uil
j=1
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Summing over all the elements of U yields

m(%)

ZWV mzﬁﬂ%ﬁ

i

Since {U; ;} is a cover of C' by basic sets, we may apply Lemma 2.2.1 to obtain

Zwv pro

where K| is the constant in Lemma 2.2.1. Hence we obtain dimg C >t

This completes the proof of Theorem 3.
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Chapter 3

Proof of Theorem 5

In this chapter, we give the proof of Theorem 5. We will use properties of some Borel
probability measure which is determined by our generalized open set condition, to prove
Theorem 5. We will show that dimy K < s, dimy K > s, and dimg K < s in this chapter.

3.1 Preliminaries

Definition 3.1.1. We call a set S consisting of I € Z a simple family if the following
conditions are satisfied:

1) UW[DK;

1eS

(2) If I = ’il s "L'mfl’im € S, then both IO = il c 'Z'm,1 and [1 = il N mellml do not
belong to S for all 1 <17 < k.

Lemma 3.1.2. Let ¢ : (0,00) — [0,00) be a continuous function satisfying the conditions
(1), (2) in Introduction. Then

11 (1 + (V) < oo, TL(1—(|V]) >0

Proof. By the condition on ¢, we have

Zlog 1+ o(/'|V])) Z VIV <
=0

Similarly we have

Zlogl— VIV)) > 2290 V) > —oo.

These complete the proof. O
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Lemma 3.1.3. Let X be as in Theorem 5, and let V = {V;} be a collection of disjoint
open sets of X such that each V; contains a closed ball of radius cip and is included in
a closed ball of radius cop for some positive constants ¢; < co and p. Then every closed
p-ball B(x,p)in X intersects at most C(8) elements of V = {V;}, where § = i and
C(6) is a constant given in Lemma 1.1.5

Proof. Take 2%, 2% € X satisfying B(xz%,c1p) C V; C B(ah, cap). Let Vi, -+, Vi intersect

Bz, p). .
Taking any point z € V; N B(z, p), we have

|21, 2] < |21, 2] + |2, 2] < (22 + 1)p.
Furthermore, for any y € B(z}, c1p), we have
ly, 2| <y, at| + |y, 2] < (e + 2e2 + 1)p.

Thus we get
N

UB(mﬁ,clp) C B(z,(c1+2¢co + 1)p).

=1

Since B(x!,c1p) are mutually disjoint, from Lemma 1.1.5 we obtain the conclusion of the
lemma. This completes the proof. O

We will use the following setting in the proof of Theorem 5.
For each [ =4y ---1, € Z, we set

gri=fro---ofyypofi, : V=V,

and V; := g;(V) C V. Note that
Vil < vV,
k
Let s be a unique solution of Z Al =1

i=1

3.2 Proof of dimyg K <s
In this section, we show dimyg K < s.
Lemma 3.2.1. dimg K < s

Proof. By the construction of K, we have |V;,..;,| < |Vi,..i, ,|v. For any ¢ > 0 take a
sufficiently large n such that U,, := { V; | I € Z,,} is an e-cover of K. From the definition
of (\i,, ¢, v)-almost similarity map f; : Vi — Vi, I = I'i,,, we have

Vil < X, (L4 (Ve D[Vir.
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It follows from Lemma 3.1.2 that

HE(K) <> vl

IeZ,
= Z ( |Vp1‘s+..._|_ |V1/k|5 )
I'€Tn_1
< Y (L4 e(VED) Ve (O] + -+ A7)
I'€Tn1
< (14 (" HV]))* Z Vir|?
€T,y
<< T+ VD)IV] < OV,

=0

where C' is a constant, and therefore dimy K < s.

3.3 Proof of dimy K > s

In this section, we show dimy K > s. Indeed, we will show dimy K, > s for certain
subset K, C K.

Lemma 3.3.1. dimy K > s.

We set B B
V= U V.
I€T,
Note that -
K = ﬂ 1743
n=1

For a large ny, fix an abitrary Iy = i1 -4y, € Z,,, and consider V[O = gIO(V) = fi, 0
o firiy © fil(f/). It suffices to prove that dimy K, > s for K, := K NV},. Therefore we
start with W := Vj, instead of V.

For every 1 <7 < k, put

h; == ffoi : W — WZ = hz(W) C W,
and recall from the definition

|hi(z), hi(y)|

— )\,L < 0(710),
|2,y

where o(ng) = Xip(¥™[V]) and therefore lim,, o 0(ng) = 0. For J = j; - - - jy,, define
gy W — W; by

9J = hJo"'ohjljzohj17
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where we use the notation
hjvgo = Srjvge t Winegoy = Wiy
as before.

Lemma 3.3.2. For every x,y € W, we have

195(), 95(y)|

- A A
]x,y] J| < o(ng)As,

where \j = X\j, -+ \j

Proof. Put Jy:= j; - -j; for each 1 < ¢ < m. From Lemma 3.1.2, we obtain
195(), 90— 195,(2), 95, W 195:(2), 95 W)] |9, (), 9, ()]
|z, y] 1950 1(2): 95 W g (@), 90 (W) 2yl
<Ay I (14 o V))

= As(1+ o(no)).

An estimate from below is similar, and hence omitted. O]

For a small ¢ > 0 compared with |W|, let {U;} be any e-covering of K = Kj,.
Replacing U; by balls B; of radius less than |U;|, we have a covering {B;} of K. Thus

Sl =2 Y B,

Fix B; and take ¢; > 0 and ¢y > 0 such that W contains a ball of radius ¢;|W/| and is
contained in a ball of radius co|W].

Assertion 3.3.3. For each i, there is a simple family S = S; consisting of J satisfying
that Wy is contained in a ball of radius c3|B;| and contains a ball of radius Amincic2| Bl
for some uniform constant 0 < \pnin < Amin-

Proof. We denote by Z, the set of all infinite sequences J,, = 71J2--- with 1 < j, < k for
all £ > 1. For each Jy = jijo- -+ € Lo, there is a unique m such that |Wj,...;,. | > 2| B
and |Wj,..;..| < c2|Bi|. Set J := ji -+ jm. Obviously, W is contained in a a ball of rdius
2| B;|. Since W contains a ball of radius ¢;|W| and since W is open, W contains a ball
of radius (1 — o(ng))Asc1|W|. From the choice of J,

(1 —o(no))Ase[W| > (1 — o(ng))*\;

jmC1C2| Bil.
This completes the proof. O

Assertion 3.3.4. There is a measure i = s such that

p=> Xi(gr)(m),

1eS

where A5 = (A\)®.
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Proof. Define F: M(W) — M(W) by

F(o) = Xi(91)+(0).

It is straightforward to see that F' is contracting. Then the conclusion follows from the
contraction mapping theorem. [

For any W; € S,
1B > [Whl* > Kl > (1 o(n)) X5 K" (33.1)

By Lemma 3.1.3, the number of W; € S meeting B; is uniformly bounded by some

constant C' = C(6), where 6 = d(cy, €2, Amin). Then

w(Bi) = Xpur(B) =Y Nuur(BinWy) (3.3.2)
IeS IeS
<C(5) max A (3.3.3)

1€8,WiNB;#¢
It follows from (3.3.1) and (3.3.3) that
I Bil" = (1= 0(no))C(8) [ K |"u(By).

Since

> =1,

|J|=m

for each m > 1, by the same reason as Lemma 1.1.4, we have a unique measure ,, such
that

fom = X5(9)+(ttm)-

|J|=m
Assertion 3.3.5. For m > maxyes |I|, we have g = fiy,.

Proof. For each J with |J| = m, there are unique I € S and J, such that J = IJ,. Let
Ar be the set of all the indices o with J = I.J, for some J € Z,, We now write as

M = Z Aija(gua)*(um)-

IeS,acA;

By iterating ¢-times, we have

= Y NG AS (g 00 g)u(pm)

J1yeeny JoE€L,
= Z A?l-]al U )‘EJO% (ng ©---0 ng)*(:U“m)

I¢€S,OZ¢EA[Z.
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and similarly, together with
2 M=t
aEAT

we obtain

M= Z A7(gr)«(1)

IeS

= > Nog(gno-og).(n)

I,...I,eS

= D A A, (g0 0 gn)a(1)

I»;ES,OL»;EA[Z,

It follows that

daa(p pim) < > Mgy Mo,

IiGS,OliGA[Z.

/(boglzo'“oghdu_/¢oghO"'Ongdﬂm

sup
L(¢)<1

Here,

|/¢091go---0911du—/¢09Jeo--~09J1de|

S'/QbogfeO"'ngldljl_/qbogfeO"'Oghd:um

+’/cboguO"'Oghdﬂm—/¢09JZO"'09J1de :

For a constant A with Ayay < A < 1, choose a large ng such that (14 0(ng)) Amax < A< 1
for some uniform constant A < 1. Then the Lipschitz constant of g;, o - - - o g, satisfies

L(gr, 0~ 0 g1,) < (14 0(ng))Ar, -+~ Ary < Aryo
Therefore we obtain
I/cbogzgo---oghdu—/cbogz[O---oghdﬂml
< My,

On the other hand, from the inclusion

gr, © - Ogh(W) D) gj, © - OgJ1(W)7
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we have

sup [p o gr, 0---0gn(x) = pogy 0 0gy(w)|

zeW
<lgr, 0 0gn (W)
< (14 0(no))Ar, -+ Ary < Apye,

Thus letting n = minjeg ||, we have

dpa(p i) < Y N A, Anen (daa (s i) +1)

which yields

Letting ¢ — oo, we conclude that pu = p,,. O]

From the last assertion, we have

supp() € () | U 9s(7) | = K.

m=1 |J|=m
It follows that

D 270Bi|* = (1= o(no))e; *C(0) K| | u(By)
> (1 —o(ng))ey *C(6) K.

This shows that dimyg K > s. We have completed the proof of lemma 3.3.1. O
These complete the proof of dimy K = s in Theorem 5.

3.4 Proof of dimpK < s

In this section, we show dimp/K < s. The notation of Section 3.3 will be used in this
section.

Lemma 3.4.1. di_mBK < s.

— 33 —



Proof. For every € > 0 and J = jyjo- - € Lo, take a minimal m satisfying |W,| < € for

J' :=Jn =71 Jm. Note that
EAmin/2 < [Wy|.
Thus we have a simple family S = {J'| J € Z, }. Note also that
d oA =1
J'es
By Lemma 3.3.2, we have

Wl

W — )\)\/J < )\J!O(no).

It follows from (3.4.4) and (3.4.6) that
(EAmin/2)° < 2°X%,|W°.

Using (3.4.5), we obtain
Z (eAmin/2)" < 2°|W%,

J'es
which yields that
N(K) < 2°|W|*(eAmin/2) %,

This shows that dimg K < s.

(3.4.4)

(3.4.5)

(3.4.6)

]

It follows from Lemmas 3.3.1, 3.4.1 and 1.1.1 that dimy K = dimgp K = s. This

completes the proof of Theorem 5.

— 34 —



Chapter 4

Examples of asymptotic self-similar
sets

In this chapter, we give several examples of asymptotic self-similar sets on the curved
spaces by using asymptotic similarity maps, which is introduced in Introduction. In Sec-
tion 4.1, we will use (), ¢, v)-almost similarity maps. In Section 4.2, we will use (A, ¢, v)-
almost similarity maps.

4.1 Asymptotic self-similar sets in Riemannian man-
ifolds

In this section, we construct an asymptotically generalized Cantor set in a complete
Riemannian manifold by using notion of (), ¢, v)-almost similarity maps.

Let M be a complete Riemannian manifold. For a point p € M, let B(0,r) = {v €
T,M | ||v|| < r}. If r is sufficiently small, then the exponential map exp, : B(0,7) — M
is a diffeomorphism onto B(p,r) = {q € M|d(p,q) < r}. For any v € B(0,7), let 7, be a
geodesic such that ~,(0) = p,4,(0) = v. Then by definition, exp,(v) = 7,(1).

Let Kj; be the sectional curvature of M. Take a positive number A such that —A? <
Ky < A% on B(p,r). By Rauch Comparison Theorem(cf.[9]), for any u, v € B(0,r),

sin Ar < d(exp,(u), exp,(v)) < sinh Ar
Ar — |u — v| - Ar

Proposition 4.1.1. For a constant A with 0 < A < 1, let p; € B(p,r) C M with
d(py,p) < (1= N)r. Let fi : T,,M — T, M be the A-similarity map given by v — Av. Let
Iy : T,M — T, M be a linear isometry. Let Ay := B(p,7), Ag:= exp, ' (Ag) = B(0p, 1) C
T,M, Ay == Iy(Ag) = B(0y,,7) C Ty, M, By := fi(A) = B(0p, \r), Ay = expy, (By) =
B(p1, Ar). Then fy := exp,, o fiolpo exp;l : Ag — A is a (A, ¢, v)-similarity map, where
=8N +1).
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Proof. For any z, y € Ay, by Rauch Comparison Theorem ([9]), we have

d(e”!(z), e (y) _ _Ar d(fo(), fo(y)) _ sinh A)r
d(z,y) T osinArTd(fi(fo(e (@), fillo(eM(y)))) T AN
and therefore .
d(fo(z), fo(y)) < Ar sinh AAr
d(z,y) ~ sinAr A
where e = exp, !
When r < 1, by Taylor expansion we get
Ar 1 sinh A\r 1
< SAZp2 EOAT ZAZNZ2
SiHAT_1+7 T T A _1+7 AT

Thus, we have

d(fo(x), fo(y)) < Ar sinh Ar
d(x,y) — sinAr  AMr

1 1
<A1+ ?A2r2)(1 + ?A2A2r2)

1 1
<A1+ 7A2)\2r2 + 7A27~2 + A4)\2 4
1 1

< /\( 8A2)‘2T2 4 8A2 2) (7, < 1)

1 1
<A+ )\(gAQ)\zrz + gA%«z).

Furthermore, since |Ay| = 2r, we obtain

d(fo(x), fo(y)) A? 2
A< —(A+1 1
dwy) S 8< o <t
1
T —— (A" 1)2r
LAz
= 1)|A
A e 1Al
Similarly, we have W A > 2502 4 1| 4. Letting ¢ = 42 (A2 4+ 1), we obtain
| Wo@):Sow) _ \| < A¢|A|, and hence fo is a (\, ¢, v)-similarity map. O

d(z,y)
Using proposition as above, we can obtain the following.

Example 4.1.2. For 0 < A < %, let ky be a maximal number of disjoint closed balls of
radius A which is contained in the unit ball of R"™. Let M be an n-dimensional complete
Riemannian manifold of Ricci curvature > (n — 1)k and p € M for a constant x. If r is
sufficiently small, then B(p,r) is almost isometric to B(0,7) C T,M. Let 1 < k < ky and
r1 = Ar. Then we can take k disjoint balls {B(p;, 1)}, in B(p,r). By Proposition 4.1.1,
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B(pi,r1) is a (A, ¢, v)-similar set of B(p,r) for some uniform constant c. let 7o = Ary, then
we can take k disjoint balls { B(p;;, r2) }5_, in each ball B(p;, 1), and B(py;,72) is a(A, ¢, v)-
similar set of B(p;,r1). Repeating this procedure, we can construct basic sets B(p;,..i,, n)
(rp, = A", iy, ,i, = 1,2,--- k), and we can define an asymptotic self-similar set C' in
M as

00 k

C = ﬂ( U B(piyiysTn))-
n=1 i,..in=1
Let p be the Riemannian measure of M. We denote by V.*(r) the volume of a r-ball in
the n-dimensional space form M of constant curvature x. By Theorem 1.4.2, we have

u(B(xg, 7)) Vr(r)y fy sinh/[x[tdt -

< =
p(B(xo,0r)) — V(0r) f05r sinh /|k[tdt

for any xp € M and 0 < 0,7 < 1, where C,, ,(9) is a positive constant depending only on
n,k and 6.
Hence by Theorem 3, we have dimy C' = —

Cn,n(6)7

log k
log \*®

4.2 Sierpinski gaskets on surfaces

In this section, we determine the Hausdorff dimensions of the generalized Sierpinski gas-
kets, which is constructed on the convex domains of surfaces.

Let D be a domain in a complete surface M. We assume that D is convex in the sense
that for every p € D, the distance function d,(-) = d(p,-) from p is convex in D. For
simplicity, we assume that the absolute value of the Gaussian curvature of M is at most
1 on D. Let A be a domain in D bounded by a geodesic triangle. We call A a geodesic
triangle region.

Definition 4.2.1. We say that A is d-non-degenerate if each angle & of a comparison
triangle A of A in R? satisfies § < & < 7™ — §, where a comparison triangle means that A
has the same side-length as A.

Let {Ar}rers be the system of geodesic triangles obtained by dividing A into smaller
triangles A; consecutively, as stated in Introduction.

Definition 4.2.2. We say that the system {A;} ez is non-degenerate if there is a § > 0
such that A; is 5-non-degenerate for every I € Z°. In this case, we also say that A is
asymptotically non-degenerate.

Example 4.2.3. Let S? denote the unit sphere around the origin in R3, and let A be a
geodesic triangle domain on S? of perimeter less than 27. Joining the vertexes py, ps, p3 of
A by shortest segments in R?, we have a geodesic triangle region A on the plane through
p1, P2, p3. By the projection along the rays from the origin of R3, we have a canonical map

T A=A,
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which is a bi-Lipschitz homeomorphism. From the canonical decomposition {A;};czs of
A, setting A; := w(A 1), we have the canonical decomposition {A 1}1ezs of A. Note that
each A; is 27Fl-similar to A in the usual sense. Since A; is bi-Lipschitz homeomorphic
to A I,

Area(A;) > L™ %Area(A;),

where L is the bi-Lipschitz constant of 7. It follows that A is asymptotically non-
degenerate. Now we have the formula (6) for the Sierpinsli gasket K associated with A

by two reasons. One is by Theorem 6 and the other one is due to the well-known formula
for K.

Example 4.2.3 is the special case. For a geodesic triangle region on a general complete
surface, there is no canonical map A — A as in Example 4.2.3. It seems impossible to
reduce the problem to a triangle region in R? in general.

The main purpose of this section is to prove the following result.

Theorem 4.2.4. For every 6 > 0 there exists an r > 0 such that
1. every geodesic triangle region A on D with |A| < r is asymptotically non-degenerate;

2. the Hausdorff and box dimensions of the Sierpinski gasket KA associated with A are
given by (6).

If A be asymptotically non-degenerate as in Theorem 6, we can apply Theorem 4.2.4
to Ay for each I € 7% with large enough |I|. Therefore Theorem 4.2.4 yields Theorem 6.
The following lemma is a consequence of law of cosine, and hence is omitted.

Lemma 4.2.5. For any 6 > 0 there exists an € > 0 such that if a geodesic triangle A of
side length (ay, as,ag) is 0-non-degenerate, and if the side length (ay,ay, ay) of a geodesic
triangle A" satisfies

-2 <2 <1 4 421
1-92 <D c4o (4.2.1)

for any i # j, then A’ is 6 /2-non-degenerate.

Proof. We may assume that A and A’ are triangles in R2. Set (a, b, c) := (a1, as, az) and
(a', b, ) := (a}, dy, ay) for simplicity. Rescaling A’, we may assume that ¢ = ¢. It suffices
to show that if A’ has side-length (a’,V', ") = (d/, b, ¢) satisfying (4.2.1), then the angles
a, B (resp. o, B') opposite to the edges of length a and b in A (resp ¢’ and b in A')
satisfy that |o/ — «| < §/4 and |5 — | < §/4 for a suitable € = ¢(§) > 0.

Sublemma 4.2.6. If a geodesic triangle A of side lengths (a1, as, as) is 6-non-degenerate,
then there exists a constant C(3) such that

C6) ! < Z—J < C(5),

for every 1 <1,7 < 3.
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Proof. This is an immediate consequence of the law of sines. One can take C'(J) =
1/sind. O

By trigonometry, we have
sin?a/2 = (a + c)(a +b)/be, sin®a’/2 = (a’ + c)(a’ +b)/be.
It follows from the assumption and Sublemma 4.2.6 with |a’ — a| < ea that
|sin® o/ /2 — sin® /2| < a(a + a'b + c)e/be < 5C(6)%e. (4.2.2)
Since sin o/ /2 + sina/2 > sin(d/2), we obtain
|sina’/2 — sina/2| < 5C(6)%¢/ sin(5/2).

From a < 7 — 24, we have cos o‘lllﬂ > sin(d/4). It follows that

/

o' —al <8 sin &

— O“ < 50(5)%¢/ sin®(6/4). (4.2.3)

Similarly we have

|sin? 3 /2 — sin® 3/2| = |a — a'|b(b + ¢) /ad’c < b(b + c)e/cad’
e bb+c) < €

20(6)?
“l—¢ a ~1-—e¢ ¢o)
which implies
8¢ ci) \?
' — . 4.2.4
5= 8l < 1—e¢ <sin(5/2)) ( )
Thus from (4.2.3), (4.2.4), we obtain |o/ — «a| < §/4 and |5 — | < §/4 for a suitable
€ < €(§). This completes the proof. O

Let A be a geodesic triangle region on D bounded by a geodesic triangle (v, v2,73)
with vertices py, pa, ps. By the convexity of D, we have

|A| = max a;,
1<i<3

where we put a; := L(7;). Fix a vertex p; and let v; be parametrized on [0, 1] in such a
way that 72(0) = 73(0) = p;. Let ¢ : [0,1] x [0,1] — A be a parametrization of A such
that t — ¢(t,s), 0 <t <1, is the geodesic, denoted by oy, from 75(s) to v3(s) for each
s € [0,1]. Namely ¢(t,s) = o4(t). We set

ai(s) := L(os).
Now define the map f; : A — A by
file(t,s)) = o(t, s/2).

Note that the image A; of fj is the geodesic triangle region bounded by (v2|(0,1/2: 3l [0,1/2]: 1/2)
and that A; has side-length (a1(1/2),a2/2,a3/2). We put

= |A].
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Lemma 4.2.7. For any s € (0,1), we have

1—r’< _al(s) <1l+r
Saq

2

In particular, |A;] < 5(14r?)|A[.

Proof. Let %;(s) := exp,'(7i(s)), i« = 2,3. The Rauch comparison theorem (see [9])
implies

sinr ay sinh r
< == - < 4.2.5
RO R 2
sinr - a1(3)~) - sinh r (42.6)
r d(72(s), ¥3(s)) r
Since d(%2(s),43(s)) = sd(F2(1),73(1), the conclusion follows. O

Let us denote by (a11,a12,a13) the side length (a1(1/2),a2/2,a3/2) of A;. Lemma

4.2.7 implies that
a;
1—r < 1+r
(1= < B < (1)

a;

(4.2.7)

for every 1 < 1,5 < 3.

In a similar way, we construct a map f;, : A — A;, C A for each 1 < ¢; < 3.
Repeating this procedure for each A; inductively, for each multi-index I = iy -+, 1y,
we have a geodesic triangle region A; and a map f; : Ay — Ay, where I’ = -+ ip,_1.
The side-length (ar1,arz2,ar3) of Ay is also suitably defined inductively. Take r < 1 and
set

1
= 5(1+r2) < 1.

Lemma 4.2.8. There exists an L(r) > 1 such that for every I and 1 <1i,j <3
1 @i ari
— <

< L%

J ar,j a;

L(r)”

a

Proof. Repeatlng use of (4.2.7) and Lemma 4.2.7 applied to s = 1/2 implies that for each
I =iy iy

(1—ﬁ9~%1—ﬁx1—r)%
a;
<) (L)Y
arj aj
for every 1 <14, j <3, where ry := |A;,..;.|, 1 <k < m. Since
1
e < 2(1+rk k1 < vrp_q < - < VU
it follows that
e (1 — p2mp?) & o 0L (1) & 428
m—O( v r ) aj al,j m=1 ( +v ) aj ( )
This completes the proof. O
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From (4.2.8), one can take L(r) as

2r2

L(r) :=e1—2.

For every s € (0,1] we denote by A(1 : s) the geodesic triangle (v2|(0,5 3l[0,5]5 Os)-
Similarly, A(i : s) and A;(i : s) are defined for every 1 < i < 3 and every multi-index
eI’

Lemmas 4.2.5, 4.2.7 and 4.2.8 imply

Lemma 4.2.9. For every 0 > 0, there exists a positive number r such that if A is J-
non-degenerate and the diameter |A| of A is less than r, then Ar as well as A;(i : s) is
d/2-non-degenerate for every multi-index I, 1 <i <3 and s € (0,1).

By Lemma 4.2.9, we get the conclusion (1) of Theorem 4.2.4. In view of Theorem 5,
to prove the conclusion (2) of Theorem 4.2.4, it suffices to prove the following.

Theorem 4.2.10. There is a positive numbers ¢ = ¢(0) such that {(Ay, fr)}iers gives a
(1/2, ¢c, v)-asynptotic similarity system, where @.(x) = cx?.

Proof. In view of Lemma 4.2.9, it suffices to prove that the map f:= f;: A - Ay C A
is a (1/2, ¢., v)-almost similarity map for a uniform positive constant ¢ = ¢(d). Note that
Js(t) == g—f(t, s) is a Jacobi field along o,. Set Ty(t) := %—f(t, s) = d4(t). Observe that

1
A (T0) = Tupalt), dF D) = 3 Tupa(t). (4.2.9)
Lemma 4.2.7 shows that L o
Os/2 L 2
‘ L(o.) 2‘ =9
which implies that
df (T)] 1 >
—_ — — . 4.2.1
‘ T 5 < 3r ( 0)

Next we show

Lemma 4.2.11. For every s,u € (0,1] and t € [0, 1], we have

‘|Ju(t)|
|Js()]

From now on, we shall use the general symbols C(d) or ¢(d) to denote constants
depending only on § unless otherwise stated.

- 1‘ < C(6)r* (4.2.11)

Proof. For any fixed s, take unique Jacobi fields Y; and Y, along o, and the reverse
geodesic o, (t) := o(1 — t) respectively such that

Y1(0) =0, Yi(1) = Js(1), Ya(1) = Js(0), Y2(0) =0,
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to have
Js(t) =Yi(t)) + Ya(1 — 1)

We dente by S? and H? the sphere and the hyperbolic plane of constant curvature 1 and
—1 respectively.

Recall that A is a d-non-degenerate geodesic triangle region of side lengths (a1, as, ag)
in D whose diameter is denoted by 7.

Lemma 4.2.12. Let ;. and o;_be the angles of comparison triangles A, and A_ of A
in S? and H? respectively at the vertices opposite to the edge of length a;. Then we have
|y — i | < C(6)r*

Proof. Put (a,b,c) := (ai,as,a3), and let oy, o and « be the angles of comparison
triangles of A in S?, H? and R? respectively at the vertices opposite to the edge of length
a. By the laws of cosines, we have

sin bsin ccos ;. = cosa — cosbcosc
sinh bsinh ccos a_ = cosh bcosh ¢ — cosh a

2bc cos o = b + ¢? — a?,
which imply

2bc cos ay. = 2bccos a + O(b’c) + O(be®) + O(b*c?) + O(a?)
2bccos a = 2bccos a + O(b’c) + O(be?®) + O(b*c?) + O(a?).

It follows from Sublemma4.2.6 that

|cosay — cosal < O(b*) + O(c?) + O(be) + O(a* /be)
< C(0)r?.

Since § < a < m — J, we obtain |ay — | < C(§)r?. Similarly we get |a_ — a| < C(0)r?,
and hence |ay —a_| < C(§)r?. O

Let o, and 3, be the angle of the geodesic triangle A(1 : s) = (V2lo,5, 73/[0,5]: 7s) at
72(s) and ~3(s) respectively.
Lemma 4.2.13.
s = aul < (@)%, 18, = Bil < (@),
for every s, t € (0,1].

Proof. Let af , a; , ¥ denote the angles of comparison triangles in S?, H?, and R?
respectively at the vertices coresponding 7»2(s). By Toponogov’s theorem (cf. [9]), we

have

a; <a, ol <af. (4.2.12)



By the law of cosines, we have

cosal — az + (a1(s)/s)* — a3
’ 2a2(a1( )/$)

cosal — & + (a1 () /t)* — a3
! 2a2(a1( )/t

which imply with Lemma4.2.7

cosa! — cosay

az+a2(l+7r?) —a dai+a2(l—r?) —ad
2asa1(1 —1r2)  2asay(1+r?)
r?(2a2 + a3 — a3)
ajas(l —r?)(1 4 r?)

r? 201 as a%
— 1 JE— + -
1—r a9 a;  Qaias

< C(6)r?

Revercing the role of s and ¢, we have

| cosa? — cosa?| < C(§)r?

By Lemma 4.2.9, we have §/2 < (a%+a?)/2 < m—§/2, which implies sin ag;ag > sin(d/2).

Therefore we conclude that
0_ 0
sin (045 5 % )‘ < O1(6)r?

where C;(9) := sm(cg/; Using (4.2.12) and Lemma 4.2.12, we see

ol — o <4

a, < al+CO@0)r?
<a) +C6)r* + Oy (0)r?
<y +2C(8)r* 4+ C1(8)r?.

Reversing the role of s and ¢ completes the proof. O]

Next we analyze the behavior of the norm of Jacobi field J;. For a fixed s € (0,1],
let Y;(t) = YN(t) + Y, (t), i = 1,2, be the orthogonal decompositions of Y; to the normal
and tangential components to ¢,. We can write Y;(¢) and Y;(¢)™

Yi(t) = dexp, o (t(Vi)is.0), Ya(t) = dexp,, ) (t(Va)is: (o)) (4.2.13)
Yi(t) = dexp, (t(v1 )i64(0)) Y3 (1) = dexp., (¢ (V5" )w;(o))7 (4.2.14)
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where Vi and V5 are some parallel vector fields on the tangent spaces satisfying

dexp., ) (V1)s.0) = ¥3(8), dexp.,(V2)s- o) = F2(s)-
The Rauch comparison theorem shows that
YO =tV =50, Y1 -0l = Q=) =0 =)0

Here and hereafter we use the symbol a = b whenever !% - 1‘ < C(6)r?. Tt follows from
dim M = 2 that

[T ()] = V(@) + Y5 (1= 1)] (4.2.15)
— ()] + (1 — )alt)” (42.16)
= tsin fsas + (1 — t) sin aias, (4.2.17)

where we recall a; = L(7y;) = |}:(t))|. Similarly we have
|JN (t)] = tsin Buaz + (1 — t) sin ,az.

It follows from that
PAIGIEIEMGIE (4.2.18)

Next we show that
ERGIEIEAGIE (4.2.19)

We use the expression (4.2.13) with Gauss’s lemma to obtain

<Yi<t)7 Ts(t» = ta3|Ts| COoS /Bsa
(Ya(), Tu(t)) = —(1 — t)as|Ts| cos av.

Thus we get
|JL(t)| = |tascos By — (1 — t)ay cos ).

From an inequality for |JI(¢)| similar to the above and Lemma 4.2.13, we have (4.2.19).
Now (4.2.11) follows from (4.2.18), (4.2.19). Thus we have completed the proof of Lemma
4.2.11. [l

The expression (4.2.13) also yields
Yi(t)] = tVi] = tas, |Ya(1 = 1) = (1 = )[Va = (1 = t)a.

In particular we have
|Js(t)] < 2r. (4.2.20)

Since |JN (t)] > ¢(0)r from (4.2.17), (4.2.20) implies that the angle 0,(t) := Z(J,(t), Ts(t))
has definite lower and upper bounds:

0 <c(d) <O(t) < —c(d). (4.2.21)
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(4.2.9), (4.2.10), (4.2.11) and (4.2.21) yield that

df (v
Yoo

for every tangent vector v. Thus we conclude that f: A — Ay is a (1/2, ¢c(s), v)-almost
similarity map, with pc(s) (z) = C(6)2*. This completes the proof of Theorem 4.2.10. [

Finally we show Corollary 7 in Introduction .

Proof of Corollary 7. In view of Theorem 5, it suffices to show that for a geodesic triangle
region A on a convex domain of a complete surface, if the collection {(A;, fr)} ez gives
a ({1/2,1/2,1/2}, ¢, v)-asymptotic similarity system with pc(z) = C2? and 0 < v < 1,
then A is asymptotically non-degenerate.

For a large ng, fix an abitrary Iy =41 - -1y, € Z,,, and set

W= A10 = gIO(A) = flo O 'filiz © fu(A)
For every 1 <i <k, put
hi :fjon—)m:hl<W)CW

and recall from the definition

[hiz), i) o(n
|2, y] N = el

where o(ng) = \p(¥™]|A|) and therefore lim,, o, 0(ng) = 0. For J = ji « -4, define
gy W — W; by
g = hJo"'ohjle Ohjm

where we use the notation
h’jl"jé = fljl"jz : le"jeq - Vle"je?
as before. By Lemma 3.3.2, we have

195(), 95(y)|

- A A
]x,y] J <0(n0) Js

for every z,y € W. We denote by inrad(W), the inradius of W, the largest » > 0 such
that an r-ball is contained in W. It follows that
W] < L+o(ng) |W|
inrad(W;) = 1 — o(ng) inrad(W)’

for every J € Z3. This implies that there exists a § > 0 such that A; is -nondegenerate
for every I € Z3. O

This completes the proof of Corollary 7.
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Chapter 5

Self-similar sets as boundaries of
trees

In this chapter, we consider the self-similar sets by using contracting similarity maps in
some trees, and give several examples of CAT(0)-spaces.

Let X be a metric space. Let Isom(X) denote the set of all isometries on X. We say
that A C X is homogeneous in X if for any x,y € A there is a isometry g € Isom(X)
such that g(z) = y and g(A) = A.

In this chapter, we prove the following.

Proposition 5.0.14. For any constant s with 0 < s < 1, there exists some 1-dimensional
CAT(0) space X such that

(1) dimpy(0X) = s.

(2) 0X is a self-similar set.

(3) 0X is homogeneous in X.

(4) L(X) < oo, where L denote the length of X.

Proposition 5.0.15. For s = 1, there exists some 1-dimensional CAT(0) space X such
that

(1) dimy(9X) = 1.
(2) 0X is a self-similar set.

(2) 0X is homogeneous in X.

47—



5.1 Self-similar sets in trees

In this section, we first construct some tree, and define a self-similar set as following.

Let us consider a tree X, with vertices { Py, Py, | w; € {1,2}, 1 =1,2,--- [k, k>
1, } defined as follows. First we fix a constant 0 < A < 1. We begin with the two
edges [Py P1], [PoPs] of length 3. For each w € {1,2}, the edge [P,P,] branches at P,
into two edges [Py Pyu1], [PuPu2] of length ()% In general, for wy,---,w, € {1,2},
the edge [Pu,..wy_; Pwyws-w,] branches at Py wy..an, i0t0 two edges [P,y wy Puwyws-wp1)s
[Py w10 Py ws-y2] Of length (3)¥1. In this way, we construct the infinite tree X;. Note
that the distance on Xy is naturally defined by using the length of edges. Let X be the
completion of X, and let X be the set of points of X at which some shortest path cannot
extend anymore. We define

C:=0X = X\ X,.

Obviously, X is a CAT(0) space. Next, we consider C' as a self-similar set ([49], [7])
as follows. Let Xy, y,..w), be the union of shortest paths from P, .., to C. For each
w € {1,2}, we define the map f,, : X — X, by

fw(PO) = Pwa
fw(mez---wk) = wa1w2"'wk'

Then, it is a 3-similarity map. From the iterated function system {fi, fo}, we have a

self-similar set C'. In a terminology of asymptotic self-similar sets, we proceed as follows.
In general, for wy,ws,--- ,wi € {1,2}, we define the map fu wy-awy, @ Xwywowy, —
Xoywo-wy, DY

fw1w2---wk = fwk ’lewQ'”wkfl .

More concretely,

fw1w2'“wk (Pwl'lUQ“'wk—l) = Pw1w2“'wk’
fw1w2"'wk (Pwl"'wk—lvk"'vl) - Pwl"'wkvk"'vl'

A

It is also a §-similarity map. We define C as the limiting set

C= U Xurw) (5.1.1)

Then C' is a self-similar set in the sense [7]. Furthermore, C' satisfies the following
property.

Lemma 5.1.1. C is homogeneous in X.
Proof. Let ¢ € Isom(X) be the reflection of X at Py such that for {wy, w|} = {1,2}

SOO(PO) = POJ QOO(Pwl) = -Pw’17
@0(Pw1w2~-wk) = Pw’lwgn-wk
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for any ws, - -+ ,wy € {1,2}. For wy, ws, -+ ,wy, € {1,2} we set

F’wlmw;C = fwln-wk O---0 fwlwg o fwm

A

5-similarity maps defined in the construction of C, k = 1,2,3,---.

where fy,.., is the
Let

) Fupw, 0900 Fupos, ! on Xy, .,
Py id on X\ Xy, -

Then, @y, ..., € Isom(X), and it is the reflection of X at P, ..., -
Namely, that satisfies

Pwiwy, (Pwl"'wk) - Pwl"'wk7

Pwy-wy, (Pwl"'wkwk+1) = Pw1~~-wkw§c+1?

Pwy - wy, (Pwl"'wkwk+1"'wl) = Pwl"'wk'wk+1/'”wl7

where {wy41, wy,,} = {1,2}.
For any z,y € C, we take sequences { Py, ..., } and {P,, ..., } such that

r = lim Py, ..,
k—o0

= P

Put

I={ieN|w#v }={1<iag<---<ig---}
Then, for any i € I, we have v; = w} because {w;, w,} = {1,2}. Also we have v; = w; for
any ¢ € N — I. Then we can let

T = leHJO Py iy qwiy wsyws,
Yy = kli)rgo P'Ul"'vil—lvil""Uig"'vik

= lim Py, _qw! ! ! -
k—00 1 1 9 i

We set

Yk = Py ol ol ) OO P gy © Puwy s,y (T)-

Then by the definition of ¢, ..., , we have

y = lim y; (5.1.2)
k—o00
We set
9k = (pw1~~~wgl-~~w;2mwgk71 o 90w1~~w§1~-w1-271 © (pwl"'Uszfl?

and define g € Isom(X) by g = klim gr- Namely,
— 00
g(z) = lim gg(z),
k—o0

for any z € X. Then (5.1.2) means g(x) = y. This completes the proof. O
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5.2 Properties

In this section, we will prove that the tree X is a doubling metric space. Note that X is

the tree constructed in Section 5.1.
Indeed, X satisfies the following property.

Lemma 5.2.1. Let X be the tree defined as above, and let v be the measure determined

by length. Then, for any xo € X, r >0, and 0 < § < 1.,
1(B(zo, 7))

———= < ¢y (9),

(Bl o)) = N

where ¢x(0) > 0 is a constant depended only on 6 and \.

Proof. Let OB, := 0B(zo,7), pr = pu(B(wo,7)), and a, := d(Puy.cw,_1

Py ) = (3)". Then we have

Note that
d(Pyi1,C) < d(Py, Pry1),

and there some integers k, [, n satisfy k <[ < n.

d(aBra Pw1--~wk)a

Let
aBT N ( Pw1“'wk_17 P’lUl'“wk ] 7é @, a
@ B L= d((?B(;T, Pwr“wz)'

O0Bsr N ( Pyycwy_yy Punony | # 0,

To prove the lemma, we consider the following three Cases(1)(2)(3).

Case (1). The center xy of the balls is on the boundary of the tree (z € C).

Then we have
r=oa+d(Py ., To) =+ akﬂ/\, a€ |0, ak),
2
6T:ﬁ+d(P’w1---wp xO):B—i_lal_—i_léa ﬂE[O, al)a
2



and hence

1 2 5(1 §>+al+1 B+ a1
(; %1 Oé(l 5) + Qg41 Oé(l — )\) + ak+17

which gives
OZ(]_ — )\) + Opy1 < < (/B + al+1) (523)

Furthermore, we have

Hr = 2o + ak+1a Zf (OS [Ovak-f—l]?
fr < Oé+2akf , if o € (apr, an),

and so for any 0 < a < ay,

;M<2a+21ﬁ3 (5.2.4)

Similarly, we see that

{ sy = 28 + 355, if B € [0,d(puw, . C)],
sy = 4294, if B € (d(puwyown, C)s ),

and so for any 0 < 8 < q

o > B+ T (5.2.5)

Finally, using the inequalities (5.2.3), (5.2.4), (5.2.5), we have

Hr 2a + 294 ) a(l =) + agp
por B+ B =N+ a
<9. 3(5+al+1) :2_1. B+ a1
B =A) + ar 6 Bl—=A)+ar
—_9. 1( p ar+1
OB =N +ar  B(l=A)+ap
1,1 2—X 1
2. (— 41 A
<2 sgx =203
Thus, we can take a constant ¢, () as
2—X 1

Case (2). The center z; of the balls coincides with some vertex Py, ..., (n < 00) of
the tree (2o = Py, ..w, )-
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Then we have

Ak4+1 — Qp41

r =0+ d(Py, .y Puyow,) =+ 13 a €0, a ),
2
el — A
5r = 4 APy Poeow) = B+ =5, Belo, a),
2
and hence

al+1 an+1
5_ﬁ b+ _5(1_%)+al+1—an+1

o A
r Q+M a(1_§)+ak+1—an+l

B+ CLl+1 — Qpy1
Oé(l — )\) + ag+1 — Cln+1’

which gives
a(l = A) +ap < (5 + aiy1),

where we use the fact that § < 1.
Furthermore, since d(zqg,C) < r, we have

e =20+ L if o€ [0, ag),
e < @+ 28E 0 if o € (agga, ag),

and so for any 0 < a < ag

Ak+1

<2042
P S 2O 2T

Similarly, we see that

{ ptsr > 204 7255, if B € [0, d(Puwy.w,> )],
Her = 5 + 2?6)1\7 Zf € (d<pw1---wly C)a al)?

and so for any 0 < (8 < g

Ai+1
-\

:U’5r>ﬁ+
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Finally, using the inequalities (5.2.6), (5.2.7), (5.2.8), we have

i - 20é + Qik_-j
Hér 6 + 1lj)l\
a(l = A) + ag1

—=2.

Bl —A) + ar
l(54‘0%1)
<2 Bl =)+ a1
:2.1 B+ a1
) 5(1—)\)+al+1
B 1 B a1
= 5(5( )\)+al+1+5(1 )\)+al+1)
1 1 2—X 1
AR A T

Thus, we can take a constant ¢, () as

\G]
>

>
SR

Case (3). The center x( of the balls belongs to some open edge (Py,..w,, Puy-wnir)
of the tree X.

In this case, we consider the three cases (a)(b)(c) bellow. Here we set ag := d(Py, ..., T0)-
(a).n>14+1, n>3.
Then we have

1—a
T'—Oé—l-d(pwl wyy Pwy - wn)+040—04+—A+Oéo, aG[O, Clk),

Q — ap
or = B + d(pw1-~~wlapw1~~~wn) +ap = B + lJrl—/\le + o, 6 S [ 07 ap )a

and hence

a a
5r B + l+1 n+1 4 ap
5 - ak+1 an+1
T ot T g
2

_ B(1— 5) + a1 — Any1 + (1 — 3)
a(l = 3) + app1 — apgr + (1 = 3)
B+ @41 — g1 + o
Oé(l — )\) + ag+1 — an+17
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which gives
a(l =)+ ag1 < (6 + aj41 + ap). (5.2.9)

Therefore, since n > 1+ 1 and d(zy,C') < r, we have

My = 200 + ilﬁ)ia Zf o€ [Oaak+1]7
Mo > (llk_-&-;’ Zf o€ (akJrl)ak)?

and so for any 0 < o < ay,

e < 20+ 27 ’“*1 (5.2.10)

Similarly, we see that

{ for > 268+ 725, if B € [0,d(Puwys O
Hsr = ﬁ + 2al+1 f B S (d<pw1~-vwz7 C)a CL[),

and so for any 0 < 8 < q

ligr > B+ ’“A (5.2.11)

Finally, using the inequalities (5.2.9), (5.2.10), (5.2.11), we have

,Ur 204 + 2ak+1

< ——a T
Hér 6+ l+
:2 (1—)\)+ak+1
Bl —A) + ar
<2'%(5+al+1+040)
Bl —=A) + ar
_2‘1_ B+ a1+ o
) 6(1—)\)‘{’@[4_1
1 1G] aj+1 Qp
:2-— + +
(5(6(1—/\)+al+1 5(1—/\)+(ll+1 B(l—)\)+al+1)
1 1 3—2X 1
2 (1 41)=2- -
<25+t =X 5

where we use the fact that ayp < a,,.1 and hence ag < aj41.
Thus, we can take a constant c,(d) as

3-2)\ 1
> -
al) 2233
(b). Let
aBr ﬂ ( Pwlwk Pwl"'wk+1 ] # m; o= (aB P’Ll)l ’Ll)k+1)
OBs N ( Punsy Purony 170, B :=d(0Bs,, o).
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(b).n=11>k+1.

Then we have

r=a+ d(pw1~~-Wk+1apw1-~~wn) toag=a+ 1_ 2
2
br = B,
where o € [ 0, a1 ) and 5 € [0, a1 ),
and hence
5— or 15}
— . — a+ ak+12_—in+1 +a0
2
) 51-3)
Oé(l — %) -+ Apy2 — Qpy1 -+ Cl’o(l — %)
B
a(l = X) + arto — gt
5

< )
Tal=AN)Fagp—r
which gives

1
a(l_)\)+ak+2§5ﬁ+r.

Furthermore, we have

Hr = 2a + C;Iir)?a Zf a € [Ovak+2]7
Hr S o+ 2??2\17 Zf o€ (ak+27ak+1)7

and so for any 0 < a < agyq

Af+2
11—\

e < 200+ 2

Obviously, we see that
Usr > ﬁ .
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Finally, using the inequalities (5.2.12), (5.2.13), (5.2.14), we have
200 + 2582
Hor < 1-X

sy 6
1 Oé(l — A) + Ak42

1 1
>4 — =
al) 2477375
(by) n=1,l=k+1.
Then we have
r=a+ a a €0, ak+1),
57’257 66[07 al-i—l)a
Therefore, we have
4dr
< —. 5.2.15
A Y ( )
Obviously, we see that
oy > OT. (5.2.16)

Finally, using the inequalities (5.2.15), (5.2.16), we have

=
=%}
3
-y
|
>
S

—
|

>

SN

(c). xy € (po, pw), for some we{l,2}. This case we set [y := d(xg, Py).
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Let r = a and ér = 3. Then we have

508
ro«
which gives
1 «
- =—. 5.2.17
5= (5217
Furthermore, we have
o §a+ﬁﬂ+21a__2)\> ifa2a2+607
M <3a7 Zf OZ<CL2—|—/80,
and so for any 0 < a < ay
(3= MNa
P iy 5.2.18
pr < (5.2.18)
Obviously, we see that
[i5r > 3. (5.2.19)
Finally, using the inequalities (5.2.17), (5.2.18), (5.2.19), we have
3—N)a
Hr < : 1—)?
Wer ﬁ
3=«
C1-X p
3= 1
D
Thus, we can take a constant c,(d) as
3—A 1
> —-=
) 2 73
The proof of Lemma 5.2.1 is completed. ]

By using Lemmas 5.2.1 and 1.1.5, we have the following immediately.

Lemma 5.2.2. X s a doubling metric space.

5.3 Proofs of Propositions

In this section, we give the proofs of Propositions 5.0.14 and 5.0.15.

Proof of Proposition 5.0.14. For any 0 < A < 1, let X, be the tree constructed in
Section 5.1, and X the completion of Xy. From the construction of the boundary set 0.X
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of X, 0X can be considered as a self-similar set in the sense of ([50]). Thus, by Main
Theorem ([50]) and Lemma 5.2.1, we have

. log 2
d 0X)=———"—.
iy (9X) log2 — log A
We put D()\) = logIQOigl%)g 5 for any A € (0,1]. Clearly, D()) is a continuous function on

(0, 1], is monotone increasing, and satisfies

lim D(\) =0, D(1)=1

A—0

Hence, for any s € (0, 1), there exists a unique A € (0, 1) satisfying

log 2 B
log2 —log A
By the construction of X, we have
A
L(X)=—— i
(X) =1 <
By the lemma 5.1.1, we see that 90X is homogeneous in X. The proof of Proposition
5.0.14 is completed. O

Next, we prove Proposition 5.0.15.
Proof of Proposition 5.0.15. Let X be the tree constructed in the section 5.1, and X
the tree with A = 1. Let f : X, — X be the natural bijection, such that
S (Pwrwn) = Punwn

for any pu,..w, € Xi. Then, it follows f is a expanding map. Namely,

d(f(zx), f(yn)) = d(xx,yr)

for any x,,y, € X,. In particular, we see

d(f(x), f(y)) = d(z,y)
for any z,y € 0X,. It follows that dimy(0X,)) < dimg(0X). Namely

. log 2
lelH(&X) Z m
for any 0 < A < 1. Thus we have dimy 0X > 1.

The proof of dimy X < 1 follows in the same way as the proof of Lemma 2.1.1. From
the construction of the boundary set 0.X of X, we see that 0.X is a self-similar set in the
sense of ([50]). By Lemma 5.1.1, it follows 0.X is homogeneous in X. This completes the
proof. n

In general, we can also obtain the following.
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Corollary 5.3.1. For any given natural number n, there exists some n-dimensional
CAT(0) space Y such that

(1) dimydY =n, and

(2) 9Y is homogeneous in'Y .
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