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Abstract

In the present dissertation, we introduce the notion of almost similarity maps extending
that of similarity maps in order to construct asymptotic self-similar sets on curved metric
spaces, and determine the Hausdorff dimensions of such asymptotic self-similar sets.

Let X be a complete doubling metric space. Let Ū ⊃ V̄ be bounded domains in X
homeomorphic to each other, where Ū and V̄ denote the closures of the open subsets U
and V . Fix constants 0 < λ < 1, 0 < ν < 1 and a continuous monotone non-decreasing
function φ : (0,∞) → [0,∞) with limx→+0 φ(x) = 0. We call a homeomorphism f : Ū →
V̄ a (λ, φ(|Ū |), ν)-almost similarity map if for every x, y ∈ Ū∣∣∣∣ |f(x), f(y)||x, y|

− λ

∣∣∣∣ ≤ λφ(|U |),

|V | ≤ ν|U |.

Where |Ū | is the diameter of Ū . Then the set V̄ is called a (λ, φ(|Ū |), ν)-almost similar
set of Ū .

For a fixed positive integer k, we denote by I = Ik the set of all ordered multi-indices
I = i1 · · · in with n ≥ 1, 1 ≤ ij ≤ k for every 1 ≤ j ≤ n. We set |I| = |i1 · · · in| = n and
call it the length of I. Let In denote the set of all I ∈ I of length n.

An asymptotic self-similar set is defined under the following hypothesis: For 0 < ν < 1
and a > 0, let φ : (0,∞) → [0,∞) be a continuous function with lim

x→0
φ(x) = 0 satisfying

conditions (1) and (2) in introduction.

Definition 1. ([51]) Suppose that ratio coefficients 0 < λi < 1, (i = 1, . . . , k) together
with a non-empty open subset V ⊂ X are given for which we have

(1) for each 1 ≤ i ≤ k, a (λi, φ(|V̄ |), ν)-almost similarity map

fi : V̄ → V̄i ⊂ V̄ ,

is given in such a way that Vi ∩ Vj = ∅ for every 1 ≤ i ̸= j ≤ k, where Vi := fi(V );

(2) for each 1 ≤ i, j ≤ k, a (λj, φ(|V̄i|), ν)-almost similarity map

fij : V̄i → V̄ij ⊂ V̄i,

is given in such a way that Vij∩Vij′ = ∅ for every 1 ≤ j ̸= j′ ≤ k, where Vij := fij(Vi);
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(3) for each I ′ ∈ In−1 and 1 ≤ in ≤ k with I := I ′in, a (λin , φ(|V̄I′ |), ν)-almost similarity
map

fI : V̄I′ → V̄I ⊂ V̄I′ ,

is defined in such a way that VI′i ∩ VI′j = ∅ for every 1 ≤ i ̸= j ≤ k, where
VI := fI(VI′).

We call {(V̄I , fI)}I∈I an ({λi}ki=1, φ, ν)-asymptotic similarity system. Then the set K
defined as

K =
∞∩
n=1

(∪
I∈In

V̄I

)
is called an asymptotic self-similar set in X.

Our main results in the present dissertation are stated as follows.

Theorem 2. ([51]) Let X be a complete doubling metric space and let K be the asymptotic
self-similar set associated with a ({λi}ki=1, φ, ν)-asymptotic similarity system {(V̄I , fI)}I∈I.
Then the Hausdorff and the box dimensions of the asymptotic self-similar set K are given
as

dimH K = dimB K = s,

where s is a unique number satisfying
k∑

i=1

λs
i = 1.

Theorem 3. ([51]) If a geodesic triangle domain ∆ in a convex domain on a surface is
asymptotically non-degenerate, then

(1) for some 0 < ν < 1 there exists a ({1/2, 1/2, 1/2}, φ, ν)-asymptotic similarity system
{(∆I , fI)}I∈I3 associated with ∆, where φ(x) = cx2 for some constant c > 0;

(2) the Hausdorff and box dimensions of the Sierpinski gasket K∆ associated with ∆ are
given by

dimH K∆ = dimB K∆ =
log 3

log 2
.

Corollary 4. ([51]) A geodesic triangle domain ∆ in a convex domain on a surface
is asymptotically non-degenerate if and only if for some 0 < ν < 1 there exists a
({1/2, 1/2, 1/2}, φ, ν)-asymptotic similarity system {(∆I , fI)}I∈I3 associated with ∆, where
φ(x) = cx2 for some constant c > 0.
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Chapter 0

Introduction and Main results

A fractal is a set whose Hausdorff dimension is not an integer. A bijective map f : Rd →
Rd is called a contracting similarity map if there exists a real number 0 < λ < 1, such
that d(f(x), f(y)) = λd(x, y) for every x, y ∈ Rd. The notion of self-similar sets or gen-
eral Cantor sets have played significant roles in fractal geometry. These sets are usually
defined by means of iterated function systems {f1, · · · , fk} consisting of contracting sim-
ilarity maps on a complete metric space as the unique nonempty compact set K, called
an attractor or an invariant set, satisfying K =

∪n
i=1fi(K). Moran constructed general

cantor sets in Rd by using the notion of contracting similarity maps, and determined the
Hausdorff dimension of them as the similarity dimension (see [41], for instance). Hutchin-
son [21] (cf. Kigami [27], Schief [45]) introduced the notion of the open set condition and
determined the Hausdorff dimension of self-similar sets in Euclidean space Rd satisfying
the open set condition. Balogh and Rohner extended Hutchinson’s result to doubling
metric spaces ([7]). However, it is difficult to construct a contracting similarity map in
general metric spaces. Actually, similarity maps do not always exist on curved metric
spaces. To overcome this difficulty, in the present dissertation we introduce the notion of
(λ, φ, ν)-almost similarity maps extending that of λ-similarity maps, that is defined as fol-
lows: Let Ū ⊃ V̄ be bounded domains in a metric space X homeomorphic to each other,
where Ū and V̄ denote the closures of the open subsets U and V . Fix constants 0 < λ < 1,
0 < ν < 1 and a continuous monotone non-decreasing function φ : (0,∞) → [0,∞) with
limx→+0 φ(x) = 0. We call a homeomorphism f : Ū → V̄ a (λ, φ(|Ū |), ν)-almost similarity
map if for every x, y ∈ Ū , ∣∣∣∣ |f(x), f(y)||x, y|

− λ

∣∣∣∣ ≤ λφ(|U |),

|V | ≤ ν|U |.

Where |U | is the diameter of U . Then the set V̄ is called a (λ, φ(|Ū |), ν)-almost similar
set of Ū .

In the present dissertation, we extend both Balogh and Rohner ’s result.
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A metric space X is said to be doubling if there exists a number C such that for any
x ∈ X and any r > 0, there exist {xi}Ci=1 ⊂ X such that

B(x, r) ⊂
C∪
i=1

B(xi, r/2)

Note that C, called the doubling constant of X, does not dependent on the choices of x
or r.

In the present dissertation, we investigate asymptotic self-similar sets on the doubling
metric spaces, that are defined by using the notion of (λ, φ, ν)-almost similarity maps,
and as applications, we construct asymptotic self-similar sets on Riemannian manifolds
and surfaces.

In recent years, geomeric analysis on doubling metric measure spaces has been very
active (see for instance Assouad [1], Gromov[20], Heinonen [23], Villani[48]), and therefore
it is quite natural to study self-similarity sets in such doubling metric spaces.

In the present dissertation, all spaces are assumed to be proper complete metric spaces.
We first introduce the notion of (λ, c, ν)-similarity maps to define asymptotically gener-
alized Cantor sets, and determine the Hausdorff dimension of such an asymptotically
generalized Cantor set. Let X be a metric space. Let Ū ⊃ V̄ be bounded domains in X
homeomorphic to each other, where Ū and V̄ denote the closures of the open subsets U
and V . Fix constants 0 < λ < 1, c > 0, and 0 < ν < 1.

Definition 1. ([50]) We call a homeomorphism f : Ū → V̄ is a (λ, c, ν)-similarity map if
for every x, y ∈ Ū , ∣∣∣∣d(f(x), f(y))d(x, y)

− λ

∣∣∣∣ ≤ λc|U |

|V | ≤ ν|U |

Then the set V̄ is called a (λ, c, ν)-similar set of the set Ū .

Using this notation, we can define an asymptotically generalized Cantor set in X as
follows:

Definition 2. ([50]) Suppose that ratio coefficients 0 < λi < 1, (i = 1, . . . , k) and
constants c > 0, 0 < ν < 1 are given for which we have

(1) Consider k subsets ∆1, · · · , ∆k ofX, each of which is bounded and closed, satisfying
(∆i)0 = ∆i, ∆i

∩
∆j = ∅ (1 ≤ i ̸= j ≤ k), where ∆0 and ∆̄ denote the interior and

the closure of ∆ respectively. These sets are called basic sets.

(2) For any 1 ≤ i, j ≤ k, let ∆ij be (λj, c, ν)-similar sets of ∆i such that ∆ij

∩
∆ij′ = ∅

(j ̸= j′) (1 ≤ j, j′ ≤ k).

(3) For any n ≥ 2 and ω1, · · · , ωn ∈ {1, 2, · · · , k}, construct (λωn , c, ν)-similar sets
∆ω1···ωn of ∆ω1···ωn−1 such that ∆ω1···ωn

∩
∆ω1···ω′

n
= ∅ (1 ≤ ωn ̸= ω′

n ≤ k).
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Then the set C defined as

C :=
∞∩
n=1

(
k∪

ω1,...,ωn=1

∆ω1···ωn

)

is called an asymptotically generalized Cantor set in X.

Theorem 3. ([50]) Let X be a complete doubling metric space. Let C be an asymptoti-
cally generalized Cantor set in X with ratio coefficients λ1, ..., λk defined above. Then the
Hausdorff dimension of C is equal to the similarity dimension. Namely it is equal to t

such that
k∑

i=1

λt
i = 1.

For a fixed positive integer k, we denote by I = Ik the set of all ordered multi-indices
I = i1 · · · in with n ≥ 1, 1 ≤ ij ≤ k for every 1 ≤ j ≤ n. We set |I| = |i1 · · · in| = n and
call it the length of I. Let In denote the set of all I ∈ I of length n.

As an application of Theorem 3 , we consider an asymptotically generalized Cantor
set on a complete Riemannian manifold, which is constructed as follows. Fix constants
0 < λ < 1. Let B(r) be a closed ball of radius r on a Riemannian manifold M , k be an
integer. First, we take k disjoint closed balls Bi(λr) of radius λr in B(r) (1 ≤ i ≤ k).
Next, we also take k disjoint closed balls Bij(λ

2r) of radius λ2r in each Bi(λr) (1 ≤ j ≤ k).
Repeating this procedure for each Bij(λ

2r) infinitely many times, we obtain a family of
disjoint closed balls {BI(λ

|I|r)}I∈Ik . The asymptotically generalized Cantor set KB on
M associated with {BI(λ

|I|r)}I∈Ik is defined as

KB :=
∞∩
n=1

(∪
I∈In

BI(λ
|I|r)

)

If r is sufficiently small, then the Hausdorff dimension of KB is given by

dimH KB =
log k

− log λ
.

Next, we introduce the notion of (λ, φ, ν)-almost similarity maps in doubling metric
spaces to define asymptotic self-similar sets satisfying the generalized open set condition,
and determine their Hausdorff dimensions.

Fix a continuous monotone non-decreasing function φ : (0,∞) → [0,∞) with lim
x→+0

φ(x)

= 0.
In this dessertation, we assume the following conditions for φ :

(1) φ : (0,∞) → [0,∞) is non-decreasing with limx→+0 φ(x) = 0;

(2)

∫ ∞

1

φ(aνx) dx < ∞ for some constants a > 0 and 0 < ν < 1.
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Note that the second condition (2) above does not depend on the choice of a > 0 and
0 < ν < 1, and that for any α > 0 and any positive integer n, the following functions
satisfy the above conditions:

φ(y) = yα, φ(y) = −(log y)−1− 2
2n+1 .

An asymptotic self-similar set in X is defined under the following hypothesis: For
0 < ν < 1 and a > 0, let φ : (0,∞) → (0,∞) be a continuous function satisfying the
above conditions (1) and (2).

Definition 4. ([51]) Suppose that ratio coefficients 0 < λi < 1, (i = 1, . . . , k) together
with a non-empty open subset V ⊂ X are given for which we have

(1) for each 1 ≤ i ≤ k, a (λi, φ(|V̄ |), ν)-almost similarity map

fi : V̄ → V̄i ⊂ V̄ ,

is given in such a way that Vi ∩ Vj = ∅ for every 1 ≤ i ̸= j ≤ k, where Vi := fi(V )
are open subsets.

(2) for each 1 ≤ i, j ≤ k, a (λj, φ(|V̄i|), ν)-almost similarity map

fij : V̄i → V̄ij ⊂ V̄i,

is given in such a way that Vij∩Vij′ = ∅ for every 1 ≤ j ̸= j′ ≤ k, where Vij := fij(Vi)
are open subsets.

(3) for each I ′ ∈ In−1 and 1 ≤ in ≤ k with I := I ′in, a (λin , φ(|V̄I′ |), ν)-almost similarity
map

fI : V̄I′ → V̄I ⊂ V̄I′ ,

is defined in such a way that VI′i ∩ VI′j = ∅ for every 1 ≤ i ̸= j ≤ k, where
VI := fI(VI′) are open subsets.

We call {(V̄I , fI)}I∈I an ({λi}ki=1, φ, ν)-asymptotic similarity system. Then the set K
defined as

K =
∞∩
n=1

(∪
I∈In

V̄I

)
,

is called an asymptotic self-similar set in X.

In some sense, asymptotic self-similar sets are generalization of asymptotically gener-
alized cantor sets satisfying open set condition.

Let us consider the case of iterated function system {f1, . . . , fk} of contracting simi-
larity maps with open set condition

(1) V ⊃ f1(V ) ∪ · · · ∪ fk(V );
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(2) fi(V ) ∩ fj(V ) = ∅ for every i ̸= j;

for some non-empty open set V ⊂ X. For I = i1 · · · in, let VI := fin ◦ · · · ◦ fi1(V ) and
let fI := fin : V̄I′ → V̄I where I ′ = i1 · · · in−1. Then this gives a ({λi}ki=1, φ = 0, λmax)-
asymptotic similarity system {(V̄I , fI)}I∈I , where λmax = maxλi. Thus the notion of
({λi}ki=1, φ, ν)-asymptotic similarity system is an extension of iterated function system of
contracting similarity maps with open set condition.

Theorem 5. ([51]) Let X be a complete doubling metric space and let K be the asymptotic
self-similar set associated with a ({λi}ki=1, φ, ν)-asymptotic similarity system {(V̄I , fI)}I∈I.
Then the Hausdorff and the box dimensions of K are given as

dimH K = dimB K = s,

where s is a unique number satisfying
k∑

i=1

λs
i = 1.

In [7], Balogh and Rohner suggested a problem: What happens if an iterated func-
tion system {f1, . . . , fk} of contracting similarity maps is replaced by one of contracting
asymptotically similarity maps in the sense that for all I = ii · · · in ∈ I

c1λI ≤
|fI(x), fI(y)|

|x, y|
≤ c2λI ,

where fI = fin ◦ · · · ◦ fi1 , λI = λi1 · · ·λin and c1, c2 are uniform positive constants. Our
({λi}ki=1, φ, ν)-asymptotic similarity system {(V̄I , fI)}I∈I is closely related with the above
iterated function system of contracting asymptotically similarity maps under the open set
condition (see Lemma 3.3.2 ). Thus Theorem 5 can be thought of as a partial answer to
the question raised by Balogh and Rohner in a more general situation than an iterated
function system.

As an application of Theorem 5, we consider a Sierpinski gasket on a complete surface
M , which is naturally defined in a geometric way as follows. Let ∆ be a closed domain
bounded by a geodesic triangle. By joining the midpoints of the edges of ∆, we divide
∆ into four triangles, and remove the center triangle to get three triangles ∆1, ∆2 and
∆3. Repeating this procedure for each ∆i infinitely many times, we obtain a system of
geodesic triangles {∆I}I∈I3 . The generalized Sierpinski gasket K∆ on M associated with
∆ is defined as

K∆ =
∞∩
n=1

(∪
I∈In

∆I

)
,

A geodesic triangle region ∆ is called δ-non-degenerate if each angle α̃ of a comparison
triangle ∆̃ of ∆ in R2 satisfies δ < α̃ < π − δ, where a comparison triangle means that
∆̃ has the same side-length as ∆. We say that ∆ is asymptotically non-degenerate if
all the divided small triangles ∆I are δ-non-degenerate for some constant δ > 0. For
example, every geodesic triangle region ∆ of perimeter less than 2π on a unit sphere
is asymptotically non-degenerate (see Example 4.2.3). We show that a small geodesic
triangle region on a surface is asymptotically non-degenerate (see Lemma 4.2.9).
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Theorem 6. ([51]) If a geodesic triangle domain ∆ in a convex domain on a surface is
asymptotically non-degenerate, then

(1) for some 0 < ν < 1 there exists a ({1/2, 1/2, 1/2}, φ, ν)-asymptotic similarity system
{(∆I , fI)}I∈I3 associated with ∆, where φ(x) = cx2 for some constant c > 0;

(2) the Hausdorff and box dimensions of the Sierpinski gasket K∆ associated with ∆ are
given by

dimH K∆ = dimB K∆ =
log 3

log 2
.

The following result gives a condition for ∆ to be asymptotically non-degenerate.

Corollary 7. ([51]) A geodesic triangle domain ∆ in a convex domain on a surface
is asymptotically non-degenerate if and only if for some 0 < ν < 1 there exists a
({1/2, 1/2, 1/2}, φ, ν)-asymptotic similarity system {(∆I , fI)}I∈I3 associated with ∆, where
φ(x) = cx2 for some constant c > 0.

In the present dissertation, we also investigate self-similar sets by using λ-similarity
maps in some trees. Indeed, this is also the special cases of asymptotic self-similar sets.
In these cases, φ = 0, and ν = λ

2
.

Let us consider a tree X0 with vertices { P0, Pw1···wk
| wi ∈ {1, 2}, i = 1, 2, · · · , k, k ≥

1, } defined as follows. First we fix a constant 0 < λ < 1. We begin with the two
edges [P0P1], [P0P2] of length

λ
2
. For each w ∈ {1, 2}, the edge [P0Pw] branches at Pw

into two edges [PwPw1], [PwPw2] of length (λ
2
)2. In general, for w1, · · · , wk ∈ {1, 2},

the edge [Pw1···wk−1
Pw1w2···wk

] branches at Pw1w2···wk
into two edges [Pw1w2···wk

Pw1w2···wk1],
[Pw1w2···wk

Pw1w2···wk2] of length (λ
2
)k+1. In this way, we construct the infinite tree X0. The

distance on X0 is naturally defined by using the length of edges. Let X be the completion
of X0, and let ∂X be the set of points of X at which some shortest path cannot extend
anymore. We define

C := ∂X = X\X0.

Obviously, X is a CAT(0) space. Next, we consider C as a self-similar set ([49], [7]).
Let Xw1w2···wk

be the union of shortest paths from Pw1w2···wk
to C. For each w ∈ {1, 2},

we define the map fw : X → Xw by

fw(P0) = Pw,

fw(Pw1w2···wk
) = Pww1w2···wk

.

It is a λ
2
-similarity map. From the iterated function system {f1, f2}, we have a self-similar

set C. In a terminology of asymptotic self-similar sets, we proceed as follows.
In general, for w1, w2, · · · , wk ∈ {1, 2}, we define the map fw1w2···wk

: Xw1w2···wk−1
→

Xw1w2···wk
by

fw1w2···wk
= fwk

|Xw1w2···wk−1
.
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It is also a λ
2
-similarity map. We define C as the limiting set

C :=
∞∩
k=1

(
2∪

w1,...,wk=1

Xw1···wk
).

Let X be a metric space. We denote by Isom(X) the set of all isometries on X. We
say that A ⊂ X is homogeneous in X if for any x, y ∈ A there is a isometry g ∈ Isom(X)
such that g(x) = y and g(A) = A.

We have the following results.

Proposition 8. For any constant s with 0 < s < 1, there exists some 1-dimensional
CAT(0) space X such that

(1) dimH(∂X) = s.

(2) ∂X is a self-similar set.

(3) ∂X is homogeneous in X.

(4) L(X) < ∞, where L denote the length of X.

Proposition 9. For s = 1, there exists some 1-dimensional CAT(0) space X such that

(1) dimH(∂X) = 1.

(2) ∂X is a self-similar set.

(2) ∂X is homogeneous in X.

Corollary 10. For any given natural number n, there exists some n-dimensional CAT (0)
space Y such that

(1) dimH∂Y = n, and

(2) ∂Y is homogeneous in Y .

0.1 Organization of the paper

The organization of this dissertation is as follows.
This dissertation consists of six chapters.
In chapter 1, we give several basic definitions on metric spaces, self-similar sets, Haus-

dorff and box dimensions, self-similar measures and CAT(0)-spaces. We also recall some
results in Riemannian geometry.

In chapter 2, using the properties of doubling metric spaces, we prove Theorem 3.
In chapter 3, using the properties of the generalized open set condition and Borel

probability measures, we give the proof of Theorem 5.
In chapter 4, we give several examples of asymptotic self-similar sets on the curved

spaces by using asymptotic similarity maps, and determine their Hausdorff dimensions.
In chapter 5, we give self-simialr sets by using similarity maps in some tree.
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Chapter 1

Preliminaries

In this chapter, we give several basic definitions and results on metric spaces and com-
plete Riemannian manifolds. We will mainly present the definitions of, Hausdorff and
box dimensions, CAT(0)-spaces, Rauch comparison theorem, Bishop-Gromov comparison
theorem and self-similar sets.

1.1 Definitions and Notations

In this section, we give some definitions and notations.

Let X be a metric space, x, y ∈ X, A,B ⊂ X. The distance between x and y is
denoted by |x, y|. We denote the diameter of A by |A| = sup{ |x, y| | x, y ∈ A }, and the
distance between x and A by |x,A| = inf{ |x, y| | y ∈ A }, and the distance between A
and B by |A,B| = inf{ |x, y| | x ∈ A, y ∈ B }. The interior and the closure of A in X is
denoted by A0 and Ā, respectively. For each r > 0, the closed metric ball with radius r
and center x is denoted by B(x, r) = { y ∈ X | |y, x| ≤ r }, and the r-neighborhood of A
by Ur(A) = { y ∈ X | |y, A| < r }. The Hausdorff distance between A and B, denoted
by dH(A,B), is defined as

dH(A,B) = inf{ r > 0 | A ⊂ Ur(B) and B ⊂ Ur(A) }.

An ϵ-cover {Ui} of A is a finite or countable collection of sets Ui covering A with |Ui| ≤ ϵ.
Let α be a nonnegative real number . The α-dimensional Hausdorff measure of A, denoted
by Hα(A), is defined by the formula

Hα(A) := lim
ϵ→0

inf
{ ∞∑

i=1

|Ui|α
∣∣ {Ui} : ϵ-cover of A

}
,

and The Hausdorff dimension of A, denoted by dimH A, is defined as

dimH A := sup{α ≥ 0|Hα(A) = ∞} = inf{α ≥ 0|Hα(A) = 0}.
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Let Nϵ(A) denote the minimal number of subsets of diameter ≤ ϵ needed to cover A. The
lower box dimension and the upper box dimension of A are defined respectively as

dimBA = lim
ϵ→0

logNϵ(A)

− log ϵ
,

dimBA = lim
ϵ→0

logNϵ(A)

− log ϵ
.

When both the lower and the upper box dimensions are equal, the common value

dimB A = lim
ϵ→0

logNϵ(A)

− log ϵ

is called the box dimension of A.
Also, the lower and the upper box dimensions can be defined as follows: LetD=D(A, ϵ)

be the collection of all countable open covers U of A such that |U | = ϵ for every U ∈ U .
We define r(A,α) and r(A,α) respectively by

r(A,α) = lim
ϵ→0

inf
D

∑
i

|U |α,

r(A,α) = lim
ϵ→0

inf
D

∑
i

|U |α,

then the lower box dimension and the upper box dimension of A are defined respectively
as

dimBA = inf{α > 0 | r(A,α) = 0}
= sup{α > 0 | r(A,α) = ∞},

dimBA = inf{α > 0 | r(A,α) = 0}
= sup{α > 0 | r(A,α) = ∞}.

The following is an immediate consequence.

Lemma 1.1.1. (cf. [41])
dimH A ≤ dimBA ≤ dimBA.

Proof. By the definitions of the Hausdorff dimension and the Box dimension, we have

Hα(A) ≤ r(A,α) ≤ r(A,α),

from which the conclusion follows immediately.

For a metric space X and 0 < λ < 1, a map f : X → X is called a λ-contracting
similarity map if |f(x), f(y)| ≤ λ|x, y| holds for every x, y ∈ X.

Let M(X) be the set of all Borel probability measures on X. Define the metric on
M(X) by

dM(µ1, µ2) = sup
ϕ

{∣∣∣∣∫
X

ϕ dµ1 −
∫
X

ϕ dµ2

∣∣∣∣} ,

where ϕ : X → R runs over all Lipschitz function with Lipschitz constant L(ϕ) ≤ 1. By
Riesz’s representation formula, we have the following.
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Lemma 1.1.2. (cf. [25]) M(X) is a complete metric space.

In the proof of the lemma 1.1.4, the following lemma will be used.

Lemma 1.1.3. (cf. [4]) Let X be a compact metric space, and let A, B, C, and D be
subsets in X. Then

dH(A ∪B, C ∪D) ≤ max
{
dH(A,C), dH(B,D)}.

Lemma 1.1.4. (cf. [25]) Let {fi}mi=1 be a family of contracting similarity maps in a
complete metric space X:

|fi(x), fi(y)|
|x, y|

≤ λi < 1,

for every 1 ≤ i ≤ k. Then

(1) there exists a compact subset K of X such that K = f1(K) ∪ · · · ∪ fm(K);

(2) for any positive numbers qi, i = 1, · · · ,m, with
∑m

i=1 qi = 1, there exists a unique
Borel probability measure µ0 with support K such that

µ0(A) = q1µ0(f
−1
1 (A)) + · · ·+ qmµ0(f

−1
m (A))

for every measurable subset A ⊂ X. In other words,

µ0 =
m∑
i=1

qi(fi)∗(µ0),

where (fi)∗(µ0) is the push-forward measure of µ0 by fi.

The measure µ0 is called a self-similar measure.

Proof of Lemma 1.1.4. (1). Let C(X) denote the set of nonempty compact subsets of
X equipped with the Hausdorff distance dH . Then we see that the C(X) is a complete
metric space.

For A ∈ C(X), let f(A) denote f(A) = {f(x) : x ∈ A}. If f is a λ-contracting
similarity map on X, then f is also an λ-contracting similarity map on C(X).

For λi-contracting similarity map fi, i = 1, · · · , m, we define the map F : C(X) →
C(X) by

F (A) = f1(A) ∪ · · · ∪ fm(A).

Since
dH(A ∪B, C ∪D) ≤ max

{
dH(A,C), dH(B,D)},

the map F is a max{λ1, · · · , λm}-contracting map. Since A, F (A), F 2(A), · · · is a
Cauchy sequence in C(X), for any A ∈ C(X), and it converges to a set K ∈ C(X) with
F (K) = K, that is

K = F (K) = f1(K) ∪ · · · ∪ fm(K).
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Such a set K is unique because

dH(F (A), F (B)) ≤ max{r1, · · · , rm}dH(A,B),

for any A, B ∈ C(X).

(2). Let M(X) and M(K) denote the sets of Borel probability measures with supports
on X and K, respectively. Then M(X) is a complete metric space.

Define F∗(p1, · · · , pm) : M(X) → M(X) by

(F∗(p1, · · · , pm)µ)(A) = p1µ
(
f−1
1 (A)

)
+ · · ·+ pmµ

(
f−1
m (A)

)
,

for any µ ∈ M(X).
Then F∗(p1, · · · , pm) is a contracting map. Also, by the Riesz representation theo-
rem, we see that M(K) is a complete metric space, and for any µ ∈ M(K), we have
F∗(p1, · · · , pm)µ ∈ M(K), and F∗(p1, · · · , pm) : M(K) → M(K) is a contracting map.
Therefore there exists a unique µ0 ∈ M(K), such that F∗(p1, · · · , pm)µ0 = µ0.

To prove Theorems 3 and 5, we need the following.

Lemma 1.1.5. (cf. [7]) Let X be a doubling metric space with doubling constant C. For
any 0 < δ < 1, there exists a constant C0 = C0(C, δ) such that the number of mutually
disjoint balls B(xi, δr) in a ball B(x, r) of X is bounded by C0(C, δ).

1.2 CAT(0)-spaces

In this section, we give some definition in the geodesic metric spaces. We will mainly
review the definitions of, geodesic, geodesic metric spaces, CAT(0)-spaces. In this section,
we mainly refer to [4], [3].

Let X be a metric space, x, y ∈ X. Let σ : [0, l] ⊂ R → X be a map which satisfies
σ(0) = x, σ(l) = y. σ is called a geodesic path joining x to y if |σ(t), σ(s)| = |t − s| for
every t, s ∈ [0, l]. Then we say the image γ of σ a geodesic segment with endpoint x and
y. A geodesic segment joining x and y is denoted by [x, y]. Three points x, y, z ∈ X, and
three geodesic segments [x, y], [y.z], [z, x] joining them is called a geodesic triangle, which
is denoted by ∆([x, y], [y, z], [z, x]) or ∆(x, y, z). For a point q ∈ X, q ∈ ∆ means that q
lies in the union of [x, y], [y, z] and [z, x].

A triangle ∆̃ = ∆(x̃, ỹ, z̃) of an Euclidean space Rn is a comparison triangle of
∆(x, y, z) if |x̃, ỹ| = |x, y|, |ỹ, z̃| = |y, z|, |z̃, x̃| = |z, x|. A point q̃ ∈ [x̃, ỹ] is a com-
parison point of q ∈ [x, y] if |x, q| = |x̃, q̃|.

A map σ : [0,∞) → X is called a geodesic ray if |σ(t), σ(s)| = |t − s| for every
t, s ∈ [0,∞). A map σ : R → X is called a geodesic line if |σ(t), σ(s)| = |t− s| for every
t, s ∈ R. A metric space X is called geodesic metric space if any two points in X are
joined by a geodesic.

A subset A of X is convex if any x, y ∈ A can be joined by a unique geodesic γ of X
such that the image of γ is included in A.
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Let X be a geodesic metric space, ∆ ⊂ X a geodesic triangle, and ∆̃ a comparison
triangle of ∆ in R2. For any x ∈ ∆, x̃ denotes a comparison point on ∆̃

Definition 1.2.1. (cf. [3]) We say that X is a CAT(0)-space if any ∆ satisfies

|x, y| ≤ |x̃, ỹ|.

for any x, y ∈ ∆ and comparison points x̃, ỹ ∈ ∆̃ respectively.

For example, in geodesic metric spaces, a tree is a CAT(0)-space. Indeed, any com-
parison triangle of trees is degenerate.

The following is a basic property of CAT(0)-spaces. This follows from the definitions
immediately. This will be used in Chapter 5.

Proposition 1.2.2. (cf. [3]). The product of CAT(0)-spaces is a CAT(0)-space.

1.3 Rauch Comparison Theorem

The Rauch comparison theorem is very important tool when we determine the Hausdorff
dimension of a generalized Sierpinski gasket constructed on surfaces. In this section, we
mainly refer to [9]

Let M be a smooth finite-dimensional manifold, p ∈ M . TpM denote the tangent
space of M at p, and TM denote the tangent bundle of M . For υ, ν ∈ TpM , by ⟨υ, ν⟩ we
donote the riemannian scalar product between υ and ν.

Let γυ : [0, b] → M be a geodesic of M satisfying γυ(0) = p, γ̇υ(0) = υ, and 1 ∈ [0, b].
The exponential map expp : TpM → M is defined by

expp(υ) = γυ(1)

for any υ ∈ TpM .
The following Gauss lemma is also very useful when we determine the Hausdorff di-

mension of the generalized Sierpinski gasket on a surface, and will be used in Chapter
4.

Lemma 1.3.1. (cf. [9]) Given a point p ∈ M . Suppose υ, ν ∈ TpM . Then we have.

d(expp)υυ = γ′(1), ⟨γ′
υ(1), d(expp)υν⟩ = ⟨υ, ν⟩.

The following theorem is very important for considering asymptotic self-similar sets
on curved spaces, and will be used in Chapter 4.

Theorem 1.3.2. (cf. [9]) Let M, N be riemannian manifolds such that dimN ≥ dimM ,
and let γ1, γ2 : [0, l] → M,N be normal geodesics, and put γ′

1 = T1, γ
′
2 = T2. Given

t ∈ [0, l], and two tangent vectors X1, X2 such that X1 ∈ Mγ1(t), X2 ∈ Nγ2(t). Suppose
that the sectional curvatures σ1, σ2 spanned by T1, X1 and T2, X2 satisfy K(σ2) ≥ K(σ1).
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Assume further that for no t ∈ [0, l] is γ2(t) conjugate to γ2(0) along γ1. Let V1, V2 be
Jacobi fields along γ1, γ2 such that V1(0), V2(0) are tangent to γ1, γ2 and

∥ V1(0) ∥=∥ V2(0) ∥, ⟨T1, V
′
1(0)⟩ = ⟨T2, V

′
2(0)⟩, ∥ V ′

1(0) ∥=∥ V ′
2(0) ∥ .

Then we have

∥ V1(t) ∥≥∥ V2(t) ∥

for every t ∈ [0, l].

1.4 Bishop-Gromov Comparison Theorem

The Bishop-Gromov Comparison Theorem is very important tool when we consider con-
structions of asymptotic self-similar sets on Riemannian manifolds, and will be used in
Chapter 4. In this section, we mainly refer to [4].

Fix a constant κ ∈ R. For an integer n ≥ 2, we denote by Mn
κ the n-dimensional

space form of curvature κ, where a space form is a simply connected complete space
whose curvature is constant κ. Spheres, Euclidean spaces and hyperbolic spaces are space
forms. For a fixed positive integer n, V n

κ (r) denotes the volume of a r-ball in Mn
κ .

Let X be a metric space, x, y ∈ X. For any ϵ > 0, x, y are ϵ-close if |x, y| ≤ ϵ. X
is called a intrinsic metric space if for any ϵ > 0, x, y ∈ X, there is a finite sequence
{x1, x2, · · · , xk} such that every two neighboring points in this sequence are ϵ-close, and∑k−1

i=1 |xi, xi+1| < |x1, xk|+ ϵ.

Let X be a metric space. For x, y, z ∈ X, we denote by ∠̃yxz the angle at the
vertex x̃ of the comparison triangle △̃yxz in Mn

κ of a triangle △yxz in X, where we set
△̃yxz := △ỹx̃z̃.

Definition 1.4.1. We say that X is a Alexandrov space of curvature ≥ κ if X is a locally
complete intrinsic metric space such that for any point x ∈ X, there is a neighborhood
Ux such that

∠̃bac+ ∠̃cad+ ∠̃dab ≤ 2π

for any point a ∈ Ux and any b, c, d ∈ Ux − {a}.

The following theorem will be used in the proof of Example 4.1.2 in Chapter 4.

Theorem 1.4.2. (cf. [4]) If X is an n-dimensional complete Alexandrov space of curvature
≥ κ, then we have

µn

(
BR(p)

)
V n
κ (R)

≤
µn

(
Br(p)

)
V n
κ (r)

for any p ∈ X and R ≥ r > 0.
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1.5 Self-similar sets

In this section, we give a definition of a self-similar set. We mainly refer to [21],[7]. Let
X be a complete metric space.

Definition 1.5.1. We say that the compact set K ⊂ X is a self-similar set if there is a
finite family F = {f1, · · · , fk} of contracting similarity maps on X such that

K =
k∪

i=1

fi(K).

The following is called the open set condition introduced by Hutchinson.
Let F = {f1, · · · , fk} is a family of contracting similarity maps. We say that F

satisfies the open set condition if there is a non-empty open set A ⊂ X such that

(1) A ⊃ f1(A) ∪ · · · ∪ fk(A);

(2) fi(A) ∩ fj(A) = ∅ for every i ̸= j.

Hutchinson proved the following theorem for self-similar sets satisfying the open set
conditions in Euclidean spaces. Balogh and Roner proved this theorem for self-similar
sets satisfying the open set conditions in the doubling metric spaces.

Theorem 1.5.2. (cf. [7]) Let X be a metric space and let K be the self-similar set with
respect to ({λi}ki=1)- contracting similarity maps fi. Then the Hausdorff dimension of the
self-similar set K is given as

dimH K = s,

where s is a unique number satisfying
k∑

i=1

λs
i = 1.

– 15 –





Chapter 2

Proof of Theorem 3

In this chapter, we prove Theorem 3. In the section 2.1, we show dimH C ≤ t. In the
section 2.2, we show dimH C ≥ t. We will use the properties of the doubling metric spaces
in the proof of dimH C ≥ t.

2.1 Proof of dimH C ≤ t

Let n the depth of the basic set ∆ω1···ωn of C.

Lemma 2.1.1. dimH C ≤ t.

Proof. Let c be the constant in the definition of a (λ, c, ν)-similarity map in Introduc-
tion. By the construction of C, we have

|∆ω1···ωn | ≤ |∆ω1···ωn−1 |ν.

Obviously there exists a number n0(n0 ≫ 1) such that

c|∆ω1···ωn0
| < 1,

For any ε > 0, let n be sufficiently large (n > n0) such that

U = { ∆ω1···ωn | 1 ≤ ωj ≤ k, 1 ≤ j ≤ n }

is an ε-cover of C. By the definition of (λ, c, ν)-similarity map f : ∆ω1···ωn−1 → ∆ω1···ωn ,
we have

|∆ω1···ωn | ≤ λωn(1 + c|∆ω1···ωn−1 |)|∆ω1···ωn−1 |.

Let n = n0 +m, then

c|∆ω1···ωn−1 | ≤ c|∆ω1···ωn0
|νm−1 ≤ νm−1.
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Thus we see

m(C, t, ε) ≤
∑

(ω1,··· ,ωn)

|∆ω1···ωn|t

=
∑

(ω1,··· ,ωn−1)

( |∆ω1···ωn−11|t + · · ·+ |∆ω1···ωn−1k|t )

≤
∑

(ω1,··· ,ωn−1)

(1 + c|∆ω1···ωn−1 |)t|∆ω1···ωn−1 |t(λt
1 + · · ·+ λt

k)

≤
∑

(ω1,··· ,ωn−1)

(1 + νm−1)t|∆ω1···ωn−1 |t

= (1 + νm−1)t
∑

(ω1,··· ,ωn−1)

|∆ω1···ωn−1 |t

≤ · · · < (1 + νm−1)t · · · (1 + ν)t2t
∑

ω1,··· ,ωn0

|∆ω1···ωn0
|t.

Here whenm → ∞ the sequence am = (1+νm−1)t · · · (1+ν)t2t converges. Hencem(C, t) ≤
K0 for some constant K0, and therefore dimH C ≤ t.

2.2 Proof of dimH C ≥ t

To prove dimH C ≥ t, we first show Lemmas 2.2.1 and 2.2.5.

Lemma 2.2.1. There exists a constant K0, chosen independently of any cover, such that
if U={Ui} is any cover of C such that each Ui is a basic set, then∑

i

|Ui|t ≥ K0 > 0.

Let U be a cover of C. U is called minimal if no proper subcollection of U covers C.

Proof of Lemma 2.2.1. Let U={Ui} be any cover of C by basic sets. Because C is
compact, it suffices to eatablish ∑

i

|Ui|t ≥ K > 0

for U is finite and minimal.
Let n be the maximum of the depths of all basic sets in U , and let ∆ω1···ωn be a basic

set of maximal depth in U . Since U is minimal, it does not contain the basic set ∆ω1···ωn−1 .
It follows that each of the basic set ∆ω1···ωn−1j for j = 1, · · · , k is contained in U .

Thus the sum
∑
i

|Ui|t contains the partial sum

|∆ω1···ωn−11|t + · · ·+ |∆ω1···ωn−1k|t.
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By the definition of (λ, c, ν)-similarity map and t, we see

|∆ω1···ωn−11|t+ · · ·+ |∆ω1···ωn−1k|t

≥ λt
1(1− c|∆ω1···ωn−1 |)t|∆ω1···ωn−1 |t+

· · ·+ λt
k(1− c|∆ω1···ωn−1 |)t|∆ω1···ωn−1 |t

= (λt
1 + · · ·+ λt

k)(1− c|∆ω1···ωn−1 |)t|∆ω1···ωn−1 |t

= (1− c|∆ω1···ωn−1 |)t|∆ω1···ωn−1 |t

≥ (1− νm−1)t|∆ω1···ωn−1|t.

We replace {∆ω1···ωn−1j}kj=1 by ∆ω1···ωn−1 . In this way we replace all the basic sets in U of
depth n by the corresponding sets of depth n− 1, to obtain a new covering U ′ by basic
sets. We may assume that U ′ is minimal. Then we can repeat the previous argument, and
obtain ∑

i

|Ui|t ≥ (1− νm−1)t · · · (1− ν)t(1− c|∆ω1···ωn0
|)t|∆ω1···ωn0

|t.

But in the last expression, am = (1 − νm−1)t · · · (1 − ν)t converges to a positive number
and (1− c|∆ω1···ωn0

|)t|∆ω1···ωn0
|t is uniformly bounded from below. Therefore∑

i

|Ui|t ≥ K0 > 0

for a uniform positive number K0.
To show Lemma 2.2.5, we first show the following Lemmas 2.2.2, 2.2.3, and Lemma

2.2.4.

Lemma 2.2.2. Let λmin=min{λ1, · · · , λk}. For each r > 0, set

V (r) = { ∆ω1···ωn | rλmin ≤ |∆ω1···ωn | ≤
r

λmin

}, (2.2.1)

and given x ∈ X, define

Vx(r) = { V ∈ V (r) | x ∈ V }.

Let N be the number of elements of Vx(r). Then N ≤ M , where M is independent of x
and r.

Proof. First we consider the case x ∈ C. We can write given x ∈ C as

{x} =
∩
n≥1

∆ω1···ωn .

For the infinite sequence ω1, ω2, · · · , ωn, · · · , define the set E as

E = { n | rλmin ≤ |∆ω1···ωn| ≤
r

λmin

}. (2.2.2)
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Then the number of elements of E is equal to the number N of elements of Vx(r). Now
let n′ = minE, n′′ = maxE, and let n′′ = n′ +m,n′′ ≥ n0, n′ ≥ n0. Beacause

|∆ω1···ωn′′ | = |∆ω1···ωn′+m
| ≤ |∆ω1···ωn′ |νm,

by the definition of n′ , n′′, we have

rλmin ≤ |∆ω1···ωn′′ | ≤ |∆ω1···ωn′ |νm ≤ r

λmin

νm.

Therefore,

rλmin ≤ r

λmin

νm.

Hence,

m ≤ 2
log λmin

log ν
= M.

Next, we consider the general case x ∈ X. For any x∈X, define E as

E = { ∆ω1···ωn | x ∈ ∆ω1···ωn }.

If n = 1, there exits unique ω1 such that x ∈ ∆ω1 ; if n = 2, there exits unique ω2 such
that x ∈ ∆ω1ω2 ; similarly there exits unique ωn such that x ∈ ∆ω1···ωn . If E is an infinite
set, then x ∈ C. Because there exits unique infinite sequence ω1, ω2, · · · , ωn, · · · such
that

x ∈ ∆ω1···ωn ,

and
{x} =

∩
n≥1

∆ω1···ωn

for any n(n ≥ 1). Therefore, x∈C.
If E is a finite set, namely,

E = { ∆ω1 ,∆ω1ω2 , · · · ,∆ω1···ωn },

then we have
Vx(r) = { ∆ω1···ωn0

, · · · ,∆ω1···ωn0+m }

for suitable n0 and m. Thus by an argument similar to Lemma 2.2.2, the number of
elements of Vx(r) is bounded above by a constant M (which is independent of x and
r).

Lemma 2.2.3. If bω1···ωn = max{ r | B(x, r) ⊂ ∆ω1···ωn }, then

bω1···ωn ≥ λωnbω1···ωn−1(1− c|∆ω1···ωn−1 |)

.
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Proof. Let x be the center point of a largest ball included in ∆ω1···ωn−1 . By the definition
of (λωn , c, ν)-similarity map f : ∆ω1···ωn−1 → ∆ω1···ωn , we have

B
(
f(x), λωnbω1···ωn−1(1− c|∆ω1···ωn−1 |)

)
⊂ f

(
B(x, bω1···ωn−1)

)
Thus we see

B
(
f(x), λωnbω1···ωn−1(1− c|∆ω1···ωn−1|)

)
⊂ ∆ω1···ωn .

Therefore we obtain
bω1···ωn ≥ λωnbω1···ωn−1(1− c|∆ω1···ωn−1 |).

Lemma 2.2.4. If bω1···ωn = max{ r | B(x, r) ⊂ ∆ω1···ωn }, then there exists a constant k0
such that

|∆ω1···ωn |
bω1···ωn

≤ k0, (2.2.3)

for any n and any ω1, ω2, · · · , ωn.

Proof. By the definition of (λωn , c, ν)-similarity map f : ∆ω1···ωn−1 → ∆ω1···ωn , we have

|∆ω1···ωn | ≤ λωn(1 + c|∆ω1···ωn−1 |)|∆ω1···ωn−1 | ,

Therefore we obtain

|∆ω1···ωn |
bω1···ωn

≤
(1 + c|∆ω1···ωn−1 |)|∆ω1···ωn−1 |
(1− c|∆ω1···ωn−1 |)bω1···ωn−1

.

There exists n0 such that for any n ≥ n0

1 + c|∆ω1···ωn−1 |
1− c|∆ω1···ωn−1 |

≤ 1 + 3c|∆ω1···ωn−1 |.

Thus we have
|∆ω1···ωn|
bω1···ωn

≤
|∆ω1···ωn−1 |
bω1···ωn−1

(1 + 3c|∆ω1···ωn−1 |).

By the construction of C, we have

|∆ω1···ωn | ≤ |∆ω1···ωn−1 |ν.

Hence, there exists n1 ≥ n0 such that

3c|∆ω1···ωn1
| < 1.

Now let n = n1 +m, then we get

|∆ω1···ωn | ≤ |∆ω1···ωn1
|νm.
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Therefore we obtain

3c|∆ω1···ωn−1 | ≤ 3c|∆ω1···ωn1
|νm−1 ≤ νm−1,

and hence

1 + 3c|∆ω1···ωn−1 | ≤ 1 + νm−1.

Thus we have
|∆ω1···ωn |
bω1···ωn

≤
|∆ω1···ωn−1 |
bω1···ωn−1

(1 + νm−1).

Therefore we obtain

|∆ω1···ωn |
bω1···ωn

≤
|∆ω1···ωn−1|
bω1···ωn−1

(1 + νm−1)

≤
|∆ω1···ωn−2|
bω1···ωn−2

(1 + νm−2)(1 + νm−1)

≤ · · · ≤
|∆ω1···ωn1

|
bω1···ωn1

2(1 + ν) · · · (1 + νm−2)(1 + νm−1).

Here when m → ∞ the sequence am = 2(1+ν) · · · (1+νm−1) converges. Thus there exists
a constant k1 such that

|∆ω1···ωn |
bω1···ωn

≤ k1,

for any n ≥ n1. Let

k2 = max

{
|∆ω1 |
bω1

,
|∆ω1ω2|
bω1ω2

, · · · ,
|∆ω1···ωn1

|
bω1···ωn1

}
,

and let k0 = max{k1, k2}. Then we have

|∆ω1···ωn |
bω1···ωn

≤ k0, (2.2.4)

for any n and any ω1, ω2, · · · , ωn.
Next, we shall prove the follwing lemma.

Lemma 2.2.5. Let U be a bounded subset of X, and write r = |U |. Then U intersects at
most M ′ = C(δ)M elements of V (r), where M is the constant given in Lemma 2.2.2 and

δ =
λ2
min

2k0+2k0λmin+λ2
min

.

Proof. Fix an arbitrary point x0 ∈ U , and consider the ball

B

(
x0,
(
1 +

1

λmin

)
r

)
⊂ X.
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Then we have

U ⊂ B

(
x0,
(
1 +

1

λmin

)
r

)
,

and choose maximal points {xi}Ni=1 ⊂ B
(
x0,
(
1 + 1

λmin

)
r
)
such that

d(xi, xj) ≥
rλmin

k0

for any i ̸= j, where k0 is a constant defined in Lemma 2.2.4.
Next, we show

Sublemma 2.2.6.
N ≤ C0(C, δ),

where δ =
λ2
min

2k0+2k0λmin+λ2
min

, and C0(C, δ) is the constant given Lemma 1.1.5.

Proof. We consider the ball B
(
xi,

rλmin

2k0

)
, and the ball B

(
x0,
(
1 + 1

λmin

)
r + rλmin

2k0

)
.

Then we have
N∪
i=1

B
(
xi,

rλmin

2k0

)
⊂ B

(
x0,
(
1 +

1

λmin

)
r +

rλmin

2k0

)
.

Since

B
(
xi,

rλmin

2k0

)∩
B
(
xj,

rλmin

2k0

)
= ∅ (i ̸= j).

Thus, by lemma 1.1.5 we have
N ≤ C0(C, δ),

where δ =
λ2
min

2k0+2k0λmin+λ2
min

.

Next we are going to show

Sublemma 2.2.7. If V ∈ V (r) intersects U , then it must contain one of {xi}.

Proof. We take a point y such that

y ∈ V
∩

U.

Let x be the center point of a largest ball included in V . Then we have

d(x, x0) ≤ d(x, y) + d(y, x0)

≤ |V |+ |U | ≤
( 1

λmin

+ 1
)
r.

Therefore, we obtain

x ∈ B

(
x0,
(
1 +

1

λmin

)
r

)
.
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Furthermore, we have

B

(
x0,
(
1 +

1

λmin

)
r

)
⊂

N∪
i=1

B
(
xi,

rλmin

k0

)
.

Thus there exists a point xi (i = 1, 2, · · · , N) such that

x ∈ B

(
xi,

rλmin

k0

)
.

Hence we see

xi ∈ B
(
x,

rλmin

k0

)
.

By Lemma 2.2.4, we have
|V |
b(V )

≤ k0.

Therefore, we obtain

b(V ) ≥ |V |
k0

≥ rλmin

k0
.

Then we see

V ⊃ B
(
x, b(V )

)
⊃ B

(
x,

rλmin

k0

)
.

Hence, xi ∈ V . Because each of {xi} is contained in at most M such sets V , it follows
that the total number of elements V of V (r) which intersect U is bounded above by
M ′ = C0(C, δ)M .

Now, we can show the following.

Lemma 2.2.8. dimH C ≥ t

Proof. Let U = {Ui} be any ε-cover of C. For each Ui, write ri = |Ui|, and let Ui,1, · · · , Ui,m(i)

be the basic sets in V (ri) which intersect Ui. By Lemma 2.2.5, we have

m(i) ≤ M ′.

Furthermore, from 2.2.1, we see

|Ui,j| ≤
|Ui|
λmin

,

and
m(i)∑
j=1

|Ui,j|t ≤ m(i)
|Ui|t

λmin
t ≤

M ′

λmin
t |Ui|t.

Then we have

|Ui|t ≥
λmin

t

M ′

m(i)∑
j=1

|Ui,j|t.
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Summing over all the elements of U yields

∑
i

|Ui|t ≥
λmin

t

M ′

∑
i

m(i)∑
j=1

|Ui,j|t.

Since {Ui,j} is a cover of C by basic sets, we may apply Lemma 2.2.1 to obtain

∑
i

|Ui|t ≥
λmin

t

M ′ K0 > 0,

where K0 is the constant in Lemma 2.2.1. Hence we obtain dimH C ≥ t

This completes the proof of Theorem 3.
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Chapter 3

Proof of Theorem 5

In this chapter, we give the proof of Theorem 5. We will use properties of some Borel
probability measure which is determined by our generalized open set condition, to prove
Theorem 5. We will show that dimH K ≤ s, dimH K ≥ s, and dimBK ≤ s in this chapter.

3.1 Preliminaries

Definition 3.1.1. We call a set S consisting of I ∈ I a simple family if the following
conditions are satisfied:

(1)
∪
I∈S

W̄I ⊃ K;

(2) If I = i1 · · · im−1im ∈ S, then both I0 = i1 · · · im−1 and I1 = i1 · · · im−1imi do not
belong to S for all 1 ≤ i ≤ k.

Lemma 3.1.2. Let φ : (0,∞) → [0,∞) be a continuous function satisfying the conditions
(1), (2) in Introduction. Then

∞
Π
i=0

(1 + φ(νi|V |) < ∞,
∞
Π
i=0

(1− φ(νi|V |) > 0.

Proof. By the condition on φ, we have

∞∑
i=0

log(1 + φ(νi|V |)) ≤
∞∑
i=0

φ(νi|V |) < ∞.

Similarly we have

∞∑
i=0

log(1− φ(νi|V |)) ≥ −2
∞∑
i=0

φ(νi|V |) > −∞.

These complete the proof.
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Lemma 3.1.3. Let X be as in Theorem 5, and let V = {Vi} be a collection of disjoint
open sets of X such that each Vi contains a closed ball of radius c1ρ and is included in
a closed ball of radius c2ρ for some positive constants c1 < c2 and ρ. Then every closed
ρ-ball B(x, ρ)in X intersects at most C(δ) elements of V̄ = {V̄i}, where δ = c1

c1+4c2+2
and

C(δ) is a constant given in Lemma 1.1.5

Proof. Take xi
1, x

i
2 ∈ X satisfying B(xi

1, c1ρ) ⊂ Vi ⊂ B(xi
2, c2ρ). Let V̄1, · · · , V̄N intersect

B(x, ρ).
Taking any point z ∈ V̄i ∩B(x, ρ), we have

|xi
1, x| ≤ |xi

1, z|+ |z, x| ≤ (2c2 + 1)ρ.

Furthermore, for any y ∈ B(xi
1, c1ρ), we have

|y, x| ≤ |y, xi
1|+ |xi

1, x| ≤ (c1 + 2c2 + 1)ρ.

Thus we get
N∪
i=1

B(xi
1, c1ρ) ⊂ B

(
x, (c1 + 2c2 + 1)ρ

)
.

Since B(xi
1, c1ρ) are mutually disjoint, from Lemma 1.1.5 we obtain the conclusion of the

lemma. This completes the proof.

We will use the following setting in the proof of Theorem 5.
For each I = i1 · · · in ∈ I, we set

gI := fI ◦ · · · ◦ fi1i2 ◦ fi1 : V̄ → V̄ ,

and V̄I := gI(V̄ ) ⊂ V̄ . Note that
|VI | ≤ ν |I||V |.

Let s be a unique solution of
k∑

i=1

λs
i = 1

3.2 Proof of dimH K ≤ s

In this section, we show dimH K ≤ s.

Lemma 3.2.1. dimH K ≤ s

Proof. By the construction of K, we have |Vi1···in| ≤ |Vi1···in−1 |ν. For any ϵ > 0 take a
sufficiently large n such that Un := { VI | I ∈ In} is an ϵ-cover of K. From the definition
of (λin , φ, ν)-almost similarity map fI : VI′ → VI , I = I ′in, we have

|VI | ≤ λin(1 + φ(|VI′|)|VI′|.
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It follows from Lemma 3.1.2 that

Hs
ϵ(K) ≤

∑
I∈In

|VI |s

=
∑

I′∈In−1

( |VI′1|s + · · ·+ |VI′k|s )

≤
∑

I′∈In−1

(1 + φ(|VI′|))s|VI′ |s(λs
1 + · · ·+ λs

k)

≤ (1 + φ(νn−1|V |))s
∑

I′∈In−1

|VI′|s

≤ · · · <
∞
Π
i=0

(1 + φ(νi|V |))s|V | < C|V |,

where C is a constant, and therefore dimH K ≤ s.

3.3 Proof of dimH K ≥ s

In this section, we show dimH K ≥ s. Indeed, we will show dimH KI0 ≥ s for certain
subset KI0 ⊂ K.

Lemma 3.3.1. dimH K ≥ s.

We set
V̄ n :=

∪
I∈In

V̄I .

Note that

K =
∞∩
n=1

V̄ n.

For a large n0, fix an abitrary I0 = i1 · · · in0 ∈ In0 , and consider V̄I0 = gI0(V̄ ) = fI0 ◦
· · · fi1i2 ◦ fi1(V̄ ). It suffices to prove that dimH KI0 ≥ s for KI0 := K ∩ VI0 . Therefore we
start with W := VI0 instead of V .

For every 1 ≤ i ≤ k, put

hi := fI0i : W̄ → W̄i = hi(W̄ ) ⊂ W̄ ,

and recall from the definition ∣∣∣∣ |hi(x), hi(y)|
|x, y|

− λi

∣∣∣∣ < o(n0),

where o(n0) = λiφ(ν
n0 |V |) and therefore limn0→∞ o(n0) = 0. For J = j1 · · · jm, define

gJ : W̄ → W̄J by
gJ := hJ ◦ · · · ◦ hj1j2 ◦ hj1 ,
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where we use the notation

hj1··jℓ := fIj1··jℓ : W̄j1··jℓ−1
→ W̄j1··jℓ ,

as before.

Lemma 3.3.2. For every x, y ∈ W̄ , we have∣∣∣∣ |gJ(x), gJ(y)||x, y|
− λJ

∣∣∣∣ < o(n0)λJ ,

where λJ = λj1 · · ·λjm.

Proof. Put Jℓ := j1 · ·jℓ for each 1 ≤ ℓ ≤ m. From Lemma 3.1.2, we obtain

|gJ(x), gJ(y)|
|x, y|

=
|gJm(x), gJm(y)|

|gJm−1(x), gJm−1(y)|
· · · |gJ2(x), gJ2(y)|

|gJ1(x), gJ1(y)|
|gJ1(x), gJ1(y)|

|x, y|

≤ λJ

∞
Π
ℓ=0

(1 + φ(νn0+ℓ|V |))

= λJ(1 + o(n0)).

An estimate from below is similar, and hence omitted.

For a small ϵ > 0 compared with |W |, let {Ui} be any ϵ-covering of K := KI0 .
Replacing Ui by balls Bi of radius less than |Ui|, we have a covering {Bi} of K. Thus∑

|Ui|s ≥ 2−s
∑

|Bi|.

Fix Bi and take c1 > 0 and c2 > 0 such that W contains a ball of radius c1|W | and is
contained in a ball of radius c2|W |.

Assertion 3.3.3. For each i, there is a simple family S = Si consisting of J satisfying
that W̄J is contained in a ball of radius c2|Bi| and contains a ball of radius λ̃minc1c2|Bi|
for some uniform constant 0 < λ̃min ≤ λmin.

Proof. We denote by I∞ the set of all infinite sequences J∞ = j1j2 · · · with 1 ≤ jℓ ≤ k for
all ℓ ≥ 1. For each J∞ = j1j2 · · · ∈ I∞, there is a unique m such that |Wj1···jm−1 | > c2|Bi|
and |Wj1···jm| ≤ c2|Bi|. Set J := j1 · · · jm. Obviously, WJ is contained in a a ball of rdius
c2|Bi|. Since W contains a ball of radius c1|W | and since WJ is open, WJ contains a ball
of radius (1− o(n0))λJc1|W |. From the choice of J ,

(1− o(n0))λJc1|W | ≥ (1− o(n0))
2λjmc1c2|Bi|.

This completes the proof.

Assertion 3.3.4. There is a measure µ = µS such that

µ =
∑
I∈S

λs
I(gI)∗(µ),

where λs
I = (λI)

s.
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Proof. Define F : M(W̄ ) → M(W̄ ) by

F (σ) =
∑

λs
I(gI)∗(σ).

It is straightforward to see that F is contracting. Then the conclusion follows from the
contraction mapping theorem.

For any W̄J ∈ S,

cs2|Bi|s ≥ |WJ |s ≥ |KJ |s ≥ (1− o(n0))λ
s
J |K|s. (3.3.1)

By Lemma 3.1.3, the number of W̄J ∈ S meeting Bi is uniformly bounded by some
constant C = C(δ), where δ = δ(c1, c2, λ̃min). Then

µ(Bi) =
∑
I∈S

λs
IµI(Bi) =

∑
I∈S

λs
IµI(Bi ∩ W̄I) (3.3.2)

≤ C(δ) max
I∈S,W̄I∩Bi ̸=ϕ

λs
I . (3.3.3)

It follows from (3.3.1) and (3.3.3) that

cs2|Bi|s ≥ (1− o(n0))C(δ)−1|K|sµ(Bi).

Since ∑
|J |=m

λs
J = 1,

for each m ≥ 1, by the same reason as Lemma 1.1.4, we have a unique measure µm such
that

µm =
∑
|J |=m

λs
J(gJ)∗(µm).

Assertion 3.3.5. For m > maxI∈S |I|, we have µ = µm.

Proof. For each J with |J | = m, there are unique I ∈ S and Jα such that J = IJα. Let
AI be the set of all the indices α with J = IJα for some J ∈ Im We now write as

µm =
∑

I∈S,α∈AI

λs
IJα(gIJα)∗(µm).

By iterating ℓ-times, we have

µm =
∑

J1,...,Jℓ∈Im

λs
J1
· · ·λs

Jℓ
(gJ1 ◦ · · · ◦ gℓ)∗(µm)

=
∑

Ii∈S,αi∈AIi

λs
I1Jα1

· · ·λs
IℓJαℓ

(gJ1 ◦ · · · ◦ gJℓ)∗(µm)
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and similarly, together with ∑
α∈AI

λs
Jα = 1,

we obtain

µ =
∑
I∈S

λs
I(gI)∗(µ)

=
∑

I1,...,Iℓ∈S

λs
I1···Iℓ(gI1 ◦ · · · ◦ gIℓ)∗(µ)

=
∑

Ii∈S,αi∈AIi

λs
I1Jα1

· · ·λs
IℓJαℓ

(gI1 ◦ · · · ◦ gIℓ)∗(µ)

It follows that

dM(µ, µm) ≤
∑

Ii∈S,αi∈AIi

λs
I1Jα1

· · ·λs
IℓJαℓ

sup
L(ϕ)≤1

∣∣∣∣∫ ϕ ◦ gIℓ ◦ · · · ◦ gI1 dµ−
∫

ϕ ◦ gJℓ ◦ · · · ◦ gJ1 dµm

∣∣∣∣
Here,

|
∫

ϕ ◦ gIℓ ◦ · · · ◦ gI1 dµ−
∫

ϕ ◦ gJℓ ◦ · · · ◦ gJ1 dµm|

≤
∣∣∣∣∫ ϕ ◦ gIℓ ◦ · · · ◦ gI1 dµ−

∫
ϕ ◦ gIℓ ◦ · · · ◦ gI1 dµm

∣∣∣∣
+

∣∣∣∣∫ ϕ ◦ gIℓ ◦ · · · ◦ gI1 dµm −
∫

ϕ ◦ gJℓ ◦ · · · ◦ gJ1 dµm

∣∣∣∣ .
For a constant λ̃ with λmax < λ̃ < 1, choose a large n0 such that (1 + o(n0))λmax < λ̃ < 1
for some uniform constant λ̃ < 1. Then the Lipschitz constant of gIℓ ◦ · · · ◦ gI1 satisfies

L(gIℓ ◦ · · · ◦ gI1) ≤ (1 + o(n0))
ℓλIℓ · · ·λI1 < λ̃I1···Iℓ

Therefore we obtain

|
∫

ϕ ◦ gIℓ ◦ · · · ◦ gI1 dµ−
∫

ϕ ◦ gIℓ ◦ · · · ◦ gI1 dµm|

≤ λ̃I1···Iℓ .

On the other hand, from the inclusion

gIℓ ◦ · · · ◦ gI1(W̄ ) ⊃ gJℓ ◦ · · · ◦ gJ1(W̄ ),
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we have

sup
x∈W̄

|ϕ ◦ gIℓ ◦ · · · ◦ gI1(x)− ϕ ◦ gJℓ ◦ · · · ◦ gJ1(x)|

≤ |gIℓ ◦ · · · ◦ gI1(W̄ )|
≤ (1 + o(n0))

ℓλIℓ · · ·λI1 < λ̃I1···Iℓ

Thus letting n = minI∈S |I|, we have

dM(µ, µm) ≤
∑

I1,...,Iℓ,α1,...,αℓ

λs
I1Jα1

· · ·λs
IℓJαℓ

λ̃I1···Iℓ(dM(µ, µm) + 1)

≤ λ̃nℓ
∑

I1,...,Iℓ,α1,...,αℓ

λs
I1Jα1

· · ·λs
IℓJαℓ

(dM(µ, µm) + 1)

= λ̃nℓ
∑

I1,...,Iℓ∈S

λs
I1
· · ·λs

Iℓ
(dM(µ, µm) + 1)

= λ̃nℓ(dM(µ, µm) + 1),

which yields

dM(µ, µm) <
1

1− λ̃nℓ
λ̃nℓ.

Letting ℓ → ∞, we conclude that µ = µm.

From the last assertion, we have

supp(µ) ⊂
∞∩

m=1

 ∪
|J |=m

gJ(W̄ )

 = K.

It follows that ∑
2−s|Bi|s ≥ (1− o(n0))c

−s
2 C(δ)−1|K|

∑
µ(Bi)

≥ (1− o(n0))c
−s
2 C(δ)−1|K|.

This shows that dimH K ≥ s. We have completed the proof of lemma 3.3.1.
These complete the proof of dimH K = s in Theorem 5.

3.4 Proof of dimBK ≤ s

In this section, we show dimBK ≤ s. The notation of Section 3.3 will be used in this
section.

Lemma 3.4.1. dimBK ≤ s.

– 33 –



Proof. For every ϵ > 0 and J = j1j2 · · · ∈ I∞, take a minimal m satisfying |WJ ′| ≤ ϵ for
J ′ := Jm = j1 · · · jm. Note that

ϵλmin/2 ≤ |WJ ′|. (3.4.4)

Thus we have a simple family S = {J ′ | J ∈ I∞ }. Note also that∑
J ′∈S

λs
J ′ = 1. (3.4.5)

By Lemma 3.3.2, we have ∣∣∣∣ |WJ ′|
|W |

− λλ′
J

∣∣∣∣ < λJ ′o(n0). (3.4.6)

It follows from (3.4.4) and (3.4.6) that

(ϵλmin/2)
s ≤ 2sλs

J ′ |W |s.

Using (3.4.5), we obtain ∑
J ′∈S

(ϵλmin/2)
s ≤ 2s|W |s,

which yields that
Nϵ(K) ≤ 2s|W |s(ϵλmin/2)

−s.

This shows that dimB K ≤ s.

It follows from Lemmas 3.3.1, 3.4.1 and 1.1.1 that dimH K = dimB K = s. This
completes the proof of Theorem 5.
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Chapter 4

Examples of asymptotic self-similar
sets

In this chapter, we give several examples of asymptotic self-similar sets on the curved
spaces by using asymptotic similarity maps, which is introduced in Introduction. In Sec-
tion 4.1, we will use (λ, c, ν)-almost similarity maps. In Section 4.2, we will use (λ, φ, ν)-
almost similarity maps.

4.1 Asymptotic self-similar sets in Riemannian man-

ifolds

In this section, we construct an asymptotically generalized Cantor set in a complete
Riemannian manifold by using notion of (λ, c, ν)-almost similarity maps.

Let M be a complete Riemannian manifold. For a point p ∈ M , let B(0, r) = {υ ∈
TpM | ∥υ∥ ≤ r}. If r is sufficiently small, then the exponential map expp : B(0, r) → M
is a diffeomorphism onto B(p, r) = {q ∈ M |d(p, q) ≤ r}. For any υ ∈ B(0, r), let γυ be a
geodesic such that γυ(0) = p, γ̇υ(0) = υ. Then by definition, expp(υ) = γυ(1).

Let KM be the sectional curvature of M . Take a positive number Λ such that −Λ2 ≤
KM ≤ Λ2 on B(p, r). By Rauch Comparison Theorem(cf.[9]), for any u, v ∈ B(0, r),

sinΛr

Λr
≤ d(expp(u), expp(v))

∥u− v∥
≤ sinhΛr

Λr
.

Proposition 4.1.1. For a constant λ with 0 < λ < 1, let p1 ∈ B(p, r) ⊂ M with
d(p1, p) ≤ (1− λ)r. Let f̃1 : Tp1M → Tp1M be the λ-similarity map given by v 7→ λv. Let
I0 : TpM → Tp1M be a linear isometry. Let A0 := B(p, r), Ã0 := exp−1

p (A0) = B(0p, r) ⊂
TpM, Ã1 := I0(Ã0) = B(0p1 , r) ⊂ Tp1M, B̃1 := f̃1(Ã1) = B(0p1 , λr), A1 := expp1(B̃1) =
B(p1, λr). Then f0 := expp1 ◦ f̃1 ◦ I0 ◦ exp−1

p : A0 → A1 is a (λ, c, ν)-similarity map, where

c = Λ2

16
(λ2 + 1).
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Proof. For any x, y ∈ A0, by Rauch Comparison Theorem ([9]), we have

d(e−1(x), e−1(y))

d(x, y)
≤ Λr

sinΛr
,

d(f0(x), f0(y))

d(f̃1(I0(e−1(x))), f̃1(I0(e−1(y))))
≤ sinhΛλr

Λλr
,

and therefore
d(f0(x), f0(y))

d(x, y)
≤ λ

Λr

sinΛr

sinhΛλr

Λλr
,

where e−1 = exp−1
p .

When r ≪ 1, by Taylor expansion we get

Λr

sinΛr
≤ 1 +

1

7
Λ2r2,

sinhΛλr

Λλr
≤ 1 +

1

7
Λ2λ2r2.

Thus, we have

d(f0(x), f0(y))

d(x, y)
≤ λ

Λr

sinΛr

sinhΛλr

Λλr

≤ λ(1 +
1

7
Λ2r2)(1 +

1

7
Λ2λ2r2)

≤ λ(1 +
1

7
Λ2λ2r2 +

1

7
Λ2r2 +

1

49
Λ4λ2r4)

≤ λ(1 +
1

8
Λ2λ2r2 +

1

8
Λ2r2) (r ≪ 1)

≤ λ+ λ(
1

8
Λ2λ2r2 +

1

8
Λ2r2).

Furthermore, since |A0| = 2r, we obtain

d(f0(x), f0(y))

d(x, y)
− λ ≤ λΛ2

8
(λ2 + 1)r2 (r ≪ 1)

≤ λΛ2

16
(λ2 + 1)2r

=
λΛ2

16
(λ2 + 1)|A0|.

Similarly, we have d(f0(x),f0(y))
d(x,y)

− λ ≥ −λΛ2

16
(λ2 + 1)|A0|. Letting c = Λ2

16
(λ2 + 1), we obtain

|d(f0(x),f0(y))
d(x,y)

− λ| ≤ λc|A0|, and hence f0 is a (λ, c, ν)-similarity map.
Using proposition as above, we can obtain the following.

Example 4.1.2. For 0 < λ ≤ 1
2
, let k0 be a maximal number of disjoint closed balls of

radius λ which is contained in the unit ball of Rn. Let M be an n-dimensional complete
Riemannian manifold of Ricci curvature ≥ (n − 1)κ and p ∈ M for a constant κ. If r is
sufficiently small, then B(p, r) is almost isometric to B(0, r) ⊂ TpM . Let 1 < k ≤ k0 and
r1 = λr. Then we can take k disjoint balls {B(pi, r1)}ki=1 in B(p, r). By Proposition 4.1.1,
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B(pi, r1) is a (λ, c, ν)-similar set of B(p, r) for some uniform constant c. let r2 = λr1, then
we can take k disjoint balls {B(pij, r2)}kj=1 in each ball B(pi, r1), and B(pij, r2) is a(λ, c, ν)-
similar set of B(pi, r1). Repeating this procedure, we can construct basic sets B(pi1···in , rn)
(rn = λnr, i1, · · · , in = 1, 2, · · · k), and we can define an asymptotic self-similar set C in
M as

C :=
∞∩
n=1

(
k∪

i1,...,in=1

B(pi1···in , rn)).

Let µ be the Riemannian measure of M . We denote by V n
κ (r) the volume of a r-ball in

the n-dimensional space form Mn
κ of constant curvature κ. By Theorem 1.4.2, we have

µ(B(x0, r))

µ(B(x0, δr))
≤ V n

κ (r)

V n
κ (δr)

=

∫ r

0
sinh

√
|κ|tdt∫ δr

0
sinh

√
|κ|tdt

≤ Cn,κ(δ),

for any x0 ∈ M and 0 < δ, r < 1, where Cn,κ(δ) is a positive constant depending only on
n, κ and δ.

Hence by Theorem 3, we have dimH C = − log k
log λ

.

4.2 Sierpinski gaskets on surfaces

In this section, we determine the Hausdorff dimensions of the generalized Sierpinski gas-
kets, which is constructed on the convex domains of surfaces.

Let D be a domain in a complete surface M . We assume that D is convex in the sense
that for every p ∈ D, the distance function dp(·) = d(p, ·) from p is convex in D. For
simplicity, we assume that the absolute value of the Gaussian curvature of M is at most
1 on D. Let ∆ be a domain in D bounded by a geodesic triangle. We call ∆ a geodesic
triangle region.

Definition 4.2.1. We say that ∆ is δ-non-degenerate if each angle α̃ of a comparison
triangle ∆̃ of ∆ in R2 satisfies δ < α̃ < π − δ, where a comparison triangle means that ∆̃
has the same side-length as ∆.

Let {∆I}I∈I3 be the system of geodesic triangles obtained by dividing ∆ into smaller
triangles ∆I consecutively, as stated in Introduction.

Definition 4.2.2. We say that the system {∆I}I∈I3 is non-degenerate if there is a δ > 0
such that ∆I is δ-non-degenerate for every I ∈ I3. In this case, we also say that ∆ is
asymptotically non-degenerate.

Example 4.2.3. Let S2 denote the unit sphere around the origin in R3, and let ∆ be a
geodesic triangle domain on S2 of perimeter less than 2π. Joining the vertexes p1, p2, p3 of
∆ by shortest segments in R3, we have a geodesic triangle region ∆̃ on the plane through
p1, p2, p3. By the projection along the rays from the origin of R3, we have a canonical map

π : ∆ → ∆̃,

– 37 –



which is a bi-Lipschitz homeomorphism. From the canonical decomposition {∆I}I∈I3 of
∆, setting ∆̃I := π(∆I), we have the canonical decomposition {∆̃I}I∈I3 of ∆̃. Note that
each ∆̃I is 2−|I|-similar to ∆̃ in the usual sense. Since ∆I is bi-Lipschitz homeomorphic
to ∆̃I ,

Area(∆I) ≥ L−2Area(∆̃I),

where L is the bi-Lipschitz constant of π. It follows that ∆ is asymptotically non-
degenerate. Now we have the formula (6) for the Sierpinsli gasket K∆ associated with ∆
by two reasons. One is by Theorem 6 and the other one is due to the well-known formula
for K∆̃.

Example 4.2.3 is the special case. For a geodesic triangle region on a general complete
surface, there is no canonical map ∆̃ → ∆ as in Example 4.2.3. It seems impossible to
reduce the problem to a triangle region in R2 in general.

The main purpose of this section is to prove the following result.

Theorem 4.2.4. For every δ > 0 there exists an r > 0 such that

1. every geodesic triangle region ∆ on D with |∆| ≤ r is asymptotically non-degenerate;

2. the Hausdorff and box dimensions of the Sierpinski gasket K∆ associated with ∆ are
given by (6).

If ∆ be asymptotically non-degenerate as in Theorem 6, we can apply Theorem 4.2.4
to ∆I for each I ∈ I3 with large enough |I|. Therefore Theorem 4.2.4 yields Theorem 6.

The following lemma is a consequence of law of cosine, and hence is omitted.

Lemma 4.2.5. For any δ > 0 there exists an ϵ > 0 such that if a geodesic triangle ∆ of
side length (a1, a2, a3) is δ-non-degenerate, and if the side length (a′1, a

′
2, a

′
3) of a geodesic

triangle ∆′ satisfies

(1− ϵ)
aj
ai

<
a′j
a′i

< (1 + ϵ)
aj
ai
, (4.2.1)

for any i ̸= j, then ∆′ is δ/2-non-degenerate.

Proof. We may assume that ∆ and ∆′ are triangles in R2. Set (a, b, c) := (a1, a2, a3) and
(a′, b′, c′) := (a′1, a

′
2, a

′
3) for simplicity. Rescaling ∆′, we may assume that c = c′. It suffices

to show that if ∆′ has side-length (a′, b′, c′) = (a′, b, c) satisfying (4.2.1), then the angles
α, β (resp. α′, β′) opposite to the edges of length a and b in ∆ (resp a′ and b in ∆′)
satisfy that |α′ − α| < δ/4 and |β′ − β| < δ/4 for a suitable ϵ = ϵ(δ) > 0.

Sublemma 4.2.6. If a geodesic triangle ∆ of side lengths (a1, a2, a3) is δ-non-degenerate,
then there exists a constant C(δ) such that

C(δ)−1 <
aj
ai

< C(δ),

for every 1 ≤ i, j ≤ 3.
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Proof. This is an immediate consequence of the law of sines. One can take C(δ) =
1/ sin δ.

By trigonometry, we have

sin2 α/2 = (a+ c)(a+ b)/bc, sin2 α′/2 = (a′ + c)(a′ + b)/bc.

It follows from the assumption and Sublemma 4.2.6 with |a′ − a| < ϵa that

| sin2 α′/2− sin2 α/2| ≤ a(a+ a′b+ c)ϵ/bc ≤ 5C(δ)2ϵ. (4.2.2)

Since sinα′/2 + sinα/2 > sin(δ/2), we obtain

| sinα′/2− sinα/2| ≤ 5C(δ)2ϵ/ sin(δ/2).

From α < π − 2δ, we have cos α′+α
4

> sin(δ/4). It follows that

|α′ − α| ≤ 8

∣∣∣∣sin α′ − α

4

∣∣∣∣ < 5C(δ)2ϵ/ sin2(δ/4). (4.2.3)

Similarly we have

| sin2 β′/2− sin2 β/2| = |a− a′|b(b+ c)/aa′c ≤ b(b+ c)ϵ/ca′

≤ ϵ

1− ϵ

b(b+ c)

a
≤ ϵ

1− ϵ
2C(δ)2,

which implies

|β′ − β| < 8ϵ

1− ϵ

(
C(δ)

sin(δ/2)

)2

. (4.2.4)

Thus from (4.2.3), (4.2.4), we obtain |α′ − α| < δ/4 and |β′ − β| < δ/4 for a suitable
ϵ ≤ ϵ(δ). This completes the proof.

Let ∆ be a geodesic triangle region on D bounded by a geodesic triangle (γ1, γ2, γ3)
with vertices p1, p2, p3. By the convexity of D, we have

|∆| = max
1≤i≤3

ai,

where we put ai := L(γi). Fix a vertex p1 and let γi be parametrized on [0, 1] in such a
way that γ2(0) = γ3(0) = p1. Let φ : [0, 1] × [0, 1] → ∆ be a parametrization of ∆ such
that t → φ(t, s), 0 ≤ t ≤ 1, is the geodesic, denoted by σs, from γ2(s) to γ3(s) for each
s ∈ [0, 1]. Namely φ(t, s) = σs(t). We set

a1(s) := L(σs).

Now define the map f1 : ∆ → ∆ by

f1(φ(t, s)) = φ(t, s/2).

Note that the image ∆1 of f1 is the geodesic triangle region bounded by (γ2|[0,1/2], γ3|[0,1/2], σ1/2)
and that ∆1 has side-length (a1(1/2), a2/2, a3/2). We put

r := |∆|.
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Lemma 4.2.7. For any s ∈ (0, 1), we have

1− r2 <
a1(s)

sa1
< 1 + r2.

In particular, |∆1| ≤ 1
2
(1 + r2)|∆|.

Proof. Let γ̃i(s) := exp−1
p1
(γi(s)), i = 2, 3. The Rauch comparison theorem (see [9])

implies

sin r

r
<

a1
d(γ̃2(1), γ̃3(1))

<
sinh r

r
(4.2.5)

sin r

r
<

a1(s))

d(γ̃2(s), γ̃3(s))
<

sinh r

r
. (4.2.6)

Since d(γ̃2(s), γ̃3(s)) = sd(γ̃2(1), γ̃3(1), the conclusion follows.

Let us denote by (a1,1, a1,2, a1,3) the side length (a1(1/2), a2/2, a3/2) of ∆1. Lemma
4.2.7 implies that

(1− r2)
ai
aj

<
a1,i
a1,j

< (1 + r2)
ai
aj
, (4.2.7)

for every 1 ≤ i, j ≤ 3.
In a similar way, we construct a map fi1 : ∆ → ∆i1 ⊂ ∆ for each 1 ≤ i1 ≤ 3.

Repeating this procedure for each ∆i inductively, for each multi-index I = i1 · · · in−1in,
we have a geodesic triangle region ∆I and a map fI : ∆I′ → ∆I , where I ′ = i1 · · · in−1.
The side-length (aI,1, aI,2, aI,3) of ∆I is also suitably defined inductively. Take r < 1 and
set

ν :=
1

2
(1 + r2) < 1.

Lemma 4.2.8. There exists an L(r) > 1 such that for every I and 1 ≤ i, j ≤ 3

L(r)−1 ai
aj

<
aI,i
aI,j

< L(r)
ai
aj
.

Proof. Repeating use of (4.2.7) and Lemma 4.2.7 applied to s = 1/2 implies that for each
I = i1 · · · im,

(1− r2m) · · · (1− r21)(1− r2)
ai
aj

<
aI,i
aI,j

< (1 + r2m) · · · (1 + r21)(1 + r2)
ai
aj

for every 1 ≤ i, j ≤ 3, where rk := |∆i1···ik |, 1 ≤ k ≤ m. Since

rk ≤
1

2
(1 + r2k−1)rk−1 < νrk−1 < · · · < νkr.

it follows that

Π∞
m=0

(
1− ν2mr2

) ai
aj

<
aI,i
aI,j

< Π∞
m=1

(
1 + ν2mr2

) ai
aj
. (4.2.8)

This completes the proof.
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From (4.2.8), one can take L(r) as

L(r) := e
2r2

1−ν2 .

For every s ∈ (0, 1] we denote by ∆(1 : s) the geodesic triangle (γ2|[0,s], γ3|[0,s], σs).
Similarly, ∆(i : s) and ∆I(i : s) are defined for every 1 ≤ i ≤ 3 and every multi-index
I ∈ I3.

Lemmas 4.2.5, 4.2.7 and 4.2.8 imply

Lemma 4.2.9. For every δ > 0, there exists a positive number r such that if ∆ is δ-
non-degenerate and the diameter |∆| of ∆ is less than r, then ∆I as well as ∆I(i : s) is
δ/2-non-degenerate for every multi-index I, 1 ≤ i ≤ 3 and s ∈ (0, 1).

By Lemma 4.2.9, we get the conclusion (1) of Theorem 4.2.4. In view of Theorem 5,
to prove the conclusion (2) of Theorem 4.2.4, it suffices to prove the following.

Theorem 4.2.10. There is a positive numbers c = c(δ) such that {(∆I , fI)}I∈I3 gives a
(1/2, φc, ν)-asynptotic similarity system, where φc(x) = cx2.

Proof. In view of Lemma 4.2.9, it suffices to prove that the map f := f1 : ∆ → ∆1 ⊂ ∆
is a (1/2, φc, ν)-almost similarity map for a uniform positive constant c = c(δ). Note that
Js(t) :=

∂φ
∂s
(t, s) is a Jacobi field along σs. Set Ts(t) :=

∂φ
∂t
(t, s) = σ̇s(t). Observe that

df(Ts(t)) = Ts/2(t), df(Js(t)) =
1

2
Js/2(t). (4.2.9)

Lemma 4.2.7 shows that ∣∣∣∣L(σs/2)

L(σs)
− 1

2

∣∣∣∣ < 3r2,

which implies that ∣∣∣∣ |df(Ts)|
|Ts|

− 1

2

∣∣∣∣ < 3r2. (4.2.10)

Next we show

Lemma 4.2.11. For every s, u ∈ (0, 1] and t ∈ [0, 1], we have∣∣∣∣ |Ju(t)||Js(t)|
− 1

∣∣∣∣ < C(δ)r2. (4.2.11)

From now on, we shall use the general symbols C(δ) or c(δ) to denote constants
depending only on δ unless otherwise stated.

Proof. For any fixed s, take unique Jacobi fields Y1 and Y2 along σs and the reverse
geodesic σ−

s (t) := σ(1− t) respectively such that

Y1(0) = 0, Y1(1) = Js(1), Y2(1) = Js(0), Y2(0) = 0,
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to have
Js(t) = Y1(t)) + Y2(1− t).

We dente by S2 and H2 the sphere and the hyperbolic plane of constant curvature 1 and
−1 respectively.

Recall that ∆ is a δ-non-degenerate geodesic triangle region of side lengths (a1, a2, a3)
in D whose diameter is denoted by r.

Lemma 4.2.12. Let αi+ and αi−be the angles of comparison triangles ∆+ and ∆− of ∆
in S2 and H2 respectively at the vertices opposite to the edge of length ai. Then we have

|αi+ − αi−| < C(δ)r2.

Proof. Put (a, b, c) := (a1, a2, a3), and let α+, α− and α be the angles of comparison
triangles of ∆ in S2, H2 and R2 respectively at the vertices opposite to the edge of length
a. By the laws of cosines, we have

sin b sin c cosα+ = cos a− cos b cos c

sinh b sinh c cosα− = cosh b cosh c− cosh a

2bc cosα = b2 + c2 − a2,

which imply

2bc cosα+ = 2bc cosα +O(b3c) +O(bc3) +O(b2c2) +O(a4)

2bc cosα− = 2bc cosα +O(b3c) +O(bc3) +O(b2c2) +O(a4).

It follows from Sublemma4.2.6 that

| cosα+ − cosα| ≤ O(b2) +O(c2) +O(bc) +O(a4/bc)

≤ C(δ)r2.

Since δ < α < π − δ, we obtain |α+ − α| ≤ C(δ)r2. Similarly we get |α− − α| ≤ C(δ)r2,
and hence |α+ − α−| ≤ C(δ)r2.

Let αs and βs be the angle of the geodesic triangle ∆(1 : s) = (γ2|0,s], γ3|[0,s], σs) at
γ2(s) and γ3(s) respectively.

Lemma 4.2.13.
|αs − αt| < c(δ)r2, |βs − βt| < c(δ)r2,

for every s, t ∈ (0, 1].

Proof. Let α+
s , α−

s , α0
s denote the angles of comparison triangles in S2, H2, and R2

respectively at the vertices coresponding γ2(s). By Toponogov’s theorem (cf. [9]), we
have

α−
s ≤ αs, α

0
s ≤ α+

s . (4.2.12)
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By the law of cosines, we have

cosα0
s =

a22 + (a1(s)/s)
2 − a23

2a2(a1(s)/s)

cosα0
t =

a22 + (a1(t)/t)
2 − a23

2a2(a1(t)/t)
,

which imply with Lemma4.2.7

cosα0
s − cosα0

t

≤ a22 + a21(1 + r2)− a23
2a2a1(1− r2)

− a22 + a21(1− r2)− a23
2a2a1(1 + r2)

=
r2(2a21 + a22 − a23)

a1a2(1− r2)(1 + r2)

=
r2

1− r4

(
2a1
a2

+
a2
a1

− a23
a1a2

)
≤ C(δ)r2.

Revercing the role of s and t, we have

| cosα0
s − cosα0

t | ≤ C(δ)r2.

By Lemma 4.2.9, we have δ/2 < (α0
s+α0

t )/2 < π−δ/2, which implies sin
α0
s+α0

t

2
> sin(δ/2).

Therefore we conclude that

|α0
s − α0

t | ≤ 4

∣∣∣∣sin(α0
s − α0

t

2

)∣∣∣∣ ≤ C1(δ)r
2.

where C1(δ) :=
2C(δ)

sin(δ/2)
Using (4.2.12) and Lemma 4.2.12, we see

αs ≤ α0
s + C(δ)r2

≤ α0
t + C(δ)r2 + C1(δ)r

2

≤ αt + 2C(δ)r2 + C1(δ)r
2.

Reversing the role of s and t completes the proof.

Next we analyze the behavior of the norm of Jacobi field Js. For a fixed s ∈ (0, 1],
let Yi(t) = Y N

i (t) + Y T
i (t), i = 1, 2, be the orthogonal decompositions of Yi to the normal

and tangential components to σ̇s. We can write Yi(t) and Yi(t)
N as

Y1(t) = d expγ2(s)(t(V1)tσ̇s(0)), Y2(t) = d expγ3(s)(t(V2)tσ̇−
s (0)), (4.2.13)

Y N
1 (t) = d expγ2(s)(t(V

N
1 )tσ̇s(0)), Y N

2 (t) = d expγ3(s)(t(V
N
2 )tσ̇−

s (0)), (4.2.14)
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where V1 and V2 are some parallel vector fields on the tangent spaces satisfying

d expγ2(s)((V1)σ̇s(0)) = γ̇3(s), d expγ3(s)((V2)σ̇−
s (0)) = γ̇2(s).

The Rauch comparison theorem shows that

|Y N
1 (t)| ; t|V N

1 | ; t|γ̇3(t)N |, |Y N
2 (1− t)| ; (1− t)|V N

2 | ; (1− t)|γ̇2(t)N |.

Here and hereafter we use the symbol a ; b whenever
∣∣a
b
− 1
∣∣ < C(δ)r2. It follows from

dimM = 2 that

|JN
s (t)| = |Y N

1 (t)|+ |Y N
2 (1− t)| (4.2.15)

; t|γ̇3(t)N |+ (1− t)|γ̇2(t)N | (4.2.16)

= t sin βsa3 + (1− t) sinαsa2, (4.2.17)

where we recall ai = L(γi) = |γ̇i(t))|. Similarly we have

|JN
u (t)| ; t sin βua3 + (1− t) sinαua2.

It follows from that
|JN

s (t)| ; |JN
u (t)|. (4.2.18)

Next we show that
|JT

s (t)| ; |JT
u (t)|. (4.2.19)

We use the expression (4.2.13) with Gauss’s lemma to obtain

⟨Y1(t), Ts(t)⟩ = ta3|Ts| cos βs,

⟨Y2(t), Ts(t)⟩ = −(1− t)a2|Ts| cosαs.

Thus we get
|JT

s (t)| = |ta3 cos βs − (1− t)a2 cosαs|.
From an inequality for |JT

u (t)| similar to the above and Lemma 4.2.13, we have (4.2.19).
Now (4.2.11) follows from (4.2.18), (4.2.19). Thus we have completed the proof of Lemma
4.2.11.

The expression (4.2.13) also yields

|Y1(t)| ; t|V1| ; ta3, |Y2(1− t)| ; (1− t)|V2| ; (1− t)a2.

In particular we have
|Js(t)| ≤ 2r. (4.2.20)

Since |JN
s (t)| ≥ c(δ)r from (4.2.17), (4.2.20) implies that the angle θs(t) := ∠(Js(t), Ts(t))

has definite lower and upper bounds:

0 < c(δ) ≤ θs(t) ≤ π − c(δ). (4.2.21)
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(4.2.9), (4.2.10), (4.2.11) and (4.2.21) yield that∣∣∣∣ |df(v)||v|
− 1

2

∣∣∣∣ < C(δ)r2,

for every tangent vector v. Thus we conclude that f : ∆ → ∆1 is a (1/2, φC(δ), ν)-almost
similarity map, with φC(δ)(x) = C(δ)x2. This completes the proof of Theorem 4.2.10.

Finally we show Corollary 7 in Introduction .

Proof of Corollary 7. In view of Theorem 5, it suffices to show that for a geodesic triangle
region ∆ on a convex domain of a complete surface, if the collection {(∆I , fI)}I∈I3 gives
a ({1/2, 1/2, 1/2}, φC , ν)-asymptotic similarity system with φC(x) = Cx2 and 0 < ν < 1,
then ∆ is asymptotically non-degenerate.

For a large n0, fix an abitrary I0 = i1 · · · in0 ∈ In0 , and set

W := ∆I0 = gI0(∆) = fI0 ◦ · · · fi1i2 ◦ fi1(∆).

For every 1 ≤ i ≤ k, put

hi := fI0i : W → Wi = hi(W ) ⊂ W,

and recall from the definition ∣∣∣∣ |hi(x), hi(y)|
|x, y|

− λi

∣∣∣∣ < o(n0),

where o(n0) = λiφ(ν
n0 |∆|) and therefore limn0→∞ o(n0) = 0. For J = j1 · ·jm, define

gJ : W → WJ by
gJ := hJ ◦ · · · ◦ hj1j2 ◦ hj1 ,

where we use the notation

hj1··jℓ := fIj1··jℓ : Wj1··jℓ−1
→ Wj1··jℓ ,

as before. By Lemma 3.3.2, we have∣∣∣∣ |gJ(x), gJ(y)||x, y|
− λJ

∣∣∣∣ < o(n0)λJ ,

for every x, y ∈ W . We denote by inrad(W ), the inradius of W , the largest r > 0 such
that an r-ball is contained in W . It follows that

|WJ |
inrad(WJ)

≤ 1 + o(n0)

1− o(n0)

|W |
inrad(W )

,

for every J ∈ I3. This implies that there exists a δ > 0 such that ∆I is δ-nondegenerate
for every I ∈ I3.

This completes the proof of Corollary 7.
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Chapter 5

Self-similar sets as boundaries of
trees

In this chapter, we consider the self-similar sets by using contracting similarity maps in
some trees, and give several examples of CAT(0)-spaces.

Let X be a metric space. Let Isom(X) denote the set of all isometries on X. We say
that A ⊂ X is homogeneous in X if for any x, y ∈ A there is a isometry g ∈ Isom(X)
such that g(x) = y and g(A) = A.

In this chapter, we prove the following.

Proposition 5.0.14. For any constant s with 0 < s < 1, there exists some 1-dimensional
CAT(0) space X such that

(1) dimH(∂X) = s.

(2) ∂X is a self-similar set.

(3) ∂X is homogeneous in X.

(4) L(X) < ∞, where L denote the length of X.

Proposition 5.0.15. For s = 1, there exists some 1-dimensional CAT(0) space X such
that

(1) dimH(∂X) = 1.

(2) ∂X is a self-similar set.

(2) ∂X is homogeneous in X.
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5.1 Self-similar sets in trees

In this section, we first construct some tree, and define a self-similar set as following.
Let us consider a tree X0 with vertices { P0, Pw1···wk

| wi ∈ {1, 2}, i = 1, 2, · · · , k, k ≥
1, } defined as follows. First we fix a constant 0 < λ < 1. We begin with the two
edges [P0P1], [P0P2] of length

λ
2
. For each w ∈ {1, 2}, the edge [P0Pw] branches at Pw

into two edges [PwPw1], [PwPw2] of length (λ
2
)2. In general, for w1, · · · , wk ∈ {1, 2},

the edge [Pw1···wk−1
Pw1w2···wk

] branches at Pw1w2···wk
into two edges [Pw1w2···wk

Pw1w2···wk1],
[Pw1w2···wk

Pw1w2···wk2] of length (λ
2
)k+1. In this way, we construct the infinite tree X0. Note

that the distance on X0 is naturally defined by using the length of edges. Let X be the
completion of X0, and let ∂X be the set of points of X at which some shortest path cannot
extend anymore. We define

C := ∂X = X\X0.

Obviously, X is a CAT(0) space. Next, we consider C as a self-similar set ([49], [7])
as follows. Let Xw1w2···wk

be the union of shortest paths from Pw1w2···wk
to C. For each

w ∈ {1, 2}, we define the map fw : X → Xw by

fw(P0) = Pw,

fw(Pw1w2···wk
) = Pww1w2···wk

.

Then, it is a λ
2
-similarity map. From the iterated function system {f1, f2}, we have a

self-similar set C. In a terminology of asymptotic self-similar sets, we proceed as follows.
In general, for w1, w2, · · · , wk ∈ {1, 2}, we define the map fw1w2···wk

: Xw1w2···wk−1
→

Xw1w2···wk
by

fw1w2···wk
= fwk

|Xw1w2···wk−1
.

More concretely,

fw1w2···wk
(Pw1w2···wk−1

) = Pw1w2···wk
,

fw1w2···wk
(Pw1···wk−1vk···vl) = Pw1···wkvk···vl .

It is also a λ
2
-similarity map. We define C as the limiting set

C :=
∞∩
k=1

(
2∪

w1,...,wk=1

Xw1···wk
). (5.1.1)

Then C is a self-similar set in the sense [7]. Furthermore, C satisfies the following
property.

Lemma 5.1.1. C is homogeneous in X.

Proof. Let φ0 ∈ Isom(X) be the reflection of X at P0 such that for {w1, w
′
1} = {1, 2}

φ0(P0) = P0, φ0(Pw1) = Pw′
1
,

φ0(Pw1w2···wk
) = Pw′

1w2···wk
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for any w2, · · · , wk ∈ {1, 2}. For w1, w2, · · · , wk ∈ {1, 2} we set

Fw1···wk
:= fw1···wk

◦ · · · ◦ fw1w2 ◦ fw1 ,

where fw1···wk
is the λ

2
-similarity maps defined in the construction of C, k = 1, 2, 3, · · · .

Let

φw1···wk
:=

{
Fw1···wk

◦ φ0 ◦ Fw1···wk

−1 on Xw1···wk

id on X\Xw1···wk
.

Then, φw1···wk
∈ Isom(X), and it is the reflection of X at Pw1···wk

.
Namely, that satisfies

φw1···wk
(Pw1···wk

) = Pw1···wk
,

φw1···wk
(Pw1···wkwk+1

) = Pw1···wkw
′
k+1

,

φw1···wk
(Pw1···wkwk+1···wl

) = Pw1···wkwk+1
′···wl

,

where {wk+1, w
′
k+1} = {1, 2}.

For any x, y ∈ C, we take sequences {Pw1···wk
} and {Pv1···vk} such that

x = lim
k→∞

Pw1···wk
,

y = lim
k→∞

Pv1···vk .

Put

I = { i ∈ N | wi ̸= vi } = { i1 < i2 < · · · < ik · · · }.

Then, for any i ∈ I, we have vi = w′
i because {wi, w

′
i} = {1, 2}. Also we have vi = wi for

any i ∈ N− I. Then we can let

x = lim
k→∞

Pw1···wi1−1wi1
···wi2

···wik
,

y = lim
k→∞

Pv1···vi1−1vi1 ···vi2 ···vik

= lim
k→∞

Pw1···wi1−1w′
i1
···w′

i2
···w′

ik
.

We set
yk = φw1···w′

i1
···w′

i2
···w′

ik−1
◦ · · · ◦ φw1···w′

i1
···wi2−1

◦ φw1···wi1−1
(x).

Then by the definition of φw1···wk
, we have

y = lim
k→∞

yk (5.1.2)

We set
gk = φw1···w′

i1
···w′

i2
···w′

ik−1
◦ · · · ◦ φw1···w′

i1
···wi2−1

◦ φw1···wi1−1
,

and define g ∈ Isom(X) by g = lim
k→∞

gk. Namely,

g(z) = lim
k→∞

gk(z),

for any z ∈ X. Then (5.1.2) means g(x) = y. This completes the proof.
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5.2 Properties

In this section, we will prove that the tree X is a doubling metric space. Note that X is
the tree constructed in Section 5.1.

Indeed, X satisfies the following property.

Lemma 5.2.1. Let X be the tree defined as above, and let µ be the measure determined
by length. Then, for any x0 ∈ X, r > 0, and 0 < δ < 1.,

µ(B(x0, r))

µ(B(x0, δr))
≤ cλ(δ),

where cλ(δ) > 0 is a constant depended only on δ and λ.

Proof. Let ∂Br := ∂B(x0, r), µr := µ
(
B(x0, r)

)
, and an := d(Pw1···wn−1 ,

Pw1···wn) = (λ
2
)n. Then we have

µ(Xw1···wk
) = 2

ak+1

1− λ
,

d(Pw1···wk
, C) =

ak+1

1− λ
2

.

Note that

d(Pk+1, C) < d(Pk, Pk+1),

and there some integers k, l, n satisfy k < l < n.

Let

∂Br ∩ ( Pw1···wk−1
, Pw1···wk

] ̸= ∅, α : = d
(
∂Br, Pw1···wk

)
,

∂Bδr ∩ ( Pw1···wl−1
, Pw1···wl

] ̸= ∅, β : = d
(
∂Bδr, Pw1···wl

)
.

To prove the lemma, we consider the following three Cases(1)(2)(3).

Case (1). The center x0 of the balls is on the boundary of the tree (x0 ∈ C).

Then we have

r = α + d(Pw1···wk
, x0) = α +

ak+1

1− λ
2

, α ∈ [ 0, ak
)
,

δr = β + d(Pw1···wl
, x0) = β +

al+1

1− λ
2

, β ∈ [ 0, al
)
,
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and hence

δ =
δr

r
=

β + al+1

1−λ
2

α + ak+1

1−λ
2

=
β(1− λ

2
) + al+1

α(1− λ
2
) + ak+1

<
β + al+1

α(1− λ) + ak+1

,

which gives

α(1− λ) + ak+1 <
1

δ
(β + al+1). (5.2.3)

Furthermore, we have {
µr = 2α + ak+1

1−λ
, if α ∈ [0, ak+1],

µr ≤ α + 2ak+1

1−λ
, if α ∈ (ak+1, ak),

and so for any 0 ≤ α < ak

µr < 2α + 2
ak+1

1− λ
. (5.2.4)

Similarly, we see that{
µδr ≥ 2β + al+1

1−λ
, if β ∈ [0, d(pw1···wl

, C)],

µδr = β + 2al+1

1−λ
, if β ∈ (d(pw1···wl

, C), al),

and so for any 0 ≤ β < al

µδr > β +
al+1

1− λ
. (5.2.5)

Finally, using the inequalities (5.2.3), (5.2.4), (5.2.5), we have

µr

µδr

<
2α + 2ak+1

1−λ

β + al+1

1−λ

= 2 · α(1− λ) + ak+1

β(1− λ) + al+1

< 2 ·
1
δ
(β + al+1)

β(1− λ) + al+1

= 2 · 1
δ
· β + al+1

β(1− λ) + al+1

= 2 · 1
δ

( β

β(1− λ) + al+1

+
al+1

β(1− λ) + al+1

)
< 2 · 1

δ

( 1

1− λ
+ 1
)
= 2 · 2− λ

1− λ
· 1
δ
.

Thus, we can take a constant cλ(δ) as

cλ(δ) ≥ 2 · 2− λ

1− λ
· 1
δ
.

Case (2). The center x0 of the balls coincides with some vertex Pw1···wn (n < ∞) of
the tree (x0 = Pw1···wn).
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Then we have

r = α+ d(Pw1···wk
, Pw1···wn) = α +

ak+1 − an+1

1− λ
2

, α ∈ [ 0, ak
)
,

δr = β + d(Pw1···wl
, Pw1···wn) = β +

al+1 − an+1

1− λ
2

, β ∈ [ 0, al
)
,

and hence

δ =
δr

r
=

β + al+1−an+1

1−λ
2

α + ak+1−an+1

1−λ
2

=
β(1− λ

2
) + al+1 − an+1

α(1− λ
2
) + ak+1 − an+1

<
β + al+1 − an+1

α(1− λ) + ak+1 − an+1

,

which gives

α(1− λ) + ak+1 <
1

δ
(β + al+1), (5.2.6)

where we use the fact that δ < 1.
Furthermore, since d(x0, C) < r, we have

{
µr = 2α + ak+1

1−λ
, if α ∈ [0, ak+1],

µr ≤ α + 2ak+1

1−λ
, if α ∈ (ak+1, ak),

and so for any 0 ≤ α < ak

µr < 2α + 2
ak+1

1− λ
. (5.2.7)

Similarly, we see that

{
µδr ≥ 2β + al+1

1−λ
, if β ∈ [0, d(pw1···wl

, C)],

µδr = β + 2al+1

1−λ
, if β ∈ (d(pw1···wl

, C), al),

and so for any 0 ≤ β < al

µδr > β +
al+1

1− λ
. (5.2.8)
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Finally, using the inequalities (5.2.6), (5.2.7), (5.2.8), we have

µr

µδr

<
2α+ 2ak+1

1−λ

β + al+1

1−λ

= 2 · α(1− λ) + ak+1

β(1− λ) + al+1

< 2 ·
1
δ
(β + al+1)

β(1− λ) + al+1

= 2 · 1
δ
· β + al+1

β(1− λ) + al+1

= 2 · 1
δ

( β

β(1− λ) + al+1

+
al+1

β(1− λ) + al+1

)
< 2 · 1

δ

( 1

1− λ
+ 1
)
= 2 · 2− λ

1− λ
· 1
δ
.

Thus, we can take a constant cλ(δ) as

cλ(δ) ≥ 2 · 2− λ

1− λ
· 1
δ
.

Case (3). The center x0 of the balls belongs to some open edge (Pw1···wn , Pw1···wn+1)
of the tree X.

In this case, we consider the three cases (a)(b)(c) bellow. Here we set α0 := d(Pw1···wn , x0).

(a). n ≥ l + 1, n ≥ 3.

Then we have

r = α + d(pw1···wk
, pw1···wn) + α0 = α+

ak+1 − an+1

1− λ
2

+ α0, α ∈ [ 0, ak
)
,

δr = β + d(pw1···wl
, pw1···wn) + α0 = β +

al+1 − an+1

1− λ
2

+ α0, β ∈ [ 0, al
)
,

and hence

δ =
δr

r
=

β + al+1−an+1

1−λ
2

+ α0

α + ak+1−an+1

1−λ
2

+ α0

=
β(1− λ

2
) + al+1 − an+1 + α0(1− λ

2
)

α(1− λ
2
) + ak+1 − an+1 + α0(1− λ

2
)

<
β + al+1 − an+1 + α0

α(1− λ) + ak+1 − an+1

,
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which gives

α(1− λ) + ak+1 <
1

δ
(β + al+1 + α0). (5.2.9)

Therefore, since n ≥ l + 1 and d(x0, C) < r, we have{
µr = 2α + ak+1

1−λ
, if α ∈ [0, ak+1],

µr ≤ α + 2ak+1

1−λ
, if α ∈ (ak+1, ak),

and so for any 0 ≤ α < ak
µr < 2α + 2

ak+1

1− λ
. (5.2.10)

Similarly, we see that{
µδr ≥ 2β + al+1

1−λ
, if β ∈ [0, d(pw1···wl

, C)],

µδr = β + 2al+1

1−λ
, if β ∈ (d(pw1···wl

, C), al),

and so for any 0 ≤ β < al
µδr > β +

al+1

1− λ
. (5.2.11)

Finally, using the inequalities (5.2.9), (5.2.10), (5.2.11), we have

µr

µδr

<
2α+ 2ak+1

1−λ

β + al+1

1−λ

= 2 · α(1− λ) + ak+1

β(1− λ) + al+1

< 2 ·
1
δ
(β + al+1 + α0)

β(1− λ) + al+1

= 2 · 1
δ
· β + al+1 + α0

β(1− λ) + al+1

= 2 · 1
δ

( β

β(1− λ) + al+1

+
al+1

β(1− λ) + al+1

+
α0

β(1− λ) + al+1

)
< 2 · 1

δ

( 1

1− λ
+ 1 + 1

)
= 2 · 3− 2λ

1− λ
· 1
δ
,

where we use the fact that a0 ≤ an+1 and hence a0 ≤ al+1.
Thus, we can take a constant cλ(δ) as

cλ(δ) ≥ 2 · 3− 2λ

1− λ
· 1
δ
.

(b). Let

∂Br ∩ ( Pw1···wk
Pw1···wk+1

] ̸= ∅, α : = d
(
∂Br, Pw1···wk+1

)
,

∂Bδr ∩ ( Pw1···wl
Pw1···wl+1

] ̸= ∅, β : = d
(
∂Bδr, x0

)
.
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(b1). n = l, l ≥ k + 1.

Then we have

r = α + d(pw1···wk+1
, pw1···wn) + α0 = α+

ak+2 − an+1

1− λ
2

+ α0,

δr = β,

where α ∈ [ 0, ak+1

)
and β ∈ [ 0, al+1

)
,

and hence

δ =
δr

r
=

β

α + ak+2−an+1

1−λ
2

+ α0

=
β(1− λ

2
)

α(1− λ
2
) + ak+2 − an+1 + α0(1− λ

2
)

<
β

α(1− λ) + ak+2 − an+1

≤ β

α(1− λ) + ak+2 − r
,

which gives

α(1− λ) + ak+2 ≤
1

δ
β + r. (5.2.12)

Furthermore, we have

{
µr = 2α + ak+2

1−λ
, if α ∈ [0, ak+2],

µr ≤ α + 2ak+1

1−λ
, if α ∈ (ak+2, ak+1),

and so for any 0 ≤ α < ak+1

µr < 2α + 2
ak+2

1− λ
. (5.2.13)

Obviously, we see that

µδr > β. (5.2.14)

– 55 –



Finally, using the inequalities (5.2.12), (5.2.13), (5.2.14), we have

µr

µδr

<
2α + 2ak+2

1−λ

β

= 2
1

1− λ

α(1− λ) + ak+2

β

< 2
1

1− λ

r + 1
δ
β

β

= 2
1

1− λ

( r
δr

+
1
δ
β

β

)
= 4 · 1

1− λ
· 1
δ
.

Thus, we can take a constant cλ(δ) as

cλ(δ) ≥ 4 · 1

1− λ
· 1
δ
.

(b2) n = l, l = k + 1.

Then we have

r = α + α0 α ∈ [ 0, ak+1

)
,

δr = β, β ∈ [ 0, al+1

)
,

Therefore, we have

µr <
4r

1− λ
. (5.2.15)

Obviously, we see that

µδr > δr. (5.2.16)

Finally, using the inequalities (5.2.15), (5.2.16), we have

µr

µδr

< 4 · 1

1− λ
· 1
δ
.

Thus, we can take a constant cλ(δ) as

cλ(δ) ≥ 4 · 1

1− λ
· 1
δ
.

(c). x0 ∈ (p0, pw), for some w∈{1, 2}. This case we set β0 := d(x0, P1).
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Let r = α and δr = β. Then we have

δ =
δr

r
=

β

α
,

which gives
1

δ
=

α

β
. (5.2.17)

Furthermore, we have {
µr ≤ α + β0 + 2 a2

1−λ
, if α ≥ a2 + β0,

µr < 3α, if α < a2 + β0,

and so for any 0 < α ≤ a1

µr ≤
(3− λ)α

1− λ
. (5.2.18)

Obviously, we see that

µδr > β. (5.2.19)

Finally, using the inequalities (5.2.17), (5.2.18), (5.2.19), we have

µr

µδr

<

(3−λ)α
1−λ

β

=
3− λ

1− λ
· α
β

=
3− λ

1− λ
· 1
δ

Thus, we can take a constant cλ(δ) as

cλ(δ) ≥
3− λ

1− λ
· 1
δ
.

The proof of Lemma 5.2.1 is completed.
By using Lemmas 5.2.1 and 1.1.5, we have the following immediately.

Lemma 5.2.2. X is a doubling metric space.

5.3 Proofs of Propositions

In this section, we give the proofs of Propositions 5.0.14 and 5.0.15.

Proof of Proposition 5.0.14. For any 0 < λ < 1, let X0 be the tree constructed in
Section 5.1, and X the completion of X0. From the construction of the boundary set ∂X
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of X, ∂X can be considered as a self-similar set in the sense of ([50]). Thus, by Main
Theorem ([50]) and Lemma 5.2.1, we have

dimH(∂X) =
log 2

log 2− log λ
.

We put D(λ) = log 2
log 2−log λ

for any λ ∈ (0, 1]. Clearly, D(λ) is a continuous function on

(0, 1], is monotone increasing, and satisfies

lim
λ→0

D(λ) = 0, D(1) = 1.

Hence, for any s ∈ (0, 1), there exists a unique λ ∈ (0, 1) satisfying

log 2

log 2− log λ
= s.

By the construction of X, we have

L(X) =
λ

1− λ
< ∞.

By the lemma 5.1.1, we see that ∂X is homogeneous in X. The proof of Proposition
5.0.14 is completed.

Next, we prove Proposition 5.0.15.
Proof of Proposition 5.0.15. Let Xλ be the tree constructed in the section 5.1, and X

the tree with λ = 1. Let f : Xλ → X be the natural bijection, such that

f(pw1···wn) = pw1···wn

for any pw1···wn ∈ Xλ. Then, it follows f is a expanding map. Namely,

d(f(xλ), f(yλ)) ≥ d(xλ, yλ)

for any xλ, yλ ∈ Xλ. In particular, we see

d(f(x), f(y)) ≥ d(x, y)

for any x, y ∈ ∂Xλ. It follows that dimH(∂Xλ)) ≤ dimH(∂X). Namely

dimH(∂X) ≥ log 2

log 2− log λ

for any 0 < λ < 1. Thus we have dimH ∂X ≥ 1.
The proof of dimH ∂X ≤ 1 follows in the same way as the proof of Lemma 2.1.1. From

the construction of the boundary set ∂X of X, we see that ∂X is a self-similar set in the
sense of ([50]). By Lemma 5.1.1, it follows ∂X is homogeneous in X. This completes the
proof.

In general, we can also obtain the following.
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Corollary 5.3.1. For any given natural number n, there exists some n-dimensional
CAT (0) space Y such that

(1) dimH∂Y = n, and

(2) ∂Y is homogeneous in Y .
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