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Abstract

This thesis consists of two parts. Part I gives a construction of algebraic supergroups over a

commutative ring, by using the concept of Harish-Chandra pairs. Part II studies representations

of quasireductive supergroups over an arbitrary field. Quasireductive supergroups G form a wide

class of algebraic supergroups which includes all Chevalley supergroups of classical type. We give a

systematic construction of their irreducible representations in arbitrary characteristic. When G has

what we called a distinguished parabolic subsupergroup, we prove a super-analogue of the Kempf

vanishing theorem for G, and classify the irreducible representations of G.
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Chapter 1

Introduction

We work over a non-zero commutative ring k. The unadorned ⊗ is the tensor product over k.
The word “super” is used as a synonym of “graded by Z2 = {0̄, 1̄}”. Ordinary objects, such

as Lie/Hopf algebras, which are defined in the tensor category of k-modules, given the trivial

symmetry V ⊗W → W ⊗ V ; v ⊗ w 7→ w ⊗ v, are generalized by their super-analogues, such as

Lie/Hopf superalgebras, which are defined in the tensor category of Z2-graded k-modules, given

the super-symmetry

V ⊗W −→W ⊗ V ; v ⊗ w 7−→ (−1)|v||w|w ⊗ v,

see (I.2.1.1) for the details. Our main concern are the super-analogues of affine/algebraic groups.

By saying affine groups (resp., algebraic groups), we mean, following Jantzen [16], what are formally

called affine group schemes (resp., affine algebraic group schemes), and we will use analogous simpler

names for their super analogues.

An algebraic supergroup (over k) is thus a representable group-valued functor G defined on

the category of commutative superalgebras over k, such that the commutative Hopf superalgebra

O(G) representing G is finitely generated; see [5, Chapter 11], for example. Associated with such

G are a Lie superalgebra, Lie(G), and an algebraic group, Gev. The latter is the (necessarily,

representable) group-valued functor obtained from G by restricting the domain to the category of

commutative algebras.

Important examples of algebraic supergroups over the complex number field C are Chevalley

C-supergroups; they are the algebraic supergroups G over C such that Lie(G) is one of the complex

simple Lie superalgebras, which were classified by Kac [17]. Just as Kostant [18] once did in the

classical, non-super situation, Fioresi and Gavarini constructed natural Z-forms of the Chevalley

C-supergroups; see [9, 11, 10]. Those Z-forms, called Chevalley Z-supergroups, are important, and

would be useful especially to study Chevalley supergroups in positive characteristic. A motivation of

this paper is to make part of Fioresi and Gavarini’s construction simpler and more rigorous, and we

realize it by using Harish-Chandra pairs, as will be explained below. Their construction is parallel

to the classical one; it starts with (1) proving the existence of “Chevalley basis” for each complex

simple Lie superalgebra g, and then turns to (2) constructing from the basis a natural Z-form,

called a Kostant superalgebra, of U(g). Our construction, which will be given in Part II Section 3.3,

uses results from these (1) and (2), but dispenses with the following procedures, which include to
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choose a faithful representation of g on a finite-dimensional complex supervector space including

an appropriate Z-lattice; see Remarks 3.3.3 and 3.3.8.

In this and the following paragraphs, let us suppose that k is a field of characteristic not equal

2. Even in this case, algebraic supergroups have not been studied so long as Lie supergroups.

Indeed, the latter has a longer history of study founded by Kostant [19], Koszul [20] and others in

the 1970’s. An important result from the study is the equivalence, shown by Kostant, between the

category of Lie supergroups and the category of Harish-Chandra pairs; see [5, Section 7.4], [39].

The corresponding result for algebraic supergroups, that is, the equivalence

ASG ≈ HCP (I.1.0.1)

between the category ASG of algebraic supergroups and the category HCP of Harish-Chandra pairs,

was only recently proved by Carmeli and Fioresi [6] when k = C, and then by Masuoka [24] for an

arbitrary field of characteristic not equal to 2; see [24, 13] for applications of the result. As was

done for Lie supergroups, Carmeli and Fioresi define a Harish-Chandra pair to be a pair (G, g)
of an algebraic group G and a finite-dimensional Lie superalgebra g which satisfy some conditions

(see Definition 4.2.1), and proved that the equivalence (I.1.0.1) is given by G 7→ (Gev,Lie(G))

(see the third paragraph above). In [24], the definition of Harish-Chandra pairs and the category

equivalence are given by purely Hopf algebraic terms, but they will be easily seen to be essentially

the same as those in [6] and in this part; see Remarks 4.2.3 and 4.5.6.

To prove the category equivalence, the articles [6] and [24] both use the following property of

O(G), which was proved in [22] and will be re-produced as Theorem 3.1.3 below: given G ∈ ASG,

the Hopf superalgebra O(G) is split in the sense that there exists a counit-preserving isomorphism

O(G) ≃ O(Gev)⊗ ∧(W ) (I.1.0.2)

of leftO(Gev)-comodule superalgebras, whereW is the odd component of the cotangent supervector

space of G at 1̄, and ∧(W ) is the exterior algebra on it. This basic property played a role in [28] as

well; see also [25]. As another application of the property we will prove a representation-theoretic

result, Part II, Corollary 2.4.10, which generalizes results which were proved in [3, 4, 34] for some

special algebraic supergroups, see Part II.

Throughout in this part we mainly assume that k is a non-zero commutative ring which is

2-torsion free, or namely, is such that an element a ∈ k must be zero whenever 2a = 0. We

pose this assumption because it seems natural, in order to keep the super-symmetry (I.2.1.1) non-

trivial. Theorem 4.5.1, proves the category equivalence (I.1.0.1) over such k as above. We pose

some assumptions to objects in the relevant categories, which are necessarily satisfied if k is a field.

Indeed, an algebraic supergroup G in ASG is required to satisfy, in particular, the condition that

O(G) is split, while an object (G, g) in HCP is required to satisfy, in particular, the condition that

g is admissible (see Definition 2.5.2), and so, given an odd element v ∈ g1̄, the even component

g0̄ of g must contain a unique element, 1
2 [v, v], whose double equals [v, v]; see Section 4.3 and

Definition 4.2.1 for the precise definitions of ASG and HCP, respectively. A novelty of our proof

of the result is to construct a functor G : HCP → ASG, which will be proved an equivalence, as
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follows; given (G, g) ∈ HCP, we realize the Hopf superalgebra O(G) corresponding to G = G(G, g)
as a discrete Hopf super-subalgebra of some complete topological Hopf superalgebra, Â, that is

simply constructed from the given pair. Indeed, this Hopf algebraic idea was used in [24], but our

construction has been modified as to be applicable when k is a commutative ring. Based on the

proved equivalence we will re-construct the Chevalley Z-supergroups, by giving the corresponding

Harish-Chandra pairs.

This part is organized as follows. In Chapter 2, we give necessary definitions and notations of

super-objects. Chapter 3 is devoted to preliminaries on affine/algebraic supergroups and its Lie

superalgebras. The category equivalence theorem, Theorem 4.5.1, is proved in Chapter 4, while the

Chevalley Z-supergroups will be re-constructed in Part II, Section 3.3. We prove in Corollary 4.1.3

that the universal envelope U(g) of such a Lie superalgebra g has the property which is dual to

the splitting property (I.1.0.2); the corollary plays a role when we prove Theorem 4.5.1. After

an earlier version of the paper [27] was submitted, the article [12] by Gavarini was in circulation.

Theorem 4.3.14 of [12] essentially proves our category equivalence theorem in the generalized sit-

uation that k is an arbitrary commutative ring. A point is to use the additional structure, called

2-operations, on Lie superalgebras g, which generalizes the map g1̄ → g0̄; v 7→ 1
2 [v, v] given on an

admissible Lie superalgebra in our situation. Given a Harish-Chandra pair, Gavarini constructs

an affine supergroup in a quite different method from ours, realizing it as a group valued functor.

In Section 4.6, we will refine his category equivalence, using our construction and giving detailed

arguments on 2-operations, in particular. This would not be meaningless because such detailed

arguments are not be given in [12]; see Remark 4.6.10. Chapter 5 is devoted to give a simpler

and more conceptual presentation of Gavarini’s original construction ([12]). Section 5.3 starts with

the subsection in which we re-prove Gavarini’s category equivalence cited above, using our method

of construction. This aims to supplement again Gavarini’s original proof; see Remark 5.3.6. In

Section 5.4, we suppose that k is a field of characteristic not equal to 2. As an application of our

construction, given an algebraic supergroup G and its closed subsupergroup H, we describe the

normalizer NG(H) and the centralizer ZG(H) in terms of Harish-Chandra pairs; see Theorem 5.4.3.
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Chapter 2

Preliminaries

Let k be a base commutative ring with 1. We assume that k is 2-torsion free, i.e., 2 : k → k; c 7→ 2c

is injective. The unadorned ⊗ denotes the tensor product over k. A module over k is said to be

finite (resp. flat, free) if it is finitely generated (resp. flat, free) as k-module.

2.1 Super-objects

Let Z2 = {0̄, 1̄} be the group of order 2. The group algebra kZ2 of Z2 over k forms a Hopf algebra

by the following coalgebra structures

∆(ϵ) = ϵ⊗ ϵ, ε(ϵ) = 1,

where ϵ ∈ Z2. Note that the antipode is given by S(ϵ) = ϵ for each ϵ ∈ Z2. We let SMod denote

the category of right kZ2-comodules.

An object in SMod is called a supermodule over k. In other words, a supermodule is a Z2-graded

module over k. Let V = V0̄⊕V1̄ be a supermodule. For a homogeneous element v ∈ Vϵ with ϵ ∈ Z2,

we denote its parity by |v| := ϵ. Unless otherwise stated, an element of a supermodule is always

assumed to be homogeneous. Let Homk(V,W ) be the set of all morphisms f from V toW in SMod.

By definition, f satisfies f(Vϵ) ⊆Wϵ for each ϵ ∈ Z2. An element of Homk(V,W ) is called a parity

preserving k-linear map.

We define a supermodule ΠV so that (ΠV )ϵ := Vϵ+1̄ for each ϵ ∈ Z2. For a morphism f : V →W

in SMod, we define a morphism Πf : ΠV → ΠW in SMod so that Πf := f . In this way, we get a

functor

Π : SMod −→ SMod,

called the parity change functor. For supermodules V,W , we define a supermodule Homk(V,W )

by letting

Homk(V,W )0̄ := Homk(V,W ), Homk(V,W )1̄ := Homk(V,ΠW ).

An element of Homk(V,W ) is called a homogeneous k-linear map. Given a supermodule V , we

let V ∗ denote its k-linear dual Homk(V, k), called the dual of V . By definition, (V ∗)ϵ = (Vϵ)
∗ for

ϵ ∈ Z2.
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For supermodules V,W ∈ SMod, we define an object V ⊗W in SMod as follows

(V ⊗W )ϵ :=
⊕

ϵ′,ϵ′′∈Z2

ϵ′+ϵ′′=ϵ

Vϵ′ ⊗Wϵ′′ ,

where ϵ ∈ Z2. Then the category SMod forms a tensor category with a unit object k which we

regard as a purely even object k = k⊕ 0. The tensor category SMod is symmetric with respect to

the supersymmetry

cV,W : V ⊗W −→W ⊗ V ; v ⊗ w 7−→ (−1)|v||w|w ⊗ v (I.2.1.1)

for V,W ∈ SMod (see also [22, §2]). Here and in what follows, an element v in V is regarded

as a homogeneous element of V . In this way, the category SMod forms a rigid symmetric tensor

category.

A superalgebra (resp. supercoalgebra, Hopf superalgebra etc.) is defined to be an algebra (resp.

coalgebra, Hopf algebra etc.) object in SMod. For example, a superalgebra R is nothing but a

Z2-graded algebra. Note that the even component R0̄ of R is an ordinary algebra. The ordinary

objects are regarded as purely even super-objects.

For a superalgebra R, a k-subsupermodule I of R is called a left (resp. right) super-ideal if

it satisfies IR ⊆ R (resp. RI ⊆ R). A two-sided super-ideal is both a right super-ideal and a

left super-ideal, as usual. By definition, a superalgebra R is a right kZ2-comodule algebra. The

comodule structure ρ : R → R ⊗ kZ2 satisfies a ∈ Rϵ if and only if ρ(a) = a⊗ ϵ for a fixed ϵ ∈ Z2.

A superalgebra R is said to be commutative if ab = (−1)|a||b|ba for all a, b ∈ R.

Example 2.1.1. Let R := k[T1, . . . , Tn; ξ1, . . . , ξm], where the T1, . . . , Tn are ordinary indetermi-

nates and the ξ1, . . . , ξm are odd indeterminates which satisfy ξiξj = −ξjξi for 1 6 i, j 6 m. Since

k is 2-torsion free, we have ξ2i = 0 for each 1 6 i 6 m. This R forms a commutative superalgebra.

For 1 6 r 6 m, we denote Ir := {i1, . . . , ir | 1 6 i1 < · · · < ir 6 m} and ξIr := ξi1 · · · ξir . Then we

have

R0̄ (resp., R1̄) = {
∑

r: even (resp., odd)

fIrξIr | fIr ∈ k[Ti1 , . . . , Tir ], Ir ⊆ {1, . . . ,m}}.

Here, we treat the integer 0 as an even number. Let ∧(ξ1, . . . , ξm) be the exterior algebra over k
generated by ξ1, . . . , ξm. This forms a commutative superalgebra in the obvious way. There is an

isomorphism of superalgebras:

k[T1, . . . , Tn]⊗ ∧(ξ1, . . . , ξm)
≃−→ R.

Note that, the non-zero elements ξiξj (∈ R0̄) for i ̸= j are nilpotent.

Example 2.1.2. For n,m > 0, we let A(m|n) denote the commutative superalgebra over k gener-
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ated by {xij}16i,j6m+n satisfying the relations

xijxkℓ =

−xkℓxij for i, k 6 m < j, ℓ or j, ℓ 6 m < i, k,

xkℓxij otherwise.

Moreover, A(m|n) forms a commutative superbialgebra by letting

∆(xij) :=
m+n∑
k=1

xik ⊗ xkj , ε(xij) := δi,j ,

where δi,j is the Kronecker delta.

Let C be a flat supercoalgebra (i.e., its underlying supermodule is flat). IfD is a subsupermodule

of C, then D is also flat and we have canonical injections D⊗n → C⊗n for each n > 1. Thus we say

D is a subsupercoalgebra if ∆(D) is inD⊗D, where ∆ is the comultiplication of C. A supercoalgebra

C is said to be cocommutative if ∆(c) = (−1)|c1||c2|c2 ⊗ c1 for all c ∈ C.

Given a Hopf superalgebra A, we denote that comultiplication, the counit and the antipode of

A by

∆ : A→ A⊗A, ε : A→ k, S : A→ A.

We use the “Heyneman-Sweedler notation” ∆(a) = a1 ⊗ a2 for a ∈ A, as usual.

A two-sided super-ideal I of A is called a Hopf super-ideal A if it satisfies ∆(I) ⊆ A⊗ I+ I⊗A,
ε(I) = 0 and S(I) ⊆ I.

Example 2.1.3. For a supermodule V , we let T 0(V ) := k, Tn(V ) := V ⊗n for each n > 1. Then

T (V ) :=
⊕

n>0 T
n(V ) is N-graded, and hence is Z2-graded. Explicitly, T (V )ϵ :=

⊕
n>0 T

2n+ϵ(V )

for ϵ ∈ Z2. This uniquely forms a Hopf superalgebra by letting

∆(v) = v ⊗ 1 + 1⊗ v,

for each (homogeneous) v ∈ V . The antipode is given by S(v) = −v for v ∈ V . By definition, T (V )

is cocommutative. For an explicit description of the coproduct, see [24, Remark 3].

2.2 Supermodules

Let R be a superalgebra with the multiplication m : R ⊗ R → R and the unit u : k → R. A left

R-supermoduleM is a supermodule endowed with a structure map α ∈ Homk(R⊗M,M) satisfying

the following familiar commutative diagrams in SMod

R⊗R⊗M R⊗M

R⊗M M,

	

m⊗idM //

idR ⊗α
��

α
��

α
//

k⊗M R⊗M

M.

�

u⊗idM //

∼=
))SSSSSSSSSSSSSSS

α
��
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Let a.m := α(a ⊗m) for each a ∈ R, m ∈ M . For two left R-supermodules M and N , we denote

the set of all (parity preserving) left R-supermodule maps by HomR(M,N). Let HomR(M,N) be

the supermodule of the form HomR(M,N)⊕ HomR(M,ΠN), as before. We denote HomR(M,M)

by EndR(M). Let RSMod denote the category of left R-supermodules. Similarly, we define the

notion of right R-supermodules. For a left R-supermodule M , we define

m.a := (−1)|a||m|a.m (I.2.2.1)

for a ∈ R, m ∈M . By this structure, M forms a right A-supermodule.

For a left (resp. right) R-supermodule (M,α), the dual supermodule M∗ is naturally regarded

as a right (resp. left) R-supermodule by the following formula

⟨f.a,m⟩ := ⟨f, a.m⟩ (resp. ⟨a.f,m⟩ := ⟨f,m.a⟩),

for a ∈ R, f ∈M∗ and m ∈M . Here ⟨ , ⟩ ∈ Homk(M
∗ ⊗M, k) is the canonical evaluation map.

The category of all left R-supermodules RSMod is nothing but the category of left R- right

kZ2-Hopf modules RModkZ2 . Since there is a unique Hopf algebra isomorphism kZ2
∼= (kZ2)

∗, we

have an equivalence

RSMod
≈−→ RokZ2Mod ; M 7−→M. (I.2.2.2)

For a R-supermodule M , the corresponding Ro kZ2-module structure on M is given by

(ao ϵ).m := a(m0̄ + (−1)ϵm1̄)

for a ∈ R, ϵ ∈ Z2 and m = m0̄ +m1̄ with m0̄ ∈M0̄ and m1̄ ∈M1̄.

A non-zero superalgebra is said to be simple if it has no non-trivial super-ideal.

Proposition 2.2.1. Assume that k is a field. If R is a simple superalgebra with R1̄ ̸= 0, then R0̄

is Morita equivalent to Ro kZ2.

Proof. Let H := kZ2 and let B := RcoH , for simplicity. Here RcoH := {a ∈ R | ρ(a) = a ⊗ 0̄},
where ρ : R→ R⊗ kZ2 is the kZ2-comodule structure map of R. Thus B coincides with R0̄. Since

R1̄R1̄ ⊕ R1̄ is a non-zero super-ideal of R, we have R1̄R1̄ = R0̄. Therefore, the Z2-grading of R is

strongly graded. This is equivalent to saying that R/B is a right H-Galois, see [7]. Then by the

theory of Hopf-Galois extension, the following is an equivalence

BMod
≈−→ RModH ; V 7−→ R⊗B V. (I.2.2.3)

Combine the equivalence above with (I.2.2.2), the claim follows.
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2.3 Pairings

Let R be a superalgebra. Given R-supermodules M,N , we let M ⊗R N denote the quotient k-
supermodule of M ⊗N defined by the relations

ma⊗ n = m⊗ an

for a ∈ R, m ∈ M , n ∈ N . This is naturally an R-supermodule. The category of R-supermodules

RSMod forms a symmetric tensor category, where the tensor product is the ⊗R just defined above,

and the unit object is R. The symmetry is the one induced from the supersymmetry c−,− (see

(I.2.1.1)), and it will be denoted by the same symbol.

A Hopf superalgebra over R is a Hopf-algebra object in RSMod. The structure maps of a Hopf

superalgebra A over R will be denoted by

∆A : A → A⊗R A, εA : A → R, SA : A → A.

We use the notation ∆A(a) = a1 ⊗R a2 for a ∈ A, as before.

A pairing between objects M and N in RSMod is a morphism M ⊗R N → R in RSMod, which

will be often presented as

⟨ , ⟩ :M ×N → R, ⟨m,n⟩ = the value of m⊗R n.

The tensor product with another pairing ⟨ , ⟩ :M ′⊗RN
′ → R is the pairing between M ⊗RM

′ and

N ⊗R N
′ which is defined to be the composite

(M ⊗RM
′)⊗R (N ⊗R N

′)
idM ⊗RcM′,N⊗RidN′

−→ (M ⊗R N)⊗R (M ′ ⊗R N
′)

⟨ , ⟩⊗R⟨ , ⟩−→ R⊗R R ∼= R.

Explicitly, it is defined by

⟨m⊗R m
′, n⊗R n

′⟩ = (−1)|m
′||n|⟨m, n⟩ ⟨m′, n′⟩, (I.2.3.1)

where m ∈M , m′ ∈M ′, n ∈ N , n′ ∈ N ′.

Remark 2.3.1. If R = k, then the sign (−1)|m
′||n| above can be replaced by either (−1)|m||n|,

(−1)|m
′||n′| or (−1)|m||n′|.

Definition 2.3.2. Let A, B be Hopf superalgebras over R. A pairing ⟨ , ⟩ : A×B → R is called a

Hopf pairing, if we have

⟨x, hk⟩ = ⟨∆A(x), h⊗R k⟩, ⟨xy, h⟩ = ⟨x⊗R y, ∆B(h)⟩, (I.2.3.2)

⟨x, 1⟩ = εA(x), ⟨1, h⟩ = εB(h), (I.2.3.3)

where x, y ∈ A, h, k ∈ B. On the right-hand sides of (I.2.3.2) appears the tensor product of two

copies of the pairing.
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One sees that the conditions imply

⟨SA(x), h⟩ = ⟨x, SB(h)⟩ (I.2.3.4)

for x ∈ A, h ∈ B.
Just as in the non-super situation, the set

Gpl(A) := {g ∈ A0̄ | ∆A(g) = g ⊗R g, εA(g) = 1}

of all even group-likes in A forms a group under the multiplication of A. On the other hand, the

set

SAlgR(B, R)

of all superalgebra maps B → R over R is a group under the convolution product ∗. Namely, for

f, f ′ ∈ SAlgR(B, R) we define f ∗ f ′ ∈ SAlgR(B, R) as follows

f ∗ f ′ : B ∆B−→ B ⊗R B f⊗Rf
′

−→ R⊗R R ∼= R. (I.2.3.5)

Lemma 2.3.3. A Hopf pairing ⟨ , ⟩ : A× B → R induces the group map

Gpl(A) −→ SAlgR(B, R); g 7−→ ⟨g, −⟩.

Here is a typical example of Hopf pairings over k.

Example 2.3.4 (cf. [24, Eq. (5)]). Let W be a finite and free module (over k). We regard the

exterior algebra ∧(W ) on W as a Hopf superalgebra over k in which every element in W is an

odd primitive. We have another such Hopf superalgebra ∧(W ∗) over k. A Hopf pairing ⟨ , ⟩ :

∧(W ∗)× ∧(W ) → k is defined by

⟨v1 ∧ · · · ∧ vn, w1 ∧ · · · ∧ wm⟩ := δn,m (−1)n(n−1)/2 det
(
vi(wj)

)
i,j
, m, n ≥ 0, (I.2.3.6)

where vi ∈W ∗, wi ∈W . Here δn,m is the Kronecker’s delta.

Remark 2.3.5. In [24, 25, 29, 27], they use the simpler duality. Namely,

⟨v1 ∧ · · · ∧ vn, w1 ∧ · · · ∧ wm⟩ := δn,m det
(
vi(wj)

)
i,j
, m, n ≥ 0, (I.2.3.7)

where vi ∈ W ∗, wi ∈ W . Since this simpler duality (I.2.3.7) does not work well for Hopf superal-

gebras over R, in general, we have to use the duality (I.2.3.6). In Section 2.4, this circumstance is

explained, and the difference caused by choices is described in terms of cocycle deformations.

2.4 Comparing dualities

In the situation above we suppose R = k, and consider super-objects and pairings over k.
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Let C be a supercoalgebra over k. Then we make the dual k-supermodule C∗ uniquely into a

superalgebra so that the canonical pairing C∗ × C → k satisfies the second equations of (I.2.3.2),

(I.2.3.3). This is the same as saying that the canonical pairing C × C∗ → k satisfies the first

equations of (I.2.3.2), (I.2.3.3). The identity of C∗ is the counit of C, and the product is given by

(pq)(h) = (−1)|p||q| p(h1) q(h2),

where p, q ∈ C∗, h ∈ C. We denote this superalgebra by C ∗̄.

Similarly, if A is Hopf superalgebra over k which is finite projective, we make A∗ uniquely into

a Hopf superalgebra, so that A∗ × A → k or A × A∗ → k is a Hopf pairing. We also denote it

by A∗̄. call the dual Hopf superalgebra of A. Since the Hopf pairing given in Example 2.3.4 is

non-degenerate, it follows that the Hopf superalgebras ∧(W ) and ∧(W ∗) are dual to each other.

Let

⟨ , ⟩ : V ×W −→ k, ⟨ , ⟩ : V ′ ×W ′ −→ k

be pairings over k. In the articles [24, 25, 27], the tensor product of pairings is supposed to be the

ordinary one, just as in the non-super situation,

⟨v ⊗ w, v′ ⊗ w′⟩ord := ⟨v, w⟩ ⟨v′, w′⟩,

where v ∈ V , w ∈ W , v′ ∈ V ′, w′ ∈ W ′. This is justified, since it holds that ⟨ , ⟩ord ◦ (cV,W ⊗
idW ′⊗V ′) = ⟨ , ⟩ord ◦ (idV⊗W ⊗ cW ′,V ′); see the proof of [24, Corollary 3].

On the other hand, over R ∈ SAlgk in general, this is not true any more. Therefore, we

chose the definition as in (I.2.3.1), so that indeed, we have ⟨ , ⟩ ◦ (cM,N ⊗R idN ′⊗RM ′) = ⟨ , ⟩ ◦
(idM⊗RN ⊗R cN ′,M ′), i.e.,

(M ⊗R N)⊗R (N ′ ⊗RM
′) (N ⊗RM)⊗R (N ′ ⊗RM

′)

(M ⊗R N)⊗R (M ′ ⊗R N
′) R.

	

cM,N⊗RidN′⊗RM′
//

idM⊗RN ⊗RcN′,M′
��

⟨ , ⟩
��

⟨ , ⟩
//

Due to these different choices, the Hopf pairing given by (I.2.3.6) is different from the ordinary

one given by (I.2.3.7) or [24, Eq. (5)]. Note also that, the dual (Hopf) superalgebras given above

are different from those given in the cited articles. In the following, we are going to clarify this

difference.

Let k× denote the multiplicative group of all units in k, and regard it as a trivial module over

the group Z2. Then the map σ : Z2 × Z2 → k× defined by

σ(ϵ, η) = (−1)ϵη, ϵ, η ∈ Z2

satisfies

σ(ϵ, η)σ(δ, ϵ+ η) = σ(δ + ϵ, η)σ(δ, ϵ)

15



for δ, ϵ, η ∈ Z2. Thus σ is a 2-cocycle. Therefore, the identity functor

SMod −→ SMod; V 7−→ σV := V

together with the tensor structure

σV ⊗ σW −→ σ(V ⊗W ); v ⊗ w 7−→ σ(|v|, |w|) v ⊗ w, (I.2.4.1)

id : k −→ σk (= k)

form a tensor equivalence.

Lemma 2.4.1. The tensor functor σ(−) preserves the supersymmetry.

Moreover, the functor σ(−) is an involution, since σ(ϵ, η)2 = 1 for ϵ, η ∈ Z2. If k contains a

square root
√
−1 of −1, then σ is the coboundary of the map

ν : Z2 → k×, ν(0̄) := 1, ν(1̄) :=
√
−1.

Therefore,

σV 7−→ V ; v 7−→ ν(|v|) v

gives a natural isomorphism from the tensor equivalence σ(−) given by σ to the identity tensor

functor.

It follows that if A is a super-object (e.g. a Hopf superalgebra) over k, then σA is such an

object, and σ(σA) coincides with A. This σA is called the (cocycle) deformation of A by σ; see

[23, Section 1.1], for example. If
√
−1 ∈ k, then A and σA are naturally isomorphic.

Given two pairings over k as above, we have

⟨v ⊗ w, v′ ⊗ w′⟩ = ⟨σ(|v|, |w|) v ⊗ w, v′ ⊗ w′⟩ord
= ⟨v ⊗ w, σ(|v′|, |w′|) v′ ⊗ w′⟩ord;

see (I.2.4.1).

Therefore, the dual (Hopf) superalgebra A∗̄ given above coincides with the deformation σ(A∗)

of the one A∗ treated in [24, 25, 27].

2.5 Lie Superalgebra

2.5.1 Admissible Lie superalgebras

A Lie superalgebra g over k is a Lie algebra object in SMod. In other words, g is a Z2-graded

module over k endowed with [ , ] ∈ Homk(g⊗ g, g), called super-bracket, satisfying

(i) [w,w] = 0 for w ∈ g0̄,
(ii) [[x, x], x] = 0 for x ∈ g1̄,
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(iii) [ , ] ◦ (idg⊗g+cg, g) = 0, and

(iv) [[ , ], ] ◦ (idg⊗g⊗g+cg, g⊗g + cg⊗g, g) = 0,

where c−,− is the supersymmetry, see (I.2.1.1).

Remark 2.5.1. If g1̄ is 2-torsion free, then the condition (iv) restricted to g1̄⊗g1̄⊗g1̄ is automati-

cally satisfied. Indeed, this follows by applying the condition (ii) to x1+x2+x3 with x1, x2, x3 ∈ g1̄.
By definition, for a Lie superalgebra g, the even part g0̄ forms an ordinary Lie algebra. We

treat a special class of Lie superalgebras. For a 2-torsion free module V , an element v ∈ V is said

to be 2-divisible if there exists w ∈ V such that v = 2w. Since such a w is uniquely determined, we

will denote w by 1
2v.

Definition 2.5.2 ([27, Definition 3.1]). Let g be a Lie superalgebra over k. The Lie superalgebra

g is called admissible if it satisfies the following conditions.

(A1) The even part g0̄ is flat

(A2) the odd part g1̄ is free, and

(A3) for all x ∈ g1̄, the element [x, x] is 2-divisible.

Let g be a Lie superalgebra. If g1̄ has a k-free basis X such that [x, x] is 2-divisible for every

x ∈ X, then the condition (A3) stated above is automatically satisfied.

Example 2.5.3. Let Matr,s(k) denote the set of all r-by-s matrices with entries in k. As in the

ordinary case, glr := Matr,r(k) forms a Lie algebra.

(1) Set gl(m|n) := Matm+n,m+n(k). This forms a superspace by the following Z2-grading.

gl(m|n)0̄ := {

(
A 0

0 D

)
| A ∈ Matm,m(k), D ∈ Matn,n(k)},

gl(m|n)1̄ := {

(
0 B

C 0

)
| B ∈ Matm,n(k), C ∈ Matn,m(k)}.

Moreover, gl(m|n) becomes a Lie superalgebra by letting

[X,Y ] := XY − (−1)|X||Y |Y X,

for (homogeneous) elements X,Y ∈ gl(m|n). The even part gl(m|n)0̄ of gl(m|n) is isomorphic

to glm ⊕ gln as Lie algebras.

(2) Let q(n) be the Lie subsuperalgebra of gl(n|n) consisting of matrices of the form(
A B

B A

)
, A, B ∈ Matn,n(k).

This is called a queer Lie superalgebra. Note that, the even part q(n)0̄ is isomorphic to gln
as Lie algebras.
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One can easily check that the Lie superalgebras gl(m|n) and q(n) stated above are admissible.

For an admissible Lie superalgebra g, we define the universal enveloping superalgebra U(g) of

g as the quotient Hopf superalgebra of T (g) by the Hopf super-ideal generated by the following

homogeneous primitives

yz − (−1)|y||z|zy − [y, z], x2 − 1

2
[x, x], (I.2.5.1)

where y, z ∈ g and x ∈ g1̄. This U(g) is cocommutative. Note that if 2 ∈ k×, then the second

element x2 − 1
2 [x, x] in (I.2.5.1) may be removed, since they are covered by the first one.

Let U(g0̄) denote the universal enveloping algebra of g0̄, as usual. Namely, this is the quotient

cocommutative Hopf algebra of the tensor algebra T (g0̄) of g0̄ be the Hopf ideal generated by

yz − zy − [y, z] for y, z ∈ g0̄. Since g0̄ is flat k-module, the canonical map g0̄ → U(g0̄) is injective,
see [14]. Through this injection, we may regard g0̄ ⊂ U(g0̄).

On the other hand, the inclusion g0̄ ⊂ g induces a Hopf superalgebra map

U(g0̄) −→ U(g).

2.5.2 2-Operations

In this subsection, we work over an arbitrary non-zero commutative ring k.
Let g be a Lie superalgebra.

Definition 2.5.4 ([12, Definition 2.2.1]). A 2-operation on g is a map (−)⟨2⟩ : g1̄ → g0̄ such that

(i) (cv)⟨2⟩ = c2v⟨2⟩,

(ii) (v + w)⟨2⟩ = v⟨2⟩ + [v, w] + w⟨2⟩, and

(iii) [v⟨2⟩, z] = [v, [v, z]],

where c ∈ k, v, w ∈ g1̄, z ∈ g.
This is related with the admissibility defined by Definition 2.5.2 as follows.

Lemma 2.5.5. Assume that k is 2-torsion free. If g is admissible, then

v⟨2⟩ :=
1

2
[v, v], v ∈ g1̄

gives the unique 2-operation on g, and this is indeed the unique map g1̄ → g0̄ that satisfies (i), (ii)

above.

Proof. The left and the right-hand sides of (i)–(iii) coincide since their doubles are seen to coincide.

The uniqueness follows, since we see from (i), (ii) that 4v⟨2⟩ = (2v)⟨2⟩ = 2v⟨2⟩ + [v, v], and so

2v⟨2⟩ = [v, v].

If k is 2-torsion free, an admissible Lie superalgebra is thus the same as a Lie superalgebra g
given a (unique) 2-operation, such that g0̄ is k-flat and g1̄ is k-free.

Let us return to the situation that k is arbitrary. Let g be a Lie superalgebra given a 2-operation.

One directly verifies the following.

18



Proposition 2.5.6. Suppose that the odd component g1̄ is k-free, and choose a totally ordered basis

X arbitrarily. Given a commutative algebra S, define a map

(−)
⟨2⟩
S : g1̄ ⊗ S −→ g0̄ ⊗ S

by ( n∑
i=1

xi ⊗ ci
)⟨2⟩
S

:=

n∑
i=1

x
⟨2⟩
i ⊗ c2i +

∑
i<j

[xi, xj ]⊗ cicj ,

where x1 < · · · < xn in X, and ci ∈ S. This definition is independent of choice of ordered bases,

and the map gives a 2-operation on the S-Lie superalgebra g ⊗ S. For arbitrary elements vi ∈ g1̄,
ci ∈ S, 1 < i < m, we have

( m∑
i=1

vi ⊗ ci
)⟨2⟩
S

=
m∑
i=1

v
⟨2⟩
i ⊗ c2i +

∑
i<j

[vi, vj ]⊗ cicj .

2.6 Supercomodules

Let C be a supercoalgebra. A right C-supermodule V is a supermodule endowed with a structure

map ρ ∈ Homk(V, V ⊗ C) satisfying the following commutative diagrams in SMod.

V ⊗ C ⊗ C V ⊗ C

V ⊗ C V,

�

oo
idV ⊗∆

OO

ρ⊗idC

OO

ρ

oo
ρ

V ⊗ k V ⊗ C

V.

	
oo

idV ⊗ε
ii

∼=
SSSSSSSSSSSSSSSS OO

ρ

We let denote ρ(v) = v0 ⊗ v1 for v ∈ V , as usual. Let HomC(V,W ) denote the set of all (parity

preserving) right C-supermodule maps from V to W and let HomC(V,W ) := HomC(V,W ) ⊕
HomC(V,ΠW ), as before. We denote HomC(V, V ) by EndC(V ). Let SModC denote the category

of right C-supercomodules. Similarly, we define the notion of left C-supercomodules. For a left

C-supercomodule V with its structure map ρ : V → C ⊗ V , we let denote ρ(v) = v−1 ⊗ v0 for

v ∈ V .

Definition 2.6.1. Let C and C ′ be supercoalgebras. A left C-, right C ′-supercomodule is a super-

module V satisfying the following conditions

(i) V is a left C-supercomodule with the structure map ρ and a right C ′-supercomodule with

the structure map ρ′, and

(ii) (idC ⊗ρ′) ◦ ρ = (ρ⊗ idC′) ◦ ρ′.

For a finite and flat left (resp. right) C-supercomodule V with its structure map ρ, we can

naturally regard the dual superspace V ∗ as a right (resp. left) C-supercomodule. To explain this,

we consider the following map

V ∗ ⊗ V
id⊗ρ−→ V ∗ ⊗ C ⊗ V

cV ∗,C⊗idV−→ C ⊗ V ∗ ⊗ V
id⊗⟨ , ⟩−→ C
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(resp. V ∗ ⊗ V
id⊗ρ−→ V ∗ ⊗ V ⊗ C

⟨ , ⟩⊗id−→ C).

Then we get an element of Homk(V
∗ ⊗ V,C) = Homk(V

∗,Homk(V,C)). There is a canonical

isomorphism

C ⊗ V ∗ ∼= Homk(V,C) ; c⊗ f 7−→ (v 7→ c⟨f, v⟩).

By using this isomorphism (resp. the composition of cV ∗,C and this isomorphism), we get an

element ρ∗ in Homk(V
∗, V ∗ ⊗ C) (resp. Homk(V

∗, C ⊗ V ∗)). Explicitly,

⟨ρ∗(f), v⟩ = v−1⟨f, v0⟩ (resp. ⟨ρ∗(f), v⟩ = ⟨f, v0⟩v1)

for c ∈ C, f ∈ V ∗ and v ∈ V . Now one can easily show that this ρ∗ indeed define a right (resp.

left) C-supercomodule structure on V ∗.

Let f : C → D be a supercoalgebra map. For a right C-supercomodule V , we define

ρ|D : V
ρ−→ V ⊗ C

id⊗f−→ V ⊗D,

where ρ is the supercomodule structure map of V . One sees V becomes a right D-supercomodule

with this new structure map ρ|D. We denote this D-supercomodule by resCD(V ). This resCD(−)

gives a functor from the category of right C-supercomodules SModC to the category of right D-

supercomodules SModD.

Let V be a right C-supercomodule, and W be a left C-supercomodule. We define the cotensor

product of V and W by

V �C W := Ker(V ⊗W
ρ⊗id− id⊗ψ−→ V ⊗ C ⊗W ).

We regard V �CW as a subsuperspace of V ⊗W . In this way, we have a left exact functor (−)�CW

form the category of right C-supercomodules SModC to the category of superspaces SMod.

We regard C as a left D-supercomodule by

C
∆−→ C ⊗ C

f⊗idC−→ D ⊗ C. (I.2.6.1)

For a right D-supercomodule V , we define a right C-supercomodule

indCD(V ) := V �D C

whose structure map is given by idV ⊗∆. This indCD(−) gives a left exact functor from the category

of right D-supercomodules SModD to the category of right C-supercomodules SModC .

Lemma 2.6.2. Let C be a supercoalgebra, and let V be a right C-supercomodule.

(1) The following map is a natural isomorphism of right C-supercomodules.

V �C C
∼=−→ V ; v ⊗ c 7−→ v ε(c),

where ε : C → k is the counit of C.
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(2) Let C ′ be a supercoalgebra. For a left C- right C ′-supercomoduleW and a left C ′-supercomodule

X,

V �C (W �C′ X) ∼= (V �C W )�C′ X; v ⊗ (w ⊗ x) 7−→ (v ⊗ w)⊗ x

is a natural isomorphism of superspaces

The following is a kind of dual result of Frobenius reciprocity.

Proposition 2.6.3 (Frobenius Reciprocity). Let V be a right D-supercomodule and let W be a

right C-supercomodule. Then there exists an isomorphism of SMod

HomC(resDC (V ),W )
∼=−→ HomD(V, indDC (W ));

φ 7→ (φ⊗ idD) ◦ ρ,

where ρ is the supercomodule structure map of V .

Proof. For ψ ∈ HomD(V, indDC (W )), we define

V
ψ−→W �C D

idW ⊗ε−→ W,

where ε is the counit of D. One can easily check that this gives the inverse. Since f and the

structure maps of V , W preserve the parity, we are done.

In particular, we have an isomorphism

HomC(resDC (V ),W )
≃−→ HomD(V, indDC (W )) (I.2.6.2)

of modules over k. Since indDC (−) is right adjoint to the restriction functor resDC (−), we have the

following result.

Corollary 2.6.4. The functor indDC (−) preserves injective objects.

Let A be a Hopf superalgebra. We regard k as a left A-supercomodule by

k → A⊗ k; 1 7→ 1A ⊗ 1,

where 1A is the unit element of A. For a right A-supercomodule V , we define the coinvariant

subsuperspace V coA of V as follows

V coA := V �A k.

Explicitly, v ∈ V coA if and only if ρ(v) = v⊗1A, where ρ : V → V ⊗A is the right A-supercomodule

structure of V .

We can show a super-analogue of the tensor identity theorem ([16, Part I, 3.6]).

Proposition 2.6.5. Let B a Hopf superalgebra with a Hopf superalgebra map A → B. For V ∈
SModA and W ∈ SModB, we have an isomorphism

V ⊗ indAB(W )
∼=−→ indAB(res

A
B(V )⊗W )
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of right A-supercomodules.

Proof. For v⊗w⊗ a ∈ V ⊗ indAB(W ), the map v⊗w⊗ a 7−→ (−1)|v1||w|v0 ⊗w⊗ v1a gives the right

A-supercomodule isomorphism.
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Chapter 3

Supergroups

Let k be a non-zero base commutative ring.

3.1 Algebraic supergroups

An affine supergroup scheme (supergroup, for short) is a representable functor G from the category

SAlgk of commutative superalgebras over k to the category Grp of groups. We denote the repre-

senting object of G by O(G). This O(G) forms a commutative Hopf superalgebra, by Yoneda’s

Lemma. A subsupergroup functor K of G is called a closed subsupergroup if there is a Hopf su-

peralgebra surjection O(G) → O(K). A supergroup G said to be algebraic (resp. flat) if O(G) is

finitely generated as a superalgebra (resp. O(G) is k-flat).
Conversely, for a commutative Hopf superalgebra A over k, we get a supergroup SSp(A) as

follows. As in (I.2.3.5), for a commutative superalgebra R, SSp(A)(R) is the set SAlgk(A,R) of all

superalgebra maps from A to R over k. For f, f ′ ∈ SSp(A)(R), the multiplication ∗ is given by

f ∗ f ′ := mR ◦ (f ⊗ f ′) ◦∆ : A −→ R,

where mR : R ⊗ R → R is the multiplication on R and ∆ : A → A ⊗ A is the comultiplication of

A. The unit element of SSp(A)(R) is given by uR ◦ ε : A → R, where uR : k → R is the unit of

R and ε : A → k is the counit of A. Finally, the ∗-inverse of the element φ ∈ SSp(A)(R) is given

by φ ◦ S : A → R, where S : A → A is the antipode of A. As in ordinary case, one can easily

show that SSp(A) forms a supergroup by these structure maps. In this way, one can see that affine

supergroups correspond to commutative Hopf superalgebras.

For a commutative Hopf superalgebra A, we define

A := A/(A1̄), WA := (A+/(A+)2)1̄, (I.3.1.1)

where (A1̄) is the super-ideal of A generated by the odd part A1̄ of A and A+ := Ker ε. Note that

A is an ordinary Hopf algebra. Let

A −→ A; a 7−→ a (I.3.1.2)
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be the quotient map. We regard A as a left A-comodule superalgebra by

A −→ A⊗A; a 7−→ a1 ⊗ a2,

where a1 denotes the canonical image of a1 ∈ A in A.

Definition 3.1.1 ([27, Definition 2.1]). A commutative Hopf superalgebra A is said to be split if

WA is free and there exists an isomorphism ψ : A
≃−→ A⊗∧(WA) of left A-comodule superalgebras.

A split commutative Hopf superalgebra A is finitely generated if and only if A is finitely gen-

erated and WA is k-finite (free).

If such ψ exists, then we can re-chosen so that counit-preserving in the sense that

(εĀ ⊗ ε∧(WA)) ◦ ψ = εA,

where εA (resp., εĀ, ε∧(WA)) is the counit of A (resp., Ā, ∧(WA)). Indeed, the map a 7→ ψ(a1)γ ◦
S(a2) gives the desired one, where γ := (εĀ ⊗ ε∧(WA)) ◦ ψ.

Remark 3.1.2. We regard A as a right A-comodule superalgebra by

A −→ A⊗A; a 7−→ a1 ⊗ a2. (I.3.1.3)

The same condition as above is equivalent to the condition with the sides switched, that is, the

condition that there exists a (counit-preserving) isomorphism A
≃−→ ∧(WA)⊗A of right A-comodule

superalgebras. Indeed, if ψ is a left- or right-sided isomorphism, then the composite c◦ψ ◦S, where
c = cA,∧(WA) or c = c∧(WA), A, gives an opposite-sided one.

Theorem 3.1.3 ([22, Theorem 4.5]). If k is a field of characteristic ̸= 2, then every commutative

Hopf superalgebra is split.

For a supergroupG, we define its even partGev as the restricted functor ofG form category Algk
of commutative algebras over k to Grp. This Gev is an ordinary affine group (scheme) represented

by the quotient Hopf algebra O(G). If G is algebraic, then Gev is also algebraic. By definition,

WO(G) is the odd part of the cotangent space of G at the identity.

Example 3.1.4. Let M be a k-supermodule. For a commutative superalgebra R over k, we define

GL(M)(R) := AutR(M ⊗R),

where AutR(M ⊗ R) is a subsuperspace of EndR(M ⊗ R) consisting of all invertible morphisms.

By definition, GL(M) is a supergroup. If M is k-free and finite rank such that rankM0̄ = m,

rankM1̄ = n, then we can regard GL(M) as a matrix group as follows

GL(M)(R) = {

(
A B

C D

)
|
A ∈ GLm(R0̄), B ∈ Matm,n(R1̄),

C ∈ Matn,m(R1̄), D ∈ GLn(R0̄)
}
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where GLm(−) is the ordinary general linear group (scheme) of degreem. In this case, we sometimes

denote GL(M) by GL(m|n).
The supergroupGL(m|n) is an algebraic supergroup. Indeed, the Hopf superalgebraO(GL(m|n))

representing G(m|n) is given by the localization A(m|n)d of A(m|n) at

d := det(xij)16i,j6m det(xkℓ)m+16k,ℓ6m+n,

for the notation see Example 2.1.2. In particular, one sees that the antipode is given by

S

(
A B

C D

)
=

(
(A−BD−1C)−1 −A−1BS(D)

−D−1CS(A) (D − CA−1B)−1

)
,

where A = (xij)16i,j6m, B = (xkj)16k6m<j6m+n, C = (xiℓ)16i6m<ℓ6m+n, D = (xkℓ)m+16k,ℓ6m+n.

The even part of GL(m|n) is given as follows

GL(m|n)ev ∼= GLm ×GLn.

Example 3.1.5. Let Q(n) be the subsupergroup of GL(n|n) such that

Q(n)(R) := {

(
A B

−B A

)
∈ GL(n|n)(R) | A ∈ Matn(R0̄), B ∈ Matn(R1̄)},

where R is a commutative superalgebra. Obviously, thisQ(n) is a closed subsupergroup ofGL(n|n).
The even part is GLn.

Example 3.1.6 (cf. [29]). For a fixed m > 1, we let G−m
a denote the algebraic supergroup such

that G−m
a (R) is the additive group Rm

1̄
, where R is a commutative superalgebra. The representing

object is the exterior algebra ∧(ξ1, . . . , ξm) generated by non-zero odd primitives ξ1, . . . , ξm.

3.2 Lie superalgebras of supergroups

Assume that k is 2-torsion free.

Let G be an affine supergroup. Set A := O(G). Then the following is easy to see.

Lemma 3.2.1. For homogeneous elements a, b ∈ A+, we have

∆(ab) ≡ 1⊗ ab+ ab⊗ 1 + a⊗ b+ (−1)|a||b|b⊗ a

modulo A+ ⊗ (A+)2 + (A+)2 ⊗A+.

Set d := A+/(A+)2. This is a supermodule. The Lie superalgebra

g = Lie(G)
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of G is the dual supermodule d∗ of d. Explicitly,

Lie(G) := (A+/(A+)2)∗.

Note that, A∗ is the dual superalgebra of the supercoalgebra A. Regard g as a subsupermodule of

A∗ through the natural embedding g ⊂ k⊕ d∗ = (A/(A+)2)∗ ⊂ A∗. By definition we have

g1̄ = (WA)∗.

Proposition 3.2.2. The superlinear endomorphism idA∗⊗A∗ −cA∗,A∗ on A∗ ⊗ A∗, composed with

the product on A∗, restricts to a map, [ , ] : g⊗ g → g, with which g is indeed a Lie superalgebra.

This satisfies (A3) in Definition 2.5.2.

Proof. By Lemma 3.2.1 it follows that (idA∗⊗A∗ − cA,A) ◦∆ induces a super-linear map

δ : d −→ d⊗ d, (I.3.2.1)

which is seen to satisfy

(idd⊗d + cd,d) ◦ δ = 0, (idd⊗d⊗d + cd,d⊗d + cd⊗d,d) ◦ (δ ⊗ idd) ◦ δ = 0.

Therefore, δ is dualized to a map [ , ] such as above, which satisfies (i), (iii) and (iv) required to

super-brackets; see Section 2.5. Let v ∈ g1̄. Then it follows from Lemma 3.2.1 that given a, b as in

the lemma, we have

v2(ab) = v(a)v(b) + (−1)|a||b|v(b)v(a) = 0,

since v(a)v(b) = 0 unless |a| = |b| = 1. Therefore, v2 ∈ g0̄ and [v, v] = 2v2. Thus (A3) in

Definition 2.5.2 is satisfied. The remaining (ii) is satisfied, since [[v, v], v] = 2[v2, v] = 0.

Set G := Gev. Then A = O(G). We have the Lie algebra Lie(G) = (A
+
/(A

+
)2)∗ of G.

Lemma 3.2.3. The natural embedding A
∗ ⊂ A∗ induces an isomorphism Lie(G) ≃ g0̄ of Lie

algebras.

Proof. One sees that this is the dual of the canonical isomorphism

A+
0̄
/((A+

0̄
)2 +A2

1̄) ≃ (A+
0̄
/A2

1̄)/
(
((A+

0̄
)2 +A2

1̄)/A
2
1̄

)
.

Thus we are done.

Example 3.2.4. For algebraic supergroups GL(m|n) and Q(n), one can easily see that its Lie

superalgebras are given by Lie(GL(m|n)) = gl(m|n) and Lie(Q(n)) = q(n).
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Chapter 4

Harish-Chandra Pairs Constructions

In this chapter, we assume that k is 2-torsion free,

4.1 Universal enveloping superalgebras

Recall that given an algebra S, an S-ring [1, p.195] is an algebra given an algebra map from S.

Let g be an admissible Lie superalgebra. The inclusion g0̄ ⊂ g induces a Hopf superalgebra map

U(g0̄) −→ U(g),

by which we will regard U(g) as a U(g0̄)-ring, and in particular as a left and right U(g0̄)-module.

Proposition 4.1.1. U(g) is free as a left as well as right U(g0̄)-module. In fact, if X is an arbitrary

k-free basis of g1̄ given a total order 6, then the products

x1 · · ·xn, xi ∈ X, x1 < · · · < xn, n ≥ 0

in U(g) form a U(g0̄)-free basis, where xi in the product denotes the image of the element under

the canonical map g → U(g).
This is proved in [24, Lemma 11], in the generalized situation treating dual Harish-Chandra

pairs, but over a field of characteristic ̸= 2. Our proof of the proposition will confirm the proof of

the cited lemma in our present situation. To use the same notation as in [24] we set

J := U(g0̄), V := g1̄.

Then the right adjoint action

adR(u)(v) = [v, u], u ∈ g0̄, v ∈ V (I.4.1.1)

by g0̄ on V gives rise to the right J-module structure on V , which we denote by v ▹a, where v ∈ V ,

a ∈ J . If i : V → U(g) denotes the canonical map, we have

i(v ▹ a) = S(a1) i(v) a2, v ∈ V, a ∈ J (I.4.1.2)
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in U(g). Indeed, this follows by induction on the largest length r, when we express a as a sum of

elements u1 · · ·ur, where ui ∈ g0̄.
Lemma 4.1.2. The right J-module structure on V and the super-bracket [ , ] : V ⊗ V → g0̄ ⊂ J

restricted to V make (J, V ) into a dual Harish-Chandra pair [24, Definition 6], or explicitly we

have

(a) [u ▹ a1, v ▹ a2] = S(a1)[u, v]a2,

(b) [u, v] = [v, u] and

(c) v ▹ [v, v] = 0

for all u, v ∈ V , a ∈ J . Properties (b), (c) implies

(d) u ▹ [v, w] + v ▹ [w, u] + w ▹ [u, v] = 0, u, v, w ∈ V.

We remark that (a) is an equation in g0̄, and the product of the right-hand side is computed in

J , which is possible since g0̄ ⊂ J .

Proof of Lemma 4.1.2. One verifies (a), just as proving (I.4.1.2). Properties (b), (c) are those of

Lie superalgebras. One sees that (b), applied to u+ v+w and combined with (c), implies (d).

Proof of Proposition 4.1.1. We will prove only the left J-freeness. The result with the antipode

applied shows the right J-freeness.

Let X be a totally ordered basis of V . We confirm the proof of [24, Lemma 11] as follows. First,

we introduce the same order as in the proof into all words in the letters from X ∪ {∗}, where ∗
stands for any element of J . Second, we see by using (I.4.1.2) that the J-ring U(g) is generated by

X, and is defined by the reduction system consisting of

(i) xa→ a1(x ▹ a2), x ∈ X, a ∈ J,

(ii) xy → −yx+ [x, y], x, y ∈ X, x > y,

(iii) x2 → 1
2 [x, x], x ∈ X,

where we suppose that in (i), x ▹ a2 is presented as a k-linear combination of elements in X. Third,
we see that the reduction system satisfies the assumptions required by Bergman’s Diamond Lemma

[1, Proposition 7.1], indeed its opposite-sided version.

To prove the desired result from the Diamond Lemma, it remains to verify the following by

using the properties (a)–(d) in Lemma 4.1.2: the overlap ambiguities which may occur when we

reduce the words

(iv) xya, x ≥ y in X, a ∈ J ,

(v) xyz, x ≥ y ≥ z in X
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are all resolvable. The proof of [24, Lemma 11] verifies the resolvability only when x, y and z are

distinct, and the same proof works now as well.

As for the remaining cases (omitted in the cited proof), first let xya be a word from (iv) with

x = y. This is reduced on the one hand as

xxa→ xa1(x ▹ a2) → a1(x ▹ a2)(x ▹ a3),

and on the other hand as

xxa→
(1
2
[x, x]

)
a = a1S(a2)

(1
2
[x, x]

)
a3

= a1

(1
2
[x ▹ a2, x ▹ a3]

)
.

Let b ∈ J . The last equality holds since S(b1)(12 [x, x])b2 and 1
2 [x ▹ b1, x ▹ b2] coincide since their

doubles do by (a). For the desired resolvability it suffices to see that the two polynomials

(x ▹ b1)(x ▹ b2),
1

2
[x ▹ b1, x ▹ b2] (I.4.1.3)

are reduced to the same one. For this, suppose

(x ▹ b1)⊗ (x ▹ b2) =

n∑
i,j=1

tij xi ⊗ xj in V ⊗ V,

where tij ∈ k, and x1 < · · · < xn in X. Note that tij = tji since J is cocommutative. Then the first

polynomial in (I.4.1.3) is reduced as

∑
i<j

tij(xixj + xjxi) +
∑
i

tii xixi →
∑
i<j

tij [xi, xj ] +
∑
i

tii

(1
2
[xi, xi]

)
.

This last and the second polynomial in (I.4.1.3) coincide since by (b), their doubles do. This proves

the desired result.

Next, let xyz be a word from (v), and suppose x = y > z. Note that if (u,w) = ([x, z], x) or

(12 [x, x], z), then u is primitive, and so we have the reduction wu→ uw+w ▹ u given by (i). Then

it follows that xyz = xxz is reduced as

xxz → −xzx+ x[x, z] → zxx− [x, z]x+ [x, z]x+ x ▹ [x, z]

→ z
(1
2
[x, x]

)
+ x ▹ [x, z] →

(1
2
[x, x]

)
z + z ▹

(1
2
[x, x]

)
+ x ▹ [x, z].

The word is alternatively reduced as

xxz →
(1
2
[x, x]

)
z.

These two results coincide, since the element z ▹ (12 [x, x])+x▹ [x, z], whose double is zero by (d), is

zero. The ambiguity for the word xyz is thus resolvable when x = y > z. One proves similarly the
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resolvability in the remaining cases, x > y = z and x = y = z, using (d) and (c), respectively.

The proposition just proven shows the following.

Corollary 4.1.3. If g is an admissible Lie superalgebra, then there exists a unit-preserving, left

U(g0̄)-module super-coalgebra isomorphism

U(g0̄)⊗ ∧(g1̄) ≃−→ U(g).

Here, “unit-preserving” means that the isomorphism sends 1⊗ 1 to 1.

4.2 Harish-Chandra pairs

Let G be an algebraic group over k. For a right O(G)-comodule M , we write its structure map

M →M ⊗O(G); m 7→ m0 ⊗m1. The corresponding left G-module structure is given by

G(S) −→ AutS(M ⊗ S); γ 7−→ (m⊗ 1S 7→ m0 ⊗ γ(m1)),

where S is a commutative algebra over k (cf. Part II, Section 2.1). For simplicity, this left (resp.

right) G-module structure is represented as

γm (resp. mγ) (I.4.2.1)

for m ∈M and γ ∈ G. Let W be a k-finite projective module. A left G-module structure on W is

transposed to W ∗ so that

⟨vg, w⟩ := ⟨v, gw⟩ (I.4.2.2)

for v ∈ W ∗, w ∈ W , g ∈ G(S), where S is a commutative algebra. Actually, this notational

convention will be applied only when G is an affine (algebraic) group.

The Lie algebra Lie(G) of G is naturally embedded into O(G)∗, and the embedding gives rise

to an algebra map U(Lie(G)) → O(G)∗. The associated pairing

⟨ , ⟩ : U(Lie(G))×O(G) −→ k (I.4.2.3)

is a Hopf pairing. Therefore, given a left G-module structure (= right O(G)-comodule structure)

on a k-module M , there is induced a left U(Lie(G))-module structure on M defined by

x ⇀ m := m0 ⟨x, m1⟩, (I.4.2.4)

where x ∈ U(Lie(G)) and m ∈M .

The right adjoint action by G on itself is dualized to the right co-adjoint coaction

coadR : O(G) −→ O(G)⊗O(G); a 7−→ a2 ⊗ S(a1)a3. (I.4.2.5)

This induces on O(G)+/(O(G)+)2 a right O(G)-comodule (or left G-module) structure. We assume
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(B1) O(G)/(O(G)+)2 is k-finite projective.

This is necessarily satisfied if k is a field. Under the assumption, the left G-module structure

on O(G)+/(O(G)+)2 just obtained is transposed to a right G-module structure on Lie(G). The

induced right U(Lie(G))-module structure coincides with the right adjoint action adR(u)(v) = [v, u],

u, v ∈ Lie(G), as is seen by using the fact that the pairing above satisfies

⟨u, ab⟩ = ⟨u, a⟩ ε(b) + ε(a) ⟨u, b⟩, ⟨u, S(a)⟩ = −⟨u, a⟩ (I.4.2.6)

for u ∈ Lie(G), a, b ∈ O(G).

Let G be an algebraic group which satisfies (B1), and let g be a Lie superalgebra such that

g0̄ = Lie(G). Note that g0̄ is k-finite projective and so k-flat; it is a right G-module, as was just

seen. We assume in addition,

(B2) g1̄ is k-finite free, and g is admissible, and

(B3) G is flat, i.e., O(G) is k-flat.

Assuming (B1) we see that (B2) is equivalent to that g1̄ is k-finite free, and g satisfies (A3).

Definition 4.2.1 (cf. [6, Definition 3.1], [27, Definition 4.4]). Let G be an algebraic group satis-

fying (B1) and (B3), and let g be a Lie superalgebra satisfying (B2). The pair (G, g) is called a

Harish-Chandra pair if it satisfies the following conditions

(i) The Lie algebra Lie(G) of G coincides with g0̄,
(ii) there is a right G-module structure on g1̄ such that the induced right U(g0̄)-module structure

coincides with the right adjoint g0̄-action given by (I.4.1.1), and

(iii) the super-bracket [ , ] : g1̄ ⊗ g1̄ → g0̄ restricted to g1̄ ⊗ g1̄ is right G-equivariant.

A morphism (G, g) → (G′, g′) between Harish-Chandra pairs is a pair (α, β) of a morphism

α : G→ G′ of affine groups and a morphism β = β0̄ ⊕ β1̄ : g → g′ Lie superalgebras, such that

(iv) the Lie algebra map Lie(α) induced from α coincides with β0̄, and

(v) β1̄(v
γ) = β1̄(v)

α(γ) for γ ∈ G, v ∈ g1̄.
The Harish-Chandra pairs and their morphisms form a category HCP.

Remark 4.2.2. By convention (see (I.4.2.1)) the equation (ii) above should read

(β1̄ ⊗ idS)((v ⊗ 1)γ) = ((β1̄ ⊗ idS)(v ⊗ 1))αS(γ),

where S is a commutative algebra, αS : G(S) → G′(S), v ∈ g1̄, and γ ∈ G(S).

Remark 4.2.3. Suppose that k is a field of characteristic ̸= 2. In this situation the notion of Harish-

Chandra pairs was defined by [24, Definition 7] in purely Hopf algebraic terms. It is remarked by
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[24, Remark 9 (2)] that if the characteristic chark of k is zero, there is a natural category anti-

isomorphism between our HCP defined above and the category of the Harish-Chandra pairs as

defined by [24, Definition 7]. But this is indeed the case without the restriction on chark. A key

fact is the following: once we are given an algebraic group G, a finite-dimensional right G-module V

and a right G-equivariant linear map [ , ] : V ⊗V → Lie(G), then the pair (O(G), V ∗), accompanied

with [ , ], is a Harish-Chandra pair in the sense of [24], if and only if the direct sum g := Lie(G)⊕V
is a Lie superalgebra (in our sense), with respect to the grading g0̄ = Lie(G), g1̄ = V , and with

respect to the super-bracket which uniquely extends

(a) the bracket on Lie(G),

(b) the map [ , ], and

(c) the right adjoint Lie(G)-action on V which is induced from the right G-action on V .

See [24, Remark 2 (1)], but note that in [24], the notion of Lie superalgebras is used in a restrictive

sense when chark = 3; indeed, to define the notion, the article excludes Condition (ii) from our

axioms given in the beginning of Section 2.5.

Remark 4.2.4. Our definition of Harish-Chandra pairs looks different from those definitions given

in [5, Section 7.4] and [6, Section 3.1] which require that the whole super-bracket [ , ] : g⊗ g → g
is G-equivariant. But this follows from the weaker requirement of ours that the restricted super-

bracket

[ , ]|g1̄⊗g1̄ : g1̄ × g1̄ −→ g0̄
is G-equivariant, since [ , ]|g0̄⊗g0̄ is obviously G-equivariant, and [ , ]|g1̄⊗g0̄ is, too, as will be seen

below. For γ ∈ G, u ∈ g0̄ and v ∈ g1̄, one sees that

⟨u, a1⟩ γ(a2) = γ(a1) ⟨uγ , a2⟩, a ∈ O(G).

Then the common requirement for the induced U(g0̄)-module structure on g1̄ shows that [v, u]γ =

[vγ , uγ ].

4.3 From ASG to HCP

A Hopf superalgebra is said to be affine if it is commutative and finitely generated as a superalgebra.

Definition 4.3.1. We define AHSA to be the full subcategory of the category of affine Hopf

superalgebras which consists of the affine Hopf superalgebras A such that

(C1) A is split (see Definition 3.1.1),

(C2) A is flat, and

(C3) A/(A
+
)2 is finite projective.

Note that the affinity and (C1) imply that WA is finite free.
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Definition 4.3.2 ([27, p.13]). We define ASG to be the full subcategory of the category of algebraic

supergroups which consists of the algebraic supergroups G such that

(D1) O(G) is split, and

(D2) Gev satisfies (B1), (B3) (see Section 4.2).

One sees that this category ASG is anti-isomorphic to the category AHSA.

Remark 4.3.3. If k is a field of characteristic ̸= 2, then the category AHSA is precisely the

category of all affine Hopf superalgebras and the category ASG is precisely the category of all

algebraic supergroups.

Let G ∈ ASG. Set

A := O(G), G := Gev, g := Lie(G).

Then A ∈ AHSA, and O(G) (= A) satisfies (B1), (B3). By Proposition 3.2.2, g satisfies (B2). By

Lemma 3.2.3 we have a natural isomorphism Lie(G) ≃ g0̄, through which we will identify the two,

and suppose g0̄ = Lie(G). Just as was seen in (I.4.2.5), the right co-adjoint A-coaction defined by

coadR : A −→ A⊗A; a 7−→ a2 ⊗ S(a1)a3, (I.4.3.1)

induces on A+/(A+)2 a right A-supercomodule structure; by (C3), it is transposed to a left A-

supercomodule structure on g, which is restricted to g1̄.
Lemma 4.3.4. Given the restricted right G-module structure on g1̄, the pair (G, g) forms a Harish-

Chandra pair, and so (G, g) ∈ HCP.

Proof. The right G-module structure on g1̄ induces the right adjoint g0̄-action, as is seen by using

(I.4.2.6). Since one sees that the map δ given in (I.3.2.1) is G-equivariant, so is its dual, [ , ].

We denote this object in HCP by

P(G) := (G, g).

Proposition 4.3.5. G 7→ P(G) gives a functor P : ASG → HCP.

Proof. Indeed, the constructions of G and of g are functorial.

4.4 From HCP to ASG

Let (G, g) ∈ HCP. Modifying the construction of A(C,W ) given in [24], we construct an object

A(G, g) in AHSA. To be close to [24] for notation we set

J := U(g0̄), C := O(G), W := g∗1̄.

Then W is finite free. It is a right C-comodule, or a left G-module, with the right G-module

structure on g1̄ transposed to W .
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Recall that N = {0, 1, 2, . . . } denotes the semigroup of non-negative integers. A supermodule

is said to be N-graded, if it is N-graded as a k-module and if the original Z2-grading equals the

N-grading modulo 2.

Definition 4.4.1 ([24, Definition 1]). A Hopf superalgebra is said to be N-graded, if it is N-graded
as an algebra and coalgebra and if the original Z2-grading equals the N-grading modulo 2.

Recall from Example 2.1.3 that the tensor algebra T (g1̄) =
⊕

n>0 T
n(g1̄) on g1̄ is a cocommuta-

tive Hopf superalgebra; this is N-graded. Recall that g0̄ acts on g1̄ by the right adjoint; see (I.4.1.1).

This uniquely extends to a right J-module-algebra structure on T (g1̄), with which is associated the

smash-product algebra [35, p.155]

H := J ◃<T (g1̄).
Given the tensor-product coalgebra structure on J ⊗T (g1̄), this H is a cocommutative Hopf super-

algebra, which is N-graded so that H(n) = J ⊗ Tn(g1̄), n ∈ N; see [24, Section 3.2]. Set

U := U(g).

Since we see that H is the quotient Hopf superalgebra of T (g) divided by the Hopf super-ideal

generated by

zw − wz − [z, w], z ∈ g, w ∈ g0̄,
it follows that U = H/I, where I is the Hopf super-ideal of H generated by the even primitives

1⊗ (uv + vu)− [u, v]⊗ 1, 1⊗ v2 − 1

2
[v, v]⊗ 1, (I.4.4.1)

where u, v ∈ g1̄.
Let Tc(W ) denote the tensor coalgebra onW , as given in [24, Section 4.1]; this is a commutative

N-graded Hopf superalgebra. In fact, this equals the tensor algebra T (W ) =
⊕

n>0 T
n(W ) as an

N-graded module, and is the graded dual
⊕

n>0 T
n(g1̄)∗ of T (g1̄) (see [35, p.231]) as an algebra

and coalgebra. Suppose that T 0(W ) = k is the trivial right C-comodule, and Tn(W ) for n > 0, is

the n-fold tensor product of the right C-comodule W . Then Tc(W ) turns into a right C-comodule

coalgebra. The associated smash coproduct

C I<Tc(W ),

given the tensor-product algebra structure on C ⊗ Tc(W ), is a commutative N-graded Hopf super-

algebra. Explicitly, the coproduct and the counit is given by

∆(c I<d) =
(
c1 I< (d1)0

)
⊗
(
(d1)1c2 I<d2

)
, ε(c I<d) = ε(c) ε(d), (I.4.4.2)

where c ∈ C, d ∈ Tc(W ), and Tc(W ) → Tc(W ) ⊗ C; d 7→ d0 ⊗ d1 denotes the right C-comodule

structure on Tc(W ).

In general, given an N-graded supermodule A =
⊕

n>0A(n), we suppose that it is given the
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linear topology defined by the the descending chains of super-ideals⊕
i>n

A(n), n = 0, 1, . . . .

The completion Â coincide with the direct product
∏∞
n=0A(n). This is not N-graded any more,

but is still a supermodule. Given another N-graded supermodule B, the tensor product A ⊗ B
is naturally an N-graded supermodule. The complete tensor product Â ⊗̂ B̂ coincides with the

completion of A⊗B. We regard k as a trivially N-graded supermodule, which is discrete. Suppose

that A is an N-graded Hopf superalgebra. The structure maps on A, being N-graded and hence

continuous, are completed to

∆̂ : Â −→ Â ⊗̂ Â, ε̂ : Â −→ k, Ŝ : Â −→ Â.

Satisfying the axiom of Hopf superalgebras with ⊗ replaced by ⊗̂, this Â may be called a complete

topological Hopf superalgebra. If A is commutative, then Â is, too. See [24, Section 2.3].

Applying the construction above to C I<Tc(W ), we suppose

A = C I<Tc(W ), Â =

∞∏
n=0

C ⊗ Tn(W )

in what follows. We let

π : Â −→ C ⊗ T 0(W ) = C (I.4.4.3)

denote the natural projection.

We regard C as a left J-module by

x ⇀ c := c1 ⟨x, c2⟩, x ∈ J, c ∈ C,

where ⟨ , ⟩ : J × C → k denotes the canonical Hopf pairing; see (I.4.2.3).

Let HomJ(H, C) denote the set of all left J-module maps from H to C. We regard HomJ(H, C)
as the completion of the N-graded supermodule

⊕
n>0HomJ(J ⊗ Tn(g1̄), C). The canonical iso-

morphisms

C ⊗ Tn(W ) = Hom(Tn(g1̄), C) ≃−→ HomJ(J ⊗ Tn(g1̄), C), n > 0 (I.4.4.4)

altogether amount to a superlinear homeomorphism

ξ : Â ≃−→ HomJ(H, C). (I.4.4.5)

Tensoring the canonical pairings J × C → k and T (g1̄)× Tc(W ) → k, we define

⟨ , ⟩ : H×A −→ k, ⟨x⊗ y, c⊗ d⟩ := ⟨x, c⟩ ⟨y, d⟩, (I.4.4.6)

where x ∈ J , y ∈ T (g1̄), c ∈ C, d ∈ Tc(W ). This is a Hopf pairing, as was seen in [24, Proposition
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17].

Lemma 4.4.2. ξ is determined by

ξ(a)(x) = π(a1) ⟨x, a2⟩ (I.4.4.7)

for a ∈ A, x ∈ H.

Proof. Note that if a = c⊗ d, where c ∈ C, d ∈ Tc(W ), then

π(a1)⊗ a2 = c1 ⊗ (c2 ⊗ d).

Then the lemma follows since ξ is the completion of the N-graded linear map

A = C ⊗ (
⊕
n>0

Tn(W )) −→ HomJ(J ⊗ (
⊕
n>0

Tn(g1̄)), C)

given by c⊗ d 7→
(
x⊗ y 7→ xc ⟨y, d⟩

)
, and this last element equals c1 ⟨x⊗ y, c2 ⊗ d⟩.

Remark 4.4.3. Recall that ⟨H(n),A(m)⟩ = 0 unless n = m. Therefore, the pairing (I.4.4.6)

uniquely extends to

⟨ , ⟩ : H× Â → k (I.4.4.8)

so that for each x ∈ H, ⟨x,−⟩ : Â → k is continuous. Using this pairing one sees that the value ξ(a)

at a ∈ Â is given by the same formula as (I.4.4.7), with π(a1)⊗a2 understood to be (π ⊗̂ id)◦ ∆̂(a).

We aim to transfer the structures on Â to HomJ(H, C) through ξ; see Proposition 4.4.6 below.

Definition 4.4.4. Let G be an affine group, in general. A k-supermodule M is called a left (resp.

right) G-supermodule if M is a left (resp. right) G-module such that each component Mϵ, ϵ ∈ Z2

is G-stable. Let GSMod (resp. SModG) denote the category of left (resp. right) G-supermodules.

This forms naturally a tensor category, and is symmetric with respect to the supersymmetry (see

(I.2.1.1)).

Recall from Section 4.3 that g0̄ is a right G-module. Combined with the given right G-module

structure on g1̄, it results that g ∈ SModG. Moreover, g is a Lie-algebra object in SModG, since the

super-bracket [ , ] : g⊗ g → g is G-equivariant, as was proved in Remark 4.2.4.

We regard A as a right C-supercomodule, or an object in GSMod, with respect to the right

co-adjoint coaction

A −→ A⊗ C, a 7−→ a2 ⊗ S(π(a1))π(a3). (I.4.4.9)

Lemma 4.4.5. We have the following.

(1) The right G-supermodule structure on g uniquely extends to that on H so that H turns into

an algebra object in SModG. In fact, H turns into a Hopf-algebra object in SModG.

(2) With the structure above, A turns into a Hopf-algebra object in GSMod.
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(3) The resulting structures are dual to each other in the sense that

⟨xγ , a⟩ = ⟨x, γa⟩, γ ∈ G, x ∈ H, a ∈ A. (I.4.4.10)

Proof. (1) The right G-supermodule structure on g uniquely extends to that on T (g) so that

T (g) turns into an algebra object in SModG. The extended structure factors to H, since we have

[z, w]γ = [zγ , wγ ], where γ ∈ G, z ∈ g and w ∈ g0̄. One sees easily that the resulting structure on

H is such as mentioned above.

(2) This is easy to see.

(3) Let a ∈ C, and let x = u1 · · ·ur be an element of J with ui ∈ g0̄. One sees by induction on r

that (I.4.4.10) holds for these x and a, using the fact that G-actions preserve the algebra structure

on J and the coalgebra structure on C.

We see from (I.4.4.2) that the left G-module structure on A, restricted to Tc(W ) = k⊗ Tc(W ),

is precisely what corresponds to the original right C-comodule structure on Tc(W ). It follows that

(I.4.4.10) holds for x ∈ T (g1̄), a ∈ Tc(W ).

The desired equality now follows from the definition (I.4.4.6) together with the fact that the

G-actions preserve the products on H and on A.

For each n ≥ 0 we have a natural linear isomorphism (see (I.4.4.4)) from⊕
i+j=n

HomJ(J ⊗ T i(g1̄), C)⊗HomJ(J ⊗ T j(g1̄), C)

onto the k-module ⊕
i+j=n

HomJ⊗J((J ⊗ T i(g1̄))⊗ (J ⊗ T j(g1̄)), C ⊗ C)

which consists of left J ⊗ J-module maps. The direct product
∏∞
n=0 of the isomorphisms gives the

super-linear homeomorphism

HomJ(H, C) ⊗̂HomJ(H, C)
≃−→ HomJ⊗J(H⊗H, C ⊗ C),

which is indeed the completion of the continuous map

f ⊗ g 7−→ (x⊗ y 7→ f(x)⊗ g(y)),

where f, g ∈ HomJ(H, C), x, y ∈ H. This homeomorphism will be used later.

Proposition 4.4.6. Suppose that f, g ∈ HomJ(H, C), x, y ∈ H and γ, δ ∈ G(S), where S is an

arbitrary commutative algebra.

(1) The product, the identity, the counit ε̂ and the antipode Ŝ on Â are transferred to HomJ(H, C)
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through ξ so that

(fg)(x) = f(x1)g(x2),

ξ(1)(x) = ε(x)1,

ε̂(f) = ε(f(1)),

⟨γ, Ŝ(f)(x)⟩ = ⟨γ−1, f(S(x)γ−1
)⟩.

(2) Through ξ and ξ ⊗̂ ξ, the coproduct on Â is translated to

∆̂ : HomJ(H, C) −→HomJ(H, C) ⊗̂ HomJ(H, C)

≈ HomJ⊗J(H⊗H, C ⊗ C)

so that

⟨(γ, δ), ∆̂(f)(x⊗ y)⟩ = ⟨γδ, f(xδ y)⟩.

Here, ⟨γ±1,−⟩, ⟨γδ,−⟩ and ⟨(γ, δ),−⟩ denote the functor points in G(S) and in (G × G)(S), re-

spectively.

The formulas are essentially the same as those given in [24, Proposition 18 (2), (3)]. One will

see below that the proof here, using Lemma 4.4.2, is simpler.

Proof. (1) Let a ∈ A, and write as π(a) = a. Then one has

γa = ⟨γ−1, a1⟩ a2 ⟨γ, a3⟩, γ ∈ G. (I.4.4.11)

To prove the last formula we may suppose f = ξ(a), since we evaluate f , Ŝ(f) on H. By using

Lemma 4.4.2 we see that

LHS = ⟨x, S(a1)⟩ ⟨γ, S(a2)⟩ = ⟨S(x), a1⟩ ⟨γ−1, a2⟩

= ⟨γ−1, a1⟩ ⟨γ, a2⟩ ⟨S(x), a3⟩ ⟨γ−1, a4⟩

= ⟨γ−1, a1⟩ ⟨S(x), γ
−1
a2⟩ = RHS.

The rest is easy to see.

(2) As above we may suppose f = ξ(a), a ∈ A. Then

LHS = ⟨γ, a1⟩ ⟨x, a2⟩ ⟨δ, a3⟩ ⟨y, a4⟩

= ⟨γ, a1⟩ ⟨δ, a2⟩ ⟨δ, S(a3)⟩ ⟨x, a4⟩ ⟨δ, a5⟩ ⟨y, a6⟩

= ⟨γ, a1⟩ ⟨δ, a2⟩ ⟨x, δa3⟩ ⟨y, a4⟩ = RHS.

Recall from (I.4.4.1) that I is the Hopf super-ideal of H such that H/I = U . Note that by the

k-flatness assumption (B3), the following statement makes sense.
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Lemma 4.4.7. I is G-stable, or in other words, it is C-costable. Therefore, U ∈ SModG.

Proof. Since [ , ] : g1̄ ⊗ g1̄ → g0̄ is G-equivariant, it follows that the elements uv+ vu− [u, v] from

(I.4.4.1) generate in H a C-costable k-submodule.

Let ρ : H → C ⊗ H be the left C-comodule structure on H. Let v ∈ g1̄, and suppose ρ(v) =∑
i ci ⊗ vi. By (B3), C ⊗ g0̄ is 2-torsion free. Therefore, we can conclude that

ρ(
1

2
[v, v]) =

∑
i

c2i ⊗
1

2
[vi, vi] +

∑
i<j

cicj ⊗ [vi, vj ], (I.4.4.12)

by seeing that the doubles of both sides coincide. It follows that

ρ(v2 − 1

2
[v, v]) =

∑
i

c2i ⊗ (v2i −
1

2
[vi, vi]) +

∑
i<j

cicj ⊗ (vivj + vjvi − [vi, vj ]).

Since this is contained in C ⊗ I, the lemma follows.

Since g is admissible, it follows by Corollary 4.1.3 that there is a unit-preserving left J-module

super-coalgebra isomorphism

ϕ : J ⊗ ∧(g1̄) ≃−→ U . (I.4.4.13)

We fix this ϕ for use in what follows.

Corollary 4.4.8. HomJ(U , C) is a discrete super-subalgebra of HomJ(H, C), and is stable under

Ŝ. Moreover, the map ∆̂ given in Proposition 4.4.6 (2) sends HomJ(U , C) into HomJ⊗J(U ⊗
U , C ⊗ C).

Proof. Since U is finitely generated as a left J-module by (I.5.3.7), we have

HomJ(U , C) ⊆ HomJ(J ⊗
(⊕
i<n

T i(g1̄)
)
, C)

for n large enough. This means that HomJ(U , C) is discrete. The rest follows easily from Lemma

4.4.7.

Given a Harish-Chandra pair (G, g) as above, we define

A(G, g)

to be the k-submodule of Â such that the homeomorphism ξ given in (I.4.4.5) restricts to a linear

isomorphism

η : A(G, g) ≃−→ HomJ(U , C). (I.4.4.14)

In what follows we set A := A(G, g).
Lemma 4.4.9. We have the following.

(1) A is a discrete super-subalgebra of Â, which is stable under Ŝ.
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(2) The canonical map A⊗A→ Â ⊗̂ Â is an injection. Regarding this injection as an inclusion,

we have ∆̂(A) ⊂ A⊗A.

(3) (A, ∆̂|A, ε̂|A, Ŝ|A) is a commutative Hopf superalgebra.

Proof. (1) This follows from Corollary 4.4.8.

(2) By using η, the canonical map above is identified with the composite of the canonical map

HomJ(U , C)⊗HomJ(U , C) → HomJ⊗J(U ⊗ U , C ⊗ C) (I.4.4.15)

with the embedding HomJ⊗J(U ⊗ U , C ⊗ C) ⊂ HomJ⊗J(H ⊗ H, C ⊗ C). By using ϕ, the map

(I.4.4.15) is identified with the canonical map

Hom(∧(g1̄), C)⊗Hom(∧(g1̄), C) −→ Hom(∧(g1̄)⊗ ∧(g1̄), C ⊗ C),

which is an isomorphism since ∧(g1̄) is k-finite free. This proves the desired injectivity. The rest

follows from Corollary 4.4.8.

(3) Just as above the canonical map A⊗A⊗A→ Â ⊗̂ Â ⊗̂ Â is seen to be an injection. From

this we see that ∆̂|A is coassociative. The rest is easy to see.

The restriction π|A of the projection (I.4.4.3) to A is a Hopf superalgebra map, which we denote

by

A −→ C, a 7−→ a. (I.4.4.16)

This notation is consistent with (I.3.1.2), as will be seen from Theorem 4.4.11 (2). We see from

Remark 4.4.3 that the pairing (I.4.4.8) induces

⟨ , ⟩ : U ×A −→ k, (I.4.4.17)

and the following lemma holds.

Lemma 4.4.10. The map η is given by essentially the same formula as (I.4.4.7) so that

η(a)(x) = a1 ⟨x, a2⟩

for a ∈ A, x ∈ U .

Define a map ϱ to be the composite

ϱ : A
η−→ HomJ(U , C) ∼= Hom(∧(g1̄), C) ε∗−→ ∧(g1̄)∗ = ∧(W ), (I.4.4.18)

where the second isomorphism is the one induced from the fixed ϕ (see (I.5.3.7)), and the following

ε∗ denotes Hom(∧(g1̄), ε).
Theorem 4.4.11. We have the following.

(1) The map

ψ : A −→ C ⊗ ∧(W ); a 7−→ a1 ⊗ ϱ(a2)
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is a counit-preserving isomorphism of left C-comodule superalgebras.

(2) We have natural isomorphisms

A ≃ C, WA ≃W = g∗1 (I.4.4.19)

of Hopf algebras and of k-modules, respectively.

Proof. (1) Compose the isomorphism HomJ(U , C) ≃ Hom(∧(g1̄), C) in (I.4.4.18) with the canonical

one Hom(∧(g1̄), C) ≃ C ⊗ ∧(W ). Through the composite we will identify as HomJ(U , C) =

C ⊗ ∧(W ). Since ⟨x, a⟩ = ε(η(a)(x)), a ∈ A, x ∈ U , one sees that ψ is identified with η, whence it

is a bijection. The desired result follows since ϱ is a counit-preserving superalgebra map.

(2) We see from the isomorphism just obtained that the Hopf superalgebra map (I.4.4.16)

induces A ≃ C, and the pairing (I.4.4.17), restricted to g1̄ ×A, induces WA ≃ g∗
1̄
.

The lemma shows the following.

Proposition 4.4.12. A(G, g) ∈ AHSA.

We let

G(G, g) (I.4.4.20)

denote the object in ASG which corresponds to A(G, g). Namely, G(G, g) := SSp (A(G, g)).
Proposition 4.4.13. (G, g) 7→ G(G, g) gives a functor G : HCP → ASG.

Proof. This follows since the constructions of Â, HomJ(H, C) and HomJ(U , C) are all functorial,

and the homeomorphism ξ is natural.

Proposition 4.4.14. The Harish-Chandra pair P(G(G, g)) associated with G(G, g) is naturally

isomorphic to the original (G, g).
To prove this we need a lemma. Set A := A(G, g), again. Then A is an object (indeed, a Hopf-

algebra object) in GSMod, being defined by the same formula as (I.4.4.11). Recall from Lemma

4.4.7 that U ∈ SModG.

Lemma 4.4.15. The pairing (I.4.4.17) is a Hopf pairing such that

⟨xγ , a⟩ = ⟨x, γa⟩ (I.4.4.21)

for x ∈ U , a ∈ A.

Proof. Note that the co-adjoint coaction A → A⊗C given in (I.4.4.9) is completed to Â → Â⊗C,
by which Â is a left G-supermodule including A as a G-subsupermodule. One sees that the pairing

(I.4.4.8) satisfies the same formula as (I.4.4.10) for a ∈ Â. The resulting formula shows (I.4.4.21).

The rest follows since the pairing (I.4.4.8) satisfies the formulas in Definition 2.3.2 required

to Hopf pairings. Here we understand that for x, y ∈ H and a ∈ Â, ⟨x, a1⟩ ⟨y, a2⟩ represents

⟨x⊗ y, ∆̂(a)⟩; this last denotes the pairing on (H⊗H)× (Â ⊗̂ Â) which is obtained naturally from

the pairing on (H⊗H)× (A⊗A), just as (I.4.4.8) is obtained from (I.4.4.6).
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Proof of Proposition 4.4.14. We see from the definition of ψ that the pairing ⟨ , ⟩ : U × A → k
given in (I.4.4.17) satisfies

⟨ϕ(x⊗ y), a⟩ = ⟨x, a1⟩ ⟨y, ϱ(a2)⟩

for x ∈ J , y ∈ ∧(g1̄), a ∈ A. What appear on the right-hand side are the canonical pairings

on J × C and on ∧(g1̄) × ∧(W ). It follows that the pairing induces a non-degenerate pairing

g×A+/(A+)2 → k. Lemma 4.4.15 shows that the last pairing induces an isomorphism Lie(G) ≃ g
of Lie superalgebras, where G := G(G, g). In addition, the isomorphism WA ≃ g∗

1̄
obtained in

(I.4.4.19) is indeed G-equivariant. It follows that the Lie superalgebra isomorphism together with

A ≃ C give the desired isomorphism of Harish-Chandra pairs. It is natural since the construction

of (I.4.4.17) is functorial.

Remark 4.4.16. One sees that the construction above gives an affine (not necessarily algebraic)

supergroup, more generally, starting with a pair (G, g) such that

(i) G is a flat affine group i.e., O(G) is k-flat,

(ii) g is an admissible Lie superalgebra with g1̄ k-finite (free),

(iii) g is given a right G-supermodule structure such that the super-bracket on g is G-equivariant,

and

(iv) there is given a bilinear map ⟨ , ⟩ : g0̄ ×O(G) → k such that

(iv-a) ⟨x, ab⟩ = ⟨x, a⟩ ε(b) + ε(a)⟨x, b⟩,

(iv-b) ⟨xγ , a⟩ = ⟨x, γa⟩,

(iv-c) [z, x] = ⟨x, z−1⟩ z0,

where x ∈ g0̄, a, b ∈ O(G), γ ∈ G, z ∈ g, and g → O(G) ⊗ g; z 7→ z−1 ⊗ z0 denotes the

left O(G)-supercomodule structure on g which corresponds to the given right G-supermodule

structure.

Here we do not assume (B1) or G being algebraic.

Remark 4.4.17. Given a super Lie group, say G, we have in mind as G and g above, the universal

algebraic hull of the associated Lie group Gred and the Lie superalgebra Lie(G) of G, respectively.

See [24, Remark 11] for a similar construction in an alternative situation.

4.5 The category equivalence

The following is our main result.

Theorem 4.5.1. We have a category equivalence ASG ≈ HCP. In fact the functors P : ASG → HCP

and G : HCP → ASG are quasi-inverse to each other.
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Since Proposition 4.4.14 shows that P ◦G is naturally isomorphic to the identity functor id, it

remains to prove G ◦P ≃ id.

Let G ∈ ASG. Set

A := O(G), g := Lie(G), U := U(g), G := Gev.

Lemma 4.5.2. The natural embedding g ⊂ A∗ uniquely extends to a superalgebra map U → A∗.

The associated pairing ⟨ , ⟩ : U ×A→ k is a Hopf pairing.

Proof. The superalgebra map T (g) → A∗ which extends g ⊂ A∗ kills the first elements in (I.2.5.1),

by definition of the super-bracket. For v ∈ g1̄ it kills 2v2 − [v, v], whence it does v2 − 1
2 [v, v] since

A∗ is 2-torsion free. This proves the first assertion.

As for the second it is easy to see ⟨x, 1⟩ = ε(x), x ∈ U . It remains to prove

⟨x, ab⟩ = ⟨x1, a⟩ ⟨x2, b⟩

for x ∈ U , a, b ∈ A. We may suppose that x is of the form x = u1 · · ·ur, where ui are homogeneous

elements in g. Then the equation is proved by induction on the length r.

Recall A ∈ GSMod, U ∈ SModG; see (I.4.3.1) or (I.4.4.11) as for A, and see Lemma 4.4.7 as for

U . Indeed, A and U are Hopf-algebra objects in the respective categories.

Lemma 4.5.3. The Hopf pairing ⟨ , ⟩ : U × A → k just obtained satisfies the same formula as

(I.4.4.21).

Proof. The G-module structure on g is transposed from that on A+/(A+)2. Therefore, the formula

holds for every x ∈ g and for any a ∈ A. The desired formula follows by induction, as in the last

proof; see also the proof of Lemma 4.4.5 (3).

Set

C := O(G), J := U(g0̄).
Note P(G) = (G, g). We aim to show that the affine Hopf superalgebra A(G, g), which is con-

structed from this last Harish-Chandra pair as in the previous subsection, is naturally isomorphic

to the present A. By using the Hopf pairing above, we define

η′ : A→ HomJ(U , C); a 7−→ (x 7→ a1 ⟨x, a2⟩),

where a ∈ A, x ∈ U . Note that HomJ(U , C) has the Hopf superalgebra structure which is trans-

ferred from A(G, g) thorough η (see (I.4.4.14)), and which is presented by the formulas given in

Proposition 4.4.6 with the obvious modification. We remark here that our η′ above is essentially

the same, up to sign, as the existing ones such as η∗ in [5, p.133, lines 2–3]. See [24, Remark 1] for

the difference of sign-rule.

Proposition 4.5.4. η′ is an isomorphism of Hopf superalgebras.
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Proof. Using Lemma 4.5.3 one computes in the same way as proving Proposition 4.4.6 (2) so that

⟨(γ, δ), (η′(a1)⊗ η′(a2))(x⊗ y)⟩ = ⟨γδ, η′(a)(xδ y)⟩,

where a ∈ A, γ, δ ∈ G, x, y ∈ U . The right-hand side equals ⟨(γ, δ), ∆(η′(a))(x ⊗ y)⟩, by the

formula giving the coproduct on HomJ(U , C). Therefore, η′ preserves the coproduct. It is easy to

see that η′ preserves the remaining structure maps, and is hence a Hopf superalgebra map.

Set W :=WA. Choose ϕ such as in (I.5.3.7), and define ϱ′ : A→ ∧(W ) as ϱ in (I.4.4.18), with

η replaced by η′. Then as was seen for η in the proof of Theorem 4.4.11 (1), η′ is identified with

ψ′ : A→ C ⊗ ∧(W ); a 7−→ a1 ⊗ ϱ′(a2). (I.4.5.1)

Since one sees that this ψ′ satisfies the assumption of Lemma 4.5.5 below, the lemma proves that

ψ′ and so η′ are isomorphisms.

Lemma 4.5.5. In general, let A be a split affine Hopf superalgebra, and set C := A, W :=WA. Let

ψ : A → C ⊗ ∧(W ) be a counit-preserving map of left C-comodule superalgebras. Assume that the

composite (ε⊗ϖ) ◦ ψ : A→W , where ϖ : ∧(W ) →W denotes the canonical projection, coincides

with the canonical projection A→ A1̄/A
+
0̄
A1̄ =W . Then ψ is necessarily an isomorphism.

Proof. Let B := C⊗∧(W ). Set a := (A1̄) and b := (B1̄) (= C⊗∧(W )+) in A and in B, respectively.

Since ψ(an) ⊂ bn for every n ≥ 0, there is induced a counit-preserving, left C-comodule N-graded
algebra map

grψ : grA =

∞⊕
n=0

an/an+1 −→ grB =

∞⊕
n=0

bn/bn+1.

One sees that grB = B = C ⊗ ∧(W ). Since A is split, we have as in [22, Proposition 4.9 (2)], a

canonical isomorphism grA ≃ C ⊗ ∧(W ), through which we will identify the two. Then grψ is

a counit-preserving endomorphism of the left C-comodule N-graded algebra C ⊗ ∧(W ). Being a

counit-preserving endomorphism of the left C-comodule algebra C, grψ(0) is the identity on C.

This together with the assumption above imply that grψ(1) is the identity on C ⊗W . It follows

that grψ is an isomorphism. Since the affinity assumption implies grA(n) = 0 = grB(n) for n≫ 0,

one sees that ψ is an isomorphism.

Proof of Theorem 4.5.1. Since we see that η and η′ are both natural, it follows that A(G, g) and

A are naturally isomorphic. This proves G ◦P ≃ id, as desired.

Remark 4.5.6. Suppose that k is a field of characteristic ̸= 2. Identify ASG with AHSA, through

the obvious category anti-isomorphism. Identify our HCP defined by Definition 4.2.1 with that

defined by [24, Definition 7], through the category anti-isomorphism given in Remark 4.2.3. Then

the category equivalences P and G given by Theorem 4.5.1 are easily identified with those A 7→
(A,WA) and (C,W ) 7→ A(C,W ) given by [24, Theorem 29].

Definition 4.5.7 ([27, Definition 6.3]). Let (G, g) be a Harish-Chandra pair over k. Let K be a

flat closed subgroup of G and k be a free Lie subsuperalgebra of g with Lie(K) = k0̄. The pair

(K, k) is called a sub-pair of (G, g) if k1̄ is K-stable in g1̄.
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In this case, (K, k) is a Harish-Chandra pair and the corresponding algebraic supergroupG(K, k)

is a closed subsupergroup of G(G, g). Conversely, for a flat closed subsupergroup K of G, the

corresponding Harish-Chandra pair (Kev,Lie(K)) is a sub-pair of (Gev,Lie(G)). In this way, the

map K 7→ (Kev,Lie(K)) gives a bijection from the set of all flat closed supergroups of G to the set

of all sub-pairs of (Gev,Lie(G)).

4.6 Generalization using 2-operations

In this section, we work over an arbitrary non-zero commutative ring k. We will refine Gavarini’s

category equivalence; see Theorem 4.6.9.

4.6.1 2-Operations and universal enveloping superalgebras

Let g be a Lie superalgebra having a 2-operation (−)⟨2⟩, see Section 2.5.2. In this section, we

let U(g) denote the cocommutative Hopf superalgebra which is defined as in [12, Section 4.3.4].

This is the quotient Hopf superalgebra of the tensor superalgebra T (g) divided by the super-ideal

generated by the homogeneous primitives

zw − (−1)|z||w|wz − [z, w], v2 − v⟨2⟩, (I.4.6.1)

where z and w are homogeneous elements in g, and v ∈ g1̄. The only difference from the definition

given in Section 2.5.1 is that the second generators v2− 1
2 [v, v] in (I.2.5.1) are here replaced (indeed,

generalized) by v2 − v⟨2⟩.

Lemma 4.6.1. Suppose that the homogeneous components g0̄ and g1̄ are both k-free, and choose

their totally ordered bases X0̄ and X1̄. Then U(g) has the following monomials as a k-free basis,

ar11 · · · armm x1 · · ·xn,

where a1 < · · · < am in X0̄, ri > 0, m ≥ 0, and x1 < · · · < xn in X1̄, n ≥ 0.

Proof. To prove Proposition 4.1.1 we used the Diamond Lemma [1, Proposition 7.1] for R-rings.

But we use here the Diamond Lemma [1, Theorem 1.2] for k-algebras. We suppose that X0̄ ∪ X1̄

is the set of generators, and extend the total orders on Xϵ, ϵ = 0̄, 1̄, to the set so that a < x

whenever a ∈ X0̄, x ∈ X1̄. The reduction system consists of the obvious reductions arising from the

super-bracket, and

x2 → x⟨2⟩, x ∈ X1̄,

where the last x⟨2⟩ is supposed to be presented as a linear combination of elements in X0̄. It is

essential to prove that the overlap ambiguities which may occur when we reduce the words

• xxa, x ∈ X1̄, a ∈ X0̄,

• xyz, x = y ≥ z or x ≥ y = z in X1̄
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are resolvable. This is easily proved (indeed, more easily than was in the proof of Proposition 4.1.1),

by using Condition (iii) in Definition 2.5.4. For example, the word xxa is reduced on the one hand

as

xxa→ x[x, a] + xax→ x[x, a] + [x, a]x+ ax⟨2⟩ → [x, [x, a]] + ax⟨2⟩,

and on the other hand as

xxa→ x⟨2⟩a.

The two results coincide by (iii).

Remark 4.6.2. To use Condition (iii) as above, we cannot treat U(g) as a J = U(g0̄)-ring as in

the the proof of Proposition 4.1.1. Indeed, to reduce the word xxa with a ∈ J in the proof, we are

not allowed to present a as (a linear combination of) bc with b ∈ g0̄, c ∈ J , and to reduce as

xxa→ xxbc→ x[x, b]c+ xbxc,

because by the first step, the lengths of words increase, length(xx∗) < length(xx ∗ ∗); see the proof

of [24, Lemma 11].

Corollary 4.6.3 (cf. [12, (4.7)]). If g0̄ is k-finite projective and g1̄ is k-free, then the same result

as Corollary 4.1.3 holds, that is, there exists a unit-preserving, left U(g0̄)-module super-coalgebra

isomorphism U(g0̄)⊗ ∧(g1̄) ≃−→ U(g).
Proof. Choose a totally ordered basis X of g1̄. Then the left U(g0̄)-module U(g) is free with the

free basis

x1x2 · · ·xn, (I.4.6.2)

where x1 < x2 < · · · < xn in X, n > 0. We define a left U(g0̄)-module (supercoalgebra) map

ϕ : U(g0̄)⊗ ∧(g1̄) → U(g) by

ϕ(1⊗ (x1 ∧ · · · ∧ xn)) = x1 · · ·xn,

where x1 < · · · < xn in X, n ≥ 0. To prove that this is bijective, it suffices to prove the localization

ϕm at each maximal ideal m of k is bijective. Note that gm is a km-Lie superalgebra given a

2-operation by Proposition 2.5.6, and

U(g0̄)m = U((g0̄)m), (∧(g1̄))m = ∧((g1̄)m), U(g)m = U(gm).

Since (g0̄)m is km-free under the assumption above, Lemma 4.6.1 shows that ϕm is bijective.

Let G be an affine supergroup; see Section 3.1. Recall from Section 3.2

Lie(G) := (O(G)+/(O(G)+)2)∗.

Note that the proof of Proposition 3.2.2 does not use the assumption that k is 2-torsion free. From

the proposition and the proof one sees the following.
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Proposition 4.6.4. Let g := Lie(G).

(1) g is naturally a Lie superalgebra.

(2) Given v ∈ g1̄, the square v2 in O(G)∗ is contained in g0̄. Moreover, the square map (−)2 :

g1̄ → g0̄ gives a 2-operation on g.
We will suppose that Lie(G) is given this specific 2-operation. One sees that Lie gives a functor

from the category of affine supergroups to the category of Lie superalgebras given 2-operations. A

morphism of the latter category is a morphism in SModk which preserves the super-bracket and

the 2-operation.

Remark 4.6.5. Let g be a Lie superalgebra. Note from Section 2.4 that the deformation σg by σ

is the object g in SModk given the super-bracket

σ[z, w] := (−1)|z||w|[z, w], z, w ∈ g

deformed from the original super-bracket [z, w]. If g is given a 2-operation, we suppose that σg is

given the deformed 2-operation

vσ⟨2⟩ := −v⟨2⟩, v ∈ g1̄.
This indeed defines a 2-operation on σg, as is easily seen.

Let G be an affine supergroup. As is seen from the last paragraph of Section 2.4, the Lie

superalgebra Lie(G) given the 2-operation as defined above is different from that defined in [27,

Appendix]. In fact, the two are the deformations of each other by σ.

4.6.2 Definitions of Gavarini’s categories

Recall from [12, Definitions 3.2.6 and 4.1.2] the following definitions of two categories, (gss-fsgroups)k,

(sHCP)k.

Let (gss-fsgroups)k denote the category of the affine supergroups G such that when we set

A := O(G),

(E1) A is split (Definition 3.1.1),

(E2) A/(A
+
)2 is k-finite projective, and

(E3) WA = A1̄/A
+
0̄
A1̄ is k-finite (free).

The morphisms in (gss-fsgroups)k are the natural transformations of group-valued functors.

Let (G, g) be a pair of an affine group G and a Lie superalgebra g given a 2-operation, such

that g1̄ is k-finite free and is given a right G-module structure. Suppose that this pair satisfies

(F1) g0̄ = Lie(G),

(F2) O(G)/(O(G)+)2 is k-finite projective, so that g0̄ = Lie(G) is necessarily k-finite projective,

and it is naturally a right G-module (recall from Section 4.2 that the corresponding left

O(G)-comodule structure on Lie(G) is transposed from the right co-adjoint O(G)-coaction

on O(G)+/(O(G)+)2),
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(F3) the right U(g0̄)-module structure on g1̄ induced from the given right G-module structure

coincides with the right adjoint g0̄-action on g1̄,
(F4) the restricted super-bracket [ , ] : g1̄ ⊗ g1̄ → g0̄ is G-equivariant, and

(F5) the diagram

g1̄ g0̄

O(G)⊗ g1̄ O(G)⊗ g0̄

(−)⟨2⟩
//

�� ��
(−)

⟨2⟩
O(G)

//

commutes, where the vertical arrows are the left O(G)-comodule structures.

One sees that under (F4), Condition (F5) is equivalent to

(v
⟨2⟩
S )γ = (vγ)

⟨2⟩
S , v ∈ g1̄ ⊗ S, γ ∈ G(S),

where S is an arbitrary commutative algebra.

Let (sHCP)k denote the category of all those pairs (G, g) which satisfy Conditions (F1)–(F5)

above. A morphism (G, g) → (G′, g′) in (sHCP)k is a pair (α, β) of a morphism α : G → G′ of

affine groups and a Lie superalgebra map β = β0̄ ⊕ β1̄ : g → g′, which satisfies Conditions (iv), (v)

in Definition 4.2.1, and

(vi) β0̄(v
⟨2⟩) = β1̄(v)

⟨2⟩, v ∈ g1̄.
Remark 4.6.6. One sees from Lemma 2.5.5 that if k is 2-torsion free, then our HCP and ASG (see

Definition 4.2.1 and Section 4.3), roughly speaking, coincide with (sHCP)k and (gss-fsgroups)k,

respectively. To be precise, ours are more restrictive in that for objects (G, g) ∈ HCP, G ∈ ASG,

the commutative Hopf algebras O(G) and O(Gev) are assumed to be affine and k-flat.
We may remove the affinity assumption so long as (B1) and (C3) are assumed. But the as-

sumption seems natural, since if k is a field of characteristic ̸= 2, it ensures that (B1) and (C3) are

satisfied, so that our Theorem 4.5.1 then coincides with the known category equivalence between

all algebraic supergroups and the Harish-Chandra pairs; see Remark 4.5.6.

Note from (I.4.4.12) that under the k-flatness assumption above, O(G)⊗g1̄ is 2-torsion free, and

Condition (F5) for v⟨2⟩ = 1
2 [v, v] is necessarily satisfied. Recall that the condition is not contained

in the axioms for objects in HCP.

4.6.3 A refinement of Gavarini’s equivalence

Our category equivalences between (gss-fsgroups)k and (sHCP)k will be presented differently from

Gavarini’s Φg, Ψg; see Remark 4.6.10. So, we will use different symbols, P′, G′, to denote them.

Let us construct a functor

P′ : (gss-fsgroups)k −→ (sHCP)k.
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Given G ∈ (gss-fsgroups)k, set G := Gev, g := Lie(G). Recall from Proposition 4.6.4 and the

following remark that g is a Lie superalgebra given the square map as a 2-operation. As in Lemma

3.2.3 one has g0̄ ∼= Lie(G), through which we will identify the two, and suppose g0̄ = Lie(G).

Since g is k-finite projective by (E2), (E3), the co-adjoint O(G)-coaction on O(G)+/(O(G)+)2

(see (I.4.3.1)) is transposed to g, so that g is a right G-supermodule. The restricted right G-

module structure on g1 satisfies (F3), (F4), as was seen in the proof of Lemma 4.3.4. To conclude

(G, g) ∈ (sHCP)k, it remains to prove the following.

Lemma 4.6.7. The condition (F5) is satisfied.

Proof. Let v 7→
∑

i ci⊗vi denote the left O(G)-comodule structure g1̄ → O(G)⊗g1̄ on g1̄. Let a 7→
a0⊗a1 denote the right co-adjointO(G)-coactionO(G) → O(G)⊗O(G) onO(G). Since g is k-finite
projective, we have the canonical injection O(G) ⊗ g = Homk(g∗,O(G)) → Homk(O(G),O(G)).

Therefore, it suffices to prove

⟨v2, a0⟩ a1 =
∑
i

c2i ⟨v2i , a⟩+
∑
i<j

cicj ⟨[vi, vj ], a⟩

for v ∈ g1̄, a ∈ O(G), where ⟨ , ⟩ denotes the canonical pairing O(G)∗×O(G) → k. This is proved
as follows.

LHS = ⟨v, (a1)0⟩ ⟨v, (a2)0⟩ (a1)1(a2)1
=

∑
i,j

cicj ⟨vi, a1⟩ ⟨vj , a2⟩ =
∑
i,j

cicj ⟨vivj , a⟩ = RHS.

Let P′(G) denote the thus obtained object (G, g) in (sHCP)k. As in Proposition 4.3.5, we see

that P′ : (gss-fsgroups)k → (sHCP)k gives the desired functor, since the Lie superalgebra map

induced from a morphism of affine supergroups obviously preserves the 2-operation.

Let us construct a functor

G′ : (sHCP)k −→ (gss-fsgroups)k.

Let (G, g) ∈ (sHCP)k. Then the natural right G-module structure on g0̄ = Lie(G) and the given

right G-module structure on g1̄ amount to a right G-supermodule structure on g, by which the

super-bracket on g is G-equivariant, as is seen as in Remark 4.2.4 by using (F3), (F4).

Remark 4.6.8. According to the original definition [12, Definition 4.1.2], the provedG-equivariance

is assumed as an axiom for objects in (sHCP)k. But it can be weakened to (F4), as was just seen.

Using (F5), one sees as in Lemma 4.4.7 (indeed, more easily) that the right G-supermodule

structure on g uniquely extends to U(g), so that U(g) turns into a Hopf-algebra object in SModG.

By using an isomorphism U(g0̄)⊗ ∧(g1̄) ≃ U(g) such as given by Corollary 4.6.3, we can trace the

argument in Section 4.4, to construct a split commutative Hopf superalgebra, A = A(G, g), such
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that

A ≃ HomU(g0̄)(U(g),O(G)), A ≃ O(G), WA ≃ g∗1̄.
It follows that this A satisfies (E1)–(E3). We let G′(G, g) denote the affine supergroup correspond-

ing to A. Then one sees that G′(G, g) ∈ (gss-fsgroups)k, and

(G, g) 7−→ G′(G, g)

gives the desired functor. As for the fuctoriality, note that Condition (iii) given just above Remark

4.6.6 is used to see that a morphism (α, β) in (sHCP)k induces, in particular, a Hopf superalgebra

map U(g) → U(g′); see the proof of Proposition 4.4.13.

Theorem 4.6.9 ([12, Theorem 4.3.14]). We have a category equivalence

(gss-fsgroups)k ≈ (sHCP)k.

In fact the functors P′ and G′ constructed above are quasi-inverse to each other.

Proof. To prove P′ ◦ G′ ≃ id, G′ ◦ P′ ≃ id, we can trace the argument of Section 4.5 proving

P ◦G ≃ id, G ◦P ≃ id, except in two points.

First, to prove P′◦G′ ≃ id, we have to show that if (G, g) ∈ (sHCP)k, and we set G := G′(G, g),
then the natural Lie superalgebra isomorphism Lie(G) ≃ g as given in the proof of Proposition

4.4.14 preserves the 2-operation. Note that we have a Hopf pairing U(g) ×O(G) → k as given in

(I.4.4.17), and it restricts to a non-degenerate pairing g × O(G)+/(O(G)+)2 → k, which induces

the isomorphism above. Therefore, we have the commutative diagram

g Lie(G)

U(g) O(G)∗,

≃ //
� _

��

� _

��

//

where the arrow in the bottom is the map induced from the Hopf pairing above. Given v ∈ g1, the
composite g ≃−→ Lie(G) ↪→ O(G)∗, which factors through U(g) as above, sends v⟨2⟩ to v2. This

proves the desired result.

Second, to proveG′◦P′ ≃ id, we should remark that Lemma 4.5.5 can apply, since the conclusion

of the lemma holds so long as WA is k-finite, even if the split commutative Hopf superalgebra A is

not finitely generated.

Remark 4.6.10. In [12], details are not given for the following two.

(1) 2-operations. Condition (F5) is not explicitly given in [12]. The functor Φg : (gss-fsgroups)k →
(sHCP)k in [12] is almost the same as our P′, but it does not specify the associated 2-operation;

see [12, Proposition 4.1.3]. Accordingly, it is not proved that Φg(GP)
≃−→ P preserves the 2-

operation on the associated Lie superalgebras; see the first paragraph of the proof of [12, Theorem

4.3.14].
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(2) Proof of U(g0̄)⊗∧(g1̄) ≃ U(g). This isomorphism is what was proved by our Corollary 4.6.3.

The proof of [12] given in the three lines above Eq. (4.7) is rather sketchy, and it might overlook

the localization argument used in our proof. Note that, the argument uses Proposition 2.5.6; this

last result or any equivalent one is not given in [12].
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Chapter 5

Functor Points Constructions

In this chapter, we work over a non-zero commutative ring k. Working over an arbitrary commuta-

tive ring, we should careful to define super-commutativity. Thus, in this chapter, we re-define the

notion of commutative superalgebra. A superalgebra R is said to be commutative if ab = (−1)|a||b|ba

for a, b ∈ R and a2 = 0 for a ∈ R1̄.

5.1 Base extension of abstract groups

Suppose that the quintuple

(Σ, F, G, i, α)

consists of groups Σ, F and G, a group map i : F → G, and anti-group map α : G→ Aut(Σ) such

that

(G1) F is a subgroup of Σ,

(G2) φi(f) = f−1φf for all f ∈ F , φ ∈ Σ,

(G3) fg ∈ F and i(fg) = g−1i(f)g,

where f ∈ F , g ∈ G, φ ∈ Σ, and we let φg denote α(g)(φ). Suppose that F and G act on Σ and G,

respectively, from the right by inner automorphisms. Then (G2) reads that i preserves the actions

on Σ, while (G3) reads that F is G-stable, and i is G-equivariant.

Let G ◃<Σ be the semi-direct product given by α, and set

Ξ = { (i(f), f−1) ∈ G ◃<Σ | f ∈ F }.

Then one sees from (G2)–(G3) that Ξ is a normal subgroup of G ◃<Σ. We let

Γ = Γ(Σ, F,G, i, α)

denote the quotient group G ◃<Σ/Ξ.

Lemma 5.1.1. We have the following.
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(1) The composite G → G ◃<Σ → Γ of the inclusion with the quotient map is an injection,

through which we will regard G as a subgroup of Γ.

(2) The composite Σ → G ◃<Σ → Γ of the inclusion with the quotient map induces a bijection

F\Σ → G\Γ between the sets of right cosets.

Proof. Choose arbitrarily a set X ⊂ F of representatives of F\Σ. Then the product map p :

F × X → Σ, p(f, x) = fx is a bijection, through which we will identify Σ with F × X. Then

we have G ◃<Σ = (G ◃<F ) × X as left G ◃<F -sets. Note Ξ ⊂ G ◃<F and that the canonical

map G → G ◃<F/Ξ = Ξ\G ◃<F is an isomorphism. The direct product with idX gives a left

G-equivariant bijection G×X → (Ξ\G ◃<F )×X = Γ. This implies the assertions.

Taking into account the property shown in Part 2 above we say:

Definition 5.1.2. Γ is the base extension of Σ along i : F → (G,α). Here one supposes i to be a

morphism of groups acting on Σ, bearing in mind the action of F by inner automorphisms.

5.2 Construction of affine supergroups

5.2.1 The group Σ(A)

Let g be a Lie superalgebra which satisfies the following conditions; see Corollary 4.6.3.

(i) g0̄ is k-finite projective, and

(ii) g1̄ is k-finite free.

Suppose that it is given a 2-operation (−)⟨2⟩.

Let A ∈ SAlgk be a commutative superalgebra (over k). We have the group Gpl(U(g)A) of all

even grouplikes in the Hopf superalgebra U(g)A = A⊗U(g) over A. As is seen from the paragraph

following Proposition 4.1.1, the canonical maps

A0̄ ⊗ g0̄ −→ A⊗ U(g0̄) −→ A⊗ U(g),
A⊗ g1̄ −→ A⊗ U(g)

are all injections, which we will regard as inclusions. We define even elements e(a, v), f(ϵ, x) of

A⊗ U(g) by
e(a, v) = 1⊗ 1 + a⊗ v, f(ϵ, x) = 1⊗ 1 + ϵ⊗ x, (I.5.2.1)

where a ∈ A1̄, v ∈ g1̄, x ∈ g0̄, and ϵ ∈ A0̄ with ϵ2 = 0. Note that e(λa, v) = e(a, λv), f(λϵ, x) =

f(ϵ, λx) for λ ∈ k.

Lemma 5.2.1. The elements e(a, v), f(ϵ, x) are contained in Gpl(U(g)A), and we have

e(a, v)−1 = e(−a, v), f(ϵ, x)−1 = f(−ϵ, x), e(0, v) = 1 = f(0, x).

Proof. This follows since a⊗ v and ϵ⊗ x are even primitives z such that z ⊗A z = 0.
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Lemma 5.2.2. Let a, b ∈ A1, u, v ∈ g1̄, x, y ∈ g0̄, and ϵ, η ∈ A0̄ with ϵ2 = η2 = 0. Then the

following relations hold in Gpl(U(g)A).
(i) e(a, u) e(b, v) = f(−ab, [u, v]) e(b, v) e(a, u)

(ii) e(a, v) e(b, v) = f(−ab, v⟨2⟩) e(a+ b, v)

(iii) e(a, v) f(ϵ, x) = f(ϵ, x) e(a, v) e(ϵa, [v, x])

(iv) f(ϵ, x) f(η, y) = f(η, y) f(ϵ, x) f(ϵη, [x, y])

Proof. These follow by direct computation.

In particular, e(a, u) and e(b, v) (resp., e(a, v) and f(ϵ, x); resp., f(ϵ, x) and f(η, y)) commute

with each other if ab = 0 or [u, v] = 0 (resp., ϵa = 0 or [v, x] = 0; resp., ϵη = 0 or [x, y] = 0).

Let

Σ(A)

denote the subgroups of Gpl(U(g)A) generated by all the elements e(a, v), f(ϵ, x) defined by (I.5.2.1).

Let F (A0̄) denote the subgroup of Σ(A) generated by all f(ϵ, x).

Proposition 5.2.3. We have the following.

(1) F (A0̄) = Σ(A) ∩ U(g0̄)A0̄
.

(2) Choose arbitrarily a k-free basis v1, . . . , vn of g1̄. Then every element of Σ(A) is uniquely

expressed of the form

f e(a1, v1) e(a2, v2) · · · e(an, vn), (I.5.2.2)

where f ∈ F (A0̄), and ai ∈ A1̄, 1 ≤ i ≤ n.

Proof. If v =
∑n

i=1 λivi with λi ∈ k, then

e(a, v) = e(λ1a, v1) e(λ2a, v2) · · · e(λna, vn).

Therefore, Σ(A) is generated by all e(a, vi), 1 ≤ i ≤ n, and f(ϵ, x). To these generators as-

sociate the numbers i and 0, respectively. Given an element of Σ(A) expressed as a product

of the last generators, associate naturally a word of the letters 0, 1, . . . , n. For example, to

e(a, v2) f(ϵ, x) f(η, y) e(b, v1), associated is the word 2001. Introduce the lexicographical well-order

among the words. Suppose that we are given an element of Σ(A) expressed as above. Suppose

that the associated word is not of the form

0 . . . 0︸ ︷︷ ︸
r

i1i2 . . . is, (I.5.2.3)

where r ≥ 0 and 0 < i1 < i2 < · · · < is ≤ n, s ≥ 0. This means that the expression includes

(i) e(a, vj) e(b, vi), i < j, (ii) e(a, vi) e(b, vi) or (iii) e(a, vi) f(ϵ, x).
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By using the relations (i)–(iii) in Lemma 5.2.2, the expression is reduced to another one with

smaller associated word. Continuing such reductions it is reduced finally to an expression with

associated word of the form (I.5.2.3). This proves that every element of Σ(A) is expressed of the

form (I.5.2.2). Note that F (A0̄) ⊂ A ⊗ U(g0̄). Then the uniqueness of the expression and (1)

follow, since we see from Proposition 4.1.1 that U(g)A has the elements given by (I.4.6.2) as left

A⊗ U(g0̄)-free basis.

5.2.2 The group Γ(A)

Keep the situation as above.

Let G be an affine group. The right adjoint action G ×G → G, (h, g) 7→ g−1hg is dualized to

the left G-module structure on O(G) defined by

gc := g−1(c1) c2 g(c3), g ∈ G(S), c ∈ O(G), (I.5.2.4)

where S ∈ Algk is a commutative algebra (over k). This makes O(G) into a Hopf-algebra object in

the symmetric tensor category GMod of left G-modules.

Recall that g is a Lie superalgebra given a 2-operation, and it satisfies the assumptions stated

in Proposition 4.1.1.

Definition 5.2.4. Let AutLie(g) denote the supergroup functor such that

AutLie(g)(S) := AutS- Lie(gS),

where S ∈ Algk. Here, AutS- Lie(gS) is the group of all S-Lie-superalgebra automorphisms preserv-

ing (−)
⟨2⟩
S ; see Proposition 2.5.6.

We are going to work in a more general situation than will be needed to discuss a category

equivalence in the next subsection. For our motivation of this see Remark 5.2.14 below.

Suppose that we are given a pairing and an anti-morphism,

⟨ , ⟩ : g0̄ ×O(G) −→ k, α : G −→ AutLie(g). (I.5.2.5)

Let us write as ρα(z) = z−1 ⊗ z0 for z ∈ g. We assume that

(H1) [z, x] = ⟨x, z−1⟩ z0,

(H2) ⟨x, cd⟩ = ⟨x, c⟩ ε(d) + ε(c) ⟨x, d⟩, and

(H3) ⟨xg, c⟩S = ⟨x, gc⟩S ,

where x ∈ g0̄, z ∈ g, c, d ∈ O(G) and g ∈ G(S), S ∈ Algk.

By (H2) we have the map

g0̄ −→ Lie(G) (⊆ O(G)∗̄); x 7−→ ⟨x, −⟩. (I.5.2.6)
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This is a Lie algebra map, since we see from (H1) for even z and (H3) that

⟨[x, y], c⟩ = ⟨x, S(c1)c3⟩ ⟨y, c2⟩

= ⟨x⊗ y, ∆(c)⟩ − ⟨y ⊗ x, ∆(c)⟩,

where x, y ∈ g0̄, c ∈ O(G). Therefore, it uniquely extends to an algebra map U(g0̄) → O(G)∗̄, with

which associated is the Hopf pairing

⟨ , ⟩ : U(g0̄)×O(G) −→ k (I.5.2.7)

that uniquely extends the given pairing.

Recall A ∈ SAlgk. By Lemma 2.3.3 the base extension to A0̄ of the last Hopf pairing gives rise

to the group map

Gpl(U(g0̄)A0̄
) −→ Algk(O(G), A0̄) = G(A0̄), g 7−→ ⟨g, −⟩A0̄

,

whose restriction to F (A0̄) we denote by

iA0̄
= i : F (A0̄) → G(A0̄).

Lemma 5.2.5. Let S ∈ Algk and g ∈ G(S). Then αS(g) ∈ AutS-Lie(gS) uniquely extends to an

automorphism of the Hopf superalgebra U(g)S over S.

Proof. One sees that αS(g) uniquely extends an automorphism of the S-Hopf superalgebra T (g)S . It
is easy to see that the automorphism stabilizes the super-ideal of T (g)S generated by the elements

zw − (−1)|z||w|wz − [z, w] in (I.4.6.1). To see that it stabilizes the super-ideal generated by all

elements in (I.4.6.1), let v ∈ g1̄, and suppose vg =
∑

i ci ⊗ vi ∈ S ⊗ g1̄. Then the desired result will

follow if one compares the following two.

(v⟨2⟩)g = (vg)
⟨2⟩
S =

∑
i

c2i ⊗ v
⟨2⟩
i +

∑
i<j

cicj ⊗ [vi, vj ],

(v2)g = (vg)2 =
∑
i

c2i ⊗ v2i +
∑
i<j

cicj ⊗ (vivj + vjvi).

The assignment of the above extended automorphism to g ∈ G(R) gives rise to an anti-

morphism, which we denote again by

α : G −→ AutHopf(U(g)),

from G to the automorphism group functor of U(g). Given g ∈ G(A0̄), the base extension (αA0̄
(g))A

of αA0̄
(g) ∈ AutA0̄-Hopf(U(g)A0̄

) along A0̄ → A is an automorphism of the Hopf superalgebra U(g)A
over A. As before, we will write ug for (αA0̄

(g))A(u), where u ∈ U(g)A, g ∈ G(A0̄). Since the action

stabilizes Σ(A), as will be seen from the next lemma, it follows that there is induced a group map,
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which we denote by

αA : G(A0̄) −→ Aut(Σ(A)),

from G(A0̄) to the automorphism group of the group Σ(A).

Lemma 5.2.6. Let g ∈ G(A0̄). Let e(a, v) and f(ϵ, x) be as before. Suppose

ρα(v) =
n∑
i=1

ci ⊗ vi ∈ O(G)⊗ g1̄, ρα(x) =
m∑
j=1

dj ⊗ xj ∈ O(G)⊗ g0̄.

Then we have

(1) e(a, v)g = e(ag(c1), v1) e(ag(c2), v2) · · · e(ag(cn), vn),

(2) f(ϵ, x)g = f(ϵg(d1), x1) f(ϵg(d2), x2) · · · f(ϵg(dm), xm).

This is easy to see. We remark that F (A0̄) is G(A0̄)-stable by Part 2.

Proposition 5.2.7. The quintuple

(Σ(A), F (A0̄), G(A0̄), iA0̄
, αA)

satisfies Conditions (G1)–(G3) given in Section 5.2.1.

Proof. Since the last remark shows that the first half of (G3) is satisfied, it remains to verify (G2)

and the second half of (G3).

Choose g ∈ G(A0̄), and let f = f(ϵ, x). Note

i(f)(c) = ε(c)1 + ϵ⟨x, c⟩, c ∈ O(G).

Then by using (H3) we see

i(fg)(c) = ε(c)1 + ϵ ⟨xg, c⟩A0̄
= ε(c)1 + ϵ ⟨x, gc⟩A0̄

= ε(c)1 + ϵ g−1(c1) ⟨x, c2⟩ g(c3)

= (g−1i(f)g)(c),

which verifies the second half of (G3). By using (H1) we see

e(a, v)i(f) = 1⊗ 1 + a i(f)(v−1)⊗ v0

= 1⊗ 1 + a⊗ v + ϵa⊗ ⟨x, v−1⟩v0
= 1⊗ 1 + a⊗ v + ϵa⊗ [v, x]

= e(a, v) e(ϵa, [v, x]),

and similarly,

f(η, y)i(f) = f(η, y) f(ϵη, [y, x]).

These, combined with (iii)–(iv) of Lemma 5.2.2, verify (G2).
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Definition 5.2.8. Γ(A) denotes the base extension of Σ(A) along iA0̄
: F (A0̄) → (G(A0̄), αA); see

Definition 5.1.2.

In Γ(A), the natural images of e(a, v) and of elements g ∈ G(A0̄) will be denoted by the same

symbols.

Proposition 5.2.9. Choose arbitrarily a k-free basis v1, . . . , vn of g1̄. Then every element of Γ(A)

is uniquely expressed of the form

g e(a1, v1) e(a2, v2) · · · e(an, vn),

where g ∈ G(A0̄), ai ∈ A1̄, 1 ≤ i ≤ n.

Proof. This follows from Proposition 5.2.3 (2) and the proof of Lemma 5.1.1 (2).

Gavarini’s original construction starts with constructing by generators and relation the group

which shall be the functor points of the desired affine supergroup. Let us prove that the group,

which is essentially the same as Γ′(A) below, is isomorphic to our Γ(A), though the result will not

be used in the subsequent argument.

Lemma 5.2.10. Choose arbitrarily a k-free basis v1, . . . , vn of g1̄. Let E(A1̄) denote the free group

on the set of the symbols

ei(a), 1 ≤ i ≤ n, a ∈ A1̄,

and let Γ′(A) denote the quotient group of the free product G(A0̄) ∗E(A1̄) divided by the relations

(i) ej(a) ei(b) = i(f(−ab, [vi, vj ])) ei(b) ei(a), i < j,

(ii) ei(a) ei(b) = i(f(−ab, v⟨2⟩i )) ei(a+ b),

(iii) ei(a) g = g e1(ag(ci1)) · · · en(ag(cin)), where g ∈ G(A0̄), and we suppose ρα(vi) =
∑n

k=1 cik ⊗
vk.

Then

ei(a) 7−→ e(a, vi), 1 ≤ i ≤ n, a ∈ A1̄

gives an isomorphism Γ′(A)
≃−→ Γ(A) which is identical on G(A0̄).

Proof. It is easy to see that the assignment gives an epimorphism. By Proposition 5.2.9,

g e(a1, v1) · · · e(an, vn) 7−→ g e1(a1) · · · en(an)

well defines a section. This section is surjective, which proves the lemma, since one sees just as

proving Proposition 5.2.3 that every element of Γ′(A) is expressed of the form g e1(a1) · · · en(an),
where g ∈ G(A0̄), ai ∈ A1̄, 1 ≤ i ≤ n.
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5.2.3 The affine supergroup Γ

Keep the situation as above. One sees easily that

SAlgk −→ Grp; A 7−→ Γ(A)

defines a group functor Γ defined on SAlgk. Moreover, we see:

Proposition 5.2.11. This Γ is an affine supergroup, represented by the commutative superalgebra

O := O(G)⊗ ∧(g∗1̄). (I.5.2.8)

Proof. Choose a k-free basis v1, . . . , vn of g1̄, as above. Let w1, . . . , wn denote the dual basis of g∗
1̄
.

Proposition 5.2.9 gives the bijection

G(A)×An1̄
≃−→ Γ(A); (g, a1, . . . , an) 7−→ g e(a1, v1) · · · e(an, vn), (I.5.2.9)

which is seen to be natural in A. To an element (g, a1, . . . , an) ∈ G(A)×An
1̄
, assign the superalgebra

map ϕ : O → A determined by

ϕ(c) = g(c), c ∈ O(G), ϕ(wi) = ai, 1 ≤ i ≤ n.

This assignment is indeed a bijection

G(A)×An1̄
≃−→ SAlgk(O, A) (I.5.2.10)

which is natural in A. This proves the proposition.

Remark 5.2.12. Note that G, regarded as A 7→ G(A0̄), is a subgroup functor of Γ. Let G−n
a

denote the functor which assigns to A ∈ SAlgk the additive group An
1̄
, which is indeed represented

by ∧(g∗
1̄
); see Example 3.1.6. One sees that the bijection (I.5.2.9) gives rise to a left G-equivariant

isomorphism

G×G−n
a

≃−→ Γ

of functors which preserves the identity element.

The superalgebra O has uniquely a Hopf superalgebra structure which makes the composite

Γ(A)
≃−→ SAlgk(O, A) of the bijections (I.5.2.9) and (I.5.2.10) into an isomorphism of group func-

tors. In particular, the counit is the tensor product

ε⊗ ε : O(G)⊗ ∧(g∗1̄) −→ k

of the counits of the Hopf superalgebras O(G) and ∧(g∗
1̄
), as is seen from Remark 5.2.12. It follows

that

O+/(O+)2 = O(G)+/(O(G)+)2 ⊕ g∗1̄,
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which is dualized to the identification

Lie(Γ) = Lie(G)⊕ g1̄
of k-supermodules.

Let i′ : g0̄ → Lie(G) denote the Lie algebra map given by (I.5.2.6). Let Der(g) denote the Lie

algebra of k-super-linear derivations on g. The morphism α given in (I.5.2.5) induces the anti-Lie

algebra map

α′ : Lie(G) −→ Der(g); x 7−→ (z 7→ x(z−1) z0),

where x ∈ Lie(G), z ∈ g. We remark that by (H1), the composite α′ ◦ i′ : g0̄ → Der(g) coincides

with the right adjoint representation.

Proposition 5.2.13. We have the following.

(1) The super-bracket on Lie(Γ) = Lie(G)⊕ g1̄ is given by

[(x, u), (y, v)] =
(
[x, y] + i′([u, v]), α′(y)(u)− α′(x)(v)

)
,

where x, y ∈ Lie(G), u, v ∈ g1̄.
(2) i′ ⊕ idg1̄ : g = g0̄ ⊕ g1̄ → Lie(G)⊕ g1̄ = Lie(Γ) is a Lie superalgebra map which preserves the

2-operation.

Proof. (1) We see from Remark 5.2.12 that O(G) is a quotient Hopf superalgebra of O through

id⊗ε : O = O(G)⊗∧(g∗
1̄
) → O(G), and G is thus a closed super-subgroup of Γ; see below the proof.

It follows that Lie(G) is a Lie subsuperalgebra of Lie(Γ) through the inclusion Lie(G) → Lie(G)⊕g1̄.
It remains to compute [v1, v2] in Lie(Γ), where v1, v2 ∈ g1̄, or v1 ∈ g1̄, v2 ∈ Lie(G). If elements

τ ∈ A and v ∈ Lie(Γ) satisfy τ2 = 0 and |τ | = |v|, then

g(τ, v) : O −→ A; h 7−→ ε(h)1 + τ v(h)

is an element in Γ(A) with inverse g(−τ, v). This coincides with e(τ, v) if |τ | = |v| = 1. Note

that g(τ, v) = i(f(τ, x)), if |τ | = 0 and v = i′(x) with x ∈ g0̄. Given elements g1 = g(τ1, v1),

g2 = g(τ2, v2) as above, then the commutator (g1, g2) = g1g2g
−1
1 g−1

2 coincides with

g((−1)|τ1||τ2|τ1τ2, [v1, v2]),

from which we will see the desired vales of [v1, v2].

First, suppose that A = ∧(τ1, τ2), where τi, i = 1, 2, are odd variables. Let u, v ∈ g1̄. Since we

have (e(τ1, u), e(τ2, v)) = g(−τ1τ2, i′([u, v])) by (i) of Lemma 5.2.2, it follows that

[(0, u), (0, v)] = (i′([u, v]), 0).

Next, suppose that A = k[τ1]/(τ21 )⊗∧(τ2), where τ1 (resp., τ2) is an even (resp., odd) variable.

Let y, v ∈ Lie(Γ) with y even and v odd. Note g(±τ1, y) ∈ G(A0̄). Since we see from (1) of Lemma
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5.2.6 that

(g(−τ1, y), e(τ2, v)) = e(τ2, v)
g(τ1,y) e(−τ2, v) = e(τ1τ2, α

′(y)(v)),

it follows that

[(0, v), (y, 0)] = (α′(y)(v), 0).

(2) By Part 1 and the remark given above the proposition it remains to prove that the map

preserves the 2-operation. Suppose again that A = ∧(τ1, τ2). Then we see from (ii) of Lemma 5.2.2

that

g(−τ1τ2, i′(v⟨2⟩)) = e(τ1, v) e(τ2, v) e(−(τ1 + τ2), v).

This last equals g(−τ1τ2, v2), which proves the desired result.

Recall that a closed subsupergroup of an affine supergroup G is a subgroup functor of G which

is represented by a quotient Hopf superalgebra of O(G).

Remark 5.2.14. To explain a motivation to have worked in a general situation as above, suppose

that G is a super Lie group over a complete valuation field of characteristic ̸= 2. Let Gred be the

associated Lie group. Let R(Gred) be the commutative Hopf algebra of all analytic representative

functions on Gred; this is not necessarily finitely generated. The corresponding affine group and the

Lie superalgebra Lie(G) of G have a natural pairing and an anti-morphism as in (I.5.2.5), which

satisfy (H1)–(H3). The resulting affine supergroup Γ may be called the universal algebraic hull of

G (see [15, p.1141]).

5.3 The category equivalence

5.3.1 Re-proving Gavarini’s equivalence

Let G be an affine supergroup, and set O = O(G). Recall from [27, Section 2.5], for example,

that the associated affine group Gev is the restricted group functor G|Algk defined on Algk, which

is indeed represented by the largest purely even quotient Hopf superalgebra

O := O/OO1̄ (= O0̄/O
2
1̄)

of O. This Gev is also regarded as the closed super-subgroup of G which assigns to A ∈ SAlgk the

group G(A0̄). Let

WO := O1̄/O
+
0̄
O1̄, where O+

0̄
= O0̄ ∩O+,

as in [22]. Since O+
0̄
/((O+

0̄
)2 +O2

1̄
) ≃ O

+
/(O

+
)2, we have

O+/(O+)2 ≃ O
+
/(O

+
)2 ⊕WO,

which is dualized to

Lie(G) ≃ Lie(Gev)⊕ (WO)∗;
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see [27, Lemma 4.3]. It follows that

Lie(G)0̄ ≃ Lie(Gev), Lie(G)1̄ = (WO)∗.

The former is the canonical Lie-algebra isomorphism induced from the embedding O
∗ ⊂ O∗,

through which we will identify as

Lie(G)0̄ = Lie(Gev).

Just as for (I.5.2.4), the right adjoint action G ×Gev → G, (f, g) 7→ g−1fg is dualized to the

left Gev-supermodule structure on O defined by

gh = g−1(h1)h2 g(h3), g ∈ Gev(S), h ∈ O, (I.5.3.1)

where S ∈ Algk. This makes O into a Hopf-algebra object in the symmetric tensor category

GevSMod of left Gev-supermodules.

Let us recall the definitions [12, Definitions 3.2.6, 4.1.2] of two categories, following mostly the

formulation of [27, Appendix].

First, let (gss - fsgroups)k denote the category of the affine supergroups G such that when we

set O = O(G),

(E1) there exists a counit-preserving isomorphism O ≃ O⊗∧(WO) of left O-comodule superalge-

bras,

(E2) O
+
/(O

+
)2 is k-finite projective, and

(E3) WO is k-finite free.

Note that the conditions are the same as the conditions given in Section 4.6.2.

Remark 5.3.1. Let G be an affine supergroup with O = O(G). Assume that O = O(Gev) is

k-flat. Then (E1) is necessarily satisfied, if (E2) and (E3) are satisfied.

A morphism in (gss - fsgroups)k is a natural transformation of group functors. The conditions

above re-number those (E1)–(E3) given in [27, Appendix].

Next, to define the category (sHCP)k, let (G, g) be a pair of an affine group G and a Lie

superalgebra g given a 2-operation. Suppose that g1̄ is k-finite free, and is given a right G-module

structure. Suppose in addition,

(F1) g0̄ = Lie(G),

(F2) O(G)+/(O(G)+)2 is k-finite projective, so that g0̄ = Lie(G) is necessarily k-finite projective,

and has the right G-module structure (see (I.4.2.2), and (I.5.3.3) below) determined by

xg(c) = x(gc), x ∈ g0̄, c ∈ O(G), (I.5.3.2)

where gc = g−1(c1) c2 g(c3), as in (I.5.2.4),
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(F3) the left O(G)-comodule structure g1̄ → O(G)⊗ g1̄, v 7→ v−1 ⊗ v0 on g1̄ corresponding to the

given right G-module structure satisfies

[v, x] = x(v−1) v0, v ∈ g1̄, x ∈ g0̄,

(F4) the restricted super-bracket [ , ]|g1̄⊗g1̄ : g1̄ ⊗ g1̄ → g0̄ is G-equivariant, and

(F5) the right G-module structure preserves the 2-operation, or explicitly,

(v
⟨2⟩
S )g = (vg)

⟨2⟩
S , v ∈ (g1̄)S , g ∈ G(S),

where S ∈ Algk.

Note that the conditions are the same as the conditions given in Section 4.6.2.

Finally, let (sHCP)k denote the category of all those pairs (G, g) which satisfy (F1)–(F5) above.

A morphism (G, g) → (G′, g′) in (sHCP)k is a pair (γ, δ) of a morphism γ : G→ G′ of affine groups

and a Lie superalgebra map δ = δ0̄ ⊕ δ1̄ : g → g′, such that

(F6) the Lie algebra map Lie(γ) induced from γ coincides with δ0̄,

(F7) (δ1̄)S(v
g) = δ1̄(v)

γS(g), v ∈ g1̄, g ∈ G(S), where S ∈ Algk, and

(F8) δ0̄(v
⟨2⟩) = δ1̄(v)

⟨2⟩, v ∈ g1̄.
Let us reproduce from [12] functors between the two categories just defined,

Φ : (gss - fsgroups)k → (sHCP)k,

Ψ : (sHCP)k → (gss - fsgroups)k,

which are denoted by Φg, Ψg in [12].

First, let G be an object in (gss - fsgroups)k. Set O = O(G). Consider the pair

(G, g) := (Gev,Lie(G)),

giving to g1̄ the right G-module structure determined by

vg(h) = v(gh), v ∈ g1̄, h ∈ O, g ∈ G(S), (I.5.3.3)

where S ∈ Algk, and
gh is as in (I.5.3.1). To see that this indeed defines a right G-module structure,

note that the leftG-module structure onO given by (I.5.3.1) induces such a structure onO+/(O+)2,

and in turn, it is transposed to g, since O+/(O+)2 is k-finite projective by (E2)–(E3); see (I.4.2.2).

What is given by (I.5.3.3) is precisely the restriction to g1̄ of the transposed structure, while the

restriction to g0̄ coincides with the one given by (I.5.3.2). It is now easy to see that the pair satisfies

(F1)–(F4). Recall that g is given the 2-operation which arises from the square map on O∗̄. Then

one verifies (F5), using the fact that the G-module structure on O preserves the coproduct; cf. [27,
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Lemma A.9]. Therefore, (G, g) ∈ (sHCP)k. We let

Φ(G) = (Gev,Lie(G)).

One sees easily that this indeed defines a functor.

Remark 5.3.2. Following [12, Defintion 2.3.3], let (fsgroups)k denote the category of those affine

supergroup which satisfy (E2) and (E3). This includes (gss - fsgroups)k as a full subcategory. Note

that Condition (E1) was not used above, to define the functor Φ. In fact we have defined a functor

Φ : (fsgroups)k → (sHCP)k, as is formulated by [12, Proposition 4.1.3]. This last functor will be

used to prove Theorem 5.3.7 in the next subsection.

Next, to construct Φ, we prove:

Lemma 5.3.3. Let Γ be the affine supergroup constructed in Section 5.2, and set O = O(Γ). Then

we have

Γev = G, WO = g∗1̄,
where G and g are those given in Section 5.2 from which Γ is constructed. Moreover, Γ satisfies

(E1) and (E3) above.

Proof. From Remark 5.2.12 and the following argument we see that (I.5.2.8) gives an identification

O(Γ) = O(G) ⊗ ∧(g∗
1̄
) of left O(G)-comodule superalgebras with counit. This implies the desired

results.

Finally, let (G, g) ∈ (sHCP)k. Choose these G and g as those in Section 5.2. One sees by (F1)–

(F2) that g satisfies the assumption of Corollary 4.6.3. The given right G-module structure on g1̄,
summed up with such a structure on g0̄ determined by (I.5.3.2), gives rise to an anti-morphism,

say α, from G to AutLie(g); see [27, Remark 4.5 (2)]. This α, together with the canonical pairing

⟨ , ⟩ : g0̄ ×O(G) −→ k, ⟨x, c⟩ = x(c),

satisfy (H1)–(H3), as is easily seen. We remark that Lie algebra map i′ : g0̄ → Lie(G) given by

(I.5.2.6) is now the identity. The construction of Section 5.2 gives an affine supergroup Γ, which

satisfies (E1)–(E3) by Lemma 5.3.3. Indeed, by (F2) it satisfies (E2) as well, since Γev = G. Define

Ψ(G, g) to be this Γ in (gss - fsgroups)k. As is easily seen, Ψ defines a functor.

Theorem 5.3.4 ([12, Theorem 4.3.14]). We have a category equivalence

(gss - fsgroups)k ≈ (sHCP)k.

In fact the functors Φ and Ψ constructed above are quasi-inverse to each other.

Proof. Let G ∈ (gss - fsgroups)k, and set

(G, g) = Φ(G), Γ = Ψ ◦ Φ(G).
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Just as for (I.5.2.7) we see that there uniquely exists a Hopf paring

⟨ , ⟩ : U(g)×O(G) → k

such that ⟨z, h⟩ = z(h), z ∈ g, h ∈ O(G). Suppose A ∈ SAlgk. Recall that Γ(A) is a quotient

of the group G(A0̄) ◃<Σ(A) of semi-direct product. Since Σ(A) ⊂ Gpl(U(g)A), the last pairing

induces, after base extension to A, a group map

Σ(A) −→ SAlgk(O(G), A) = G(A). (I.5.3.4)

Lemma 5.2.6 gives the following equations in Σ(A):

e(a, v)g = 1⊗ 1 + a vg, f(ϵ, x)g = 1⊗ 1 + ϵ xg, g ∈ G(A0̄). (I.5.3.5)

By definitions of Φ and Ψ, the G-actions on g which appear on the right-hand sides are determined

by

⟨zg, h⟩A0̄
= ⟨z, gh⟩A0̄

, z ∈ g, h ∈ O(G), g ∈ G(A0̄),

where gh = g−1(h1)h2 g(h3), as in (I.5.3.1). It follows that the group map (I.5.3.4) is right

G(A0̄)-equivariant, where we suppose that G(A0̄) = G(A0̄) acts on G(A) by inner automor-

phisms. Therefore, the group map together with the embedding G(A0̄) → G(A) uniquely extend

to G(A0̄) ◃<Σ(A) → G(A). It factors through Γ(A) → G(A), since Γ(A) is the quotient group of

G(A0̄) ◃<Σ(A) divided by the relations

(i(f(ϵ, x)), 1) = (1, f(ϵ, x)), x ∈ g0̄, ϵ ∈ A0̄, ϵ
2 = 0,

and i : F (A0̄) → G(A0̄) is now the restriction of the canonical map Gpl(U(g0̄)A0̄
) → G(A0̄). The

group map Γ(A) → G(A), being natural in A, gives rise to a morphism Γ → G. This morphism

is natural in G, as is easily seen. In fact, it is a natural isomorphism by Lemma 4.5.5; see also

Remark 5.3.12 below. Indeed, the assumptions required by the cited lemma are satisfied, since

Γ and G satisfy (E1), the morphism Γ → G restricts to the identity Γev → Gev, and the map

g1̄ = Lie(Γ)1̄ → Lie(G)1̄ induced from the pairing above is the identity. We conclude Ψ ◦ Φ ≃ id.

Let (G, g) ∈ (sHCP)k, and set Γ = Ψ(G, g). Recall that for this Γ, the Lie algebra map

i′ : g0̄ → Lie(G) given by (I.5.2.6) is the identity. By Lemma 5.3.3 and Proposition 5.2.13 we have

the natural identifications

G = Γev, g = Lie(Γ)

of affine groups and of Lie superalgebras given 2-operations. Let S ∈ Algk. To conclude Φ◦Ψ = id,

we wish to prove that given v ∈ g1̄ and g ∈ G(S), the result vg ∈ (g1̄)S by the G-action associated

with the original (G, g) coincides the one given by (I.5.3.3) for Γ. Suppose A = S ⊗∧(τ), where τ
is an odd variable. Note A0̄ = S. Just as in (I.5.3.5) we have e(τ, v)g = 1⊗ 1+ τ vg in Γ(A). This,

evaluated at h ∈ O(Γ), gives τ v(gh) = τ vg(h), which shows the desired result.

Remark 5.3.5. Let (G, g) ∈ (sHCP)k, and recall that to this g is given a 2-operation, say (−)⟨2⟩.
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Replace (g, (−)⟨2⟩) with the cocycle deformation (σg, (−)σ⟨2⟩) by σ (see Remark 4.6.5), keeping the

right G-module structure on the odd component unchanged. Then we see (G, σg) ∈ (sHCP)k, and

that (G, g) 7→ (G, σg) gives an involutory category isomorphism, which we denote by

(id, σ(−)) : (sHCP)k → (sHCP)k.

As was remarked in Introduction, Gavarini’s category equivalence was re-proved in [27, Ap-

pendix], using an older construction of affine supergroups. Due to different choice of tensor prod-

ucts of pairings, the category equivalence P′ : (gss - fsgroups)k → (sHCP)k shown there is slightly

different from the Φ above. In fact, we see

P′ = (id, σ(−)) ◦ Φ. (I.5.3.6)

Remark 5.3.6. The argument of Gavarini [12] seems incomplete at some points, as is pointed out

below. See also Remark 4.6.10.

(1) To construct the functor Φg : (gss - fsgroups)k → (sHCP)k, and prove Φg ◦ Ψg = id in [12,

Proposition 4.1.3, Theorem 4.3.14], the article takes no account of 2-operations or G-supermodule

structures on Lie superalgebras.

(2) The functoriality of Ψg : (sHCP)k → (gss - fsgroups)k (see [12, Proposition 4.3.9 (2)]) is

proved, indeed, if one replaces the original definition of Ψg by the group GP(A) (= Ψg(P)) given in

[12, Definition 4.3.2] (and referred to before Lemma 5.2.10), with the definition by the alternative

G•
P(A) given in [12, Remark 4.3.3 (c)]. Nevertheless, in view of the equations preceding our Lemma

5.2.1, the relation (1 + (cη)Y ) = (1 + η(cY )), c ∈ k, is missing to define the group G•
P(A) in the

last cited remark.

5.3.2 Tensor product decomposition

Let G be an affine supergroup, and set O = O(G). We prove the following theorem. Note that

the conclusion is the same as (E1).

Theorem 5.3.7. Assume that O is k-flat. There exists a counit-preserving isomorphism O ≃
O⊗ ∧(WO) of left O-comodule superalgebras, if

(E2) O
+
/(O

+
)2 is k-finite projective, and

(E3) WO is k-finite free.

Remark 5.3.8. (1) Let (gss - fsgroups)′k denote the category of the affine supergroups G which

satisfy (E2), (E3) and

(E0) O(Gev) is k-flat.

This category is a full subcategory of (gss - fsgroups)k by Theorem 5.3.7. Let (sHCP)′k denote the

full subcategory of (sHCP)k which consists of the objects (G,V ) such that

(F0) O(G) is k-flat.
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One sees that the category equivalence given by Theorem 5.3.4 restricts to

(gss - fsgroups)′k ≈ (sHCP)′k.

(2) Suppose that k is 2-torsion free, or namely, 2 : k → k is an injection. In this special situation,

essentially the same category equivalence as given by Theorem 5.3.4 was proved by Theorem 4.5.1;

one need not there refer to 2-operations. To be more precise, considered there is the category ASG

of the algebraic supergroups G which satisfy (E0) as well as (E1)–(E3). However, (E1) can be

removed from the last conditions, as is ensured by Theorem 5.3.7. To define ASG in Section 4.3,

one can thus weaken the condition that O = O(G) is split to the one that WO is k-free.
(3) Suppose that k is a field of characteristic ̸= 2. Then the conclusion of Theorem 5.3.7 holds

for any finitely generated super-commutative Hopf superalgebra O, since the assumptions are then

necessarily satisfied. The result was in fact proved by [22, Theorem 4.5] for any O that is not

necessarily finitely generated. The proof uses Hopf crossed products, and is crucial when O is

finitely generated. The proof below gives an alternative proof of the cited theorem in this crucial

case.

The rest of this subsection is devoted to proving the theorem. The proof is divided into 3 steps.

Step 1

Recall from Remark 5.3.2 that the functor Φ is defined on the category (fsgroups)k including

(gss - fsgroups)k, which consists of the affine supergroup satisfying (E2) and (E3).

Let G ∈ (fsgroups)k, and set Γ = Ψ ◦ Φ(G), as in the proof of Theorem 5.3.4. The argument

in the cited proof which shows that we have a natural morphism Γ → G of affine supergroups is

valid. Let

ϕ : Γ −→ G (I.5.3.7)

denote the morphism. We will prove that this ϕ is an isomorphism, assuming that O is k-flat. This
proves the theorem, since Γ satisfies (E1).

Step 2

We need some general Hopf-algebraic argument. Let N = {0, 1, 2, . . . } denote the semigroup

of non-negative integers, as before. An N-graded k-module V =
⊕∞

n=0 V (n) is regarded as a k-
supermodule so that V0̄ =

⊕
n: even V (n), V1̄ =

⊕
n: odd V (n). The N-graded k-modules form a

symmetric tensor category GrModk with respect to the super-symmetry.

Let ConnAlgk denote the category of the commutative algebra objects B in GrModk such that

B(0) = k; the Conn expresses “connected”, meaning B(0) = k.
Fix a commutative Hopf algebra O. Note that O is a commutative Hopf-algebra object in

GrModk which is trivially graded, O(0) = O. A graded left O-comodule is a left O-comodule object

in GrModk. The graded left O-comodules form a symmetric tensor category O-GrComod. Let

O-NGrComodAlg denote the category of the commutative algebra objects A in O-GrComod such

that A(0) = O; the NGr expresses “neutrally graded”, meaning A(0) = O. Note that every such
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object is an (ordinary) left O-Hopf module [30, Page 15] with respect to the left multiplication by

O.

Here, commutative algebra objects may not satisfy the condition that every odd elements should

be square-zero.

Given B ∈ ConnAlgk, the tensor product

O ⊗B

of graded algebras, given the left O-comodule structure ∆⊗ idB, is an object in O-NGrComodAlg.

Moreover, this constructs a functor

O ⊗− : ConnAlgk −→ O-NGrComodAlg.

Proposition 5.3.9. This functor is a category equivalence.

Proof. Given A ∈ O-NGrComodAlg,

A/O+A

is naturally an object in ConnAlgk. One sees that this constructs a functor. We wish to show that

this is a quasi-inverse of the functor O ⊗ −. We have to prove that the two composites of the

functors are naturally isomorphic to the identity functors. For one composite this is easy. For the

remaining, let A ∈ O-NGrComodAlg. Set B = A/O+A, and let π : A → B denote the natural

projection. We see that the left O-comodule structure A → O ⊗A, a 7→ a−1 ⊗ a0 on A induces

the morphism

A → O ⊗B, a 7→ a−1 ⊗ π(a0)

in O-NGrComodAlg which is natural in A. It remains to prove that this is an isomorphism. As

was remarked before, A is a left O-Hopf module, and the morphism above is in fact a morphism

of Hopf modules. The fundamental theorem for Hopf modules [30, 1.9.4, Page 15] holds over an

arbitrary base ring k, and can now apply to see that the morphism above is an isomorphism. [To

be more precise, what we need here for later use is a variant of the isomorphism α given in the

proof of the cited theorem, and is in fact the first adjunction given in the proof of [37, Theorem 1]

(see Page 456, line –7) when the right coideal subalgebra B of [37] is the base field.]

Let O be a super-commutative Hopf superalgebra. Set O = O, and assume that this O is k-
flat. Let O-SComod denote the symmetric tensor category of left O-super-comodules. The flatness

assumption ensures that this category is abelian; see [16, Part I, 2.9]. Indeed, the k-linear kernel

Z of a morphism V → U turns to be a sub-object of V , since we have O ⊗ Z ⊂ O ⊗ V , and the

composite Z ↪→ V → O ⊗ V of the inclusion with the structure on V factors through O ⊗ Z.

Let I = OO1̄, so that we have O/I = O. Note that O is naturally a commutative algebra

object in O-SComod, and the super-ideals In, n > 0, are sub-objects of O in O-SComod. It follows

that

grO =

∞⊕
n=0

In/In+1
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is an object in O-NGrComodAlg. To see this, note grO(0) = O. Moreover, In/In+1 = On
1̄
/On+2

1̄
,

and so grO(n) is purely odd (resp., even) if n is odd (resp., even).

Let B = grO/O+(grO) denote the object in ConnAlgk which corresponds to grO through the

category equivalence given in (the proof of) Proposition 5.3.9. It is easy to see the following (see

[22, Proposition 4.3 (1)]):

Lemma 5.3.10. The composite of natural maps

WO = O1̄/O
+
0̄
O1̄ −→ O1̄/O

3
1̄ = grO(1) −→ B(1)

is an isomorphism.

Step 3

Let O be a super-commutative Hopf superalgebra. Note that the constructions of the associated

O and WO are functorial.

Assume thatO satisfies (E1) and (E3). Assume thatO is k-flat. LetO′ be a super-commutative

Hopf superalgebra, and let ψ : O′ → O is a Hopf superalgebra map. It naturally induces

ψ : O′ −→ O, Wψ :WO′ −→WO.

Proposition 5.3.11. If these two maps are bijections, then ψ is an isomorphism.

Proof. We may suppose O′ = O = O and ψ = idO, where O is a commutative k-flat Hopf algebra.

We see that ψ induces a morphism gr(ψ) : grO′ → grO in O-NGrComodAlg. Let ξ : B′ → B be

the corresponding morphism between the corresponding objects in ConnAlgk.

We wish to show that ξ is an isomorphism. By Lemma 5.3.10, ξ(1) : B′(1) → B(1) is identified

with Wψ. Since O satisfies (E1), we see that grO = O ⊗ ∧(WO), and so B = ∧(WO). It

follows that ξ has a unique section in ConnAlgk, since ξ(1) is an isomorphism, and B′ is super-

commutative, with the odd elements being square-zero. Note that B′ is generated by B′(1), since

grO′ is generated by O = grO′(0) and grO′(1). This implies that the section is an isomorphism,

proving the desired result.

It follows that gr(ψ) is an isomorphism, and grO′(n) = grO(n) = 0 for n≫ 0. Therefore, ψ is

an isomorphism.

Remark 5.3.12. In the situation of Proposition 5.3.11, suppose in addition that O′ satisfies (E1),

and remove the assumption that O is k-flat. Then the same result as the proposition follows easily

from Lemma 4.5.5. The result was essentially used to prove Theorem 5.3.4 in the last paragraph

of the proof.

Let us return to the natural morphism ϕ : Γ → G in (I.5.3.7), assuming that O(G) is k-flat.
Consider O(ϕ) : O(G) → O(Γ). In view of the proof of Theorem 5.3.4 (see the last part of the

first paragraph), the induced O(G) → O(Γ) and WO(G) → WO(Γ) are both the identity maps. It

follows that O(Γ) is k-flat. Since Γ satisfies (E1) and (E3), Proposition 5.3.11, applied to O(ϕ),

proves that ϕ is an isomorphism, as desired.
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5.3.3 The category equivalence over a field

In what follows we suppose that k is a field of characteristic ̸= 2.

We let ASGk denote the category of algebraic supergroups over k. This coincides with the full

subcategory of (gss - fsgroups)k consisting of the objects which are algebraic supergroups. By [22,

Theorem 4.5] every object in ASGk satisfies (E1), in particular.

Since every Lie superalgebra has the unique 2-operation defined by

v⟨2⟩ =
1

2
[v, v]

we may not refer to 2-operations on Lie superalgebras. The definition of (sHCP)k then contains

redundancy in (F1). In other words one can remove g0̄ from the definition since it is determined

by G. We define Harish-Chandra pairs as follows, as in [25, 29]. In the next subsection one will see

that our definition is suitable at least to describe sub-objects.

A Harish-Chandra pair is a pair (G,V ) of an algebraic group G and a finite-dimensional right

G-module V which is given a G-equivariant linear map [ , ] : V ⊗ V → Lie(G) such that

(i) [v, v′] = [v′, v], v, v′ ∈ V ,

(ii) v ▹ [v, v] = 0, v ∈ V .

When we say that [ , ] is G-equivariant, Lie(G) is regarded as a right G-module as was done in

(I.5.3.2). In (ii), ▹ represents the right Lie(G)-Lie module structure on V defined by

v ▹ x = x(v−1) v0, v ∈ V, x ∈ Lie(G), (I.5.3.8)

where V → O(G)⊗V , v 7→ v(−1)⊗ v(0) denotes the left O(G)-comodule structure corresponding to

the right G-module structure on V . A morphism (ϕ, ψ) : (G1, V1) → (G2, V2) of Harish-Chandra

pairs consists of a morphism ϕ : G1 → G2 of algebraic groups and a linear map ψ : V1 → V2 such

that

(iii) ψ is G1-equivariant, with V2 regarded as a G1-module through ϕ,

(iv) [ψ(v), ψ(v′)] = Lie(ϕ)([v, v′]), v, v′ ∈ V .

We let HCPk denote the category of Harish-Chandra pairs over k.
This category HCPk is isomorphic to the full subcategory of (sHCP)k consisting of the objects

(G, g) in which G is an algebraic group. To describe an explicit category isomorphism, let (G,V ) ∈
HCPk. Define g := Lie(G) ⊕ V , and suppose g ∈ SModk so that g0̄ = Lie(G), g1̄ = V . Give to

g the bracket on Lie(G) and the structure [ , ] of (G,V ), and define [v, x] := v ▹ x for v, x as in

(I.5.3.8). Then g turns into a Lie superalgebra. Keep g1̄ = V given the right G-module structure.

One sees that (G,V ) 7→ (G, g) gives the desired category isomorphism. The inverse is given by

(G, g) 7→ (G, g1̄), where to g1̄ of the latter, the restricted super-bracket and the original G-module

structure are given.

Now, let G ∈ ASGk. Then Gev is an algebraic group, and the Lie superalgebra Lie(G) is finite-

dimensional. Regard the odd component Lie(G)1̄ of the Lie superalgebra as the right Gev-module

70



defined by (I.5.3.3). Restrict the super-bracket on Lie(G) to the odd component, and give it to the

pair (Gev,Lie(G)1̄). Then the pair turns into a Harish-Chandra pair, and it corresponds to Φ(G)

in (sHCP)k. By Theorem 5.3.4 we have:

Theorem 5.3.13. G 7→ (Gev,Lie(G)1̄) gives a category equivalence

ASGk
≈−→ HCPk.

Essentially the same result was already given in [25, 29]; see Remark 5.3.14 below. As an

advantage we have obtained an explicit quasi-inverse of the functor above, which is essentially the

same as Ψ in Section 5.3.1. Therefore, every algebraic supergroup can be realized as Γ constructed

in Section 5.2. This realization is useful when we discuss group-theoretical properties of algebraic

supergroups, as will be shown in the next subsection.

Remark 5.3.14. A category equivalence between ASGk and HCPk is given by [25, Theorem 6.5]

and [29, Theorem 3.2], which both reformulate the result [24, Theorem 29] formulated in purely

Hopf-algebraic terms. Given (G,V ) ∈ HCPk, denote now it by (G,V, [ , ]), indicating the structure.

Replacing [ , ] with −[ , ], we still have (G,V,−[ , ]) ∈ HCPk. Moreover,

(G,V, [ , ]) 7−→ (G,V,−[ , ])

gives an involutory category isomorphism HCPk → HCPk. The category equivalence given by

Theorem 5.3.13 coincides, up to the last category isomorphism, with the one cited above, just as

was seen in (I.5.3.6).

5.4 Normalizers and centralizers

Let k be a field of characteristic ̸= 2. Throughout in this subsection we let G ∈ ASGk, and let

(G,V ) be the associated Harish-Chandra pair. We suppose that G is realized as the Γ which is

constructed as in Section 5.2 from G, g := Lie(G), the canonical pairing g0̄ × O(G) → k and the

right G-supermodule structure on g defined by (I.5.3.2) and (I.5.3.3).

Recall that a pair (K,W ) of closed subgroup K ⊂ G and a vector subspaceW ⊂ V is a sub-pair

of the Harish-Chandra pair (G,V ) (see Definition 4.5.7), if

(i) W is K-stable in V , and

(ii) [W,W ] ⊂ Lie(K),

where [ , ] is the structure of (G,V ). If K is a closed subsupergroup of G, then the associated

Harish-Chandra pair (K,W ), with the right K-module structure on W and the structure [ , ]

forgotten, is a sub-pair of (G,V ). In this case we say that the sub-pair (K,W ) corresponds to K.

The assignment K 7→ (K,W ) as above gives a bijection from the set of all closed subsupergroups

of G to the set of all sub-pairs of (G,V ).

Lemma 5.4.1. Let (K,W ) be the sub-pair of (G,V ) corresponding to a closed subsupergroup K ⊂
G. Given v ∈ V , the following are equivalent:
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(a) v ∈W ;

(b) e(a, v) ∈ K(A) for arbitrary A ∈ SAlgk and a ∈ A1̄;

(c) e(a, v) ∈ K(A) for some A ∈ SAlgk and a ∈ A1̄ with a ̸= 0.

Proof. We only prove (c) ⇒ (a), since the rest is obvious.

Suppose that e(a, v) ∈ K(A) with a ∈ A1̄, but v /∈ W . Given an arbitrary basis w1, . . . , wr of

W , one can extend it, adding v and others, to a basis w1, . . . , wr, v, . . . of V . By Proposition 5.2.9,

e(a, v), being an element in K(A), is expressed uniquely of the form

e(a, v) = h e(a1, w1) · · · e(ar, wr), (I.5.4.1)

where h ∈ K(A0̄) and ai ∈ A1̄, 1 ≤ i ≤ r. The cited proposition gives analogous expressions of

elements of G(A) which use the extended basis. Regarding (I.5.4.1) as two such expressions of one

element, we have a = 0.

Just as in the non-super situation we define as follows, and obtain the next lemma; see [16,

Part I, 2.6].

Let K ⊂ G be a closed subsupergroup. The normalizer NG(K) (resp., the centralizer ZG(K))

of K in G is the subgroup functor of G whose A-points consists of the elements g ∈ G(A) such

that for every A→ A′ in SAlgk, the natural image gA′ of g in G(A′) normalizes (resp., centralizes)

K(A′).

Lemma 5.4.2. NG(K) and ZG(K) are closed subsupergroups of G. Moreover, NG(K) (resp.,

ZG(K)) is the largest closed subsupergroup of G whose A-points normalize (resp., centralize) K(A)

for every A ∈ SAlgk.

Let K ⊂ G be a closed subsupergroup, and let (K,W ) be the corresponding sub-pair of (G,V ).

Recall that the stabilizer StabG(W ) (resp., the centralizer CentG(W )) of W in G is the largest

closed subgroup of G that makes W into a module (resp., a trivial module) over it.

Let ρK : V → O(K) ⊗ V denote the left O(K)-comodule structure on V corresponding to the

restricted right K-module structure on V . Define

InvK(V/W ) := {v ∈ V | ρK(v)− 1⊗ v ∈ O(K)⊗W}.

This is the largest K-submodule of V including W whose quotient K-module by W is trivial. The

definition makes sense, replacing W with any K-submodule, say U , of V . We will use InvK(V ) =

InvK(V/0) when U = 0.

When L = Lie(K) or 0, we define

(L :W ) := {v ∈ V | [v,W ] ⊂ L},

where [ , ] is the structure of (G,V ).

Theorem 5.4.3. Let K ⊂ G and (K,W ) ⊂ (G,V ) be as above.
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(1) The sub-pair of (G,V ) corresponding to NG(K) is

(NG(K) ∩ StabG(W ), InvK(V/W ) ∩ (Lie(K) :W )).

(2) The sub-pair of (G,V ) corresponding to ZG(K) is

(ZG(K) ∩ CentG(W ), InvK(V ) ∩ (0 :W )).

Proof. In each part let us denote by (F,Z) the desired sub-pair.

(1) First, we prove

F ⊂ NG(K) ∩ StabG(W ), Z ⊂ InvK(V/W ) ∩ (Lie(K) :W ). (I.5.4.2)

Note that F normalizes K in G. Then it follows that F normalizes K = Kev in G = Gev,

whence F ⊂ NG(K). It also follows that the right G-supermodule structure on Lie(G), restricted

to a right F -supermodule structure, stabilizes Lie(K), whence F ⊂ StabG(W ).

Since [Lie(K),Lie(NG(K))] ⊂ Lie(K), we have [W,Z] ⊂ Lie(K), whence Z ⊂ (Lie(K) :W ).

To prove Z ⊂ InvK(V/W ), choose z ∈ Z. We may suppose z /∈W . Let A = O(K)⊗∧(τ) with
τ an odd variable. We have an A-point e(τ, z) of NG(K) by Lemma 5.4.1. Given a basis w1, . . . , wr

of W , we extend it, adding z and others, to a basis w1, . . . , wr, z, u1, . . . , us of V . Present ρK(z) as

ρK(z) =

r∑
i=1

ai ⊗ wi + b⊗ z +

s∑
i=1

ci ⊗ ui ∈ O(K)⊗ V.

Then we have b = 1. Let h ∈ K(A0̄) be idO(K). Then

e(τ, z)h e(τ, z)−1 = h e(τa1, w1) · · · e(τar, wr) e(τc1, u1) · · · e(τcs, us). (I.5.4.3)

Since this is contained in K(A), it follows by the same argument as proving Lemma 5.4.1 that

ci = 0, 1 ≤ i ≤ s, whence Z ⊂ InvK(V/W ). We have thus proved (I.5.4.2).

Next, to prove the converse inclusions, choose ϕ : A→ A′ from SAlgk.

Let g be an A-point of NG(K) ∩ StabG(W ). Then gA′ normalizes K(A′). Given a ∈ A′
1̄
and

w ∈W , we have

e(a,w)gA′ = 1⊗ 1 + awg ∈ K(A′),

and the same result with g replaced by g−1 holds. This proves g ∈ F (A).

Let v ∈ InvK(V/W )∩ (Lie(K) :W ) and 0 ̸= a ∈ A1̄. To see that v ∈ Z, we wish to prove, using

Lemma 5.4.1, that e(a, v) is an A-point of NG(K). Note that the A′-point e(a, v)A′ of its image is

e(ϕ(a), v). Given h ∈ K(A′), the same argument as proving (I.5.4.3) shows e(a, v)A′ h e(a, v)−1
A′ ∈

K(A′), since vh − v ∈WA′
0̄
. Given w ∈W and b ∈ A′

1̄
, we see by Lemma 5.2.2 (i) that

e(a, v)A′ e(b, w) e(a, v)−1
A′ = i(f(−ϕ(a)b, [v, w])) e(b, w) ∈ K(A′),

since [v, w] ∈ Lie(K). The last two conclusions prove the desired result.
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(2) We only prove

K ⊂ ZG(K) ∩ CentG(W ), Z ⊂ InvK(V ) ∩ (0 :W ).

The converse inclusions follow by modifying slightly the second half of the proof of Part 1.

Since F centralizes K in G. it follows that F centralizes K in G, whence F ⊂ ZG(K). It also

follows that the restricted right F -supermodule structure on Lie(G) centralizes Lie(K), whence

F ⊂ CentG(W ).

Since [Lie(K),Lie(ZG(K))] = 0, we have [W,Z] = 0, whence Z ⊂ (0 :W ). The argument which

proved Z ⊂ InvK(V/W ) above, modified with W replaced by 0, shows Z ⊂ InvK(V ).

Suppose that G = K, and so G = K, V =W . Then Part 2 above reads:

Corollary 5.4.4. Let G and (G,V ) be as above. The sub-pair of (G,V ) corresponding to the center

Z(G) = ZG(G) of G is

(Z(G) ∩ CentG(V ), InvG(V ) ∩ (0 : V )).

The algebraic group component of this sub-pair was obtained by [29, Proposition 7.1], recently.
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Chapter 1

Introduction

In this part, we study representations of quasireductive supergroups over a field k of characteristic

not equal to 2.

Representations of (connected) algebraic supergroups G over C were fully studied. These

representations are essentially the same as representations of their Lie superalgebra Lie(G). The

classification of finite-dimensional simple Lie superalgebras over C was done by Kac [17] in 1977.

On the other hand, representations of algebraic supergroups over a field of positive character-

istic has been less studied. Brundan and Kleshchev [3] studied representations of the algebraic

supergroup Q(n) which have a close relationship to modular representations of spin symmetric

groups. Moreover, the Mullineux conjecture, now the Mullineux theorem, was re-proven by Brun-

dan and Kujawa [4] with their results on the general linear supergroup GL(m|n). Shu and Wang

[34] classified irreducible representations of the ortho-symplectic supergroup OSP(m|n), described
them in some combinatoric terms that are related to the Mullineux theorem. In positive character-

istic, representation theory of algebraic supergroups can apply to representation theory of ordinary

algebraic groups.

An algebraic (super)group over k is said to be linearly reductive if its representation category

is semisimple. Linearly reductive groups are one of important classes of algebraic groups. On the

other hand, linearly reductive supergroups G which are not ordinary algebraic groups are rather

restricted. If k is an algebraically closed field of chark = 0, then Weissauer [41] showed that G is

a semidirect product of a reductive group and a product
∏
r>1OSP(1|2r)nr , nr > 0 of the ortho-

symplectic supergroups. If k is a field of positive characteristic, then Masuoka [24] showed that all

linearly reductive supergroups must be purely even, i.e., G = Gev.

Serganova [33] defined the notion of quasireductive supergroups over k. A quasireductive super-

groupG is an algebraic supergroup such that the associated ordinary groupGev is a reductive group

which is split, i.e., has a maximal split torus. The supergroups Q(n), GL(m|n) and OSP(m|n) are
quasireductive. Moreover, the Chevalley supergroups of classical type that Fioresi and Gavarini [9]

constructed as a super-analogue of the Chevalley-Demazure groups are quasireductive. Therefore,

quasireductive supergroups form a wide class of algebraic supergroups. Serganova studied struc-

tures and representations of quasireductive supergroups G over an algebraically closed field k of

chark = 0 in terms of its Lie superalgebra Lie(G).
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This part gives a characteristic-free study of those quasireductive supergroups G which are,

roughly speaking, defined over Z. We systematically construct their irreducible representations,

extends Serganova’s construction to arbitrary characteristic.

This part is organized as follows. In Chapter 2, first we give the definition of the hyper-

superalgebra hy(G) of a given algebraic supergroup G. Then we discuss supermodules over an

algebraic supergroupG, and those over the hyper-superalgebra hy(G), whenGev is a split reductive

group. Let T be a split maximal torus of such Gev. Theorem 2.4.8 shows, roughly speaking, an

equivalence of G-supermodules with hy(G)-T -supermodules. When k is a field, the theorem gives

Corollary 2.4.10 which generalizes the result which were proved in [3] for Q(n), [4] for GL(m|n)
and [34] for OSP(m|n). In Chapter 3, we characterize the quasireductive supergroups over Z
in terms of the correspondence Harish-Chandra pairs. As an application, we re-construct the

Chevalley supergroups over Z; see Section 3.3. One sees that Chevalley supergroups of classical

type (for example OSP(m|n)) as well as GL(m|n) and Q(n) are quasireductive supergroups over

Z. By the base extension to an arbitrary field k, a quasireductive supergroup over Z terns to be a

quasireductive supergroup over k as Serganova [33] defined. In Chapter 4, We show that if A is a

Hopf superalgebra (not necessary commutative) over k having a ”dence big cell” all the simple A-

supercomodules are explicitly constructed; see Theorem 4.2.9. This is a super-analogue of a result

of Parshall and Wang [32]. In Chapter 5, we construct all the irreducible supermodules of a given

quasireductive supergroup G over k. There is a special closed subsupergroup T of G such that Tev

is a split maximal torus T of Gev. Since T is non-abelian in general, irreducible representations

of T are more complicated than irreducible representations of T . The construction of irreducible

supermodules of T are done by using a general theory of Clifford algebras; see Theorem 5.1.5.

Finally, by using the results in Chapter 4, we construct irreducible representations of G. For a

general linear supergroup GL(m|n), Zubkov [42] proves a super-analogue of the Kempf vanishing

theorem. Essential in his proof is the existence of some special subsupergroup of GL(m|n). In

Chapter 6, we abstract such a special subsupergroup as distinguished parabolic subsupergroups.

We show that if quasireductive supergroup G has a distinguished parabolic subsupergroup, then

the Kempf vanishing theorem holds for G, generalizing Zubkov’s result. In this case, we classify

all the irreducible representations of G.
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Chapter 2

Representations of Algebraic

Supergroups

Throughout in this section we suppose that k is an integral domain. Our assumption that k is

2-torsion free is equivalent to that 2 ̸= 0 in k.

2.1 Representation of supergroups

Let G be an infinitesimally flat algebraic supergroup. A superspace V is said to be a representation

of G (or G-supermodule) if there is a natural transformation

Φ : G −→ GL(V )

from G to GL(V ). For a representation V of G, we can define a right O(G)-supercomodule

structure on V such that

V
idV ⊗1O(G)−→ V ⊗O(G)

ΦO(G)(id)−→ V ⊗O(G),

where 1O(G) is the unit element of O(G) and

ΦO(G) : G(O(G)) −→ GL(V )(O(G)).

Conversely, any right O(G)-supercomodule can be regard as a representation of G. In this way,

we may identify SRep(G) and SModO(G), where SRep(G) denotes the category of representations

of G.

Definition 2.1.1. An irreducible representation V of G is a simple O(G)-supercomodule. Namely,

V has no non-trivial O(G)-supercomodule.

Let K be a closed subsupergroup of G. For a representation V of G, we let

V K := V coO(K). (II.2.1.1)
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Here, we regard V as a right O(K)-supercomodule by the Hopf superalgebra quotient π : O(G) →
O(K). This V K is called the K-fixed points of V . Explicitly,

V K = {v ∈ V | v0 ⊗ π(v1) = v ⊗ 1},

where V → V ⊗O(G); v 7→ v0 ⊗ v1 is the O(G)-supercomodule structure of V .

2.2 Hyper-superalgebras

LetG ∈ ASG (see Part I, Definition 4.3.2), and set G := Gev. We let A := O(G), whence A = O(G)

(see (I.3.1.1)). We assume that G is infinitesimally flat [16, Part I, 7.4]. This means that

(I1) For every n > 0, A/(A
+
)n is k-finite projective.

By the condition (C1) in Part I, it follows that for every n > 0, A/(A+)n is k-finite projective.

Recall that A∗ is the dual superalgebra of the supercoalgebra A. We suppose (A/(A+)n)∗ ⊂ A∗

through the natural embedding, and set

hy(G) :=
∪
n>0

(A/(A+)n)∗.

We call this the hyper-superalgebra of G.

Remark 2.2.1. This is often denoted alternatively by Dist(G), called the super-distribution algebra

of G.

It is easy to see that hy(G) is a super-subalgebra of A∗. By (I1), each (A/(A+)n)∗ is the dual

coalgebra of the algebra A/(A+)n. One sees that if n < m, then (A/(A+)n)∗ ⊂ (A/(A+)m)∗ is a

coalgebra embedding, so that all (A/(A+)n)∗, n > 0, form an inductive system of coalgebras.

Lemma 2.2.2. Given the coalgebra structure of the inductive limit, the superalgebra hy(G) forms

a cocommutative Hopf superalgebra such that the canonical pairing O(G)∗×O(G) → k restricts to

a Hopf pairing

⟨ , ⟩ : hy(G)×O(G) −→ k. (II.2.2.1)

Proof. Let H := hy(G). Since each (A/(A+)n)∗ is cocommutative, so is H. The dual S∗ of the

antipode S of A stabilizes H. Denote S∗|H by S. Then we see that the restricted pairing satisfies

(I.2.3.2), (I.2.3.3) and (I.2.3.4) for R = k. It follows that H satisfies the compatibility required to

super-bialgebras (see [24, Lemma 1]), and has S = S∗|H as an antipode.

If f : G → K is a morphism from G to another infinitesimally flat algebraic supergroup K,

then it naturally induces a filtered supercoalgebra map hy(f) : hy(G) → hy(K). If G′ is another

infinitesimally flat algebraic supergroup, then the product G × G′ is also infinitesimally flat. In

this case, there is a natural isomorphism hy(G×G′) ∼= hy(G)⊗hy(G′) of filtered supercoalgebras.

For a Hopf superalgebra H, we define P (H) to be the set of all primitive elements of H, i.e.,

P (H) := {h ∈ H | ∆(h) = h⊗ 1 + 1⊗ h},
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where ∆ is the comultiplication of H. This P (H) is a Lie superalgebra by the following super-

bracket

[h, k] := hk − (−1)|h||k|kh,

where h, k are homogeneous elements in P (H). As in ordinary case, one can show that the following

fact.

Proposition 2.2.3. P (hy(G)) ∼= Lie(G) as Lie superalgebras.

If k is a field of characteristic zero, then there is an isomorphism hy(G) ∼= U(Lie(G)) of Hopf

superalgebras, where U(Lie(G)) is the universal enveloping superalgebra of Lie(G).

The Hopf superalgebra quotient O(G) → O(G) gives rise to a Hopf superalgebra embedding

of the hyperalgebra hy(G) of G into hy(G). Let W := WA (= g∗
1̄
), and choose a counit-preserving

isomorphism

ψ : O(G)
≃−→ O(G)⊗ ∧(W )

of left O(G)-comodule superalgebras.

Lemma 2.2.4. There uniquely exists a unit-preserving isomorphism

ϕ : hy(G)⊗ ∧(g1̄) ≃−→ hy(G)

of left hy(G)-module supercoalgebras such that

⟨ϕ(z), a⟩ = ⟨z, ψ(a)⟩, a ∈ O(G), z ∈ hy(G)⊗ ∧(g1̄),

where the right-hand side gives the tensor product of the canonical pairings

hy(G)×O(G) −→ k, ∧(g1̄)× ∧(W ) −→ k. (II.2.2.2)

Proof. We see that ψ∗ restricts to hy(G) ⊗ ∧(g1̄) ≃−→ hy(G), and this isomorphism is such as

mentioned above.

2.3 Representations using hyper-superalgebras

We will identify as

O(G) = O(G)⊗ ∧(W ), hy(G)⊗ ∧(g1̄) = hy(G) (II.2.3.1)

through ψ, ϕ, respectively.

Let Q be the quotient field of k, and let GQ denote the base change of G to Q. In addition to

(I1), we assume

(I2) GQ is connected, or in other words, O(GQ) = O(G)⊗Q contains no non-trivial idempotent.

This assumption ensures the following.
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Lemma 2.3.1. For every r > 0, the superalgebra map

O(G)⊗r −→ (hy(G)⊗r)∗

which is associated with the r-fold tensor product of the Hopf pairing (II.2.2.1) is injective.

Proof. By Lemma 2.2.4 it suffices to prove that the algebra map O(G)⊗r → (hy(G)⊗r)∗ similarly

given is injective. By [36, Proposition 0.3.1(g)], (I2) ensures that the Q-algebra map O(GQ)
⊗r →

(hy(GQ)
⊗r)∗ for GQ is injective. Since hy(GQ) = hy(G)⊗Q, we have the canonical map

(hy(G)⊗r)∗ ⊗Q −→ (hy(GQ)
⊗r)∗.

By (B3) we have O(G)⊗r ⊂ O(G)⊗r ⊗ Q. The desired injectivity follows from the commutative

diagram

O(G)⊗r ⊗Q (hy(G)⊗r)∗ ⊗Q

O(GQ)
⊗r (hy(GQ)

⊗r)∗.

//

≃
�� ��

//

Let M be a supermodule. Given a left G-supermodule (resp., G-module) structure on M , one

defines by the formula

u ⇀ m := m0⟨u,m1⟩, u ∈ hy(G), m ∈M, (II.2.3.2)

using the Hopf pairing ⟨ , ⟩ : hy(G)×O(G) → k (II.2.2.1) (resp., the first one of (II.2.2.2)), a left

hy(G)-supermodule (resp., hy(G)-module) structure on M . We see that in the super-situation,

this indeed defines a map from

• the set of all left G-supermodule structures on M

to

• the set of those locally finite, left hy(G)-supermodule structures on M whose restricted

(necessarily, locally finite) hy(G)-module structures arise from left G-module structures.

Note that the left and the rightG-supermodule structures (resp., locally finite hy(G)-supermodule

structures with the property as above) onM are in one-to-one correspondence, since one can switch

the sides through the inverse on G (resp., the antipode on hy(G)). Therefore, we may replace “left”

with “right” in the sets above, to prove the following proposition. Indeed, we do so, to make the

argument fit in with our results so far obtained.

Proposition 2.3.2. If M is k-projective, the map above is a bijection.

Proof. Since M is k-projective, the injection given by Lemma 2.3.1, tensored with M , remains

injective. In addition the canonical map (hy(G)⊗r)∗ ⊗M → Hom(hy(G)⊗r,M) is injective. Let

µ(r) : O(G)⊗r ⊗M → Hom(hy(G)⊗r,M)
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denote their composite, which is an injective super-linear map. We will use only µ(1), µ(2).

Suppose that we are given a structure from the second set; it is a right hy(G)-supermodule

structure, in particular. We claim that the super-linear map

ρ :M −→ Homk(hy(G),M), ρ(m)(x) = mx

factorizes into µ(1) and a uniquely determined map, ρ′ :M → O(G)⊗M . To show this we use the

identification (II.2.3.1). Then, ρ decomposes as

M
ρ1−→ Homk(hy(G),M)

(ρ2)∗−→ Homk(hy(G),Homk(∧(g1̄),M)),

where the first map is defined, just as ρ, by ρ1(m)(x) = mx, and the second (ρ2)∗ denotes

Homk(id, ρ2) induced by the map ρ2 : M → Homk(∧(g1̄),M) similarly defined. We have the

injections

ν1 : O(G)⊗M → Homk(hy(G),M),

ν2 : O(G)⊗Homk(∧(g1̄),M) → Homk(hy(G),Homk(∧(g1̄),M))

which are defined in the same way as µ(1). Indeed, ν2 is identified with µ(1). The condition regarding

the restricted hy(G)-structures means that ρ1 factorizes into ν1 and a uniquely determined map,

ρ′′ :M → O(G)⊗M . The composite (id⊗ ρ2) ◦ ρ′′ is identified with the desired map ρ′, as is seen

from the commutative diagram

O(G)⊗M O(G)⊗Homk(∧(g1),M)

Homk(hy(G),M) Homk(hy(G),Homk(∧(g1),M)).

id⊗ρ2 //

ν1

��

ν2

��
(ρ2)∗

//

By using µ(2), we see that the associativity of the hy(G)-action on M implies that ρ′ : M →
O(G)⊗M is coassociative. Similarly, the unitality of the action implies that ρ′ is counital. Thus,

ρ′ is a left O(G)-super-comodule structure on M . It is the unique such structure that gives rise to

the originally given structure, as is easily seen.

2.4 Integral representations

Let GZ be a split reductive algebraic group over Z; see [16, p.153]. By saying a reductive algebraic

group we assume that it is connected and smooth. Choose a split maximal torus TZ. The pair

(GZ, TZ) naturally corresponds to a root datum

(X,R,X∨,R∨).
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In particular, X equals the character group X(TZ) of TZ. It is known that O(GZ) is Z-free, and
GZ is infinitesimally flat. Moreover, for any field K, the base change (GZ)K is a split reductive (in

particular, connected) algebraic group over K, and (TZ)K is its split maximal torus. Conversely,

every split reductive algebraic group over K and its split maximal torus are obtained uniquely (up

to isomorphism) in this manner.

Recall that k is supposed to be an integral domain. Let

G = (GZ)k, T = (TZ)k

be the base changes to k. Note that O(G) is k-free. In addition, G satisfies (I1) (with A supposed

to be O(G)) and (I2).

We have the inclusion hy(G) ⊃ hy(T ) of hyperalgebras, which coincides with the base changes

of the hyperalgebras hy(GZ) ⊃ hy(TZ) over Z. Since k contains no non-trivial idempotent, the

character group X(T ) of T remains to be X.

Definition 2.4.1 ([16, p.171]). For a left (resp. right) hy(G)-module M , we say that M is a left

(resp. right) hy(G)-T -module, if the restricted hy(T )-module structure on M arises from some

T -module structure on it.

This is equivalent to saying thatM is a direct sumM =
⊕

λ∈X Mλ of k-submodulesMλ, λ ∈ X,

so that

xm = λ(x)m, x ∈ hy(T ), m ∈Mλ, λ ∈ X,

where we have supposed that M is a left hy(T )-module. One sees that the T -module structure

above is uniquely determined if M is k-torsion free. A hy(G)-T -module is said to be locally finite

if it is locally finite as a hy(G)-module.

Let M be a k-module. Given a left G-module structure on M , there arises, as before, a left

hy(G)-module structure on M ; it is indeed a locally finite hy(G)-T -module structure, as is easily

seen. Thus we have a map from

• the set of all left G-module structures on M

to

• the set of all locally finite, left hy(G)-T -module structure on M .

The structures in each set above are in one-to-one correspondence with the opposite-sided

structures, as before. The following is known.

Theorem 2.4.2 ([16, Part II, 1.20, p.171]). If M is k-projective, the map above is a bijection.

Remark 2.4.3. Let k = Z, and suppose that GZ is semisimple, or equivalently [X : ZR] < ∞; see

[16, Part II, 1.6, p.158]. Then it is known (see [18, 38]) that

O(GZ) = hy(GZ)
◦. (II.2.4.1)

It follows that every Z-free, locally finite hy(GZ)-module is necessarily a hy(GZ)-TZ-module.
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Given a Hopf algebra H over Z, we let H◦ denote, just when working over a field (see [35,

Section 6.0]), the union of the Z-submodules (H/I)∗ in H∗, where I runs over the ideals of H such

that H/I is Z-finite. Since the canonical map (H/I)∗⊗(H/I)∗ → (H/I⊗H/I)∗ is an isomorphism,

each (H/I)∗ is a (Z-finite free) coalgebra, whence H◦ is a coalgebra, and is in fact a Hopf algebra.

Keep G, T as above. Let us consider objects G ∈ ASG such that Gev = G.

Remark 2.4.4. As will be seen Section 3.3.1, if k = Z, the Chevalley Z-supergroups of classical

type which were constructed by Fioresi and Gavarini [9] and by Gavarini [11] are examples of G as

above. Therefore, their base changes are, as well.

Remark 2.4.5. Suppose that k is a field of characteristic ̸= 2. Recall that every split reductive

algebraic group is of the form G as above. Then it follows from Part I, Corollary 3.1.3 that the

objects under consideration are precisely all algebraic supergroups G such that Gev is a split

reductive algebraic group.

Let G ∈ ASG such that Gev = G.

Definition 2.4.6. For a left (resp. right) hy(G)-supermodule M , we say that M is a left (resp.

right) hy(G)-T -supermodule, if the restricted hy(T )-module structure on M arises from some T -

module structure on it.

This is equivalent to saying that M is a hy(G)-T -module, regarded as a hy(G)-module by

restriction. A hy(G)-T -supermodule is said to be locally finite if it is so as a hy(G)-supermodule,

or equivalently, as a hy(G)-module.

Remark 2.4.7. In [3, §5], a hy(G)-T -supermodule is celled an integrable hy(G)-supermodule.

LetM be a supermodule. Given a left G-supermodule structure onM , there arises, as before, a

left hy(G)-supermodule structure onM ; it is indeed a locally finite hy(G)-T -supermodule structure,

as is easily seen. Thus we have a map from

• the set of all left G-supermodule structures on M

to

• the set of all locally finite, left hy(G)-T -supermodule structures on M .

The structures in each set above are in one-to-one correspondence with the opposite-sided

structures, as before. Proposition 2.3.2 and Theorem 2.4.2 prove the following.

Theorem 2.4.8. If M is k-projective, the map above is a bijection.

Remark 2.4.9. Let k = Z, and suppose that GZ is semisimple. Then by using the same argument

as proving [24, Proposition 31], we see from (II.2.4.1) that O(G) = hy(G)◦. It follows that every

Z-free, locally finite hy(G)-supermodule is necessarily a hy(G)-TZ-supermodule.

Theorem 2.4.8 can be reformulated as an isomorphism between the category of k-projective, left
G-supermodules and the category of k-projective, locally finite left hy(G)-T -supermodules. When

k is a field of characteristic ̸= 2, the result is formulated as follows, in view of Remark 2.4.5.
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Corollary 2.4.10. Suppose that k is a field of characteristic ̸= 2, and let G be an algebraic

supergroup over k such that Gev is a split reductive algebraic group. Choose a split maximal torus

T of Gev. Then there is a natural isomorphism between the category of left G-supermodules and

the category of locally finite, left hy(G)-T -supermodules.

This has been known only for some special algebraic supergroups with the property as above;

see Brundan and Kleshchev [3, Corollary 5.7], Brundan and Kujawa [4, Corollary 3.5], and Shu

and Wang [34, Theorem 2.8].
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Chapter 3

Quasireductive Supergroups

3.1 Quasireductive Lie superalgebras

As in [33], we treat a special class of Lie superalgebras.

Definition 3.1.1. A Lie superalgebra g = g0̄ ⊕ g1̄ over C is said to be quasireductive if g0̄ is a

reductive Lie algebra and the g0̄-module g1̄ decomposes as the direct sum of weight spaces for a

fixed Cartan subalgebra h0̄ of g0̄.
Let g = g0̄ ⊕ g1̄ be a quasireductive Lie superalgebra over C. Let

h := {X ∈ g | [h0̄, X] = 0},

and let h1̄ := h ∩ g1̄. Then h = h0̄ ⊕ h1̄ is a Lie subsuperalgebra of g. For α ∈ h∗0̄, we define

gα := {X ∈ g | [H,X] = α(H)X for all H ∈ h0̄}.

By definition, we have gα=0 = h. As in ordinary case, set

∆0̄ := {α ∈ h∗0̄ | gα ∩ g0̄ ̸= 0} \ {0} ,

∆1̄ := {α ∈ h∗0̄ | gα ∩ g1̄ ̸= 0}, and

∆ := ∆0̄ ∪∆1̄.

In general, root spaces are not one-dimensional.

Example 3.1.2. Let g be the simple Lie superalgebra of type A(1, 1), see Appendix A. Explicitly,

g = sl(2|2)/kI4, where I4 is the unit matrix of size 4. A Cartan subalgebra h0̄ is We take the

following two elements

X =


0 0 x 0

0 0 0 0

0 0 0 0

0 y 0 0

 ∈ g, H =


h1 0 0 0

0 h2 0 0

0 0 h3 0

0 0 0 h4

 ∈ h0̄
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For i = 1, 2, 3, 4, we let εi ∈ h∗0̄ such that εi(H) := hi. Let α := ε1 − ε3. Since h1 + h2 = h3 + h4,

we have [X,H] = α(H)X. Thus, we conclude that α ∈ ∆1̄ and dim gα = 2.

We have a root space decomposition

g = h⊕ ⊕
0̸=α∈∆

gα.

Lemma 3.1.3. Suppose that there exists non-zero K ∈ h1̄. For α ∈ ∆0̄, if [gα,K] ̸= 0, then

α ∈ ∆1̄.

Proof. We fix a element Xα ∈ gα such that [Xα,K] ̸= 0. By the Jacobi identity, we have

[H, [Xα,K]] = α(H)[Xα,K]

for all H ∈ h0̄. Thus, we conclude that [Xα,K] ∈ g1̄ ∩ gα.
Definition 3.1.4. An element Hreg ∈ h0̄ is said to be regular if the real part Re(α(Hreg)) of

α(Hreg) is non-zero for all 0 ̸= α ∈ ∆.

For a regular element Hreg ∈ h0̄, we let

∆± := {α ∈ ∆ | ±Re(α(Hreg)) > 0}, (II.3.1.1)

and let ∆±
ϵ := ∆± ∩∆ϵ, for ϵ = 0̄, 1̄. We define some Lie subsuperalgebras of g as follows.

u± :=
⊕
α∈∆±

gα, b± := h⊕ u±. (II.3.1.2)

As in [31, § 3.2], we call b+ a Borel-Penkov-Serganova subsuperalgebra of g. In this case, g admits

a triangular decomposition

g = u+ ⊕ h⊕ u− (II.3.1.3)

depending on Hreg ∈ h0̄.
Example 3.1.5. Let g = gl(2|1). Since the even part g0̄ of g is gl2 ⊕ gl1, one sees that g is

quasireductive. We take a Cartan subalgebra h0̄ of g0̄ as follows

h0̄ := {H =

 h1 0 0

0 h2 0

0 0 h3

 ∈ g | h1, h2, h3 ∈ C}.

Note that, h = h0̄. For i = 1, 2, 3, we let εi ∈ h∗0̄ such that εi(H) := hi. Then we have

∆ = {ε1 − ε2, −(ε1 − ε2)︸ ︷︷ ︸
∈∆0̄

, ε2 − ε3, ε1 − ε3, −(ε2 − ε3), −(ε1 − ε3)︸ ︷︷ ︸
∈∆1̄

.}
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By definition, the set of all regular elements are given by

{Hreg =

 h1 0 0

0 h2 0

0 0 h3

 ∈ h0̄ | h1 ̸= h2, h2 ̸= h3, h1 ̸= h3}.

Therefore, there are six variations of ∆+.

(i) If Re(h3) < Re(h2) < Re(h1), then ∆+ = {ε1 − ε2, ε2 − ε3, ε1 − ε3}.

(ii) If Re(h3) < Re(h1) < Re(h2), then ∆+ = {−(ε1 − ε2), ε2 − ε3, ε1 − ε3}.

(iii) If Re(h2) < Re(h3) < Re(h1), then ∆+ = {ε1 − ε2, −(ε2 − ε3), ε1 − ε3}.

(iv) If Re(h2) < Re(h1) < Re(h3), then ∆+ = {ε1 − ε2, −(ε2 − ε3), −(ε1 − ε3)}.

(v) If Re(h1) < Re(h3) < Re(h2), then ∆+ = {−(ε1 − ε2), ε2 − ε3, −(ε1 − ε3)}.

(vi) If Re(h1) < Re(h2) < Re(h3), then ∆+ = {−(ε1 − ε2), −(ε2 − ε3), −(ε1 − ε3)}.

In the case of (i), we have

u+ = {

 0 ∗ ∗
0 0 ∗
0 0 0

}, h = {

 ∗ 0 0

0 ∗ 0

0 0 ∗

}, u− = {

 0 0 0

∗ 0 0

∗ ∗ 0

}.

If g has a Z-form gZ, then there exists Z-Lie-subsuperalgebras hZ, u±Z and b±Z of gZ such that

their complexifications coincide with h, u± and b± respectively. Moreover, gZ admits a triangular

decomposition gZ = u+Z ⊕ hZ ⊕ u−Z .
Example 3.1.6. The followings are quasireductive Lie superalgebras having a Z-form.

(1) The simple Lie superalgebras over C of classical type, see Appendix A. An explicit Z-basis
was given by Fioresi and Gavarini [9, Theorem 3.7].

(2) The general linear Lie superalgebra gl(m|n). In this case, we choose h as the set of all diagonal
matrices in Matm+n,m+n(C). In particular, h1̄ = 0. Let Ei,j ∈ gl(m|n) denote the elementary

matrix with a 1 in position (i, j) and 0 elsewhere. A Z-form of gl(m|n) is spanned by Ei,j for

1 6 i, j 6 m+ n.

(3) The queer superalgebra q(n). In this case, we choose h as follows

h = {

(
A B

B A

)
∈ q(n) | A and B are diagonal}.

Therefore, h ̸= h0̄. A Z-form of q(n) is spanned by Ei,j + Ei+n,j+n and Ei+n,j + Ei,j+n for

1 6 i, j 6 n. One sees that ∆0̄ ∪ {0} = ∆1̄.

Remark 3.1.7. It is easy to see that all Z-forms in the above examples are admissible, see

Part I, Definition 2.5.2.
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3.2 Quasireductive supergroups

In [33], Serganova introduced the notion of quasireductive supergroups over a field and studied

its structures and representations in characteristic zero. An algebraic supergroup G is said to be

quasireductive if the even part Gev is linearly reductive.

To study quasireductive supergroups over our k, we first define a special class of supergroups

over Z by using Harish-Chandra pairs.

Definition 3.2.1. Let GZ be a split and connected reductive algebraic group over Z with a split

maximal torus TZ. Let gZ be an admissible Lie superalgebra over Z. Suppose that (GZ, gZ) forms

a Harish-Chandra pair. Note that, gZ is necessarily Z-finite and free. Then the pair is said to be

quasireductive if it satisfies the following conditions.

(i) g := gZ ⊗Z C is quasireductive and a Cartan subalgebra h0̄ of g0̄ coincides with Lie(TZ)⊗Z C,
and

(ii) g admits a triangular decomposition (II.3.1.3).

Let (GZ, gZ) be a quasireductive Harish-Chandra pair. Set hZ := h∩gZ. This is a Lie subsuper-

algebra of gZ. Then one sees that (hZ)0̄ = (h0̄)Z, where (h0̄)Z := h0̄ ∩ gZ. Moreover, by definition,

(hZ)0̄ = Lie(TZ).

Remark 3.2.2. For a quasireductive Harish-Chandra pair (GZ, gZ), we let (X,R,X∨,R∨) denote

the corresponding root datum of TZ ⊆ GZ. Then it is easy to see that

X = X(TZ), R = ∆0̄, X∨ ⊗Z C = h0̄, and hy(GZ)⊗Z C = U(g0̄),

where X(TZ) is the character group of TZ. Here, hy(GZ) is called a Kostant Z-form of U(g0̄), see
[18].

For a quasireductive Harish-Chandra pair (GZ, gZ), we let

GZ := G(GZ, gZ),

where G is the functor defined in (I.4.4.20). This is a connected algebraic supergroup GZ over Z
satisfying O(GZ) ∼= O(GZ)⊗∧(gZ)∗ as left O(GZ)-comodule superalgebras. Since O(GZ) is Z-free,
so is O(GZ). Moreover, GZ is infinitesimally flat, since so is GZ, see [16, Part II, 1.12(1)]. The base

change GZ to our ground field k is a quasireductive supergroup over k in the sense of Serganova

[33].

Example 3.2.3. We consider some Lie superalgebras as in Example 3.1.6.

(1) Let g be a simple Lie superalgebra of classical type with its Z-form gZ. By the Chevalley-

Demazure construction, we get a split and connected reductive algebraic group GZ such

that Lie(GZ) = (gZ)0̄. Then the pair (GZ, gZ) is a quasireductive Harish-Chandra pair, see

Section 3.3 below. The constructed supergroup GZ is a Chevalley supergroup of classical type,

defined by Fioresi and Gavarini [9]. In particular, for g = osp(ℓ|2n) and GZ = SOℓ × Sp2n,

then GZ is the ortho-symplectic supergroup OSP(ℓ|2n).
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(2) For the general linear Lie superalgebra g = gl(m|n) and GZ = GLm ×GLn, the constructed

supergroup GZ is GL(m|n) as in Part I, Example 3.1.4.

(3) For the queer superalgebra g = q(n) and GZ = GLn, the constructed supergroup GZ is Q(n)

as in Part I, Example 3.1.5.

By construction, we have Lie(GZ) = gZ and hy(GZ)⊗Z C = U(g). For X ∈ g0̄ and H ∈ h0̄, we
define elements in the universal enveloping algebra U(g0̄) of g0̄ as follows

X(n) :=
1

n!
Xn,

(
H

n

)
:=

H(H − 1) · · · (H − n+ 1)

n!
,

where n > 0. Set

ℓ := rank(hZ)0̄, r := rank(hZ)1̄. (II.3.2.1)

For γ ∈ ∆1̄, we let s(γ) := rank(gZ)γ . By definition, for α ∈ ∆0̄, 1 6 i 6 ℓ, γ ∈ ∆1̄ and 1 6 t 6 r,

there are elements Xα ∈ (gZ)α, Hi ∈ (hZ)0̄, Xγp ∈ (gZ)γ and Kt ∈ (hZ)1̄ such that

{Xα}α∈∆0̄
∪ {Hi}ℓi=1 ∪ {Xγp | 1 6 p 6 s(γ)}γ∈∆1̄

∪ {Kt}rt=1

forms a (homogeneous) Z-basis of gZ. As in non-super situation, we can prove PBW-like theorem

for hy(GZ).

Theorem 3.2.4. Given any totally order ≼ on ∆0̄ ∪ {γp | 1 6 p 6 s(γ)}γ∈∆1̄
∪ {i1, . . . , iℓ} ∪

{t1, . . . , tr}, the set of all products of factors of type

X(nα)
α ,

(
Hij

nij

)
, Xγp and Ktk

with α ∈ ∆0̄, 1 6 j 6 ℓ, γ ∈ ∆1̄, 1 6 p 6 s(γ) and 1 6 k 6 r, taken in hy(G) with respect to ≺
forms a Z-basis of hy(GZ).

Proof. Let (Y ≼) denote the given totally ordered set. The subset X := {γp | 1 6 p 6 s(γ)}γ∈∆1̄
∪

{t1, . . . , tr} of Y is also a totally ordered set with respect to ≼. Then by Part I, Lemma 2.2.4, the

set of all products of factors of type

Xγp and Ktk with γ ∈ ∆1̄, 1 6 p 6 s(γ) and 1 6 k 6 r,

with respect to ≺ forms a hy(GZ)-free basis of hy(GZ). On the other hand, it is known the set of

all products of factors of type

X(nα)
α and

(
Hij

nij

)
with α ∈ ∆0̄ and 1 6 j 6 ℓ,

with respect to ≺ forms a Z-free basis of hy(GZ), see [16, Part II, 1.12(4)]. Thus, we are done.

Remark 3.2.5. Such a base (PBW base) was known; [9] for GZ = Chevalley supergroups, [3]

GZ = Q(n) etc.
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3.3 Chevalley supergroups

Those finite-dimensional simple Lie superalgebras over the complex number field C which are not

purely even were classified by Kac [17]. They are divided into classical type and Cartan type.

A Chevalley C-supergroup of classical/Cartan type is a connected algebraic supergroup G over

C such that Lie(G) is a simple Lie superalgebra of classical/Cartan type. As was mentioned in

Remark 2.4.4, Fioresi and Gavarini [9, 11] constructed natural Z-forms of Chevalley C-supergroups
of classical type. Gavarini [10] accomplished the same construction for Cartan type. The resulting

Z-forms are called Chevalley Z-supergroups of classical/Cartan type; they are indeed objects in our

category ASG defined over Z.
Based on our result Part I, Theorem 4.5.1, we will re-construct the Chevalley Z-supergroups,

by giving the corresponding Harish-Chandra pairs. Indeed, our construction depends on part of

Fioresi and Gavarini’s, but simplifies the rest; see Remarks 3.3.3 and 3.3.8.

3.3.1 Chevalley supergroups of classical type

Let g be a finite-dimensional simple Lie superalgebra over C which is of classical type. Then g0̄ is a

reductive Lie algebra, and g1̄, with respect to the right adjoint g0̄-action, decomposes as the direct

sum of weight spaces for a fixed Cartan subalgebra h ⊂ g0̄. Let ∆0̄ (resp., ∆1̄) denote the set of

the even (resp., odd) roots, that is, the weights with respect to the adjoint h-action on g0̄ (resp.,

on g1̄).
Let

(X,R,X∨,R∨), GZ ⊃ TZ (II.3.3.1)

be a root datum and the corresponding split reductive algebraic Z-group and split maximal torus.

Suppose that g0̄ ⊃ h coincide with the complexifications of Lie(GZ) ⊃ Lie(TZ). Then one has

R = ∆0̄, X∨ ⊗Z C = h and hy(GZ)⊗Z C = U(g0̄).

Recall that hy(GZ) is called a Kostant form of U(g0̄). We assume

∆1̄ ⊂ X. (II.3.3.2)

Theorem 3.3.1 (Fioresi, Gavarini). There exists a Z-lattice VZ of g1̄ such that

(i) gZ := Lie(GZ)⊕ VZ is a Lie-superalgebra Z-form of g.
(ii) This Lie superalgebra gZ over Z is admissible.

(iii) VZ is hy(GZ)-stable in the right U(g0̄)-module g1̄.
Fioresi and Gavarini [9] and Gavarini [11] introduced the notion of Chevalley bases, gave an ex-

plicit example of such a basis for each g, and constructed from the basis a natural Hopf-superalgebra

Z-form, called a Kostant superalgebra, of U(g); the even basis elements coincide with the classical

Chevalley basis for g0̄. They do not refer to root data. But, once an explicit Chevalley basis is

given as in [9, 11], one can re-choose the basis so that it includes a Z-free basis of X∨, by replacing
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part of the original basis, H1, . . . , Hℓ, with a desired Z-free basis; this replacement is possible, since

it effects only on the adjoint action on the basis elements Xα, and the new basis elements still

act via the roots α. (The method of [9, Remark 3.8] attributed to the referee gives an alternative

construction of the desired basis from the scratch.) One sees that the odd elements in the Chevalley

basis generate the desired Z-lattice VZ as above; see [9, Sections 4.2, 6.1] and [11, Section 3.4], to

verify Condition (ii), in particular.

Set gZ := Lie(GZ) ⊕ VZ in g, as above. One sees from (iii) and (II.3.3.2) that VZ is a right

hy(GZ)-TZ-module, whence it is a right GZ-module by Theorem 2.4.2. The restricted super-bracket

[ , ] : VZ × VZ → Lie(GZ), being hy(GZ)-linear, is GZ-equivariant. This proves the following.

Proposition 3.3.2. (GZ, gZ) is a Harish-Chandra pair.

We let

GZ = G(GZ, gZ)
denote the algebraic Z-supergroup in ASG which is associated with the Harish-Chandra pair just

obtained. Since one sees that the category equivalences in Part I, Theorem 4.5.1 are compatible with

base extensions, it follows that GZ is a Z-form of the algebraic C-supergroup associated with the

Harish-Chandra pair (G, g), where G denotes the base change of GZ to C. Recall from Section 3.3

the definition of Chevalley C-supergroups of classical type, and note that every such C-supergroup
is associated with some Harish-Chandra pair of the last form. We have thus constructed a natural

Z-form of every Chevalley C-supergroups of classical type.

Remark 3.3.3. (1) After constructing Kostant superalgebras, Fioresi and Gavarini’s construc-

tion, which is parallel to the classical construction of Chevalley Z-groups, continues as follows;

(a) Choose a faithful rational representation g → glC(M) on a finite-dimensional super-

vector space M over C,

(b) choose a Z-latticeMZ inM which is stable under the action of the Kostant superalgebra,

(c) construct a natural group-valued functor which is realized as subgroups of GL(MZ)(R),

where R runs over the commutative superalgebras over Z, and

(d) prove that the sheafification, say GFG
Z , of the constructed group-valued functor is repre-

sentable, and has desired properties, which include the property that O(GFG
Z ) is split;

see [9, Corollary 5.20] and [11, Corollary 4.22] for the last property.

Our method of construction dispenses with these procedures.

(2) The algebraic group (GFG
Z )ev associated with Fioresi and Gavarini’s GFG

Z is a split reductive

algebraic Z-group. As was noted in an earlier version of the present paper, it was not clear for

the authors whether the split reductive algebraic Z-groups which correspond to all possible

root data (namely, all relevant root data satisfying (II.3.3.2)) can be realized as (GFG
Z )ev; note

that by definition, those algebraic Z-groups are realized as our (GZ)ev = GZ. See Erratum

added to a new version of [10].

94



3.3.2 Chevalley supergroups of Cartan type

Let g be a finite-dimensional simple Lie superalgebra over C which is of Cartan type. Then g0̄ is a

direct sum

g0̄ = gr0̄ ◃<gn0̄
of a reductive Lie algebra gr

0̄
with a nilpotent Lie algebra gn

0̄
. With respect to the right adjoint gr

0̄
-

action, gn
0̄
and g1̄ decompose as direct sums of weight spaces for a fixed Cartan subalgebra h ⊂ gr

0̄
;

we let ∆r
0̄
, ∆n

0̄
and ∆1̄ denote the sets of the roots for gr

0̄
, gn

0̄
and g1̄, respectively. The nilpotent

Lie algebra gn
0̄
acts on g1̄ nilpotently.

This time we assume that the root datum and the corresponding algebraic Z-groups given in

(II.3.3.1) are as follows: gr
0̄
⊃ h coincide with the complexifications of Lie(GZ) ⊃ Lie(TZ), and

∆n
0̄
, ∆1̄ ⊂ X.

Theorem 3.3.4 (Gavarini). There exist Z-lattices NZ and VZ of gn
0̄
and g1̄, respectively, such that

(i) gZ := Lie(GZ)⊕NZ ⊕ VZ is a Lie-superalgebra Z-form of g.
(ii) This Lie superalgebra gZ over Z is admissible.

(iii) VZ is hy(GZ)-stable in the right U(gr
0̄
)-module g1̄.

(iv) NZ contains a Z-free basis x1, . . . , xs such that

(iv-1) the Z-submodule HZ of U(gn
0̄
) which is (freely) generated by

xn1
1

n1!
· · · x

ns
s

ns!
, n1 ≥ 0, . . . , ns ≥ 0

is a Z-subalgebra,

(iv-2) VZ is HZ-stable in the right U(gn
0̄
)-module g1̄, and

(iv-3) HZ is hy(GZ)-stable in the right U(gr
0̄
)-module U(gn

0̄
).

Gavarini’s construction in [10] is parallel to those in [9, 11]. One sees that among Gavarini’s

Chevalley basis elements, the elements contained in gn
0̄
and the odd elements generate the desired

Z-lattices NZ and VZ, respectively; the former are precisely the desired elements for (iv). See [10,

Section 3.1] for (ii), and see [10, Section 3.3] for (iii), (iv). Note that the Z-algebra HZ given in

(iv-1) is indeed a Hopf-algebra Z-form of U(gn
0̄
).

Recall from [8, IV, Sect. 2, 4.5] there uniquely exists a unipotent algebraic group F over C such

that Lie(F ) = gn
0̄
. The corresponding Hopf algebra O(F ) is the polynomial algebra C[t1, . . . , ts]

such that

⟨ , ⟩ : U(gn0̄)×O(F ) −→ C, ⟨x
n1
1

n1!
· · · x

ns
s

ns!
, tm1

1 · · · tms
s ⟩ = δn1,m1 · · · δns,ms (II.3.3.3)

is a Hopf pairing. This induces a Hopf algebra isomorphism

O(F )
≃−→ U(gn0̄)′. (II.3.3.4)

95



Here and in what follows, given a finitely generated Hopf algebra B over a field or Z, we define

B′ :=
∪
n>0

(B/(B+)n)∗,

as in [30, Section 9.2]. This is a Hopf subalgebra of B◦. If B is the commutative Hopf algebra

corresponding to an algebraic group, then B′ is the hyperalgebra of the algebraic group.

Lemma 3.3.5. Z[t1, . . . , ts] is a Hopf-algebra Z-form of O(F ) = C[t1, . . . , ts]. The Hopf pairing

(II.3.3.3) over C restricts to a Hopf pairing ⟨ , ⟩ : HZ ×Z[t1, . . . , ts] → Z over Z, and it induces an

isomorphism

Z[t1, . . . , ts]
≃−→ H ′

Z

of Z-Hopf algebras.

Proof. It is easy to see that the Hopf algebra isomorphism (II.3.3.4) restricts to a Z-algebra map

Z[t1, . . . , tn] → H ′
Z. We have the following commutative diagram which contains the isomorphism

and the restricted algebra map.

Z[t1, . . . , ts] O(F ) = C[t1, . . . , ts]

H ′
Z U(gn

0̄
)′

H∗
Z U(gn

0̄
)∗

� � //
� _

��
≃
��

� � //

� � //

� _

��

� _

��

Since H∗
Z ≃ Z[[t1, . . . , tn]], U(gn0̄)∗ ≃ C[[t1, . . . , tn]], we see that the outer big square is a pull-back.

The lower square is a pull-back, too, as is easily seen. It follows that the upper square is a pull-

back, whence Z[t1, . . . , tn] → H ′
Z is an isomorphism. This implies that Z[t1, . . . , tn] is a Hopf-algebra

Z-form of O(F ). The rest is now easy to see.

Let FZ denote the algebraic Z-group corresponding to the Z-Hopf algebra Z[t1, . . . , ts]. Then

O(FZ) = Z[t1, . . . , ts], hy(FZ) = HZ, Lie(FZ) = NZ.

Note from (i) of Theorem 3.3.4 that NZ is a Lie-algebra Z-form of gn
0̄
. From the first two equalities

above or from Gavarini’s original construction one sees that the construction of HZ does not depend

on the order of the basis elements.

Let G ⊃ T denote the base changes of GZ ⊃ TZ to C. The right U(gr
0̄
)-module structure on gn

0̄
,

which arises from the right adjoint action, is indeed a U(gr
0̄
)-T -module structure. Hence it gives

rise to a right G-module structure, by which gn
0̄
is a Lie-algebra object in the symmetric tensor

category ModG of right G-modules. The structure uniquely extends to U(gn
0̄
) so that U(gn

0̄
) turns

into a Hopf-algebra object inModG. One sees that the structure just obtained is transposed through

(II.3.3.3) to O(F ), so that O(F ) is a Hopf-algebra object in the symmetric category GMod of left

G-modules. Thus, F turns into a right G-equivariant algebraic group. The associated semi-direct
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product G ◃<F of algebraic groups has g0̄ = gr
0̄

◃<gn
0̄
as its Lie algebra, as is easily seen. Note that

g1̄ is a right U(gr
0̄
)-T -module, and is such a right U(gn

0̄
)-module that is annihilated by (U(gn

0̄
)+)m

for some m. Then it follows that g1̄ turns into a right G-module and F -module. Moreover, it is a

right G ◃<F -module, as is seen by using

(1) Lie(G ◃<F ) = gr
0̄

◃<gn
0̄
,

(2) G ◃<F is connected, and

(3) g1̄ is a right U(g0̄)-module.

What were constructed in the last paragraph are all defined over Z, as is seen from the following

Lemma.

Lemma 3.3.6. Keep the notation as above.

(1) The right O(G)-comodule structure O(F ) → O(F ) ⊗C O(G) on O(F ) restricts to O(FZ) →
O(FZ)⊗Z O(GZ), by which FZ turns into a right GZ-equivariant algebraic group. Therefore,

we have the associated semi-direct product GZ ◃<FZ of algebraic groups.

(2) VZ is naturally a right GZ ◃<FZ-module.

Proof. (1) One sees that the right hy(GZ)-module structure on HZ which is given by (iv-3) of

Theorem 3.3.4 is indeed a hy(GZ)-TZ-module structure. Hence it gives rise to a right GZ-module

structure on HZ, by which HZ turns into a Hopf-algebra object in ModGZ . Since the isomorphism

given in Lemma 3.3.5 is compatible with base extension, it follows that the last structure is trans-

posed to a left GZ-module structure on O(FZ), so that O(FZ) is a Hopf-algebra object in GZMod.

By construction the corresponding right O(GZ)-comodule structure on O(FZ) is the restriction of

the right O(G)-comodule structure on O(F ). This proves the first assertion. The rest is easy to

see.

(2) Just as for HZ, we see from (iii) of the theorem that VZ is a right hy(GZ)-TZ-module,

whence it is a right GZ-module. We see from (iv-2) that VZ is a right HZ-module, and it is indeed

a right HZ/(H
+
Z )m-module for the same m as before. It follows by Lemma 3.3.5 that VZ is a right

FZ-module.

It remains to prove that

(vf)g = (vg)fg, v ∈ VZ, f ∈ FZ, g ∈ GZ.

Let S be a commutative ring. The equality in S ⊗Z C-points follows from the analogous equality

for g1̄, since VZ ⊗Z S ⊗Z C = g1̄ ⊗C (S ⊗Z C). To prove the equality in S-points, we may suppose

S = O(FZ) ⊗Z O(GZ), and so that S is Z-flat. In this case the equality follows from the previous

result since we then have VZ ⊗Z S ⊂ VZ ⊗Z S ⊗Z C.

Recall that gZ is a Lie-superalgebra Z-form as given in (i) of Theorem 3.3.4. Its odd component

VZ is a right GZ ◃<FZ-module by Lemma 3.3.6.

Proposition 3.3.7. (GZ ◃<FZ, gZ) is a Harish-Chandra pair.
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Proof. As is easily seen, Lie(GZ ◃<FZ) coincides with the even component Lie(GZ) ◃<NZ of gZ.
The restricted super-bracket [ , ] : VZ × VZ → Lie(GZ ◃<FZ), being hy(GZ)- and HZ-linear, is GZ-

and FZ-equivariant. It is necessarily GZ ◃<FZ-equivariant.

We have thus the algebraic Z-supergroup G(GZ ◃<FZ, gZ) in ASG which is associated with the

Harish-Chandra pair just obtained. It is a Z-form of the algebraic C-supergroup which is associated

with the Harish-Chandra pair (G ◃<F, g). Since every Chevalley C-supergroup of Cartan type (see

Section 3.3) is associated with some Harish-Chandra pair of the last form, we have constructed a

natural Z-form of every such C-supergroup.

Remark 3.3.8. Just as in the classical-type case (see Remark 3.3.3 (1)), Gavarini’s construction

requires faithful representations of g, which, however, must satisfy more involved conditions as given

in [10, Definition 3.14]; Proposition 3.16 of [10] proves that part of the conditions is satisfied if the

representation is completely reducible. The required representations look thus rather restrictive.

On the other hand, Theorem 4.42 of [10] implies that the required representations are many enough

to ensure that our Z-forms all are realized by Gavarini’s construction. But the proof of the theorem

is wrong. After the publication of [10], a corrected proof of the theorem, which uses the category

equivalence [12, Theorem 4.3.14] (= Part I, Theorem 4.6.9), was given in Erratum added to a new

version of [10]. As far as I understand, the proof is correct if the same argument as proving our

Lemma 3.3.6 is added.

3.4 Torus, unipotent and Borel subsupergroups

Let (GZ, gZ) be a quasireductive Harish-Chandra pair. Recall that Lie(TZ) = (hZ)0̄. Then obviously

(hZ)1̄ is TZ-stable. Thus, the pair (TZ, hZ) is a sub-pair of (GZ, gZ). We obtain a closed algebraic

subsupergroup TZ := G(TZ, hZ) of GZ.

Remark 3.4.1. The supergroup TZ is no longer abelian, in general. If h = h0̄, then we have

TZ = TZ.

Example 3.4.2. For GZ = Q(n), the supergroup TZ is given as follows

TZ(R) := {

(
A B

−B A

)
∈ Q(n)(R) | A and B are diagonal},

where R is a commutative superalgebra. This is not abelian.

As in (II.3.1.2), we have two Lie subsuperalgebras u±Z of gZ over Z whose even-part (u±Z )0̄ are

nilpotent Lie subalgebras of (gZ)0̄. Then one can construct two connected and unipotent subgroups

U±
Z of GZ such that Lie(U±

Z ) = (u±Z )0̄, see [16, Part II, 1.7]. Let {Xα | α ∈ ∆+
0̄
} denote a Z-basis

of Lie(U±
Z ). Given any order on ∆+

0̄
, then the monomials∏

α∈∆+
0̄

X(nα)
α (II.3.4.1)
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with nα > 0 forms a Z-basis of hy(U+
Z ). Similarly,

∏
α∈∆−

0̄
X

(nα)
α with nα > 0 forms a Z-basis of

hy(U−
Z ).

Lemma 3.4.3. The pairs (U±
Z , u±Z ) are sub-pairs of (GZ, gZ).

Proof. We concentrate on (U+
Z , u+Z ). What we have to show is (u+Z )1̄ is U+

Z -table in (gZ)1̄.
First, we prepare general statement. Let F be a closed subgroup of some GLm over Z such

that O(F ) is Z-flat. Let B denote the hyperalgebra hy(F ) of F . Then the canonical pairing

B ×O(F ) → Z induces a map O(F ) → B∗ whose image is included in B◦. Here,

B◦ :=
∪
I

(B/I)∗ (⊆ B∗)

is the dual Hopf algebra of B, where I runs through the ideals of B such that B/I is Z-finite; see
Remark 2.4.3. Now, suppose that F is infinitesimally flat and connected. Then by [36, Proposi-

tion 0.3.1(g)], the map O(FQ) → (B ⊗Z Q)∗ is injective, where FQ is the base extension of F to Q.

Combine with the above result, we have an inclusion O(F ) ↪→ B◦ of Hopf algebras.

In our case, U+
Z satisfies the conditions stated above. Hence, we have an inclusion O(U+

Z ) ↪→
hy(U+

Z )◦ of Hopf algebras. Moreover, one sees that this is indeed an isomorphism, since U+
Z is

unipotent. Therefore, we conclude that for a Z-module M , there is a one-to-one correspondence

between the set of all U+
Z -module structures on M and the set of all locally finite hy(U+

Z )-module

structures on M . By (II.3.4.1), we see that (uZ)1̄ is hy(U+
Z )-stable. This completes the proof.

By Lemma 3.4.3, we obtain two closed algebraic subsupergroups U±
Z := G(U±

Z , u±Z ) of GZ. We

construct two supergroups

B±
Z := TZU

±
Z ,

where the product is taken in GZ. These B±
Z are actually closed subsupergroups of GZ. Since TZ

is a closed subsupergroup of B±
Z , we have surjections O(B±

Z ) � O(TZ) of Hopf superalgebras.

Proposition 3.4.4. There are splittings O(TZ) ↪→ O(B±
Z ) of Hopf superalgebras.

Proof. We concentrate on showing that O(TZ) ↪→ O(B+
Z ). We fix a commutative superalgebra R

over Z. By using the adjoint action

TZ(R)×U+
Z (R) −→ U+

Z (R); (t, u) 7−→ tut−1,

we see that U+
Z is a normal closed subsupergroup of B+

Z . On the other hand, it is easy to see that

TZ(R) ∩U+
Z (R) = {e}, where e is the unit element of GZ. Hence, we have an isomorphism

m : TZ(R) ◃<U+
Z (R)

∼=−→ B+
Z (R); (t, u) 7−→ tu (II.3.4.2)

of groups. We let O(m) denote the corresponding Hopf superalgebra isomorphism. Since m is

identical on TZ, the map

O(TZ)
id⊗1−→ O(TZ)⊗Z O(U+

Z )
O(m)−1

−→ O(B+
Z )
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gives a desired Hopf superalgebra splitting.

Example 3.4.5. Let G = GL(2|1). According to (i)–(vi) in Example 3.1.5, we get six variations

of B+ as follows.

(i) B+ = {

 ∗ ∗ ∗
0 ∗ ∗
0 0 ∗

}, (ii) B+ = {

 ∗ 0 ∗
∗ ∗ ∗
0 0 ∗

}, (iii) B+ = {

 ∗ ∗ ∗
0 ∗ 0

0 ∗ ∗

},

(iv) B+ = {

 ∗ ∗ 0

0 ∗ 0

∗ ∗ ∗

}, (v) B+ = {

 ∗ 0 0

∗ ∗ 0

∗ 0 ∗

}, (vi) B+ = {

 ∗ ∗ 0

0 ∗ 0

∗ ∗ ∗

}.

Let π : O(GZ) � O(B+
Z ) and π

′ : O(GZ) � O(B−
Z ) denote the Hopf quotient maps.

Proposition 3.4.6. The following superalgebra map is injective.

(π ⊗ π′) ◦∆ : O(GZ) −→ O(B+
Z )⊗Z O(B−

Z ),

where ∆ is the comultiplication of O(GZ).

Proof. By the Hopf superalgebra isomorphism in (II.3.4.2), we have a inclusion O(U−
Z ) ↪→ O(B−

Z )

of superalgebras. Therefore, to prove the claim, it is enough to see that O(GZ) → O(B+
Z )⊗ZO(U−

Z )

is injective. The multiplication map f : B+
Z × U−

Z → GZ induces a supercoalgebra map T (f) :

hy(B+
Z ) ⊗Z hy(U−

Z ) → hy(GZ). By Theorem 3.2.4, we conclude that T (f) is an isomorphism of

supercoalgebras. Thus its Z-linear dual T (f)∗ gives an isomorphism of superalgebras. Since hy(B+
Z )

and hy(U−
Z ) are both Z-free, the canonical map hy(B+

Z )
∗ ⊗Z hy(U−

Z )
∗ → (hy(B+

Z )⊗Z hy(U−
Z ))

∗ is

injective. Therefore, we have the following commutative diagram of superalgebras

hy(GZ)
∗ (hy(B+

Z )⊗Z hy(U−
Z ))

∗ hy(B+
Z )

∗ ⊗Z hy(U−
Z )

∗

O(GZ) O(B+
Z )⊗Z O(U−

Z ).

	
∼=

T (f)∗
//

OO OO

? _oo

//

Since GZ, B
+
Z and U−

Z are connected, the vertical maps are injective. Hence, we conclude that

O(GZ) → O(B+
Z )⊗Z O(U−

Z ) is injective.

We denote the base change ofGZ,TZ,U
±
Z , GZ, TZ, U

±
Z , ... etc. to the ground field k byG,T,U±, G, T, U±, ...

etc. and the base change of gZ, hZ, u±Z , ... etc. to k by g, h, u±, ... etc. Note that, (gZ)ϵ ⊗Z k =

(gZ ⊗Z k)ϵ for ϵ = 0̄, 1̄. By definition, we have Lie(G) = g,Lie(T) = h,Lie(U±) = u±, ... etc.

A supergroup H over k is said to be unipotent if the corresponding commutative Hopf superal-

gebra O(H) is irreducible. By [24, Theorem 41], it was shown that H is unipotent if and only if so

is Hev. Since U±
ev = U± are unipotent algebraic groups, we have the following

Proposition 3.4.7. U± are unipotent.
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3.5 Representations of quasireductive supergroups

Recall that TZ is a maximal split torus of GZ. The corresponding commutative Hopf algebra O(TZ)

is the Laurent polynomial ring Z[T±
1 , T

±
2 , . . . , T

±
ℓ ] whose Hopf algebra structure is given by

∆(T±
i ) = T±

i ⊗Z T
±
i , ε(T±

i ) = 1, S(T±
i ) = T∓

i

for i = 1, . . . , ℓ. Since T is the base extension of TZ to k, the corresponding commutative Hopf

algebra is given by k[T±
1 , . . . , T

±
ℓ ]. We let Λ denote the character group X = X(TZ) of TZ, or

equivalently, the set of all grouplike elements of O(T ). Explicitly,

Λ =
{
Tn1
1 · · ·Tnℓ

ℓ | n1, . . . , nℓ ∈ Z
} ∼= Zℓ.

It is easy to see that Λ coincides with the Z-linear dual of (hZ)0̄.
Lemma 3.5.1. The abelian group Λ coincides with HomZ((hZ)0̄,Z).
Proof. By the definition, we have

(hZ)0̄ = Lie(TZ) = HomZ(O(TZ)
+/(O(TZ)

+)2,Z).

Therefore, we have an isomorphism HomZ((hZ)0̄,Z) ∼= O(TZ)
+/(O(TZ)

+)2 as abelian groups. One

sees that T1 − 1, . . . , Tℓ − 1 form a Z-free basis of O(TZ)
+/(O(TZ)

+)2. For i = 1, . . . , ℓ, we denote

the partial derivation on O(TZ) = Z[T±
1 , . . . , T

±
ℓ ] by ∂/∂Ti. Let

Hi := ε ◦ ∂

∂Ti
: O(TZ) −→ Z, (II.3.5.1)

for i = 1, . . . , ℓ. Then H1, . . . , Hℓ form a Z-free basis of Lie(TZ). Since Hi is the dual basis of Ti−1,

the following is an isomorphism of abelian groups.

Λ −→ O(TZ)
+/(O(TZ)

+)2 ; Tn1
1 · · ·Tnℓ

ℓ 7−→
ℓ∑
i=1

ni(Ti − 1).

This proves the claim.

Let V be a representation of G. By Theorem 2.4.8, we regard V as a hy(G)-T -supermodule.

For λ ∈ Λ, its λ-weight superspace Vλ of V is given by

Vλ = {v ∈ V |
(
Hi

n

)
v =

(
⟨λ,Hi⟩
n

)
v for all 1 6 i 6 ℓ, n > 0},

where ⟨ , ⟩ : Λ× (hZ)0̄ → Z is the canonical pairing.
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Chapter 4

Constructions of Simple

Supercomodules

Let k be a ground field of characteristic ̸= 2.

In this chapter, we will get a super-analogue of the Parshall and Wang’s result [32, Theo-

rem 8.3.1] (see also Bichon and Riche [2, Theorem 2.6]).

4.1 Simple supercomodules

Let C be a supercoalgebra. A non-zero right C-supercomodule L is simple if L has no non-trivial

C-subsupercomodule. If L is simple, then ΠL is also simple.

Definition 4.1.1. A right simple C-supercomodule L is of type Q if L ∼= ΠL as right C-supercomodules

and type M otherwise.

Let Simp(C) denote the set of isomorphism classes of simple right C-supercomodules. The

functor Π naturally acts on Simp(C) as a permutation, say π, of order 2. Let SimpΠ(C) denote

the set of ⟨π⟩-orbits in Simp(C). Therefore, two elements L,L′ in Simp(C) coincides in SimpΠ(C)

if and only if L ∼= L′ or L ∼= ΠL′.

Proposition 4.1.2 (Schur’s lemma). Suppose that k is an algebraically closed field. For a simple

C-supercomodule L, we have an isomorphism of C-supercomodules

EndC(L) ∼=

k, if L is of type M,

kZ2, if L is of type Q.
(II.4.1.1)

In particular, for simple C-supercomodules L and L′, L has the same type as L′ if and only if

EndC(L) ∼= EndC(L′).

Proof. For φ ∈ EndC(L), we write φ = φ0̄ + φ1̄ ∈ EndC(L)0̄ ⊕ EndC(L)1̄. Since φ0̄ : L → L is a

parity preserving map, φ0̄ is a morphism of SModC . By the simplicity of L and k = k, φ0̄ coincides

with c idL for some c ∈ k. On the other hand, if L is of type Q, then there exists a C-supercomodule

isomorphism J : L
∼=→ ΠL. Since J−1 ◦ φ1̄ : L → L is preserve the parity, this is a morphism of
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SModC . Therefore, we have φ1̄ = c′J for some c′ ∈ k. Moreover, J satisfies J2 = idL. This

completes the proof.

We denote the cosmash product of kZ2 and C by kZ2 I<C. This is a coalgebra whose underlying

vector space is kZ2 ⊗ C and the comodule structures are given by

∆(ϵ⊗ c) = (ϵ⊗ c1)⊗ (|c1|+ ϵ)⊗ c2,

ε(ϵ⊗ c) = ε(c),

where ϵ ∈ Z2 and c ∈ C0̄ ∪ C1̄. Then, there is a natural identification SModC ≈ ModkZ2 I<C .

Therefore, we get the following properties.

Lemma 4.1.3. Any simple right C-supercomodule is finite dimensional.

Lemma 4.1.4. For a C-supercomodule L, L is simple if and only if the dual supercomodule L∗ is

simple.

For a right C-supercomodule V , we let socC(V ) denote the (direct) sum of all simple C-

subsupercomodules of V . This socC(V ) is called the C-socle of V . In particular, for V = C,

corad(C) := socC(C) is called the coradical of C.

Lemma 4.1.5. For a right C-comodule V , V ̸= 0 if and only if socC(V ) ̸= 0.

A Hopf superalgebra U is said to be irreducible if its coradical corad(U) is trivial or equivalently,

SimpΠ(U) = {k}; see [24, Definition 2].

Lemma 4.1.6. Let U be an irreducible Hopf superalgebra, and let V be a right U -supercomodule.

Then V ̸= 0 if and only if V coU ̸= 0.

Proof. Since U is irreducible, we have V coU = socU (V ). The claim follows, by lemma 4.1.5.

4.2 Constructions of simple supercomodules

Let A be Hopf superalgebra. Let B,B′ be a quotient Hopf superalgebras of A. We denote the

quotient maps by

πB : A� B, πB′ : A� B′.

Let H be a Hopf superalgebra with Hopf superalgebra surjections.

φH : B � H, φ′
H : B′ � H

such that the following diagram commutes.

A B′

B H.

	

πB′
// //

πB
����

φ′
H����

φH

// //

(II.4.2.1)
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In this subsection, we assume that the following conditions hold:

(1) There is a Hopf superalgebra splitting iH : H ↪→ B and (resp. i′H : H ↪→ B′), i.e., φH ◦ iH =

idH (resp. φ′
H ◦ i′H = idH). We regard H as a B-supercomodule (resp. B′-supercomodule)

through iH (resp. i′H).

(2) There is an irreducible Hopf superalgebra quotient U (resp. U ′) of B (resp. B′) such that iH

(resp. i′H) induces an isomorphism H ∼= BcoU (resp. H ∼= B′coU ′
) of superspaces.

(3) The map (πB ⊗ πB′) ◦∆ : A→ A⊗A→ B ⊗B′ is injective.

Since k is purely even, the following map coincides with the comultiplication ∆B of B

B �U k ∆B⊗idk−→ (B ⊗B)�U k
idB ⊗cB,k−→ B ⊗ k⊗B.

Hence, we can regard BcoU as a right B-supercomodule with respect to ∆B. In this way, BcoU has

a structure of right H-supercomodule. Since φH ◦ iH = idH , we have the following result.

Lemma 4.2.1. The isomorphism iH : H
∼=→ BcoU in the assumption (4.2) is left B- right H-

colinear.

By the assumption (4.2), there is a surjective Hopf superalgebra map B � U . For a right B-

supercomodule M , we have the restricted U -supercomodule resBU (M). Therefore, we can consider

the U -coinvariants M coU of M .

Lemma 4.2.2. For a right B-supercomodule M , there is an isomorphism M coU ∼= M �B H of

superspaces.

Proof. One can easily show that the isomorphism of superspaces

M �B B
∼=−→ resBU (M)

given in Lemma 2.6.2 (2.6.2) is indeed an isomorphism of left U -supercomodules. Taking (−)�U k
to both sides, we get an isomorphism of superspaces

(M �B B)�U k ∼= resBU (M)�U k.

By definition, the right hand side is nothing but M coU . On the other hand, the left hand side is

(M �B B)�U k =M �B (B �U k) ∼=M �B H,

by the associativity Lemma 2.6.2 (2.6.2) and by Lemma 4.2.1. Thus, we are done.

By Lemma 4.2.2, we can regard M coU as right H-supercomodule. In this way, we get a

functor (−)coU from the category of right B-supercomodules SModB to the category of right H-

supercomodules SModH .

Lemma 4.2.3. The functor (−)coU is right adjoint to the restriction functor resHB (−).
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Proof. By the proof of Lemma 4.2.2, one sees the functor (−)coU and the functor indHB (−) are

naturally isomorphic. Therefore, by the Frobenius reciprocity Proposition 2.6.3, we are done.

By the assumption (4.2), we can consider the restricted B-supercomodule resHB (N) for any

H-supercomodule N . Since φH ◦ iH = id, we have the following natural isomorphism of right

H-supercomodules

resBH resHB (N) ∼= N.

Suppose that SimpΠ(H) is parametrized by a set Λ. Let u(λ) denote the simpleH-supercomodule

corresponding to λ ∈ Λ.

Lemma 4.2.4. For λ ∈ Λ, the B-supercomodule resHB (u(λ)) is simple. This gives a one-to-one

corresponding between SimpΠ(B) and Λ.

Proof. It is enough to show that for all simple B-supercomodule L, there exists λ ∈ Λ such that

L = resHB (u(λ)) or Π resHB (u(λ)). For simplicity, we concentrate the case L = resHB (u(λ)). By

Lemma 4.1.6, the U -coinvariants LU of L is non-zero. Therefore, there exists λ ∈ Λ such that

resBH(L
U ) ⊇ u(λ). By Lemma 4.2.3, we have

0 ̸= HomH
(u(λ), LU) ∼= HomB

(
resHB (u(λ)), L

)
.

Hence, we have a surjective B-supercomodule map f : resHB (u(λ)) � L. By applying the functor

resBH to both sides, we get u(λ) � resBH(L). Therefore, the B-supercomodule map f is indeed an

isomorphism.

Lemma 4.2.5. For a right H-supercomodule N , the following map is an inclusion of B′-supercomodules

indAB(res
H
B (N)) ↪→ indB

′
H (N). (II.4.2.2)

Proof. By taking resHB (N)�B (−) to A ↪→ B⊗B′ in the assumption (4.2), we get resHB (N)�BA ↪→
resHB (N)�B (B⊗B′). Since the right hand side is equal to N⊗B′, the following is a left B′-colinear

inclusion

idN ⊗πB′ : resHB (N)�B A ↪→ N ⊗B′.

By the assumption (4.2), the image of above map lies in N �H B′. This completes the proof.

For λ ∈ Λ, we let

H0(λ) := indAB
(
resHB (u(λ))

)
. (II.4.2.3)

An element of H0(λ) is of the form
∑

j c
j ⊗ aj (∈ u(λ)⊗A) satisfying the following equation.∑

j

cj0 ⊗ iH(c
j
1)⊗ aj =

∑
j

cj ⊗ πB(a
j
1)⊗ aj2 = 0,

where u(λ) → u(λ)⊗H; cj 7→ cj0⊗c
j
1 is the right H-supercomodule structure of u(λ). Since functors
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ind and res preserve the parity, we have

ΠH0(λ) = indAB
(
resHB (Πu(λ))). (II.4.2.4)

Let

Λ† :=
{
λ ∈ Λ | H0(λ) ̸= 0

}
.

Lemma 4.2.6. For λ ∈ Λ†, we have socB′(H0(λ)) = resHB′(u(λ)).
Proof. By Lemma 4.2.5, there is a B′-supercomodule inclusion

resAB′(H0(λ)) ↪→ indB
′

H (u(λ)).

Thus, we have socB′(H0(λ)) ⊆ socB′
(
indB

′
H (u(λ))). To conclude the proof, it is enough to see that

socB′
(
indB

′
H (u(λ))) = resHB′(u(λ)). (II.4.2.5)

By Lemma 4.2.4, any simple B′-subsupercomodule of indB
′

H (u(λ)) is ether (i) resHB′(u(µ)) or (ii)

Π resHB′(u(µ)) for some µ ∈ Λ. First, we consider the case (i). In this case, we have

HomB′(
resHB′(u(µ)), indB′

H (u(λ))) ≃ HomH
(u(µ), u(λ)),

by the Frobenius reciprocity. Since the left hand side is non-zero, there is a non-zeroH-supercomodule

map u(µ) → u(λ). Therefore, µ must coincide with λ. Hence, the equation (II.4.2.5) holds. Next,

we consider the case (ii). Similarly, by the Frobenius reciprocity, we have Πu(µ) ∼= u(λ). Therefore,
we conclude that µ = λ and u(λ) is of type Q. This proves the equation (II.4.2.5) holds.

Proposition 4.2.7. For λ ∈ Λ†, we have H0(λ)coU
′
= u(λ).

Proof. We have an inclusion H0(λ) ↪→ u(λ) �H B′ of right B′-supercomodules, by Lemma 4.2.5.

By taking the functor −�B′ H to both sides, we have

H0(λ)coU
′
↪→ (u(λ)�H B′)�B′ H.

The right hand side coincides with u(λ). Since u(λ) is simple, this proves the claim.

For λ ∈ Λ†, we let

L(λ) := socA(H
0(λ)). (II.4.2.6)

Lemma 4.2.8. For λ ∈ Λ†, L(λ) is a unique simple A-subsupercomodule of H0(λ).

Proof. If there are two simple A-subsupercomodules L and L′ of H0(λ), then socB′(L), socB′(L′) =

resHB′(u(λ)), by Lemma 4.2.6. Therefore, we get u(λ) ⊆ L ∩ L′ (⊆ L, L′). Since u(λ) ̸= 0, we have

L = L′.

Theorem 4.2.9. For any simple A-supercomodule L, there uniquely exists λ ∈ Λ† such that L

coincides with ether L(λ) or ΠL(λ).
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Proof. For simplicity, assume that L is of type Q, i.e., L = ΠL. Since L is non-zero, there is a right

B-supercomodule surjection resAB(L) � resHB (u(λ)). By the Frobenius reciprocity, we have

0 ̸= HomB
(
resAB(L), res

H
B (u(λ))

)
≃ HomA

(
L, H0(λ)

)
. (II.4.2.7)

Thus, there is an A-supercomodule inclusion L ↪→ H0(λ). In particular, λ is indeed in Λ†. There-

fore, we conclude that L = L(λ), by Lemma 4.2.8. Similarly, we can show L = ΠL(λ) for the case

(ii).

By Theorem 4.2.9, we get a map

Λ† −→ SimpΠ(A); λ 7−→ L(λ).

Corollary 4.2.10. The above map gives a one-to-one correspondence between Λ† and SimpΠ(A).

Moreover, L(λ) is of type M (resp. Q) if and only if u(λ) is of type M (resp. Q).

Proof. By (II.4.2.4) and ΠL(λ) = socA(ΠH
0(λ)), we have ΠL(λ) ∼= L(λ) if and only if u(λ) is of

Q-type. Therefore, L(λ) has the same type as u(λ).
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Chapter 5

Irreducible Representations

Let k be a field of characteristic not equal to 2. We let G, T, U± and B± denote the algebraic

supergroups over k, defined in Section 3.2 and Section 3.4.

5.1 Irreducible representations of T

In this section, we construct irreducible representations of T. For simplicity, we let IrrΠ(T) :=

SimpΠ(O(T)), for the notation SimpΠ(−), see Section 4.1.

Recall that, hy(T) is the hyper-superalgebra of the supergroup T. For a fixed λ ∈ Λ, let hy(T)λ

be the quotient superalgebra of hy(T) by the two-sided ideal generated by all(
H

m

)
−
(
⟨λ,H⟩
m

)
,

where H ∈ (hZ)0̄, m > 0. Recall that r = rank(hZ)1̄.
Lemma 5.1.1. hy(T)λ is a 2r-dimensional space.

Proof. Let H1, . . . ,Hℓ be a Z-basis of (hZ)0̄ and let K1, . . . ,Kr be a Z-basis of (hZ)1̄. Then by

Theorem 3.2.4, hy(T) has a k-basis
ℓ∏
i=1

(
Hi

mi

) r∏
t=1

Kϵt
t ,

where mi > 0, ϵt = 0 or 1 for i = 1, . . . , ℓ, t = 1, . . . , r. Therefore, Kϵ1
1 · · ·Kϵr

r (ϵt = 0 or 1 for

t = 1, . . . , r) form a k-basis of hy(T)λ.

We define a symmetric k-bilinear form by

bλ : h1̄ × h1̄ → k ; bλ(x, y) := λ([x, y]).

As in the previous section, we can construct the Clifford superalgebra C(h1̄, bλ) over k for the

quadratic space (h1̄, bλ).
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Note that P (hy(T)) = h, by Proposition 2.2.3. We may regard h1̄ as a subspace of hy(T). By

using this inclusion, we have the following algebra map.

f : T (h1̄) −→ hy(T) � hy(T)λ.

This is indeed a surjective map.

Lemma 5.1.2. The above map f induces a superalgebra isomorphism C(h1̄, bλ) ∼= hy(T)λ.

Proof. By definition, we have I(h1̄, bλ) ⊆ Ker f . Hence f induces the following superalgebra sur-

jection

C(h1̄, bλ) � hy(T)λ.

On the other hand, the dimension of C(h1̄, bλ) and hy(T)λ are the same, by (III.2.0.2) and

Lemma 5.1.1. Therefore, f is an isomorphism.

The bilinear form bλ on h1̄ can be extended to a bilinear form on the quotient space h1̄/rad(bλ)
which we denote the same symbol bλ. Set

dλ := dimk(h1̄/rad(bλ)).

There exists a dλ-dimensional subspace W of h1̄ such that h1̄ = rad(bλ) ⊥W . Let x1, x2, . . . , xr be

an orthogonal basis of h1̄ with respect to bλ such that x1, x2, . . . , xdλ is a basis of W . Set

δλ := (−1)dλ(dλ+1)/2 λ([x1, x1])λ([x2, x2]) · · ·λ([xdλ , xdλ ]).

We let δλ := 0, if bλ = 0, this is equivalent to saying that dλ = 0. For simplicity, we treat the

integer 0 as an even number.

Proposition 5.1.3. For each λ ∈ Λ, the superalgebra hy(T)λ has a unique simple supermodule

u(λ) up to isomorphism and parity change. Moreover, u(λ) is of type M if and only if dλ is even

and δλ ∈ k2.

Proof. First, suppose that δλ = 0. By definition, hy(T)λ = ∧(r) as superalgebras. The Grassmann

superalgebra ∧(r) has a unique one-dimensional purely even or odd supermodule. This is of type

M.

Next, suppose that δλ ∈ k×. Let Rλ be the two-sided ideal of hy(T)λ generated by rad(bλ). By

Lemma 5.1.2, we have

hy(T)λ/Rλ ∼= C(h1̄/rad(bλ), bλ). (II.5.1.1)

Therefore, hy(T)λ/Rλ has a unique simple supermodule up to isomorphism and parity change, by

Proposition B.0.4 Since the Jacobson radical of hy(T)λ coincides with Rλ, we are done.

Remark 5.1.4. If h = h0̄, then hy(T)λ = k. In this case, u(λ) = kλ or u(λ) = Πkλ, where kλ is

the one-dimensional purely even left hy(T )-supermodule of weight λ.

We regard the left hy(T)λ-supermodule u(λ) as a left hy(T)-supermodule via the quotient map

hy(T) � hy(T)λ. Actually, this is a locally finite left hy(T)-T -supermodule.
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Theorem 5.1.5. For a simple locally finite left hy(T)-T -supermodule L, there exists λ ∈ Λ such

that L ∼= u(λ) or Πu(λ).
Proof. Since L is a non-zero left hy(T)-T -supermodule, there exists λ ∈ Λ such that Lλ ̸= 0. By

the definition of h, we have (
H

n

)
K.v = K

(
H

n

)
.v =

(
⟨λ,H⟩
n

)
K.v,

for H ∈ (hZ)0̄, n > 0, K ∈ h1̄ and v ∈ Lλ. Therefore, Lλ is a left hy(T)λ-supermodule. Then by

Lemma 5.1.3, Lλ contains u(λ) (resp. Πu(λ)). We conclude that there is an inclusion L ⊇ u(λ)
(resp. Πu(λ)) of left hy(T)-supermodules. Since L is simple, this completes the proof.

There is a category equivalence between the category of locally finite left hy(T)-T -supermodules

and the category of T-supermodules (i.e., right O(T)-supercomodules), by Corollary 2.4.10. There-

fore, we obtain the following well-defined map

Λ −→ IrrΠ(T); λ 7−→ u(λ).

Corollary 5.1.6. The above map is bijective. Moreover, u(λ) is of type M if and only if dλ is even

and δλ ∈ k2.

Remark 5.1.7. By using compositions of the canonical projections O(T) → O(B+) → O(B+
ev),

we may regard u(λ) as an right O(B+
ev)-comodule. Then u(λ) coincides with the dimk u(λ) copies

of kλ as right O(B+
ev)-comodules.

5.2 The case when the base field is algebraically closed

Suppose that k is an algebraically closed field. For a fixed λ ∈ Λ, we describe the simple super-

module u(λ) more explicitly.

Let hλ1̄ be a maximal totally isotropic subspace of h1̄ with respect to bλ, i.e., a maximal subspace

n of h1̄ such that bλ(n,n) = 0. Set

hλ := h0̄ ⊕ hλ1̄ .
This is a Lie subsuperalgebra of h. It is obvious that the pair (T, hλ) is a sub-pair of G. Let

Tλ := G(T, hλ)

be the corresponding closed superalgebra of G. This is indeed a closed subsupergroup of T and

satisfies Lie(Tλ) = hλ. By Part I, Lemma 2.2.4, we have

hy(Tλ) ∼= hy(T )⊗ ∧(hλ1̄).

We regard kλ as a left hy(Tλ)-supermodule by letting hλ1̄ kλ = 0. As a subsuperspace of hy(T), we

let

coindTTλ(λ) := hy(T)⊗hy(Tλ) kλ.
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By definition, one sees that coindTTλ(λ) is a left hy(T)λ-supermodule.

Note that, the dimension of the space coindTTλ(λ) coincides with 2dimk(h1̄/hλ1̄ ). Since rad(bλ) ⊆ hλ1̄ ,
one sees that this is indeed a hy(T)-T -supermodule. Therefore, we can regard coindTTλ(λ) as a T-

supermodule.

Proposition 5.2.1. coindTTλ(λ) coincides with u(λ) or Πu(λ).
Proof. Since coindTTλ(λ) ̸= 0, there is an inclusion coindTTλ(λ) ⊇ u(λ) or Πu(λ) of T-supermodules,

by Corollary 5.1.6. We will show that the dimension of both sides are the same. Equivalently, we

will show the following equation

dimk h1̄ − dimk hλ1̄ = ⌊(dλ + 1)/2⌋ , (II.5.2.1)

see Remark B.0.5.

Let m := ⌊dλ/2⌋ and let V := h1̄/rad(bλ). Since k is an algebraically closed field and (V, bλ) is

a non-degenerate quadratic space, we can choose 2m vectors x1, . . . , xm, y1, . . . , ym ∈ V so that

bλ(xi, xj) = δi,j , bλ(yi, yj) = −δi,j , bλ(xi, yj) = 0, 1 6 i, j 6 m,

where δi,j is the Kronecker delta. For each i, we define the 2-dimensional subspace Hi of V

spanned by xi and yi. The space Hi is called a hyperbolic plane. Then we have an orthogonal

(Witt) decomposition V = H1 ⊥ · · · ⊥ Hm ⊥ Va, where Va satisfies dimk Va = 0 if dλ is even,

dimk Va = 1 otherwise. This m is called the Witt index of V . In general, it is known that the

Witt index of V coincides with the dimension of maximal totally isotropic subspace of V , see [21,

I Corollary 4.4], for example. Thus, we have the following equation

dimk hλ1̄ − dimk rad(bλ) = ⌊dλ/2⌋ .

One can easily see that this equation implies the equation (II.5.2.1).

Remark 5.2.2. In addition, if k is characteristic zero, then our construction of simples of T is the

same as Serganova’s [33, §9].

5.3 Irreducible representations of G

For simplicity, we let A := O(G), B := O(B−), and H := O(T), as before.

Just as Chapter 4, we define

H0(λ) := indAB
(
resHB (u(λ))

)
,

and

L(λ) := socA(H
0(λ)),

for each λ ∈ Λ. Let

Λ† := {λ ∈ Λ | H0(λ) ̸= 0}.
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For simplicity, set IrrΠ(G) := SimpΠ(A).

Theorem 5.3.1. The map

Λ† −→ IrrΠ(G); λ 7−→ L(λ)

is well-defined and bijective. Moreover, L(λ) is of type M if and only if dλ is even and δλ ∈ k2.

Proof. By Proposition 3.4.4, Proposition 3.4.6, Proposition 3.4.7 and Theorem 5.1.6, we can apply

Corollary 4.2.10.

Example 5.3.2. We determine the type of simple supermodules for some algebraic supergroups

treated in Example 3.2.3.

(1) If h = h0̄, then all irreducible G representations are of type M. For example, the following

algebraic supergroups satisfy this condition

(a) the general linear supergroup GL(m|n), and
(b) the Chevalley supergroups G of classical type such that its Lie superalgebra Lie(G) is

different from the strange Lie superalgebra Q(n) of type II, see Appendix A.

(2) The case of the algebraic supergroup G = Q(n), see Part I, Example 3.1.5. Note that, Λ ∼=⊕n
i=1 Zϵi as Z-modules. Assume that p := char k > 2. As in [3, p.13], for λ =

∑n
i=1 λiϵi ∈ Λ,

we define

hp′(λ) := #{i | 1 6 i 6 n, p - λi}.

Then one sees that dλ = hp′(λ).

Recall that ∆+ is the set of positive roots of g, see (II.3.1.1). For µ, λ ∈ Λ, we define a partial

order on Λ as follows

µ 6 λ : ⇐⇒ λ− µ ∈
∑
α∈∆+

Nα,

where N = {0, 1, 2, . . . }.

Let W be the Weyl group of Gev. As in the non-super case, for a weight supermodule M =⊕
λ∈ΛMλ, the Weyl group W acts on each weight superspace of M as follows

wMλ =Mwλ,

where w ∈W and λ ∈ Λ.

For λ ∈ Λ†, we have

H0(λ)U
+
↪→ H0(λ)λ, (II.5.3.1)

where H0(λ)U
+
is the U+-fixed points of H0(λ), see (II.2.1.1).

Proposition 5.3.3. For λ ∈ Λ†, λ is a maximal weight of H0(λ) with respect to 6 and H0(λ)λ =

u(λ).
Proof. If µ is a maximal weight of H0(λ), then H0(λ)µ is included in the U+-invariant space

H0(λ)U
+
of H0(λ). By Proposition 4.2.7, we have H0(λ)µ ⊆ u(λ). By (II.5.3.1) and by considering

weight space decomposition of H0(λ), we can conclude that µ = λ.
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5.4 Induced representations

For simplicity, set Ā := O(Gev), B̄ := O(B−
ev) and H̄ := O(Tev), as before. For IA := (A1̄), the

chain

A = I0A ⊇ I1A ⊇ I2A ⊇ · · ·

of superideals defines the graded algebra Agr :=
⊕

n>0 I
n
A/I

n+1
A . We regard A as a right Ā-comodule,

by the coadjoint action coad(a) := a2⊗S(ā1)ā3 for a ∈ A, where ā is the canonical image of a ∈ A.

This induces a right Ā-comodule structure on WA. Therefore, we can construct the cosmash

product

Ā I<∧(WA)

of Ā and ∧(WA). By [22, Prposition 4.9(2)], we have an isomorphism Agr
∼=→ Ā I<∧(WA) of graded

Hopf algebras. Since H̄ is cosemisimple, we see that Agr coincides with A as right H̄-comodules.

Therefore, we have an isomorphism

A
∼=−→ Ā I<∧(WA) (II.5.4.1)

of right H̄-comodules.

Proposition 5.4.1. For a right B-supercomodule V , there is an inclusion

indAB(V ) ↪→ indĀB̄(res
B
B̄(V ))⊗ ∧(WA)

of right H̄-comodules.

Proof. Taking the functor V �B̄ − to both sides in (II.5.4.1), we get

V �B̄ A
∼=−→ (V �B̄ Ā)⊗ ∧(WA).

On the other hand, we have V �B A ↪→ V �B̄ A, by definition of cotensor. This completes the

proof.

Corollary 5.4.2. For a finite dimensional right B-supercomodule V , indAB(V ) is finite. In partic-

ular, H0(λ) is finite.

Proof. Since A is finitely generated,WA is finite dimensional, see [22, Proposition 4.4]. On the other

hand, it is known that indĀB̄(V ) is finite, see [16, Part I, 5.12(c)]. The claim follows immediately

from the above Proposition 5.4.1.

For λ ∈ Λ, we regard kλ as the trivial one-dimensional right B̄-comodule through λ. We define

H0
ev(λ) := indĀB̄(kλ). Let

Λ+ :=
{
λ ∈ Λ | H0

ev(λ) ̸= 0
}
.

By Remark 5.1.7, we have resB
B̄
(u(λ)) coincides with the nλ := dimk u(λ) copies of kλ. Therefore,

we have the following result.
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Corollary 5.4.3. There is a right H̄-colinear inclusion

H0(λ) ↪→ H0
ev(λ)

⊕nλ ⊗ ∧(WA).

In particular, we have an inclusion Λ† ⊆ Λ+.

Remark 5.4.4. By the well-known fact, the elements in Λ+ can be write down in terms of the

root data of g0̄, i.e.,
Λ+ = {λ ∈ Λ | ⟨λ, α∨⟩ > 0 for all α ∈ ∆+

0̄
},

see [16, p.178], for example. An element of Λ+ is so called a dominant weight.

Example 5.4.5. Let g be a classical simple Lie superalgebra of type B, C or D, see Appendix A.

Suppose that GZ is a Chevalley-Demazure group of universal type associated to g0̄. Then we can

construct a Chevalley supergroup G over k such as in Example 3.2.3 (1). It is known that the

elements in Λ† for G are described in terms of combinatorial language. If char k > 2, then Shu

and Wang determined the explicit form of Λ†, see [34, Proposition 5.1 and Theorem 5.3].

Example 5.4.6. Let g = q(n) be the queer superalgebra. As in Example 3.2.3 (3), we can construct

an algebraic supergroup G = Q(n) over k. Brundan and Kleshchev determined Λ† for Q(n) in

positive characteristic, see [3, Theorem 6.11]. Combined with the known result in char k = 0, we

have

Λ† = {λ =
n∑
i=1

λiϵi ∈ Λ+ | λi = λi+1 =⇒ p′ | λi},

where p′ := char k. If p′ = 0, then p′ | λi means that λi = 0.
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Chapter 6

Quasireductive Supergroups having a

Distinguished Parabolic

Subsupergroup

Let k be a field of characteristic not equal to 2.

For a general linear supergroup GL(m|n), Zubkov [42] showed a super-analogue of the Kempf

vanishing theorem. It was essential that the existence of a distinguished parabolic subsupergroup

of GL(m|n) to his proof. In this chapter, we generalize his result and show a super-analogue

of the Kempf vanishing theorem, and classify the irreducible representations of a quasireductive

supergroup having a distinguished parabolic subsupergroup. As an application, we calculate the

character of H0(λ) for λ ∈ Λ+.

6.1 A version of splitting property

Before we start our main discussion, let us show the motivation with an example, see [42, Propo-

sition 5.1]

Example 6.1.1. Set G := GL(m|n). We define a closed subsupergroup P− of G as follows

P−(R) := {

(
A 0

C D

)
∈ G(R)}

for a commutative superalgebra R. Note that, Gev = P−
ev. Recall that the corresponding Hopf

superalgebra O(G) is given by A(m|n)d, where A(m|n) is generated by the elements {xij}16i,j6m+n.

For the notation, see Part I, Example 3.1.4. SetW+ :=
⊕

16i6m<ℓ kxiℓ. We may regard SSp (∧(W+))

as a subsupergroup of G. In [42, Proposition 5.1, Remark 5.1], Zubkov showed that the multipli-

cation map

P−(R)× SSp (∧(W+))(R) −→ G(R); (

(
A 0

C D

)
,

(
1 B

0 1

)
) 7−→

(
A AB

C CB +D

)
(II.6.1.1)
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is an isomorphism. Indeed, the inverse is given by(
A B

C D

)
7−→ (

(
A 0

C D − CA−1B

)
,

(
1 A−1B

0 1

)
).

We regard P− × SSp (∧(W+)) as a right P−-supermodule by

mP− × id : P− ×P− × SSp (∧(W+)) −→ P− × SSp (∧(W+)),

where mP− is the multiplication of P−. Then the isomorphism (II.6.1.1) is a left P−-supermodule

map. This means that the corresponding superalgebra isomorphism

O(G)
∼=−→ O(P−)⊗ ∧(W+).

is left O(P−)-colinear.

We want to generalize the above example.

In general, let A be a finitely generated commutative Hopf superalgebra over k, and let P be a

quotient Hopf superalgebra of A with the canonical projection π : A � P. We regard A as a left

P -supercomodule by using π, as in (I.2.6.1). We define co PA := k�P A a left version of (II.2.1.1).

This is a coideal subsuperalgebra of A.

Theorem 6.1.2. Keep the notation as above. If Ā = P̄ , then there is a left P -supercomodule

algebra isomorphism A
∼=−→ P ⊗ co PA.

Proof. Let B := co PA. This B is a Hopf subsuperalgebra of A and A is faithfully flat B-

supermodule, see [22, Corollary 5.5]. Equivalently, any non-zero left A- right B- Hopf super-

module is a projective generator of the category of left B-modules. In this case, P coincides with

A//B := A/AB+, where B+ := Ker(ε : B → k). In particular A is a projective B-module. Hence,

there exists B-supermodule map ϕ : A→ B such that the following diagram commutes.

P P ⊗B/B+ B/B+

A B,

	

εP⊗id
// //

∼=
id⊗1

//

OOOO

π
OOOO

ϕ
//_______________

where the right vertical arrow is the canonical projection. Let

ψ : A −→ P ⊗B ; a 7−→ π(a1)⊗ ϕ(a2).

This ψ is left P -colinear and right B-linear.

Now we consider the quotient map

ψ : A//B −→ (P ⊗B)//B.
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Since (P ⊗B)//B = (P ⊗B)⊗B B/B
+ = P ⊗B/B+, ψ is an isomorphism, by the definition of ϕ.

By the assumption, we have co P̄A = co ĀA. Note that, co ĀA = ∧(WA). Hence, B+ is a nilpotent

ideal of B. Since the right B-module P ⊗B is projective, this is indeed a flat B-module. Therefore,

we can conclude that ψ is an isomorphism.

6.2 The Kempf vanishing theorem

Let g, b±, G, B±, . . . as in Chapter 5.

Let p± be the proper subsuperspaces of g such that

p±
0̄
= g0̄, p±

1̄
= b±1̄ .

In this section, we assume that p± form Lie subsuperalgebras of g. In other words, we assume that

b±1̄ is g0̄-stable under the adjoint action.

One sees that the pair (Gev, p±) are sub-pairs of (Gev, g). Thus we can define two closed

subsupergroups P± := G(G, p±) of G. For the notation, see (I.4.4.20). Note that, Lie(P±) = p±.
Example 6.2.1. We show some examples.

(1) If g is a classical simple Lie superalgebra of type I (see Appendix A), then there is a Z-grading
g = g−1 ⊕ g0 ⊕ g1 of g satisfying

[gi, gj ] ⊆ gi+j (i, j = −1, 0, 1), g0̄ = g0, and g1̄ = g−1 ⊕ g1.

Note that, g−2, g2 := 0. Then p+ := g0 ⊕ g1 is a Lie subsuperalgebra of g and has a Z-form
p+Z .

(2) For the case of g = gl(m|n) andG = GL(m|n), such p± do exist. If we take b− as the set of all

lower triangle matrices, then P− is nothing but the supergroup considered in Example 6.1.1.

(3) For gZ = q(n), b±1̄ is not g0̄-stable. Thus, such P± does not exist.

For simplicity, we let A := O(G), B := O(B−) and P := O(P−). Set Ā := O(Gev) and

B̄ := O(B−
ev), as before.

Let V be a right B-supercomodule. Note that, the map idV ⊗ε : V �B P → V is right B̄-

colinear where ε : P → k is the counit of P . Then by Frobenius reciprocity, we have the following

well-defined right Ā-comodule map

NV : V �B P −→ V �B̄ Ā; v ⊗ p 7−→ v ⊗ p̄, (II.6.2.1)

where p̄ is the canonical image of p ∈ P .

The following is a generalization of Zubkov’s result [42, Proposition 5.2].

Proposition 6.2.2. The above N : resP
Ā
indPB(−) → indĀB̄ resB

B̄
(−) is a natural equivalence.
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Proof. First, we prove that NV is an isomorphism for V = B. As a right B̄-supercomodule, B is

isomorphic to ∧(b−1̄ )∗ ⊗ B̄, by the right version of Part I, Definition 3.1.1. Therefore, we have

NB : B �B P −→ B �B̄ Ā
∼= ∧(b−1̄ )∗ ⊗ Ā.

One sees that this map coincides with the tensor decomposition P ∼= ∧(b+1̄ )∗ ⊗ Ā which coincides

the right version of Part I, Definition 3.1.1. Hence, NB is an isomorphism.

Since (II.6.2.1) does not depend on the supersymmetry, we see that NV is also an isomorphism

for V = ΠB. Finally, we show that NV is an isomorphism for all B-supercomodule V . It is

known that a B-supercomodule is injective if and only if it is a direct summand of a direct sum of

some copies of B and ΠB, see [42, Proposition 3.1]. Thus NV is an isomorphism for any injective

B-supercomodule V . By [32, Lemma 8.4.5], this shows that N is natural equivalence.

Since the functor indAB(−) : SModB → SModA is left exact, we have its right derived functor

RnindAB(−) for n = 0, 1, 2, . . . .

Theorem 6.2.3. For a right B-supercomodule V , there is an isomorphism of superspaces

RnindAB(V ) ∼= RnindĀB̄(V )⊗ ∧(b+1̄ )∗.

Proof. By [16, Part I, 4.1(2)] and Proposition 6.2.2, we have an isomorphism RnindPB(V ) ∼=
RnindĀB̄(V ) of right Ā-comodules. Since A (∼= P ⊗ ∧(b+1̄ )∗) is an injective object in the cate-

gory of left P -supercomodules, the functor indAP (−) is exact. Again by [16, Part I, 4.1(2)], we

have RnindAB(V ) ∼= indAPR
nindPB(V ) as right A-supercomodules. By Theorem 6.1.2, the right hand

side coincides with RnindPB(V ) ⊗ ∧(b+1̄ )∗ as superspaces. Combine with the above result, we are

done.

In this case, we can classify the irreducible representations of G.

Corollary 6.2.4. We have Λ† = Λ+.

Example 6.2.5. For G = GL(m|n), Λ† = Λ+ is the set of all dominant weights of GLm × GLn,

i.e., Λ ∼=
⊕m+n

i=1 Zϵi as a Z-module and

Λ† = {
m+n∑
i=1

λiϵi ∈ Λ | λ1 6 · · · 6 λm, λm+1 6 · · · 6 λm+n}.

This fact was well-known.

As in [16, Part II 2.1], for λ ∈ Λ, we shall write

Hn(λ) := RnindAB(u(λ)), Hn
ev(λ) := RnindĀB̄(kλ).

By the well-known Kempf’s vanishing theorem, we have Hn
ev(λ) = 0 for λ ∈ Λ+ and n > 0. Hence,

we have the following a super-analogue of Kempf’s Vanishing Theorem.

Corollary 6.2.6. For λ ∈ Λ+, we have Hn(λ) = 0 for all n > 0.
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6.3 Character formulas

Let ZΛ be the group algebra of Λ over Z, and let {eλ | λ ∈ Λ} be the standard basis of ZΛ. Note

that eλeµ = eλ+µ for λ, µ ∈ Λ. For a finite T -supermodule M , we let ch(M) denote the formal

character of M . Explicitly,

ch(M) :=
∑
λ∈Λ

dim(Mλ) e
λ ∈ ZΛ.

Recall that W is the Weyl group of Gev. Set

ρ0̄ :=
1

2

∑
α∈∆+

0̄

α, ρ1̄ :=
1

2

∑
γ∈∆+

1̄

γ ∈ ΛQ,

where ΛQ := Λ⊗Z Q. For µ ∈ ΛQ, we let

A(µ) :=
∑
w∈W

det(w)ewλ.

By Weyl’s character formula [16, Part II, 5.10], we have

ch(H0
ev(λ)) =

A(λ+ ρ0̄)

A(ρ0̄)
(II.6.3.1)

for each λ ∈ Λ+.

Proposition 6.3.1. The formal character of H0(λ) for λ ∈ Λ+ is given as follows.

ch(H0(λ)) =
A(λ+ ρ0̄)

A(ρ0̄)
e−ρ1̄

∏
γ∈∆+

1̄

(eγ/2 − e−γ/2).

Proof. Since there is an isomorphism H0(λ) ∼= H0
ev(λ) ⊗ ∧(b+1̄ )∗ of T -modules, what we have to

know is the formal character of ∧(b+1̄ )∗. In general, ch(M∗) =
∑

µ dim(Mµ) e
−µ. Thus we have

ch(∧(b+1̄ )∗) =
∏
γ∈∆+

1̄
(1− e−γ).
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Appendix A

Simple Lie Superalgebras

In this appendix, we work over C.

A.1 Definitions

A Lie superalgebra g is said to be simple if g has no non-trivial (homogeneous) ideal.

Definition A.1.1. Let g be a simple Lie superalgebra. Then g is said to be classical if the

representation

g0̄ −→ End(g1̄); x 7−→ (y 7→ [x, y]) (III.1.1.1)

of the even part g0̄ on the odd part g1̄ is completely reducible, where [−,−] is the super-bracket of

g.
It is known that a simple Lie superalgebra g is classical if and only if g0̄ is a reductive Lie

algebra. We define a type of classical Lie superalgebra.

Definition A.1.2. A classical Lie superalgebra g is of type II if g1̄ is irreducible g0̄-module with

respect to the representation (III.1.1.1). If g1̄ is the direct sum of two irreducible g0̄-modules, then

g is said to be of type I.

Let g be a Lie superalgebra. A bilinear form b(−,−) on g is said to be invariant if it satisfies

b([x, y], z) = b(x, [y, z]) for all x, y, z ∈ g.
Definition A.1.3. A classical Lie superalgebra g is said to be basic if g has a non-degenerate

invariant bilinear form; otherwise, g is said to be strange.

If g is a basic Lie superalgebra of type I, then g admits a Z-grading g = g−1⊕ g0⊕ g1 satisfying

g0̄ = g0, g1̄ = g−1 ⊕ g1, [gi, gj ] = gi+j (i, j = −1, 0, 1).

Here, we set g−2 := g2 := 0.
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A.2 Classification of classical simple Lie superalgebras

We define some Lie subsuperalgebras of gl(m|n) as follows.

sl(m|n) :=

{
X =

(
A B

C D

)
∈ gl(m|n)

∣∣∣∣∣ str(X) = 0

}
,

where str(X) = tr(A)− tr(D) is the supertrace of X.

For p = 2m+ 1 and q = 2n, we let

osp(p|q) :=




A B u X X1

C −tA v Y Y1

−tv −tu 0 tz tz1
tY1

tX1 z1 D E

−tY −tX −z F −tD

 ∈ gl(p|q)

∣∣∣∣∣∣∣∣∣∣∣∣
tB = −B, tC = −C,
tE = E, tF = F


.

Here, tA denote the transposed matrix of A. For p = 2m and q = 2m, we let

osp(p|q) :=




A B X X1

C −tA Y Y1
tY1

tX1 D E

−tY −tX F −tD

 ∈ gl(p|q)

∣∣∣∣∣∣∣∣∣∣
tB = −B, tC = −C,
tE = E, tF = F

 .

We define the following Lie superalgebras:

(1) A(m, n) := sl(m+ 1|n+ 1), for m ̸= n > 0;

(2) A(n, n) := sl(n+ 1|n+ 1)/CI2(n+1) for n > 1;

(3) B(m, n) := osp(2m+ 1|2n), for m > 0, n > 1;

(4) C(n) := osp(2|2n− 2), for n > 2;

(5) D(m, n) := osp(2m|2n), for m > 2, n > 1;

(6) P (n) :=

{(
A B

C −tA

)
∈ gl(n+ 1|n+ 1)

∣∣∣∣∣ A ∈ sl(n+ 1),
tB = B, tC = −C

}
, for n > 2;

(7) Q(n) :=

{(
A B

B A

)
∈ gl(n+ 1|n+ 1)

∣∣∣∣∣ B ∈ sl(n+ 1)

}/
CI2(n+1), for n > 2,

where IN denote the identity matrix of size N .
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The even part of the Lie superalgebras (1)–(6) are given as follows:

g g0̄
A(m, n) gl1 ⊕Am ⊕An

A(n, n) Am ⊕An

B(m, n) Bm ⊕ Cn

C(n) gl1 ⊕ Cn

D(m, n) Dm ⊕ Cn

P (n) An

Q(n) An

In 1977, Kac classified the finite-dimensional simple Lie superalgebras over an algebraically

closed field of characteristic zero. In particular, he showed the following result.

Theorem A.2.1 ([17]). Let g be a finite-dimensional classical simple Lie superalgebra over C such

that g1̄ ̸= 0. Then g is isomorphic to one of the following Lie superalgebras:

parameter type

A(m, n) m > n > 0, m+ n ̸= 0 basic type I

B(m, n) m > 0, n > 1 basic type II

C(n) n > 3 basic type I

D(m, n) m > 2, n > 1 basic type II

P (n) n > 2 strange type I

Q(n) n > 2 strange type II

F (4) basic type II

G(3) basic type II

D(2, 1; a) −1, 0 ̸= a ∈ C basic type II

For the definition of the simple Lie superalgebras F (4), G(3) and D(2, 1; a), see [17].
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Appendix B

Clifford Algebras

Let V be a finite-dimensional vector space over k and let b : V × V → k a symmetric k-bilinear
form on V . The pair (V, b) is called a quadratic space. Let I(V, b) be the two-sided ideal of the

tensor algebra T (V ) generated by all xy + yx− b(x, y), where x, y ∈ V . Set

C(V, b) := T (V )/I(V, b).

This is a superalgebra over k with each v(∈ V ) odd, and is called the Clifford superalgebra for

(V, b). Let δi := b(xi, xi) for i = 1, . . . , r. Then C(V, b) is generated by the odd elements x1, . . . , xr,

and is defined by the relations

x2i − δi, 1 6 i 6 r; xixj + xjxi, 1 6 i < j 6 r.

If b = 0, then C(V, b) coincides with ∧(V ), the exterior superalgebra on V .

Let

rad(b) := {v ∈ V | b(v, w) = 0 for all w ∈ V }

be the radical of b. We say that a quadratic space (V, b) is non-degenerate if rad(b) = 0.

Given two quadratic spaces (V1, b1), (V2, b2), the orthogonal sum (V1, b1) ⊥ (V2, b2) is a direct

sum (V1 ⊕ V2, b) given the bilinear form

b((v1, v2), (v
′
1, v

′
2)) := b1(v1, v

′
1) + b2(v2, v

′
2),

where v1, v
′
1 ∈ V1 and v2, v

′
2 ∈ V2. There is an isomorphism of superalgebras

C((V1, b1) ⊥ (V2, b2))
∼=−→ C(V1, b1)⊗ C(V2, b2) (III.2.0.1)

given by (v1, v2) 7→ v1 ⊗ 1 + 1⊗ v2, where v1 ∈ V1, v2 ∈ V2.

Since the characteristic of k is not 2, We have an orthogonal basis x1, . . . , xr of V with respect

to b, that is, a basis such that b(xi, xj) = 0 if i ̸= j.

Example B.0.2. Suppose that (V, b) is non-degenerate.

1. If r = 1, then C(V, b) is the 2-dimensional superalgebra generated by one odd indeterminate
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x such that x2 = δ1. This is obviously central simple superalgebra over k. Let C(δ1) denote

the superalgebra C(V, b), for simplicity. Note that C(δ1) is not simple as an algebra.

2. If r = 2, then it is clear that the super center of C(V, b) is k. There is a superalgebra

isomorphism

C(V, b)⊗ k̄
∼=−→ Mat1|1(k̄).

Thus, C(V, b) is a central simple superalgebra over k. In particular, it is central simple over

k as an ordinary algebra.

For a quadratic space (V, b), we have

dimkC(V, b) = 2r, (III.2.0.2)

where r := dimk V . Moreover, the dimension of C(V, b)ϵ for ϵ = 0̄, 1̄ is 2r−1.

By [40, Theorem 2], central simple superalgebras over k are closed under the (Z2-graded)

tensor product. Thus, for a non-degenerate (V, b), C(V, b) is a central simple superalgebra over k,
by (III.2.0.1) and Example B.0.2. Moreover, if r is even, then C(V, b) is simple as an algebra, by

[40, Lemma 3].

Lemma B.0.3. For an even-dimensional non-degenerate quadratic space (V, b), C(V, b) is a central

simple algebra over k.

For z0 := x1 · · ·xr, the usual center of C(V, b)0̄ is k⊕ kz0. Let

δ := z20 = (−1)r(r−1)/2δ1 · · · δr. (III.2.0.3)

Set (k×)2 := {x ∈ k | a2 = x for some a ∈ k×}. If δ ∈ (k×)2, then the center is isomorphic to

k× k. If δ ̸∈ (k×)2, then the center is isomorphic to the quadratic field k(
√
δ).

Proposition B.0.4. Let (V, b) be a non-degenerate quadratic space. There is a unique simple left

C(V, b)-supermodule u up to isomorphism and parity change such thatu ̸= Πu, if dimk V is even and δ ∈ (k×)2,

u = Πu, otherwise.

Proof. Let A := C(V, b). Recall that, the category of A-supermodules is identified with the category

of AokZ2-modules, by (I.2.2.2). It is easy to see that AokZ2
∼= A⊗C(1) as superalgebras. Thus,

if r = dimk V is is odd, then Ao kZ2 is a central simple algebra over k by Lemma B.0.3.

Next, we assume that r is even. Then by Lemma B.0.3, A is isomorphic to Matn(D) as an

algebra, where n is a positive integer andD is a central division algebra over k. By Proposition 2.2.1,

Ao kZ2 is Morita equivalent to A0̄. If δ ∈ (k×)2, then by the structure theorem of central simple

superalgebras [40, Theorem 1], we have

A0̄
∼= {

(
X 0

0 W

)
| X ∈ Mats(D), W ∈ Matt(D)},
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where s, t > 0 and s + t = n. In this case, one sees that n must be even and s = t = n/2, since

dimkA0̄ = 2r−1. Therefore, A is isomorphic to Mats|s(D) as a superalgebra. Let

e1 :=

(
1s

0

)
, e2 :=

(
0

1s

)
,

where 1s is the column vector of size s consisting of 1’s. Then Vi = A0̄ ei, i = 1, 2 are the distinct

simple left A0̄-modules. The corresponding simple left A-supermodules are Mi := A ⊗A0̄
Vi for

i = 1, 2 with the Z2-grading (Mi)ϵ = Aϵ ei for ϵ = 0̄, 1̄. It is easy to see that ΠM1 =M2. Thus, we

conclude that M1 ̸= ΠM1.

Finally, we consider the case if δ ̸∈ (k×)2. Then A0̄ is central simple algebra over k(
√
δ). Since

A0̄ ⊗ k̄ ∼= Mats(k̄) × Mats(k̄) is semisimple, we conclude that A0̄ is central simple algebra over

k(
√
δ). Therefore, we are done.

Remark B.0.5. If k is an algebraically closed, we have

dimk u = 2⌊(r+1)/2⌋, (III.2.0.4)

where r = dimk V and ⌊x⌋ is the largest integer greater than x.
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généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris; North-Holland Publishing
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