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PAPER
An Extension of MUSIC Exploiting Higher-Order Moments via
Nonlinear Mapping

Yuya SUGIMOTO†a), Shigeki MIYABE†, Nonmembers, Takeshi YAMADA†, Member, Shoji MAKINO†, Fellow,
and Biing-Hwang JUANG††, Nonmember

SUMMARY MUltiple SIgnal Classification (MUSIC) is a standard
technique for direction of arrival (DOA) estimation with high resolution.
However, MUSIC cannot estimate DOAs accurately in the case of underde-
termined conditions, where the number of sources exceeds the number of
microphones. To overcome this drawback, an extension of MUSIC using
cumulants called 2q-MUSIC has been proposed, but this method greatly
suffers from the variance of the statistics, given as the temporal mean of
the observation process, and requires long observation. In this paper, we
propose a new approach for extending MUSIC that exploits higher-order
moments of the signal for the underdetermined DOA estimation with smaller
variance. We propose an estimation algorithm that nonlinearly maps the
observed signal onto a space with expanded dimensionality and conducts
MUSIC-based correlation analysis in the expanded space. Since the dimen-
sionality of the noise subspace is increased by the mapping, the proposed
method enables the estimation of DOAs in the case of underdetermined
conditions. Furthermore, we describe the class of mapping that allows us
to analyze the higher-order moments of the observed signal in the origi-
nal space. We compare 2q-MUSIC and the proposed method through an
experiment assuming that the true number of sources is known as prior in-
formation to evaluate in terms of the bias-variance tradeoff of the statistics
and computational complexity. The results clarify that the proposed method
has advantages for both computational complexity and estimation accuracy
in short-time analysis, i.e., the time duration of the analyzed data is short.
key words: underdetermined DOA estimation, microphone array, MUSIC,
2q-MUSIC, higher-order statistics

1. Introduction

Direction of arrival (DOA) estimation techniques have
mainly been developed for applications in the radio com-
munication field. They involve an array of antennas and are
used as a processing step in many sensor systems including
radar, sonar, and geodesic location systems [1]. Because of
the importance of DOA estimation in many applications, a
wide range of studies have already been reported. These
techniques have also been adopted in microphone array sig-
nal processing targeting acoustic signals and have become
an essential preprocessing technique for various applications
such as noise reduction and source separation [2].

Early approaches to DOA estimation employed beam-
former techniques utilizing the time differences between sig-
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nal arrivals [1], [2], such as generalized cross-correlation
(GCC) [3] based on the whitened cross-correlation function.
These methods have a low computational cost but inadequate
estimation accuracy. While extensions and generalizations
of GCC, such as the steered response power (SRP) method
[4], have been shown to improve the estimation accuracy
for cases of more than two microphones, the issue of low
estimation resolution remains when the number of sources
is large. Over the past few decades, many DOA estimators
with high resolution [5], [6] have been proposed. Among
these methods, MUltiple SIgnal Classification (MUSIC) [7]
is the prevalent technique. However, MUSIC has a notable
shortcoming that it is restricted by the dimensionality of
the covariance matrix. This is because MUSIC requires the
residual subspace of the observation to be reserved only for
noise. To estimate DOAs of N sources, M (> N ) micro-
phones are required and the DOA estimation performance
degrades as N approaches M . Thus, a huge microphone ar-
ray is required for the DOA estimation of a large number of
sources. To overcome this issue, several extensions of MU-
SIC have been proposed. An extension of MUSIC utilizing
4th-order cumulants [8] was developed in the 1990s, and
later this approach was generalized as 2q-MUSIC [9], which
exploits the cumulants of arbitrary even orders. Utilizing
the increased dimensionality of the matrix composed of cu-
mulants with additivity, these methods can estimate DOAs
in underdetermined cases, where the number of sources ex-
ceeds the number of microphones, and also improve the res-
olution of DOA estimation by virtually increasing the signal
expressiveness by expanding the nonlinear subspace [14].
However, the problems of estimation accuracy in short-time
analysis and high computational complexity still remain be-
cause of the cumulants with a large variance and the complex
calculation.

Meanwhile, for scenarios with more noise sources than
microphones, a speech enhancement method called comple-
mentary beamforming [10] has been proposed, which has
been applied to DOA estimation problems [11]. Comple-
mentary beamforming has also been extended and explained
as the mapping of a signal onto a higher-dimensional space
using a kernel function [12]. Since this is a direct way to
increase the subspace dimensionality and can easily change
the tendency of the analysis with the class of mapping, the
approach to increasing the signal dimensionality in these
methods is expected to be particularly effective for MUSIC,
in which the dimensionality is critical.
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In this paper, we propose mapped MUSIC [13], an
extension of MUSIC that utilizes higher-dimensional map-
ping for underdetermined DOA estimation with a higher
resolution and a small variance. We describe the estima-
tion algorithm of mapped MUSIC and introduce a class of
mapping functions with which mapped MUSIC analyzes the
moments of arbitrary even orders. In contrast to cumulants,
moments suffer from estimation bias because they do not
maintain additivity. However, their variance is considerably
smaller than that of cumulants because of their simpler for-
mulation. Therefore, mapped MUSIC with the mapping and
conventional 2q-MUSIC have a bias-variance tradeoff, and
the proposed method performs well for short-time analysis,
where the influence of the variance is greater. To evaluate the
bias-variance tradeoff, we compare the performances of the
proposed method and 2q-MUSIC by using simulated and real
data under the assumption that the true number of sources
N is given as prior information. Moreover, we demonstrate
the computational efficiency of the proposed method and
introduce alternative mappings to further reduce the compu-
tational complexity for 4th- and 6th-order moment analysis.
Experimental results reveal the superior performance of the
proposed method for short-time analysis in terms of both
estimation accuracy and computational complexity.

The rest of this paper is organized as follows. In Sect. 2,
we state the problem. In Sect. 3, we review the conventional
methods. In Sect. 4, we describe the proposed method. In
Sect. 5, we compare the properties of the proposed method
and the conventional methods. In Sect. 6, we evaluate the
estimation performance of the proposed method. Finally, the
paper is concluded in Sect. 7.

2. Problem Formulation

Throughout this paper, signals are expressed as complex
amplitudes. We assume N source signals propagating to an
array consisting of M microphones, and the true number of
sources N is given as prior information. The signals are
statistically independent and the single signal emitted by the
nth source, sn(ω, t), is a zero-mean super-Gaussian complex
random variable. Also, the signals emitted at different times
are assumed to be statistically independent. Thus, a noise-
free vector z(ω, t) of the observed signals is assumed to be
given by

z(ω, t) = [z1(ω, t), · · · , zM (ω, t)]T

= A(ω)s(ω, t), (1)
A(ω) = [a1(ω), · · · , aN (ω)] , (2)
s(ω, t) = [s1(ω, t), · · · , sN (ω, t)]T , (3)

where ai (ω) = [a1,i (ω), · · · , aM,i (ω)]T is an array manifold
vector from the direction of the ith source, which consists
of the transfer function from the ith source to the jth micro-
phone a j,i (ω, t), ω is the angular frequency, t = 1, · · · , L is
the time frame index, and [·]T denotes the transpose. Further-
more, the noise-corrupted observed vector x(ω, t) is given
by

x(ω, t) = [x1(ω, t), · · · , xM (ω, t)]T

= z(ω, t) + n(ω, t), (4)
n(ω, t) = [n1(ω, t), · · · , nM (ω, t)]T , (5)

where n j (ω, t) is the zero-mean noise signal superimposed
on the jth microphone.

In the signal model expressed by Eq. (4), each micro-
phone observes a mixture of source signals and noise signals.
The problem in this paper is the estimation of the DOAs
θ1, · · · , θN of the sources s1(ω, t), · · · , sN (ω, t) by search-
ing for directions θ with the steering vector b(ω; θ) close
to each of the array manifold vectors a1(ω), ..., aN (ω). The
steering vector b(ω; θ) is given by

b(ω; θ) =
1
√

M

[
exp(− jωτ1), · · · , exp(− jωτM )

]T ,
(6)

where τi (i = 1, · · · ,M) are time delays from a reference
point at each microphone, given by a signal from direction
θ.

3. Conventional Methods: MUSIC and 2q-MUSIC

This section reviews two conventional methods for high-
resolution DOA estimation: MUSIC, which is based on sub-
space analysis exploiting the covariance, and 2q-MUSIC,
which is an extension of MUSIC exploiting 2qth-order cu-
mulants with an arbitrary positive integer q. Since the covari-
ance is equivalent to the second-order cumulant, the descrip-
tion of 2q-MUSIC in this section includes that of standard
MUSIC as a special case when q = 1.

2q-MUSIC analyzes the following Mq × Mq cumu-
lant matrix C2q (ω), whose entries are the 2qth-order cross-
cumulants of the observation x(ω, t):

C2q (ω) =
[
ci j (ω)

]
i j
, (7)

ci j (ω) ≜ Cum[x⊕oi,1 (ω, t), · · · , x⊕oi,q
(ω, t),

x⊖o j,q+1 (ω, t), · · · , x⊖o j,2q (ω, t)], (8)

x⊕oi, l
(ω, t) ≜

xoi, l
(ω, t) (if l is odd)

x∗oi, l
(ω, t) (if l is even)

, (9)

x⊖o j, l
(ω, t) ≜


x∗o j, l

(ω, t) (if l is odd)
xo j, l

(ω, t) (if l is even)
, (10)

where [·]∗ denotes the complex conjugate, [·]i j denotes a ma-
trix consisting of the argument in parentheses as its (i, j) en-
try, and Cum [· · · ] denotes the 2qth-order cumulant given by
its 2q arguments. The tuples of the q indices

{
oi,1, · · · , oi,q

}
and

{
oj,q+1, · · · , oj,2q

}
are composed of repeated permuta-

tions of the values 1, · · · ,M:

oi,l = 1 +
⌊

i − 1
Mq−l

⌋
mod M

for i = 1, · · · ,Md l = 1, · · · , q, (11)
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oj,l = 1 +
⌊

j − 1
M2q−l

⌋
mod M

for j = 1, · · · ,Md l = q + 1, · · · , 2q, (12)

where ⌊·⌋ denotes the floor function and mod denotes the
modulus. As described in [14], the entries in C2q are inter-
preted as the correlations between Mq-dimensional virtual
observations, whose spatial arrangements are given by the
higher-dimensional steering vectors bq (ω; θ) stated below.
The cumulant matrix C2q (ω) can be diagonalized as

C2q (ω) =
[
Us (ω) Un(ω)

] [∆s (ω)
∆n(ω)

] [
UH

s (ω)
UH

n (ω)

]
,

(13)

where [·]H denotes the complex conjugate transpose, K is
the nonnegative integer parameter indicating the dimension-
ality of the signal subspace, ∆s (ω) is the diagonal matrix
of the largest K eigenvalues of the cumulant matrix C2q (ω),
∆n(ω) is the diagonal matrix of the other Mq−K eigenvalues
of C2q (ω), and Us (ω) and Un(ω) are the unitary eigenma-
trices composed of the corresponding eigenvectors. Here,
the column eigenvectors of Us (ω) and Un(ω) are regarded
as the bases of the signal and noise subspaces, respectively.
Because of the additivity of cumulants, the N signal sources
ideally make only the N eigenvalues large and they span
the N-dimensional signal subspace. Thus, the appropriate
setting of the signal subspace dimensionality parameter is
K ← N . Although the automatic estimation of parameter
K is theoretically possible by finding the boundary between
the large-eigenvalue group and the small-eigenvalue group,
the boundary between the signal and noise subspaces is not
clear in practical analysis under the existence of variance
and noise. Therefore, in this paper we manually set the sig-
nal subspace dimensionality parameter K ← N given the
number of sources N . Making use of the orthogonality be-
tween the higher-dimensional steering vectors bq (ω; θ) and
the noise subspace Un(ω), 2q-MUSIC constructs the DOA
evaluation function f2q (ω; θ) as follows:

bq (ω; θ) ≜


b(ω; θ) (q = 1)
b(ω; θ) ⊗ b∗

q−1(ω; θ) (q ≥ 2)
, (14)

f2q (ω; θ) ≜ 1���bH
q (ω; θ)Un(ω)���2 , (15)

where ⊗ denotes the Kronecker product operator. Note that
the DOA evaluation function f2q (ω; θ) is defined for each
narrow band, and it is necessary to integrate the information
from all the frequency bins to obtain a broadband DOA
estimation. Among the various averaging operations that
can be used to integrate the narrowband DOA estimation
[15], we use the following geometric mean in this paper:

f2q (θ) ≜

∏
ω

f2q (ω; θ)


1
J

, (16)

where J denotes the number of averaged frequency bins.

DOAs are estimated by finding the peaks of f2q (θ). When
q ≥ 2, 2q-MUSIC achieves underdetermined DOA esti-
mation capability with high resolution owing to its richer
expressiveness of the subspaces based on dimensional ex-
pansion from M to Mq .

Because of the additivity of the cumulants, 2q-MUSIC
has little bias in its model if it can utilize an infinite number
of snapshots without noise to obtain the temporal mean.
However, 2q-MUSIC suffers from performance degradation
when the number of snapshots is small because the variance
of the estimated cumulants is large. There is also a problem
of computational complexity: 2q-MUSIC must compute the
complicated Leonov–Shiryaev formula [16] for every entry
ci j (ω) of C2q (ω).

4. Proposed Method

4.1 DOA Estimation Algorithm of Mapped MUSIC

Mapped MUSIC maps the M-dimensional observed signal
x(ω, t) onto an M ′-dimensional Euclidean space (M ′ ≥ M)
with a nonlinear function ϕ : CM → CM′ and conducts
a similar analysis to MUSIC with the mapped observation
vector ϕ(x(ω, t)). Mapped MUSIC is also a generalization
of standard MUSIC, which corresponds to the special case
that ϕ(x(ω, t)) = x(ω, t). To estimate DOAs accurately with
mapped MUSIC, the information on the correlations be-
tween observation vectors must be retained after mapping.
To maintain the spatial properties, we impose the follow-
ing three conditions in the choice of the mapping function
ϕ(x(ω, t)):

1. The magnitude relation of the norm is retained.

| |ϕ(x) | |2 ≥ ||ϕ(y) | |2 if | |x| |2 ≥ ||y| |2. (17)

2. The origin remains intact.

ϕ(x) = 0 if x = 0. (18)

3. The orthogonality between vectors is preserved.

ϕH (x)ϕ(y) = 0 if xHy = 0. (19)

By using mapping functions satisfying these three condi-
tions, mapped MUSIC appropriately achieves underdeter-
mined DOA estimation capability with high resolution with-
out any major adverse effects.

We describe the DOA estimation algorithm of mapped
MUSIC using the mapping ϕ satisfying Eqs. (17)–(19). The
covariance matrix of ϕ(x(ω, t)) is expressed as

R(ω) = E[ϕ(x(ω, t))ϕH (x(ω, t))], (20)

where E[·] denotes the expectation of the argument. The
following equations are obtained by the eigendecomposition
of the covariance matrix R(ω):

R(ω) = V(ω)E(ω)VH (ω), (21)
V(ω) = [v1(ω), · · · , vM′ (ω)],

VH (ω)V(ω) = IM′, (22)



SUGIMOTO et al.: AN EXTENSION OF MUSIC EXPLOITING HIGHER-ORDER MOMENTS VIA NONLINEAR MAPPING
1155

E(ω) = diag[e1(ω), · · · , eM′ (ω)],
e1(ω) ≥ · · · ≥ eM′ (ω), (23)

M ′ = dim[ϕ(x(ω, t))], (24)

where v1(ω), · · · , vM′ (ω) are the eigenvectors associated
with the respective eigenvalues e1(ω), · · · , eM′ (ω), Ii de-
notes the i-dimensional identity matrix, diag[·] is a diago-
nal matrix with the arguments in the diagonal entries, and
dim[·] is the dimensionality of the argument vector. By
manually setting the signal subspace dimensionality param-
eter K similarly to in 2q-MUSIC, we define the subspace
spanned by v1(ω), · · · , vK (ω) as the signal subspace S(ω)
in the mapped space,

S(ω) ≜ span[v1(ω), · · · , vK (ω)], (25)

where span[·] denotes the subspace spanned by the argument
vectors. In contrast to the cumulants used in 2q-MUSIC,
moments do not maintain additivity and the subspace di-
mensionality is not defined by the number of sources N .
Also, our preliminary experiment shows that the best per-
formance of the proposed method is obtained by setting
K larger than N . However, the parameter optimization
complicates the discussion, and we utilize the suboptimal
setting K ← N in the experiment reported in this paper
for simplicity. Moreover, the orthogonal complement of
S(ω) in span[v1(ω), · · · , vM′ (ω)] is defined as the noise
subspace. The following relation is satisfied between the
maps of array manifold vectors a1(ω), · · · , aN (ω) and the
vectors vK+1(ω), · · · , vM′ (ω), which span the noise sub-
space orthogonal to the signal subspace:

ϕH (ai (ω))vj (ω) ≈ 0
for i = 1, · · · , N j = K + 1, · · · ,M ′. (26)

Under the condition b(ω; θi) ≃ ai (ω) (i = 1, · · · , N ), we
can find the true sound source directions by searching for
the orthogonal projection onto the mapped noise subspace
from the mapped steering vectors ϕ(b(ω; θ)). Similarly to in
MUSIC and 2q-MUSIC, we define the following DOA eval-
uation function fmap(ω; θ), which utilizes the orthogonality
in Eq. (26), for mapped MUSIC:

fmap(ω; θ) ≜ 1∑M′
j=K+1

���ϕH (b(ω; θ))vj (ω)���2 , (27)

which is maximal in a direction θ close to θi . Finally, we
merge the narrowband evaluation functions into a wideband
evaluation function involving the geometric mean:

fmap(θ) ≜

∏
ω

fmap(ω; θ)


1
J

. (28)

4.2 Mapping for Analysis of 2dth-Order Moments

As shown in Sect. 4.1, mapped MUSIC can use any map-
ping function satisfying Eqs. (17)–(19), but its properties

change with the choice of mapping. In this paper, to quan-
titatively evaluate the properties of the mapping, we focus
on the mapping ϕd : CM → CMd , which gives a 2dth-order
cross-moment matrix as its covariance matrix. The mapping
function ϕd (x(ω, t)) is defined recursively as

ϕd (x(ω, t)) ≜
x(ω, t) (d = 1)

x(ω, t) ⊗ ϕ∗
d−1 (x(ω, t)) (d ≥ 2)

.

(29)

According to this definition, each entry of the map
ϕd (x(ω, t)) is given as the product of d observed signals
corresponding to its entry index,

ϕd (x(ω, t))=


d∏
l=1

x⊕o1, l
(ω, t), · · · ,

d∏
l=1

x⊕o
Md , l

(ω, t)

T

.

(30)

The entries of ϕd (x(ω, t)) are similar to the first half of
those in Eq. (8); thus, the tuple of d indices

{
ok,1, · · · , ok,d

}
is given in the same manner as Eq. (11):

ok,l = 1 +
⌊

k − 1
Md−l

⌋
mod M

for k = 1, · · · ,Md l = 1, · · · , d. (31)

Then, the covariance matrix of the mapping of the observed
signal ϕd (x(ω, t)) is explicitly expressed as an Md × Md

moment matrix whose entries are 2dth-order cross-moments
of the observations,

R2d (ω) = E
[
ϕd (x(ω, t))ϕH

d (x(ω, t))
]

=
[
ri j (ω)

]
i j
, (32)

ri j (ω) ≜ E


d∏
l=1

xl⊕oi, l
(ω, t)

d∏
l=1

xl⊖o j, l
(ω, t)

 . (33)

The increase in dimensionality of the covariance matrix
R2d (ω) from M to Md with the mapping ϕd : CM → CMd

enhances the expressiveness of the noise subspace and en-
ables us to estimate the DOAs in underdetermined cases.
Note that the actual dimensionality after mapping becomes
less than Md . This is because the set of Md mapped vec-
tors ϕd (xi), i = 1, · · · ,Md with xi ∈ CM , contains sev-
eral linearly dependent vectors and cannot span the whole
Md-dimensional space when d > 2. However, it is guaran-
teed that the dimensionality of the subspace spanned by the
mapped vectors ϕd (xi) is an increasing function of d.

Here we discuss a similarity between the proposed
method with the map ϕd and 2q-MUSIC based on cumulant
analysis. From Eqs. (14) and (29), the mapped steering vec-
tor ϕd (b(ω; θ)) is equal to the higher-dimensional steering
vector bq (ω; θ) in 2q-MUSIC. This equality suggests that
2q-MUSIC can also be interpreted as a mapping of b(ω; θ)
onto a higher-dimensional Euclidean space identical to that
in the proposed method. Regardless of the identity of the
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space, the matrices to be analyzed are composed of differ-
ent statistics, resulting in a difference in their behaviors. In
Sect. 5.1, we discuss their behaviors from the perspective of
the bias-variance tradeoff.

4.3 Alternative Mapping for Efficient Computation

As discussed above, DOA estimation by mapped MUSIC is
based on the analysis of the linear dependence among the
mapped vectors. Thus, two different maps ϕ and ϕ′ give
exactly the same DOA estimation when their inner products
are identical,

ϕH (x)ϕ(y) = ϕ′H (x)ϕ′(y), ∀x, y ∈ CM, (34)

and the analyses using these two mapping functions give
identical results. Therefore, the mapping function ϕd given
by Eq. (29) also has alternative mappings that give the equiv-
alent DOA estimation. In this section, we give a compact
expression for the computational efficiency of mapped MU-
SIC in the cases of d = 2, 3.

The inner product between the mappings ϕd of two
arbitrary complex vectors x and y is given by

ϕH
d (x)ϕd (y) =


���xHy���d−1

xHy (d is odd)���xHy���d (d is even)
. (35)

Note that the inner product becomes real when the degree
of the mapping d is even. In this instance, a real-valued
mapping ϕ

′

d
: CM → RMd satisfying Eq. (34) always exists,

and it simplifies the construction of the covariance matrix
and the eigenvalue problem because their calculations only
include operations on real values. For example, when d = 2,
the following mapping ϕ′2 : CM → RM2 can be employed:

ϕ′2(x) ≜
[
ϕ′Tabs(x),ϕ′Tre (x),ϕ′Tim (x)

]T
, (36)

ϕ′abs(x) ≜ [∀|xi |2 |1 ≤ i ≤ M]T , (37)

ϕ′re(x) ≜
√

2[∀Re[xi x∗j ]|2 ≤ i ≤ M, 1 ≤ j ≤ i − 1]T ,
(38)

ϕ′im(x) ≜
√

2[∀Im[xi x∗j ]|2 ≤ i ≤ M, 1 ≤ j ≤ i − 1]T .
(39)

Moreover when d > 2, there are several redundant entries
of equal value in ϕd, meaning that the rank of its covariance
matrix becomes less than Md . Hence, by designing an
alternative mapping that satisfies Eq. (34) and omitting the
redundant entries in the original mapping ϕd , we can remove
the redundant computations. The mapping in the case of
d = 3 can be simplified in this manner. We define the
mapping ϕ′3 : CM → CM3+M2

2 as

ϕ′3(x) ≜
[
ϕ′T3a (x),ϕ′T3b (x),ϕ′T3c (x),ϕ′T3d (x)

]T
, (40)

ϕ′3a (x) ≜ [∀|xi |2x∗i |1 ≤ i ≤ M]T , (41)

ϕ′3b (x) ≜ [∀xi x∗2j |1 ≤ i, j ≤ M, j , i]T , (42)

ϕ′3c (x) ≜
√

2[∀|xi |2x∗j |1 ≤ i, j ≤ M, j , i]T , (43)

ϕ′3d (x) ≜
√

2[∀xi x∗j x
∗
k |1 ≤ i, j, k ≤ M]T ,

(i, j, and k are different). (44)

5. Comparison of Proposed Method with 2q-MUSIC

As discussed above, our proposed mapped MUSIC corre-
sponds to the substitution of the moment matrix for the cu-
mulant matrix in 2q-MUSIC. We discuss the effectiveness of
this substitution from the viewpoints of statistical properties
and computational complexity.

5.1 Statistical Properties

We compared the statistical properties of mapped MUSIC
and 2q-MUSIC in terms of the bias-variance tradeoff. Since
the cumulants utilized in 2q-MUSIC maintain additivity, the
dimensionality of the signal subspace of the cumulant matrix
coincides with the number of sources N if there is no noise
and infinite snapshots [17]. Thus, the signal and noise sub-
spaces are identified correctly under such a condition where
the cumulant matrix is appropriately estimated. In contrast
to cumulants, moments do not have additivity, the signal
subspace dimensionality of the moment matrix is generally
greater than N , and this model bias degrades the accuracy
of MUSIC analysis even if an accurate moment matrix is
estimated. Thus, the proposed mapped MUSIC suffers from
bias, in contrast to 2q-MUSIC. However, the effect of the
variance is more serious in 2q-MUSIC. Since the cumulants
are composed of multiple moments [14], the variance of the
cumulants is larger than that of the moments of the same
order. Thus, if a sufficient number of snapshots are unavail-
able, the accuracy of identification of the signal and noise
subspaces is easily degraded by the variance.

In the following, we conducted a simulation of DOA
estimation using pseudorandom numbers as the source to ac-
curately evaluate the effects of bias and variance. In this sim-
ulation, we assumed noise-free observation and independent
signals with different frequencies. Figure 1 shows the exper-
imental environment. The number of microphones is four,
the number of sources is five, and observations are created
as mixtures of simulation-generated source signals s(ω, t)

Fig. 1 Experimental environment for statistical comparison.
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Table 1 Experimental conditions for statistical comparison.
Microphone array Circular array with radius of 0.1 m
# of microphones 4

Sound sources Simulation-generated signals
# of sources 5

Source signal

Circularly symmetric complex
generalized Gaussian distribution

Set 1: β = 0.315, α = 1
Set 2: β = 0.05–3, α = 1

Frequency bandwidth 0.2–5 [kHz]
Frequency resolution 1 [kHz]

Array manifold vector Steering vector b(ω; θ)
θ = {0◦, 30◦, · · · , 330◦ }

Snapshot range Set 1: 1–50,000 [samples]
Set 2: 10–1,000 [samples]

whose directivities are given by steering vectors b(ω; θ) with
θ randomly chosen from θ = {0◦, 30◦, · · · , 330◦}. Source
signals s(ω, t) are generated from a circularly symmetric
complex generalized Gaussian distribution (CGGD) [18]
whose probability density function is given as

p (s(ω, t)) =
β exp

(
−
( |s(ω,t) |

α

)β)
2πα2Γ

(
2
β

) , (45)

where exp (·) denotes the natural exponential function, β is
a shape parameter, and α is a scale parameter. In this ex-
periment, we adopted the parameter settings β = 0.315 and
α = 1, which we found through a statistical investigation
to have a similar property to that in the short-time Fourier
analysis of speech, because speech processing is the main
target of the proposed method. We conducted estimations
with mapped MUSIC and 2q-MUSIC with 4th- and 6th-
order statistics to investigate the difference in the statistics.
Although standard MUSIC is not applicable to underdeter-
mined case, for reference, we also conduct estimation with
standard MUSIC by regarding the one-dimensional subspace
concurrent with the minimum eigenvalue as the noise sub-
space in every frequency bin. We varied the number of
snapshots L (t = 1, · · · , L) from 1 to 50,000 and conducted
DOA estimation for each L. Moreover, we performed 100
trials with different combinations of the five source loca-
tions as a quantitative evaluation. Table 1 summarizes the
experimental conditions.

As the evaluation criterion, we utilized the root-mean-
squared error (RMSE):

RMSE ≜

√√√
1
N

N∑
i=1

���θ̂i − θi ���2, (46)

where N denotes the number of sources and θ̂i and θi are
estimated DOA and true DOA of the ith sound source, re-
spectively. Although there are several combinations for the
correspondence between estimated DOAs and true DOAs,
we chose the combination that minimizes the error. The
results are shown in Fig. 2. First, both 2q-MUSIC and the
proposed mapped MUSIC improve estimation accuracy with

Fig. 2 Error transition with increasing number of snapshots (β = 0.315).
Mapped MUSIC and 2q-MUSIC show efficacy for underdetermined DOA
estimation. The RMSE is evaluated over 100 trials. In the range of 1–
100 snapshots, mapped MUSIC shows better performance and 2q-MUSIC
outperforms mapped MUSIC with the larger number of snapshots.

the increasing snapshots. Thus, the efficacy of analysis with
the increased dimensionality based on higher-order statistics
is ascertained. In the comparison between the same type of
4th- and 6th-order statistics, mapped MUSIC based on 6th-
order moments shows better performance than that based
on 4th-order moments with increasing number of snapshots.
This is because higher-order statistics increase the dimen-
sionality but are more affected by the variance. Although
2q-MUSIC with 6th-order cumulants does not outperform
that with 4th-order cumulants in the range in Fig. 2, the supe-
riority of 6th-order cumulants is also expected upon further
increasing the number of snapshots. For the range of 1–100
snapshots, mapped MUSIC performs better than 2q-MUSIC,
whereas 2q-MUSIC performs better for a larger number of
snapshots. Thus, the bias-variance tradeoff between 2q-
MUSIC and mapped MUSIC is confirmed. Furthermore,
the difference in accuracy between 2q-MUSIC and mapped
MUSIC is still moderate even for 50,000 snapshots. This
is because the bias in mapped MUSIC is canceled through
the frequency-averaging operation as shown in Fig. 3. We
can observe several pseudopeaks that do not correspond to
true DOAs in the narrowband estimation as a result of the
bias. However, these pseudopeaks disappear as a result of
frequency averaging.

Furthermore, we evaluated the behavior of the bias-
variance tradeoff for various signal characters by changing
the shape parameter β of the CGGD. We varied β in the
range from 0.05 to 3 with α = 1, and evaluated each method
in the same way as in the former experiment using the RMSE
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Fig. 3 DOA evaluation function of mapped MUSIC in the narrow and
wide frequency bands. The estimation uses 4th-order moments and the
sources are given by the parameters in Sect. 3, β = 0.315 and α = 1. The
number of snapshots is 50,000, triangles denote estimated DOAs, and the
true source directions are denoted as vertical lines at 0◦, 90◦, 180◦, 300◦,
and 330◦. There are many pseudopeaks in the narrowband estimation, but
these peaks are suppressed in the wideband estimation because they are
canceled by the frequency-averaging operation.

obtained from 100 trials. A lower β produces longer tails in
the CGGD, and the CGGD is super-Gaussian when β < 2.
As examples of practical numbers of snapshots, we used
10, 100, and 1000 snapshots for the evaluation. The results
are shown in Fig. 4. We can see that the superiority of
mapped MUSIC is maintained when β is small and that the
distribution is sparse with a long tail, similarly to human
speech. This is because the drawback of bias when using
moments without additivity becomes less problematic with
highly sparse data. Thus, mapped MUSIC performs well
with sparse signals such as speech.

5.2 Comparison of Computational Complexity

In this section, we discuss the computational complexity of
the proposed method. As described in Sect. 3, the compu-
tation of the cumulants is complicated and the complexity
increases rapidly when the statistical order becomes larger.
2q-MUSIC must perform such computations for all entries
of the cumulant matrix C2q (ω), and this procedure includes
redundancy since many similar computations are required.
Conversely, mapped MUSIC achieves more rapid computa-
tion because a single moment has a simpler form than the
cumulant, and the procedure in mapped MUSIC avoids re-
dundancy in the construction of the moment matrix R2d (ω)
by repeatedly using the same map ϕ2d (ω) given once. Ta-
ble 2 shows a comparison of the numbers of multiplications
required to construct the cumulant matrix C2q (ω) (q = 2, 3)
in 2q-MUSIC and the moment matrix R2d (ω) (d = 2, 3) in
the proposed method. For reference, the numbers of mul-

Fig. 4 Dependence of error on shape parameter β. The RMSE is evalu-
ated over 100 trials. Mapped MUSIC shows better performance when the
shape parameter β is small because a lack of additivity in moment analysis
becomes less problematic with sparse data.

Table 2 Computational complexity.
Matrix Multiplication (times)
C4(ω) 12(3L + 1)M4

C6(ω) 20(30L + 11)M6

R4(ω) [with ϕ2d] 4L(M2 + M4)
R6(ω) [with ϕ2d] 4L(M2 + M3 + M6)

R4(ω) [with ϕ′2d] L(M + 3M2 + M4)
R6(ω) [with ϕ′2d] L(3M2 + 5M3 + M4 + 2M5 + M6)

R4(ω) [entry-wise] 12LM4

R6(ω) [entry-wise] 20LM6

tiplications with the alternative map ϕ′2d (d = 2, 3), intro-
duced in Sect. 4.3 for rapid computation, and for computing
all entries individually (entrywise), such as in 2q-MUSIC,
are also shown. Moreover, Fig. 5 shows the transitions of
the numbers of multiplications required to construct the cu-
mulant matrix C2q (ω) and moment matrix R2d (ω) with the
maps ϕ2d and ϕ′2d , respectively, with increasing number of
snapshots from 0 to 10000 when the number of microphones
is four.
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Fig. 5 Transitions of the numbers of multiplications required to construct
the statistical matrix with increasing number of snapshots. The number of
microphones is four and the number of snapshots ranges from 0 to 10000.
The proposed method has lower computational complexity, and using the
computationally efficient map ϕ′2d markedly reduces the computational
complexity.

6. Experiments to Evaluate Practical Estimation Per-
formance

In this section, we compare the performances of the proposed
method and the conventional methods via experiments as-
suming practical conditions for DOA estimation. The com-
parison is based on the DOA estimation accuracy and execu-
tion time, and the accuracy is evaluated using both simulation
results and the real-room impulse responses.

6.1 Evaluation of DOA Estimation Accuracy

First, to investigate the estimation accuracy under various
combinations of disturbances, we conducted a simulation
experiment. We compared the accuracy of the proposed
mapped MUSIC with those of SRP-PHAT [4], standard MU-
SIC, and 2q-MUSIC. For this experiment, we created speech
mixtures by convoluting Japanese speech samples [19] and
room impulse responses assuming point sources in the en-
vironment shown in Fig. 6 using the image method [20].
We prepared seven different reverberant conditions and dif-
fuse pink noises [21] with three different SNRs to evaluate
the robustness of each method to disturbances. Also, we
conducted the evaluation with six different signal lengths to
examine the effect of the number of snapshots. Similarly
to in Sect. 5.1, we use the number of sources as the dimen-
sionality of the signal subspace for the proposed method and
2q-MUSIC. Also DOA estimation with MUSIC is performed
similarly to in Sect. 5.1 as a reference. We performed 1,000
trials of the estimation with randomly chosen combinations
of source positions and obtained the RMSE over all trials.
Table 3 shows the experimental conditions.

Also, to evaluate the estimation performance in a more
realistic environment, we conducted an experiment using
convolutive mixtures with the impulse responses measured

Fig. 6 Environment for simulation experiment.

Table 3 Conditions for simulation experiment.
Microphone array Circular array with radius of 0.1 m
# of microphones 4

Sound sources Point sources 1 m apart from array
# of sources 3, 5
Room size 5 × 5 × 2 [m]
Noise type Diffuse pink noise

SNR 10,20 [dB]
Reverberation (T60) 0,150,500 [ms]

Signal length 1,2,3,5,10,20 [s]
Sampling frequency 16 [kHz]

Frequency bandwidth 0.2–5 [kHz]
Frame length 512 samples

Frame shift length 256 samples
Window function Hanning window

Table 4 Conditions for experiment using impulse response measured in
real room.

Sound sources Speakers 1 m apart from array

Room size
Studio 1: 3.4 × 4 × 2.7 [m]
Studio 2: 5.5 × 9 × 2.6 [m]

Noise type Observed diffuse noise
Reverberation (T60) Studio 1: 0.3, Studio 2: 0.8 [s]

in two different studios. To mimic noisy observation, we
observed diffuse noise with the same microphone array in
a noisy room containing several computers and fans. The
other conditions followed those in the simulation experiment.
Table 4 shows the experimental conditions that were different
from those in the simulation experiment.

Figures 7 and 8 show the results of the simulation ex-
periment and the experiment with the measured impulse
responses. Throughout these results, standard MUSIC does
not perform appropriately because of the setup of under-
determined case, and SRP-PHAT also performs poorly be-
cause of its low resolution. To the contrary, both mapped
MUSIC and 2q-MUSIC show the effectiveness for the un-
derdetermined DOA estimation also in these practical con-
ditions. The estimation accuracies of mapped MUSIC and
2q-MUSIC improve with increasing signal length and de-
teriorate with increases in the reverberation time and noise.
In most cases, mapped MUSIC performs better than 2q-
MUSIC. However, their difference becomes smaller with
increasing signal length, and 2q-MUSIC performs better for
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Fig. 7 Results of simulation experiment. Each subcaption represents a
combination of reverberation and SNR.

Fig. 8 Results of experiment with the measured impulse response. Each
subcaption represents a combination of recording room and SNR.

Table 5 Computational environment.
CPU Intel Corei7-3930K 3.2 GHz

Memory DDR3 64GB
OS CentOS 6.6

Software MATLAB R2010b

Fig. 9 Number of multiplications and execution time.

a signal length of 20 s in several cases. This behavior is con-
sistent with the bias-variance tradeoff. These results ascer-
tain the effectiveness of the proposed method for short-time
analysis, which is particularly important for practical DOA
estimation.

6.2 Evaluation of Execution Time

We also measured the execution times required to construct
the statistical matrix, the moment matrix R2d (ω) in mapped
MUSIC, and the cumulant matrix C2q (ω) in 2q-MUSIC.
Using the same conditions as in the DOA estimation experi-
ments, we adopted four microphones and 4th- and 6th-order
statistics. Using a system whose specifications are shown
at Table 5, we conducted an evaluation by averaging 100
measurements for two signal lengths, 1 s and 10 s.

Figure 9 shows the number of multiplications and the
practical execution time required for the construction of the
statistical matrix. For both signal lengths, the proposed
method has a shorter computation time than 2q-MUSIC,
although the computation time is not proportional to the
number of multiplications. This is thought to be due to the
slow loop processing of MATLAB. Although the measured
speed strongly depends on the environment, this experiment
indicates the lower computational complexity of the pro-
posed method. Thus, mapped MUSIC is expected to be a
useful tool for various applications requiring a small delay
and rapid computation.

7. Conclusion

In this paper, we proposed mapped MUSIC, a high-
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resolution DOA estimator for underdetermined conditions.
We also discussed the properties of the mapping function
with degree d used to analyze the 2dth-order cross-moments
and presented efficient algorithms with which the 4th- and
6th-order moments can be calculated. Furthermore, we com-
pared the characteristics of the proposed method and con-
ventional 2q-MUSIC utilizing 2qth-order cumulants. We
demonstrated the advantageousness of the proposed method
via an experiment. Mapped MUSIC is expected to be a
suitable option for many applications requiring short-time
processing and rapid computation.
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