
1122
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.6 JUNE 2016

PAPER Special Section on Discrete Mathematics and Its Applications

Secure Computation Protocols Using Polarizing Cards∗

Kazumasa SHINAGAWA†,††a), Nonmember, Takaaki MIZUKI†††, Member, Jacob C. N. SCHULDT††,
Koji NUIDA††, Nonmembers, Naoki KANAYAMA†, Takashi NISHIDE†, Goichiro HANAOKA††, Members,

and Eiji OKAMOTO†, Fellow

SUMMARY It is known that, using just a deck of cards, an arbitrary
number of parties with private inputs can securely compute the output of
any function of their inputs. In 2009, Mizuki and Sone constructed a six-
card COPY protocol, a four-card XOR protocol, and a six-card AND pro-
tocol, based on a commonly used encoding scheme in which each input bit
is encoded using two cards. However, up until now, there are no known re-
sults to construct a set of COPY, XOR, and AND protocols based on a two-
card-per-bit encoding scheme, which all can be implemented using only
four cards. In this paper, we show that it is possible to construct four-card
COPY, XOR, and AND protocols using polarizing plates as cards and a
corresponding two-card-per-bit encoding scheme. Our protocols use a min-
imum number of cards in the setting of two-card-per-bit encoding schemes
since four cards are always required to encode the inputs. Moreover, we
show that it is possible to construct two-card COPY, two-card XOR, and
three-card AND protocols based on a one-card-per-bit encoding scheme
using a common reference polarizer which is a polarizing material accessi-
ble to all parties.
key words: card-based protocols, polarizing cards, secure computation,
boolean circuits, recreational cryptography

1. Introduction

1.1 Background

Secure Multi-Party Computation (MPC) enables an arbi-
trary number of parties with secret inputs to compute the
output of a function without revealing their inputs. MPC
protocols are usually implemented in a computer-based en-
vironment. On the other hand, there are various works con-
structing MPC protocols using only a deck of physical cards,
referred to as card-based protocols [1]–[17]. Compared to
computer-based protocols, a card-based protocol has several
advantages; (1) It is easy to understand the correctness and
security of protocols even for non-experts, (2) Since card-
based protocols do not rely on computers, they can be per-
formed without the use of electricity, (3) In contrast to on-
line protocols where players are invisible to each other, there

Manuscript received September 18, 2015.
Manuscript revised February 22, 2016.
†The authors are with University of Tsukuba, Tuskuba-shi,

305-8577 Japan.
††The authors are with National Institute of Advanced Industrial

Science and Technology, Tokyo, 135-0064 Japan.
†††The author is with Tohoku University, Sendai-shi, 980-8578

Japan.
∗A preliminary conference version of this paper appeared

at [15]. Three main additions to the conference version are listed
as: covers in Sect. 2.1, detail constructions in Sect. 6.1, and proto-
col for an arbitrary function in Sect. 6.2.

a) E-mail: shinagawa@cipher.risk.tsukuba.ac.jp
DOI: 10.1587/transfun.E99.A.1122

is a potentially high cost of acting maliciously in card-based
protocols, (4) Playing a card-based protocol is a lot of fun!

The Five-Card Trick proposed by den Boer [1] in 1989
is the first card-based protocol, which enables two parties
to securely compute the AND (∧) function of their secret
inputs using five cards (two ♣ s and three ♡ s). In [1] (as
well as in previous works [1]–[14], [17]), a binary input is
encoded by two cards as follows: ♣ ♡ = 0, ♡ ♣ = 1. We
refer to such an encoding using two cards as a two-card-per-
bit encoding scheme. In the input phase, a party encodes his
input as above, and places the cards face down in a public
space (e.g. on a table). This pair of cards is called a com-
mitment. As subsequent works, there are many works to
reduce the number of cards in card-based protocols whose
outputs are commitments. (The Five-Card Trick [1] does
not enjoy this property since it outputs the value of x ∧ y.)
The state-of-the-art protocols are summarized as follows: In
the above encoding scheme (♣ ♡ = 0, ♡ ♣ = 1), Mizuki
and Sone [9] constructed a six-card COPY protocol and a
four-card XOR protocol, and Koch [9], and Koch, Walzer
and Härtel [4] constructed a five-card AND protocol; see
Table 1. There are a five-card COPY protocol [13] and a
four-card AND protocol [4], however, these protocols are
Las-Vegas protocols, i.e., their computational times are fi-
nite only in expectation. On the other hand, in this paper,
we focus on protocols which always terminate in finite run-
time.

In this paper, we focus on the number of cards, in par-
ticular, minimality. We say that a card-based protocol is
minimal with respect to an encoding scheme if it is impossi-
ble to construct a protocol providing the same functionality

Table 1 Previous card-based protocols (with finite runtime).

Type of cards # of cards Minimality
◦ COPY protocol

Mizuki-Sone [9] ♣,♡ 6 ?
◦ XOR protocol

Mizuki-Sone [9] ♣,♡ 4 ✓
◦ AND protocol

Mizuki-Sone [9] ♣,♡ 6 ×
Koch-Walzer-Härtel [4] ♣,♡ 5 ✓
◦ Input-preserving XOR protocol

Nishida et al. [12] ♣,♡ 6 ?
◦ Input-preserving AND protocol

Nishida et al. [12] ♣,♡ 6 ?
◦ Protocol for an arbitrary n-variable function

Nishida et al. [12] ♣,♡ 2n + 6 ?

Copyright c⃝ 2016 The Institute of Electronics, Information and Communication Engineers

SHINAGAWA et al.: SECURE COMPUTATION PROTOCOLS USING POLARIZING CARDS
1123

using fewer cards; see Definition 8. We note that minimal-
ity depends on the underlying encoding scheme. From this
point of view, the four-card XOR protocol [9] is minimal
with respect to a two-card-per-bit encoding scheme since
it takes four cards as input. On the other hand, there are
no known minimal COPY/AND protocols, (cf. the state-of-
the-art is the six-card COPY/AND protocols [9]). We em-
phasize that in particular a minimal COPY protocol is de-
sired in the construction of more general protocols. Con-
sider computing a given function f (x0, x1, · · · , xn−1) from
commitments to x0, x1, · · · , xn−1 ∈ {0, 1}. In many cases, it is
required to preserve the input commitments since they might
be needed in later stages of the protocol. To achieve this, the
commitments are copied using the COPY protocol before
evaluation of f (x0, x1, · · · , xn−1). If the commitments are
copied in parallel, and the COPY protocol requires two ad-
ditional cards besides the cards for storing the commitments,
2n additional cards are required in total†. In addition, re-
ducing the number of cards leads to better performance, and
thereby improves the viability of card-based protocols in the
real world. Thus, constructing optimal protocols are impor-
tant not only from a theoretical viewpoint but also from a
practical viewpoint.

Unfortunately, it seems impossible to construct a mini-
mal COPY protocol using previous cards because, to ensure
correctness, it is necessary to open a face-down card, but the
number of face-down cards is less than four after this open-
ing. Moreover, [4] showed that there is no (finite-runtime)
four-card AND protocol, i.e., the additional cards are essen-
tially needed in secure computation of AND function. Due
to these impossibility results, it seems to be necessary to in-
troduce new frameworks.

1.2 Our Contribution

In this paper, we show that it is possible to construct minimal
four-card COPY/XOR/AND protocols, by using polarizing
plates as cards and a corresponding two-card-per-bit encod-
ing. The use of polarizing plates enables us to overcome
the limitations of ordinary cards. As an additional techni-
cal contribution we introduce a new shuffle, a diagonal flip
shuffle, which is easily implementable and enables the con-
struction of our four-card AND protocol. As applications
of our protocols, we show minimal constructions of input-
preserving XOR and AND protocols, which we combine to
obtain a minimal half-adder protocol, a minimal full-adder
protocol, a minimal voting protocol, all using a two-card-
per-bit encoding scheme.

(1) Polarizing Cards

Polarization of light is a physical phenomenon that trans-
forms light waves oscillating in various directions into light
waves oscillating in a certain direction. A polarizing plate
is a material which has such a polarization property. In

†If the commitments are copied one-by-one, only two addi-
tional cards are needed, but this is inefficient with respect to re-
quired computational time.

Table 2 Summarize of our protocols.

Type of cards # of cards Minimality
◦ COPY protocol
Sect. 4.1 Polarizing 4 ✓
◦ XOR protocol
Sect. 4.2 Polarizing 4 ✓
◦ AND protocol
Sect. 4.3 Polarizing 4 ✓
◦ Input-preserving XOR protocol
Sect. 5 (1) Polarizing 4 ✓
◦ Input-preserving AND protocol
Sect. 5 (2) Polarizing 4 ✓
◦ Protocol for an arbitrary n-variable function
Sect. 6.2 Polarizing 2n + 2 ✓

Sect. 2.1, we define a polarizing card by a square polariz-
ing plate with either vertical (↕) or horizontal (↔) direc-
tion. To encode 0, we use a sequence of two cards with the
same direction, i.e., (↕, ↕) or (↔,↔). Likewise, to encode
1, we use a sequence of two cards with opposite directions,
i.e., (↕,↔) or (↔, ↕). This sequence is called a commitment.
The commitments of 0 and 1 are indistinguishable without
superimposing the cards of the commitment sequence.

(2) COPY/XOR/AND Protocols

In Sect. 4, under the above encoding scheme, we construct
minimal COPY/XOR/AND protocols in which only four
cards are required (see Table 2). Our protocols use a ro-
tation shuffle and a diagonal flip shuffle (the latter is only
used in our AND protocol), which are defined in Sect. 2.2.
We also show that our protocols are secure in the sense of
Definition 7, in Sect. 3.2.

(3) Input-Preserving Protocols

We say a protocol for f (x, y) is input-preserving if it outputs
commitments to f (x, y) and x (or y). In Sect. 5, we con-
struct minimal input-preserving XOR/AND protocols (see
Table 2). As applications of these protocols, applying the
techniques from [5], [12], we also show the construction of
a minimal half-adder protocol, a minimal full-adder proto-
col, a minimal voting protocol.

(4) Protocols Using a One-Card-Per-Bit Encoding

Using a common reference polarizer, binary information can
be encoded using a single card per bit (referred to as a one-
card-per-bit encoding scheme). In Sect. 6, we construct el-
ementary protocols based on this type of encoding scheme.
Utilizing these protocols in combination with a two-card-
per-bit encoding scheme, we futhermore construct a mini-
mal inout-preserving protocol for an arbitrary boolean func-
tion (note that the minimality of the protocol is with respect
to a two-card-per-bit encoding scheme). We emphasize that
the two-card-per-bit encoding and the one-card-per-bit en-
coding require different and incomparable setups. In partic-
ular, in the one-card-per-bit encoding scheme, parties cannot
make commitments without access to the common reference
polarizer. This is inconvenient if parties want to make com-
mitments to their inputs prior to the execution of the proto-

1124
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.6 JUNE 2016

col. As in previous works, our main aim is to construct pro-
tocols in the two-card-per-bit encoding scheme which en-
ables parties to encode inputs locally at any time.

1.3 Related Works

In 1989, using two types of cards (♣ , ♡), den Boer [1] pro-
posed a five-card AND protocol that reveals the output value
at the end of the protocol. Most of subsequent works use the
same type of cards as in [1]. In 2014, Mizuki-Shizuya [8]
discussed the advantages and disadvantages of a one-card-
per-bit encoding scheme that enables the construction of a
three-card AND protocol, a two-card XOR protocol, and a
three-card COPY protocol. A possible application of a sim-
ilar encoding scheme to our polarizing cards is discussed in
Sect. 6.

Based on elementary protocols, many applications are
proposed [5], [11], [12]. In 2013, Mizuki, Asiedu, and Sone
[5] constructed an eight-card half-adder protocol, a ten-card
full-adder protocol, and a (2⌈log n⌉+6)-card voting protocol
where n is the number of parties. In 2015, Nishida et al. [12]
constructed a six-card AND protocol with input-preserving
property, which also outputs one of the input commitments.
They also show that it is possible to construct a six-card half-
adder protocol and protocols for any k-variable functions
using 2k + 6 cards and any k-variable symmetric functions
using 2k + 2 cards [12]. The numbers of cards for such ad-
vanced protocols are also reduced due to our improvements
mentioned above.

In 2015, Nishimura et al. constructed a five-card Las-
Vegas COPY protocol using unequal division shuffle [13].
In 2015, Koch, Walzer and Härtel [4] constructed a four-
card Las-Vegas AND protocol, and a five-card AND proto-
col. They are very interesting from theoretical viewpoint,
however, our focus is protocols which always terminate in
finite runtime.

2. Polarizing Cards

In this section, we first propose a card called a polarizing
card, which is a square polarizing plate. Next, we define
three operations, permute, superimpose, and shuffle, that
can be applied to a sequence of cards in a protocol. Further-
more, we propose two concrete shuffles, a rotation shuffle
and a diagonal flip shuffle.

2.1 Polarizing Cards

(1) Polarizing Cards

Polarization of light is a physical phenomenon that trans-
forms light waves oscillating in various directions into light
waves oscillating in a certain direction. A polarizing plate is
a material which has such a polarization property. If two po-
larizing plates with a same direction are superimposed, then
light will pass through the plates which will appear to be
transparent. On the other hand, if two plates with perpendic-
ular directions are superimposed, no light will pass through

Fig. 1 Polarizing cards.

the plates which will appear to be black. In addition, a po-
larizing plate has an important property, which we will refer
to as a direction indistinguishability. Specifically, it is dif-
ficult to distinguish the direction of the polarization without
superimposing the plate with another polarizing plate.

We say that a polarizing plate is a polarizing card if its
polarizing direction is either vertical or horizontal direction,
and it has two symmetries, 90◦ rotational symmetry and two-
sided symmetry, i.e., the face of the plate is invariant even if
it is rotated 90◦ or flipped (e.g. square polarizing plate as
shown on the left in Fig. 1). We denote by D = {↕,↔}
the set of polarizing cards. If two cards with the same di-
rection (↕, ↕ or ↔,↔) are superimposed, then light can
pass through the plates and they appear transparent. We say
that this result is “white” (Fig. 1, center). On the other hand,
if two plates with perpendicular directions (↕,↔ or ↔, ↕)
are superimposed, no light can pass through the plates. We
say that this result is “black” (Fig. 1, right). A k-sequence of
polarizing cards is cards lying in the public space such that
each of the cards is isolated and not superimposed on top of
each other or any other polarization plates. We denote by
(a0, a1, · · · , ak−1) a sequence of polarizing cards.

(2) New Encoding

How should we encode x ∈ {0, 1} using polarizing cards?
One possibility is to use the previous encoding scheme from
[1], i.e., (↕,↔) = 0 and (↔, ↕) = 1. However, it is dif-
ficult to encode and decode due to the direction indistin-
guishability. For this reason, we propose a new encoding
scheme, which is explicitly based on the polarizing prop-
erty of the cards. The new encoding Enc is a function
that maps x ∈ {0, 1} to a sequence of two cards. Specif-
ically, to encode 0, we use a sequence of two cards with
the same direction, which will result in white when super-
imposed, i.e., Enc(0) = {(↕, ↕), (↔,↔)}. Likewise, to en-
code 1, we use a sequence of two cards with opposite di-
rections, which will result in black when superimposed, i.e.,
Enc(1) = {(↕,↔) = (↔, ↕)}†. We say that a sequence is a
commitment to a when it is an element of Enc(a). Note that,
due to the direction indistinguishability property, nobody
can distinguish whether a commitment belongs to Enc(0)
or Enc(1) without superimposing the used cards. From now
on, in order to simplify the exposition, we denoteD by {0, 1}
instead of {↕,↔}. Using this notation, a commitment to x
can be represented as (c, c ⊕ x), and this is equivalent to
(c′ ⊕ x, c′) where c = c′ ⊕ x.

†The other possibility is to use the encoding scheme such that
Enc(0) = {(↕,↔), (↔, ↕)} and Enc(1) = {(↕, ↕), (↔,↔)}. They are
equivalent.

SHINAGAWA et al.: SECURE COMPUTATION PROTOCOLS USING POLARIZING CARDS
1125

Fig. 2 Cover: paper cover with rotation symmetry.

Fig. 3 Cover: paper cover with diagonal flip symmetry.

Fig. 4 Cover: non-transparent card.

(3) Covers

Covers are used in shuffles to avoid revealing partial infor-
mation relevant to the secret value of the commitments. For
example, when two cards (x ⊕ r, y ⊕ r) are generated from
(x, y) by applying the rotation shuffle in Sect. 2.2, two cards
are stacked and rotated a random number of times. How-
ever, if two cards are just stacked, we learn whether the su-
perimposing result is black or white, i.e., whether x = y
or not. To perform rotation/diagonal-flip shuffles securely,
covers have rotational symmetry or diagonal flip symmetry.
This requirement can be easily satisfied by using a square
piece of paper as in Figs. 2 and 3. As an alternative solu-
tion, a non-transparent card in Fig. 4 can be used as a cover.
However, the diagonal flip shuffle needs two non-transparent
cards to cover the front and back sides.

2.2 Operations

(1) Permutation

In a previous work [7], the group of permutations for se-
quences of k cards is set to be the symmetric group S k,
which acts on each sequence by changing the order of cards.
In this paper, we extend the definition of permutations for
cards to deal with rotations of each card in a sequence
(which is typical for our polarizing cards) as well as the
re-ordering. We define permutation operations as follows.

Definition 1: Let Σk be the group of (extended) permuta-
tions generated by σi for i = 0, 1, . . . , k − 2 and ρi for
i = 0, 1, . . . , k−1, where σi and ρi denote the adjacent trans-

position and the fundamental rotation, respectively, defined
as follows:

σi(x0, · · · , xi, xi+1, · · · , xk−1) = (x0, · · · , xi+1, xi, · · · , xk−1)
ρi(x0, · · · , xi, · · · , xk−1) = (x0, · · · , xi, · · · , xk−1).

A permutation operation, defined by σ ∈ Σk, takes as input
a sequence s = (x0, . . . , xk−1), and outputs σ(s).

(2) Superimposing

We define superimposing operations as follows.

Definition 2: We define a superimposing operation that
takes as inputs s = (x0, · · · , xk−1) and i, j where i, j ∈
{0, · · · , k − 1} are different indices (i , j), and outputs
“white” if xi = x j or “black” if xi , x j.

This is physically implemented by superimposing cards xi
and x j. This operation is similar to an opening operation
that is used in ordinary card-based protocols. However, a
superimposing operation to x, y reveals only the direction
difference between x, y, i.e., x ⊕ y, while an opening opera-
tion reveals the value of card itself.

(3) Shuffle

We define shuffle operations that play an important role in
achieving perfect secrecy in card-based protocols. Firstly,
we provide a general definition of shuffles that might contain
a shuffle which has no easy physical implementation:

Definition 3: Let σ ∈ Σk be a permutation with order ℓ,
i.e., σℓ = id where id is the identity mapping. We define a
shuffle operation based on σ that takes s = (x0, · · · , xk−1) as
input, and outputs σr(s), where r is uniformly chosen from
{0, · · · , ℓ − 1}. The value r is assumed to be hidden from the
parties executing the protocol.

We show two implementations of a shuffle based on σ. The
first one is simple. A party applies the permutation σ to s
a random number of times until all of parties are satisfied.
The random number is not known to either of them even
the party who operates the shuffle. The other method does
not require a party who takes responsibility of security. Let
P0, · · · , Pn−1 be the parties participating in the protocol. P0
uniformly chooses r0 ∈ {0, · · · , ℓ − 1} where ℓ is the order
of σ, operates permutation σr0 to s, and sends σr0 (s) to P1.
This is repeated from P0 to Pn−1. Finally, Pn−1 places σr(s)
in a public space where r = r0 + · · · + rn−1. Obviously, the
value r is uniformly chosen from {0, · · · , ℓ − 1} and nobody
knows it. In practice, the former method is usually used
since it is easy to demonstrate. Therefore, it is important that
a shuffle is easily implemented by hand. In this paper, we
say that a shuffle has an easy physical implementation if it is
achieved only using “one operation” that can be performed
by hand.

We propose two shuffles, a rotation shuffle and a diag-
onal flip shuffle. These two shuffles have an easy physical
implementation. The idea of a rotation shuffle is used in the
protocols [8], but we define it more formally:

1126
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.6 JUNE 2016

Fig. 5 An implementation of the rotation operation ρ.

Fig. 6 An implementation of the diagonal flip operation τ.

Definition 4: Let ρ ∈ Σk be a permutation, called a rota-
tion operation, such that ρ(x0, · · · , xk−1) = (x0, · · · , xk−1). A
rotation shuffle Rotation(·) is defined as a shuffle based on
ρ, i.e., Rotation(x0, · · · , xk−1) = ρr(x0, · · · , xk−1) where r is
uniformly chosen from {0, 1}, and it results in one of the two
possibilities

Rotation(x0, · · · , xk−1) =

(x0, · · · , xk−1)
(x0, · · · , xk−1)

with probability exactly 1/2.

The rotation operation ρ for (x0, · · · , xk−1) is physically
implemented by stacking the k cards (using a cover; see
Sect. 2.1) and then rotating them 90◦ (Fig. 5).

Next, we define a diagonal flip shuffle that is the main
technical contribution in this paper:

Definition 5: Let τ ∈ Σk be a permutation, called a
diagonal flip operation, such that τ(x0, x1, · · · , xk−1) =
(xk−1, · · · , x1, x0). A diagonal flip shuffle DiagFlip(·) is de-
fined as a shuffle based on τ, i.e., DiagFlip(x0, · · · , xk−1) =
τr(x0, · · · , xk−1) where r is uniformly chosen from {0, 1}, and
it results in one of the two possibilities

DiagFlip(x0, · · · , xk−1) =

(x0, x1, · · · , xk−1)
(xk−1, · · · , x1, x0)

with probability exactly 1/2.

The diagonal flip operation τ for (x0, · · · , xk−1) is physically
implemented by stacking the k cards (using a cover; see
Sect. 2.1) and then flipping along the diagonal axis (Fig. 6).

3. Multi-Party Computation Using Polarizing Cards

In this section, we define the model of our polarizing-card-
based protocols, and the security of our model.

3.1 Model

Now we are ready to define the notion of MPC protocols
for polarizing cards. In contrast to standard MPC protocols,

the number of parties is not essential in our protocols, as in
most previous card-based protocols, since our protocols do
not require private memories for parties, i.e., each of par-
ties does not have any private information except his input
information. Thus, our definition of a protocol is simply as
follows.

Definition 6 (Protocol): A k-card protocol Π is specified
by a transition table with multiple rows where each row of
the transition table contains a symbol corresponding to one
of the following five operations:

• ⟨Input⟩: The protocol starts from here. This symbol
only appears in the 0th row. Let s0 be the initial se-
quence of k cards which encodes the input to the proto-
col† and contains any additional cards required by the
protocol. Set the current sequence to s0, and go to the
next row.
• ⟨Permutation, σ⟩ where σ ∈ Σk: Apply the permuta-

tion σ to the current sequence, and go to the next row.
• ⟨Superimposing, (i, j), ind0, ind1⟩ where i, j ∈ {0, · · · ,

k − 1}, i , j, and ind0 , ind1: Let γ be the result of
superimposing the i-th and the j-th cards. If γ is white,
then go to the ind0-th row, otherwise go to the ind1-th
row.
• ⟨Shuffle, σ⟩ where σ ∈ Σk: Apply the shuffle based on
σ to the current sequence, and go to the next row.
• ⟨Output, S ⟩ where S ⊂ {0, · · · , k − 1}: Set the final

sequence to the current sequence. The protocol outputs
the subsequence indexed by S , and terminates.

From now on, for the simplicity, we use ⟨Shuffle,
name, S ⟩ where the name is a shuffle name (e.g. Rotation
or DiagFlip), and S is a subset of {0, · · · , k − 1} that desig-
nates the cards which the shuffle should be applied to.

For a protocol Π, let s0(x0, x1, · · · , xn−1) be the
initial sequence corresponding to the input values††

(x0, x1, · · · , xn−1) ∈ {0, 1}n. We say that a protocol Π com-
putes f (x0, x1, · · · , xn−1) correctly if the following holds: for
all x0, x1, · · · , xn−1,

Π(s0(x0, x1, · · · , xn−1)) ∈ Enc(f (x0, x1, · · · , xn−1))

where Π(s0(x0, x1, · · · , xn−1)) denotes the output sequence.

3.2 Security

We assume that all of parties are honest-but-curious, i.e.,
any parties do not deviate from the protocol. Roughly speak-
ing, security of a protocol is that any unbounded adversary
can not learn the input information when he can see an exe-
cution of the protocol. However, due to the direction indis-
tinguishability property, any adversary should be unable to

†The alignment of the encoded input values must be specified
by the protocol.
††Note that a vector of the input values is not equal to the ini-

tial sequence in general. For example, our XOR protocol (see
Sect. 4.2) takes as an initial sequence s0 = (c0, c0 ⊕ x, c1, c1 ⊕ y). In
the case, the vector of the input values is (x, y).

SHINAGAWA et al.: SECURE COMPUTATION PROTOCOLS USING POLARIZING CARDS
1127

obtain information regarding the direction of a sequence of
cards. For this reason, what an adversary can learn essen-
tially is results of superimposing.

For a protocol Π, its move depends only on the input
values x and the random values generated in shuffles. We
use ΓΠ to denote a random variable representing the val-
ues of superimposing; ΓΠ = (γ0, · · · , γm−1), where γi ∈
{white, black}, means that the i-th result of superimposing
in the execution is γi.

Definition 7 (Security): For a protocol Π, let X be a ran-
dom variable taking over the input values (x0, x1, . . . , xn−1).
We say that Π is secure if the following holds:

H(X|ΓΠ) = H(X),

where H(·) denotes the Shannon entropy.

Corollary 1: Let Π be a protocol. If ΓΠ is independent
from the input values (x0, x1, . . . , xn−1) (e.g. each γi is either
constant or random), then the protocol Π is secure.

We formally define minimality with respect to an en-
coding scheme as follows.

Definition 8 (Minimality): Let Π be a k-card protocol that
securely computes f : {0, 1}n → {0, 1}m based on an ℓ-card-
per-bit encoding scheme. We say thatΠ is minimal if there is
no (k−1)-card protocol based on an ℓ-card-per-bit encoding
scheme that securely computes f .

4. COPY, XOR, and AND Protocols

In this section, we construct COPY/XOR/AND protocols,
using four cards. These protocols are minimal constructions
since it is impossible to reduce the number of cards in the
two-card-per-bit encoding scheme.

4.1 COPY Protocol

We construct a two-card COPY protocol that takes a card
x, and outputs two copies of x. Using the protocol twice,
we can immediately obtain a four-card COPY protocol for
commitments.

0. ⟨Input⟩: Let s0 be the initial sequence as follows:

s0 = (x, c).

where c is an arbitrary polarizing card.
1. ⟨Shuffle,Rotation, {1}⟩: Apply a rotation shuffle to c:

s1 = (x,Rotation(c)) = (x, r)

where r is uniformly chosen from {0, 1}.
2. ⟨Superimposing, (0, 1), 4, 3⟩: Let γ be the result of su-

perimposing x and r. If γ is white, i.e., x = r, then go to
the 4th row, otherwise, x = r, go to the 3rd row. Here,
the values of the current sequence s2 is the following
two possibility according to γ:

s2 =

(x, x) if γ is white.
(x, x) if γ is black.

3. ⟨Permutation, ρ1⟩: ρ1 is a fundamental rotation (See
Definition 1). Rotate the right card by 90◦:

s3 = ρ1(x, x) = (x, x).

4. ⟨Output, {0, 1}⟩: The current sequence is s1 if γ is
white, otherwise s3. The protocol outputs the current
sequence, and terminates.

Theorem 1: The above COPY protocol is secure.

proof. A superimposing operation appears in the 2nd row
and it only reveals x⊕ r. This is uniformly random since r is
uniformly chosen from {0, 1}. Hence, from corollary 1, our
COPY protocol is secure. □

4.2 XOR Protocol

Given two inputs (c0, c0 ⊕ x) ∈ Enc(x) and (c1, c1 ⊕ y) ∈
Enc(y), our four-card XOR protocol proceeds as follows.

0. ⟨Input⟩: Let s0 be the initial sequence as follows:

s0 = (c0, c0 ⊕ x, c1, c1 ⊕ y).

1. ⟨Shuffle,Rotation, {0, 1}⟩: Apply a rotation shuffle to
(c0, c0 ⊕ x):

s1 = (Rotation(c0, c0⊕x), c1, c1⊕y) = (r, r⊕x, c1, c1⊕y)

where r is uniformly chosen from {0, 1}.
2. ⟨Superimposing, (0, 2), 4, 3⟩: Let γ be the result of su-

perimposing r and c1. If γ is white, i.e., r = c1, then
go to the 4th row, otherwise, i.e., r = c1, go to the 3rd
row. Here, the values of the current sequence s2 is the
following two possibility according to γ:

s2 =

(r, r ⊕ x, r, r ⊕ y) if γ is white.
(r, r ⊕ x, r, r ⊕ y) if γ is black.

3. ⟨Permutation, ρ2 ◦ ρ3⟩: ρ2 and ρ3 are fundamental ro-
tations (See Definition 1). Rotate r and r ⊕ y by 90◦:

s3 = ρ2 ◦ ρ3(s2) = (r, r ⊕ x, r, r ⊕ y).

4. ⟨Output, {1, 3}⟩: The current sequence is s1 if γ is
white, otherwise s3. The protocol outputs the 1st and
the 3rd cards of the current sequence (Note that the far-
left one is the 0th card), and terminates.

Theorem 2: The above XOR protocol is secure.

proof. A superimposing operation appears in the 2nd row,
and only reveals r ⊕ c1. This is uniformly random since r is
uniformly chosen from {0, 1}. Hence, from corollary 1, our
XOR protocol is secure. □

4.3 AND Protocol

Given two inputs (c0, c0 ⊕ x) ∈ Enc(x) and (c1, c1 ⊕ y) ∈

1128
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.6 JUNE 2016

Enc(y), our four-card AND protocol proceeds as follows.

0. ⟨Input⟩: Let s0 be the initial sequence as follows:

s0 = (c0, c0 ⊕ x, c1, c1 ⊕ y).

1. Apply our XOR protocol to s0. Let s1 be the final se-
quence of the XOR protocol:

s1 = (r, r ⊕ x, r, r ⊕ y)

where r is uniformly chosen from {0, 1}.
2. ⟨Permutation, σ2 ◦ ρ0⟩: ρ0 is a fundamental rotation

and σ2 is an adjacent transposition. Rotate the 0th card
r by 90◦ and interchange the 2nd and the 3rd cards:

s2 = σ2 ◦ ρ0(s1) = (r, r ⊕ x, r ⊕ y, r).

3. ⟨Shuffle,DiagFlip, {0, 1, 2}⟩: Apply a diagonal flip
shuffle to (r, r ⊕ x, r ⊕ y):

s3 = (DiagFlip(r, r ⊕ x, r ⊕ y), r)

=

(r, r ⊕ x, r ⊕ y, r) (A)
(r ⊕ y, r ⊕ x, r, r) (B).

=


(r ⊕ (x ∧ y), r, r ⊕ (x ∧ y), r)
— when (A)∧(x = 0) or (B)∧(x = 1).
(r ⊕ (x ∧ y), r, r ⊕ (x ∧ y), r)
— when (A)∧(x = 1) or (B)∧(x = 0).

where (A) and (B) are the events corresponding to the
two different outcomes of the randomized shuffle.

4. ⟨Superimposing, (1, 3), 5, 7⟩: Let γ be the result of su-
perimposing the 1st card and the 3rd card. If γ is white,
i.e., the 1st card is r, then go to the 5th row, otherwise,
i.e., the 1st card is r, go to the 7th row. Here, the values
of the current sequence s4 is the following two possi-
bility according to γ:

s4 =

(r ⊕ (x ∧ y), r, r ⊕ (x ∧ y), r) if γ is white.
(r ⊕ (x ∧ y), r, r ⊕ (x ∧ y), r) if γ is black.

5. ⟨Permutation, ρ0⟩: Rotate the 0th card by 90◦:

s5 = ρ0(s4) = (r ⊕ (x ∧ y), r, r ⊕ (x ∧ y), r).

6. ⟨Output, {0, 3}⟩: This is the output phase when γ is
white. Thus, the current sequence is s5 = (r ⊕ (x ∧
y), r, r⊕ (x∧y), r). The protocol outputs the 0th and the
3rd cards of the current sequence, i.e., (r ⊕ (x ∧ y), r),
and terminates.

7. ⟨Output, {2, 3}⟩: This is the output phase when γ is
black. Thus, the current sequence is s4 = (r ⊕ (x ∧
y), r, r ⊕ (x ∧ y), r). The protocol outputs the 2nd and
the 3rd cards of the current sequence, i.e., (r⊕(x∧y), r),
and terminates.

Theorem 3: The above AND protocol is secure.

proof. A superimposing operations appear in the 1st row

and the 4th row. The result in the 1st row is uniformly ran-
dom (see the security of XOR protocol 4.2). The superim-
posing in the 4th row results in (r ⊕ x)⊕ r or (r ⊕ x)⊕ r with
probability exactly 1/2. This is uniformly random. Hence,
from corollary 1, our AND protocol is secure. □

5. Applications

In this section, we construct a minimal input-preserving
XOR protocol and a minimal input-preserving AND proto-
col, each of which uses four cards. Based on these protocols
and applying the techniques from [5], [12], we obtain mini-
mal half-adder/full-adder/voting protocols.

(1) Input-Preserving XOR Protocol

This protocol is immediately obtained from our XOR and
COPY protocols. Let (r, r ⊕ x, r, r ⊕ y) be the final sequence
of the XOR protocol, where x and y are input bits and r is
a random bit. Then, by applying our COPY protocol, we
obtain the output (r, r ⊕ x, r ⊕ x, r ⊕ y), where (r, r ⊕ x) is a
commitment to x, and (r⊕ x, r⊕y) is a commitment to x⊕y.
(2) Input-Preserving AND Protocol

We design a minimal four-card input-preserving AND pro-
tocol. It takes two commitments to x, y as inputs, and
outputs two commitments to x ∧ y, x as follows. Let
s0 = (c0, c0 ⊕ x, c1, c1 ⊕ y) be the initial sequence. Ap-
ply our AND protocol to (c1, c1 ⊕ y, c0, c0 ⊕ x), and per-
mute the final sequence of the AND protocol, we obtain
the sequence s1 = (r, r ⊕ (y ∧ x), r, r ⊕ (y ∧ x)). Apply-
ing our COPY protocol to s1, we can obtain the sequence
s2 = (r, r ⊕ (y ∧ x), r ⊕ (y ∧ x), r ⊕ (y ∧ x)). This can be
simplified into (c2, c2 ⊕ (x ∧ y), c3, c3 ⊕ x).

(3) Half-Adder and Full-Adder Protocols

Based on our input-preserving XOR/ AND protocols, we
obtain the construction of a four-card half-adder protocol
and a six-card full-adder protocol. Note that they are the
minimal constructions since four/six cards are required to
represent the output commitments of half-adder/full-adder
protocols. These constructions are the same as [5], [12],
while the half-adder and full-adder protocols from [5], [12]
require six cards and ten cards, respectively.

(4) Voting Protocol

Secure voting is one of the most suitable applications for
card-based protocols. Similarly to [5], using half-adder and
full-adder protocols, we can construct a secure voting pro-
tocol with two candidates. Our voting protocol for n parties
requires 2⌈log n⌉ + 2 cards while the protocol from [5] re-
quires 2⌈log n⌉+ 6 cards. Here, the number of cards is mini-
mal since a voting protocol takes as inputs 2⌈log n⌉ cards for
a voting result of n − 1 parties and 2 cards for an input of
n-th party.

6. One-Card-Per-Bit Encoding Scheme

In this section, we construct elementary protocols using an

SHINAGAWA et al.: SECURE COMPUTATION PROTOCOLS USING POLARIZING CARDS
1129

encoding which encodes one bit by one card, referred to as
one-card-per-bit encoding scheme. Using these protocols in
combination with a two-card-per-bit encoding scheme, we
can compute any boolean function with a minimum num-
ber of cards. We also discuss one-card-per-bit encoding
schemes and tradeoffs they provide.

6.1 Constructions

To construct a one-card-per-bit encoding scheme, we re-
quire a material with polarizing property that specifies a
standard direction. This card is placed in the public space,
and is referred to as a common reference polarizer crp. (The
common reference polarizer is not required to have rota-
tional symmetries since it is not used in the protocol ex-
cept in a superimposing operation.) A value of a card x is
determined by superimposing x and crp, i.e., x = 0 if the
superimposing result is white, x = 1 if the superimposing
result is black. We define a new operation CheckValue that
takes a card x and outputs the value of the card x. This can
be implemented by superimposing x and crp.

(1) COPY Protocol

COPY protocol for our one-card-per-bit encoding scheme is
easily obtained from one presented in Sect. 4.1.

(2) XOR Protocol

0. ⟨Input⟩: Let s0 be the initial sequence as follows:

s0 = (x, y).

1. ⟨Shuffle,Rotation, {0, 1}⟩: Apply a rotation shuffle:

s1 = (Rotation(x, y)) = (r ⊕ x, r ⊕ y)

where r is uniformly chosen from {0, 1}.
2. ⟨CheckValue, 0⟩: Let ϵ := r ⊕ x. If ϵ = 0, then go to

the 4th row, otherwise, i.e., ϵ = 1, go to the 3rd row:
3. ⟨Permutation, ρ1⟩: ρ1 is fundamental rotation (See

Definition 1). Rotate r ⊕ y by 90◦:

s3 = ρ1(s1) = (r ⊕ x, (r ⊕ y) ⊕ 1) = (r ⊕ x, x ⊕ y).

where the right side equality holds due to ϵ = r⊕ x = 1.
4. ⟨Output, {1}⟩: The current sequence is s1 if ϵ = 0, oth-

erwise s3. The protocol outputs the right card, and ter-
minates.

Theorem 4: The above XOR protocol is secure.

proof. A superimposing operation only appears in the 2nd
row as CheckValue, and reveals r ⊕ x. This is uniformly
random since r is uniformly chosen from {0, 1}. Hence, from
corollary 1, our XOR protocol is secure. □

(3) AND Protocol

Given two values represented by cards x, y, in our one-bit-
per-card encoding scheme, our three-card AND protocol
proceeds as follows.

0. ⟨Input⟩: Let s0 be the initial sequence as follows:

s0 = (1, x, y).

where 1 is an additional cards whose value is 1.
1. ⟨Shuffle,DiagFlip, {0, 1, 2}⟩: Apply a diagonal flip

shuffle to (1, x, y):

s2 = DiagFlip(1, x, y)

=

(1, x, y) (A)
(y, x, 0) (B)

.

where (A) and (B) are the events corresponding to the
two different outcomes of the randomized shuffle.

2. ⟨CheckValue, 1⟩: Let ϵ be the value of the center card.
If ϵ = 0, then go to the 3rd row, otherwise, i.e., ϵ = 1,
go to the 5th row.

3. ⟨Permutation, ρ0⟩: Rotate the 0th card by 90◦.

s3 =

(0, x, y) in the case of (A).
(y, x, 0) in the case of (B).

4. ⟨Output, {0}⟩: This is the output phase when ϵ = 0.
The current sequence is s3. The protocol outputs the
left (0th) card, and terminates.

5. ⟨Output, {2}⟩: This is the output phase when ϵ = 1. The
current sequence is s2. The protocol outputs the right
(2nd) card, and terminates.

Theorem 5: The above AND protocol is secure.

proof. A superimposing operation only appears in the 2nd
row as CheckValue. This results in x or x with probability
exactly 1/2. Hence, from corollary 1, our AND protocol is
secure. □

Here, in the output sequence, the value of the remain-
ing card (opposite to the output card) is x ∧ y. Applying the
COPY protocol to the output card and the center card, we
can obtain two copies of x ∧ y. Thus, y can be computed by
(x ∧ y) ⊕ (x ∧ y). This modification allows the construction
of an input-preserving AND protocol using three cards.

6.2 Application to Two-Cards-Per-Bit Protocols

We will now show that, utilizing the protocols constructed
for the one-card-per-bit encoding scheme, we can construct
a protocol for an arbitrary n-variable boolean function based
on a two-card-per-bit encoding scheme, using only 2n + 2
cards. Our starting point is a protocol for an arbitrary
boolean function proposed by Nishida et al. [12]. They
showed (a simplified version) of the following theorem.

Theorem 6 (Theorem 6 in [12] (generalized version)): Let
f be an n-variable boolean function. If there exist a kC-
card COPY, a kA-card input-preserving AND, and a kX-card
XOR protocols in an ℓ-card-per-bit encoding scheme, then
given commitments to x0, x1, · · · , xn−1 based on the ℓ-card-
per-bit encoding scheme, we can securely compute com-
mitments to x0, x1, · · · , xn−1 and f (x0, x1, · · · , xn−1), using

1130
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.6 JUNE 2016

max(kC, kA, kX) additional cards.

In the case of the previously used two-card-per-bit encod-
ing scheme (♣ , ♡), any function can be securely com-
puted with six additional cards since there exist a six-card
COPY (kC = 6), a six-card input-preserving AND proto-
col (kA = 6), and a four-card XOR protocol (kX = 4). In
the case of our one-card-per-bit encoding scheme, two ad-
ditional cards are required to compute any f since kC =

2, kA = 3, kX = 2 (note that the encoding scheme requires
a common reference polarizer). Utilizing the one-card-per-
bit protocols, we can securely compute an arbitrary boolean
function f : {0, 1}n → {0, 1} using a two-card-per-bit encod-
ing scheme and only 2n+2 cards, as follows. (Note that this
is the minimum number of cards since the protocol preserves
inputs commitments, and thus the number of output cards
is 2n + 2.) Given commitments to x0, · · · , xn−1, generate
(r, r⊕ x0), · · · , (r, r⊕ xn−1) by applying a rotation shuffle and
a superimposing operation. This can be regarded as n com-
mitments based on one-card-per-bit encoding (x0, · · · , xn−1),
common reference polarizer r, and n + 1 free cards (the to-
tal number of cards is 2n + 2). Using the one-card-per-bit
protocol for f , it is possible to produce (one-card-per-bit)
commitments to x0, x1, · · · , xn−1 and f (x0, · · · , xn−1). Now,
the number of remaining cards is n + 1 (including the com-
mon reference polarizer r). Applying the COPY protocol
to the remaining cards, we can produce (n + 1)-copies of
r, immediately obtain (two-card-per-bit) commitments to
x0, x1, · · · , xn−1 and f (x0, · · · , xn−1). This is a two-card-per-
bit protocol for an arbitrary n-variable boolean function us-
ing only 2n + 2 cards. (If the input commitments are not
required to be preserved, f (x0, · · · , xn−1) can be computed
using only 2n cards. This gives the same constructions of
our COPY/AND/XOR protocols in Sect. 4.)

6.3 Discussions

In this section, we constructed elementary protocols based
on the one-card-per-bit encoding scheme. As a related work,
Mizuki and Shizuya [8] proposed another one-card-per-bit
encoding scheme using cards with a rotationally symmetric
back side. The cards with a rotationally symmetric back side
[8] enable the construction of a three-card COPY protocol,
a two-card XOR protocol, and a three-card AND protocol.
However, the shuffle used in the AND protocol is not known
to have an easy physical implementation, i.e., it requires two
operations, a rotation and a permutation, at the same time. In
contrast to [8], the diagonal flip shuffle used in our one-card-
per-bit AND protocol has an easy physical implementation
(Sect. 2.2). Moreover, our one-card-per-bit COPY protocol
in our scheme only uses two cards while the scheme [8] re-
quires three cards. However, our scheme requires a com-
mon reference polarizer for the encoding. Therefore, there
is a trade-off between the previous cards [8] and polarizing
cards in one-card-per-bit encoding scheme.

Acknowledgment

The authors would like to thank members of the study
group “Shin-Akarui-Angou-Benkyou-Kai” for the valuable
discussions and helpful comments. This work was partially
supported by JSPS KAKENHI Grant Numbers 26330001
and 26330151, Kurata Grant from The Kurata Memorial
Hitachi Science and Technology Foundation, and JSPS A3
Foresight Program.

References

[1] B. den Boer, “More efficient match-making and satisfiability: The
five card trick,” Advances in Cryptology EUROCRYPT’89, Lecture
Notes in Computer Science, vol.434, pp.208–217, Springer Berlin
Heidelberg, 1990.

[2] C. Cŕepeau and J. Kilian, “Discreet solitary games,” Advances
in Cryptology, CRYPTO’93, Lecture Notes in Computer Science,
vol.773, pp.319–330, Springer Berlin Heidelberg, 1994.

[3] R. Ishikawa, E. Chida, and T. Mizuki, “Efficient card-based pro-
tocols for generating a hidden random permutation without fixed
points,” Unconventional Computation and Natural Computation,
Lecture Notes in Computer Science, vol.9252, pp.215–226, Springer
International Publishing, 2015.

[4] A. Koch, S. Walzer, and K. Härtel, “Card-based cryptographic
protocols using a minimal number of cards,” accepted in ASI-
ACRYPT 2015, Cryptology ePrint Archive, Report 2015/865, 2015.
http://eprint.iacr.org/, 2015.

[5] T. Mizuki, I.K. Asiedu, and H. Sone, “Voting with a logarithmic
number of cards,” Unconventional Computation and Natural Com-
putation, Lecture Notes in Computer Science, vol.7956, pp.162–
173, Springer Berlin Heidelberg, 2013.

[6] T. Mizuki, M. Kumamoto, and H. Sone, “The five-card trick can be
done with four cards,” Advances in Cryptology, ASIACRYPT 2012,
Lecture Notes in Computer Science, vol.7658, pp.598–606, Springer
Berlin Heidelberg, 2012.

[7] T. Mizuki and H. Shizuya, “A formalization of card-based crypto-
graphic protocols via abstract machine,” Int. J. Inf. Secur., vol.13,
no.1, pp.15–23, 2014.

[8] T. Mizuki and H. Shizuya, “Practical card-based cryptography,” Fun
with Algorithms, Lecture Notes in Computer Science, vol.8496,
pp.313–324, Springer International Publishing, 2014.

[9] T. Mizuki and H. Sone, “Six-card secure AND and four-card secure
XOR,” Frontiers in Algorithmics, Lecture Notes in Computer Sci-
ence, vol.5598, pp.358–369, Springer Berlin Heidelberg, 2009.

[10] T. Mizuki, F. Uchiike, and H. Sone, “Securely computing XOR with
10 cards,” Australasian Journal of Combinatorics, vol.36, pp.279–
293, 2006.

[11] T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone, “Securely comput-
ing three-input functions with eight cards,” IEICE Trans. Fundamen-
tals, vol.E98-A, no.6, pp.1145–1152, June 2015.

[12] T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone, “Card-based pro-
tocols for any boolean function,” Theory and Applications of Mod-
els of Computation, Lecture Notes in Computer Science, vol.9076,
pp.110–121, Springer International Publishing 2015.

[13] A. Nishimura, T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone,
“Five-card secure computations using unequal division shuffle,”
Theory and Practice of Natural Computing, Lecture Notes in Com-
puter Science, vol.9477, pp.109–120, Springer International Pub-
lishing, 2015.

[14] V. Niemi and A. Renvall, “Secure multiparty computations with-
out computers,” Theor. Comput. Sci., vol.191, no.1-2, pp.173–183,
1998.

[15] K. Shinagawa, T. Mizuki, J. Schuldt, K. Nuida, N. Kanayama,

http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1007/3-540-48329-2_27
http://dx.doi.org/10.1007/3-540-48329-2_27
http://dx.doi.org/10.1007/3-540-48329-2_27
http://dx.doi.org/10.1007/978-3-319-21819-9_16
http://dx.doi.org/10.1007/978-3-319-21819-9_16
http://dx.doi.org/10.1007/978-3-319-21819-9_16
http://dx.doi.org/10.1007/978-3-319-21819-9_16
http://dx.doi.org/10.1007/978-3-319-21819-9_16
http://eprint.iacr.org/2015/865
http://eprint.iacr.org/2015/865
http://eprint.iacr.org/2015/865
http://eprint.iacr.org/2015/865
http://dx.doi.org/10.1007/978-3-642-39074-6_16
http://dx.doi.org/10.1007/978-3-642-39074-6_16
http://dx.doi.org/10.1007/978-3-642-39074-6_16
http://dx.doi.org/10.1007/978-3-642-39074-6_16
http://dx.doi.org/10.1007/978-3-642-34961-4_36
http://dx.doi.org/10.1007/978-3-642-34961-4_36
http://dx.doi.org/10.1007/978-3-642-34961-4_36
http://dx.doi.org/10.1007/978-3-642-34961-4_36
http://dx.doi.org/10.1007/s10207-013-0219-4
http://dx.doi.org/10.1007/s10207-013-0219-4
http://dx.doi.org/10.1007/s10207-013-0219-4
http://dx.doi.org/10.1007/978-3-319-07890-8_27
http://dx.doi.org/10.1007/978-3-319-07890-8_27
http://dx.doi.org/10.1007/978-3-319-07890-8_27
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1587/transfun.e98.a.1145
http://dx.doi.org/10.1587/transfun.e98.a.1145
http://dx.doi.org/10.1587/transfun.e98.a.1145
http://dx.doi.org/10.1007/978-3-319-17142-5_11
http://dx.doi.org/10.1007/978-3-319-17142-5_11
http://dx.doi.org/10.1007/978-3-319-17142-5_11
http://dx.doi.org/10.1007/978-3-319-17142-5_11
http://dx.doi.org/10.1007/978-3-319-26841-5_9
http://dx.doi.org/10.1007/978-3-319-26841-5_9
http://dx.doi.org/10.1007/978-3-319-26841-5_9
http://dx.doi.org/10.1007/978-3-319-26841-5_9
http://dx.doi.org/10.1007/978-3-319-26841-5_9
http://dx.doi.org/10.1016/s0304-3975(97)00107-2
http://dx.doi.org/10.1016/s0304-3975(97)00107-2
http://dx.doi.org/10.1016/s0304-3975(97)00107-2
http://dx.doi.org/10.1007/978-3-319-22425-1_17

SHINAGAWA et al.: SECURE COMPUTATION PROTOCOLS USING POLARIZING CARDS
1131

T. Nishide, G. Hanaoka, and E. Okamoto, “Secure multi-party
computation using polarizing cards,” Advances in Information and
Computer Security, Lecture Notes in Computer Science, vol.9241,
pp.281–297, Springer International Publishing, 2015.

[16] K. Shinagawa, T. Mizuki, J.C.N. Schuldt, K. Nuida, N. Kanayama,
T. Nishide, G. Hanaoka, and E. Okamoto, “Multi-party computa-
tion with small shuffle complexity using regular polygon cards,”
Provable Security, Lecture Notes in Computer Science, vol.9451,
pp.127–146, Springer International Publishing, 2015.

[17] A. Stiglic, “Computations with a deck of cards,” Theor. Comput.
Sci., vol.259, no.1-2, pp.671–678, 2001.

Kazumasa Shinagawa received his B.E. de-
gree from University of Tsukuba in 2015. He is
now a first grade master student of University of
Tsukuba. He received SCIS Best Paper Award
from IEICE in 2015.

Takaaki Mizuki received his B.E. degree in
information engineering and his M.S. and Ph.D.
degrees in information sciences from Tohoku
University, Japan, in 1995, 1997 and 2000, re-
spectively. He is currently an associate profes-
sor of the Cyberscience Center, Tohoku Univer-
sity. His research interests include cryptology
and information security. He is a member of
IEICE, IEEE, and IPSJ.

Jacob C. N. Schuldt obtained a B.Sc.
degree and a M.Sc. degree (cand.scient) from
The University of Copenhagen, and a Ph.D. de-
gree from The University of Tokyo. He is cur-
rently a research scientist in the Advanced Cryp-
tosystems Research Group, National Institute
of Advanced Industrial Science and Technol-
ogy (AIST), Japan. Before joining AIST, he
held postdoctoral research positions at AIST and
Royal Holloway, University of London.

Koji Nuida received the Ph.D. degree in
Mathematical Science from The University of
Tokyo, Japan, in 2006. From 2006, he had
been working as a postdoctoral researcher, a re-
searcher and currently a senior researcher at Na-
tional Institute of Advanced Industrial Science
and Technology (AIST), Japan. He is currently
also receiving support as a Japan Science and
Technology Agency (JST) PRESTO Researcher.
His research interest is mainly in mathematics
and mathematical cryptography.

Naoki Kanayama received his B.E., B.S.,
M.S. and D.S. degrees from Waseda University,
Tokyo, Japan, in 1994, 1996, 1998 and 2003,
respectively. In 2003–2006, he was a post-
doctoral fellow of the Japan Society for the Pro-
motion of Science. In 2006–2013, he was a re-
search fellow at University of Tsukuba. He is
an assistant professor at University of Tsukuba.
Dr. Kanayama is a member of the Japan Society
for Industrial and Applied Mathematics and of
the Information Processing Society of Japan.

Takashi Nishide received B.S. degree from
the University of Tokyo in 1997, M.S. degree
from the University of Southern California in
2003, and Dr.E. degree from the University of
Electro-Communications in 2008. From 1997
to 2009, he had worked at Hitachi Software En-
gineering Co., Ltd. developing security prod-
ucts. From 2009 to 2013, he had been an as-
sistant professor at Kyushu University and from
2013 he is an associate professor at University
of Tsukuba. His research is in the areas of cryp-

tography and information security.

Goichiro Hanaoka graduated from the De-
partment of Engineering, The University of To-
kyo in 1997. Received Ph.D. degree from The
University of Tokyo in 2002. Joined AIST in
2005. Currently, Leader, Advanced Cryptosys-
tems Research Group, Information Technology
Research Institute, AIST. Engages in the R&Ds
for encryption and information security tech-
nologies including the efficient design and secu-
rity evaluation of public key cryptosystem. Re-
ceived the Wilkes Award (2007), British Com-

puter Society; Best Paper Award (2008), The Institute of Electronics, In-
formation and Communication Engineers; Innovative Paper Award (2012,
2014), Symposium on Cryptography and Information Security (SCIS);
Award of Telecommunication Advancement Foundation (2005); 20th An-
niversary Award (2005), SCIS; Best Paper Award (2006), SCIS; Encour-
agement Award (2000), Symposium on Information Theory and its Appli-
cations (SITA); and others.

Eiji Okamoto received his B.S., M.S. and
Ph.D. degrees in electronics engineering from
the Tokyo Institute of Technology in 1973, 1975
and 1978, respectively. He worked and stud-
ied communication theory and cryptography for
NEC central research laboratories since 1978. In
1991 he became a professor at Japan Advanced
Institute of Science and Technology, then at
Toho University. Now he is a professor at Fac-
ulty of Engineering, Information and Systems,
University of Tsukuba. His research interests

are cryptography and information security. He is members of IEEE and
ACM.

http://dx.doi.org/10.1007/978-3-319-22425-1_17
http://dx.doi.org/10.1007/978-3-319-22425-1_17
http://dx.doi.org/10.1007/978-3-319-22425-1_17
http://dx.doi.org/10.1007/978-3-319-22425-1_17
http://dx.doi.org/10.1007/978-3-319-22425-1_17
http://dx.doi.org/10.1007/978-3-319-26059-4_7
http://dx.doi.org/10.1007/978-3-319-26059-4_7
http://dx.doi.org/10.1007/978-3-319-26059-4_7
http://dx.doi.org/10.1007/978-3-319-26059-4_7
http://dx.doi.org/10.1007/978-3-319-26059-4_7
http://dx.doi.org/10.1016/s0304-3975(00)00409-6
http://dx.doi.org/10.1016/s0304-3975(00)00409-6

