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Abstract 19 

 20 

    The cyclin-dependent kinase inhibitor p21 is an unstructured protein regulated by multiple 21 

turnover pathways. The p21 abundance is tightly regulated and its defect causes tumor 22 

development. However, the mechanisms that underlie the control of p21 level are not fully 23 

understood. Here, we report a novel mechanism by which a component of the SCF ubiquitin ligase, 24 

Fbl12, augments p21 via the formation of atypical ubiquitin chains. We found that Fbl12 binds and 25 

ubiquitinates p21. Unexpectedly, Fbl12 increases an expression level of p21 by enhancing the 26 

mixed-type ubiquitination including not only K48- but also K63-linked ubiquitin chains, followed 27 

by promotion of a binding between p21 and CDK2. We also found that proteasome activator, 28 

PA28γ, attenuates p21 ubiquitination by interacting with Fbl12. In addition, UV irradiation induces 29 

a dissociation of p21 from Fbl12 and decreases K63-linked ubiquitination, leading to p21 30 

degradation. These data suggest that Fbl12 is a key factor that maintains adequate intracellular 31 

concentration of p21 at the normal condition. Our finding may provide a novel possibility that p21 32 

fate is governed by diverse ubiquitin chains. 33 

34 



 3 

Introduction 35 

 36 

The inhibitor of cyclin-dependent protein kinase (CDK), p21Waf1/Cip1 (hereafter referred to as 37 

p21), plays important roles in the regulation of cellular functions such as cell cycle, DNA repair 38 

and apoptosis. The relationship between p21 functions and cellular progression has been 39 

extensively studied (1). Normally, p21 inhibits CDKs through direct binding, leading to the 40 

suppression of cellular progression. p21 also suppresses Proliferating cell nuclear antigen 41 

(PCNA), which is a crucial factor for DNA replication and repair. Thus, p21 acts as a master 42 

modulator that governs cell cycle, and defects in p21 increase the risk of developing cancer. 43 

 p21 abundance is tightly controlled at all stages from transcription, translation to 44 

posttranslational regulation, via such processes as mRNA clearance, translational rate and 45 

protein degradation. Defects in this mechanisms that result in aberrant p21 level can cause cancer 46 

development (1, 2). This suggests that intracellular p21 abundance is intrinsically determined 47 

through the regulation of transcriptional and posttranslational modification. The transcriptional 48 

regulation of p21 is mediated by a variety of factors, such as p53, E2F1, Klf6, Myc and AP4 49 

(3-7), indicating that transcriptionally-regulated p21 expression is governed by several pathways 50 
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in a context-dependent manner. In addition, posttranslational modification is also associated with 51 

cellular p21 protein levels. Recent studies have determined that p21 phosphorylation at several 52 

sites is involved in its stability. For instance, Akt phosphorylates p21 at the Thr145 residue, 53 

resulting in p21 accumulation in the cytoplasm (8-10), and JNK1 and p38α stabilize p21 through 54 

phosphorylation of Ser130 (11, 12). Therefore, it is clear that p21 is controlled not only by 55 

transcriptional regulation but also by posttranslational modification.  56 

 p21 is an unstructured protein that is easily degraded by the proteasome under basal 57 

conditions (13). In order to protect itself from this default degradation, newly synthesized p21 58 

associates with target proteins to prevent from this default degradation (14-16). It has also been 59 

shown that carcinogenic factors, including an exposure to UV, changes expression of p21. 60 

Interestingly, substantial studies have shown that increased p21 expression significantly 61 

associates with metastasis, recurrence and survival in human (17, 18). Therefore, the 62 

maintenance of p21 abundance at an adequate level is critically important, and abnormal 63 

expression results in an increase of risk of various disorders (1). So far, it has been reported that 64 

several E3 ubiquitin ligases, including SCFskp2, Cul2LRR1, Cul4CDT2, APC/CCDC20 and MKRN1, 65 

enhance p21 ubiquitination, leading to proteasome degradation (14, 19-23). Interestingly, p21 66 
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mutant with all lysines mutated to arginines is still ubiquitinated. This suggests that p21 67 

ubiquitination occurs not only on intramolecular lysines but also on the N-terminal methionine 68 

(24). Moreover, p21 has been reported to interact with the proteasome α7 subunit of 20S 69 

proteasome and proteasome activator PA28γ (25-27) to promote proteasomal degradation of p21, 70 

independently of ubiquitination. Despite the topic of p21 degradation and ubiquitination, the 71 

physiological significance of p21 ubiquitination associated with its degradation remains unclear. 72 

 In this study, we report that Fbl12 and PA28γ regulate the p21 expression level. We 73 

found that Fbl12 associates with both p21 and PA28γ, resulting in a complex formation. In 74 

addition, mixed-type ubiquitination of p21 induced by Fbl12 is positively associated with the 75 

amount of p21 via attenuation of degradation rate. In addition, this effect was suppressed by 76 

PA28γ, resulting in a decrease in p21 expression level. Furthermore, UV irradiation promotes 77 

p21 degradation irrespective of Fbl12 expression. Thus, our findings provide the novel 78 

mechanisms by which both Fbl12 and PA28γ mediate p21 turnover via the control of mixed-type 79 

ubiquitin chain. 80 

81 
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Materials and Methods 82 

 83 

Materials - The following antibodies were used for immunoblot analyses: Flag (M2, SIGMA), 84 

Myc (9E10, Santa Cruz), HA (Y-11, Santa Cruz), GFP (Cat.#598, MBL), GST (B-14, Santa 85 

Cruz), Tubulin (DM1A, SIGMA), His (Cat.#27-4710-01, GE Healthcare) (Cat#.PM032, MBL), 86 

p21 (F-5, Santa Cruz), PA28γ (47/Psme3, BD Transduction Lab.), β5 (ab3330, abcam), Fbl12 87 

(ab96831, abcam), Ubiquitin Lys48-specific (Apu2, Merck Millipore), Ubiquitin Lys63-specific 88 

(Apu3, Merck Millipore). The following antibodies were used for immunocytochemistry: GFP 89 

(Cat.#598, MBL), p21 (F-5, Santa Cruz) and PA28γ (47/Psme3, BD Transduction Lab.). 90 

Lipofectamine 2000 was purchased from Invitrogen. The siFbl12 (EHU054981) and anti-Flag 91 

M2-agarose beads were purchased from SIGMA. Hoechst 33342 was purchased from Life 92 

Technologies. TALON metal affinity resin was purchased from Clontech. Glutathione Sepharose 93 

was purchased from GE Healthcare. MG132 was purchased from Peptide Institute. 94 

Polyethyleneimine was purchased from Polyscience. Cyclohexamide was purchased from Wako. 95 

 96 

Cell culture, transfection and stimulation - HEK 293, HEK 293T, HeLa, and HCT116 cells 97 
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were cultured in Dulbecco's Modified Eagle Medium (DMEM) (Wako) containing 5-10% fetal 98 

bovine serum, penicillin (100 units) and streptomycin (100 mg; P/S). To generate Fbxl12 99 

deficient cells, HEK293 cells were transfected with pSpCas9(BB)-2A-Puro-Fbl12 plasmid and 100 

incubated in the presence of 1.0 µg/ml of puromycin. Cells were transfected using Lipofectamine 101 

2000, Lipofectamine RNAi MAX Reagent (Life Technologies), and polyethyleneimine 102 

(Polyscience) according to the manufacturer’s instructions. HEK 293 and HeLa cells were 103 

irradiated by 12 µW/cm2 UV and then subjected to each analysis.  104 

 105 

Plasmid construction - pCAGEN-His-Ub, pCAGEN-His-Ub K48R, pCAGEN-His Ub K63R, 106 

pCAGEN-His-Ub 48K, and pCAGEN-His-Ub 63K constructs were provided by Y. Gotoh 107 

(University of Tokyo, Japan). pcDNA3-Flag-Fbl12, pcDNA3-Flag-Fbl12ΔF and 108 

pcDNA3-Flag-Skp1, constructs were described previously (28). p21 and Skp2 cDNA were 109 

amplified by PCR and subcloned into pcDNA-Flag. The Fbl12 and Skp1 cDNA were subcloned 110 

into pRSFDuet-1. The Fbl12 cDNA was subcloned into the EcoRI and XhoI sites of pCS4-Myc 111 

and pCS4-EGFP. The PA28γ and CDK2 cDNAs were amplified from the human HCT116 112 

cDNA library and subcloned into the BglII sites of pCS4-Myc. The p21 cDNA was amplified 113 
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from Flag-p21 and subcloned into the BglII sites of pCS4 and pCS4-EGFP. The p21ΔNLS 114 

cDNA was amplified from Flag-p21 and subcloned into the BglII sites of pCS4-EGFP. The p21 115 

NLS oligonucleotides were annealed and inserted into the EcoRI and XbaI sites of pCS4-EGFP. 116 

The p21 and PA28γ cDNA were subcloned into the BamHI sites of pGEX-6p-1. 117 

pSpCas9(BB)-2A-Puro was purchased from Addgene. The oligonucleotides of Fbl12 were 118 

designed and inserted into pSpCas9(BB)-2A-Puro by ligation into the BbsI sites. The primers 119 

used were as follows:  120 

PA28γ forward, 5’- aggatccgccaccatggcctcgttgctgaaggtg-3’; and reverse, 5’- 121 

gggatcctcagtacagagtctctgcattgctgctccg-3’; p21 forward, 5’-taggatccgccaccatgtccaatcctggtgatg-3’; 122 

and reverse, 5’- gcggatcctcagggttttctcttgcagaag acc-3’; p21ΔNLS forward, 123 

5’-taggatccgccaccatgtccaatcctggtgatg-3’; and reverse, 5’-taggatcctc atcggccctg agatgttccg g-3’; 124 

CDK2 forward, 5’- gggatccgccaccatggagaacttccaaaag g-3’; and reverse, 5’- 125 

aggatcctcagagtcgaagatggggtactggcttgg -3’; the oligonucleotides of p21 NLS were used as 126 

follows: sense, 127 

5'-taattcaaacggaggcagaccagcctgacagatttctatcactccaagcgcagattggtcttctgcaagagaaaaccctgat-3'; and 128 

antisense, 5'- 129 
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ctagatcagggttttctcttgcagaagaccaatctgcgcttggagtgatagaaatctgtcaggctggtctgcctccgtttg-3'; the 130 

oligonucleotides of Fbl12 for CRISPR/Cas9 were used as follows: sense, 131 

5'-caccgacctgacgctctacacgatg-3'; and antisense 5'- aaaccatcgtgtagagcgtcaggtc-3' 132 

 133 

RT-qPCR - Total RNAs were prepared by Isogen II (NIPPON GENE). The cDNA were 134 

synthesized by SuperScript III Reverse Transcriptase (Life Technologies). Quantitative RT-PCR 135 

was performed with THUNDERBIRD SYBR qPCR Mix (TOYOBO) and appropriated primers, 136 

then analyzed by using Thermal Cycler Dice Real Time System (TAKARA). The primers used 137 

were as follows:  138 

Fbl12 forward, 5’-cggtggctgtggcgacatgtc-3’; and reverse, 5’-caggtagccacccatccgca-3’;  139 

p21 forward, 5’-tacccttgtgcctcgctcag-3’; and reverse, 5’-ggagaagatcagccggcgtt-3’; Actin forward, 140 

5’- tggacatccgcaaagacctg-3’; and reverse, 5’-ggaggagcaatgatcttgatcttc-3’ 141 

 142 

Immunoblot analysis - Cells were lysed in extraction buffer (0.5% NP-40, 20 mM Tris-HCl [pH 143 

7.5], 150 mM NaCl, 1 mM, EDTA, 1 mM DTT) and centrifuged at 14,000 rpm for 5 minutes. 144 

The cleared lysates were separated by SDS-PAGE, transferred to PVDF membrane, probed with 145 
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primary antibodies, and detected with HRP-conjugated secondary antibodies and 146 

chemiluminescence reagent (ECL Plus Western Blotting Detection Reagents, GE Healthcare). 147 

Immunoblotting data were quantified using Image J software. 148 

 149 

Co-immunoprecipitation and mass spectrometory analysis – The cell lysates (see immunoblot 150 

analysis) were mixed with either anti-Flag agarose beads (SIGMA) or Protein G agarose beads 151 

(Thermo Scientific) containing either anti-Myc (9E10, Santa Cruz) or anti-GFP (Cat.#598, MBL) 152 

antibodies for 3 hours at 4°C. The immunoprecipitants were washed and subjected to 153 

immunoblot analysis with the indicated antibodies. All experiments have been performed more 154 

than twice and data are reproducible. The mass spectrometry analysis has been described 155 

previously (29). Briefly, Flag-tagged Fbl12 was expressed in HEK293 cells, immunoprecipitated 156 

using anti-Flag antibody, and subjected to LC-MS/MS analysis. These analyses were performed 157 

four times. All proteins identified by MS analyses in every experiment were shown in Table 1.  158 

 159 

GST pull down assay - The recombinant GST, GST-p21, GST-PA28γ, His-Fbl12/Skp1 were 160 

purified from Eschericha coli. BL21-Gold (DE3). The recombinant proteins were mixed with 161 
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Glutathione Sepharose beads (GE Healthcare) in buffer (0.5% NP-40, 20 mM Tris-HCl [pH 7.5], 162 

150 mM NaCl, 1 mM, EDTA, 1 mM DTT) and incubated for 3 hours at 4°C. The precipitants 163 

were washed and subjected to immunoblot analysis with the indicated antibodies. 164 

 165 

His-tag pull down assay - Cells were transfected with the indicated constructs and lysed in 166 

extraction buffer (6M guanidinium-HCl, 50 mM sodium phosphate buffer [pH 8.0], 300 mM 167 

NaCl and 5 mM imidazole). Cell lysates were sonicated briefly and were then incubated with 168 

TALON metal affinity resin (Clontech) for 4 hours at 4 Cº. The precipitants were washed with 169 

buffer (50 mM sodium phosphate buffer [pH 8.0], 300 mM NaCl and 5 mM imidazole) and then 170 

subjected to immunoblot analysis. All experiments have been performed more than twice and 171 

data are reproducible. 172 

 173 

Immunocytochemistry - HeLa cells plated on 15 mm coverslips and grown in 12-well plates 174 

were fixed with 4% paraformaldehyde in phosphate-buffered saline (PBS) for 10 minutes at 175 

room temperature. The coverslips were washed in PBS, blocked with 5% bovine serum albumin 176 

(BSA) in PBS with 0.4% Triton X-100, then incubated with the indicated primary antibodies for 177 
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1 hour at room temperature or overnight at 4°C. Following PBS wash, samples were incubated 178 

with secondary antibodies (Alexa Fluor 594 anti-mouse IgG [1:500], Alexa Fluor 488 anti-rabbit 179 

IgG [1:500]) for 30 minutes at room temperature in blocking solution. Cells were imaged using a 180 

fluorescence microscope (BIOREVO BZ-9000, Keyence). The images were quantified by using 181 

Image J software and GraphPad Prism (GraphPad software). 182 

 183 

Cell proliferation assay - HEK 293 cells were transfected with either plasmids. The transfected 184 

cells were plated on 96 well plates and incubated for 4 days. Cellular proliferation was analyzed 185 

using microplate reader Model 680 (BIO-RAD) and Cell Counting kit-8 (DOJINDO) according 186 

to the manufacturer’s instructions.  187 

188 
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Results 189 

 190 

Fbl12 promotes p21 ubiquitination  191 

Previous study has shown that Fbl12 binds and ubiquitinates p57Kip2 during TGFβ1-mediated 192 

inhibition of osteoblastic cell differentiation (28). It has also been reported that SCFFbl12 193 

enhances ubiquitination of target proteins implicated in cell cycle, DNA repair and embryonic 194 

differentiation (28, 30-32). In addition, recent large-scale screening identified a somatic mutation 195 

of Fbl12 in renal carcinoma (33). Thus, it is likely that SCFFbl12 regulates cellular proliferation 196 

and differentiation; however, it has been unclear whether SCFFbl12 mediates ubiquitination of 197 

another Cip/Kip protein, p21. To examine whether Fbl12 interacts with p21, we first introduced 198 

Flag-p21 and Myc-Fbl12 plasmids into HEK 293T cells. Immunoprecipitation of Flag-p21 199 

resulted in co-immunoprecipitation of Myc-Fbl12 (Fig. 1A). We then tested if this interaction is 200 

direct. To investigate this, we purified the recombinant proteins and performed the GST pull 201 

down assay. As it is difficult to solubilize the recombinant Fbl12, we co-purified Fbl12 with 202 

Skp1, which is reported to stabilize the conformation of F-box proteins (34). GST-p21 binds to 203 

His-Fbl12/Skp1 proteins efficiently in vitro (Fig. 1B). This data cannot rule out the possibility 204 
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that p21 associates with Skp1; however, we speculate that p21 binds to Fbl12 directly since p21 205 

is capable of interaction with Fbl12ΔF (see below). To further examine which region of Fbl12 is 206 

responsible for this interaction, we used the deletion mutants of Fbl12. Unexpectedly, both 207 

deletion mutants that lacked the leucine-rich repeat and F-box region were capable of interacting 208 

with p21 (Fig.1C), suggesting that p21 associates with both F-box and leucine-rich repeat 209 

regions. Next, to map the binding site of p21, we subdivided p21 into two fragments. p21ΔNLS 210 

interacted with Fbl12; on the other hand, NLS region of p21 could not associate with Fbl12. 211 

These data suggest that the CDK inhibitor domain (CDI) and linker region are responsible for 212 

this interaction (Fig. 1D). As Fbl12 forms the SCF ubiquitin ligase complex, we next sought to 213 

determine if expression of Fbl12 promotes p21 ubiquitination. To examine this, we transfected 214 

cells with histidine-tagged ubiquitin (His-Ub) and precipitated ubiquitinated proteins using 215 

TALON metal affinity resins under denatured conditions. In consequence, the amount of 216 

ubiquitinated p21 was markedly increased when Fbl12 was expressed (Fig. 1E), suggesting that 217 

SCFFbl12 promotes p21 ubiquitination in cells. 218 

 219 

Fbl12 increases p21 expression levels associated with mixed-type ubiquitination 220 
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Since it is known that the ubiquitination plays important roles in the selective protein degradation, 221 

we examined whether Fbl12 controls p21 expression level via the protein degradation. 222 

Unexpectedly, overexpression of Fbl12 in HEK293, HeLa, and HCT116 cells increased the 223 

amount of endogenous p21. These data imply that Fbl12 positively regulates p21 abundance in 224 

cells (Fig. 2A). We next investigated whether Fbl12 is necessary for an upregulation of p21 225 

under normal condition. To investigate this, we developed a CRISPR/Cas9 construct, which 226 

produces single-guide Fbl12 RNA (sgFbl12) (35), and disrupted Fbxl12 gene by sgFbl12 227 

construct. The endogenous p21 is slightly reduced in Fbxl12-deficient cells, suggesting that 228 

Fbl12 affects the amount of p21 in cells (Fig. 2B). To further confirm whether Fbl12 is involved 229 

in intracellular p21 level, we used endoribonuclease-prepared siRNA pool (siFbl12). The 230 

knockdown of endogenous Fbl12 by siFbl12 seemed to decrease the amount of p21 (Fig. 2C). 231 

We next sought to determine whether Fbl12 regulates either p21 transcription or mRNA stability 232 

in cells. To test this, we quantified the p21 mRNA levels using qRT-PCR. The amount of p21 233 

mRNA was not significantly affected by either overexpression or knockdown of Fbl12, implying 234 

that Fbl12 has little effect on the regulation of mRNA levels (Fig. 2D). Next, to investigate 235 

whether the increase of p21 level was dependent on the SCFFbl12 ubiquitin ligase activity, we 236 
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used Flag-Fbl12ΔF mutant, which is unable to form a functional SCF complex. Expression of 237 

Fbl12 clearly increased p21 expression level. On the other hand, Fbl12ΔF did not substantially 238 

increase p21 compared to full length of Fbl12 (Fig. 2E), although Fbl12ΔF is capable of 239 

interacting with p21 (Fig. 1C). Therefore, it is likely that upregulation of p21 by Fbl12 is 240 

dependent on its ubiquitination. Our data raise the question of why the p21 expression level was 241 

increased despite its ubiquitination. To answer this question, we analyzed the linkage-mode of 242 

the polyubiquitin chain using linkage-specific antibodies. We transfected His-p21 into HEK 293 243 

cells, precipitated by affinity resins, and followed by the detection of ubiquitin-linkage by 244 

immunoblot analysis. Interestingly, expression of Fbl12 enhanced not only K48-linked but also 245 

K63-linked ubiquitination, suggesting that SCFFbl12 promotes mixed-type of ubiquitination. To 246 

further confirm this, we used mutant ubiquitin. Consistent with Fig. 2F, expression of His-Ub 247 

K48R, of which Lys48 residue is mutated to arginine, promoted p21 ubiquitination as well as 248 

His-Ub WT (Fig. 2G). This data suggest that Fbl12 has an effect on the formation of not only the 249 

K48-linked ubiquitin chains but also other linkage modes. Interestingly, His-Ub K63R slightly 250 

but significantly attenuated this ubiquitination (Fig. 2G). In addition, expression of Ub 48K and 251 

63K, of which all lysine residues are mutated to arginine except at Lys48 and Lys63 respectively, 252 
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formed polyubiquitin chain on p21 by expression of Fbl12 (Fig. 2H). Furthermore, both 48K and 253 

63K-liked ubiquitinations of p21 are slightly decreased in Fbxl12-deficient cells (Fig. 2I). These 254 

results suggest that expression of Fbl12 promotes the formation of mixed-type of polyubiquitin 255 

chain containing both K48- and K63-linkage modes, leading to an increase of p21 expression 256 

level. 257 

 258 

Fbl12 suppresses default degradation of p21. 259 

As p21 is known to be a CDKs inhibitor, we investigated whether Fbl12 impedes the cellular 260 

proliferation. As we expected, Fbl12 expression slightly but significantly delayed the 261 

proliferation (Fig. 3A), suggesting that Fbl12-induced p21 upregulation is involved in cell 262 

growth. Next, to examine the mechanisms of how Fbl12 augments the expression level, we 263 

analyze the synthesis rate using proteasome inhibitor. Interestingly, the amount of endogenous 264 

p21 was clearly increased after treatment with MG132. Moreover, Fbl12 expression had little 265 

effect on the synthesis rate (Fig. 3B), suggesting that p21 synthesis rate is rapid under basal 266 

condition independently of Fbl12. We then examined the degradation rate of endogenous p21. 267 

The half-life of p21 in Fbl12-expressing cells was clearly extended than control cells (Fig. 3C). 268 
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In addition, p21 degradation was completely blocked by treatment with proteasome inhibitor, 269 

MG132, regardless of Fbl12 expression (Fig. 3D), demonstrating that Fbl12 attenuates the 270 

proteasome-dependent p21 degradation. We further confirmed whether Fbl12 affects the half-life 271 

of overexpressed p21. Overexpression of Fbl12 attenuates a degradation rate of exogenous p21. 272 

Moreover, Fbl12 did not affect the upper limit of overexpressed p21 (Fig.3E), implying that an 273 

upper limit of p21 expression level is already dictated innately. Probably, overexpression of p21 274 

reaches the saturation condition in cells. Next, we investigated the mechanisms of how Fbl12 275 

regulates the amount of p21. Previously, it has been reported that the p21 binding proteins block 276 

the default degradation after newly synthesis of p21 (14-16). Additionally, Fbl12 negatively 277 

regulates cellular proliferation. Therefore, we hypothesized that Fbl12 modulates the binding 278 

affinity of p21 with target protein involved in cell cycle, leading to a delay of degradation. To 279 

examine this, we tested whether Fbl12 regulates the interaction between p21 and CDK2, which is 280 

one of the targets of p21 (36). Interestingly, expression of Fbl12 clearly enhanced their binding 281 

ability (Fig. 3F), demonstrating that the mixed-type ubiquitination synthesized by Fbl12 282 

promotes their interaction. This finding may support the idea that binding proteins, such as 283 

CDK2, protect p21 from proteasome-dependent degradation. 284 
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 285 

PA28γ associates with SCFFbl12 286 

To understand the precise mechanisms by which SCFFbl12 governs the amount of p21 in cells, we 287 

performed proteomics analysis by using LC-MS/MS system to identify the other Fbl12 binding 288 

proteins. Consequently, we identified 27 proteins as Fbl12-binding targets (Table 1). One of the 289 

most interesting proteins was PA28γ. PA28γ forms a homohexameric ring and acts as a 290 

proteasome activator (37). Recent studies have reported that PA28γ directly associates with p21, 291 

leading to p21 degradation independently of ubiquitination (25, 26). Thus, it is likely that PA28γ 292 

is involved in the control of p21 expression levels in concert with Fbl12. Before pursuing this 293 

hypothesis, we verified the interaction between Fbl12 and PA28γ. Myc-PA28γ was significantly 294 

associated with Flag-Fbl12 (Fig. 4A). In the reverse experiment, immunoprecipitation of 295 

Flag-Fbl12, but not Flag-Skp2 (a structural homologue of Fbl12), caused 296 

co-immunoprecipitation of Myc-PA28γ (Fig. 4B). We next determined the binding region using 297 

deletion mutants. In consequence, we found that the F-box domain of Fbl12 is required for this 298 

interaction (Fig. 4C). Furthermore, recombinant GST-PA28γ was associated with 299 

His-Fbl12/Skp1 in vitro, suggesting that PA28γ is able to bind Fbl12 directly (Fig. 4D). To ask 300 
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whether these proteins colocalize in culture cells, we performed immunocytochemistry after 301 

ectopic expression of EGFP-Fbl12. Both EGFP-Fbl12 and endogenous PA28γ colocalized in the 302 

nucleus, supporting the finding that Fbl12 associates with PA28γ in the same subcellular region 303 

(Fig. 4E). We then examined whether SCFFbl12 ubiquitinates PA28γ as well as p21. The 304 

ubiquitination level of Myc-PA28γ was comparable with the control sample, indicating that 305 

SCFFbl12 does not enhance ubiquitination of PA28γ (Fig. 4F). As the F-box domain, which is 306 

essential to associate with Skp1 and form the SCF ubiquitin ligase complex, was important to 307 

interact with PA28γ (Fig. 4C), we next asked whether Skp1 and the PA28γ-20S proteasome are 308 

part of the same protein complex. When HA-Fbl12 was expressed in cells, Myc-PA28γ was 309 

co-precipitated with Flag-Skp1. However, β5, which is a core subunit of the 20S proteasome, 310 

was not included in this complex (Fig. 4G). These results suggest that SCFFbl12 is associated with 311 

PA28γ, which is free from the 20S proteasome. To further confirm this observation, we 312 

performed a glycerol density gradient centrifugation. Most PA28γ was found in the lighter 313 

fraction, and a small concentration of PA28γ was found in the heavier fraction, including the β5 314 

subunit. Intriguingly, the fractions containing Fbl12 were different from β5 (Fig. 4H), supporting 315 
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the idea that SCFFbl12 associates with a certain amount of PA28γ, which is free from the 20S 316 

proteasome.  317 

 318 

PA28γ attenuates SCFFbl12-dependent p21 ubiquitination 319 

Previous studies have reported that PA28γ-20S proteasome promotes p21 degradation 320 

independently of ubiquitination. Also, it has been reported that the defects in PA28γ delay the 321 

degradation rate under normal condition (25, 26). To verify these results, we assessed if PA28γ 322 

mediates both p21 degradation and amplification at least in our system. Consequently, 323 

overexpression of PA28γ decreased p21 expression levels in several cell lines (Fig. 5A) and 324 

attenuated cellular proliferation (Fig. 5B), demonstrating that PA28γ is involved in regulating 325 

cellular proliferation via p21 expression level. Since p21 ubiquitination regulated by Fbl12 is 326 

implicated in expression level and proliferation, we investigated if PA28γ has an effect on 327 

SCFFbl12-induced p21 ubiquitination. As we described before, overexpression of Fbl12 increased 328 

p21 ubiquitination. However, this effect was suppressed by PA28γ (Fig. 5C), suggesting that 329 

PA28γ attenuates SCFFbl12-induced p21 ubiquitination. These observations prompt us to 330 

investigate whether PA28γ controls p21 expression via incorporation into SCFFbl12 complex. To 331 
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assess this, we performed immunoprecipitation assay. In contrast to the previous research, 332 

PA28γ did not show a clear binding to p21. However, this binding was dramatically increased 333 

when Fbl12 was co-expressed in cells (Fig. 5D), implying that PA28γ decreases p21 expression 334 

associated with the regulation of SCFFbl12.  335 

 336 

UV stimulation induces p21 degradation through disassembly of protein complex. 337 

Previous study has shown that UV irradiation induces p21 expression through p53 activation (3). 338 

On the other hand, several studies have shown that UV irradiation triggers rapid degradation of 339 

p21 (38-41). Thus, we examined whether Fbl12 suppresses UV-induced p21 turnover. 340 

Stimulation with UV for one hour markedly decreased the amount of endogenous p21 even in 341 

the presence of Fbl12 expression in HeLa cells (Fig. 6A). In addition, Fbl12 had little effect on 342 

the degradation rate of p21 in response to UV irradiation (Fig. 6B). Meanwhile, we did not 343 

observe a decrease in the amount of overexpressed-p21 level by the UV irradiation in our system 344 

(see Fig. 6C to 6F). Probably, p21 synthesis rate through an expression vector is higher than an 345 

endogenous p21 promoter. Taken together, our data suggest that expression of Fbl12 does not 346 

attenuate UV-induced p21 degradation. The question arises that why UV irradiation promotes 347 
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p21 degradation despite the existence of Fbl12. To answer this question, we investigated whether 348 

UV stimulation alters the protein complex status. Consistent with our data in Figure 5D, Fbl12 349 

promotes an association of p21 with PA28γ. On the other hand, this effect was attenuated by UV 350 

irradiation (Fig. 6C). As PA28γ remained bound to the SCFFbl12 complex after UV stimulation, 351 

we hypothesized that the binding ability between p21 and Fbl12 was decreased in response to 352 

UV stimulation. To confirm this idea, we conducted immunoprecipitation assay with or without 353 

UV irradiation. In consequence, p21 was released from Fbl12 after UV stimulation (Fig. 6D), 354 

suggesting that UV stimulation promotes disassembly of PA28γ-SCFFbl12-p21 complex, resulting 355 

in promoting p21 degradation. Finally, we examined whether UV stimulation regulates the 356 

ubiquitination status of p21 in our system. Stimulation with UV for one hour had a little effect on 357 

the change of p21 ubiquitination in the absence of Fbl12 expression (Fig. 6E). Interestingly, this 358 

stimulation slightly reduced the K63-linked ubiquitination even in the Fbl12-expressing cells 359 

(Fig. 6F), demonstrating that UV stimulation may attenuate Fbl12-induced K63-linked 360 

ubiquitination. Taken together, these data suggest that UV irradiation induces disassembly of 361 

protein complex and attenuates K63-linked ubiquitination, leading to rapid degradation of p21.362 
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Discussion 363 

 364 

We have shown here that Fbl12 increases p21 expression levels through their interactions. 365 

SCFFbl12 enhances p21 mixed-type ubiquitination and this effect was suppressed by PA28γ. 366 

Consequently, expression of Fbl12 extended the half-life of p21. Furthermore, UV stimulation 367 

promotes disassembly of PA28γ-SCFFbl12-p21 complex, reduces mixed-type ubiquitination of 368 

p21, resulting in its degradation. These data demonstrate that Fbl12 controls the intracellular 369 

concentration of p21 and Fbl12-induced mixed-type ubiquitination is a key event that prevents 370 

p21 from default degradation via binding proteins (Fig.7).  371 

 Recent studies have shown that p21 associates with binding proteins immediately after 372 

the synthesis, resulting in its stabilization (14-16). Probably, this binding might hamper 373 

K48-linked ubiquitination or recognition by proteasome. In our study, we found that SCFFbl12 374 

enhances mixed-type ubiquitination, including K63-linkage ubiquitin chain, leading to an 375 

increase of p21 expression. Although the mechanisms inferred from our findings have not been 376 

clarified, several studies have posited a relationship between the SCF complex and the 377 

K63-linked ubiquitin chain. For example, one of the F-box proteins, Fbxl21 ubiquitinates CRY 378 
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to control the circadian rhythms (42, 43). It was also reported that SCFFbxl21 mediates the 379 

formation of K63- and K11-linked polyubiquitin chains, implying that the linkage modes of 380 

ubiquitin chain might be a determinant of CRY stability (42). Additionally, SCFβ-TrCP competes 381 

with SCFFbxw7, and leads to K63-linked ubiquitin chain conjugation on c-Myc that eventually 382 

leads to the blockage of c-Myc from proteasomal degradation (44). Given that the conjugation of 383 

ubiquitin chains of more than four molecules is thought to be necessary for the recognition of 384 

26S proteasome (45), insertion of K63-linked ubiquitination into K48-linked ubiquitin chain may 385 

hamper the preferred conformation of the polyubiquitin chain, resulting in the decrease of 386 

affinity for 26S proteasome. Since we observed p21 degradation attenuated by Fbl12 387 

overexpression along with the rapid p21 synthesis (Fig. 3B), p21 degradation rate might be 388 

surpassed by its synthesis rate. Consequently, p21 expression level appears to increase 389 

dependently on Fbl12. Alternatively, it is possible that the K63-linked ubiquitination competes 390 

with K48-linked ubiquitination on the same lysine site(s) of target proteins in a similar manner to 391 

that of c-Myc. 392 

 It has been shown that the E2s, which are ubiquitin-conjugating enzymes, are 393 

important for the determination of ubiquitin-linkage mode (46). Usually, SCF complex seems to 394 
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conjugate K48-linked ubiquitination with target protein via the recruitment of specific E2 395 

enzymes, such as UBE2R1 and UBE2D2. On the other hand, recent studies have reported that 396 

the heterodimer of UBE2N with UBE2V1 plays important roles in the formation of K63-linked 397 

ubiquitin chain (46). The mechanisms of how SCF complex mediates mixed-type ubiquitination 398 

remain unclear. It has been known that Ubc4, which is a yeast homolog of UBE2D2, is involved 399 

in the formation of not only K48-linked ubiquitination but also K63-linked ubiquitination under 400 

stress condition (47). In addition, UBE2D2 is responsible for SCFFbl12-induced p57 401 

ubiquitination (28). Thus, UBE2D2 is thought to be a primary candidate that controls 402 

SCFFbl12-dependent mixed-type ubiquitination. However, our preliminary experiments have 403 

shown that the combination between SCFFbl12 and UBE2D2 had a little effect on the 404 

enhancement of p21 ubiquitination in our in vitro ubiquitination assay (data not shown). This 405 

suggests that other specific E2 enzyme is responsible for this cascade reaction in cells. 406 

Alternatively, it is plausible that other unknown factors play important roles in the regulation of 407 

linkage specificity and activity of SCFFbl12. Indeed, expression of PA28γ decreases the 408 

ubiquitination level of not only p21 but also possibly by autoubiquitinated Fbl12 (Fig. 5C). 409 

Probably, PA28γ might alter the structural distance from E2 enzyme to the substrate on the 410 
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SCFFbl12 complex, resulting in a decrease of ubiquitin ligase activity. The biological relevance 411 

that underlie PA28γ-regulated p21 turnover are yet to be elucidated. Previously, several groups 412 

have shown that PA28γ promotes ubiquitin-independent degradation of p21 through their 413 

binding. (25, 26). We report here that an increment of PA28γ negatively regulates the amount of 414 

p21. As PA28γ level has been reported to be upregulated by NF-κB activation (48), the 415 

regulation of the amount of PA28γ could mediate a pivotal process that controls p21 expression 416 

level regulated by stress responses. 417 

 Recently, we have reported that UV irradiation induces Fbl12ΔF transcription via the 418 

alternative promoter, leading to an involvement of Fbl12 regulation (49). Since overexpression 419 

of Fbl12ΔF does not affect the cellular proliferation, it is possible that Fbl12-related pathways 420 

are linked to UV-induced DNA damage response. Interestingly, we occasionally observed 421 

punctate structure co-localized with Fbl12 in nucleus after UV irradiation (data not shown). It 422 

has also been reported that PA28γ translocates to Cajal bodies in response to UV, leading to an 423 

enhancement of their degradation (50). These results have suggested that the SCFFbl12-PA28γ 424 

protein complex is a potent mediator that regulates nuclear integrity following DNA damage 425 

response. Since defect in Fbxl12 gene generated by CRISPR/Cas9 had little effect on the 426 
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proliferation under basal condition (data not shown), our finding could be involved in not only 427 

cellular proliferation but also in DNA damage responses, as well as Fbl12ΔF. One potential 428 

mechanism is that Fbl12 activity is augmented by stress stimulation such as UV. Intriguingly, 429 

Fbl12 is thought to be phosphorylated at Ser-124 (http://www.phosphosite.org/). This 430 

observation suggests that Fbl12 activity is modulated by phosphorylation in response to the 431 

stress stimulation. However, the precise mechanisms that underlie the control of this mechanisms 432 

mediated by SCFFbl12-PA28γ proteins remain unclear. This will need to be investigated more 433 

thoroughly in the future. 434 

 Taken together, we found that Fbl12 binds and ubiquitinates p21. This ubiquitination is 435 

associated with the stability of p21. In addition, we found that Fbl12 regulates default 436 

degradation under basal condition but not under UV-stimulated condition. Therefore, our 437 

findings provide novel mechanisms that underlie the regulation of p21 expression level in cells. 438 
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Figure legends 

 

Figure 1. Fbl12 promotes p21 ubiquitination 

(A) Co-immunoprecipitation of Myc-Fbl12 and Flag-p21 in HEK 293T cells. (B) GST pull down 

of His-Fbl12/Skp1 and either GST or GST-p21. The precipitated proteins were analyzed by 

immunoblot analysis. (C) Schematic structure of Fbl12. F-Box: F-Box domain; LRR: 

leucine-rich repeat (upper panel). Co-immunoprecipitation of p21 and either EGFP-Fbl12, 

EGFP-Fbl12 F-box, or EGFP-Fbl12ΔF (lower panel). (D) Schematic structure of p21. CDI: 

CDK inhibitor domain; NLS: nuclear localization signal (upper panel). Co-immunoprecipitation 

of Flag-Fbl12 and either EGFP-p21, EGFP-p21ΔNLS, or EGFP-p21NLS (lower panel). (E) 

Ubiquitinated proteins were purified from denatured cell lysates using Talon metal affinity resin, 

and analyzed by immunoblot analysis. 

 

Figure 2. Fbl12 increases p21 expression levels associated with mixed-type ubiquitination 

(A) HEK 293, HeLa, and HCT116 cells were transfected with either Myc-Fbl12 or control vector. 

Cell lysates were subjected to immunoblot analysis. (B) Fbxl12-deficient cell lysates were 
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analyzed by immunoblot analysis. (C) HEK 293 cells were treated with siFbl12 (200 ng/ml or 

400 ng/ml) and incubated for 1 or 2 days. Cell lysates were subject to immunoblot analysis 

(upper panel). The qPCR analysis of Fbl12 mRNA in esiRNA-treated HEK 293 cells. Results 

were normalized to actin expression (n=3, mean ± SEM, *P<0.05 by student’s t-test) (lower 

panel). (D) qPCR analysis of p21 mRNA in either Flag-Fbl12-expressing cells (left) or 

siFbl12-treated cells (right). Results were normalized to actin expression (n=3, mean ± SEM, 

N.S., not significant by student’s t-test). (E) HEK 293 cells were transfected with either 

Flag-Fbl12 or Flag-Fbl12ΔF. Cell lysates were subjected to immunoblot analysis. (F) His-p21 

were purified from denatured cell lysates using Talon metal affinity resin and analyzed by 

immunoblot analysis. (G and H) Ubiquitinated proteins were purified from denatured cell 

lysates using Talon metal affinity resin and analyzed by immunoblot analysis. (I) Ubiquitinated 

proteins were purified from denatured Fbxl12-deficient cell lysates using Talon metal affinity 

resin and analyzed by immunoblot analysis.  

 

Figure 3. Fbl12 suppresses default degradation of p21 
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(A) HEK293 cells were transfected with either control or Myc-Fbl12 plasmids. The cellular 

proliferation was analyzed using cell counting kit-8 (n=3, mean ± SEM, **P<0.01 by student’s 

t-test). (B) HEK 293 cells were transfected with either Myc-Fbl12 or control vector. Cells were 

incubated with 20 µM MG132 for the indicated time, and were then subjected to immunoblot 

analyses (left panel). Data were quantified using Image J software. These data are representative 

of three independent experiments (right panel). (C) HEK 293 cells were transfected with either 

Myc-Fbl12 or control vector. Cells were incubated in the absence or presence of 50 µg/ml CHX 

for the indicated time, and were then subjected to immunoblot analyses (left panel). Data were 

quantified by using Image J software. These data are representative of three independent 

experiments (right panel). (D) HEK 293 cells were transfected with either Myc-Fbl12 or control 

vector. Cells were incubated in the absence or presence of 50 µg/ml CHX together with 20 µM 

MG132 for the indicated time, and were then subjected to immunoblot analyses (left panel). Data 

were quantified using Image J software. These data are representative of three independent 

experiments (right panel). (E) HEK 293 cells were transfected with indicated vectors. Cells were 

incubated in the absence or presence of 50 µg/ml CHX for the indicated time, and were then 

subjected to immunoblot analyses. (F) Co-immunoprecipitation of Flag-Fbl12, p21 and 
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Myc-CDK2 in HEK 293 cells. Ectopic expression of Fbl12 promoted the association of p21 with 

CDK2. 

 

Figure 4. PA28γ associates with SCFFbl12 

(A) Co-immunoprecipitation of Flag-Fbl12 and Myc-PA28γ. (B) Co-immunoprecipitation of 

Flag-tagged F-box proteins (Fbl12 or Skp2) and Myc-PA28γ. (C) Co-immunoprecipitation of 

Myc-PA28γ and either Flag-Fbl12 or Flag-Fbl12ΔF. (D) GST pull down of His-Fbl12/Skp1 and 

either GST or GST-PA28γ. The precipitated proteins were analyzed by immunoblot analysis. (E) 

Fluorescent images of HeLa cells expressing EGFP-Fbl12. Cells were stained with anti-GFP and 

anti-PA28γ antibodies. Bar: 20 µm. (F) Ubiquitinated proteins were purified from denatured cell 

lysates using Talon metal affinity resin and analyzed by immunoblot analysis. (G) 

Co-immunoprecipitation of Flag-Skp1, HA-Fbl12, and Myc-PA28γ in HEK 293T cells. (H) Cell 

lysates separated by a glycerol density gradient centrifugation were subjected to immunoblot 

analysis. Flag-Fbl12 and PA28γ form a complex smaller than the 20S.                                                                                                                                       

 

Figure 5. PA28γ attenuates SCFFbl12-induced p21 ubiquitination 
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(A) HEK 293, HeLa, and HCT116 cells were transfected with either Myc-PA28γ or control 

vector. Cell lysates were subjected to immunoblot analysis. (B) HEK 293 cells were transfected 

with either control or Myc-Fbl12 plasmids. The cellular proliferation was analyzed using cell 

counting kit-8 (n=3, mean ± SEM, *P<0.05 by student’s t-test). (C) Ubiquitinated proteins were 

purified from denatured cell lysates using Talon metal affinity resin and analyzed by immunoblot 

analysis. Expression of PA28γ reduced SCFFbl12-induced p21 ubiquitination. (D) 

Co-immunoprecipitation of Flag-Fbl12, p21 and Myc-PA28γ in HEK 293T cells. Ectopic 

expression of Fbl12 promoted the association of p21 with PA28γ. 

 

Figure 6. UV stimulation induces p21 degradation through disassembly of protein complex. 

(A) Fluorescent images of HeLa cells expressing EGFP-Fbl12. Cells were stimulated by 12 

µW/cm2 UV, and were then subjected to immunocytochemistry using anti-GFP and anti-p21 

antibodies (left). Arrowheads indicate Fbl12-expressing cells. Bar: 20 µm. Ratiometric 

measurement of p21 to Hoechst fluorescence observed in cells expressing EGFP-Fbl12 before 

and after stimulation with UV (right) (n >100; mean ± SD; ***, P < 0.001 by one-way ANOVA). 

(B) HEK 293 cells were transfected with either Myc-Fbl12 or control vector. Cells were 



 45 

stimulated by 12 µW/cm2 UV, and were then subjected to immunoblot analysis (left). Expression 

level was quantified using Image J softwares (right). (C) Co-immunoprecipitation of Flag-Fbl12, 

p21 and Myc-PA28γ in HEK 293 cells. UV irradiation promoted the dissociation of p21 from 

Fbl12-PA28γ complex. (D) Co-immunoprecipitation of Flag-Fbl12 and p21 in HEK 293 cells. 

UV irradiation promoted the dissociation of p21 from Fbl12. (E and F) HEK 293 cells were 

stimulated with UV in the presence or absence of Fbl12 expression. Ubiquitinated proteins were 

purified from denatured cell lysates using Talon metal affinity resin, and analyzed by 

immunoblot analysis. 

 

Figure 7. Model for the regulation of p21 turnover 

SCFFbl12 promotes mixed-type ubiquitination of p21, and attenuates the default degradation under 

basal condition, and this effect is cancelled by PA28γ (upper). UV stimulation promotes 

disassembly of PA28γ-SCFFbl12-p21 complex and induces rapid degradation of p21 (lower). 

Other E3 ligase may ubiqutinate free p21 in cells. 

 



A

Figure 1 Tsuruta et al.
Fbl12 promotes p21 ubiquitination

IB: Flag

IB: Flag

IB: Myc

IB: Myc

32.2 -

Total cell
lysate

-
- -

+ +
+

IP: Flag

Myc-Fbl12
Flag-p21

32.2 -

C

B

IB: Flag

IB: His

IB: p21

p21

Flag-Fbl12

Pull 
down

Total cell
lysate

His-Ub
- + ++

44.3 -

32.3 -
26.8 -

44.3 -

32.3 -
26.8 -

44.3 -

32.3 -

69.7 -

- -
- -

+ +
+ +

- + ++
- -
- -

+ +
+ +

D

32.2 - IB: GST

IB: His

His-Fbl12/Skp1

GST-p21
GST -

+

+
-
-

-
+
+

-
-
+

+
-
-

-
+
+

-

26.8 -

32.2 -

15 %
Input

Pull 
down

32.2 -

44.3 -

32.2 -

Total cell
lysate

IB: Flag

IP: Flag

Flag-Fbl12
EGFP
EGFP-p21
EGFP-p21ΔNLS

IB: GFP

EGFP-p21NLS

+
-
-
-
-
-

-

-
-
-

+

-
-

-
-

+

-

-
-

- +

-

-
-

-
+
-
-
-

+
-

-
-

+
-
-

- +

-

-
-

++++
+

-
-
-
-
-

-

-
-
-

+

-
-

-
-

+

-

-
-

- +

-

-
-

-
+
-
-
-

+
-

-
-

+
-
-

- +

-

-
-

++++

17.2 -

IB: GFP

IB: p21

p21

EGFP-Fbl12

EGFP-Fbl12ΔF
EGFP-Fbl12 F-box

EGFP

Total cell
lysate

+
+
-
-
-

+

+
-

-
-

+

+
-
-

-

+

+

-

-
-

-
-
-

-
-

+
+
-
-
-

+

+
-

-
-

+

+
-
-

-

+

+

-

-
-

-
-
-

-
-

IP: GFP

44.3 -

32.2 -

E

Fbl12

Fbl12ΔF

F-Box LRRN C

LRR CN

F-BoxN
Fbl12 F-box

Binding

+

+

+

p21ΔNLS

NLS
p21

N C

N CCDI

CDI

NLS
p21NLS

N C

Binding

+

+

-



Figure 2 Tsuruta et al.
Fbl12 increases p21 expression levels associated with mixed-type ubiquitination
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Figure 3 Tsuruta et al.
Fbl12 suppresses default degradation of p21
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Figure 4 Tsuruta et al.
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Figure 5 Tsuruta et al.
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Figure 6 Tsuruta et al.
UV stimulation induces p21 degradation through disassembly of protein complex.
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Figure 7 Tsuruta et al.
Model for the regulation of p21 turnover
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Gene symbol Gene description

PS0E���P$2�Ȗ� proteasome activator subunit 3; isoform 1

SKP1 S-phase kinase-associated protein 1; isoform b

TCEB1 elongin C

UBR5 ubiquitin protein ligase E3 component n-recognin 5

AKAP8L A kinase anchor protein 8-like

PPM1G protein phosphatase 1G

PPP5C protein phosphatase 5, catalytic subunit

PRKAR1A cAMP-dependent protein kinase, regulatory subunit alpha 1

GPRASP2 G protein-coupled receptor associated sorting protein 2

IPO5 importin 5

NAP1L4 nucleosome assembly protein 1-like 4

DDB1 damage-specific DNA binding protein 1

TIMM13 translocase of inner mitochondrial membrane 13

NIP30 hypothetical protein LOC80011

RNF219 ring finger protein 219

SAPS3 SAPS domain family, member 3

LOC152667|NIP30 NIP30-like family

TTC9C tetratricopeptide repeat domain 9C

FKBP5 FK506 binding protein 5

MAGED1 melanoma antigen family D, 1

CACYBP calcyclin binding protein; isoform 2

CALM1|CALM2|CALM3 calmodulin; 1 or 2 or 3

CALM1|CALM2|CALM3|CALML3 calmodulin 1 or calmodulin 2 or calmodulin 3 or calmodulin-like 3

CALU calumenin

RCN2 reticulocalbin 2, EF-hand calcium binding domain

CUL1 cullin 1

NAP1L1|NAP1L4 nucleosome assembly protein 1-like; 1 or 4

Table 1. 

Proteins identified by mass spectrometry of Fbl12 immunoprecipitates


