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REPRESENTATIONS OF NATURAL NUMBERS

AS THE SUM OF A PRIME AND A k-TH POWER

By

Jörg Brüdern

Abstract. Subject to the Riemann hypothesis for Dirichlet L-

functions an asymptotic formula is obtained for the number of

representations of a natural number n as the sum of a prime and a

k-th power, valid for almost n. Estimates for the error term in the

asymptotic formula as well as for the size of the exceptional set are

of a smaller order of magnitude than was known previously.

1. Introduction

We return to the questions investigated in collaboration with Perelli [2], and

reexamine sums of a prime and a k-th power where kb 2 is a fixed integer. Here

we are concerned with the number of representations in this form. When n is a

natural number, let

rkðnÞ ¼
X

pþxk¼n

log p

where the sum is over all primes p and all natural numbers x. Likewise, let

r�kðnÞ ¼
X

p1þpk
2
¼n

ðlog p1Þðlog p2Þ

where now the sum is over all primes p1, p2. According to a widely accepted

philosophy, one expects asymptotic formulae for rkðnÞ and r�kðnÞ that coincide

with the major arc contributions in a formal application of the circle method.

In order to describe the main terms in these asymptotics precisely, we require

some notation. Let %ðn; pÞ denote the number of incongruent solutions of the

congruence

xk 1 n mod p; ð1Þ
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and let %�ðn; pÞ denote the number of those solutions of (1) where pF x. The

numbers %ðn; pÞ and %�ðn; pÞ of course also depend on k, but this is suppressed

here for notational simplicity. Let Ik denote the the set of all natural numbers n

for which the polynomial xk � n is irredicible over the rationals. Note that when

n is a natural number, then xk � n is reducible if and only if n ¼ mp for some

prime pjk (see, for example, Lang [7] Chapter VI, Theorem 9.1), and conse-

quently Ik contains all but OðN 1=2Þ of the natural numbers not exceeding N.

Only when n A Ik, we may expect that rkðnÞ is large. Indeed, when n A Ik, the

singular products

SkðnÞ ¼
Y
p

1� %ðn;pÞ
p

1� 1
p

; S�
kðnÞ ¼

Y
p

1� % �ðn;pÞ
p�1

1� 1
p

ð2Þ

converge as a consequence of the prime ideal theorem, and the expected

asymptotic formulae take the shape

rkðnÞ ¼ SkðnÞn1=kð1þ oð1ÞÞ; r�kðnÞ ¼ S�
kðnÞn1=kð1þ oð1ÞÞ: ð3Þ

However, we are far from being able to prove these formulae. All what is

currently known is that

rkðnÞ ¼ SkðnÞn1=k 1þO
log log N

log N

� �� �

holds for all n A Ik with at most OðN=ðlog NÞAÞ exceptions naN; here A > 0 is

any fixed real number. This much follows from Miech [8] and Kawada [5], or

Perelli and Zaccagnini [9], and a corresponding result for r�kðnÞ is at least implicit

in these sources. Because of the possible existence of Siegel zeros, there is little

hope for improvements. However, if we assume that the Generalized Riemann

Hypothesis (hereafter abbreviated to GRH) is true (that is, all non-trivial zeros of

Dirichlet L-functions lie on the line Re s ¼ 1
2), then both the error term and the

exceptional set may be significantly reduced.

Theorem. Suppose that GRH holds. Then, for any kb 2 the asymptotic

formulae

rkðnÞ ¼ SkðnÞn1=k þOðn1=k�1=ð6000k2ÞÞ

r�kðnÞ ¼ S�
kðnÞn1=k þOðn1=k�1=ð6000k2ÞÞ

hold for all but OðN 1�1=ð6000k2ÞÞ of the natural numbers n A Ik not exceeding N.

350 Jörg Brüdern



Kawada [5] observed that for n A Ik one has SkðnÞX ðlog nÞ�k. Hence the

theorem implies that all but OðN 1�1=ð6000k2ÞÞ of the n not exceeding N are the

sum of a prime and a k-th power. This is weaker than Theorem 1 of Brüdern and

Perelli [2] that asserts that subject to GRH, no more than OðN 1�1=ð25kÞÞ of the

natural numbers not exceeding N are not the sum of a prime and a k-th power.

However, our result is in line with the general observation, familiar from

Waring’s problem, that the price for the step from representations to asymptotics

is a factor k.

The singular product S�
kðnÞ of course vanishes occasionally due to local

obstructions. Let wk ¼
Q

p�1 j k p, and let

Hk ¼ fn A Ik : ðn� 1;wkÞ ¼ 1g:

Only when n A Hk, one may expect r�kðnÞ to be large. Of course Hk has positive

density, and for n A Hk one again has S�
kðnÞX ðlog nÞ�k. We now derive from

the theorem that all but OðN 1�1=ð6000k2ÞÞ of the numbers n A Hk not exceeding N

have a representation n ¼ p1 þ pk
2 with primes p1, p2. This improves Theorem 2

of Brüdern and Perelli [2] where an estimate OðN 1�c=ðk2 log kÞÞ with some c > 0

was obtained for the size of the exceptional set in this representation problem.

The methods that we use are not dissimilar from the general framework of

[2], but we shall have occasion to refer to two sources that were not available

when [2] was written. The work of Kawada [6] deals with the singular product

SkðnÞ, and is very relevant for us. Moreover, work of Ford [3] plays a role in a

crucial pruning process within the circle method work in § 3. We explain the

mechanism behind this at a later stage.

Notation is standard or otherwise introduced when appropriate. Occas-

sionally we make use of the e-convention: whenever e appears in a statement, it is

asserted that the statement is true for all real e > 0; implicit constants may

depend on e. We also write eðaÞ as an abbreviation for expð2piaÞ. The letter p

always denotes a prime.

2. A Mean Square Estimate

We prove the theorem with the aid of the circle method. The beginning is

conventional. Let

f ðaÞ ¼
X
paN

ðlog pÞeðapÞ:

We write P ¼ N 1=k and then also put
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gðaÞ ¼
X
xaP

eðaxkÞ; g�ðaÞ ¼
X
paP

ðlog pÞeðapkÞ:

By orthogonality, it follows that whenever 1a naN, one has

rkðnÞ ¼
ð1

0

f ðaÞgðaÞeð�anÞ da: ð4Þ

The same formula holds for r�kðnÞ if gðaÞ is replaced by g�ðaÞ. We now ap-

proximate rkðnÞ and r�kðnÞ, in mean square, by the major arc contribution. Before

we can do this, we need to define the Gauss sums

Sðq; aÞ ¼
Xq

x¼1

e
axk

q

� �
; S �ðq; aÞ ¼

Xq

x¼1
ðx;qÞ¼1

e
axk

q

� �

as well as the sums

vðbÞ ¼
X
xaN

eðbxÞ; wðbÞ ¼ 1

k

X
xaP

eðbxÞx1=k�1:

The following lemma is useful.

Lemma 1. Assume GRH. Let ða; qÞ ¼ 1. Then

f
a

q
þ b

� �
¼ mðqÞ

jðqÞ vðbÞ þOððqNÞ1=2þeð1þNjbjÞÞ:

Moreover, if kb 2 and q is square-free, then

g
a

q
þ b

� �
¼ Sðq; aÞ

q
wðbÞ þOðq1=2þeð1þNjbjÞ1=2Þ

and

g� a

q
þ b

� �
¼ S �ðq; aÞ

jðqÞ wðbÞ þOððqPÞ1=2þeð1þNjbjÞ1=2Þ:

Proof. The formula for g
�
a
q
þ b

�
follows from Theorem 4.1 of Vaughan

[10]. The formulae for f
�
a
q
þ b

�
and g��a

q
þ b

�
are essentially contained in

Lemmata 2 and 3 of Brüdern and Perelli [2]. However, in [2] the sums f ðaÞ and

g�ðaÞ are over a dyadic range (like N < pa 2N), and the sums vðbÞ, wðbÞ are

replaced by their integral analogues. Yet, it is clear that the methods of [2] in
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conjunction with Euler’s summation formula completely cover the needs to

establish the current version of Lemma 1.

Let 1aX a 1
2

ffiffiffiffiffi
N

p
, and let MðXÞ denote the union of the intervals

fa A ½0; 1� : jqa� ajaXN�1g ð5Þ

with ða; qÞ ¼ 1, 1a qaX . Note that these intervals are pairwise disjoint. For

simplicity, we write

M ¼ MðN 1=4Þ; m ¼ ½0; 1�nM:

For later use, we record here that the argument on p. 518 of Brüdern and Perelli

[2] gives

sup
a Am

j f ðaÞjWN 7=8þe: ð6Þ

We are now prepared to introduce a first approximation to rkðnÞ and r�kðnÞ. When

a A M is in the interval defined by (5) with X ¼ N 1=4, let

VðaÞ ¼ mðqÞSðq; aÞ
qjðqÞ v a� a

q

� �
w a� a

q

� �
;

V �ðaÞ ¼ mðqÞS �ðq; aÞ
jðqÞ2

v a� a

q

� �
w a� a

q

� �
;

and write

tkðnÞ ¼
ð
M

VðaÞeð�anÞ da; t�kðaÞ ¼
ð
M

V �ðaÞeð�anÞ da: ð7Þ

Lemma 2. Assume GRH. Then, for all kb 2 one has

X
naN

jrkðnÞ � tkðnÞj2 WP2N 1�1=ð50k2Þ:

The same is true if rk, tk are replaced by r�k , t�k .

In the interest of expository simplicity, we present a detailed proof only of

the version with r�k , t�k and leave the (simple) changes required for the other

part of Lemma 2 to the reader. The main di‰culty is that the major arcs M

are extraordinarily ‘‘thick’’ for a k-th power. Hence, the bulk of the work is a

pruning of the major arcs that we perform in section 4, after removing the minor

arcs in the next section.
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3. Proof of Lemma 2: First Steps

Consider the function, defined on ½0; 1�, that is given by f ðaÞg�ðaÞ when

a A m, and by f ðaÞg�ðaÞ � V �ðaÞ when a A M. Its n-th Fourier coe‰cient is

r�kðnÞ � t�kðnÞ, as a consequence of (4) and (7). Hence, by Bessel’s inequality,

X
naN

jr�kðnÞ � t�kðnÞj
2
a

ð
m

j f ðaÞg�ðaÞj2 daþ
ð
M

j f ðaÞg�ðaÞ � V �ðaÞj2 da: ð8Þ

In this section, we estimate the minor arc part of the right hand side of (8). Let

d > 0 be a fixed real number; we assume throughout that d is small. Take

s ¼ ½2� log d�k2: ð9Þ

Then, by combining a classical version of Vinogradov’s mean value theorem

(Vaughan [10], Theorem 5.1) with Theorem 1 of Ford [3], we obtain for each

integer m with 1ama k the estimate

ð1

0

jgðaÞj2s daWP2s�kþD=m

where

D ¼ 1

2
k2 expð�ð2s� 2k �mðm� 1ÞÞ=ð2k2ÞÞ < dk2:

We take m ¼ k and then deduce that

ð 1

0

jgðaÞj2s WP2sN d�1: ð10Þ

On considering the underlying diophantine equations, we conclude that

ð1

0

jg�ðaÞj2s daW ðlog NÞ2s
ð1

0

jgðaÞj2s daW ðP log NÞ2sN d�1: ð11Þ

We now apply Hölder’s inequality in the form

ð
m

j f ðaÞg�ðaÞj2 daa sup
a Am

j f ðaÞj2=s
ð 1

0

j f ðaÞj2 da
� �1�1=s ð1

0

jg�ðaÞj2s da
� �1=s

:

By Parseval’s identity, the first integral on the right hand side here does not

exceed OðN log NÞ. Hence, by (6) and (11), we now infer the bound
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ð
m

j f ðaÞg�ðaÞj2 daWN 7=4sðN log NÞ1�1=sðP log NÞ2N ð1=sÞðd�1Þ

WN 1�ð1=sÞð1=4�dÞðlog NÞ3P2:

We may now take d ¼ e�8 and s ¼ 10k2 in accordance with (9) to confirm the

estimate

ð
m

j f ðaÞg�ðaÞj2 daWN 1�1=ð50k2ÞP2 ð12Þ

that su‰ces for our purposes.

We now turn our attention to the second term on the right hand side of (8).

It is straightforward to estimate the contribution from the ‘‘pruned arcs’’

N ¼ MðP1=8Þ:

In fact, by Lemma 1 we see that for a A N one has

f ðaÞg�ðaÞ � V �ðaÞWNP5=8þe;

and hence, since N has measure OðP1=4N�1Þ,
ð
N

j f ðaÞg�ðaÞ � V �ðaÞj2 daWNP3=2þe: ð13Þ

Note that the bound (13) is much smaller than the right hand side of (12). Hence,

it now remains to consider the ‘‘intermediate arcs’’ MnN. This is often the most

di‰cult part, as is the case here. We use the elementary inequality

ð
MnN

j f ðaÞg�ðaÞ � V �ðaÞj2 daW
ð
MnN

j f ðaÞg�ðaÞj2 daþ
ð
MnN

jV �ðaÞj2 da; ð14Þ

and estimate the two terms on the right hand side of (14) in the next section.

4. A Pruning Exercise

The treatment of the set MnN depends on our pruning lemma [1] for which

we now prepare the scene. When a A M is in the interval (5) (with X ¼ N 1=4), let

1ðaÞ ¼ ðqþNjqa� ajÞ�1: ð15Þ

This defines 1ðaÞ for a A M. For these a, Lemma 1 combined with elementary

estimates shows
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f ðaÞW jðqÞ�1
N 1þN a� a

q

����
����

� ��1

þ
ffiffiffiffiffiffiffi
qN

p
ðlog NÞ2 1þN a� a

q

����
����

� �

WN 1þe1ðaÞ: ð16Þ

It is perhaps worth pointing out that at this point GRH is indispensable, at the

current state of knowledge. Unconditional versions of (16) would involve 1ðaÞ1=2

rather than 1ðaÞ, and this is too weak to be of use in the argument below.

We cover the set MnN by Oðlog NÞ sets Mð2X ÞnMðX Þ with P1=8 aX aN 1=4.

For a A Mð2XÞnMðXÞ it follows from (16) that one has j f ðaÞj2 WN 2þeX�11ðaÞ,
and hence, for some X in the aforementioned range

ð
MnN

j f ðaÞg�ðaÞj2 daWN 2þeX�1

ð
Mð2X Þ

1ðaÞjg�ðaÞj2 da:

By Lemma 2 of Brüdern [1] (with CðaÞ ¼ jg�ðaÞj2), we find that

ð
Mð2XÞ

1ðaÞjg�ðaÞj2 daWN e�1 X

ð1

0

jg�ðaÞj2 daþ jg�ð0Þj2
� �

WN 2e�1ðXPþ P2Þ;

and therefore, with X as before,

ð
MnN

j f ðaÞg�ðaÞj2 daWN 1þeðPþ X�1P2ÞWN 1þeP15=8: ð17Þ

The treatment of V �ðaÞ is elementary. By Lemma 5 of Hua [4] one has

S �ðq; aÞW q1=2þe when ða; qÞ ¼ 1, and hence, by Lemma 2.6 of Vaughan [10] it

follows that

V �ðaÞWN 1þeP1ðaÞ1þ1=k

holds for a A M. A routine argument involving only straightforward estimates

then yields

ð
MnN

jV �ðaÞj2 daWN 1þeP2�1=ð4kÞ: ð18Þ

By (18), (17), (8), (12) and (14), the part of Lemma 2 relating to r�kðnÞ now

follows. Almost all of the above estimates remain valid with the stars removed,

and in that case the work of § 3 may even be simplified somewhat. This completes

the proof of Lemma 2.
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5. A Further Preparation of the Main Term

On writing

Hðq; nÞ ¼
Xq

a¼1
ða;qÞ¼1

Sðq; aÞe � an

q

� �
; H �ðq; nÞ ¼

Xq

a¼1
ða;qÞ¼1

S �ðq; aÞe � an

q

� �
;

we define the truncated singular series by

Skðn;MÞ ¼
X
qaM

mðqÞ
qjðqÞHðq; nÞ; S�

kðn;MÞ ¼
X
qaM

mðqÞ
jðqÞ2

H �ðq; nÞ;

and may then annouce a counterpart of Lemma 2.

Lemma 3. One has

X
naN

jtkðnÞ �Skðn;N 1=4Þn1=kj2 WN 1þeP3=2;

and the same is true with tk and Sk replaced by t�k and S�
k .

Note that Lemma 3 is independent of GRH. We again give a detailed proof

only for the star version of Lemma 3, and leave (most) alterations for the other

case to the reader. We begin by defining the intervals

a A ½0; 1� : a� a

q

����
����aN�2=3

� �

and note that these intervals with 0a aa qaN 1=4, ða; qÞ ¼ 1 are pairwise

disjoint. Their union is denoted by K. Then MHK, and the definition of the

functions V and V � on M extend naturally to K. We then put

ukðnÞ ¼
ð
K

VðaÞeð�anÞ da; u�
kðnÞ ¼

ð
K

V �ðaÞeð�anÞ da:

Then

u�
kðnÞ � t�kðnÞ ¼

ð
KnM

V �ðaÞeð�anÞ da;

and hence, by Bessel’s inequality,
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X
naN

ju�
kðnÞ � t�kðnÞj

2
a

ð
KnM

jV �ðaÞj2 da:

The bound for V �ðaÞ used in § 4 is still valid on K, and so,

X
naN

ju�
kðnÞ � t�kðnÞj

2
WN 2þeP2

ð
KnM

1ðaÞ2þ2=k
da

WN e
X

qaN 1=4

q�1�2=k

ðy
q�1N 3=4

b�2�2=k db

W ðNP2Þ3=4N 1=4þe
WN 1þeP3=2: ð19Þ

A similar estimate holds for ukðnÞ � tkðnÞ, and the proof is essentially identical.

Next, we evaluate ukðnÞ and u�
kðnÞ. Recalling the definitions of V and V �, we

have

ukðnÞ ¼ Skðn;N 1=4Þ
ðN�2=3

�N�2=3

vðbÞwðbÞeð�bnÞ db;

and this is also true with u�
k , S

�
k in place of uk, Sk. By orthogonality, we have

ð1=2

�1=2

vðbÞwðbÞeð�bnÞ db ¼ 1

k

X
man

m1=k�1 ¼ n1=k þOð1Þ;

and

ð1=2

N�2=3

vðbÞwðbÞeð�bnÞ dbW
ðy
N�2=3

b�1�1=k
WN�2=ð3kÞ:

It follows that

ukðnÞ ¼ Skðn;N 1=4Þðn1=k þOðN�2=ð3kÞÞÞ;

and again the star version of this evaluation also holds. From (31), (34) and (37)

of Brüdern and Perelli [2] we have H �ðq; nÞW q1þe whenever q is square-free.

Likewise, the bound Hðq; nÞW q1þe follows from Kawada [6]. Consequently,

Skðn;N 1=4ÞWN e, and likewise for S�
k . It follows that

X
naN

jukðnÞ � n1=kSkðn;N 1=4Þj2 WN 1�2=ð3kÞþeP2;

and again this also holds with stars attached. Lemma 3 now follows on com-

bining this with (19) and its analogue with the stars removed.
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6. The Singular Series

Recall that Ik is the set of all positive integers for which xk � n is irreducible

in Z½x�, and that the products SkðnÞ and S�
kðnÞ converge for n A Ik. Indeed,

Kawada [6] observed this for SkðnÞ, but when pF n, one has %ðn; pÞ ¼ %�ðn; pÞ,
and hence, the convergence of SðnÞ implies that of S�ðnÞ. As a special case of

Corollary 1 of Kawada [6] (take d ¼ 1
2k and H ¼ N in Kawada’s notation), we

also have

Sðn;N 1=4Þ ¼ SðnÞ þOðN�1=ð6000k2ÞÞ ð20Þ

for all but OðN 1�1=ð6000k2ÞÞ of the integers n A Ik that lie in the interval
1
2N < naN.

We also require the star version of (20). One way to do this would be to

adjust the arguments in [6] to cover the star situation. Alternatively, we may

proceed as follows. By orthogonality, one has

Hðp; nÞ ¼ pð%ðn; pÞ � 1Þ; H �ðp; nÞ ¼ ðp� 1Þð%�ðn; pÞ � 1Þ þ %�ðn; pÞ:

Let lðn;mÞ and l�ðn;mÞ be the completely multiplicative functions defined on

primes by

lðn; pÞ ¼ %ðn; pÞ � 1; l�ðn; pÞ ¼ ð%�ðn; pÞ � 1Þ þ %�ðn; pÞ
p� 1

:

Then we may rewrite the truncated series as

Sðn;MÞ ¼
X
maM

mðmÞ
jðmÞ lðn;mÞ; S�ðn;MÞ ¼

X
maM

mðmÞ
jðmÞ l

�ðn;mÞ:

The Dirichlet series

ZnðsÞ ¼
Xy
m¼1

mðmÞlðn;mÞ
jðmÞms�1

; Z �
n ðsÞ ¼

Xy
m¼1

mðmÞl�ðn;mÞ
jðmÞms�1

converge in ReðsÞ > 1, but also have Euler products. For pF n, we recall

%�ðn; pÞ ¼ %ðn; pÞa k. Hence jlðn; pÞ � l�ðn; pÞja k=ðp� 1Þ for these p, and so

the Euler product for ZnðsÞ=Z �
n ðsÞ converges in ReðsÞ > 1

2 . It now transpires

that Kawada’s auxiliary estimates for zeros of ZnðsÞ remain valid for Z �
n ðsÞ, and

hence the star version of (20) also holds, by Kawada’s arguments.

It is now easy to establish the theorem. By a standard argument, we deduce

from Lemmas 2 and 3 that

rkðnÞ �Skðn;N 1=4Þn1=k ¼ Oðn1=kN�1=ð150k2ÞÞ
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holds for all but OðN 1�1=ð150k2ÞÞ of the integers n A Ik with 1
2N < naN. Apply

(20) to replace Skðn;N 1=4Þ by SkðnÞ. Now sum over dyadic ranges for N. This

proves the first part of the Theorem, and the star version follows mutatis

mutandis.

References
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