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INDEFINITE EXTRINSIC SPHERES

By

Sorin Dragomir1 and Krishan L. Duggal2

Abstract. We study the lightlike geometry of the second funda-

mental form of the intersection between an algebraic hypersurface in

Cn
s and a pseudosphere S2n�1

2s ð2=
ffiffiffi
k

p
Þ including a class of extrinsic

spheres which are not homotopy spheres.

Let Cn
s denote Cn with the quadratic form �jz1j2 � � � � � jzsj2 þ

jzsþ1j2 þ � � � þ jznj2. Let F A C½z� be a homogenous polynomial and S ¼
fz A Cn

s : Fzj ðzÞ ¼ 0; 1a ja ng where Fzj ¼ qF=qzj. Then ~MM ¼ ~MMðFÞ ¼ fz A Cn
s :

FðzÞ ¼ 0gnS is a complex hypersurface. Let S2n�1
2s ðrÞ ¼ fz A Cn

s :
Pn

j¼1 ejjzjj
2 ¼ r2g

be the pseudosphere of radius r > 0 (where ej ¼ �1 for any 1a ja s and

esþa ¼ 1 for any 1a aa n� s). We set

M ¼ MðF Þ ¼ ~MM VS2n�1
2s ð2=

ffiffiffi
k

p
Þ

ðk > 0Þ. We wish to study the geometry of the second fundamental form of M in

both ~MM and Cn
s . In the positive definite case ðs ¼ 0Þ M is an example of an

extrinsic sphere (cf. B-Y. Chen, [5]) which is not even homeomorphic to a sphere

(cf. B-Y. Chen, [6]). Let L0 ¼ fz A Cn
s :
Pn

j¼1 ej jzj j
2 ¼ 0g be the null cone and

C ¼ fz A Cn
s : ðFz1ðzÞ; . . . ;FznðzÞÞ A L0g. Our result is

Theorem A. Assume that ~MMðFÞHC. Let ~‘‘ be the induced connection on
~MM ¼ ~MMðFÞ as a 2-lightlike submanifold of Cn

s . Then i) M ¼ MðFÞ is an extrinsic

sphere in ð ~MM; ~gg; ~‘‘Þ. ii) There is a free action of S1 on M such that M=S1 is

a complex manifold and S1 ! M ! M=S1 a principal circle bundle. iii) If

M=S1 is 1-connected and dimC M=S1 > 2 then either p1ðMÞ ¼ p2ðMÞ ¼ 0 or
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p1ðMÞ ¼ p2ðMÞ ¼ Z so that in general M is not homeomorphic to a sphere. iv)

The immersion M ,! Cn
s is totally umbilical of mean curvature �ðk=4Þx if and

only if ~MM is a complex hyperplane a1z1 þ � � � þ anzn ¼ 0 with a ¼ ða1; . . . ; anÞ A L0.

Here x ¼ z jq=qz j þ z jq=qz j. Moreover v) M is an indefinite CR submanifold of

Cn
s and hence a CR manifold of CR dimension n� 2 whose extrinsic Levi form is

given by ~LLxðwÞ ¼ �ejjw jj2xx for any w ¼ w jðq=qz jÞx A T1;0ðMÞx and any x A M.

Here ~gg is the first fundamental form of ~MM ,! Cn
s . Also pkðMÞ is the k-th

homotopy group of M. An appealing question is whether CR functions on MðFÞ
extend (at least locally) holomorphically to Cn. The convex hull of the image of
~LLx has empty interior in the transversal space trðMÞx thus killing a hope to

generalize Theorem 1 in [4], p. 200–201, to the case of the extrinsic sphere MðF Þ.
Throughout this paper we emphasize on the geometric features of MðFÞ and

relegate all analytic considerations to further work.

1. A Reminder of Lightlike Geometry

We adopt the notations and conventions in [8]. Let ðM 2nþ2; J;GÞ be an

indefinite Kähler manifold, of complex dimension nþ 1 ðnb 1Þ where J de-

notes the complex structure and G the indefinite Riemannian metric of index

2s ð0 < s < nþ 1Þ, cf. e.g. [1], p. 55. Then GðJX ; JYÞ ¼ GðX ;Y Þ for any

X ;Y A TðM 2nþ2Þ and DJ ¼ 0 where D is the Levi-Civita connection of

ðM 2nþ2;GÞ. Let M be a real m-dimensional lightlike submanifold of ðM 2nþ2;GÞ
i.e. G is degenerate on TðMÞ. For each point x A M we set

ðRad TMÞx ¼ fx A TxðMÞ : gxðx;X Þ ¼ 0;X A TxðMÞg:

Here g ¼ j �G is the induced metric on M and j : M ,! M 2nþ2 is the inclusion. A

fundamental assumption in lightlike geometry is that Rad TM : x A M 7!
ðRad TMÞx is a smooth distribution on M of rank rb 1. Let TðMÞ? ! M be

the normal bundle of j. Clearly ðRad TMÞx JTðMÞ?x for any x A M hence

raminfm; kg where k ¼ 2ðnþ 1Þ �m is the codimension of M in M 2nþ2.

Rad TM is referred to as the radical distribution of M. We shall also use the

terminology ([8], p. 141–150) in Table 1 below. Cf. also R. Roşca, [9]. One of

the main techniques used in this paper is that of screen distributions. Precisely we

consider smooth distributions SðTMÞ and SðTM?Þ on M such that

TðMÞ ¼ SðTMÞlorth Rad TM;ð1Þ

TðMÞ? ¼ SðTM?Þlorth Rad TM:ð2Þ
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We write V lorth W whenever the sum V þW is direct and the spaces V , W are

orthogonal. A posteriori both SðTMÞ and SðTM?Þ are nondegenerate (cf. e.g.

Proposition 2.1 in [8], p. 5). SðTMÞ (respectively SðTM?Þ) is referred to as

a tangential (respectively normal ) screen distribution. Such a choice of screen

distributions on M leads to the construction of a vector bundle trðTMÞ ! M

which is complementary to TðMÞ in TðM 2nþ2Þ. Although trðTMÞ ! M will

prove to contain a lightlike vector bundle it may be used (as a lightlike analog to

the normal bundle of a nondegnerate submanifold of M 2nþ2) to build a theory

similar to that of the second fundamental form in Riemannian geometry (cf. [8]).

Let M be a real m-dimensional r-lightlike submanifold of the semi-

Riemannian manifold ðM 2nþ2;GÞ. As SðTMÞ is nondegenerate

TðM 2nþ2Þ ¼ SðTMÞlorth SðTMÞ?:

It is immediate that SðTM?ÞHSðTMÞ?. Indeed, if X A SðTM?ÞHTðMÞ?

then X is orthogonal to TðMÞISðTMÞ hence X is orthogonal to SðTMÞ i.e.

X A SðTMÞ?. In particular

SðTMÞ? ¼ SðTM?Þlorth SðTM?Þ?:ð3Þ

Note that Rad TMHSðTM?Þ?. Indeed if X A Rad TM then X A TðMÞ and

X is perpendicular to TðMÞ? ISðTM?Þ hence X A SðTM?Þ?. Next we need

transversal vector bundles and the corresponding Gauss formula.

Let fx1; . . . ; xrgHGyðU ;Rad TMÞ be a local frame. Let F ! M be a vector

bundle such that

SðTM?Þ? ¼ ðRad TMÞlF

(so that F has rank r). Let fV1; . . . ;VrgHGyðU ;FÞ be a local frame. Let us set

gjk ¼ Gðxj;VkÞ; 1a j; ka r:

Then det½gjk�0 0 everywhere on U . Let ½g jk� :¼ ½gjk��1 and let us set

Table 1. Classification of lightlike submanifolds

according to the rank of their radical distribution.

M r

(I) r-lightlike submanifold 1a r < minfm; kg
(II) co-isotropic 1a r ¼ k < m

(III) isotropic 1a r ¼ m < k

(IV) totally lightlike 1a r ¼ m ¼ k
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Ni ¼ � 1

2
gkigljGðVk;VlÞxj þ g jiVj:ð4Þ

Then GðNi; xjÞ ¼ dij and GðNi;NjÞ ¼ 0. In particular it follows that fx1; . . . ; xr;
N1; . . . ;Nrg is a local frame of SðTM?Þ? on U . Moreover we set

ltrðTMÞx ¼
Xr
i¼1

RNi;x; x A U :ð5Þ

By a result in [8] (cf. Theorem 1.2, p. 144) ltrðTMÞx is well defined i.e. its

definition doesn’t depend upon the local frames fxj : 1a ja rg of Rad TM and

fVj : 1a ja rg of F at x. Also ltrðTMÞ ¼ 6
x AM ltrðTMÞx is a vector bundle

over M and

SðTM?Þ? ¼ ðRad TMÞl ltrðTMÞ:ð6Þ

We call ltrðTMÞ ! M a lightlike transversal vector bundle with respect to the

screen distributions SðTMÞ and SðTM?Þ. Note that the construction of a

lightlike transversal vector bundle does depend upon the choice of F ! M. A

transversal vector bundle trðTMÞ ! M is given by

trðTMÞ ¼ ltrðTMÞlorth SðTM?Þ:

We emphasize that

TðM 2nþ2Þ ¼ SðTMÞlSðTMÞ?

¼ SðTMÞl ½SðTM?ÞlSðTM?Þ?�

¼ SðTMÞlSðTM?Þl ðRad TMÞl ltrðTMÞ

hence

TðM 2nþ2Þ ¼ TðMÞl trðTMÞ:ð7Þ

Let tanx : TxðM 2nþ2Þ ! TxðMÞ and trax : TxðM 2nþ2Þ ! trðTMÞx be the projec-

tions associated with the direct sum decomposition (7). We set

‘XY ¼ tanðDXYÞ; hðX ;YÞ ¼ traðDXY Þ;

for any X ;Y A TðMÞ. Then ‘ is a torsion-free linear connection on M and h is

CyðMÞ-bilinear symmetric (as D is torsion-free). In particular

DXY ¼ ‘XY þ hðX ;YÞð8Þ
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In general however ‘ is not a metric connection but rather

ð‘XgÞðY ;ZÞ ¼ GðhðX ;Y Þ;ZRad TMÞ þ GðhðX ;ZÞ;YRad TMÞ

for any X ;Y ;Z A TðMÞ. Here XRad TM denotes the Rad TM-component of

X A TðMÞ with respect to the decomposition (1). Equation (8) is referred to as

the Gauss formula while ‘ and h are respectively the induced connection and the

second fundamental form (of the given immersion M ,! M 2nþ2) associated to the

transversal bundle trðTMÞ ! M.

2. Indefinite CR Submanifolds

The complex structure J on M 2nþ2 induces a ‘‘tangential’’ complex structure

on M (cf. e.g. (1.12) in [7], p. 5)

T1;0ðMÞx ¼ T 1;0ðM 2nþ2Þx V ½TxðMÞnR C�; x A M:

If the spaces T1;0ðMÞx have the same dimension for any x A M then ðM;T1;0ðMÞÞ
is a CR manifold and HðMÞ ¼ RefT1;0ðMÞlT0;1ðMÞg is its Levi, or maximally

complex, distribution (cf. [7], p. 4). When the ambient space is endowed with

a Kähler metric G it is a meaningful problem to study the extrinsic geometry of

M in ðM 2nþ2;GÞ. To this end A. Bejancu, [2], examined the class of the CR

submanifolds where one additionally requires the anti-invariance condition

JHðMÞ? JTðMÞ?. Though smaller than the class of real submanifolds pos-

sessing a well defined (i.e. of constant rank) induced CR structure, A. Bejancu’s

CR submanifolds do include the generic, totally real, and invariant (i.e. complex)

submanifolds as particular cases (and lead to an unifying treatment of the

geometry of their second fundamental forms, cf. e.g. [12]). When G is an

indefinite Kähler metric, a lightlike analog to A. Bejancu’s class was proposed

by B. Sahin et al., [10]. Let us adopt the following definition. The synthetic

object ðM;SðTMÞ;SðTM?Þ;DÞ is called an indefinite CR submanifold if 1)

Rad TM is J-invariant (that is JxðRad TMÞx ¼ ðRad TMÞx for any x A M) and

D : x A M 7! Dx is a Cy distribution on M such that 2) Dx JSðTMÞx and the

distribution DlRad TM is J-invariant, 3) the perp distribution D? JSðTMÞ
satisfies JxD

?
x JSðTM?Þx and 4) SðTMÞx ¼ Dx lD?

x , for any x A M.

This slightly generalizes the concept in [10], p. 141, where one requests that D

(rather than DlRad TM) be J-invariant and the resulting notion is referred to

as a screen CR submanifold. Clearly both D and D? are nondegenerate. Note that

no lightlike real hypersurface may be organized as an indefinite CR submanifold.

Indeed if M is an indefinite CR submanifold and m ¼ 2nþ 1 (and k ¼ 1) then

r ¼ 1, a contradiction (r must be even). Also one checks easily
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Proposition 1. Let M be an indefinite CR manifold. If M is co-isotropic,

isotropic or totally lightlike then M is a complex submanifold of M 2nþ2.

Cf. also Proposition 3.2 in [10], p. 144. In the positive definite case ðs ¼ 0Þ
the distribution Rad TM is trivial and ðM;DÞ is an ordinary CR submanifold of

M 2nþ2 (in the sense of [2]). On the other hand, by a result of D. E. Blair & B-Y.

Chen, [3], any proper (i.e. D0 ð0Þ and D? 0 ð0Þ) CR submanifold is a CR

manifold (in the sense of [7], p. 4). It will be shortly seen that an indefinite CR

submanifold of an indefinite Kähler manifold is a CR manifold, as well.

Let ðM;DÞ be an indefinite CR submanifold of Cnþ1
s . Let x A M and let

trax : TðCnþ1
s Þ ! trðTMÞx be the projection associated to the decomposition (7)

(with M 2nþ2 ¼ Cnþ1
s ). Exploiting the analogy between the transversal bundle of a

lightlike submanifold and the normal bundle of a nondegenerate submanifold we

introduce the following notion. The extrinsic Levi form of ðM;DÞ is given by

~LLxðwÞ ¼
i

2
traxðJ½W ;W �Þx; w A T1;0ðMÞx;

where W is a Cy section in T1;0ðMÞ ¼ fX � iJX : X A DlRad TMg such that

Wx ¼ w. By (7) and by the formal integrability property of DlRad TM (cf.

Lemma 5 in Section 4) the definition of ~LLxðwÞ doesn’t depend upon the choice of

the section W extending w. An explicit description of ~LLxðwÞ (in terms of defining

functions) is given in Lemma 6.

3. The Geometry of MðF Þ

Let F A C½z� be a homogeneous polynomial of degree d. A real vector field

X ¼ Z jq=qz j þ Z jq=qz j is tangent to ~MM if and only if Z jFz j ¼ 0. Let us set

V ¼ e j F zj

q

qz j
þ Fz j

q

qzj

� �
; W ¼ JV :

Throughout e j ¼ ej and z j ¼ zj . Then V ;W A Tð ~MMÞ?. On the other hand fV ;Wg
are linearly independent at each point of Cn

s nS hence fV ;Wg is a global frame of

Tð ~MMÞ?. Note that X ¼ AV þ BW A Rad T ~MM if and only if ðAþ iBÞe jjFz j j2 ¼ 0

along ~MM, hence

ðRad T ~MMÞj ~MMnC ¼ ð0Þ; ðRad T ~MMÞj ~MMVC ¼ Tð ~MMÞ?j ~MMVC ;

so that ~MM is a 2-lightlike complex submanifold provided that ~MMnC ¼ q.

Moreover X A TðMÞ if and only if Z jFz j ¼ 0 and ejðZ jzj þ Z jzjÞ ¼ 0 along M.

Let us set x ¼ z jq=qz j þ z jq=qz j. Then

340 Sorin Dragomir and Krishan L. Duggal



Gðx;X Þ ¼ ejðzjZ j þ zjZ
jÞ ¼ 0

for any X A TðS2n�1
2s ð2=

ffiffiffi
k

p
ÞÞ hence x A TðS2n�1

2s ð2=
ffiffiffi
k

p
ÞÞ?. Also (by complex

homogeneity) xðFÞ ¼ z jFz j ¼ dF ¼ 0 along ~MM hence x A Tð ~MMÞ. Note that

fx;V ;Wg are linearly independent at each point of M. Indeed axþ AV þ
BW ¼ 0 implies az j þ ðAþ iBÞejF zj ¼ 0 hence (by contraction with ejzj) 0 ¼
aejjz j j2 þ ðAþ iBÞz jFz j ¼ 4a=k i.e. aðzÞ ¼ 0 for any z A M, etc. Hence fx;V ;Wg
is a global frame of the normal bundle TðMÞ? of the immersion M ,! Cn

s . A

calculation shows that

Lemma 1. The radical distribution of M ¼ MðF Þ is Rad TM ¼ ðRad T ~MMÞjM
and SðTM?Þ :¼ RxjM is a normal screen distribution. If MnC ¼ q then Rad TM

is smooth so that M is a 2-lightlike submanifold of Cn
s .

It should be observed that the assumptions in Theorem A do not

allow for quadrics ~MM ¼ Qn�1. Indeed if F ¼ zd1 þ � � � þ zdn then C ¼ fz A Cn :

ejjz j j2ðd�1Þ ¼ 0g. Next if d ¼ 2 then C ¼ L0 and M ¼ Qn�1 VS2n�1
2s ð2=

ffiffiffi
k

p
Þ doesn’t

intersect the null cone.

We assume from now on that MnC ¼ q. Then

Lemma 2. Jx ¼ iðz jq=qz j � zjq=qzjÞ is tangent to M. If E ! M is a vector

bundle such that TðMÞ ¼ El ðRad TMÞlRJxjM then SðTMÞ :¼ ElRJxjM is

a tangential screen distribution for the immersion M ,! Cn
s .

An extrinsic sphere is a totally umbilical submanifold of a Riemannian

manifold whose mean curvature vector is everywhere nonzero and parallel in

the normal bundle (cf. e.g. [5]). The notion admits the following generalization to

the semi-Riemannian context. Let M be a sumanifold of the semi-Riemannian

manifold ð ~MM; ~ggÞ. Let ~‘‘ be a linear connection on ~MM. Let us assume that M is

r-lightlike with rb 0 (if r ¼ 0 then M is a semi-Riemannian submanifold). We

say M is ~‘‘-totally umbilical in ð ~MM; ~gg; ~‘‘Þ if there is a transversal vector bundle

trðTMÞ ! M (if r ¼ 0 then trðTMÞ ! M is the normal bundle of the immer-

sion M ,! ~MM) such that trað~‘‘XYÞ ¼ gðX ;Y ÞH for some H A trðTMÞ and any

X ;Y A TðMÞ. If additionally H (the ~‘‘-mean curvature) can be chosen such that

Hx 0 0 for any x A M and trað~‘‘XHÞ ¼ 0 for any X A TðMÞ then M is a ~‘‘-

extrinsic sphere in ð ~MM; ~gg; ~‘‘Þ (if r ¼ 0 then tra : Tð ~MMÞ ! trðTMÞ is the orthogonal

projection).

341Indefinite extrinsic spheres



Proof of Theorem A. Let i : M ,! ~MM be the inclusion and NðiÞ, re-

spectively RadðdiÞ, the normal bundle and radical distribution of i. As x is

tangent to ~MM and orthogonal to M it follows that NðiÞ ¼ RxjM . Next

RadðdiÞ ¼ TðMÞVRxjM ¼ ð0Þ

because x is space-like. Hence TðMÞ is nondegenerate in Tð ~MM; ~ggÞ and

Txð ~MMÞ ¼ TxðMÞlorth Rxx; x A M:ð9Þ

Under the assumptions in Theorem A one has Tð ~MMÞ? ¼ Rad T ~MM hence we may

take SðT ~MM?Þ ¼ ð0Þ and trðT ~MMÞ ¼ ltrðT ~MMÞ while the lightlike transversal vector

bundle ltrðT ~MMÞ ! ~MM is built as follows. Let SðT ~MMÞ be a tangential screen

distribution for the immersion ~MM ,! Cn
s such that x A SðT ~MMÞ. Then we may

decompose as TðCn
s Þ ¼ SðT ~MMÞlSðT ~MMÞ? and Rad T ~MMHSðT ~MMÞ?. Therefore

we may choose a complement ~FF to Rad T ~MM in SðT ~MMÞ? and build f ~NN1; ~NN2g
such that f~xxi; ~NNj : i; j A f1; 2gg is a local frame of SðT ~MMÞ? and

Gð ~NNi; ~xxjÞ ¼ dij; Gð ~NNi; ~NNjÞ ¼ 0;

where ~xx1 ¼ V j ~MM and ~xx2 ¼ W j ~MM . Finally one sets ltrðT ~MMÞ ¼ R ~NN1 lR ~NN2. We

shall need the Gauss formula (for the immersion ~MM ,! Cn
s )

DXY ¼ ~‘‘XY þ ~hhðX ;YÞ; X ;Y A Tð ~MMÞ:

In general ~‘‘~gg0 0 (so that ~‘‘ is not the Levi-Civita connection of ð ~MM; ~ggÞ). Let us
observe that

DXx ¼ X ; X A TðS2n�1
2s ð2=

ffiffiffi
k

p
ÞÞ:ð10Þ

As x A SðT ~MMÞ it follows that SðT ~MMÞ? is orthogonal to x hence Gð ~NNi; xÞ ¼ 0.

Hence (by DG ¼ 0 and by (10))

Gð~‘‘XY ; xÞ ¼ GðDXY ; xÞ ¼ X ðGðY ; xÞÞ � GðY ;DXxÞ ¼ �GðY ;XÞ

for any X ;Y A TðMÞ so that the normal component (with respect to (9)) of ~‘‘XY

is �ðk=4ÞgðX ;YÞx and we may set H ¼ �ðk=4Þx. Moreover

trað~‘‘XHÞ ¼ � k2

16
GðDXx; xÞ ¼ 0:

The first statement in Theorem A is proved. To prove the next assertion we

need the indefinite Hopf S1-fibration P : S2n�1
2s ð2=

ffiffiffi
k

p
Þ ! CPn�1

s ðkÞ (cf. e.g. [1]).

If we set Lþ ¼ fz A Cn
s :
Pn

j¼1 ejjzj j
2
b 0g then the base complex manifold is

the open subset of the complex projective space CPn�1 given by CPn�1
s ðkÞ ¼
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ðLþnL0Þ=ðCnf0gÞ. As F is homogeneous the S1-action descends to an action

on ~MM, and then on M, such that M=S1 ¼ PðMÞ. As S1 ! M ! PðMÞ is a

principal circle bundle the proof of Proposition 2 in [6], p. 205, implies

pkðMÞApkðM=S1Þ for and kb 3, p2ðM=S1Þ ¼ Z, and the statement in Theorem

A about the homotopy groups of M.

Next we need to compute the second fundamental form h of the immersion

M ,! Cn
s .

Lemma 3. For any X ;Y A TðMÞ if X ¼ Z jq=qz j þ Z jq=q=qz j and Y ¼
W jq=qz j þW jq=qz j then

hðX ;YÞ ¼ �a iðX ;Y ÞNi �
k

4
gðX ;YÞx

where

a1ðX ;YÞ ¼ Fz jzkZ
jW k þ Fz jzkZ

jW k;ð11Þ

a2ðX ;Y Þ ¼ iðFz jzkZ
jW k � Fz jzkZ

jW kÞ;ð12Þ

and fN1;N2g are given by (4) with x1 ¼ V jM and x2 ¼ W jM.

Proof. As Gðx;NiÞ ¼ Gðx; xiÞ ¼ 0 then (by (10))

GðhðX ;Y Þ; xÞ ¼ GðtraðDXY Þ; xÞ ¼ �GðY ;X Þ:

Similarly a iðX ;Y Þ ¼ �GðDXxi;YÞ. Moreover Dq=qz jV ¼ ekFzkzjq=qz
k yields (11)–

(12). Q.e.d.

If F ðzÞ ¼ a1z1 þ � � � þ anzn and a A L0 then C ¼ Cn and (by Lemma 3)

h ¼ �ðk=4Þgn x. Viceversa (11)–(12) yield Fz jzk ðzÞ ¼ 0 along M hence (by the

homogeneity of F ) along ~MM. Then (by the proof of Theorem 4 in [6], p. 206–207)

F must be linear (cf. also [11]).

Let us fix a bundle E ! M as in Lemma 2 and the consider the corre-

sponding tangential screen distribution SðTMÞ. Moreover let DðF Þ be the

orthogonal complement of RJx in SðTMÞ. We need

Lemma 4 (Cf. [10]). Let M be a m-dimensional 2r-lightlike submanifold of

the complex ðnþ 1Þ-dimensional indefinite Kähler manifold ðM 2nþ2; J;GÞ. Let us

assume that 1) Rad TM is J-invariant, 2) r ¼ 2r < m, and 3) the codimension k

of M in M 2nþ2 is k ¼ 2rþ 1. Then M may be organized as an indefinite CR

submanifold.
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Any orientable real hypersurface in a Hermitian manifold is a CR sub-

manifold (in the sense of [2]) in a natural way. The lightlike analog to this

situation is provided by Lemma 4. No proof is provided in [10] and the proof of

Proposition 3.4 in [8], p. 203, doesn’t apply (as claimed in [10], p. 143). Therefore

we give a complete proof of Lemma 4 as follows. Let us choose any normal

screen distribution SðTM?Þ so that the decomposition (2) holds. The assumption

k ¼ rþ 1 implies that dimR SðTM?Þx ¼ 1 for any x A M. We claim that

JSðTM?ÞJTðMÞ:ð13Þ

Indeed let x A M and let us set h ; i ¼ Gx. As SðTM?Þx is 1-dimensional we may

choose v A SðTM?Þx such that v0 0. Now on one hand hv; Jxvi ¼ 0 (as G and J

are compatible) so that

Jxv?SðTM?Þx:ð14Þ

On the other hand if x A ðRad TMÞx then (by the J-invariance of Rad TM) one

has hx; Jxvi ¼ �hJxx; vi ¼ 0 hence

Jxv?ðRad TMÞx:ð15Þ

Then (2) and (14)–(15) imply that Jxv A ðTxðMÞ?Þ? ¼ TxðMÞ and (13) is proved.

Next we claim that the sum ðRad TMÞ þ JSðTM?Þ is direct. Indeed if X A

ðRad TMÞV JSðTM?Þ then X ¼ JV for some V A SðTM?Þ and X ?TðMÞI
JSðTM?Þ implies that

0 ¼ GðX ; JVÞ ¼ GðJV ; JVÞ ¼ GðV ;VÞ

hence V ¼ 0 because SðTM?Þ is a nondegenerate distribution of rank 1. Thus

X ¼ 0 i.e.

ðRad TMÞV JSðTM?Þ ¼ ð0Þ:ð16Þ

At this point we choose a tangential screen distribution SðTMÞ such that

SðTMÞI JSðTM?Þ. For instance, let us choose a complement E to

ðRad TMÞl JSðTM?Þ in TðMÞ i.e.

TðMÞ ¼ El ðRad TMÞl JSðTM?Þ;

and let us set by definition

SðTMÞ :¼ El JSðTM?Þ:

Finally let D be the perp of JSðTM?Þ in SðTMÞ. As JSðTM?Þ is nondegenerate
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SðTMÞ ¼ Dl JSðTM?Þ

and D? ¼ JSðTM?Þ. To complete the proof of Lemma 4 we need to check that

DlRad TM is J-invariant. As Rad TM is J-invariant it su‰ces to show that

JDHDlRad TM. To this end let X A D and W A TðMÞ?. Then (by (2))

W ¼ Y þ x for some Y A SðTM?Þ and x A Rad TM. We have

GðJX ;WÞ ¼ �GðX ; JYÞ � GðX ; JxÞ ¼ 0:

Indeed GðX ; JYÞ ¼ 0 because X belongs to D while JY belongs to JSðTM?Þ and
these are orthogonal spaces. Also GðX ; JxÞ ¼ 0 because of the invariance of the

radical distribution. Summing up JX A ðTðMÞ?Þ? ¼ TðMÞ i.e. JX is tangential.

Also if V A SðTM?Þ then GðJX ; JVÞ ¼ GðX ;VÞ ¼ 0 as X is tangential and V is

normal. Hence

JX ? JSðTM?Þð17Þ

and we may conclude that

JX A DlRad TM:ð18Þ

To prove (18) we let JX ¼ Y þ JV þ x for some Y A D, V A SðTM?Þ and

x A Rad TM then taking the inner product with JV gives (by (17)) GðV ;VÞ ¼ 0

i.e. V ¼ 0. Q.e.d.

Let us go back to the proof of Theorem A. By Lemma 4 the pair ðM;DðFÞÞ
is an indefinite CR manifold hence a CR manifold of hypersurface type (of CR

dimension n� 2). Indeed any indefinite CR submanifold admits a natural CR

structure described by the following

Lemma 5. Let ðM;SðTMÞ;SðTM?Þ;DÞ be a m-dimensional indefinite CR

submanifold of the complex ðnþ 1Þ-dimensional indefinite Kähler manifold

ðM 2nþ2; J;GÞ such that M is a r-lightlike submanifold of ðM 2nþ2;GÞ, 0 < r <

minfm; 2nþ 2�mg. Let HðMÞ :¼ DlRad TM and T1;0ðMÞ :¼ fX � iJX :

X A HðMÞg. Then ðM;T1;0ðMÞÞ is a CR manifold of type ðpþ r; qÞ where r ¼ 2r

and

2p ¼ dimR Dx; q ¼ dimR D?
x ; x A M;

and HðMÞ its Levi distribution. Also the CR structure T1;0ðMÞ and the induced

CR structure from M 2nþ2 coincide. In particular the inclusion j : M ! M 2nþ2 is a

CR immersion i.e. ðdx jÞT1;0ðMÞx HT 1;0ðM 2nþ2Þx for any x A M. The CR

manifold ðM;T1;0ðMÞÞ is generically embedded in M 2nþ2 if nþ 1 ¼ m� p� r.
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Proof of Lemma 5. Let us consider the distribution HðMÞ ¼ DlRad TM.

Then

TðMÞ ¼ SðTMÞlRad TM ¼ DlD? lRad TM

that is

TðMÞ ¼ HðMÞlD?:ð19Þ

Let X ;Y A HðMÞ and Z A D?. Then (as D is symmetric and DJ ¼ 0)

Gð½JX ; JY �;ZÞ ¼ GðDJXJY �DJYJX ;ZÞ

¼ �GðDJXY �DJYX ; JZÞ ¼ GðhðJY ;XÞ � hðJX ;Y Þ; JZÞ:

The last equality holds due to JZ A JD? JSðTM?ÞHTðMÞ?. Next (as h is

symmetric)

Gð½JX ; JY �;ZÞ ¼ GðhðX ; JYÞ � hðY ; JX Þ; JZÞ

¼ GðDXJY �DYJX ; JZÞ ¼ GðDXY �DYX ;ZÞ ¼ Gð½X ;Y �;ZÞ

hence ½JX ; JY � � ½X ;Y � is orthogonal to D? so that

½JX ; JY � � ½X ;Y � A HðMÞ; X ;Y A HðMÞ:ð20Þ

Next

½X � iJX ;Y � iJY � ¼ ½X ;Y � � ½JX ; JY � � if½X ; JY � þ ½JX ;Y �g

(by the integrability of J)

¼ ½X ;Y � � ½JX ; JY � � if½X ;Y � � ½JX ; JY �g

hence (by (20)) ½X � iJX ;Y � iJY � A T1;0ðMÞ for any X ;Y A HðMÞ.
To prove that T1;0ðMÞ ¼ T 1;0ðM 2nþ2ÞV ½TðMÞnC� we only need to check

the inclusion K. Let ~XX � iJ ~XX A T 1;0ðM 2nþ2Þ be tangent to M. Then ~XX ¼ X þ Y

for some X A HðMÞ and Y A D?. Then X � iJX þ Y � iJY A TðMÞnC yet

JY A JD? JSðTM?ÞHTðMÞ? hence JY A Rad TM. Thus (by the J-invariance

of Rad TM) Y A ðRad TMÞVD? HHðMÞVD? ¼ ð0Þ. Q.e.d.

To end the proof of Theorem A we apply

Lemma 6. Let M be an indefinite CR submanifold of Cn
s and x A M. Let

us assume that M ¼ fz A Cnþ1
s : r1ðzÞ ¼ 0; . . . ; rkðzÞ ¼ 0g and that fDr1ðxÞ; . . . ;

DrrðxÞg is a linear basis in ðRad TMÞx and fDrrþ1ðxÞ; . . . ;DrkðxÞg is a gx-

orthonormal basis in SðTM?Þx. Let fx1; . . . ; xrg be a local frame of RadTM
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such that xi;x ¼ ðDriÞðxÞ. Let ltrðTMÞ ! M be a lightlike transversal vector

bundle and fN1; . . . ;Nrg a local frame of ltrðTMÞ ! M defined on a neighborhood

of x such that Gðxi;NjÞ ¼ dij and GðNi;NjÞ ¼ 0. Then the extrinsic Levi form at x

is given by

~LLxðwÞ ¼ �
Xr
i¼1

q2ri

qzAqzB
ðxÞwAwB

 !
Ni;xð21Þ

�
Xk�r

a¼1

q2rrþa

qzAqzB
ðxÞwAwB

 !
DrrþaðxÞ;

for any w ¼ wAðq=qzAÞx A T1;0ðMÞx.

Note that M is given by riðzÞ ¼ 0, i A f1; 2; 3g where r1ðzÞ ¼ FðzÞ þ FðzÞ,
r2ðzÞ ¼ iðFðzÞ � FðzÞÞ, and r3ðzÞ ¼ ej jz jj2 � 4=k. We set

~rriðzÞ ¼ riðzÞ; ~rr3ðzÞ ¼
ffiffiffi
k

p

2
r3ðzÞ; i A f1; 2g;

so that D~rr3 is an orthonormal vector field spanning SðTM?Þ while fD~rr1;D~rr2g
is a frame of Rad TM. Finally (by Lemma 6) ~LLxðwÞ ¼ �eAdABw

AwBxx for any

w A T1;0ðMÞx, x A M. The proof of Theorem A is complete.

The gradient Drl (in Lemma 6) is meant with respect to the flat indefinite

Kähler metric G on Cn
s . One may compare ~LLx as given by (21) and the expression

of the extrinsic Levi form in Theorem 1 of [4], p. 160. It is likely that the use of

trðTMÞ ! M (rather than TðMÞ?) may lead to new CR extension results for CR

functions on indefinite CR submanifolds. Indeed one may consider the convex

hull Gx J trðTMÞx of the image of ~LLx : T1;0ðMÞx ! trðTMÞx. It is known (cf. e.g.

[4], p. 200) that in the positive definite case Gx determines the geometry of the

open set to which CR functions extend holomorphically.

Proof of Lemma 6. Let J � : T �ðCn
s Þ ! T �ðCn

s Þ be the dual complex struc-

ture i.e. ðJ �aÞðvÞ ¼ aðJvÞ. Then

2i~LLxðwÞ ¼ �
Xr
i¼1

Gðxi; J½W ;W �ÞxNi;x

�
Xk�r

a¼1

GðDrrþa; J½W ;W �ÞxDrrþaðxÞ

¼ �
X
i

ðJ �driÞð½W ;W �ÞxNi;x �
X
a

ðJ �drrþaÞð½W ;W �ÞxDrrþaðxÞ:
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As d ¼ qþ q and J � � q ¼ iq (respectively J � � q ¼ �iq) the coe‰cients in the

linear combination of fNi;x;DrrþaðxÞ : 1a ia r; 1a aa k � rg above are

iððq� qÞrlÞ½W ;W � ¼ �2iðdðq� qÞrlÞðW ;WÞ

at the point x hence (again by d ¼ qþ q)

� 1

2
~LLxðwÞ ¼

X
i

ðqqriÞðW ;WÞxNi;x þ
X
a

ðqqrrþaÞðW ;WÞDrrþaðxÞ

leading to (21). Q.e.d.
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