HOMOTOPY TYPE OF THE BOX COMPLEXES OF GRAPHS WITHOUT 4-CYCLES

By
Akira Kamibeppu

Abstract

In this paper, we show that a graph G contains no 4 -cycles if and only if $\|\bar{G}\|$ is a strong \mathbf{Z}_{2}-deformation retract of the box complex $\|\mathrm{B}(G)\|$ of G, where \bar{G} is the 1-dimensional free simplicial \mathbf{Z}_{2}-complex introduced in [2].

1 Introduction

We assume that all graphs are finite, simple, undirected and have no isolated vertices. For a graph G, an abstract free simplicial \mathbf{Z}_{2}-complex $\mathrm{B}(G)$, called the box complex of G, is defined in [3]. The \mathbf{Z}_{2}-index of $\|\mathrm{B}(G)\|$ gives us a lower bound for the chromatic number $\chi(G)$; for any graph G, we have

$$
\chi(G) \geq \operatorname{ind}_{\mathbf{z}_{2}}(\|\mathrm{~B}(G)\|)+2
$$

In [4] p. 81, J. Matoušek and G. M. Ziegler pointed out that, for every graph G which contains no 4 -cycles, we have $\operatorname{ind}_{\mathbf{z}_{2}}(\|\mathrm{~B}(G)\|) \leq 1$. This indicates that the difference between $\operatorname{ind}_{\mathbf{z}_{2}}(\|\mathrm{~B}(G)\|)+2$ and $\chi(G)$ can be arbitrarily large in general.

We are interested in the relation between topology of $\|\mathrm{B}(G)\|$ and combinatorics of G. In [2], the author showed that the box complex $\mathrm{B}(G)$ contains a natural double covering \bar{G} of G which is a 1-dimensional free simplicial \mathbf{Z}_{2}-subcomplex of $\mathrm{B}(G)$. Also it is shown that the homotopy type of $\|\bar{G}\|$ is determined by the homotopy type of $\|G\|$ and combinatorics of G (see section 3). In this paper, we study the relation between $\mathrm{B}(G)$ and \bar{G} when G contains no 4-cycles.

In [4] p. 81, J. Matoušek and G. M. Ziegler showed that, if G contains no 4cycles, there is a \mathbf{Z}_{2}-retraction $r:\|\operatorname{sd} \mathrm{B}(G)\| \rightarrow\|\mathrm{L}\|$, where L is a 1-dimensional subcomplex of the first barycentric subdivision $\operatorname{sd} \mathrm{B}(G)$. It turns out that

[^0]$\mathrm{L}=\operatorname{sd} \bar{G}$. In section 4 , we show that the \mathbf{Z}_{2}-retract $\|\mathrm{L}\|$ is actually a strong \mathbf{Z}_{2}-deformation retract of $\|\operatorname{sd} \mathrm{B}(G)\|$. Thus, $\|\mathrm{B}(G)\|$ and $\|\bar{G}\|$ have the same homotopy type. Conversely, if $\|\mathrm{B}(G)\|$ admits a retraction onto $\|\bar{G}\|$, then G contains no 4-cycles (see Theorem 4.3).

2 Preliminaries

In this section, we recall some basic concepts on graphs, abstract simplicial complexes and the \mathbf{Z}_{2}-index of a \mathbf{Z}_{2}-space. We follow [1] with respect to the standard notation in graph theory.

A graph is a pair $G=(V(G), E(G))$ which consists of a nonempty finite set $V(G)$ and a family $E(G)$ of 2-elements subsets of $V(G)$. Elements of $V(G)$ (resp. $E(G))$ are called vertices (resp. edges) of G. By this definition, all graphs are simple, that is, they have no loops and multiple edges. Also all graphs are undirected and an edge $\{u, v\}$ of a graph is simply denoted by $u v$ or $v u$. A vertex of G which is not contained in any edge of G is called an isolated vertex of G.

An abstract simplicial complex is a pair $(V, \mathrm{~K})$, where V is a finite set and K is a family of subsets of V such that if $\sigma \in \mathrm{K}$ and $\tau \subset \sigma$, then $\tau \in \mathrm{K}$. The polyhedron of K is denoted by $\|\mathrm{K}\|$.

A \mathbf{Z}_{2}-space (X, v) is a topological space X with a homeomorphism $v: X \rightarrow X$ such that $v \circ v=\mathrm{id}$, called a \mathbf{Z}_{2}-action on X. A \mathbf{Z}_{2}-action which has no fixed points is said to be free. A topological space X with a free \mathbf{Z}_{2}-action is called a free \mathbf{Z}_{2}-space. For two \mathbf{Z}_{2}-spaces $\left(X, v_{X}\right),\left(Y, v_{Y}\right)$, a continuous map $f: X \rightarrow Y$ which satisfies $v_{Y} \circ f=f \circ v_{X}$ is called a \mathbf{Z}_{2}-map from X to Y. The \mathbf{Z}_{2}-index of a \mathbf{Z}_{2}-space (X, v) is defined as

$$
\operatorname{ind}_{\mathbf{Z}_{2}}(X, v):=\min \left\{n \mid \text { there exists a } \mathbf{Z}_{2} \text {-map } X \rightarrow S^{n}\right\}
$$

where $S^{n}=\left\{x \in \mathbf{R}^{n+1} \mid\|x\|=1\right\}$ with the free \mathbf{Z}_{2}-action given by $x \mapsto-x$.

3 The Box Complex of a Graph and Some Results

In this section, we define the box complex of a graph following [3] and present some results in [2].

Let G be a graph and U a subset of $V(G)$. A vertex $v \in V(G)$ is called a common neighbor of U in G if $u v \in E(G)$ for all $u \in U$. The set of all common neighbors of U in G is denoted by $\mathrm{CN}_{G}(U)$. For a vertex u of $V(G), \mathrm{CN}_{G}(\{u\})$, the set of all neighbors of u in G, is simply denoted by $\mathrm{CN}_{G}(u)$. For convenience, we define $\mathrm{CN}_{G}(\phi)=V(G)$. For $U_{1}, U_{2} \subseteq V(G)$ such that $U_{1} \cap U_{2}=\phi$, we define $G\left[U_{1}, U_{2}\right]$ as the bipartite subgraph of G with

Homotopy type of the box complexes of graphs without 4-cycles
$V\left(G\left[U_{1}, U_{2}\right]\right)=U_{1} \cup U_{2} \quad$ and

$$
E\left(G\left[U_{1}, U_{2}\right]\right)=\left\{u_{1} u_{2} \in E(G) \mid u_{1} \in U_{1}, u_{2} \in U_{2}\right\} .
$$

The graph $G\left[U_{1}, U_{2}\right]$ is said to be complete if $u_{1} u_{2} \in E(G)$ for all $u_{1} \in U_{1}$ and $u_{2} \in U_{2}$. For convenience, $G\left[\phi, U_{2}\right]$ and $G\left[U_{1}, \phi\right]$ are also said to be complete.

Let U_{1}, U_{2} be subsets of $V(G)$. The subset $U_{1} \uplus U_{2}$ of $V(G) \times\{1,2\}$ is defined as

$$
U_{1} \uplus U_{2}:=\left(U_{1} \times\{1\}\right) \cup\left(U_{2} \times\{2\}\right) .
$$

For vertices $u_{1}, u_{2} \in V(G),\left\{u_{1}\right\} \uplus \phi, \phi \uplus\left\{u_{2}\right\}$, and $\left\{u_{1}\right\} \uplus\left\{u_{2}\right\}$ are simply denoted by $u_{1} \uplus \phi, \phi \uplus u_{2}$ and $u_{1} \uplus u_{2}$ respectively.

In this paper, we assume that all graphs contain no isolated vertices. The box complex of a graph G is an abstract simplicial complex with the vertex set $V(G) \times\{1,2\}$ and the family of simplices

$$
\begin{aligned}
\mathrm{B}(G)= & \left\{U_{1} \uplus U_{2} \mid U_{1}, U_{2} \subseteq V(G), U_{1} \cap U_{2}=\phi,\right. \\
& \left.G\left[U_{1}, U_{2}\right] \text { is complete, } \mathrm{CN}_{G}\left(U_{1}\right) \neq \phi \neq \mathrm{CN}_{G}\left(U_{2}\right)\right\} .
\end{aligned}
$$

An abstract simplex $U_{1} \uplus U_{2}$ and its geometric simplex are denoted by the same symbol $U_{1} \uplus U_{2}$. The simplicial map $v: V(\mathrm{~B}(G)) \rightarrow V(\mathrm{~B}(G))$ given by

$$
u \uplus \phi \mapsto \phi \uplus u \quad \text { and } \quad \phi \uplus u \mapsto u \uplus \phi \quad \text { for all } u \in V(G)
$$

induces a free \mathbf{Z}_{2}-action on $\|\mathrm{B}(G)\|$. We always think of $\|\mathrm{B}(G)\|$ as a free \mathbf{Z}_{2} space with this action. It is easy to see that the box complex $\|\mathrm{B}(G)\|$ is the disjoint union $\coprod_{i=1}^{k}\left\|\mathrm{~B}\left(G_{i}\right)\right\|$, where $\left\{G_{1}, \ldots, G_{k}\right\}$ is the set of all components of G. In what follows, we always assume that graphs under consideration are connected.

Let \bar{G} be the following 1-dimensional simplicial subcomplex of $\mathrm{B}(G)$:

$$
\bar{G}:=\{u \uplus \phi, v \uplus \phi, \phi \uplus u, \phi \uplus v, u \uplus v, v \uplus u \mid u v \in E(G)\} .
$$

Then, $\|\bar{G}\|$ is a free \mathbf{Z}_{2}-space with the restriction of the free \mathbf{Z}_{2}-action on $\|\mathrm{B}(G)\|$. Moreover, following [2], \bar{G} is a natural double covering of G constructed from \bar{T}, where T is any spanning tree of G.

Let X be a \mathbf{Z}_{2}-space and A a \mathbf{Z}_{2}-subspace of X. A strong deformation retraction $\left\{f_{t}\right\}_{t \in[0,1]}$ of X onto A such that each $f_{t}: X \rightarrow X$ is a \mathbf{Z}_{2}-map is called a strong \mathbf{Z}_{2}-deformation retraction of X onto A. For two spaces X and Y, the symbol $X \simeq Y$ means that they have the same homotopy type. The following two theorems are useful when we investigate topological information of $\|\mathrm{B}(G)\|$.

Theorem 3.1 ([2], Theorem 4.1). Let G be a connected graph with k induced cycles of G.
(1) If G contains no cycles of odd length, we have $\|\bar{G}\| \simeq \bigvee_{k} S^{1} \amalg \bigvee_{k} S^{1}$.
(2) If G contains at least one cycle of odd length, we have $\|\bar{G}\| \simeq \bigvee_{2 k-1} S^{1}$.

Theorem 3.2 ([2], Theorem 4.2). Let G be a connected graph. Then, $\mathrm{B}(G)$ is connected if and only if \bar{G} is connected.

Theorem 3.1 shows that a connected graph G contains at least one cycle of odd length if and only if \bar{G} is connected. Thus, by Theorem 3.2, we see that a connected graph G contains a cycle of odd length if and only if $\mathrm{B}(G)$ is connected.

4 The Box Complexes of a Graph without 4-Cycles

First, if a graph G contains no 4-cycles, we characterize simplices of $\mathrm{B}(G)$.
Lemma 4.1 (cf. [4] p. 81, (H1)). A graph G contains no 4 -cycles if and only if for any simplices $U_{1} \uplus U_{2} \in \mathrm{~B}(G)$, we have $\left|U_{1}\right| \leq 1$ or $\left|U_{2}\right| \leq 1$. For such a graph G, every maximal simplex $U_{1} \uplus U_{2} \in \mathrm{~B}(G)$ satisfies $\left|U_{1}\right|=1$ or $\left|U_{2}\right|=1$.

Proof. We assume that a graph G contains no 4 -cycles. Suppose that $\left|U_{1}\right| \geq 2$ and $\left|U_{2}\right| \geq 2$ for some simplex $U_{1} \uplus U_{2} \in \mathrm{~B}(G)$. Since $G\left[U_{1}, U_{2}\right]$ is complete, for any vertices $u_{1}, u_{1}^{\prime} \in U_{1}$ and $u_{2}, u_{2}^{\prime} \in U_{2}$, the four edges $u_{1} u_{2}, u_{2} u_{1}^{\prime}$, $u_{1}^{\prime} u_{2}^{\prime}$ and $u_{2}^{\prime} u_{1}$ of G yield a 4-cycle of G, a contradiction. Hence, we have $\left|U_{1}\right| \leq 1$ or $\left|U_{2}\right| \leq 1$ for $U_{1} \uplus U_{2} \in \mathrm{~B}(G)$.

Let $U_{1} \uplus U_{2}$ be a maximal simplex of $\mathrm{B}(G)$ with $\left|U_{1}\right| \leq 1$. Suppose that $\left|U_{1}\right|=0$. Since $\phi \uplus U_{2}=U_{1} \uplus U_{2} \in \mathrm{~B}(G)$, there exists a common neighbor x of U_{2}. Then, we notice that $x \uplus U_{2}$ is a simplex of $\mathrm{B}(G)$. This contradicts the maximality of $\phi \uplus U_{2}$. Hence, we see $\left|U_{1}\right|=1$.

Conversely, we assume that a graph G contains a 4 -cycle $u_{1} u_{2} u_{3} u_{4} u_{1}$. Let $U_{1}=\left\{u_{1}, u_{3}\right\}$ and $U_{2}=\left\{u_{2}, u_{4}\right\}$. Then, we see $U_{1} \uplus U_{2} \in \mathrm{~B}(G)$.

Next, we notice the relation between any two distinct maximal simplices of $\mathrm{B}(G)$.

Lemma 4.2. Let G be a graph without 4 -cycles. For any two distinct maximal simplices of $\mathrm{B}(G)$, the intersection is a simplex of \bar{G}.

Proof. Let $U_{1} \uplus U_{2}$ and $V_{1} \uplus V_{2}$ be distinct maximal simplices of $\mathrm{B}(G)$. By the definition, we see $\left(U_{1} \uplus U_{2}\right) \cap\left(V_{1} \uplus V_{2}\right)=\left(U_{1} \cap V_{1}\right) \uplus\left(U_{2} \cap V_{2}\right)$. It suffices to prove that $\left|U_{1} \cap V_{1}\right| \leq 1$ and $\left|U_{2} \cap V_{2}\right| \leq 1$ by the definition of \bar{G}.

Suppose that $\left|U_{1} \cap V_{1}\right| \geq 2$. Then, we have $\left|U_{2}\right|=1$ and $\left|V_{2}\right|=1$ by the maximality of simplices and Lemma 4.1. We divide our consideration into the following two cases:

$$
\text { (1) } U_{2} \cap V_{2} \neq \phi \quad \text { and } \quad \text { (2) } \quad U_{2} \cap V_{2}=\phi .
$$

(1) $U_{2} \cap V_{2} \neq \phi$. We have $U_{2}=V_{2}$, and so $U_{1} \neq V_{1}$ since $U_{1} \uplus U_{2}$ and $V_{1} \uplus V_{2}$ are distinct. By the maximality of simplices, we see $U_{1} \backslash V_{1} \neq \phi \neq V_{1} \backslash U_{1}$, so we have $U_{1}, V_{1} \subsetneq U_{1} \cup V_{1}$. On the other hand, since $G\left[U_{1}, V_{2}\right]$ is complete, we see $U_{1} \uplus U_{2}, V_{1} \uplus V_{2} \subsetneq\left(U_{1} \cup V_{1}\right) \uplus V_{2} \in \mathrm{~B}(G)$. This contradicts the maximality of $U_{1} \uplus U_{2}$ and $V_{1} \uplus V_{2}$.

Figure 1. The simplices $U_{1} \uplus U_{2}$ and $V_{1} \uplus V_{2}$, if $U_{2}=V_{2}$.
(2) $U_{2} \cap V_{2}=\phi$. Let $U_{2}=\{u\}$ and $V_{2}=\{v\}$. Recall $\left|U_{1} \cap V_{1}\right| \geq 2$ and take two vertices $x_{1}, x_{2} \in U_{1} \cap V_{1}$. Then, $u x_{1}, x_{1} v, v x_{2}$ and $x_{2} u$ are the edges of G since $U_{1} \uplus u, V_{1} \uplus v \in \mathrm{~B}(G)$. We see that these edges yield a 4-cycle $u x_{1} v x_{2} u$ of G, a contradiction.

Figure 2. The simplices $U_{1} \uplus U_{2}$ and $V_{1} \uplus V_{2}$, if $U_{2} \neq V_{2}$.

Thus, we conclude that $\left|U_{1} \cup V_{1}\right| \leq 1$. By the same argument as above, we have $\left|U_{2} \cap V_{2}\right| \leq 1$. Hence, the conclusion follows.

For each maximal simplex $u_{1} \uplus U_{2}$ (resp. $U_{1} \uplus u_{2}$) of $\mathrm{B}(G)$, we notice that $\phi \uplus U_{2}$ is a free face of $u_{1} \uplus U_{2}$ (resp. $U_{1} \uplus \phi$ is a free face of $U_{1} \uplus u_{2}$). Thus, we can consider a collapsing from these free faces in $\|\mathrm{B}(G)\|$.

Theorem 4.3. A graph G contains no 4 -cycles if and only if $\|\bar{G}\|$ is a strong \mathbf{Z}_{2}-deformation retract of $\|\mathrm{B}(G)\|$.

Proof. We assume that a graph G contains a 4 -cycle C_{4}. By the definition of box complexes, we see that $\left\|\mathrm{B}\left(C_{4}\right)\right\|$ is the disjoint union of two 3-simplices. We notice that $\left\|\overline{C_{4}}\right\|$ is homeomorphic to the disjoint union of two circles, each of which is contractible in $\left\|\mathrm{B}\left(C_{4}\right)\right\|$ (see Figure 3). On the other hand, each component of $\left\|\overline{C_{4}}\right\|$ is not contractible in $\|\bar{G}\|$. Suppose that there exists a retraction $r:\|\mathrm{B}(G)\| \rightarrow\|\bar{G}\|$. We consider a loop l in $\|\mathrm{B}(G)\|$ which is one of two circles of $\left\|\overline{C_{4}}\right\|$. Then, we see that $r \circ l$ is the circle in $\|\bar{G}\|$ which must be nullhomotopic. This is impossible since $\|\bar{G}\|$ is the 1-dimensional polyhedron. Hence, $\|\bar{G}\|$ is not a retract of $\|\mathrm{B}(G)\|$.

$$
\left\|\mathrm{B}\left(C_{4}\right)\right\|
$$

(The polyhedron $\left\|\overline{C_{4}}\right\|$ is illustrated with — .)
Figure 3. The box complex $\left\|\mathrm{B}\left(C_{4}\right)\right\|$.

Conversely, we assume that G is a graph without 4 -cycles. First, we define a strong deformation retraction of each maximal simplex of $\|\mathrm{B}(G)\|$. By Lemma 4.1, we can divide all maximal simplices of $\|\mathrm{B}(G)\|$ into the two sets of simplices

$$
B_{1}=\{v \uplus U \mid v \uplus U \text { is maximal }\} \quad \text { and } \quad B_{2}=\{U \uplus v \mid U \uplus v \text { is maximal }\} .
$$

The \mathbf{Z}_{2}-action v on $\|\mathrm{B}(G)\|$ induces a one-to-one correspondence between B_{1} and B_{2}. For each simplex $v \uplus U \in B_{1}$, we define a strong deformation retraction $\left\{f_{t}^{v}\right\}_{t \in[0,1]}$ of $v \uplus U$ onto $K_{v}^{-}:=\bigcup_{x \in U} v \uplus x$ starting with a collapsing from the free face $\phi \uplus U$ of $v \uplus U$ (see Figure 4).

Figure 4. The strong deformation retraction $\left\{f_{t}^{v}\right\}_{t \in[0,1]}$ of $v \uplus U$ onto K_{v}^{-}.

For each simplex $U \uplus v \in B_{2}$, a strong deformation retraction of $U \uplus v$ onto $K_{v}^{+}:=\bigcup_{x \in U} x \uplus v$ is defined as $\left\{v \circ f_{t}^{v} \circ v\right\}_{t \in[0,1]}$. Let $X_{v}=(v \uplus U) \cup(U \uplus v)$, for any $v \in V(G)$. Then, a strong \mathbf{Z}_{2}-deformation retraction F_{v} of X_{v} onto $K_{v}^{-} \cup K_{v}^{+}$is defined as

$$
F_{v}(x, t)= \begin{cases}f_{t}^{v}(x) & \text { if } x \in v \uplus U, \\ v \circ f_{t}^{v} \circ v(x) & \text { if } x \in U \uplus v,\end{cases}
$$

where $t \in[0,1]$. By Lemma 4.2, we can check

$$
X_{u} \cap X_{v}=\|\bar{G}\| \cap X_{u} \cap X_{v}=\left(K_{u}^{-} \cup K_{u}^{+}\right) \cap\left(K_{v}^{-} \cup K_{v}^{+}\right)
$$

for $u, v \in V(G)$ with $u \neq v$. Notice that $\bar{G}=\bigcup_{v \in V(G)}\left(K_{v}^{-} \cup K_{v}^{+}\right)$. Since the homotopy F_{v} is stationary on $K_{v}^{-} \cup K_{v}^{+}$for each $v \in V(G)$, we see that the homotopies $\left\{F_{v} \mid v \in V(G)\right\}$ induce a strong \mathbf{Z}_{2}-deformation retraction of $\|\mathrm{B}(G)\|$ onto $\|\bar{G}\|$.

Let K be an abstract simplicial complex. The first barycentric subdivision of K , denoted by sd K , is the abstract simplicial complex with the vertex set
$V(\mathrm{sd} \mathrm{K})=\mathrm{K}$ and the family of simplices consisting of all chains, where K is ordered by inclusion. In [4] p. 81, J. Matoušek and G. M. Ziegler pointed out that if a graph G contains no 4 -cycles, there is a \mathbf{Z}_{2}-retraction from $\operatorname{sd} \mathrm{B}(G)$ to a 1-dimensional subcomplex L of sd $\mathrm{B}(G)$, where L consists of the vertex set

$$
V(\mathrm{~L}):=\left\{A^{\prime} \uplus A^{\prime \prime}\left|A^{\prime} \uplus A^{\prime \prime} \in \mathrm{B}(G),\left|A^{\prime}\right| \leq 1,\left|A^{\prime \prime}\right| \leq 1\right\}\right.
$$

and the family of simplices

$$
V(\mathrm{~L}) \cup\left\{\left(A^{\prime} \uplus \phi, A^{\prime} \uplus A^{\prime \prime}\right),\left(\phi \uplus A^{\prime \prime}, A^{\prime} \uplus A^{\prime \prime}\right)\left|A^{\prime} \uplus A^{\prime \prime} \in \mathrm{B}(G),\left|A^{\prime}\right|=1,\left|A^{\prime \prime}\right|=1\right\} .\right.
$$

We notice that sd $\bar{G}=\mathrm{L}$, and hence, $\|\bar{G}\|=\|$ sd $\bar{G}\|=\| \mathrm{L} \|$. Theorem 4.3 shows that $\|\mathrm{L}\|$ is indeed a strong \mathbf{Z}_{2}-deformation retract of $\|\mathrm{B}(G)\|$ if G contains no 4-cycles. The theorem also shows that the converse of this also holds.

As a conclusion, we obtain the following corollary from Theorem 3.1 and 4.3.

Corollary 4.4. Let G be a graph without 4 -cycles and k the number of induced cycles of G.
(1) If G contains no cycles of odd length, we have $\|\mathrm{B}(G)\| \simeq \bigvee_{k} S^{1} \amalg \bigvee_{k} S^{1}$.
(2) If G contains at least one cycle of odd length, we have $\|\mathrm{B}(G)\| \simeq \bigvee_{2 k-1} S^{1}$.

References

[1] R. Diestel. Graph Theory. 3rd ed. Graduate Texts in Mathematics 173, Springer-Verlag, 2005.
[2] A. Kamibeppu. Subcomplexes of box complexes of graphs, submitted.
[3] J. Matoušek. Using the Borsuk-Ulam Theorem. Lectures on Topological Methods in Combinatorics and Geometry, Universitext, Springer-Verlag, 2003.
[4] J. Matoušek and G. M. Ziegler. Topological lower bounds for the chromatic number: A hierarchy. Jahresbericht der Deutschen Mathematiker-Vereinigung, 106 (2004), no. 2, 7190.

Institute of Mathematics
University of Tsukuba
Tsukuba-shi, Ibaraki 305-8571
Japan
E-mail address: akira04k16@math.tsukuba.ac.jp

[^0]: Received September 21, 2007.
 Revised July 16, 2008.

