CHARACTERIZATIONS AND PROPERTIES OF STRATIFIABLE SPACES

By

Huaipeng CHEN

Abstract. In this paper, we prove some properties and characterizations of stratifiable spaces and the following theorem:

THEOREM. The following are equivalent:

- 1 (Y, τ) is a stratifiable space.
- 2 There is a zero-dimension submetric stratifiable space (X, μ) with M_3 -structures and an irreducible perfect map $f:(X, \mu) \to (Y, \tau)$.
- A stratifiable space (X, μ) is said to have an M_3 -structure if (X, μ) satisfies the following conditions A and B:
- A. There is a countable collection $\mathcal{H} = \bigcup_n \mathcal{H}_n$ of ϱ -closed sets such that:
- $\begin{array}{ll} 1 \ H(n',i') \subset H(n,i) \quad \text{or} \quad \varrho(H(n,i),H(n',i')) = r > 0 \quad \text{if} \quad H(n,i), \\ H(n',i') \in \mathscr{H} \quad \text{with} \quad n' > n. \end{array}$
 - 2 \mathcal{H}_n is a partition of X for each $n \in N$.
 - B. There is a g-function \mathcal{W} such that:
 - $1 \bigcap_{n} W(n,x) = \{x\}.$
 - 2 $x \in W(n, x_n)$, then $\{x_n : n \in N\}$ converges to x.
- 3 If H is closed and $x \notin H$, $x \notin Cl_{\mu}(\bigcup \{W(n, x') : x' \in H\})$ for some n.
 - 4 $x' \in W(n, x)$ implies $W(n, x') \subset W(n, x)$.
 - 5 $H(n,i) \cap (\bigcup \mathcal{W}_{nj}) = \emptyset$ if j > i.
 - 6 $W(n, x) \subset W(n 1, x)$.
 - 7 Each W_{nm} is a ϱ -discrete ϱ -clopen collection.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 54C10, 54E35, 54E20. Secondary: 05C05. Key words and phrases. perfect maps, metric spaces, stratifiable spaces, trees.

^{*}Project supported by The Project-sponsored by SRF for ROCS, SEM and The National Natural Science Foundation of China (No. 10471084).

Received May 8, 2007.

8 $W(n, x) \subset c(n, x) \in \mathcal{C}$ for each $x \in X$. Here \mathcal{C} is a *g*-function of the stratifiable space (X, μ) .

1. Introduction

Ceder [3] defined M_i -spaces, i=1,2,3 and proved $M_1 \Rightarrow M_2 \Rightarrow M_3$. It is an interesting problem that whether or not these implications can be reversed. Recall that a space X is an M_1 -space if X has a σ -closure preserving base \mathscr{B} . Recall that a collection \mathscr{B} is a *quasi-base* for X if for each open set U of X and a point $x \in U$, there is $B \in \mathscr{B}$ such that $x \in Int \ B \subset B \subset U$. A space X is an X-space if X has a X-closure preserving *quasi-base* and an X-space if X has a X-cushioned pair-base.

Borges [1] gave some important results on M_3 -spaces and renamed M_3 -spaces as stratifiable spaces. Gruenhage [4] and Junnila [8] independently proved that stratifiable spaces are M_2 -spaces. This is an important progress to the problem since stratifiable spaces have been shown to have many useful properties and are preserved by countable products, closed images, arbitrary subspaces; M_1 -spaces have a simple and natural definition. Itō and Tamano [7] using closed mappings got interesting results. T. Mizokami got some important progresses on the problem in [10], [11] and [12]. Also there are many important results about stratifiable spaces commended by surveys of Tamano [15], Gruenhage [5] and [6], Burke and Luter [2].

We are going to show characterizations of stratifiable space (Y,τ) . To do it we prove some properties of stratifiable spaces (Y,τ) in section 2. In section 3, we construct a stratifiable space (X,μ) which has a 0-dimensional submetric and an irreducible perfect map f from (X,μ) to (Y,τ) . Section 4 contains two g-functions of stratifiable space (X,μ) and countably many partitions $\bigcup_n \mathscr{H}_n$ of X. A g-function $\mathscr C$ is used for relating (X,μ) and (Y,τ) and the another g-function $\mathscr W$ has closed and open images. We show characterizations and raise a problem in section 5.

In this paper, the letter N denotes the set of positive integers and ω denotes the first infinite ordinal. i, j, k, l, m and n are used to denote members in ω and N. If there are signs and definitions which have not been defined in this paper, we can see it in [5] or [15] in topology and in [9] in set theory.

2. Properties of (Y, τ)

An useful characterization of stratifiable spaces was given by Theorem 5.25, Lemma 5.26 and Theorem 5.27 in [5] as the following.

Theorem 2.1. A space Y is a stratifiable space if and only if there is a g-function $g: \omega \times Y \to \tau$ such that

```
i \{y\} = \bigcap_n g(n, y);
```

ii
$$y \in g(n, y_n) \Rightarrow y_n \rightarrow y$$
;

iii $y \notin Cl_{\tau} \cup \{g(n, y) : y \in H\}$ for some $n \in \omega$ if H is closed and $y \notin H$.

iv
$$y \in g(n, x)$$
 then $g(n, y) \subset g(n, x)$.

$$v \ g(n+1, y) \subset g(n, y) \ for \ each \ y.$$

Let
$$\mathscr{G}_n = \{g(n, y) : y \in Y\}$$
 and $\mathscr{G} = \bigcup_n \mathscr{G}_n$.

DEFINITION 2.2. A locally finite collection \mathcal{B} of open sets of (Y, τ) is called a tangent cover of Y if \mathcal{B} is pairwise disjoint with $\{f(x), f(y)\} \in \mathcal{B}$ is $\{f(y), f(y), f(y)\} \in \mathcal{B}$.

PROPOSITION 2.3. Let (Y, τ) be a stratifiable space. Then there is a submetric $\rho \subset \tau$ and countably many tangent cover $\mathcal{B} = \bigcup_n \mathcal{B}_n$ such that:

- 1 $B_{n\alpha}$ is a ρ -open set and $\rho(B_{n\alpha}) < 1/n$ for each $n \in N$ and each $B_{n\alpha} \in \mathcal{B}_n$.
- 2 $Cl_{\rho}(\lfloor \mathscr{B}') = Cl_{\tau}(\lfloor \mathscr{B}')$ for each n and each $\mathscr{B}' \subset \mathscr{B}_n$.
- 3 $B_{n\alpha} \subset B_{m\beta}$ or $B_{n\alpha} \cap B_{m\beta} = \emptyset$ if n > m for $B_{n\alpha} \in \mathcal{B}_n$ and $B_{m\beta} \in \mathcal{B}_m$.

PROOF. Let $\mathscr{B}' = \bigcup_n \mathscr{B}'_n$ be a σ -discrete base of submetric ρ with $\rho(B_{n\alpha}) < 1/n$ for each $n \in N$ and each $B_{n\alpha} \in \mathscr{B}_n$. Let $\mathscr{O} = \bigcup_n \mathscr{O}_n$ be a σ -locally finite cover of Y with $\rho(O) < 1/n$ for each $n \in N$ and each $O \in \mathscr{O}_n$. Let $|\mathscr{O}_n| = \aleph(n)$.

Pick an $n \in \mathbb{N}$. Let $B_0 = \bigcup \mathscr{B}'_n$. If $Cl_\tau B_0 = Y$, let $\mathscr{B}_n = \mathscr{B}'_n$. If $Y - Cl_\tau B_0 \neq \emptyset$, then there is an $O \in \mathscr{O}_n$ with $O - Cl_\tau B_0 \neq \emptyset$. Let $B_1 = O - Cl_\tau B_0$.

Assume that, for $\alpha < \aleph(n)$, we have had B_{β} for each $\beta < \alpha$. If $Y = \bigcup_{\beta < \alpha} Cl_{\tau} B_{\beta}$, we take $\mathscr{B}_{n} = \mathscr{B}'_{n} \cup \{B_{\beta} : 0 < \beta < \alpha\}$. Otherwise $Y - \bigcup_{\beta < \alpha} Cl_{\tau} B_{\beta} \neq \emptyset$. Then there is an $O \in \mathcal{O}_{n}$ such that $O - \bigcup_{\beta < \alpha} Cl_{\tau} B_{\beta} \neq \emptyset$. Let $B_{\alpha} = O - \bigcup_{\beta < \alpha} Cl_{\tau} B_{\beta}$. Then B_{α} is closed since \mathcal{O}_{n} is a locally finite cover of Y.

Then, by induction, there is a $\delta \leq \aleph(n)$ such that $\mathscr{B}_n = \mathscr{B}'_n \cup \{B_\alpha : 0 < \alpha < \delta\}$ and $Y = Cl_\tau(\bigcup_n \mathscr{B}_n)$. So we may assume $\mathscr{B}_n = \{B_\alpha : \alpha < \aleph(n)\}$ is a tangent cover of Y.

Let
$$\mathcal{B} = \bigcup_{n} \mathcal{B}_{n}$$
. Pick an *n* from *N*. Let

$$\mathscr{B}_n'' = \{ \bigcap_{i < n} B_{i\alpha} : B_{i\alpha} \in \mathscr{B}_i \text{ for } i \le n \text{ if } \bigcap_{i < n} B_{i\alpha} \ne \emptyset \}.$$

Then $\bigcup_n \mathscr{B}''_n$ satisfies 1 and 3 since each \mathscr{B}_n is a tangent cover of Y.

Notice each \mathscr{B}''_n is locally finite. Then \mathscr{B}''_n is closure preserving. So, by Lemma 2.21 of Tamano [15], there is a submetric ρ_1 such that $\rho \subset \rho_1 \subset \tau$ and \mathscr{B}''_n is also a closure preserving closed collection of (Y, ρ_1) . Then ρ_1 and $\mathscr{B}'' = \bigcup_n \mathscr{B}''_n$ is desired. We denote ρ_1 and $\mathscr{B}'' = \bigcup_n \mathscr{B}''_n$ by ρ and $\mathscr{B} = \bigcup_n \mathscr{B}_n$ still.

We call $\mathcal{B} = \bigcup_n \mathcal{B}_n$ a decreasing σ -tangent cover and use the decreasing σ -tangent cover \mathcal{B} to construct a perfect pre-image of (Y, τ) and an irreducible perfect map in the following section.

For the above *g*-function in Theorem 2.1, we have $\mathscr{G}_n = \{g(n, y) : y \in Y\}$ for each n. Let $B_{n\alpha} = Y - \bigcup \mathscr{G}_{\alpha}$ for each $\mathscr{G}_{\alpha} \subset \mathscr{G}_n$. Let $\mathscr{B}'_n = \{B_{n\alpha} : \mathscr{G}_{\alpha} \subset \mathscr{G}_n\}$. Then, by Theorem 5.25 in [5], $\mathscr{B}' = \bigcup_n \mathscr{B}'_n$ is a τ σ -closure preserving τ -closed quasibase of (Y, τ) .

Then, by Lemma 2.21 of Tamano [15], there is a metrizable topology $\rho \subset \tau$ on Y such that each \mathscr{B}'_n is a collection ρ -closure preserving ρ -closed sets. Denote the submetric topology by (Y, ρ) . So, by Theorem 5.25 in [5], we may assume that g(n, y) is ρ -open set for each $n \in N$ and each $y \in Y$.

Let
$$K'_{ni} = \{x \in Y : \bigcup \{g(n+i, y) \in \mathscr{G}_{n+i} : x \in g(n+i, y)\} \subset g(n, x)\}.$$

Let $K_{ni} = \{x \in Y : x \in g(n+i, y) \Rightarrow y \in g(n, x)\}$. We have the following proposition.

Proposition 2.4. $K_{ni} = K'_{ni}$ and K_{ni} is ρ -closed.

PROOF. Pick an $x \in K'_{ni}$. Then $\bigcup \{g(n+i, y) : x \in g(n+i, y)\} \subset g(n, x)$. So $x \in g(n+i, y)$ implies $g(n+i, y) \subset g(n, x)$. Then $y \in g(n, x)$ implies $x \in K_{ni}$.

Let $x \in K_{ni}$. Pick a $g(n+i, y) \in \mathcal{G}$ with $x \in g(n+i, y)$. Then $y \in g(n, x)$. Then $g(n+i, y) \subset g(n, y) \subset g(n, x)$ by iv of Theorem 2.1. So $x \in K'_{ni}$.

Pick an $x \in Cl_{\rho}(K_{ni})$. Let $g(n+i,y) \in \mathscr{G}$ with $x \in g(n+i,y)$. Then $x \in g(n+i,y) \cap g(n+i,x)$. Then $g(n+i,y) \cap g(n+i,x)$ is a ρ -open neighborhood of x since both g(n+i,y) and g(n+i,x) are ρ -open. So there is a $z \in (g(n+i,y) \cap g(n+i,x)) \cap K_{ni}$. Then $g(n,y) \subset g(n,z)$ since $z \in g(n+i,y)$ and $z \in K_{ni}$. $z \in g(n+i,x) \subset g(n,x)$ implies $g(n,z) \subset g(n,x)$. Then we have $g(n+i,y) \subset g(n,y) \subset g(n,z) \subset g(n,x)$. So $y \in g(n,x)$. This implies $x \in K_{ni}$. So K_{ni} is ρ -closed.

Proposition 2.5. $K_{ni} \subset K_{ni+1}$ for each i, n and $\bigcup_{i \in \omega} K_{ni} = Y$.

PROOF. Pick an $x \in K_{ni}$. Then $x \in g(n+i,y)$ implies $y \in g(n,x)$. So $g(n,y) \subset g(n,x)$. Let $x \in g(n+i+1,y)$. We have $g(n+i+1,y) \subset g(n,y)$ by (iv) in Theorem 2.1. So $g(n+i+1,y) \subset g(n,x)$ and $x \in K_{ni+1}$.

Suppose that there is an $x \in Y - \bigcup_{i \in \omega} K_{ni}$. Then x is not in K_{ni} for each $i \in \omega$. So there is a $g(n+i, y_i)$ such that $x \in g(n+i, y_i)$ and y_i is not in g(n, x). Notice $\{y_i : i \in \omega\}$ τ -converges to x and $x \in g(n, x)$. Then $\{y_i : i \in \omega\}$ is eventually in g(n, x), a contradiction.

Proposition 2.6. $K_{n+1i} \subset K_{ni}$ for each i, n.

PROOF. Pick an
$$x \in K_{n+1i}$$
. Then $\bigcup \{g((n+1)+i, y) \in \mathcal{G}_{n+1} : x \in g((n+1)+i, y)\} \subset g(n+1, x) \subset g(n, x)$. So $x \in K_{ni}$.

Now we construct another *g*-function by induction. It is similar to Lemma 5.26 in [5] by using the above *g*-function \mathscr{G} and $\mathscr{K} = \{K_{ni} : n \in \mathbb{N} \text{ and } i \in \omega\}$.

Construction 2.

A. For k = 1, we take $\mathcal{K}_1 = \{K_{1i} : i \in \omega\} \subset \mathcal{K}$.

A.1. We take K_{10} from \mathcal{X}_1 for i=0. Then \mathcal{G}_1 is an ρ -open cover of ρ -closed set K_{10} . So there is a ρ -locally finite ρ -open refinement \mathcal{Z}_{10} of \mathcal{G}_1 . Pick an $x \in K_{10}$. Let $\mathcal{Z}_{10}(x) = \{Q \in \mathcal{Z}_{10} : x \in Q\}$ and $g(1,0,x) = \bigcap \mathcal{Z}_{10}(x)$. Let $\mathcal{G}_{10} = \{g(1,0,x) : x \in K_{10}\}$.

A.2. Assume that we have had \mathscr{G}_{1i} for i < m. Take K_{1m} from \mathscr{K}_1 . Then $\mathscr{G}_{1+m} = \{g(1+m,x) : x \in K_{1m}\}$ is a ρ -open cover of ρ -closed set K_{1m} . So there is a ρ -locally finite ρ -open refinement \mathscr{Q}_{1m} . Let $\mathscr{Q}'_{1m} = \bigcup_{i < m} \mathscr{G}_{1i}$. Let $\mathscr{Q}^*_{1m} = \mathscr{Q}_{1m} \cup \mathscr{Q}'_{1m}$.

Pick an $x \in K_{1m} - K_{1m-1}$. Let $\mathscr{Q}_{1m}^*(x) = \{Q \in \mathscr{Q}_{1m}^* : x \in Q\}$ and $g(1,m,x) = (\bigcap \mathscr{Q}_{1m}^*(x)) - K_{1m-1}$. Then g(1,m,x) is ρ -open since \mathscr{Q}_{1m}^* is a ρ -locally finite collection of ρ -open sets and K_{1m-1} is ρ -closed set. Let $\mathscr{G}_{1m} = \{g(1,m,x) : x \in K_{1m} - K_{1m-1}\}$. Then \mathscr{G}_{1m} is a ρ -locally finite collection of ρ -open sets since \mathscr{Q}_{1m}^* is a ρ -locally finite collection of ρ -open sets. Then, by induction, we have \mathscr{G}_{1m} for each m. Let $\mathscr{G}_1' = \bigcup_m \mathscr{G}_{1m}$.

- B. Assume that we have had \mathcal{G}'_k for k < n such that:
- a. $(\bigcup \mathcal{G}_{ki}) \cap K_{ni-1} = \emptyset$ for each $i \in N$.
- b. \mathcal{G}_{ki} is a ρ -locally finite ρ -open collection for each $i \in N$.

For k = n, we take $\mathcal{K}_n = \{K_{ni} : i \in \omega\}$.

B.1. Take $K_{n0} \in \mathcal{K}_n$. Then $\mathcal{G}_n = \{g(n, x) : x \in Y\}$ is a ρ -open cover of ρ -closed set K_{n0} . So there is a ρ -locally finite ρ -open refinement \mathcal{Q}_{n0} of \mathcal{G}_n .

Let $\mathcal{Z}'_{n0} = \bigcup_{j < n} \mathcal{G}_{j0}$. Let $\mathcal{Z}^*_{n0} = \mathcal{Z}_{n0} \cup \mathcal{Z}'_{n0}$. Pick an $x \in K_{n0}$. Let $\mathcal{Z}^*_{n0}(x) = \{Q \in \mathcal{Z}^*_{n0} : x \in Q\}$ and $g(n, 0, x) = \bigcap \mathcal{Z}^*_{n0}(x)$. Let $\mathcal{G}_{n0} = \{g(n, 0, x) : x \in K_{n0}\}$.

B.2. Assume that we have had \mathscr{G}_{ni} for i < m. Take K_{nm} from \mathscr{K} . Then $\mathscr{G}_{n+m} = \{g(n+m,x) : x \in K_{nm}\}$ is a ρ -open cover of ρ -closed set K_{nm} . So there is a ρ -locally finite ρ -open refinement \mathscr{Q}_{nm} of \mathscr{G}_{n+m} . Let $\mathscr{Q}'_{nm} = \bigcup_{i \le m} \bigcup_{k < n} \mathscr{G}_{ki}$. Let $\mathscr{Q}''_{nm} = \bigcup_{i < m} \mathscr{G}_{ni}$. Let $\mathscr{Q}^*_{nm} = \mathscr{Q}_{nm} \cup \mathscr{Q}'_{nm} \cup \mathscr{Q}'_{nm}$. Pick an $x \in K_{nm} - K_{nm-1}$. Let $\mathscr{Q}^*_{nm}(x) = \{Q \in \mathscr{Q}^*_{nm} : x \in Q\}$ and $g(n,m,x) = (\bigcap \mathscr{Q}^*_{nm}(x)) - K_{nm-1}$. Then g(n,m,x) is ρ -open since \mathscr{Q}^*_{nm} is a collection of ρ -locally finite ρ -open sets and K_{nm-1} is

 ρ -closed set. Let $\mathscr{G}_{nm} = \{g(n, m, x) : x \in K_{nm} - K_{nm-1}\}$. Then \mathscr{G}_{nm} is a collection of ρ -locally finite ρ -open sets.

Then, by induction, we have \mathscr{G}_{nm} for $m \in \omega$. Let $\mathscr{G}'_n = \bigcup_{m \in \omega} \mathscr{G}_{nm}$. Then, by induction, we have \mathscr{G}'_n for each $n \in N$. Let $\mathscr{G}' = \bigcup_{n \in \omega} \mathscr{G}'_n$. We have the following theorem by the above Construction 2.

THEOREM 2.7. (Y,τ) is a stratifiable space if and only if there is a g-function \mathscr{G} of (Y,τ) such that:

- $1 \cap_{n} g(n, i, y) = \{y\}.$
- 2 If $x \in g(n, i, y_n)$, $\{y_n : n \in N\}$ τ -converges to y.
- 3 If H is τ -closed and $y \notin H$, $y \notin Cl_{\tau}(\bigcup \{g(n,i,y) : y \in H\})$ for some n.
- 4 $y \in g(n, i, x)$ implies $g(n, i', y) \subset g(n, i, x)$ for some i'.
- 5 $g(n+1, i', x) \subset g(n, i, x)$.
- 6 $K_{ni-1} \cap (\bigcup \mathcal{G}'_{ni}) = \emptyset$.
- 7 Each \mathscr{G}'_{ni} is a ρ -locally finite ρ -open collection.
- 8 $g(n, i, y) \subset g(n, y)$ for $y \in Y$.

PROOF. We prove 8 at first. To do it giving an n, pick a $y \in Y = \bigcup_i K_{ni}$. Then there is an i with $y \in K_{ni}$. We have $g(n, i, y) \subset g(n + i, z)$ for some z since \mathcal{Q}_{ni} is a refinement of \mathcal{G}_{n+i} . Then $z \in g(n, y)$ since $y \in g(n + i, z)$ and $y \in K_{ni}$. So $g(n, z) \subset g(n, y)$. We have $g(n, i, y) \subset g(n + i, z) \subset g(n, z) \subset g(n, y)$.

PROOF OF 1. Notice $y \in g(n, i_n, y)$ and $g(n, i_n, y) \subset g(n, y)$ for $y \in Y$ and $n \in N$. Then $\bigcap_n g(n, i_n, y) \subset \bigcap_n g(n, y) = \{y\}$.

PROOF OF 2. In fact, $y \in g(n, i_n, y_n) \subset g(n, y_n)$ implies that $\{y_n : n \in N\}$ τ -converges to y.

PROOF OF 3. In fact, $g(n, i, y) \subset g(n, y)$ implies $\bigcup \{g(n, i, y) : y \in H\} \subset \bigcup \{g(n, y) : y \in H\}$.

PROOF OF 6. Notice that $g(n, m, x) = (\bigcap \mathcal{Q}_{nm}^*(x)) - K_{nm-1}$ for each $g(n, m, x) \in \mathcal{G}'_{nm}$ by B.2) in Construction 2.

PROOF of 5. In fact, take g(n+1,i,x) from \mathscr{G}'_{n+1i} . This implies $x \in K_{n+1i} \subset K_{ni}$ by Proposition 2.7. Then $g(n,i,x) \in \mathscr{Q}^*_{n+1i}$ by B.2) in Construction 2. So $g(n+1,i,x) = (\bigcap \mathscr{Q}^*_{n+1i}(x)) - K_{n+1i-1} \subset g(n,i,x)$.

PROOF OF 4. In fact, pick $x \in g(n,i,y) = (\bigcap \mathcal{Q}_{ni}^*(y)) - K_{ni-1} \subset \bigcap \mathcal{Q}_{ni}^*(y)$. Let $x \in K_{ni'} - K_{ni'-1}$. Then $i' \ge i$ by the above 6. Then $\mathcal{Q}_{ni}^*(y) \subset \mathcal{Q}_{ni'}^*(x)$ by B.2) in Construction 2. So $\bigcap \mathcal{Q}_{ni'}^*(x) \subset \bigcap \mathcal{Q}_{ni}^*(y)$. Then $(\bigcap \mathcal{Q}_{ni'}^*(x)) - K_{ni'-1} \subset (\bigcap \mathcal{Q}_{ni}^*(y)) - K_{ni-1}$ since $i \le i'$ implies $K_{ni-1} \subset K_{ni'-1}$.

PROOF OF 7. Notice that \mathcal{Q}_{ni}^* is a ρ -locally finite collection of ρ -open sets. Then \mathcal{G}_{ni} is a ρ -locally finite collection of ρ -open sets by the definition of g(n,i,x) in B.2) in Construction 2.

Notice that, for each $n \in N$ and $y \in Y$, there is unique $g(n,m,y) \in \mathcal{G}'_n$ for some $m \in \omega$. So denote g(n,y) by g(n,m,y) sometimes. We still use \mathcal{G} and \mathcal{G}_n $(n \in N)$ to express the constructed collection of g-function in Construction 2. In the following sections, we'll use the g-function \mathcal{G} and $\mathcal{K} = \{K_{ni} : n \in N \text{ and } i \in \omega\}$.

COROLLARY 2.8. \mathcal{G} is a σ -locally finite base of (Y, ρ) .

Give an n. Let $\mathcal{B}'_{n\alpha} = Y - \bigcup \mathcal{G}_{\alpha}$ for each $\mathcal{G}_{\alpha} \subset \mathcal{G}_{n}$. Let $\mathcal{B}'_{n} = \{B'_{n\alpha} : \mathcal{G}_{\alpha} \subset \mathcal{G}_{n}\}$. Then, by Theorem 5.25 in [5], $\mathcal{B}' = \bigcup_{n} \mathcal{B}'_{n}$ is a ρ σ -closure preserving ρ -closed quasi-base of (Y, τ) .

Let \mathscr{B} be the decreasing σ -tangent cover in Proposition 2.3 with $\mathscr{B} = \bigcup_{n \in \mathbb{N}} \mathscr{B}_n$ and $\mathscr{B}_n = \{B_\alpha : \alpha \in \aleph(n)\}$. Let

$$\overline{\mathcal{B}}_n = \{\overline{B}_\alpha : \alpha \in \aleph(n)\}.$$

Here $\overline{B}_{\alpha} = Cl_{\rho}(\bigcup \mathscr{B}') = Cl_{\tau}(\bigcup \mathscr{B}')$ by 2 of Proposition 2.3. Let

$$\overline{\mathscr{B}} = \bigcup_{n \in N} \overline{\mathscr{B}}_n.$$

In the following section we'll use the collections $\bar{\mathscr{B}}$ and \mathscr{B}' .

3. To Construct X and f

At first we construct a metric space (X,ϱ) and a perfect map $f:(X,\varrho)\to (Y,\rho)$. This method belongs to Michael [13]. To do it take $\overline{\mathscr{B}}=\bigcup_n\overline{\mathscr{B}}_n$ and give $\aleph(n)$ a discrete topology. Then countable product $\Pi_n\aleph(n)$ is a metric space. Let $M=\Pi_n\aleph(n)$. Pick $x'=(\alpha'_n)$ and $x''=(\alpha''_n)$ from M. Let $\varrho(x',x'')=1/n$ if n is the first index with $\alpha'_n\neq\alpha''_n$. Then ϱ is a metric of M. Let $X\subset M$ be all (α_n) 's with $\bigcap_n\overline{B}_{\alpha_n}\neq\varnothing$ and $\bigcap_{i\leq n}B_{\alpha_i}\neq\varnothing$ for each $n\in N$. Then (X,ϱ) is a metric space.

Giving an $n \in N$, let $V(\alpha_1, \dots, \alpha_n) = \{x \in X : P_i(x) = \alpha_i \text{ for } i \leq n\}$. Then $V(\alpha_1, \dots, \alpha_n) = (\{\alpha_1\} \times \dots \times \{\alpha_n\} \times \prod_{i > n} \aleph(i)) \cap X.$

Let $\mathscr{V}_n = \{V(\alpha_1, \dots, \alpha_n) : \alpha_i \in \aleph(i) \text{ for } i \leq n\}$. Here $P_n : \Pi_{n>0} \aleph(n) \to \aleph(n)$ is a projection with product topology. Then $\mathscr{V} = \bigcup_{n \in \mathbb{N}} \mathscr{V}_n$ is a σ -discrete base of (X, ϱ) . We call σ -discrete base $\mathscr{V} = \bigcup_{n \in \mathbb{N}} \mathscr{V}_n$ of (X, ϱ) standard base.

Let $H \subset X$ be a ϱ -closed set. Let $B(H, 1/n) = \bigcup \{V(\alpha_1, \dots, \alpha_n) \in \mathscr{V}_n : x = (\alpha_i) \in H\}$. Then B(H, 1/n) is a ϱ -clopen ball with $\bigcap_n B(H, 1/n) = H$. Let R(H, 1/n) = B(H, 1/n) - B(H, 1/(n+1)).

PROPOSITION 3.1. (X, ϱ) is a closed 0-dimensional subspace of (M, ϱ) such that:

- 1. $V \cap V' \neq \emptyset$ implies $V \subset V'$ or $V' \subset V$ for $V, V' \in \mathcal{V}$.
- 2. $R(H, 1/n) = \{x : \varrho(x, H) = 1/(n+1)\}.$
- 3. $\varrho(R(H,1/n),R(H,1/(n+1)))=r>0$

PROOF. We prove that (X, ϱ) is a closed subspace of (M, ϱ) at first.

To see it take a sequence $S = \{x_n = (\alpha(n1), \alpha(n2), \ldots) : n \in N\}$ from (X, ϱ) . Assume S converges to $x = (\alpha(n))$ with $\varrho(x_n, x) = 1/(n+1)$. Let $f(x_n) = y_n$ and f(x) = y. Giving an $i \ge 1$, we have $\alpha(ni) = \alpha(i)$ for each $n \ge i$ by definition of ϱ . So $\{y_n : n \ge i\} \subset \overline{B}_{\alpha(ni)} = \overline{B}_{\alpha(i)}$. $\rho(\overline{B}_{\alpha(n)}) \le 1/n$ implies $\{y_n : n \in N\}$ converging to $y \in \overline{B}_{\alpha(i)}$. Notice that \mathscr{B}_n is a tangent cover. Then $B_\alpha \cap B_\beta = \emptyset$ if $\alpha \ne \beta$ for B_α and B_β in \mathscr{B}_n . This implies $\overline{B}_\alpha \ne \overline{B}_\beta$. So $\alpha(ni) = \alpha(i)$ implies $\overline{B}_{\alpha(ni)} = \overline{B}_{\alpha(i)}$ and $B_{\alpha(ni)} = B_{\alpha(i)}$. Then $\bigcap_{i \le n} B_{\alpha(i)} \ne \emptyset$ since $\bigcap_{i \le n} B_{\alpha(ni)} \ne \emptyset$. Then $x = (\alpha(i)) \in X$. So (X, ϱ) is a closed subspace of (M, ϱ) .

And then we prove 2 only. To see it pick a $t = (\alpha_i) \in R(H, 1/n)$. Then $t \in B(H, 1/n)$. So there is an $x' = (\alpha_i') \in H$ with $t = (\alpha_i) \in V(\alpha_1' \cdots \alpha_n')$. Then $\alpha_i' = \alpha_i$ for $i \le n$. So, for each $x'' = (\alpha_i'') \in H \cap V(\alpha_1' \cdots \alpha_n')$, we have $\alpha_i'' = \alpha_i' = \alpha_i$ for $i \le n$.

On the another hand, $t \in R(H, 1/n)$ implies $t \notin B(H, 1/(n+1))$. Then $t \notin \bigcup \{V(\alpha_1'' \cdots \alpha_{n+1}'') \in \mathcal{V}_{n+1} : x'' = (\alpha_i'') \in H \cap V(\alpha_1' \cdots \alpha_n')\}$. Then $t \notin V(\alpha_1'' \cdots \alpha_{n+1}'')$ for each $x'' = (\alpha_i'') \in H \cap V(\alpha_1' \cdots \alpha_n')$. Then $\alpha_{n+1}'' \neq \alpha_{n+1}$. So $\min\{i : \alpha_i'' \neq \alpha_i\} = n+1$ for $t = (\alpha_i)$ and $x'' = (\alpha_i'')$. Then $\varrho(t, x'') = 1/(n+1)$ for each $x'' \in H \cap V(\alpha_1' \cdots \alpha_n')$. So $\varrho(t, H) \leq 1/(n+1)$.

Pick an $x'' \in H - (H \cap V(\alpha_1' \cdots \alpha_n'))$. Then $x'' \notin V(\alpha_1' \cdots \alpha_n')$. Then there is an $i \le n$ with $\alpha_i'' \ne \alpha_i' = \alpha_i$. So $j = \min\{l : \alpha_l'' \ne \alpha_l\} \le i \le n$. Then $\varrho(t, x'') = 1/j \ge 1/(n+1)$. Then $\varrho(t, H) \ge 1/(n+1)$.

This implies $\varrho(t, H) = \inf \{ \varrho(t, x'') : x'' \in H \} = 1/(1+n).$

We'll use the standard base $\mathscr{V} = \bigcup_{n \in N} \mathscr{V}_n$ and denote subcollection of the standard base by \mathscr{V}_{\star} or $\mathscr{V}(\star)$ and set belonging to the standard base by $V(\star)$ always.

Pick a $(\alpha_n) \in X$. Then $\bigcap_{n>0} \overline{B}_{n\alpha_n}$ is a single point set to say $\{y\}$ since $\rho(\overline{B}_{n\alpha_n}) \leq 1/n$. So we may define $f: X \to Y$ with $f((\alpha_n)) = y$ if $\bigcap_{n>0} \overline{B}_{n\alpha_n} = \{y\}$.

PROPOSITION 3.2. $f:(X,\varrho)\to (Y,\rho)$ is an irreducible perfect map.

PROOF. 1 $f:(X,\varrho)\to (Y,\rho)$ is a continuous onto map.

It is easy to prove $f:(X,\varrho)\to (Y,\rho)$ is an onto map since $\bigcup_n \mathscr{B}_n$ is a decreasing tangent cover.

Let $S = \{x_n = (\alpha(n1), \alpha(n2), \ldots) : n \in N\}$ ϱ -converge to $x = (\alpha(n))$ with $\varrho(x_n, x) = 1/n$. Let $f(x_n) = y_n$ and f(x) = y. Giving an $i \ge 1$, we have $\alpha(ni) = \alpha(i)$ for each $n \ge i$ by definition of ϱ . So $\{y_n : n \ge i\} \subset \overline{B}_{\alpha(ni)} = \overline{B}_{\alpha(i)}$. $\rho(\overline{B}_{\alpha(n)}) \le 1/n$ implies $\{y_n : n \in N\}$ ρ -converging to y.

2 $f^{-1}(y)$ is a ρ -compact.

In fact, let $\Lambda(n, y) = \{\alpha \in \Lambda(n) : y \in \overline{B}_{\alpha} \in \overline{\mathcal{B}}_n\}$. Then $\Lambda(n, y)$ is finite since $\overline{\mathcal{B}}_n$ is locally finite. Then $\Pi_{n>0}\Lambda(n, y)$ is ρ -compact. Notice $f^{-1}(y) = X \cap \Pi_{n>0}\Lambda(n, y)$. Then $f^{-1}(y)$ is ρ -compact since X is ρ -closed by Proposition 3.1.

3 $f:(X,\varrho)\to (Y,\rho)$ is a closed map.

PROOF. Let $H \subset X$ be a ϱ -closed set. Let $y_n \in f(H)$ converge to y. Let $\overline{\mathcal{B}}_n(y) = \{\overline{B}_{n\alpha(i)} \in \overline{\mathcal{B}}_n : y \in \overline{B}_{n\alpha(i)}\} = \{\overline{B}_{n\alpha(i)} \in \overline{\mathcal{B}}_n : i \leq i(n)\}$ for each $n \in N$. Then $\bigcup \overline{\mathcal{B}}_n(y)$ is a neighborhood by definition of tangent cover. Then we may assume $S_n = \{y_i : i \geq n\} \subset Int_\rho \bigcup \overline{\mathcal{B}}_n(y) \subset \bigcup \overline{\mathcal{B}}_n(y)$. This implies $\overline{\mathcal{B}}_n(y_i) \subset \overline{\mathcal{B}}_n(y)$ if $i \geq n$ for $n \in N$ since \mathcal{B}_n is a tangent cover.

A. $S_1 = \{y_i : i \ge 1\} \subset Int_\rho \bigcup \overline{\mathcal{B}}_1(y) \subset \bigcup \overline{\mathcal{B}}_1(y) \text{ implies } \Lambda(1, y_i) \subset \Lambda(1, y) \text{ for } i \ge 1.$

Notice that $\Lambda(1, y)$ is finite. Then there is an $N(1)' \subset N$ and a $\Lambda(1, y)' \subset \Lambda(1, y)$ such that, for each $i \in N(1)'$, we have $P_1(f^{-1}(y_i)) = \Lambda(1, y_i) = \Lambda(1, y)'$. So, for each $i \in N(1)'$, $P_1(f^{-1}(y_i) \cap H) \subset \Lambda(1, y_i) = \Lambda(1, y)'$ and $P_1(f^{-1}(y_i) \cap H) \neq \emptyset$. So there is an $\alpha(1) \in \Lambda(1, y)'$ and an infinite subset $N(1) \subset N(1)'$ such that, for each $i \in N(1)$, there is an $x_i \in f^{-1}(y_i) \cap H$ with $P_1(x_i) = \alpha(1)$. Let $S_1' = \{x_i : i \in N(1)\}$.

B. Assume we have had an $\alpha(k-1) \in \Lambda(k-1,y)'$ and an infinite subset $N(k-1) \subset N(k-1)'$ such that, for each $i \in N(k-1)$, $x_i \in S'_{k-1} = \{x_i : i \in N(k-1)\}$ with $P_{k-1}(x_i) = \alpha(k-1)$. Since \mathscr{B} is a decreasing tangent cover, for each $i \in N(k-1)$, we have $\Lambda(k,y_i)' \subset \Lambda(k,y)$. Then there is an infinite

subset $N(k)' \subset N(k-1)$ and a finite subset $\Lambda(k,y)' \subset \Lambda(k,y)$ such that, for each $i \in N(k)'$, $\Lambda(k,y_i) = \Lambda(k,y)' \subset \Lambda(k,y)$ and $P_k(f^{-1}(y_i)) \in \Lambda(k,y_i) = \Lambda(k,y)'$. Notice $\Lambda(k,y)'$ is finite set. Then there is an infinite subset $N(k) \subset N(k)'$ and an $\alpha(k) \in \Lambda(k,y)'$ such that $P_k(x_i) = \alpha(k)$ for each $i \in N(k)$. Let $S_k' = \{x_i \in S_{k-1}' : i \in N(k)\}$. Then $S_k' \subset S_{k-1}'$. Then, by induction, there are S_k' $(k \in N)$ such that $S_1' \supset S_2' \supset \cdots \supset S_k' \supset \cdots$.

Take an $x_{i(n)} \in S'_n$ for each $n \in N$. Then $P_n(x_{i(n)}) = \alpha(n) \in \Lambda(n, y)'$. If k < n, $x_{i(n)} \in S_n \subset S_k$ implies $P_k(x_{i(n)}) = \alpha(k) \in \Lambda(k, y)'$. Let $x = (\alpha(n))$. Then $x \in X$ and f(x) = y. So $S'' = \{x_{i(n)} : n \in N\}$ ϱ -converges to x. Then $x \in H$ since H is ϱ -closed and $x_{i(n)} \in X$ for each n. This implies $y \in f(H)$ and f(H) being closed. 4 $f: (X, \rho) \to (Y, \rho)$ is an irreducible map.

To see it take an open set $O \subset X$. Then there is a $V(\alpha_1, \ldots, \alpha_n) \subset O$. Then $B_{\alpha 1} \supset B_{\alpha 2} \supset \cdots \supset B_{\alpha n}$. Pick a $y \in B_{\alpha n}$. Then, for each $\alpha' \in \Lambda(i)$, $\alpha' \neq \alpha_i$ implies y is not in $\overline{B}_{\alpha'}$ for each $i \leq n$. Then $\Lambda(i, y) = \{\alpha_i\}$. So $f^{-1}(y) \subset V(\alpha_1, \ldots, \alpha_n) \subset O$. This implies f is irreducible.

In the following, we construct a stratifiable space (X,μ) with $\mu \supset \rho$ and a perfect map $f:(X,\mu) \to (Y,\tau)$. Here (Y,τ) is the stratifiable space in section 2 with g-function \mathscr{G} , quasi-base \mathscr{B}' and collection $\overline{\mathscr{B}}$. Notice that

$$f^{-1}(\mathcal{G}_{ni}) = \{ f^{-1}(g(n, i, y)) : g(n, i, y) \in \mathcal{G}_{ni} \}$$

is a ϱ -locally finite ϱ -open sets collection since $f:(X,\varrho)\to (Y,\rho)$ is a perfect map and \mathscr{G}_{ni} is a ϱ -locally finite ϱ -open sets collection. $\mathscr{V}=\bigcup_{n\in N}\mathscr{V}_n$ is standard base of (X,ϱ) . Here $\mathscr{V}_n=\{V(\alpha_1\cdots\alpha_n):\alpha_i\in\Lambda(i)\text{ for }i\leq n\}$ and $V(\alpha_1\cdots\alpha_n)=\{x\in X:P_i(x)=\alpha_i\text{ for }i\leq n\}$.

Take an $f^{-1}(g(n, i, y')) \in f^{-1}(\mathscr{G}_{ni})$ and an $x' = (\alpha_i) \in f^{-1}(y') \subset f^{-1}(g(n, i, y'))$. Let

$$c(n, i, x') = f^{-1}(g(n, i, y')) \cap V(\alpha_1 \cdots \alpha_n).$$

Then c(n, i, x') is a ρ -open set. Let

$$\mathscr{C}_{ni} = \{c(n, i, x') : x' = (\alpha_i) \in f^{-1}(y') \subset f^{-1}(g(n, i, y')) \text{ and } V(\alpha_1 \cdots \alpha_n) \in \mathscr{V}_n\}.$$

Then \mathscr{C}_{ni} is a collection of ϱ -locally finite ϱ -open sets. Let $\mathscr{C}_n = \bigcup_i \mathscr{C}_{ni}$. Then \mathscr{C}_n is point finite since \mathscr{G}_n is point finite in Y. We may assume $\mathscr{V}_n \subset \mathscr{C}_n$. Let

$$\mathscr{C} = \bigcup_{n} \mathscr{C}_{n}.$$

We'll prove \mathscr{C} is a g-function of some stratifiable space in the next section.

Let

$$P_{n\alpha} = X - (| \mathscr{C}_{\alpha})$$

for each $\mathscr{C}_{\alpha} \subset \mathscr{C}_n$. Let

$$\mathscr{P}_n = \{ P_{n\alpha} : \mathscr{C}_{\alpha} \subset \mathscr{C}_n \}.$$

Then \mathcal{P}_n is a collection of ϱ -closure preserving ϱ -closed sets. Let

$$\mathscr{P} = \bigcup_{n \in N} \mathscr{P}_n.$$

We'll prove \mathcal{P} is a σ -closure preseving quasi-base of some stratifiable space in Claim 3.7.

Take quasi-base \mathscr{B}' of (Y,τ) . Pick an $n \in N$. Let $O_{n\alpha} = Int_{\tau}(B_{n\alpha})$ for each $B_{n\alpha} \in \mathscr{B}'_n$. Let $\mathscr{O}_n = \{O_{n\alpha} : B_{n\alpha} \in \mathscr{B}'_n\}$. Let

$$U(n, \alpha, x) = f^{-1}(O_{n\alpha}) \cap V(\alpha_1 \cdots \alpha_n)$$

for each $x = (\alpha_i) \in f^{-1}(O_{n\alpha})$ and each $O_{n\alpha} \in \mathcal{O}_n$. Let

$$\mathcal{U}_n = \{ U(n, \alpha, x) : V(\alpha_1 \cdots \alpha_n) \in \mathcal{V}_n \text{ and } O_{n\alpha} \in \mathcal{O}_n \}.$$

Let $\mathscr{U} = \bigcup_n \mathscr{U}_n$.

PROPOSITION 3.3. \mathcal{U} is a base of some topology (X, μ) .

PROOF. Take an $U(n,\alpha,x') \in \mathcal{U}_n$ and an $U(m,\beta,x'') \in \mathcal{U}_m$. Let $m \geq n$. Pick an $x = (\alpha_i) \in U(n,\alpha,x') \cap U(m,\beta,x'')$. Then $f(x) \in O_{n\alpha} \cap O_{m\beta}$. So there is an l > m+n and a $B_{l\delta} \in \mathcal{B}'_l$ with $f(x) \in O_{l\delta} = Int_\tau B_{l\delta} \subset B_{l\delta} \subset O_{n\alpha} \cap O_{m\beta}$ by definition of quasi-base \mathcal{B}' of (Y,τ) . So $x \in f^{-1}(f(x)) \subset f^{-1}(O_{l\delta})$. Take $U(l,\delta,x) = f^{-1}(O_{l\delta}) \cap V(\alpha_1 \cdots \alpha_l)$ from \mathcal{U}_l . Then $x \in U(l,\delta,x) \subset U(n,\alpha,x') \cap U(m,\beta,x'')$ since l > m+n implies $x = (\alpha_i) \in V(\alpha_1 \cdots \alpha_l) \subset V(\alpha_1 \cdots \alpha_n) \cap V(\alpha_1 \cdots \alpha_m)$.

THEOREM 3.4. (X,μ) is a stratifiable space with $\mu \supset \rho$ and $f:(X,\mu) \to (Y,\tau)$ is an irreducible perfect map.

PROOF. We prove it by the following claims.

CLAIM 3.5. $f:(X,\mu)\to (Y,\tau)$ is a continuous map.

PROOF. Take an $O_{n\alpha} \in \mathcal{O}_n$. Notice $X = \bigcup \mathcal{V}_n$. Then

$$f^{-1}(O_{n\alpha}) = \{ \{ U(n, \alpha, x) = f^{-1}(O_{n\alpha}) \cap V(\alpha_1 \cdots \alpha_n) : x = (\alpha_i) \in f^{-1}(O_{n\alpha}) \}.$$

So
$$f^{-1}(O_{n\alpha})$$
 is μ -open.

CLAIM 3.6. $f^{-1}(y)$ is μ -compact for each $y \in Y$.

PROOF. Let $\mathscr{U}' \subset \mathscr{U}$ with $f^{-1}(y) \subset \bigcup \mathscr{U}'$ and $U(n,\alpha,x) \cap f^{-1}(y) \neq \emptyset$ for each $U(n,\alpha,x) \in \mathscr{U}'$. $U(n,\alpha,x) \cap f^{-1}(y) \neq \emptyset$ implies $f^{-1}(O_{n\alpha}) \cap f^{-1}(y) \neq \emptyset$. So $f^{-1}(y) \subset f^{-1}(O_{n\alpha})$ for each $U(n,\alpha,x) \in \mathscr{U}'$.

Notice that $f^{-1}(y) = X \cap \Pi_{n>0}\Lambda(n,y)$ is ϱ -compact and $f^{-1}(y) \subset \bigcup \mathscr{U}' \subset \bigcup \{V(\alpha_1 \cdots \alpha_n) : U(n,\alpha,x) \in \mathscr{U}'\}$. Then there is a finite subcollection $\mathscr{V}(y) = \{V_{\alpha_i} : i \leq n\}$ of $\{V_{\alpha} : U(n,\alpha,x) \in \mathscr{U}'\}$ with $f^{-1}(y) \subset \bigcup \mathscr{V}(y)$. We take $f^{-1}(O_{k_i\alpha_i})$ with relation to V_{α_i} for $i \leq n$. Then

$$f^{-1}(y) \subset U = \bigcap_{i \le n} f^{-1}(O_{k_i \alpha_i})$$

since $f^{-1}(y) \subset f^{-1}(O_{k_i\alpha_i})$ for each $i \leq n$. So

$$f^{-1}(y) \subset U \cap (\bigcup \mathcal{V}(y)) = \bigcup \{U \cap V_{\alpha_i} : i \le n\} \subset \bigcup \{f^{-1}(O_{k_i\alpha_i}) \cap V_{\alpha_i} : i \le n\}.$$

So
$$f^{-1}(y)$$
 is μ -compact.

Claim 3.7. (X, μ) is a stratifiable space with a submetric $\varrho \subset \mu$ and a σ closure preserving quasi-base $\mathscr{P} = \bigcup_m \mathscr{P}_m$.

PROOF. Notice $V(\alpha_1 \cdots \alpha_n) = \bigcup \{f^{-1}(O_{n\alpha}) \cap V(\alpha_1 \cdots \alpha_n) : O_{n\alpha} \in \mathcal{O}_n\}$. Then $V(\alpha_1 \cdots \alpha_n)$ is μ -open. So $\varrho \subset \mu$.

Now we prove that (X,μ) is a stratifiable space. To see it pick an $U(n,\alpha,x)\in\mathscr{U}$ and an $x=(\alpha_i)\in U(n,\alpha,x)=f^{-1}(O_{n\alpha})\cap V(\alpha_1\cdots\alpha_n)$. Then $U(n,\alpha,x)\subset f^{-1}(O_{n\alpha})$ implies $f(x)\in O_{n\alpha}\subset Y$. Notice that $\mathscr{B}'=\bigcup_n\mathscr{B}'_n$ is a quasi-base of (Y,τ) . Then there is an m>n and a $B_{m\beta}=Y-\bigcup\mathscr{G}_{m\beta}\in\mathscr{B}'_m$ with $f(x)\in Int_\tau\ B_{m\beta}=O_{m\beta}\subset B_{m\beta}\subset O_{n\alpha}$. Here $\mathscr{G}_{m\beta}=\{g(m,y):y\in H\}$ for some τ -closed set H. Then $x\in f^{-1}(f(x))\subset f^{-1}(O_{m\beta})\subset f^{-1}(Y-\bigcup\mathscr{G}_{m\beta})=X-f^{-1}(\bigcup\mathscr{G}_{m\beta})\subset f^{-1}(O_{n\alpha})$. Take $V(\alpha_1\cdots\alpha_m)=V'$ from \mathscr{V}_m since $x=(\alpha_i)$. Then $x\in f^{-1}(O_{m\beta})\cap V'\subset T^*\subset f^{-1}(O_{n\alpha})\cap V'\subset f^{-1}(O_{n\alpha})\cap V(\alpha_1\cdots\alpha_n)$ since m>n.

Here $T^*=f^{-1}(Y-\bigcup\mathcal{G}_{m\beta})\cap V'=(X-\bigcup\{f^{-1}(g(m,y)):y\in H)\})\cap V'.$ Let $\mathscr{V}'=\{V\in\mathscr{V}_m:V\neq V'\},$

$$\mathscr{C}'_{m\beta}=\{f^{-1}(g(m,y))\cap V':y\in H\ \text{with}\ f^{-1}(g(m,y))\cap V'\neq\varnothing\}\quad \text{and}$$

$$\mathscr{C}_{m\beta}=\mathscr{C}'_{m\beta}\cup\mathscr{V}'.$$

Then $\mathscr{C}_{m\beta} \subset \mathscr{C}_m$ and $T^* = V' - \bigcup \mathscr{C}'_{m\beta} = X - (\bigcup \mathscr{V}') \cup (\bigcup \mathscr{C}'_{m\beta}) = X - (\bigcup \mathscr{C}_{m\beta})$. Notice that $f^{-1}(O_{m\beta}) \cap V'$ is μ -open. So

$$x \in f^{-1}(O_{m\beta}) \cap V' \subset Int_{\mu}(X - (\bigcup \mathscr{C}_{m\beta})) \subset X - (\bigcup \mathscr{C}_{m\beta}) = T^* \subset U(n, \alpha, x).$$

On the other hand, $X - (\bigcup \mathscr{C}_{m\beta}) = P_{m\beta} \in \mathscr{P}_m$ and \mathscr{P}_m is ϱ -closure preserving ϱ -closed. Then \mathscr{P} is a ϱ σ -closure preserving ϱ -closed quasi-base of (X, μ) . So (X, μ) is a stratifiable space.

CLAIM 3.8.
$$f:(X,\mu)\to (Y,\tau)$$
 is a closed map.

PROOF. Let $H \subset X$ be a μ -closed set. Pick a $y \in Cl_{\tau}(f(H))$. Take collection $\overline{\mathcal{B}}$ in section 2. Giving an $n \in N$, let

$$\overline{\mathscr{B}}_{n(y)} = \{\overline{B}_{n\alpha} \in \overline{\mathscr{B}}_n : y \in \overline{B}_{n\alpha}\} = \{\overline{B}_{n\alpha} : \alpha \in \Lambda(n, y)\}.$$

Here $\Lambda(n, y)$ is a finite set since $\overline{\mathscr{B}}_n$ is a ρ -locally finite collection. Let $\mathscr{N}_y = \{U_n : n \in N\}$ be a collection of ρ -open neighborhood of the point y such that $U_n \supset Cl_p(U_{n+1}), \ Int_p(\bigcup \overline{\mathscr{B}}_n(y)) \supset U_n$ and $\rho(Cl_p(U_n)) \leq 1/n$ for each $n \in N$. We call it a decreasing ρ -open neighborhood base of the point y.

Subclaim 3.9. Let $\mathcal{N}_y = \{U_n : n \in N\}$ is a decrease ρ -open neighborhood base of point y, $\{f^{-1}(U_n) : n \in N\}$ is a ϱ -open ϱ -neighborhood base of $f^{-1}(y)$.

PROOF.
$$f:(X,\varrho)\to (Y,\varrho)$$
 is a perfect map.

We construct a ω -tree to prove $f:(X,\mu)\to (Y,\tau)$ is a closed map by using the collections $\overline{\mathscr{B}}$ and \mathscr{B}' in section 2. Let

$$\mathcal{V}_n(y) = \{ V(\alpha_1 \cdots \alpha_n) \in \mathcal{V}_n : y \in f(V(\alpha_1 \cdots \alpha_n)) \}
= \{ V(\alpha_1 \cdots \alpha_n) \in \mathcal{V}_n : \alpha_i \in \Lambda(i, y) \text{ for } i \le n \}
= \{ V(\alpha_1 \cdots \alpha_n) \in \mathcal{V}_n : (\alpha_1 \cdots \alpha_n) \in \Lambda(1, y) \times \cdots \times \Lambda(n, y) \}$$

for each $n \in N$. Take ρ -open neighborhood U_n in Subclaim 3.9.

Subclaim 3.10.
$$f^{-1}(Cl_{\rho}(U_n)) \subset \bigcup \mathscr{V}_n(y)$$
.

PROOF. Suppose there is a $V(\alpha_1 \cdots \alpha_n) \in \mathscr{V}_n$, an $i \leq n$ and an $\alpha_i \notin \Lambda(i, y)$ such that $V(\alpha_1 \cdots \alpha_n) \cap f^{-1}(Cl_\rho(U_n)) \neq \emptyset$. Then $f(V(\alpha_1 \cdots \alpha_n)) \cap Cl_\rho(U_n) \neq \emptyset$. Then $(\bigcap_{i \leq n} \overline{B}_{\alpha_i}) \cap Cl_\rho(U_n) \neq \emptyset$. Then $\overline{B}_{\alpha_i} \cap Cl_\rho(U_n) \neq \emptyset$ for each $i \leq n$ since $\bigcap_{i \leq n} \overline{B}_{\alpha_i} \subset \overline{B}_{\alpha_i}$. So $\overline{B}_{\alpha_i} \cap Cl_\rho(U_i) \neq \emptyset$ for each $i \leq n$ since $Cl_\rho(U_n) \subset Cl_\rho(U_i)$. Notice $Int_\rho(\bigcup \overline{\mathscr{B}}_i(y)) \supset Cl_\rho(U_i)$. Then

$$\overline{B}_{\alpha_i} \cap Cl_{\rho}(U_i) \neq \emptyset$$
 implies $\overline{B}_{\alpha_i} \cap Int_{\rho}(\bigcup \overline{\mathscr{B}}_i(y)) \neq \emptyset$.

Then $\overline{B}_{\alpha_i} \in \overline{\mathscr{B}}_i(y)$ since \mathscr{B} is a decreasing tangent cover of (Y, ρ) . This implies $\alpha_i \in \Lambda(i, y)$ for each $i \leq n$, a contradiction to $\alpha_i \notin \Lambda(i, y)$ for some $i \leq n$. So, for

each $V(\alpha_1 \cdots \alpha_n) \in \mathscr{V}_n$, we have $V(\alpha_1 \cdots \alpha_n) \cap f^{-1}(Cl_\rho(U_n)) = \emptyset$ if $\alpha_i \notin \Lambda(i, y)$ for some $i \leq n$. This implies $f^{-1}(Cl_\rho(U_n)) \subset \bigcup \mathscr{V}_n(y)$.

Recall that a *tree* T in K. Kunen [9] is a partial order such that for each $x \in T$, $\{y \in T : y < x\}$ is a well-ordered by <.

Let T be a tree.

- a If $x \in T$, the height of x in T, or ht(x, T), is type $(\{y \in T : y < x\})$.
- b For each ordinal α , the α -th level of T, or $Lev_{\alpha}(T)$, is $\{x \in T : ht(x,T) = \alpha\}$.
 - c The height of T, or ht(T), is the least α such that $Lev_{\alpha}(T) = 0$.
 - d A chain in T is a set $C \subset T$ which is totally ordered by <.
 - e A ω -tree is a tree T of height ω such that $|Lev_n(T)| < \omega$ for each $n < \omega$.

PROOF OF CLAIM 3.8 (continued). Take quasi-base \mathscr{B}' in section 2. Giving an n, let $\mathscr{B}'_n(y) = \{B : B \in \bigcup_{i \leq n} \mathscr{B}'_i \text{ and } y \in Int_{\tau}(B)\}$. We construct a ω -tree $(\mathscr{V}(y), \supset)$ by induction.

Let $\mathscr{V}(n, y) = \{ V(\alpha_1 \cdots \alpha_n) \in \mathscr{V}_n : (\alpha_1 \cdots \alpha_n) \in \Lambda(1, y) \times \cdots \times \Lambda(n, y) \text{ with } V(\alpha_1 \cdots \alpha_n) \cap f^{-1}(B) \cap H \neq \emptyset \text{ for each } B \in \mathscr{B}'_n(y) \}.$

We may prove $\mathcal{V}(n, y) \neq \emptyset$ for each n.

Suppose $\mathscr{V}(n,y) = \varnothing$ for some n. Then, for each $(\alpha_1 \cdots \alpha_n) \in \Lambda(1,y) \times \cdots \times \Lambda(n,y)$, there is a $B(\beta_1 \cdots \beta_n) \in \mathscr{B}'_n(y)$ with $V(\alpha_1 \cdots \alpha_n) \cap f^{-1}(B(\beta_1 \cdots \beta_n)) \cap H = \varnothing$. Let

$$B_n = \bigcap \{B(\beta_1 \cdots \beta_n) : (\alpha_1 \cdots \alpha_n) \in \Lambda(1, y) \times \cdots \times \Lambda(n, y)\}.$$

Then B_n is a τ -neighborhood of y in Y since $\Lambda(1, y) \times \cdots \times \Lambda(n, y)$ finite implies related collection $\{B(\beta_1 \cdots \beta_n) : (\alpha_1 \cdots \alpha_n) \in \Lambda(1, y) \times \cdots \times \Lambda(n, y)\}$ finite. So $U_n \cap B_n$ is a τ -neighborhood of y in Y. Then $(U_n \cap B_n) \cap f(H) \neq \emptyset$ since $y \in Cl_{\tau} f(H)$.

Then, for each $(\alpha_1 \cdots \alpha_n) \in \Lambda(1, y) \times \cdots \times \Lambda(n, y)$, we have

$$V(\alpha_1 \cdots \alpha_n) \cap f^{-1}(B_n) \cap H \subset V(\alpha_1 \cdots \alpha_n) \cap f^{-1}(B(\beta_1 \cdots \beta_n)) \cap H = \emptyset.$$

So

$$\emptyset = \bigcup \{ V(\alpha_1 \cdots \alpha_n) \cap (f^{-1}(B_n) \cap H) : (\alpha_1 \cdots \alpha_n) \in \Lambda(1, y) \times \cdots \times \Lambda(n, y) \}$$

$$= (\bigcup \{ V(\alpha_1 \cdots \alpha_n) : (\alpha_1 \cdots \alpha_n) \in \Lambda(1, y) \times \cdots \times \Lambda(n, y) \}) \cap (f^{-1}(B_n) \cap H)$$

$$= (\bigcup \mathscr{V}_n(y)) \cap (f^{-1}(B_n) \cap H) \supset f^{-1}(U_n) \cap (f^{-1}(B_n) \cap H)$$

$$\neq \emptyset,$$

a contradiction. Let $\mathscr{V}(y) = \bigcup_{n \in \mathbb{N}} \mathscr{V}(n, y)$.

Take a $V(\alpha_1 \cdots \alpha_n) \in \mathscr{V}(y)$. Then $V(\alpha_1 \cdots \alpha_n) \cap f^{-1}(B) \cap H \neq \emptyset$ for each $B \in \mathscr{B}'_n(y)$. Then $V(\alpha_1 \cdots \alpha_k) \cap f^{-1}(B) \cap H \neq \emptyset$ for each $k \leq n$ and each $B \in \mathscr{B}'_k(y)$ since $k \leq n$ implies $V(\alpha_1 \cdots \alpha_n) \subset V(\alpha_1 \cdots \alpha_k)$ and $\mathscr{B}'_k(y) \subset \mathscr{B}'_n(y)$. So $V(\alpha_1 \cdots \alpha_k) \in \mathscr{V}(y)$. This implies $(\mathscr{V}(y), \supset)$ is a tree.

Giving an $n \in N$, the *n*-th level of $\mathscr{V}(y)$ is finite since $Lev_n(\mathscr{V}(y)) = \mathscr{V}(n,y)$. The height of $\mathscr{V}(y)$ is ω . So, by the Köning Lemma (to see page 69 in [9]), $(\mathscr{V}(y), \supset)$ has an infinite chain \mathscr{C} . Let the chain be $V(\alpha_1) \supset V(\alpha_1 \alpha_2) \supset \cdots \supset V(\alpha_1 \cdots \alpha_n) \supset \cdots$. Then $V(\alpha_1 \cdots \alpha_n) \in \mathscr{V}(n,y)$. Then $V(\alpha_1 \cdots \alpha_n) \cap f^{-1}(B) \cap H \neq \emptyset$ for each $B \in \mathscr{B}'_n(y)$. Let $x = (\alpha_i)$. Then $x \in X$ and f(x) = y since X is ϱ -closed. Let $\mathscr{V}(x) = \{V(\alpha_1 \cdots \alpha_n) : n \in \omega\}$.

Now we prove $x \in H$. Notice $\mathscr{U} = \bigcup_n \mathscr{U}_n$ in Proposition 3.3 is a base of (X,μ) . Take an $U(n,\alpha,x) = f^{-1}(O_{n\alpha}) \cap V(\alpha_1 \cdots \alpha_n)$ from \mathscr{U} with $x \in U(n,\alpha,x)$. Then $V(\alpha_1 \cdots \alpha_n) \in \mathscr{V}(x)$ and $y \in O_{n\alpha} \in \mathscr{O}_n$. So there is an m > n and a $B \in \mathscr{B}'_m(y)$ with $y \in Int_{\tau}(B) \subset B \subset O_{n\alpha}$. Then $V(\alpha_1 \cdots \alpha_n) \cap f^{-1}(B) \cap H \neq \emptyset$. This implies $V(\alpha_1 \cdots \alpha_n) \cap f^{-1}(O_{n\alpha}) \cap H \neq \emptyset$. So $U(n,\alpha,x) \cap H \neq \emptyset$. Then $x \in H$ since H is μ -closed and \mathscr{U} is a base of (X,μ) .

So $y = f(x) \in f(H)$. Then f(H) is τ -closed. Then $f: (X, \mu) \to (Y, \tau)$ is a closed map.

CLAIM 3.11. $f:(X,\mu)\to (Y,\tau)$ is an irreducible map.

PROOF. Take an open set $U \subset X$. Then there is an $U(n, \alpha, x) = f^{-1}(O_{n\alpha}) \cap V(\alpha_1 \cdots \alpha_n) \subset U$. Then $f(U(n, \alpha, x)) = O_{n\alpha} \cap \overline{B}_{\alpha_n} \neq \emptyset$. Then $O_{n\alpha} \cap B_{\alpha_n} \neq \emptyset$ by 2 of Proposition 2.3. Pick a $y \in O_{n\alpha} \cap B_{\alpha_n}$. Then $f^{-1}(y) \subset V(\alpha_1 \cdots \alpha_n)$ by 4 of Proposition 3.2. Then $f^{-1}(y) \subset f^{-1}(O_{n\alpha}) \cap V(\alpha_1 \cdots \alpha_n)$. This implies $f: (X, \mu) \to (Y, \tau)$ is irreducible.

This completes our proof of Theorem 3.4.

4. *g*-functions of (X, μ)

We prove that collection $\mathscr{C} = \bigcup_n \mathscr{C}_n$ in section 3 is a g-function of (X, μ) . Notice $c(n, i, x) = f^{-1}(g(n, i, y)) \cap V(\alpha_1 \cdots \alpha_n)$ for $x = (\alpha_i) \in f^{-1}(y) \subset X$ and $c(n, i, x) \in \mathscr{C}_{ni} \subset \mathscr{C}$.

We have the following proposition.

PROPOSITION 4.1. 1 $x' \in c(n, i, x)$ implies $c(n, i', x') \subset c(n, i, x)$. 2 $c(n + 1, i', x) \subset c(n, i, x)$.

PROOF. 1
$$x' \in c(n, i, x) = f^{-1}(g(n, i, y)) \cap V(\alpha_1 \cdots \alpha_n)$$
 implies $f(x') \in g(n, i, y)$ and $f(x) = y$.

So $g(n, i', f(x')) \subset g(n, i, y)$. Then

$$f^{-1}(g(n,i',f(x'))) \cap V(\alpha_1 \cdots \alpha_n) \subset f^{-1}(g(n,i,y)) \cap V(\alpha_1 \cdots \alpha_n) = c(n,i,x).$$

Then $f^{-1}(g(n,i',f(x'))) \cap V(\alpha_1 \cdots \alpha_n) = c(n,i',x')$ since $x' \in f^{-1}(f(x'))$ and $P_i(x) = P_i(x') = \alpha_i$ for $i \le n$ by $x' \in V(\alpha_1 \cdots \alpha_n)$.

2
$$c(n+1,i',x) = f^{-1}(g(n+1,i',f(x))) \cap V(\alpha_1 \cdots \alpha_{n+1}) \subset f^{-1}(g(n,i,f(x))) \cap V(\alpha_1 \cdots \alpha_n) = c(n,i,x).$$

Let $H'_{ni} = \{x \in X : \bigcup \{c(n+i,i',x') \in \mathscr{C}_{n+i} : x \in c(n+i,i',x')\} \subset c(n,i,x)\}$ and $H_{ni} = \{x \in X : x \in c(n+i,i',x') \Rightarrow x' \in c(n,i,x)\}.$

Proposition 4.2. $f^{-1}(K_{ni}) = H_{ni} = H'_{ni}$ for each n, i.

PROOF. Proving $H_{ni} = H'_{ni}$ is similar to proving $K_{ni} = K'_{ni}$ in Proposition 2.4 by Proposition 4.1.

Giving an n, we prove $f^{-1}(K_{ni}) = H_{ni}$ by induction.

A.
$$f^{-1}(K_{n0}) = H_{n0}$$
 for $i = 0$.

To see it pick an $x = (\alpha_i) \in f^{-1}(K_{n0})$. Then $y = f(x) \in K_{n0}$ implies $x \in f^{-1}(y) \subset f^{-1}(g(n,0,y))$. So $c(n,0,x) = f^{-1}(g(n,0,y)) \cap V(\alpha_1 \cdots \alpha_n)$ since $x \in V(\alpha_1 \cdots \alpha_n)$. Let $x \in c(n+0,0,x') = f^{-1}(g(n+0,0,y')) \cap V(\alpha_1' \cdots \alpha_n')$. Here $x' = (\alpha_i') \in f^{-1}(y')$. $f(x) = y \in g(n+0,0,y')$ implies $g(n+0,0,y) \subset g(n+0,0,y')$ by 5 of Theorem 2.7. Then $y \in g(n+0,0,y') \subset g(n,y')$. So $g(n,y) \subset g(n,y')$. Notice $P_i(x') = P_i(x) = \alpha_i' = \alpha_i$ for $i \le n$ since $x = (\alpha_i) \in V(\alpha_1' \cdots \alpha_n')$. So $y' \in g(n,0,y)$ since $f(x) = y \in g(n+0,0,y')$ and $y \in K_{n0}$ by definition K_{n0} . Then $g(n,y') \subset g(n,y)$. This implies g(n,0,y) = g(n,y'). Then $x' \in f^{-1}(y') \subset f^{-1}(g(n,0,y')) = f^{-1}(g(n,0,y))$ and $x' \in V(\alpha_1 \cdots \alpha_n)$. Then $x' \in f^{-1}(g(n,0,y)) \cap V(\alpha_1 \cdots \alpha_n) = c(n,0,x)$. This implies $x \in H_{n0}$. So $f^{-1}(K_{n0}) \subset H_{n0}$.

To see $H_{n0} \subset f^{-1}(K_{n0})$ pick an $x = (\alpha_i) \in H_{n0}$. Then $x \in c(n+0,0,x')$ implies $x' = (\alpha_i') \in c(n,0,x)$. Then $x \in f^{-1}(g(n+0,0,y')) \cap V(\alpha_1' \cdots \alpha_n')$ implies $x' \in f^{-1}(g(n,0,y)) \cap V(\alpha_1 \cdots \alpha_n)$. Then $f(x) = y \in g(n+0,0,y')$ implies $f(x') = y' \in g(n,0,y)$. So $y \in K_{n0}$. Then $x \in f^{-1}(y) \subset f^{-1}(K_{n0})$.

B. Assume that we have had $f^{-1}(K_{ni}) = H_{ni}$ for each i < m. Then

$$f^{-1}(K_{nm}) = f^{-1}((K_{nm} - K_{nm-1}) \cup K_{nm-1})$$
$$= f^{-1}(K_{nm-1}) \cup f^{-1}((K_{nm} - K_{nm-1}) = H_{nm-1} \cup f^{-1}(K_{nm} - K_{nm-1})$$

by induction assumption. We can prove $f^{-1}(K_{nm} - K_{nm-1}) = H_{nm} - H_{nm-1}$ just as the same proof of the above A. So we have $f^{-1}(K_{nm}) = H_{nm}$.

COROLLARY 4.3. 1 $H_{ni} \subset H_{ni+1}$ for each n, i.

- 2 $H_{n+1i} \subset H_{ni}$ for each n, i.
- 3 H_{ni} is ϱ -closed for each n, i.
- $4 \bigcup_{i} H_{ni} = X.$

PROOF.
$$f:(X,\varrho)\to (Y,\rho)$$
 is a perfect map.

PROPOSITION 4.4. \mathscr{C} is a g-function of stratifiable space (X,μ) such that:

- $1 \cap_{n} c(n, i(x), x) = \{x\}.$
- 2 $x \in c(n, i_n, x_n)$, then $\{x_n : n \in N\}$ μ -converges to x.
- 3 If H is μ -closed and $x \notin H$, then $x \notin Cl_{\mu}(\{ \}\{c(n,i,x') : x' \in H\})$.
- 4 $x' \in c(n, i, x)$ implies $c(n, i', x') \subset c(n, i, x)$.
- 5 $H_{ni-1} \cap (\bigcup \mathscr{C}_{ni}) = \emptyset$.
- 6 $c(n+1, i', x) \subset c(n, i, x)$.
- 7 Each \mathcal{C}_{ni} is a ϱ -locally finite collection of ϱ -open sets.

PROOF. It is easy to prove 1 since $x = (\alpha_i) \in c(n, i, x) \subset V(\alpha_1 \cdots \alpha_n)$ implies $x \in \bigcap_n V(\alpha_1 \cdots \alpha_n) = \{x\}.$

PROOF OF 2. $x = (\alpha_i) \in c(n, i_n, x_n) = f^{-1}(g(n, i_n, y_n)) \cap V(\alpha_1 \cdots \alpha_n)$ implies $f(x) \in g(n, i_n, y_n)$. So $S = \{y_n : n \in N\}$ τ -converges to f(x). Then $f^{-1}(S \cup f(x))$ is μ -compact since $f: (X, \mu) \to (Y, \tau)$ is a perfect map. So $S' = \{x_n : n \in N\}$ μ -converges to x.

Proof of 4 and 6. It is Proposition 4.1.

PROOF OF 5. 5 implies from $g(n, i, f(x)) \cap K_{ni-1} = \emptyset$ and $f^{-1}(K_{ni-1}) = H_{ni-1}$.

PROOF OF 7. Notice that $f^{-1}(\mathscr{G}_{ni})$ is ϱ -locally finite and \mathscr{V}_n is ϱ -discrete.

PROOF OF 3. Let $B \subset X$ be μ -closed with $x = (\alpha_i) \notin B$. Then $x \in O = X - B$. So there is a μ -open set $U(l, \delta, x) = f^{-1}(O_{l\delta}) \cap V(\alpha_1 \cdots \alpha_l) \in \mathcal{U}_l$ such that $x \in U(l, \delta, x) \subset O = X - B$. Then there is an n > l and $P_{n\alpha} \in \mathcal{P}_n$ with $x \in Int_{\mu}(P_{n\alpha}) \subset P_{n\alpha} \subset U(l, \delta, x) \subset O = X - B$ by Claim 3.7. Notice $P_{n\alpha} = X - \bigcup \mathscr{C}_{n\alpha}$ for some $\mathscr{C}_{n\alpha} \subset \mathscr{C}_n$. Then $x \notin X - Int_{\mu}(P_{n\alpha}) \supset \bigcup \mathscr{C}_{n\alpha} \supset B$. Notice that $B \subset \bigcup \mathscr{C}_{n\alpha}$ implies $\bigcup \{c(n, i, x') \in \mathscr{C}_n : x' \in B\} \subset \bigcup \mathscr{C}_{n\alpha}$ by 4 and 6 in Proposition 4.4. So $x \notin X - Int_{\mu}(P_{n\alpha}) \supset Cl_{\mu}(\bigcup \mathscr{C}_{n\alpha}) \supset Cl_{\mu}(\bigcup \mathscr{C}_{n\alpha})$

Notice that, for each $n \in N$ and $x \in X$, there is unique $c(n, i, x) \in \mathscr{C}$ for some $i \in \omega$. So denote c(n, x) by c(n, i, x) sometimes. We still use \mathscr{C} and \mathscr{C}_n $(n \in N)$ to express the collection of g-function in Proposition 4.4.

PROPOSITION 4.5. Let H be a ϱ -closed set and \emptyset be a point finite ϱ -open cover. Then there is a ϱ -discrete ϱ -clopen refinement \mathscr{V}' of \emptyset with $H \subset \bigcup \mathscr{V}'$ and $\mathscr{V}' \subset \bigcup_{i>n} \mathscr{V}_i$ for a given n.

PROOF. Take a ϱ -closed set $H \subset X$. Let $\mathscr O$ be a collection of point finite ϱ -open sets. Pick an $x \in H$. Let $\mathscr O(x) = \{O \in \mathscr O : x \in O\}$. Then $\bigcap \mathscr O(x) = O(x)$ is ϱ -open. Let n be the first number such that there is an $x = (\alpha_i) \in H$ and an O(x) with $x \in V(\alpha_1 \cdots \alpha_n) \subset O(x)$. Let $\mathscr V_n' = \{V(\alpha_1 \ldots \alpha_n) \in \mathscr V_n : x = (\alpha_i) \in H \text{ with } x \in V(\alpha_1 \cdots \alpha_n) \subset O(x)\}$. Then $\mathscr V_n'$ is a ϱ -discrete ϱ -clopen collection.

Assume we have had $\mathscr{V}_j{}'$ for $n \leq j < m$ such that $(\bigcup \mathscr{V}_j{}') \cap (\bigcup \mathscr{V}_i{}') = \varnothing$ if $n \leq j < i < m$. Let $\mathscr{V}_m{}' = \{V(\alpha_1 \cdots \alpha_m) \in \mathscr{V}_m : x = (\alpha_i) \in H - (\bigcup \bigcup_{n \leq j < m} \mathscr{V}_j{}')$ with $V(\alpha_1 \cdots \alpha_m) \subset (\bigcap \mathscr{O}(x)) - (\bigcup \bigcup_{j < m} \mathscr{V}_j)\}$. Then $\mathscr{V}_m{}'$ is a ϱ -discrete ϱ -clopen collection.

Then, by induction, we have \mathscr{V}'_m for each $m \ge n$. Let $\mathscr{V}' = \bigcup_m \mathscr{V}'_m$.

$$1 \ H \subset \bigcup \mathscr{V}'.$$

PROOF. Pick an $x = (\alpha_i) \in H \subset \bigcup \mathscr{O}$. Then $\bigcap \mathscr{O}(x)$ is ϱ -open since \mathscr{O} is point finite. Let m be the least index such that $x \in V(\alpha_1 \cdots \alpha_m) \subset \bigcap \mathscr{O}(x)$. If $V(\alpha_1 \cdots \alpha_m) \cap (\bigcup \bigcup_{n \leq j < m} \mathscr{V}_j') = \varnothing$, we have $V(\alpha_1 \cdots \alpha_m) \in \mathscr{V}_m'$ by definition of \mathscr{V}_m' . If $V(\alpha_1 \cdots \alpha_m) \cap (\bigcup \bigcup_{n \leq j < m} \mathscr{V}_j') \neq \varnothing$, there is a $V \in \bigcup_{n \leq j < m} \mathscr{V}_j$ with $V \cap V(\alpha_1 \cdots \alpha_m) \neq \varnothing$. So $V(\alpha_1 \cdots \alpha_m) \subset V$ by j < m and property 1 in Proposition 3.3. Then $x \in V \subset \bigcup \mathscr{V}'$.

2 \mathscr{V}' is ρ -discrete.

PROOF. Pick an $x = (\alpha_i) \in Cl_{\varrho}(\bigcup \mathscr{V}')$. Let $\mathscr{V}_x = \{V(\alpha_1 \cdots \alpha_m) : m \in N\}$. Take a $V(\alpha_1 \cdots \alpha_m) \in \mathscr{V}_x$. Then $V(\alpha_1 \cdots \alpha_m) \cap (\bigcup \mathscr{V}_j') \neq \emptyset$ for infinitely many \mathscr{V}_j' 's. So there is a j > m and a $V \in \mathscr{V}_j'$ with $V \cap V(\alpha_1 \cdots \alpha_m) \neq \emptyset$. Then $V \subset V(\alpha_1 \cdots \alpha_m)$ by j > m. Let $V \in \mathscr{V}_j'$. Then $V = V(\alpha_1 \cdots \alpha_m\beta_{m+1} \cdots \beta_j)$ since $V \subset V(\alpha_1 \cdots \alpha_m)$. Then $V \cap H \neq \emptyset$ since $V \in \mathscr{V}_j'$. Pick an $x_m = (\alpha_1, \dots, \alpha_m, \beta, \dots) \in V \cap H$ since $V \subset V(\alpha_1 \cdots \alpha_m)$. Then $x \in H$ since H is ϱ -closed and $S = \{x_m : m \in N\}$ ϱ -converges to x. So \mathscr{V}' is ϱ -discrete since $H \subset \bigcup \mathscr{V}'$ by the above 1.

We give X a partition \mathscr{H}'_n by $X = \bigcup_l H_{nl}$ for each n.

Take open ball $B(n,m,1/l) = \bigcup \{V(\alpha_1 \cdots \alpha_l) \in \mathcal{V}_l : x = (\alpha_i) \in H_{nm-1}\}$. Then $\bigcap_l B(n,m,1/l) = H_{nm-1}$. Let R(n,m,1/l) = B(n,m,1/l) - B(n,m,1/(l+1)). Then $R(n,m,1/l) = \{x \in X : \varrho(x,H_{nm-1}) = 1/(l+1)\}$ by property 2 in Proposition 3.1. Let $H(n,m,l) = R(n,m,1/l) \cap H_{nm}$. Then each H(n,m,l) is ϱ -closed and $\varrho(H(n,m,l),H(n,m',l')) = r > 0$ if $H(n,m',l') \neq H(n,m,l)$ by property 3 in Proposition 3.1. Then $H_{nm} - H_{nm-1} = \bigcup_{l \in N} H(n,m,l)$. Let

$$\mathscr{H}'_n = \{ H(n, m, l) : m, l \in N \} = \{ H'(n, i) : i \in N \}.$$

Then \mathcal{H}'_n is a partition of X. Let $\mathcal{H}' = \bigcup_n \mathcal{H}'_n$. Pick an $n \in N$. Let

$$\mathscr{H}_n = \{\bigcap_{i \le n} H'(i, j(i)) : H'(i, j(i)) \in \mathscr{H}'_i \text{ for } i \le n \text{ if } \bigcap_{i \le n} H'(i, j(i)) \ne \emptyset\}.$$

Then \mathcal{H}_n is countable. Let

$$\mathscr{H}_n = \{H(n,i) : i \in N\}$$
 and $\mathscr{H} = \bigcup_n \mathscr{H}_n$.

Then \mathcal{H}_n is a partition of X for each n.

Proposition 4.6. There is a countable collection $\mathcal{H} = \bigcup_n \mathcal{H}_n$ of ϱ -closed sets such that:

- $1\ H(n,i)\subset H(n',i'),\ H(n',i')\subset H(n,i)\ or\ \varrho(H(n,i),H(n',i'))=r>0\ if\ H(n,i),H(n',i')\in \mathscr{H}.$
 - 2 \mathcal{H}_n is a partition for each $n \in \mathbb{N}$.

PROOF. Let H(n,m,l) and H(n,k,l') in \mathscr{H}'_n with $H(n,m,l) \neq H(n,k,l')$. Case 1, m=k. Then $l \neq l'$. Then there is an H_{nm} with $H(n,m,l) \cup H(n,k,l')$ $\subset H_{nm}$. Then $\varrho(H(n,m,l),H(n,k,l'))=r>0$ by property 3 in Proposition 3.1.

Case 2, $m \neq k$. Then we may assume m > k. Let $H(n, m, l) \subset H_{nm} - H_{nm-1}$ and $H(n, k, l) \subset H_{nk} - H_{nk-1}$. Then $H(n, k, l) \subset H_{nk} \subset H_{nm-1}$. Then $\varrho(H(n, m, l), H(n, k, l')) \geq \varrho(H(n, m, l), H_{nm-1}) = 1/(l+1) = r > 0$.

So $\varrho(H(n,i),H(n,j)) \geq \varrho(H(n,m,l),H(n,k,l')) = r > 0$ if $i \neq j$. When $n \neq m$, we assume m > n. Then $H(m,i') = \bigcap_{i \leq m} H'(i,j(i)) \subset H(n,i)$. Then $\varrho(H(m,i'),H(n,j)) \geq \varrho(H(n,i),H(n,j)) \geq \varrho(H(n,m,l),H(n,k,l')) = r > 0$.

Construction 4.

We use partitions \mathscr{H} to construct a g-function \mathscr{W} of (X,μ) by induction. A. At first we take partition \mathscr{H}_1 to construct \mathscr{W}_1 for k=1.

A.a. We take ϱ -closed set H(1,0) from \mathcal{H}_1 . Then $H(1,0) = H_{10}$ and \mathcal{C}_{1+0} is point finite ϱ -open cover of H(1,0). Then there is a ϱ -discrete ϱ -clopen refinement

 $\mathcal{W}_{10} \subset \bigcup_{i>2(1+1)} \mathcal{V}_i$ of \mathcal{C}_{1+0} with $H(1,0) \subset \bigcup \mathcal{W}_{10}$ by Proposition 4.5. Let W(1,0,x) = W if $x \in W \cap H(1,0)$ for each $W \in \mathcal{W}_{10}$. Then $\mathcal{W}_{10} = \{W(1,0,x) : x \in H(1,0)\}$.

A.b. Assume, for each i < m, we have had W_{1i} such that:

- 1 $(\bigcup \mathcal{W}_{1i}) \cap H(1, i-1) = \emptyset$ for each i < m.
- 2 $W_{1i} \subset \bigcup_{i > i^*} V_i$ is ϱ -discrete ϱ -clopen collection.
- 3 $x \in W(1, i', x')$ implies $W(1, i, x) \subset W(1, i', x')$.
- 4 $W(1, i, x) \subset c(1, i', x)$ for each $x \in H(1, m 1)$.

Take ϱ -closed set H(1,m) from \mathscr{H}_1 . Let $H(1,m)' = \bigcup_{i < m} H(1,i)$. Then we have $\varrho(H(1,m)',H(1,m)) = r > 0$ by Proposition 4.6. $H(1,m) \in \mathscr{H}_1$ implies that there is an $H_{1l} \in \mathscr{H}_1'$ with $H(1,m) \subset H_{1l}$. Let $m^* = \max\{2(1+m+l),2/r\}$. Notice that \mathscr{C}_{1+l} is a point finite ϱ -open cover of H(1,m). Then, by Proposition 4.5, there is a ϱ -discrete ϱ -clopen refinement \mathscr{W}_{1m}' of \mathscr{C}_{1+l} with $H(1,m) \subset \bigcup \mathscr{W}_{1m}'$ and $\mathscr{W}_{1m}' \subset \bigcup_{j > m^*} \mathscr{V}_j$. Let $\mathscr{W}_{1m}'' = \bigcup_{i < m} \mathscr{W}_{1i}$ and $\mathscr{W}_{1m}^* = \mathscr{W}_{1m}' \cup \mathscr{W}_{1m}''$. Let $\mathscr{W}_{1m}^*(x) = \{W \in \mathscr{W}_{1m}^* : x \in W\}$ and $W(1,m,x) = \bigcap \mathscr{W}_{1m}^*(x)$ for each $x \in H(1,m)$. Let $\mathscr{W}_{1m} = \{W(1,m,x) : x \in H(1,m)\}$.

Then, by induction, we have \mathcal{W}_{1m} for each $m \in \omega$. Let $\mathcal{W}_1 = \bigcup_m \mathcal{W}_{1m}$.

- B. Assume we have had \mathcal{W}_k for each k < n such that:
- 1 $(| \mathcal{W}_{ki}) \cap H(k, i-1) = \emptyset$ for each k < n and each $i \in \omega$.
- 2 $\mathcal{W}_{ki} \subset \bigcup_{j>i^*} \mathcal{V}_j$ is ϱ -discrete ϱ -clopen collection for each k < n and each $i \in \omega$. Here $\bigcup_i \mathcal{V}_i$ is standard base of (X, ϱ) .
 - 3 $x \in W(k, i', x')$ implies $W(k, i, x) \subset W(k, i', x')$ for each k < n.
 - 4 $W(k, i, x) \subset c(k, i', x)$ for each k < n and each $x \in X$.

Now we take partition \mathcal{H}_n to construct \mathcal{W}_n for k = n.

B.a. Pick $H(n,0) \in \mathscr{H}_n$. Then there is an H_{nl} and $H(n-1,j) \in \mathscr{H}_{n-1}$ with $H(n,0) \subset H_{nl} \cap H(n-1,j)$ by definition of \mathscr{H}_n . Then \mathscr{C}_{n+l} is a point finite ϱ -open collection, and \mathscr{W}_{n-1j} is ϱ -discrete ϱ -clopen collection by induction assumption. Let \mathscr{W}'_{n0} be a ϱ -discrete ϱ -clopen refinement of \mathscr{C}_{n+l} with $H(n,0) \subset \bigcup \mathscr{W}'_{n0}$ and $\mathscr{W}'_{n0} \subset \bigcup_{j>2(n+l)} \mathscr{V}_j$ by Proposition 4.5. Let $\mathscr{W}_{n0}^* = \mathscr{W}'_{n0} \cup \mathscr{W}_{n-1j}$ and $\mathscr{W}_{n0}^*(x) = \{W \in \mathscr{W}_{n0}^* : x \in W\}$ for each $x \in H_{n0}$. Let $W(n,0,x) = \bigcap \mathscr{W}_{n0}^*(x)$ and $\mathscr{W}_{n0} = \{W(n,0,x) : x \in H(n,0)\}$. Then \mathscr{W}_{n0} is a ϱ -discrete ϱ -clopen collection since \mathscr{W}_{n0}^* is an union of finitely many ϱ -discrete ϱ -clopen collections. Then $\mathscr{W}_{n0} \subset \bigcup_{j>2(n+l)} \mathscr{V}_j$ since both \mathscr{W}'_{n0} and \mathscr{W}_{n-1j} are subsets of standard base \mathscr{V} .

B.b. Assume, for each i < m, we have had \mathcal{W}_{ni} such that:

- 1 $(\bigcup \mathcal{W}_{ni}) \cap H(n, i-1) = \emptyset$ for each i < m.
- 2 $\mathcal{W}_{ni} \subset \bigcup_{j>i^*} \mathcal{V}_j$ is ϱ -discrete ϱ -clopen collection.
- 3 $x \in W(n, i', x')$ implies $W(n, i, x) \subset W(n, i', x')$.
- 4 $W(n, i, x) \subset c(n, i', x)$ for each $x \in X$.

We construct \mathcal{W}_{nm} .

Take H(n,m) from \mathscr{H}_n . Let $H(n,m)' = \bigcup_{i < m} H(n,i)$. Then, by Proposition 4.6, we have $\varrho(H(n,m)',H(n,m)) = r > 0$. $H(n,m) \in \mathscr{H}_n$ implies that there is an $H_{nl} \in \mathscr{H}'_n$ with $H(n,m) \subset H_{nl}$. Let

$$m^* = \max\{2(n+m+l), 2/r\}.$$

Notice that \mathscr{C}_{n+l} is a point finite ϱ -open cover of H(n,m). Then, by Proposition 4.5, there is a ϱ -discrete ϱ -clopen refinement \mathscr{W}'_{nm} of \mathscr{C}_{n+l} with $H(n,m) \subset \bigcup \mathscr{W}'_{nm}$ and

$$\mathcal{W}'_{nm} \subset \bigcup_{j>m^*} \mathcal{V}_j.$$

We take $\mathscr{W}_{n-1i'}$ since $H(n,m)=H_{nl}\cap H(n-1,i')\subset H(n-1,i')$. Let $\mathscr{W}_{nm}''=\bigcup_{i< m}\mathscr{W}_{ni}$. Let $\mathscr{W}_{nm}^*=\mathscr{W}_{nm}''\cup\mathscr{W}_{nm}'\cup\mathscr{W}_{n-1i'}$ and $\mathscr{W}_{nm}^*(x)=\{W\in\mathscr{W}_{nm}^*:x\in W\}$ for each $x\in H(n,m)$. Let $W(n,m,x)=\bigcap\mathscr{W}_{nm}^*(x)$ and $\mathscr{W}_{nm}=\{W(n,m,x):x\in H(n,m)\}$. Then \mathscr{W}_{nm} is a ϱ -discrete ϱ -clopen collection since \mathscr{W}_{nm}^* is an union of finitely many ϱ -discrete ϱ -clopen collections. Then $\mathscr{W}_{nm}\subset\bigcup_{j>m^*}\mathscr{V}_j$ since \mathscr{W}_{nm}^* is a subset of standard base \mathscr{V} .

Then, by induction, we have \mathcal{W}_{nm} for each $m \in \omega$. Let $\mathcal{W}_n = \bigcup_m \mathcal{W}_{nm}$. Then we have \mathcal{W}_n for k = n. Then, by induction, we have \mathcal{W}_n for each $n \in N$. Notice that, for each $x \in X$ and $n \in N$, $W(n,i,x) \in \mathcal{W}_n$ is unique. So we denote W(n,x) by W(n,i,x) sometimes. Let $\mathcal{W} = \bigcup_n \mathcal{W}_n$.

PROPOSITION 4.7. Stratifiable space (X, μ) satisfies the following conditions A and B:

- A. There is a countable collection $\mathcal{H} = \bigcup_n \mathcal{H}_n$ of ϱ -closed sets such that:
- $1\ H(n',i') \subset H(n,i)$ or $\varrho(H(n,i),H(n',i')) = r > 0$ if $H(n,i),H(n',i') \in \mathcal{H}$ with n' > n.
 - 2 \mathcal{H}_n is a partition of X for each $n \in N$.
 - B. There is a g-function W such that:
 - $1 \cap_{n} W(n, x) = \{x\}.$
 - 2 $x \in W(n, x_n)$, then $\{x_n : n \in N\}$ μ -converges to x.
 - 3 If H is μ -closed and $x \notin H$, $x \notin Cl_{\mu}(\{\}W(n,x'): x' \in H\})$ for some n.
 - 4 $x' \in W(n,x)$ implies $W(n,x') \subset W(n,x)$.
 - 5 $H(n,i) \cap (\bigcup \mathcal{W}_{nj}) = \emptyset$ if j > i.
 - 6 $W(n, x) \subset W(n 1, x)$.
 - 7 Each W_{nm} is a ϱ -discrete ϱ -clopen collection.
 - 8 $W(n,x) \subset c(n,x) \in \mathscr{C}$ for each $x \in X$.

Here \mathscr{C} is a g-function of stratifiable space (X,μ) satisfying Proposition 4.4.

PROOF. Condition A follows from Proposition 4.6. In the following we prove Condition B by Construction 4.

PROOF OF 8. Pick an $x \in H(n,m)$. Then there is an $H_{nl} \in \mathscr{H}'_n$ with $x \in H(n,m) \subset H_{nl}$. Then $x \in c(n,l,x)$. Notice that \mathscr{W}'_{nm} is a refinement of \mathscr{C}_{n+l} with $H(n,m) \subset \bigcup \mathscr{W}'_{nm}$. Then there is a $W' \in \mathscr{W}'_{nm}$ and a $c(n+l,l',x') \in \mathscr{C}_{n+l}$ with $x \in W' \subset c(n+l,l',x')$. This implies $x \in c(n+l,l',x') \cap H_{nl}$ by $H(n,m) \subset H_{nl}$. So $x \in c(n+l,l',x') \subset c(n,l,x)$ by definition of H_{nl} . Notice that $x \in W' \in \mathscr{W}'_{nm}$ implies $W' \in \mathscr{W}'_{nm}(x)$. So $W(n,m,x) = \bigcap \mathscr{W}'_{nm}(x) \subset W' \subset c(n+l,l',x') \subset c(n,l,x)$.

PROOF OF 1. Pick an $x \in X$. We have $W(n,x) \subset c(n,x)$ for each $n \in \omega$ by the above 8. So $\bigcap_n W(n,x) \subset \bigcap_n c(n,x) = \{x\}$ by 1 in Proposition 4.4.

PROOF of 2. Pick an $x \in X$. Let $x \in W(n, x_n)$. We have $W(n, x_n) \subset c(n, x_n)$ for each $n \in \omega$ by the above 8. Then $\{x_n : n \in N\}$ μ -converges to x by 2 in Proposition 4.4.

PROOF OF 3. Let H be a μ -closed set with $x \notin H$. Then $x \notin Cl_{\mu}(\bigcup \{c(n, x') : x' \in H\})$ for some n by 3 in Proposition 4.4. Then $x \notin Cl_{\mu}(\bigcup \{W(n, x') : x' \in H\})$ by the above 8.

Then \mathcal{W} is a g-function of (X, μ) .

PROOF OF 5. Take \mathcal{W}_{nm} in B.b in Construction 4. Then $\varrho(H(n,m)',H(n,m)) = r > 2/m^* > 0$. Here $H(n,m)' = \bigcup_{i < m} H(n,i)$. Notice $m^* = \max\{2(n+m+l), 2/r\}$ and $\mathcal{W}'_{nm} \subset \bigcup_{j > m^*} \mathcal{V}_j$. Then, for each $x \in \bigcup \mathcal{W}_{nm}$, we have $\varrho(x,H(n,m)) < 1/m^* \le r/2$. Then $(\bigcup \mathcal{W}_{nm}) \cap H(n,m)' = \emptyset$. Then $H(n,m-1) \subset H(n,m)'$ implies $H(n,m-1) \cap (\bigcup \mathcal{W}_{nm}) = \emptyset$.

PROOF OF 7. Notice that \mathcal{W}_{nm}^* is an union of finitely many ϱ -discrete ϱ -clopen collections such that each collection of finitely many ϱ -discrete ϱ -clopen collections is a subset of the standard base by B.b of Construction 4. Pick an $x=(\alpha_i)\in H(n,m)$. Then, for each collection, there is a $V(\alpha_1\cdots\alpha_{n(i)})$ in the collection with $x\in V(\alpha_1\cdots\alpha_{n(i)})$. So $\mathcal{W}_{nm}^*(x)=\{V(\alpha_1\cdots\alpha_{n(i)}):i\leq l(m)\}$. Then $\bigcap \mathcal{W}_{nm}^*(x)\in \mathcal{V}$ is ϱ -clopen. So \mathcal{W}_{nm} a ϱ -discrete ϱ -clopen collection.

PROOF of 4. Pick an $x' \in W(n, m, x)$. Let $x' \in H(n, m')$. Then $m' \ge m$ by the above proof of 5. If m' = m, we have W(n, m', x') = W(n, m, x) since \mathcal{W}_{nm} a ϱ -

discrete ϱ -clopen collection by the above 7. If m' > m, $W(n, m, x) \in \mathscr{W}^*_{nm}(x')$ since $x' \in W(n, m, x) \in \mathscr{W}_{nm}$. So $W(n, m', x') = \bigcap \mathscr{W}^*_{nm}(x') \subset W(n, m, x)$.

PROOF OF 6. Notice $H(n,m) = H_{nl} \cap H(n-1,i') \subset H(n-1,i')$. Then $\mathcal{W}_{n-1i'} \subset \mathcal{W}_{nm}^*$ by definition of \mathcal{W}_{nm}^* in B.b in Construction 4. Then $W(n-1,i',x) \in \mathcal{W}_{nm}^*(x)$. So $W(n,m,x) = \bigcap \mathcal{W}_{nm}^*(x) \subset W(n-1,i',x)$.

A stratifiable space (X, μ) is said to have an M_3 -structure if (X, μ) satisfies conditions A and B in Proposition 4.7.

5. Results and Problems

THEOREM 5.1. The following are equivalent:

- 1 (Y, τ) is a stratifiable space.
- 2 There is a zero-dimension submetric stratifiable space (X, μ) with M_3 -structures and an irreducible perfect map $f: (X, \mu) \to (Y, \tau)$.

PROOF. It easy to prove $2 \Rightarrow 1$. We prove $1 \Rightarrow 2$. By Theorem 3.4, there is a stratifiable space (X, μ) and an irreducible perfect map $f: (X, \mu) \to (Y, \tau)$. Then (X, μ) has a zero-dimension submetric and an M_3 -structure by Proposition 4.6 and 4.7.

Theorem 5.1 gives a part answer to a problem in Tamano [15] page 407 and Nagami [14] also.

COROLLARY 5.2. The following are equivalent:

- 1 Each stratifiable space (Y, τ) is a M_1 -space.
- 2 Each zero-dimension submetric stratifiable space (X, μ) with M_3 -structures is M_1 -space.

PROOF.
$$f:(X,\mu)\to (Y,\tau)$$
 is an irreducible perfect map.

Theorem 5.1 and Corollary 5.2 raise the following Problem 1 which is equivalent to $M_3 \Rightarrow M_1$.

PROBLEM 1. Is each zero-dimension submetric stratifiable space (X, μ) with M_3 -structures an M_1 -space?

6. Acknowledgement

The author expresses heartful thanks to his adviser professor Takao Hoshina for his encouragements.

References

- [1] C. R. Borges, On stratifiable spaces, Pacific Jour. Math., 17 (1966), 1-16.
- [2] D. Burke and D. J. Lutzer, Recent advances in the theory of generalized metric spaces, in Topology: Proc. Memphis State Univ. Conf., Lecture Notes in Pure and Applied Mathematics (Marcel Dekker, New York) 1–70.
- [3] J. Ceder, So generalizations of metric spaces, Houston Pacific Jour. Math., 11 (1961), 105-125.
- [4] G. Gruenhage, Stratifiable spaces are M₂, Topology Proc., 1 (1976), 221–226.
- [5] G. Gruenhage, Generalized metric spaces, in: K. Kunen and J. E. Vaughan, Eds., handbook of Set-Theoretic Topology 423-501.
- [6] G. Gruenhage, Generalized metric spaces and metrization, Recent Progress in General Topology.
 M. Hušek and J. van Mill, editors, 239–274, Elsevier Science Publishers B.V., 1992.
- [7] M. Itō and K. Tamano, Spaces whose closed images are M_1 , Proc. Amer. Math. Soc., **87** (1983), 159–163.
- [8] H. Junnila, Neighbornets, Pacific J. Math., 76 (1978), 83-108
- [9] K. Kunen, Set Theory, A Introduction to Independence Proofs, North-Holland, Amsterdam.
- [10] T. Mizokami, On a certain class on M_1 -spaces, Proc. Amer. Math. Soc., 87 (1983), 357–362.
- [11] T. Mizokami, On M-structures, Topology Appl., 17 (1984), 63–89.
- [12] T. Mizokami, On closed subsets of M₁-spaces, Topology Appl., 141 (2004), 197–206.
- [13] E. A. Michael, On representing spaces as images of metrizable and related spaces, Gen. Topology Appl., 1 (1971), 329–343.
- [14] K. Nagami, Normality of products, Actes Congrès Intern. Math. 2, 33-37.
- [15] K. Tamano, Generalized Metric Spaces II. Topics in General Topology, K. Morita and J. Nagata, editors, 368–409. North-Holland, Amsterdam.

School of Mathematics and LPMS Nankai University, Tianjin 300071 P. R. China

E-mail address: hpchen@nankai.edu.cn