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CHARACTERIZATIONS AND PROPERTIES
OF STRATIFIABLE SPACES

By

Huaipeng CHEN

Abstract. In this paper, we prove some properties and character-
izations of stratifiable spaces and the following theorem:

THEOREM. The following are equivalent:

1 (Y,7) is a stratifiable space.

2 There is a zero-dimension submetric stratifiable space (X,u)
with Mj-structures and an irreducible perfect map f: (X,u) —
(Y,7).

A stratifiable space (X,u) is said to have an Mj-structure if
(X, p) satisfies the following conditions A and B:

A. There is a countable collection # = Un% of o-closed sets
such that:

1 H(n',i") < H(n,i) or o(H(n,i),H@n',i"))=r>0 if H(n,i),
H(n',i") e # with n’ > n.

2 A, is a partition of X for each ne N.

B. There is a g-function ¥ such that:

1 (), W(n,x)={x}.

2 xe W(n,x,), then {x,:ne N} converges to x.

3 If H is closed and x ¢ H, x ¢ CL,(|J{W(n,x'):x" € H}) for
some 7.

4 x' € W(n,x) implies W(n,x') < W(n,x).

5 Hn,i)N(J W)= if j>i.

6 Wn,x)= Wn—1,x).

7 Each #,,, is a p-discrete p-clopen collection.
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8 W(n,x) = c(n,x)e® for each xe X.
Here % is a g-function of the stratifiable space (X, u).

1. Introduction

Ceder [3] defined M;-spaces, i = 1,2,3 and proved M| = M, = M;. It is an
interesting problem that whether or not these implications can be reversed. Recall
that a space X is an M,-space if X has a g-closure preserving base 4. Recall that
a collection % is a quasi-base for X if for each open set U of X and a point
x € U, there is Be % such that xe Int B< B< U. A space X is an M;-space if
X has a og-closure preserving quasi-base and an M3-space if X has a g-cushioned
pair-base.

Borges [1] gave some important results on M3-spaces and renamed M3-spaces
as stratifiable spaces. Gruenhage [4] and Junnila [8] independently proved that
stratifiable spaces are Mj-spaces. This is an important progress to the problem
since stratifiable spaces have been shown to have many useful properties and are
preserved by countable products, closed images, arbitrary subspaces; M-spaces
have a simple and natural definition. It6 and Tamano [7] using closed mappings
got interesting results. T. Mizokami got some important progresses on the
problem in [10], [11] and [12]. Also there are many important results about
stratifiable spaces commended by surveys of Tamano [15], Gruenhage [5] and [6],
Burke and Luter [2].

We are going to show characterizations of stratifiable space (Y, 7). To do it
we prove some properties of stratifiable spaces (Y, 7) in section 2. In section 3,
we construct a stratifiable space (X, u) which has a 0-dimensional submetric and
an irreducible perfect map f from (X,u) to (Y,7). Section 4 contains two g-
functions of stratifiable space (X, x) and countably many partitions U” A, of X.
A g-function € is used for relating (X, u) and (Y,7) and the another g-function
# has closed and open images. We show characterizations and raise a problem
in section 5.

In this paper, the letter N denotes the set of positive integers and w denotes
the first infinite ordinal. i, j, k, /, m and n are used to denote members in @ and
N. If there are signs and definitions which have not been defined in this paper, we
can see it in [5] or [15] in topology and in [9] in set theory.

2. Properties of (Y,7)

An useful characterization of stratifiable spaces was given by Theorem 5.25,
Lemma 5.26 and Theorem 5.27 in [5] as the following.
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THEOREM 2.1. A space Y is a stratifiable space if and only if there is a
g-function g:w x Y — t such that

i =90 )

i yegn, y,) = yu—

iii y¢ CLLU{g(n,y):yeH} for some new if H is closed and y ¢ H.

iv yeg(n,x) then g(n,y) < g(n,x).

v gln+1,y) =g(n,y) for each y.

Let 9, ={g(n,y): ye Y} and 4 = | J, 9,.

DEFINITION 2.2. A locally finite collection % of open sets of (Y,7) is called a
tangent cover of Y if B is pairwise disjoint with | J{CI B: Be #} =Y.

ProproSITION 2.3.  Let (Y,1) be a stratifiable space. Then there is a submetric
p <t and countably many tangent cover B = U”%n such that:

1 By, is a p-open set and p(By,) < 1/n for each ne N and each B, € %,.

2 ClL,(\J#') = cl.(\) %' for each n and each %' <= B,

3 By, © By or ByyNByg =& if n>m for By, € B, and Byp € By

Proor. Let #' = | 4, be a o-discrete base of submetric p with p(B,,) <
1/n for each n e N and each B,, € %,. Let (0 = Un 0, be a g-locally finite cover
of Y with p(O) < 1/n for each ne N and each Oe€ O,. Let |0,| = X(n).

Pick an ne N. Let By =) %,. If Cl. By=Y, let #,=%,. If Y — Cl, By #
&, then there is an O € O, with O — Cl; By # . Let B, = O — CI; By.

Assume that, for a« < X(n), we have had B for each f<o If Y =
g, Cl: By, we take %, = %, U{By: 0 < ff <o}. Otherwise ¥ —|J,_, Cl. By #
. Then there is an Oe€ ¥, such that O — U/;q Cl, By #J. Let B, =
0 — U e Cl; Bg. Then B, is closed since @/, is a locally finite cover of Y.

Then, by induction, there is a < R(n) such that 4, = 4, U{B, : 0 < « < J}
and Y = CL(| ), #,). So we may assume %, = {B, : « < R(n)} is a tangent cover
of Y.

Let # =), #,. Pick an n from N. Let

.%,/ll = {ﬂigan : Bm € e%)l' for i <n if ﬂignBio‘ # Q}

Then | ), 4, satisfies 1 and 3 since each %, is a tangent cover of Y.

Notice each 4 is locally finite. Then £, is closure preserving. So, by
Lemma 2.21 of Tamano [15], there is a submetric p, such that p = p; = and %,/
is also a closure preserving closed collection of (Y,p,). Then p, and 8" = | ) %,
is desired. We denote p; and " =, %, by p and % =), %, still. 0
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We call 4 = Un B, a decreasing o-tangent cover and use the decreasing
o-tangent cover # to construct a perfect pre-image of (Y,7) and an irreducible
perfect map in the following section.

For the above g-function in Theorem 2.1, we have 4, = {g(n,y) : y€ Y} for
each n. Let By, =Y — ()9, for each 4, = 4,. Let %, = {By, : 9y = %,}. Then,
by Theorem 5.25 in [5], 4’ = Un A, is a T g-closure preserving t-closed quasi-
base of (Y,7).

Then, by Lemma 2.21 of Tamano [15], there is a metrizable topology p =
on Y such that each 4, is a collection p-closure preserving p-closed sets. Denote
the submetric topology by (Y,p). So, by Theorem 5.25 in [5], we may assume
that g(n, y) is p-open set for each ne N and each ye Y.

Let K, ={xeY:|J{yln+i,y)ebi:xegn+i,y)} <glnx)}

Let K,,={xeY:xegn+i,y)=yeg(nx)}. We have the following
proposition.

PrOPOSITION 2.4. K,; = K, and K,; is p-closed.

Proor. Pick an xe K. Then (J{g(n+i,y):xeg(n+i,y)} <g(nx). So
xeg(m+i,y) implies g(n+1i,y) < g(n,x). Then y e g(n,x) implies x € K,;.

Let x € K,;. Pick a g(n+ i, y) € ¢4 with xe g(n+1i, y). Then y € g(n, x). Then
gin+i,y) cg(n,y) = g(nx) by iv of Theorem 2.1. So x € K,.

Pick an xe Cl,(K,). Let g(n+i,y)e% with xeg(n+i,y). Then xe
gn+i,y)Ngn+ix). Then g(n+1i,y)Ng(n+1i,x) is a p-open neighborhood of
x since both g(n+ i, y) and g(n + i,x) are p-open. So there is a ze (g(n+1i,y)N
gn+i,x))NK,. Then g(n,y) =g(nz) since zegn+i,y) and zeK,. z€
g(n+i,x) = g(n,x) implies g(n,z) = g(n, x). Then we have g(n+1i,y) = g(n, y) =
g(n,z) < g(n,x). So y € g(n,x). This implies x € K,,;. So K,; is p-closed. O

PROPOSITION 2.5. K, < Kyi+1 for each i, n and | ),_ Ku=Y.

iew

Proor. Pick an x € K,;. Then x € g(n + i, y) implies y € g(n, x). So g(n, y) =
g(n,x). Let xegn+i+1,y). We have g(n+i+1,y) =g(n,y) by (iv) in
Theorem 2.1. So g(n+i+1,y) = g(n,x) and x € Kyi11.

Suppose that there is an xe Y — U K,;. Then x is not in K,; for each

iew
i € . So there is a g(n+ i, y;) such that x e g(n+i, y;) and y; is not in g(n, x).
Notice {y; : i € w} t-converges to x and x € g(n, x). Then {y; : i € w} is eventually

in g(n,x), a contradiction. O
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ProPOSITION 2.6. K, 1; = K,; for each i, n.

Proor. Pick an x e K,y1;. Then (J{g((n+1)+i,y) €% :xeg((n+1)+
y)}Cg(nJrl,x)Cg(n,x). So x € K. L]

Now we construct another g-function by induction. It is similar to Lemma
5.26 in [5] by using the above g-function ¥ and # = {K,; :ne N and i€ w}.

Construction 2.

A. For k=1, we take #1 ={Kj;:iew} = A .

A.l1. We take K)y from #7 for i = 0. Then ¥, is an p-open cover of p-closed
set Kj9. So there is a p-locally finite p-open refinement 210 of %,. Pick an x € K.
Let 2i9(x) ={Q € 21p: xe Q} and ¢(1,0,x) OQ]O . Let 919 ={g(1,0,x) :
X € K]o}.

A.2. Assume that we have had %;; for i <m. Take K, from #. Then
Givm ={9(1 +m,x) : x € Ky, } is a p-open cover of p-closed set Kj,,. So there is a
p-locally finite p-open refinement 2y,,. Let 2{, = (J,_,, %1 Let 2{,, = 2,,,U 2{,.

Pick an x € Ky, — Kjp—1. Let 27,(x) = {Q €2{,:xeQ} and ¢g(l,m,x) =

(()2{,(x)) = Kim—1. Then g(1,m,x) is p-open since 2;, is a p-locally finite
collectlon of p-open sets and Kj,_; is p-closed set. Let %, = {g(1,m,x):
x €Kiy — Kim—1}. Then %y, is a p-locally finite collection of p-open sets since
2{,, 18 a p-locally finite collection of p-open sets. Then, by induction, we have %,
for each m. Let 9] =), %im.

B. Assume that we have had % for k <n such that:

(U %) NKyio1 = & for each ie N.

b. %;; is a p-locally finite p-open collection for each ie N.

For k =n, we take &, = {K,; : i € w}.

B.1. Take Ko € #,,. Then 4, = {g(n,x) : x € Y} is a p-open cover of p-closed
set K,0. So there is a p-locally finite p-open refinement 2,0 of ¥,.

Let 2,0 ={J,_,%o. Let Q;‘O = QnOUQ,’,O. Pick an xe K,. Let 2}(x)=
{0€2)):xe 0} and g(n,0,x) = () 2;,(x). Let %o = {g(n,0,x) : x € Kyo}.

B.2. Assume that we have had ¥,; for i <m. Take K,, from 4. Then
Guim = {g(n+m,x) : xe K, } is a p-open cover of p-closed set K. So there
is a p-locally finite p-open refinement 2,,, of %, .. Let 2, ={J._,, U, %

nm

Let 2, =,_,, %ni- Let 2, =2,,U2, U2 . Pick an x € Ky — Kym_1. Let

nm nm

25, (x)={0€2; :xeQ} and g(n,m,x) = ([} 2;,(x)) — Kun_1. Then g(n,m, x)

is p-open since 2, is a collection of p-locally ﬁmte p-open sets and K, is
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p-closed set. Let 4, = {g(n,m,x) : x € Ky — Kyyy—1}. Then %, is a collection of
p-locally finite p-open sets.

Then, by induction, we have %,, for me w. Let ¥, = Umew G .-

Then, by induction, we have ¥, for each ne N. Let 4" =), __ 9,

We have the following theorem by the above Construction 2.

THEOREM 2.7. (Y,7) is a stratifiable space if and only if there is a g-function
Y of (Y,7) such that:

1 (N, 9(ni,p) ={y}

2 If xeg(n,i,y,), {yn:ne N} t-converges to y.

3 If H is t-closed and y ¢ H, y ¢ Cl.(\J{g(n,i,y): ye H}) for some n.
4 yeg(n,i,x) implies g(n,i’,y) = g(n,i,x) for some i'.

5 q(n + lai/ax) < g(n7i7x)‘

6 Ku 1 N(J9,) = 2.

7 Each %,. is a p-locally finite p-open collection.

8 g(n,i,») < gln, v) for ye¥.

Proor. We prove 8 at first. To do it giving an n, pick a ye Y = UiK,,,».
Then there is an i with y € K,;. We have g(n,i,y) = g(n+1i,z) for some z since
2,; is a refinement of ¥,,;. Then z e g(n,y) since y e g(n+i,z) and y € K,;. So
g(n,z) = g(n, y). We have g(n,i,y) cgn+i,z) =glnz) <gn,y).

Proor of 1. Notice yeg(n,i,,y) and g(n,i,, y) = g(n,y) for ye Y and
neN. Then (), g(n,in, ) = (), 9(n ») = {y}.

ProoF OF 2. In fact, yeg(n, iy, yn) = g(n,y,) implies that {y,:ne N}
T-converges to y.

ProOF OF 3. In fact, g(n,i,y) <g(n,y) implies (J{g(ni,y): ye H} =
Ulg(n, y): ye H}.

ProoF oOF 6. Notice that g¢(n,m,x) ﬂQnm K,,,—1 for each

g(n,m,x) e %, by B.2) in Construction 2.
PrOOF OF 5. In fact, take g(n+ 1,i,x) from %, .. This implies x € K,,;1; ©

K,; by Proposition 2.7. Then g(n,i,x) e 2, ,; by B.2) in Construction 2. So
( + lalax an.H, - n+ll 1 < g(l’l,l,X)
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ProoF oF 4. In fact, ple xeg(ni,y)=()25) — Knic1 = () 2,:(»)
Let xe K,y — K,y—1. Then i’ > i by the above 6. Then ,Zm( ) < 2, (x) by
B.2) in Construction 2. So (V25(x) = () 2;:(»). Then ([ 2::/(x)) — Kpir—1 =
() 2(¥) — Kyi—y since i < i’ 1mphes K, cKn,f .

ProoOF OF 7. Notice that 2, is a p-locally finite collection of p-open sets.
Then %,; is a p-locally finite collection of p-open sets by the definition of g(n, i, x)
in B.2) in Construction 2. O

Notice that, for each ne N and ye Y, there is unique g(n,m,y) e ¥, for
some m e w. So denote g(n,y) by g(n,m,y) sometimes. We still use ¥ and
9, (ne N) to express the constructed collection of g-function in Construction 2.
In the following sections, we’ll use the g-function ¥ and # = {K,; :ne€ N and
i€ w}.

COROLLARY 2.8. ¥ is a ag-locally finite base of (Y,p).

Give an n. Let B, = Y — | |9, for each 4, = ¥,. Let %, = {B,, : 9, = %,}.
Then, by Theorem 5.25 in [5], #’ = Un A is a p o-closure preserving p-closed
quasi-base of (Y,71).

Let # be the decreasing o-tangent cover in Proposition 2.3 with 4 =
U, ey %1 and %, = {B, : a e X(n)}. Let

By = {By : v eN(n)}.
Here B, = Cl,(| ) #') = CI.(| ) #') by 2 of Proposition 2.3. Let

- U

neN

In the following section we’ll use the collections # and 4’'.

3. To Construct X and f

At first we construct a metric space (X, o) and a perfect map f : (X, ) —
(Y,p). This method belongs to Michael [13]. To do it take # = | ), #, and give
N(n) a discrete topology. Then countable product IT,R(n) is a metric space. Let
M =TI,R8(n). Pick x’' = (o)) and x” = (&) from M. Let o(x',x") =1/n if n is
the first index with o # o’. Then o is a metric of M. Let X = M be all (a,)’s
with (), B,, # & and (),_, B, # & for each ne N. Then (X,p) is a metric
space.
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Giving an ne N, let V(o,...,0,) = {xe X : Pi(x) =o; for i <n}. Then
Vg, ... o) = ({oq} x -+ x {o} x i, R(1)) N X.

Let v, ={V(t,...,0,): o €R(i) for i <n}. Here P,:IL,5oX(n) — R(n) is a
projection with product topology. Then 7" = Une v Vn is a o-discrete base of
(X,0). We call o-discrete base ¥" =), _, 75 of (X,p) standard base.

Let H < X be a p-closed set. Let B H,1/n)=J{V(u,...,00) €Yy :x=
(0;) € H}. Then B(H,1/n) is a o-clopen ball with () B(H,1/n)=H. Let
R(H,1/n) = B(H,1/n) — B(H,1/(n+1)).

ProrosiTiION 3.1. (X, ) is a closed 0-dimensional subspace of (M, o) such
that:

1. VOV £ & implies V. V' or V<V for V.V'e

2. R(H,1/n)={x:0(x,H)=1/(n+1)}.

3. o(R(H,1/n),R(H,1/(n+1)))=r>0

Proor. We prove that (X, p) is a closed subspace of (M, o) at first.

To see it take a sequence S = {x, = (a(nl),a(n2),...) :ne N} from (X, o).
Assume S converges to x = (a(n)) with o(x,,x) =1/(n+1). Let f(x,) = y, and
f(x) = y. Giving an i > 1, we have a(ni) = a(i) for each n > i by definition of
0. S0 {yu:n>i} = By = Byy). p(Byw) < 1/n implies {y, : ne N} converging
to yeBw). Notice that %, is a tangent cover. Then B,N By = & if a # f for
B, and By in %,. This implies B, # Bp. So a(ni) = a(i) implies B, = B and
Byniy = Buy. Then (1\,_, Byi # & since (), By # &. Then x = («(i)) €
So (X,p) is a closed subspace of (M, o).

And then we prove 2 only. To see it pick a = (o;) € R(H,1/n). Then t €
B(H,1/n). So there is an x' = («) € H with t = (o;) € V(o] --- o). Then o = o;

-

for i <n. So, for each x" = (o)) e HN V(o ---0,), we have o =af =o; for

i <n.
On the another hand, 7€ R(H,1/n) implies t¢ B(H,1/(n+1)). Then t¢
RV (o)) € Vot 2 x" = (@) € HO V(3] - al)}. Then 1 V(o - -aly)

for each x" = (o) e HN V(o ---a;,). Then o ; # o,11. So min{i : oc,-” # oc,} =

n+1 for t= (o) and x"” = (o). Then o(t,x") =1/(n+1) for each x" e HN
V(o). So o(t, H) < 1/(n+1)

Pick an x" e H — (HNV(a{---a))). Then x” ¢ V(«f ---«,). Then there is an
i<n with of #a =0, So j=min{/: o # o} <i<n Then o(t,x")=1/j>
I/n>1/(n+1). Then o(t,H) = 1/(n+1).

This implies o(t, H) = inf{o(t,x") : x" e H} = 1/(1 + n). O
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We’ll use the standard base ¥~ = Une ~ Vn and denote subcollection of the
standard base by 7, or ¥ (%) and set belonging to the standard base by V(%)
always.

Pick a (a,) € X. Then (),_ By, is a single point set to say {y} since
p(Bus,) < 1/n. So we may define /' : X — Y with f((a,)) = yif (), Bus, = {}-

ProposITION 3.2. f:(X,0) — (Y,p) is an irreducible perfect map.

Proor. 1 f:(X,0) — (Y,p) is a continuous onto map.

It is easy to prove f:(X,0) — (Y,p) is an onto map since Un B, 1s a
decreasing tangent cover.

Let S={x,=(a(nl),a(n2),...):ne N} p-converge to x = (a(n)) with
o(xy,x) = 1/n. Let f(x,) = y, and f(x) = y. Giving an i > 1, we have a(ni) =
a(i) for each n > i by definition of ¢. So {y,:n > i} © B, = Byy). p(Bym) <
1/n implies {y, :ne N} p-converging to y.

2 f~Y(y) is a o-compact.

In fact, let A(n,y) = {ae A(n): y € B, € #,}. Then A(n, y) is finite since %,
is locally finite. Then IT,-¢A(n, y) is p-compact. Notice /' (y) = X NIL,s0A(n, y).
Then f~!(y) is p-compact since X is p-closed by Proposition 3.1.

3 f:(X,0) — (Y,p) is a closed map.

Proor. Let H < X be a p-closed set. Let y, e f(H) converge to y. Let
Bn(¥) = {Bus(i) € Bn: ¥ € Buy(iy} = {Byusy € By : i <i(n)} for each neN. Then
) #,(») is a neighborhood by definition of tangent cover. Then we may assume
S

for ne N since 4, is a tangent cover.

A S ={yi:i>1} < Int,| ) %(y) = | %1 (p) implies A(1, y;) = A(1, y) for
i>1.

Notice that A(1,y) is finite. Then there is an N(1)' = N and a A(l,y) <
A(1, y) such that, for each ie N(1)’, we have Pi(f~'(3:)) = A(1, ;) = A(1,p)".
So, for each ie N(1)', Pi(f~"(y»)NH) = A(l,y) =A(1,y) and Pi(f~'(y)N
H) # . So there is an «(1) € A(1, y)’ and an infinite subset N(1) = N(1)’ such
that, for each i e N(1), there is an x; € f~!(y;) N H with Py(x;) = o(1). Let S| =
{x;:ie N(1)}.

B. Assume we have had an a(k—1)eA(k—1,»)" and an infinite subset
N(k—1)=N(k—1)" such that, for each ieN(k—1), xieS,_;={x:
ieN(k—1)} with Pr_j(x;) =a(k—1). Since # is a decreasing tangent cover,
for each ie N(k—1), we have A(k,y;)' = A(k,y). Then there is an infinite
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subset N(k)' = N(k — 1) and a finite subset A(k, y)’ = A(k, y) such that, for each
i€ N(K), Ak, i) = Alk,y) = Alk,y) and P(f~1 (1) € Alk, 1) = Ak, »)'.
Notice A(k, y)" is finite set. Then there is an infinite subset N(k) = N(k)" and an
a(k) e A(k,y)" such that Py(x;) = a(k) for each ie N(k). Let S} ={x;eS]_,:
ieN(k)}. Then S; = S/_,. Then, by induction, there are S, (k€ N) such that
SI/DSZ,DDSIQD

Take an x;,) € S, for each ne N. Then P,(x;) = a(n) € A(n, y)". If k <n,
Xin) € Sy = Sy implies Py (x;n)) = a(k) € A(k, y)". Let x = (a(n)). Then x € X and
f(x)=y. So §" = {xi : ne N} p-converges to x. Then xe H since H is o-
closed and x;,,) € X for each n. This implies y e f(H) and f(H) being closed.

4 f:(X,0) — (Y,p) is an irreducible map.

To see it take an open set O — X. Then there is a V(oy,...,a,) = O. Then
B,y o B, >--->B,,. Pick a ye B,,. Then, for each o' € A(i), o’ # o; implies y
is not in B, for each i <n. Then A(i, y) = {o;}. So f~1(y) = V(ay,...,a) = O.
This implies f is irreducible. [

In the following, we construct a stratifiable space (X,u) with g > p and a
perfect map f: (X,u) — (Y,7). Here (Y,7) is the stratifiable space in section 2
with g-function %, quasi-base %’ and collection %4. Notice that

fﬁl(gni) = {fil(g(nviv y)) : g(nviv y) € gni}

is a p-locally finite g-open sets collection since f : (X,0) — (Y,p) is a perfect
map and %,; is a p-locally finite p-open sets collection. ¥~ = Une ~ Vn 1s standard
base of (X,p). Here ¥, = {V(ot;--- o) : o € A(i) for i <nm} and V(ay---o) =
{xe X : Pi(x)=o; for i <n}.

Take an  f'(g(n,i,y")ef(%,) and an x'=()ef'())c
S g, i, y")). Let

C(na I xl) = fﬁl(g(nv ia y/)) N V((xl T O!n).

Then c¢(n,i,x") is a p-open set. Let

Gi = {cni,x") :x' = (o) e 1) < fUg(n,i, y")) and V(ay---a,) € 73}

Then %,; is a collection of p-locally finite p-open sets. Let €, = Ui%m. Then €,
is point finite since ¥, is point finite in Y. We may assume 7, = %,. Let

% =) .

We'll prove € is a g-function of some stratifiable space in the next section.



Characterizations and properties of stratifiable spaces 263

Let
Py =X- (%,
for each ¢, = %,. Let
Py ={Puy: €y = by}
Then 2, is a collection of p-closure preserving p-closed sets. Let
?2=\) 2.
neN

We'll prove 2 is a o-closure preseving quasi-base of some stratifiable space in

Claim 3.7.
Take quasi-base %’ of (Y,7). Pick an ne N. Let O,, = Int,(B,,) for each
By € B). Let 0, = {0y, : Byy € #,}. Let

U(n,o,x) = £~ (On) NV (001 -+ 00)
for each x = (o;) € f~'(O,,) and each O,, € O,. Let
U, ={U(nyo,x): V(g---o,) € ¥y and O,y € O}
Let % =), Un.

PROPOSITION 3.3. % is a base of some topology (X,p).

Proor. Take an U(n,a,x') € %, and an U(m,p,x") € U,,. Let m > n. Pick
an x = (o;) € U(n,o,x")NU(m,B,x"). Then f(x)€ On,NOyp. So there is an
I>m+n and a Bjse B, with f(x) € Op = Int; Bjs = Bijs = Oy, N Oyyp by defi-
nition of quasi-base #’ of (Y,7). So xe f~'(f(x)) = f~1(Oss). Take U(l,J, x)
S Oos)NV(ay---oy) from %;. Then xe U(l,6,x) c Un,a x)ﬂ U(m, B, x"
since / > m+n implies x = (o) € Vi(og---oy) < Vo -+ -0) NV (01 -+ - 0tyy).

THEOREM 3.4. (X, ) is a stratifiable space with u > p and f: (X,u) — (Y,7)
is an irreducible perfect map.

Proor. We prove it by the following claims. O
CLamm 3.5. f:(X,un) — (Y,7) is a continuous map.

Proor. Take an O,, € 0,. Notice X = () 7,. Then
On) U{U =f (Omx) NV(o---on):x= (o) €f~ ( Ony)}
So ffl(Om) is p-open. O
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Cram 3.6.  f~Y(y) is u-compact for each yeY.

Proor. Let %' = with f~'(y) = |J#%' and U(n,o,x)N f~1(p) # & for
each U(n,o,x) e %'. U(n,o,x) N f~ ( )7&@ implies f~ ( M)ﬂffl(y) # . So
Y (») € f7Y(0,) for each U(n,a,x) e’

Notice that f~!(y) = X NIL,oA(n, y) is g-compact and f~!(y) = J% <
(J{V (g ---0) : Un,o,x) € %'}. Then there is a finite subcollectlon “/(y) =
{(Vy ri<n}of {V,: Un,a,x) e %'} with f~1(y) = ()77 (y). We take f~!(Oxy,)
with relation to V,, for i <mn. Then

fﬁl(y) U= mi5,1f71(0lcm)
since f~!(y) = f71(Oy,,) for each i <n. So

S0 e UNUP () = LUV, i <y @ UL (Oka) NV 2 i < ).

So f~!(y) is p-compact. O

Cramm 3.7. (X,u) is a stratifiable space with a submetric 9 < u and a o
closure preserving quasi-base P = Um 7

Proor. Notice V(o - = {1 (Om)N V(01 aty) : Ouy € O}, Then
V(o -+ o) is p-open. So o < u.

Now we prove that (X,u) is a stratifiable space. To see it pick an
Umn,o,x) e and an x= (o) e U o,x)=f""(0n)NV(t;---a,). Then
U(n,o,x) = f7'(O,,) implies f(x) € Oy = Y. Notice that %' =[] %, is a
quasi-base of (Y,7). Then there is an m >n and a B, =Y — Ugmﬁe,@,’n
with  f(x) € Int; Byp = Opp < Bg = Ony.  Here m/g = {g(m y):yeH} for
some 7- closed set H Then x e f~1(f(x)) = /7 (Onp) —J%ump) =

Ugm/f '(0,,). Take V(oy---a,)= V' from Vm since x = (o). Then
xef I mﬁ)ﬂV’c T < 10NV < f10)NV (2 ---a,) since m > n.

Here 7%= /(Y = %) N V' = (X — UL/ glm, ») : ye OV,
Let v/ ={VeVu:V#V'}

wp =1 g(m )NV ye H with £~ (g(m, y))N V' # &} and
Gonp = fg,’nﬁuw’.

Then €y = €,y and T* = U(gmﬁ =x-Jr"H u\Je, mp) — (I Cmp).
Notice that f~1(0,,;) ﬂ V' is p-open. So

xe T Om) NV cInty(X — (\JGmp)) € X — (| Gup) =T* = U(n, o, x).
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On the other hand, X — (U Cmp) = Pup € Py and 2, is p-closure preserving
o-closed. Then 2 is a p o-closure preserving p-closed quasi-base of (X, u). So
(X,u) is a stratifiable space. O

Cramm 3.8. f:(X,u)— (Y,1) is a closed map.
Proor. Let H <= X be a p-closed set. Pick a y € Cl,(f(H)). Take collection
% in section 2. Giving an ne N, let
Bu(y) = {Bus € By : y € By} = {By, : 0.6 A(n, y)}.

Here A(n, y) is a finite set since 4, is a p-locally finite collection. Let .4/} =
{U,:ne N} be a collection of p-open neighborhood of the point y such that
U, > CL,(Ups1), Int,(\ ) #4(»)) > U, and p(Cl,(U,)) < 1/n for each ne N. We
call it a decreasing p-open neighborhood base of the point y.

SuscLamm 3.9. Let N, ={U,:ne N} is a decrease p-open neighborhood
base of point y, {f~(U,):ne N} is a g-open o-neighborhood base of f~'(y).

ProoF. f:(X,0) — (Y,p) is a perfect map. O
We construct a w-tree to prove f : (X,u) — (Y,7) is a closed map by using
the collections 4 and %’ in section 2. Let
Va(p) =AV(t--om) €V yef(Von---am))}
={V(oy o) €¥p:0;€A(i,y) for i <n}
={V(oy o) €V (g -0oy) € A(l,y) x -+ X A(n, y)}

for each ne N. Take p-open neighborhood U, in Subclaim 3.9.
SuscLam 3.10.  f~1(CL,(U,)) = | 7u(p).

PrROOF. Suppose there is a V(o ---o,) € ¥y, an i <n and an o; ¢ A(i, y)
such that V(o ---o,) N fY(ClL(U,)) # &. Then f(V(o---a,))NCL(U,) # &.
Then ((),., Bx)NCl,(U,) # &. Then B, NCl,(U,) # & for each i <n since

(Vi<nBs © By, So B, NClL,(U;) # @ for each i <n since Cl,(U,) = CL(Uj).
Notice Int,(| ) %:(y)) = Cl,(U;). Then

B, NCL(U;) # & implies B, Nint,(| ) %:(y)) # &.

Then B, € %;(y) since 4 is a decreasing tangent cover of (Y,p). This implies
o; € A(i, y) for each i < n, a contradiction to o; ¢ A(i, y) for some i < n. So, for
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each V(ay---o,) € ¥5, We have V( o) N f‘l( L,(Uy)) = & if o; ¢ A(i, ) for
some i < n. This implies f~! = U 7( O

Recall that a free T in K. Kunen [9] is a partial order such that for each
xeT, {yeT:y<x}is a well-ordered by <.

Let T be a tree.

a If xeT, the height of x in T, or ht(x,T), is type {ye T :y < x}).

b For each ordinal o, the o-th level of T, or Lev,(T), is {xeT:
ht(x, T) = a}.

¢ The height of T, or ht(T), is the least « such that Lev,(T) = 0.

d A chain in T is a set C = T which is totally ordered by <.

e A w-tree is a tree T of height w such that |Lev,(T)| < w for each n < w.

Proor or CrLAM 3.8 (continued). Take quasi-base %’ in section 2. Giving
an n, let #,(y)={B:Bel],_,#; and yeInt.(B)}. We construct a co-tree
(7" (y), @) by induction. R

Let 7 (n,y)={V(g---0n)€Vp:(og--an) € A(l,y) x --- X An, y) with
V(o) NfYB)NH # & for each Be #/(y)}.

We may prove ¥ (n, y) # & for each n.

Suppose ¥’ (n,y) = & for some n. Then, for each (o ---o,) € A(1,y) X -+ X
A(n, ), there is a B(B, ---B,) € B,(y) with V(a1 ---2,) 0/~ (BB - B,) N H =
. Let

By= (BB B (an--am) € AL, p) x - x Aln, )}
Then B, is a t-neighborhood of y in Y since A(l, y) x --- x A(n, y) finite implies

related collection {B(f,---f,): (a1 -oy) € A(1,¥) x - x A(n, y)} finite. So
U,NB, is a t-neighborhood of y in Y. Then (U,NB,)Nf(H)# & since
yeCl, f(H).

Then, for each (o ---a,) € A(l, p) x --- x A(n, y), we have
Vot -+ o) N f 7 (By) NH < V(g ag) N fHBBy -+ B))NH = .
So
B=U{V(-a) N (T BI)NH): (1) € AL, ) x - x An, )}
= (U{V (o o) = (o) € A(L, p) x - X A(m, ) )N (f 7 (B,) N H)
= (U7NnU B)NH) = f(U)N((B) N H)
# &,

a contradiction. Let 7 (y) =,y 7 (1, »).
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Take a V(o---a,) € #(y). Then V(ay---a,)Nf~Y(B)NH # & for each
Be#!(y). Then V(oy---o4)Nf~Y(B)YNH # & for each k <n and each Be
A, (y) since k <n implies V(o - o) < V(ay---ax) and 4, (y) < B,(y). So
V(ey -+ -ox) € ¥ (y). This implies (77(y), o) is a tree.

Giving an n € N, the n-th level of ¥"(y) is finite since Lev,(¥ (y)) = ¥ (n, y).
The height of 7°(y) is w. So, by the Koéning Lemma (to see page 69 in [9]),
(7" (y), ) has an infinite chain ¥. Let the chain be V(o) > V(oclozz) - D
V(g ---oy) >---. Then V(oy---ao,) € ¥ (n,p). Then V(oy---0,) N fYB)YNH #

& for each Be #(y). Let x=(o;). Then xe X and f(x) =y since X is o-
closed. Let 7 (x) ={V(o;--- o) : n € w}.

Now we prove x € H. Notice % = Un A, in Proposition 3.3 is a base of
(X,n). Take an U(n,o,x) = f~1(Ou) NV (0y---a,) from % with x e U(n, o, x).
Then V(o ---0,) € ¥ (x) and y € Oy, € Oy So there is an m > n and a Be 4,,(y)
with y e Int,(B) = B < O,,. Then V(oy---0,)Nf~1(B)NH # . This implies
Vi - o) N fHO0m) NH # &. So U(n,o,x)NH # . Then x e H since H is
u-closed and % is a base of (X, pu).

So y=f(x)e f(H). Then f(H) is t-closed. Then f: (X,u) — (Y,7) is a
closed map.

Cramm 3.11.  f: (X,u) — (Y,7) is an irreducible map.

Proor. Take an open set U = X. Then there is an U(n,a,x) = f~1(Op) N
V(ay---a,) = U. Then f(U(n,o,x)) = OpNB,, # &. Then O,, N B,, # & by 2
of Proposition 2.3. Pick a ye O,,NB,,. Then f~'(y)c V(x---a,) by 4 of
Proposition 3.2. Then f~!(y) = f~1(0u) N V(e - - - a,). This implies f : (X, u) —
(Y,1) is irreducible. O

This completes our proof of Theorem 3.4. O

4. g-functions of (X, u)

We prove that collection ¥ = | J, %, in section 3 is a g-function of (X, u).

Notice ¢(n,i,x) = f~1(g(n,i,y))N V(o ---0) for x = () € f~1(y) = X and
c(nyi,x) € €pi = 6.

We have the following proposition.

ProposiTiON 4.1. 1 X' € ¢(n,i,x) implies c(n,i’,x") < c(n, i, x).
2 ¢(n+1,i',x) < c(n, i, x).
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PROOF. 1 x' € c(m,i,x) = f~'(g(n,i, )) N V(e -~ a,) implies
f(x') eg(ni,y) and f(x) =
So g(n. i, f(x')) = g(n,i, ). Then
S g ' f) OV (o wom) = f7H g i ) OV (o o) = (1, ).

Then f~'(g(n,i', f(x)NV(ay---a,) = c(n,i’,x") since x'e f~'(f(x')) and
Pi(x)=Pi(x')=o; for i<n by x' € V(ag--- o).

2 c(n+1,i,x) = f g+ 1,i', f(X))N V(0 0ny1) = N g(n, i, f(x)))N
V(g ---o) = c(n, i, x). O

Let H);={xeX : | J{c(n+i,i’,x")€Cni: xec(n+i,i'",x")} = c(n,i,x)} and
H;={xeX :xecn+ii,x")=x"ec(nix)}.

ProposiTiON 4.2, f~Y(K,;) = H,; = H], for each n, i.

Proor. Proving H,; = H), is similar to proving K,; = K. in Proposition 2.4
by Proposition 4.1.

Giving an n, we prove f~'(K,;) = H, by induction.

A. 7Y (Ky) = Hy for i =0.

To see it pick an x = (x) e f~'(K,). Then y= f(x)e K, implies xe
1) < f Y 9(1,0,y). So c(n,0,x)=f"1(gn,0,y))NV(x;---a,) since xe
V(o ---0p). Let xec(n+0,0,x") = fg(n+0,0,y))NV(af o). Here x' =
(of) € f71(Y). f(x) = yeg(n+0,0,y") implies g(n+ 0,0, y) = g(n+0,0,y") by
5 of Theorem 2.7. Then y e g(n+ 0,0, ") = g(n, y'). So g(n, y) = g(n, y'). Notice
Pi(x") = Pi(x) =a] =ao; for i <n since x= (o) € V(of---a). So y' €g(n,0,y)
since f(x)=yegn+0,0,y") and ye K,y by definition K,o. Then ¢(n,y’') =
g(n, »). This implies g(n,0, ) = g(n,»"). Then '€ (") = - (g(n,0,5")) =
Y 9(n,0,y)) and x'e V(ay---a,). Then x'e f~'(g(n,0,y)NV(ia---a,) =
¢(n,0,x). This implies x € H,. So f~'(K.) = Hyy.

To see H, < f~'(K,) pick an x= (%) € Hy. Then xec(n+0,0,x')
implies x’ = (&) € ¢(n, 0, x). Then xe f~(g(n+0,0,y")NV(af---a!) implies
x'e f~Yg(n,0,»)N V(s ---a,). Then f( ) = yej(n—i—0,0, y') implies f(x') =
Y €9(n0.0). S0 y € K. Then e /1(3) & /1 (Ke).

B. Assume that we have had f~!(K,) = Hm for each i < m. Then

)

f_l(Knm) = f_l((Knm - Knm 1) UKnm 1

= fﬁl(Knm—l) Ufil((Knm - Knm—l) nm 1 Uf ( nm — Knm—l)
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by induction assumption. We can prove f ! (Kum — Kum—1) = Hyn — Hym—1 just as
the same proof of the above A. So we have f~'(K,,) = Hn. O

CorOLLARY 4.3. 1 H,; = Hyyy for each n, i.
2 H,.\, < Hy for each n, i

3 Hy, is o-closed for each n, i

4 UiHm' =X.

Proor. f:(X,0) — (Y,p) is a perfect map. O

PrROPOSITION 4.4. € is a g-function of stratifiable space (X,u) such that:
1 (), c(n,i(x),x) = {x}.

2 xec(n,iy,x,), then {x, :ne N} p-converges to x.

If H is p-closed and x ¢ H, then x ¢ CL,(| J{c(n,i,x") : x' € H}).

x" € c(n,i,x) implies c¢(n,i’',x") < c¢(n,i,x).

Hyio N (U (gni) =d.

c(n+1,i',x) = c(n, i, x).

Each €,; is a o-locally finite collection of o-open sets.

~N N L kW

ProoF. It is easy to prove 1 since x = (o;) € c(n,i,x) < V(o ---o,) implies

xe (), Vo) = {x}.

PROOF OF 2. x = ()€ c(n,in,x,) = f"1(gn,in, ya)) NV (2;---a,) implies
f(x)eg(n iy, y,). So S=1{y,:ne N} t-converges to f(x). Then f~1(SU f(x))
is u-compact since f: (X,u) — (Y,7) is a perfect map. So S’ ={x,:ne N} u-
converges to X.

PrOOF OF 4 AND 6. It is Proposition 4.1.

PrROOF OF 5. 5 implies from g(n,i, f(x))N K, 1 =& and f~' (K, 1) =
H,i .

PrOOF OF 7. Notice that f~!(%,,) is o-locally finite and ¥, is o-discrete.

ProOOF OF 3. Let B < X be u-closed with x = (¢;) ¢ B. Then xe O = X — B.
So there is a u-open set U(l,6,x) = f~'(Ou)N V(o ---0y) € % such that xe
U(l,0,x) € O = X — B. Then there is an n >/ and P,, € 2, with x € Int,(P,,)
Py, < U(1,6,x) © O =X — B by Claim 3.7. Notice Py, =X — )%, for some
s = €n. Then x ¢ X — Int,(Pyy) > | ) €1y © B. Notice that B = | | ,, implies
(H{c(n,i,x")€%,:x' e B} )% by 4 and 6 in Proposition 4.4. So x¢
X — Inty(Ppy) > CL(|) 61s) @ CL(|J{c(n,i,x") € €, : X' € B}). O
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Notice that, for each n e N and x € X, there is unique ¢(n,i,x) € € for some
i € w. So denote ¢(n,x) by c¢(n,i,x) sometimes. We still use ¢ and €, (ne N) to
express the collection of g-function in Proposition 4.4.

ProOPOSITION 4.5. Let H be a p-closed set and O be a point finite g-open
cover. Then there is a o-discrete o-clopen refinement v’ of O with H < U v and
= Uj>n ¥ for a given n.

Proor. Take a p-closed set H < X. Let ¢ be a collection of point finite
o-open sets. Pick an xe H. Let O(x) = {O € O : x e O}. Then () O(x) = O(x) is
p-open. Let n be the first number such that there is an x = (¢;) € H and an O(x)
with xe V(o -+ a,) = O(x). Let ¥, ={V(oy...04) € ¥ : x = (;) € H with x e
V(o) = O(x)}. Then 7, is a p-discrete p-clopen collection.

Assume we have had “If’ for n < j <m such that (U"/j’)ﬂ(U"Vl’) =
if n<j<i<m Let ¥,/ ={V(u-om)eVy:x=(u)eH~(JU,cn?)
with V(o -~ o) < () 0(x)) = (UU,-,, 77)}- Then ¥, is a o-discrete o-clopen
collection.

Then, by induction, we have ¥, for each m >n. Let 7' =) ¥,

1 HCU"V'/.

Proor. Pick an x = (¢;) € H = (] ©. Then (") 0(x) is g-open since ¢ is point
finite. Let m be the least index such that xe V (o« o) ﬂ O(x
V UUKK’” ) ,@ we have V(o - o) € ”//’ by deﬁmtlon of
If V (o - N(UU,zjem ?) # D, there is a Vel ,_;.,7; with VN
Vot -« o) # @ So Viog---oy,) =V by j<m and property 1 in Proposition
33. Then xe V < ()77

ITI

2 v is p-discrete.

Proor. Pick an x=(x)e Cl(|)7"'). Let 75 ={V(oi- 0oy):meN}.
Take a V(o ---o,) € 75 Then V(oy---a,,) N ({)7#;")# & for infinitely many
Vj”s. So there is a j >m and a Ve“ﬁ’ with VNV (g -+ o) # . Then V <
V(g --oy) by j>m. Let Ve V/’ Then V = V(ai---ouf,y ---f;) since V <
V(e ---0p). Then VNH # & since Ve“Vj". Pick an x,, = (oq,..., 0, 5,...) €
VNH since V< V(o o). Then xe H since H is p-closed and S = {x,, :
me N} p-converges to x. So 7' is p-discrete since H < | J 7" by the above 1.

O

We give X a partition #, by X = UIH,,/ for each n.



Characterizations and properties of stratifiable spaces 271

Take open ball B(n,m,1/l) = J{V (- )€ ¥;:x= ()€ Hym—1}. Then
(), B(n,m,1/1) = Hyy—y. Let R(n,m,1/1) = B(n,m,1/l) — B(n,m,1/(I + 1)). Then
R(n,m, 1)) ={xe X : o(x,Hym—1) =1/(l +1)} by property 2 in Proposition
3.1. Let H(n,m,l) = R(n,m,1/1)N H,,,. Then each H(n,m,l) is p-closed and
o(H(n,m,0),H(n,m',l')) =r>0 if H(n,m',l')# H(n,m,l) by property 3 in
Proposition 3.1. Then H,, — Huyn—1 = |,y H(n,m,1I). Let

H,) ={H(n,m,l) :m,le N} ={H'(n,i):ie N}

Then .#, is a partition of X. Let #' =) .
Pick an ne N. Let

H, = {ﬂiénH’(i,j(i)) :H'(i, j(i)) € #] for i <n if ﬂlq 1, j(i) # O}
Then #, is countable. Let
Hy={H(n,i):ieN} and # =) A,

Then J#, is a partition of X for each n.

PROPOSITION 4.6. There is a countable collection # = Un H, of o-closed sets
such that:

1 Hn,i) <« H@n',i"), Hn',i') < Hn,i) or o(H(ni),Hn i)=r>0 if
H(n,i),H(n',i") e #.

2 A, is a partition for each ne N.

Proor. Let H(n,m,l) and H(n,k,l') in #, with H(n,m,l) # H(n,k,l").

Case 1, m = k. Then [ # I'. Then there is an H,,, with H(n,m,[)UH(n,k,!")
< Hyy. Then o(H(n,m,l),H(n,k,l')) =r >0 by property 3 in Proposition 3.1.

Case 2, m # k. Then we may assume m > k. Let H(n,m,l) = Hyy — Hyp—1
and H(n,k,l) € Hy — Hy—1. Then H(n,k,l) = Hy = Hyp—1. Then o(H(n,m, 1),
Hn,k,1")) = o(Hm,m, 1), Hym—1) = 1/(I+1) =r>0.

So  o(H(n,i),H(n,j)) = o(Hm,ml),H(nk,1)=r>0 if i#j When
n#m, we assume m>n. Then H(m,i')=(),_, H'(i,j(i)) = H(n,i). Then
o(H(m,i"),H(n,j)) = o(H(n,i),H(n, j)) = o(H(n,m,1), Hn,k,I')) =r>0. O

Construction 4.

We use partitions # to construct a g-function %" of (X,u) by induction.

A. At first we take partition # to construct #; for k= 1.

A.a. We take p-closed set H(1,0) from ;. Then H(1,0) = Hyyp and %10 is
point finite p-open cover of H(1,0). Then there is a g-discrete o-clopen refinement



272 Huaipeng CHEN

Wi = Ui>2<1+1) Vi of %1y with H(1,0) = ()#i by Proposition 4.5. Let
W(l,0,x) =W if xe WNH(1,0) for each W e #j,. Then #79={W(1,0,x):
xe H(1,0)}.

A.b. Assume, for each i < m, we have had #7; such that:

(U»i)NH(1,i—1) = & for each i < m.

2 W < U‘/>i* ¥ is p-discrete o-clopen collection.

3 xe W(,i',x") implies W (l,i,x) = W(L,i’ x').

4 W(l,i,x) =c(l,i’,x) for each xe H(1,m —1).

Take o-closed set H(1,m) from #;. Let H(1,m)" =),_, H(1,i). Then we
have o(H(1,m)', H(1,m)) =r > 0 by Proposition 4.6. H(1,m) € #; implies that
there is an Hy e #| with H(l,m) < Hy. Let m* = max{2(1+m+1),2/r}.
Notice that %), is a point finite p-open cover of H(1,m). Then, by Proposition
4.5, there is a p-discrete g-clopen refinement %), of ¢, with H(1,m) = () #7,,
and 7y, < .. 7. Let #70, =, Wi and 5, = 0y, U, Let #7y),(x)
={Wewi,:xe W} and W(l,m,x)=(\#;,(x) for each xe H(l,m). Let
Wim ={W({,m,x): xe H(1,m)}.

Then, by induction, we have #7,, for each me w. Let #7 = Um Wim.

B. Assume we have had ¥, for each k < n such that:

1 (U#u)NH(k,i—1) = & for each k <n and each i€ w.

2 Wi < U,>1* ¥ is p-discrete p-clopen collection for each k < n and each
i € w. Here U “V, is standard base of (X, o).

3 xe W(k i’,x") implies Wi(k,i,x) = W(k,i’,x") for each k < n.

4 W(k,i,x) = c(k,i’,x) for each k <n and each xe X.

Now we take partition #, to construct #, for k =n.

B.a. Pick H(n,0) € #,. Then there is an H, and H(n—1,j) € #,_; with
H(n,0) =« HyNH(n—1,j) by definition of 4. Then %,; is a point finite g-open
collection, and #/,_;; is e-discrete o-clopen collection by induction assumption.
Let #,, be a o-discrete o-clopen refinement of %,.; with H(n,0) = ) #,; and
W © Ujsaguyny 77 by Proposition 4.5. Let #,5=#,,UW,_1; and #,5(x) =
{Wew,y:xe W} for each xe Hy. Let W(n,0,x)=()#,5(x) and #, =
{W(n,0,x): xe H(n,0)}. Then #,y is a p-discrete o-clopen collection since
W,y is an union of finitely many p-discrete o-clopen collections. Then #; <
U}>2(n L) 7j since both W, and #,_y; are subsets of standard base 7.

B.b. Assume, for each i < m, we have had #,; such that:

(U#w)NH(n,i—1) = for each i < m.

2 Wy < Uj>l.* ¥ is o-discrete o-clopen collection.

3 xe W(n,i’,x") implies W(n,i,x) = W(n,i’,x").

4 W(n,i,x) = c(n,i’,x) for each x e X.
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We construct #,,.

Take H(n,m) from #,. Let H(n,m)" =\),_, H(n,i). Then, by Proposition
4.6, we have o(H(n,m)', H(n,m)) =r > 0. H(n,m) € #, implies that there is an
H, € ) with H(n,m) < Hy,. Let

m* =max{2(n+m+1),2/r}.

Notice that €., is a point finite g-open cover of H(n,m). Then, by Proposition
4.5, there is a p-discrete p-clopen refinement %, of %,.; with H(n,m) < () ¥,
and

/
%m Uj>m* % °

We take ¥, 1 since H(n,m)=H,NHn—1,i') < H(n— 1, i’) Let #,, =
i Wi Let e =W UM U W1 andW (x)={Wew:  :xeW} for

nm nm nm nm *°

each xe H(n,m). Let W(n,m,x)= (W, (x) and W, ={W(n,m,x):xe

nm
H(n,m)}. Then #,, is a o-discrete p-clopen collection since #/,, is an union of
finitely many p-discrete g-clopen collections. Then %/, < Uj>m v since W, is
a subset of standard base 7 .
Then, by induction, we have #,,, for each me w. Let %, = Um Wom. Then
we have ¥, for k = n. Then, by induction, we have ¥, for each n e N. Notice
that, for each xe X and ne N, W(n,i,x) € #, is unique. So we denote W (n,x)

by W(n,i,x) sometimes. Let # =[] #,.

PRrROPOSITION 4.7.  Stratifiable space (X, u) satisfies the following conditions A
and B:
A. There is a countable collection H = Un%, of o-closed sets such that:
1 H( "'y e H(n,i) or o(H(n,i),H(n',i"))=r>0 if H(ni),Hn i)eAH
with n’ > n.
2 o, is a partition of X for each ne N.
B. There is a g-function W such that:
1 (), W(n,x)={x}.
xe W(n,x,), then {x,:ne N} u-converges to x.
If H is p-closed and x ¢ H, x ¢ Cl,(( J{W (n,x") : x' € H}) for some n.
x" € W(n,x) implies W(n,x") = W(n,x).
H(n,i)n (W) =B if j>i
W(n,x) = W(n-—1,x).
Each W,y is a o-discrete o-clopen collection.
W(n,x) < c(n,x) €€ for each x € X.
Here € is a g-function of stratifiable space (X, u) satisfying Proposition 4.4.

o N R W
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Proor. Condition A follows from Proposition 4.6. In the following we
prove Condition B by Construction 4.

Proor oF 8. Pick an xe H(n,m). Then there is an H, € #, with xe
H(n m) < Hy. Then x € c(n,l, x). Notice that ¥ is a refinement of ,,; with

nm

< |J#,,,. Then there isa W'e#,, and a c(n+1,I',x') € €,y; with x €
W’ cc(n—i—l,l’, x"). This implies xec(n+1,',x'YNH, by H(n,m) < H,. So
xecm+1L1l',x") =c(nl, x) by deﬁnition of H”, Notice that xe W' e,

nm

plies W' e ¥, (x). So W(n,m,x) =\, cW cen+11l, ’)cc(n,l,x).

ProorF oF 1. Pick an x € X. We have W (n, x) = ¢(n, x) for each n € ® by the
above 8. So (), W(n,x) = () c(n,x)={x} by 1 in Proposition 4.4.

PRrROOF OF 2. Pick an xe X. Let x € W(n, x,). We have W(n,x,) < ¢(n,x,)
for each new by the above 8. Then {x,:ne N} wp-converges to x by 2 in
Proposition 4.4.

ProoF OF 3. Let H be a u-closed set with x ¢ H. Then x ¢ Cl,(| J{c(n,x")
x" € H}) for some n by 3 in Proposition 4.4. Then x ¢ Cl,(| J{W (n,x') : x' € H})
by the above 8.

Then #  is a g-function of (X, u).

Proor oF 5. Take #,, in B b in Construction 4. Then o(H(n,m)’, H(n,m))
=r>2/m*>0. Here H(n,m)' =\J,_ H(n,i). Notice m* = max{2(n+m+1),
2/r} and #,,, < |),.,,. 7j. Then, for each x € () #,n, we have o(x, H(n,m)) <

1/m* <r/2. Then (|)Wum)NH(n,m)'=&. Then H(n,m—1) < H(n,m)" im-
plies H(n,m —1)N({J #m) = &.

ProoF OF 7. Notice that ¥, is an union of finitely many p-discrete o-
clopen collections such that each collection of finitely many p-discrete o-clopen
collections is a subset of the standard base by B.b of Construction 4. Pick an
x = (o;) € H(n,m). Then, for each collection, there is a V(a---o,;) in the
collection with x € V(o - o). So . (x) = {V (o1 04)) : 1 < I(m)}. Then

ﬂ Ye ¥ is gclopen So #,.. a o-discrete p- clopen collection.

ProoF oF 4. Pick an x’ € W(n,m,x). Let x’' € H(n,m’). Then m’ > m by the
above proof of 5. If m’ = m, we have W(n,m’', x’) = W(n,m, x) since #,,, a o-
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discrete p-clopen collection by the above 7. 1f m’ >m, W(n,m,x) e W, (x") since
x' € W(n,m,x) € Wyn. So W(n,m',x") =W (x") = W(n,m,x).

ProoF oOF 6. Notice H(n,m)=H,;NHn-1,i'Yc Hn—1,i"). Then
W1y < W, by definition of “//* in B.b in Construction 4. Then W(n —1,i’, x)

nm

e Wi (x). So W(n,m,x) =\, Win—1,i x). O

A stratifiable space (X, u) is said to have an Ms-structure if (X, u) satisfies
conditions A and B in Proposition 4.7.

5. Results and Problems

THEOREM 5.1. The following are equivalent:

1 (Y,7) is a stratifiable space.

2 There is a zero-dimension submetric stratifiable space (X,u) with Ms-
structures and an irreducible perfect map f: (X,u) — (Y,7).

Proor. It easy to prove 2 = 1. We prove 1 = 2. By Theorem 3.4, there is a
stratifiable space (X, u) and an irreducible perfect map f: (X,u) — (Y, 7). Then
(X,u) has a zero-dimension submetric and an Mj-structure by Proposition 4.6
and 4.7. O

Theorem 5.1 gives a part answer to a problem in Tamano [15] page 407 and
Nagami [14] also.

COROLLARY 5.2. The following are equivalent:

1 Each stratifiable space (Y,7t) is a M;-space.

2 Each zero-dimension submetric stratifiable space (X, u) with Ms-structures is
M;-space.

Proor. f:(X,u) — (Y,7) is an irreducible perfect map. O

Theorem 5.1 and Corollary 5.2 raise the following Problem 1 which is
equivalent to M; = M.

ProBLEM 1. Is each zero-dimension submetric stratifiable space (X,u) with
M;-structures an M;-space?
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