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ON p-MAPS AND M-MAPS

By

Yun-Feng Bai and Takuo Miwa

Abstract. We introduce new notions of p-maps and M-maps, and

investigate some of their basic properties, which are extensions of

corresponding properties of p-spaces and M-spaces.

1. Introduction

In this paper, we introduce new notions of p-maps and M-maps, and in

sections 3 and 4 investigate some basic properties of these maps and their

relationships with Čech-complete maps ([2]) and k-maps ([10], [2]). p-Maps and

M-maps are respectively extensions of p-spaces ([1]) and M-spaces ([11], [12]) to

the notions of continuous maps. Further, in section 5 we investigate these maps in

the realm of paracompact maps ([4]) and in section 6 their relations with

metrizable type (MT-)maps ([6]) is studied.

This branch of General Topology is now known as General Topology of

Continuous Maps or Fibrewise General Topology. For an arbitrary topological

space B one considers the category TOPB, the objects of which are continuous

maps into the space B, and for the objects f : X ! B and g : Y ! B, a morphism

from f into g is a continuous map l : X ! Y with the property f ¼ g � l. This is
denoted by l : f ! g. A morphism l : f ! g is said to be onto, closed, perfect,

quasi-perfect, if respectively, such is the map l : X ! Y . An object f : X ! B of

TOPB is called a projection, and X or ðX ; f Þ is called a fibrewise space. We also

call a morphism l : f ! g a fibrewise map when we write l : ðX ; f Þ ! ðY ; gÞ or

l : X ! Y .

We note that the fibrewise category TOPB is a generalization of the to-

pological category TOP (of topological spaces and continuous maps as mor-
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phisms), since the category TOP is isomorphic to the particular case of TOPB in

which the space B is a singleton set.

Throughout this paper, we assume that all spaces are topological spaces, and

all maps and projections are continuous. For other terminology and notations

undefined in this paper, one can consult [7] about TOP, and [10] and [4], [5], [6]

about TOPB.

2. Preliminaries

In this section, we refer to the notions and notations in Fibrewise Topology,

which are used in latter sections.

Let ðB; tÞ be a fixed topological space B with a fixed topology t. Throughout

the paper we will use the abbreviation nbd(s) for neighborhood(s). We denote the

set of all open nbds of b A B by NðbÞ and the set of all natural numbers by N.

Note that regularity of ðB; tÞ is assumed in Proposition 2.12, Theorems 3.2,

3.4(2), 3.5, 3.7, 5.2 and 6.1, Corollaries 3.3, 6.2 and 6.3, and Lemma 5.4. Further,

in Theorem 3.8 it is assumed that B is regular and B satisfies the first axiom of

countability.

For a projection f : X ! B and each point b A B, the fibre over b is the

subset Xb ¼ f �1ðbÞ of X . Also for each subset B 0 of B we regard XB 0 ¼ f �1ðB 0Þ
as a fibrewise space over B 0 with the projection determined by f . For a filter

(base) F in X , we denote by f�ðFÞ the filter generated by the set f f ðFÞ jF A Fg.
For a fibrewise map l : ðX ; f Þ ! ðY ; gÞ and a filter (base) F in X , we define

l�ðFÞ in the same manner. For a filter (base) G in Y , we define l�ðGÞ as the

filter generated by the set fl�1ðUÞ jU A Gg.
We begin by defining some separation axioms on maps.

Definition 2.1. A projection f : X ! B is called a Ti-map, i ¼ 0; 1; 2 (T2 is

also called Hausdor¤ ), if for all x; x 0 A X such that x0 x 0 and f ðxÞ ¼ f ðx 0Þ, the
following condition is respectively satisfied:

(1) i ¼ 0: at least one of the points x, x 0 has a nbd in X not containing the

other point;

(2) i ¼ 1: each of the points x, x 0 has a nbd in X not containing the other

point;

(3) i ¼ 2: the points x and x 0 have disjoint nbds in X .

Definition 2.2. (1) A T0-map f : X ! B is called regular if for every point

x A X and every closed set F in X such that x B F , there exists a nbd

W A Nð f ðxÞÞ such that the set fxg and F VXW have disjoint nbds in XW .
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(2) A T1-map f : X ! B is called normal (resp. collectionwise normal ) if for

every O A t, every closed (in XO) disjoint sets fF1;F2g (resp. closed discrete (in

XO) collection fFs j s A Sg) and every b A O, there exists W A NðbÞ, W HO such

that fF1 VXW ;F2 VXWg (resp. fFs VXW j s A Sg) have disjoint nbds (resp. discrete

pairwise disjoint nbds) in XW .

We now give the definitions of submap, compact map [16] and locally

compact map [14].

Definition 2.3. (1) The restriction of the projection f : X ! B on a closed

(resp. open, type Gd, etc.) subset of the space X is called a closed (resp. open, type

Gd, etc.) submap of the map f .

(2) A projection f : X ! B is called a compact map if it is perfect (i.e. it is

closed and all its fibres f �1ðbÞ are compact). Note that in [10], Definition 3.1, the

space X is called fibrewise compact over B.

(3) A projection f : X ! B is said to be a locally compact map if for each

x A Xb, where b A B, there exists a nbd W A NðbÞ and a nbd U HXW of x such

that g : XW VU ! W is a compact map, where g is the restriction of f on

XW VU .

Note that a closed submap of a (resp. locally) compact map is (resp. locally)

compact, and for a (resp. locally) compact map f : X ! B and every B 0 HB the

restriction f jXB 0 : XB 0 ! B 0 is (resp. locally) compact.

Definition 2.4. (1) For a map f : X ! B, a map cð f Þ : cf X ! B is called a

compactification of f if cð f Þ is compact, X is dense in cf X and cð f Þ jX ¼ f .

(2) A map f : X ! B is called a T2-compactifiable map if f has a com-

pactification cð f Þ : cf X ! B and cð f Þ is a T2-map.

The following holds.

Proposition 2.5. (1) For i ¼ 0; 1; 2, every submap of a Ti-map is also a Ti-

map. Every submap of a regular map is also regular.

(2) Compact T2-map ) normal map ) regular map ) T2-map.

(3) ([10] Section 8) Every normal map is a T2-compactifiable map.

(4) ([10] Section 8) Every locally compact T2-map is a T2-compactifiable map.

Definition 2.6. For the collection of fibrewise spaces fðXa; faÞ j a A Lg, the
subspace X ¼ ft ¼ ftag A

Q
fXa : a A Lg : fata ¼ fbtb Ea; b A Lg of the Tychono¤
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product
Q

¼
Q
fXa : a A Lg is called the fan product of the spaces Xa with respect

to the maps fa, a A L.

For the projection pra :
Q

! Xa of the product
Q

onto the factor Xa, the

restriction pa on X will be called the projection of the fan product onto the factor

Xa, a A L. From the definition of fan product we have that, fa � pa ¼ fb � pb for

every a; b A L. Thus one can define a map f : X ! B, called the product of the

maps fa, a A L, by f ¼ fa � pa, a A L. The fibrewise space ðX ; f Þ is called the

fibrewise product space of fðXa; faÞ j a A Lg.
Obviously, the projections f and pa, a A L, are continuous.

The following proposition holds.

Proposition 2.7. Let fðXa; faÞ j a A Lg be a collection of fibrewise spaces.

(1) If each fa is Ti ði ¼ 0; 1; 2Þ, then the product f is also Ti ði ¼ 0; 1; 2Þ.
(2) If each fa is a surjective regular map, then the product f is also a regular

map.

(3) ([10] Prop. 3.5) If each fa is a compact map, then the product f is also a

compact map.

(4) If each fa is a T2-compactifiable map, then the product f is also

T2-compactifiable.

We shall conclude this section by defining the concept of paracompact map

([4], [5]), metrizable type (MT -)map ([6]), Čech-complete map ([2]), k-map ([10],

[2]) and b-filters (or tied filters) ([10]).

Definition 2.8. (1) A map f : X ! B is said to be paracompact if for every

point b A B and every open (in X ) cover U ¼ fUa j a A Ag of the fibre Xb (i.e.

Xb H6fUa j a A Ag), there exist W A NðbÞ and an open (in X ) cover V of XW

such that XW is covered by U and V is a locally finite (in XW ) refinement of

fXWg5U.

(2) For a map f : X ! B and b A B, let U be an open (in X ) cover of Xb.

The family V of subsets of X is said to be a b-star refinement of U if

V VXb 0q for every V A V, Xb H6V and there exists W A NðbÞ such that U

covers XW and fstðV ;VÞ jV A Vg < U5fXWg.

Definition 2.9. (1) Let f : X ! B be a map. The sequence W1;W2; . . . of

open (in X ) covers of Xb, b A B, is said to be a b-development if for every x A Xb

and every nbd UðxÞ of x in X , there exist i A N and W A NðbÞ such that
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x A Stðx;Wi5fXWgÞHUðxÞ. The map f is said to have an f -development if it

has a b-development for every b A B.

(2) A closed map f : X ! B is said to be a metrizable type (MT -)map if it is

collectionwise normal and has an f -development.

The following proposition was obtained in [6] and [4].

Proposition 2.10. The following implications hold in TOPB.

MT ) paracompact T2 ) collectionwise normal ) normal.

Definition 2.11. (1) Let X be a topological space, and A a subset of X . We

say that the diameter of A is less than a family A ¼ fAsgs AS of subsets of the

space X , and we shall write dðAÞ < A, provided that there exists an s A S such

that AHAs.

(2) ([10] Section 4.) For a fibrewise space ðX ; f Þ, by a b-filter (or tied filter)

on X we mean a pair ðb;FÞ, where b A B and F is a filter on X such that b is a

limit point of the filter f�ðFÞ on B. By an adherence point of a b-filter F ðb A BÞ
on X , we mean a point of the fibre Xb which is an adherence point of F as a

filter on X .

(3) ([2]) A T2-compactifiable map f : X ! B is said to be Čech-complete if

for each b A B, there exists a countable family fAngn AN of open (in X ) covers of

Xb with the property that every b-filter F which contains sets of diameter less

than An for every n A N has an adherence point.

The following result for Čech-complete maps is proved in [2] Theorem 5.1.

Proposition 2.12. Suppose that B is regular. For a T2-compactifiable map

f : X ! B, the following are equivalent:

(1) f is Čech-complete.

(2) For every T2-compactification f 0 : X 0 ! B of f and each b A B, Xb is a

Gd-subset of X 0
b.

(3) There exists a T2-compactification f 0 : X 0 ! B of f such that Xb is a

Gd-subset of X 0
b for each b A B.

Finally we give the definition of k-map, see [10] Section 10 and [2] Section 6.

Definition 2.13. (1) Let f : X ! B be a map. A subset H of X is said to

be quasi-open (resp. quasi-closed ) if the following condition is satisfied: for each
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b A B and V A NðbÞ there exists a nbd W A NðbÞ with W HV such that whenever

f jK : K ! W is compact, the subset H VK is open (resp. closed) in K .

(2) Let f : X ! B be a T2-map. The map f is said to be a k-map if every

quasi-closed subset of X is closed in X or, equivalently, if every quasi-open subset

of X is open in X . (Note that in [10] X is said to be a fibrewise compactly

generated space over B.)

3. Definition and Basic Properties of p-maps

In this section, we define a p-map and investigate some of its basic

properties. The concept of p-maps is a generalization of p-spaces ([1]).

Definition 3.1. A T2-compactifiable map f : X ! B is a p-map if for every

b A B, there exists a sequence fUngn AN of open (in X ) covers of Xb with the

following properties: if x A Xb and x A Un A Un for every n A N, then

(P1) ð7
n AN UnÞVXb is compact.

(P2) For every open (in X ) set U with ð7
n AN UnÞVXb HU , there exist

n0 A N and W A NðbÞ such that ð7
n AN UnÞVXb H ð7

ian0
UiÞVXW HU .

For a p-map f : X ! B, we can characterize it by using a compactification

of f as follows.

Theorem 3.2. Suppose that B is regular. A map f : X ! B is a p-map if and

only if there is a T2-compactification f 0 : X 0 ! B of f such that for every b A B

there is a sequence fPngn AN of open families of X 0 satisfying the following

conditions:

(1) For every n A N, Xb H6Pn,

(2) For every x A Xb, 7
n AN stðx;PnÞVX 0

b HXb.

Proof. [‘‘Only If ’’ part]: If f : X ! B is a p-map, there exists a sequence

fUngn AN of open (in X ) covers of Xb satisfying Definition 3.1. Let f 0 : X 0 ! B be

a T2-compactification of f . For every n A N, take a family Pn of open subsets of

X 0 such that Pn5fXg ¼ Un, then Xb H6Pn for every n A N. We shall prove

that (2) holds. If not, there is x A Xb and y A X 0
bnXb such that fx; ygHPn A Pn

for every n A N. By Definition 3.1, F ¼ ð7
n AN Pn VX X ÞVXb is compact and

since y B F , there is an open subset G of X 0 such that F HGHGX 0
HX 0nfyg,

because f 0 is compact and B is regular. Thus there exist n0 A N and W A NðbÞ
such that F H ð7

ian0
Pi VX X ÞVXW HG. Let V ¼ ð7

ian0
PiÞV ðX 0nGX 0 ÞVX 0

W ,

then V A NðyÞ and V VX ¼ q which contradicts X 0 ¼ X .
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[‘‘If ’’ part]: Let f 0 : X 0 ! B be a T2-compactification of f such that for every

b A B, there is a sequence fPngn AN of open families of X 0 satisfying (1) and (2).

For every n A N let Un ¼ fU : U is open in X ;U VXb 0q and UX 0
HP for

some P A Png, then fUngn AN is a sequence of open (in X ) covers of Xb. We shall

now show that if x A Xb and x A Un A Un for every n A N, then conditions (P1)

and (P2) of Definition 3.1 hold.

(P1): For every n A N there is Pn A Pn such that Un
X 0

HPn.

Thus ð7
n AN UX

n ÞVXb H ð7
n AN UX 0

n ÞVX 0
b ¼ ð7

n AN UX
n ÞVXb because from (2),

ð7
n AN UX 0

n ÞVX 0
b H ð7

n AN stðx;PnÞÞVX 0
b HXb. Consequently, ð7

n AN UX
n ÞVXb

is compact.

(P2): For every open subset U in X with ð7
n AN UX

n ÞVXb HU , take an

open subset G of X 0 such that U ¼ X VG. Since X 0
b is compact and

fGgU fX 0nUX 0
n j n A Ng is an open cover of X 0

b, there is n0 A N such that

X 0
b H6

ian0
ðX 0nUX 0

i ÞUG. Since f 0 is closed, there is W A NðbÞ such that

X 0
b HX 0

W H6
ian0

ðX 0nUX 0
i ÞUG and therefore, ð7

n AN UX
n ÞVXb H ð7

ian0
UX

i ÞV
XW HU . r

Since a locally compact T2-map f : X ! B has an Alexandor¤-type com-

pactification f 0 : X 0 ! B (Proposition 2.5(4)), and therefore X is open in X 0, we

have the following.

Corollary 3.3. If B is regular, then a locally compact T2-map is a p-map.

For submaps of p-maps, we have the following.

Theorem 3.4. For a p-map f : X ! B, we have:

(1) If F is a closed subset of X , then the submap f jF is a p-map.

(2) Suppose that B is regular. If G is a Gd-subset of X , then the submap f jG is

a p-map.

Proof. (1) Since f : X ! B is a p-map, for every b A B there exists a

sequence fUngn AN of open (in X ) covers of Xb satisfying (P1) and (P2) of

Definition 3.1.

For every n A N, let Gn ¼ fF VU : U A Ung, then fGngn AN is a sequence of

open covers of Fb in F . If x A Fb and x A Gn A Gn for every n A N, then there is an

element Un A Un with x A Gn ¼ Un VF HUn for every n A N.

ð1 0Þ ð7
n AN GF

n ÞVFb ¼ ð7
n AN GX

n ÞVXb H ð7
n AN UX

n ÞVXb, i.e. ð7n AN GF
n ÞV

Fb is closed in ð7
n AN UX

n ÞVXb, so that it is compact.
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ð2 0Þ For every open subset G in F with ð7
n AN GF

n ÞVFb HG, take an open

subset U in X with G ¼ U VF . Let U0 ¼ U U ðXnFÞ, then U0 is open in X and

ð7
n AN UX

n ÞVXb HU0. Then, there exist n0 A N and W A NðbÞ such that

ð7
n AN UX

n ÞVXb H ð7
ian0

UX
i ÞVXW HU0 and therefore, ð7

n AN GF
n ÞVFb H

ð7
ian0

GF
i ÞVFW HG.

It follows from ð1 0Þ and ð2 0Þ that f jF is a p-map.

(2) Since f : X ! B is a p-map, from Theorem 3.2 there is a T2-

compactification f 0 : X 0 ! B satisfying properties (1) and (2) of Theorem 3.2.

Since G is a Gd-subset of X , there exists a sequence fGngn AN of open subsets

in X 0 such that G ¼ ð7
n AN GnÞVX . Obviously f 0 jGX 0

: GX 0 ! B is a T2-

compactification of f jG. For every n A N, let Un ¼ fGn VGX 0
VP : P A Png. Then

the sequence fUngn AN of open families of GX 0
satisfies:

ð1 0Þ For every n A N, Gb H6Un,

ð2 0Þ For every x A Gb, ð7
n AN stðx;UnÞÞVGX 0

b H ð7
n ANðstðx;PnÞV

Gn VGX 0 ÞÞVX 0
b H ð7

n ANðstðx;PnÞVX 0
bÞÞV ð7

n AN GnÞVGX 0
HXb VG ¼ Gb.

Thus, from Theorem 3.2, f jG is a p-map. r

In connection with Theorem 3.4, note that a submap of a p-map is not

necessarily a p-map even when the submap is a closed and open map. For this,

see [9] Example 3.23. In this example, there is a p-space X in which a subspace Y

is not a p-space. It is then easy to see that the map f from X onto a singleton set

B gives the necessary example.

Theorem 3.5. Suppose that B is regular. Let fn : Xn ! B be a p-map for

every n A N. Then the product map f ¼
Q

B fn :
Q

B Xn ! B is a p-map.

Proof. Since fn is a p-map for every n A N, from Theorem 3.2 there is a

compactification f 0
n : X 0

n ! B of fn such that for every b A B there is a sequence

fPnmgm AN of open families of X 0
n satisfying:

(1) For every m A N, Xnb H6Pnm;

(2) For every x A Xnb, ð7
m AN stðx;PnmÞÞVX 0

nb HXnb.

We can assume that Pn;mþ1 is a refinement of Pnm. Since f 0 ¼
Q

B f 0
n :

Q
B X

0
n ! B is compact (Proposition 2.7(3)), f 0 j

Q
B Xn :

Q
B Xn ! B is a

compactification of f .

For every m A N, let G 0
m ¼ P1m �B � � � �B Pmm �B ð

Q
B X

0
nÞn>m and Gm ¼

G 0
m j

Q
B Xn, then it is easy to see that Gm is an open family of

Q
B Xn and Gm is

an open cover of ð
Q

B XnÞb. By Theorem 3.2 we only need to prove that for

every x ¼ ðx1; x2; . . . ; xn; . . .Þ A ð
Q

B XnÞb, 7
m AN stðx;GmÞV ð

Q
B XnÞb H ð

Q
B XnÞb.
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Assume there is a point x 0 ¼ ðx 0
1; x

0
2; . . . ; x

0
n; . . .Þ A ð7

m AN stðx;GmÞV ð
Q

B XnÞbÞn
ð
Q

B XnÞb, then there is some n A N such that x 0
n B Xnb. Since ð7

m AN stðxn;PnmÞÞV
X 0

nb HXnb, there exists m A N such that x 0
n B stðxn;PnmÞ. Let l ¼ maxfm; ng, then

x 0 B stðx;GlÞ which contradicts x 0 A 7
m AN stðx;GmÞV ð

Q
B XnÞb. r

Theorem 3.6. Let f : X ! B and g : Y ! B be maps and l : f ! g be a

perfect morphism. If g is a p-map, then f is also a p-map.

Proof. Since g is a p-map, for every b A B there is a sequence fVngn AN of

open covers of Yb satisfying (P1) and (P2) of Definition 3.1.

For every n A N, let Un ¼ fl�1ðVÞ : V A Vng, then fUngn AN is a sequence of

open covers of Xb. Using the properties of fVngn AN we deduce the following

properties of fUngn AN. If x A Xb and x A Un A Un for every n A N, there is a

Vn A Vn with Un ¼ l�1ðVnÞ for every n A N.

ð1 0Þ Since ð7
n AN VnÞVYb is compact and ð7

n AN UnÞVXb ¼
ð7

n AN l�1ðVnÞÞV l�1ðYbÞ ¼ ð7
n AN l�1ðVnÞÞV l�1ðYbÞ ¼ l�1ðð7

n AN VnÞVYbÞ,
we conclude that ð7

n AN UnÞVXb is compact from the perfectness of l.

ð2 0Þ If U is an open subset of X with ð7
n AN UnÞVXb HU , then ð7

n AN UnÞV
Xb ¼ l�1ðð7

n AN VnÞVYbÞHU and therefore, ð7
n AN VnÞVYb HYnlðXnUÞ. Let

V ¼ YnlðXnUÞ, then V is open in Y and ð7
n AN VnÞVYb HV . Since g is a p-

map, there exist n0 A N and W A NðbÞ such that ð7
n AN VnÞVYb H ð7

ian0
ViÞV

YW HV . It is not di‰cult to see that ð7
n AN UnÞVXb H ð7

ian0
UiÞVXW HU .

Thus f is a p-map. r

If f : X ! B is a paracompact p-map, the converse of Theorem 3.6 also

holds (see Theorem 5.2).

We shall conclude this section by studying the relations of Čech-complete

map, p-map and k-map, and sharpen Theorem 6.3 of [2] that a Čech-complete

map is a k-map.

Theorem 3.7. Suppose that B is regular. If f : X ! B is Čech-complete, then

f is a p-map.

Proof. Since B is regular and f is Čech-complete, there is a T2-

compactification f 0 of f such that for every b A B there is a sequence fGngn AN of

open subsets of X 0 such that Xb ¼ ð7
n AN GnÞVX 0

b . Let Pn ¼ fGng, then fPngn AN
satisfies conditions (1) and (2) of Theorem 3.2, so that f is a p-map. r
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Theorem 3.8. Suppose that B is regular and satisfies the first axiom of

countability. Then a p-map f : X ! B is a k-map.

Proof. If f is not a k-map, there is a quasi-closed subset H in X which is

not closed, say x A HnH. Let b ¼ f ðxÞ and fWngn AN be a decreasing nbd base of

b with Wnþ1 HWn for every n A N. Since f is a p-map, there exists a sequence

fGngn AN of open (in X ) covers of Xb satisfying (P1) and (P2) of Definition 3.1.

For every n A N choose Un A NðxÞ and Gn A Gn such that x A Un H
Un H7

ian
Gi, then K1 ¼ ð7

n AN UnÞVXb ¼ ð7
n AN UnÞVXb H ð7

n AN GnÞVXb is

compact.

If K1 VH is not closed in K1, then for every W A NðbÞ and every W 0 A NðbÞ
with W 0 HW , K1 is fibrewise compact over W 0 (Definition 2.3 (2)) but K1 VH is

not closed in K1 which contradicts the fact that H is quasi-closed. Thus, in the

case that K1 VH is not closed in K1, the proof is complete.

If K1 VH is closed in K1, then K1 VH is compact and there is V0 A NðxÞ with
K1 VH VV0 ¼ q. For every n A N choose Vn A NðxÞ such that x A Vn HVn H
Vn�1. Let K2 ¼ 7

n ANðUn VVn VXWn
ÞVXb ¼ 7

n ANðUn VVn VXWn
ÞVXb, then K2

is compact and K2 VH ¼ q. We first prove that fUn VVn VXWn
gn AN is a nbd

base of K2 in X . If not, one can find a nbd U of K2 and xn A ðUn VVn VXWn
ÞnU

for every n A N. If fxngn AN VXb ¼ q, then ð7
n AN GnÞVXb HXnfxngn AN and

therefore, there exists n0 A N such that ð7
n AN GnÞVXb H ð7

ian0
GiÞVXWn0

H
Xnfxngn AN which contradicts xn A ð7

ian0
GiÞVXWn0

for every nb n0, so

fxngn AN VXb 0q. Since fxngn AN VU ¼ q, fxngn AN VU ¼ q, but fxngn AN V

Xb H7
n ANðUn VVn VXWn

ÞVXb ¼ K2, which is a contradiction.

For every n A N take a point xn A Un VVn VXWn
VH. Since

fUn VVn VXWn
gn AN is a base of K2, Fn ¼ K2 U fxi : ib ng is compact and Fn VH

is not closed in Fn for every n A N. Thus, for every W A NðbÞ, there exists n A N

such that Wn HW and Fn is fibrewise compact over Wn (Definition 2.3 (2)), but

H VFn is not closed in Fn which contradicts the fact that H is quasi-closed in X .

Thus, in the case that K1 VH is closed in K1, the proof is also complete. r

4. Definition and Basic Properties of M-maps

In this section, we define an M-map and investigate some of its basic

properties. The concept of M-maps is a generalization of M-spaces ([11], [12]).

Definition 4.1. A T2-compactifiable map f : X ! B is an M-map if for

every b A B there is a sequence fUngn AN of open (in X ) covers of Xb satisfying:
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(M1) If x A Xb and xn A stðx;UnÞVXb for every n A N, then the sequence

fxngn AN has an accumulation point in Xb,

(M2) For every n A N, Unþ1 is a b-star refinement of Un.

For submaps of M-maps, we have the following.

Theorem 4.2. For an M-map f : X ! B and a closed subset F of X , f jF is

an M-map.

Proof. Since f : X ! B is an M-map, for every b A B there is a sequence

fUngn AN of open (in X ) covers of Xb satisfying (M1) and (M2) of Definition 4.1.

For every n A N, let Gn ¼ Un5fFg. Since F is closed, fGngn AN is a sequence of

open covers of Fb which satisfies (M1) and (M2) of Definition 4.1 and therefore,

f jF is an M-map. r

Theorem 4.3. For the maps f : X ! B and g : Y ! B, if there is a quasi-

perfect morphism l : f ! g and g is an M-map, then f is an M-map.

Proof. Since g : Y ! B is an M-map, for every b A B there is a sequence

fVngn AN of open (in Y ) covers of Yb satisfying (M1) and (M2) of Definition 4.1.

For every n A N, let Un ¼ l�1ðVnÞ, then fUngn AN is a sequence of open (in X )

covers of Xb such that Unþ1 is a b-star refinement of Un, for every n A N. Let us

now show that if x A Xb and xn A stðx;UnÞVXb for every n A N, then the sequence

fxngn AN has an accumulation point in Xb. If not, since lðxnÞ A stðlðxÞ;VnÞVYb,

flðxnÞgn AN has an accumulation point y A Yb. By countable compactness of

l�1ðyÞ, we can assume that fxngn AN V l�1ðyÞ ¼ q. Since l is closed, there exists

V A NðyÞ such that fxngn AN V l�1ðVÞ ¼ q and therefore, V V flðxnÞgn AN ¼ q

which contradicts y A flðxnÞgn AN. r

5. Paracompact p-maps and M-maps

One can note that neither of the classes of p-maps and M-maps imply the

other. It is enough to consider the case when B is a singleton set and X a p-space

(resp. M-space) that is not an M-space (resp. p-space). In the realm of para-

compact maps, we prove in Theorem 5.1 that the notions of M-map and p-map

are equivalent, which corresponds to [1] Theorem 16. Further, we prove in

Theorem 5.2 that a perfect image of a paracompact p-map is also a paracompact

p-map which corresponds to [8] Theorem 1.
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Theorem 5.1. A paracompact map f : X ! B is an M-map if and only if it

is a p-map.

Proof. [‘‘Only if ’’ part]: If f : X ! B is an M-map, for every b A B there is

a sequence fUngn AN of open (in X ) covers of Xb satisfying (M1) and (M2) of

Definition 4.1.

We shall prove that the sequence fUngn AN satisfies the definition of p-map.

Let x A Xb and x A Un A Un for every n A N. We show that (P1) and (P2) hold.

(P1) We need to show that ð7
n AN UnÞVXb is compact. Since f is para-

compact, the closed subspace ð7
n AN UnÞVXb of Xb is paracompact. Next,

consider a sequence fxigi AN H ð7
n AN UnÞVXb. Since Unþ1 is a cover of Xb, for

every i A N there exists Uxi A Unþ1 such that xi A Uxi and therefore, xi A Uxi H
stðUnþ1;Unþ1Þ. By (M2), there exists U 0

n A Un such that stðUnþ1;Unþ1ÞHU 0
n and

hence, fxigi AN HU 0
n. Thus for every n A N we can choose U 0

n A Un such that

fxn; xgHU 0
n and therefore, xn A stðx;UnÞVXb. It follows from (M1) that fxngn AN

has an accumulation point in Xb, so that ð7
n AN UnÞVXb is countably compact

and therefore, compact.

(P2) Let U be open in X and ð7
n AN UnÞVXb HU . We first prove that

there exists n0 A N such that ð7
n AN UnÞVXb H ð7

ian0
UiÞVXb HU . If not, for

every n A N there is xn A ðð7
ian

UiÞVXbÞnU . For every n A N, since Unþ1 is a

cover of Xb, there is Uxnþ1
A Unþ1 such that xnþ1 A Uxnþ1

H stðUnþ1;Unþ1Þ.
Consequently, one can find U 0

n A Un such that fxnþ1; xgH stðUnþ1;Unþ1ÞHU 0
n,

because Unþ1 is a b-star refinement of Un. Thus xnþ1 A stðx;UnÞ and fxngn AN has

an accumulation point x0 A Xb. Then x0 A fxigibn HUn for every n A N and

therefore, x0 A ð7
n AN UnÞVXb HU which contradicts fxngn AN VU ¼ q.

Since Xb H ðXn7
ian0

UiÞUU and f is closed, there exists W A NðbÞ such

that Xb HXW H ðXn7
ian0

UiÞUU and therefore, ð7
ian0

UiÞVXb H ð7
ian0

UiÞV
XW HU .

[‘‘If ’’ part]: If f is a p-map, then for every b A B, there exists a sequence

fUngn AN of open (in X ) covers of Xb satisfying (P1) and (P2) of Definition 3.1.

Since f is paracompact, from [4] Theorem 3.12, for every n A N there exists

an open (in X ) cover Gnþ1 of Xb which is a b-star-refinement of Gn5Unþ1, where

G1 ¼ U1. Obviously the sequence fGng satisfies (M2), and we are only left

to prove that fGng satisfies (M1). Let x A Xb and xn A stðx;GnÞVXb for

every n A N. Since G2 is a b-star refinement of G1, there is G1 A G1 such

that x2 A stðx;G2ÞHG1. Inductively, for every nb 2 there is Gn A Gn such that

xnþ1 A stðx;Gnþ1ÞHGn. Then Gnþ1 HGn for every n A N, and fxigi>n HGn. For

every n A N there exists Un A Un such that Gn HUn. If fxngn AN has no accu-
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mulation point in Xb, then fk j xk A ð7
n AN UnÞVXbg is finite, so one can suppose

that fxngn AN V ðð7
n AN UnÞVXbÞ ¼ q. Then since fxngn AN V ðXbnfxngn ANÞ ¼ q,

7
n AN Un VXb HXnfxngn AN. From (P2), there is W A NðbÞ such that

ð7
n AN UnÞVXb H ð7

ian0
UiÞVXW HXnfxngn AN, which contradicts fxigi>n0

H
7

ian0
Ui VXW . Consequently, the sequence fxngn AN has an accumulation point

in Xb. r

The last theorem of this section relates to invariance of paracompact p-maps

under perfect morphisms.

Theorem 5.2. Suppose that B is regular, f : X ! B and g : Y ! B are

T2-compactifiable maps, and there exists an onto perfect morphism l : f ! g. If f

is a paracompact p-map then so is g.

To prove the theorem we need the following two lemmas.

Lemma 5.3. Let f : X ! B and g : Y ! B be T2-compactifiable maps and

f 0 : X 0 ! B and g 0 : Y 0 ! B be T2-compactifications of f and g, respectively. If

there exists an onto perfect morphism l : f ! g, then there exists a morphism

l 0 : f 0 ! g 0 such that

(1) l 0 jX ¼ l and l 0 is perfect;

(2) l 0ðX 0
bnXbÞHY 0

bnYb for every b A B.

Proof. (1) Let m ¼ e � l where e is the embedding of Y to Y 0. Since

f 0 : X 0 ! B and g 0 : Y 0 ! B are T2-compactifications of f and g, X ¼ X 0 and

for every b-filter F on X which is convergent in X 0, the b-filter m�F has a unique

adherence point in Y 0. For every b A B and every x A X 0
b , let Fx be the nbd b-

filter of x in X 0, and let yx be the unique adherence point of the b-filter mðFxjXÞ
in Y 0. For every b A B and every x A X 0

b, let l 0ðxÞ ¼ yx, then l 0 : X 0 ! Y 0 is a

fibrewise continuous map and l 0 jX ¼ l from [10] Proposition 4.6.

For every closed subset F of X 0, the map g 0 j l 0ðFÞ : l 0ðF Þ ! B is compact

since f 0 jF : F ! B is compact, and therefore l 0ðF Þ is closed in Y 0. Since Y 0
b is

regular and l�1ðyÞ is closed in X 0
b for every y A Y 0

b, l
0�1ðyÞ is compact for every

y A Y , so that l 0 is perfect. Consequently, the proof of (1) is complete.

(2) If there exists b A B and x A X 0
bnXb such that l 0ðxÞ ¼ y A Yb, then

l�ðFxjX Þ is convergent to y, where Fx is the nbd b-filter of x in X 0. Since l is

perfect, FxjX is convergent to some point x 0 A l�1ðyÞ in X ([10] Proposition 4.3).

Then x and x 0 are di¤erent adherence points of Fx in X 0, which contradicts the

fact that f 0 is T2. Thus l 0ðX 0
bnXbÞHY 0

bnYb for every b A B. r
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Lemma 5.4. Suppose that B is regular. For a paracompact T2-map

f : X ! B, let f 0 : X 0 ! B be a T2-compactification of f . If U is an open cover of

Xb in X 0 for every b A B, then there exists an open (in X 0) cover P of Xb satisfying:

(1) For every x A 6P, there exists U A U such that stðx;PÞX 0
HU ;

(2) For every x A 6P, P is locally finite at the point x.

Proof. Since B is regular and U is an open cover of Xb in X 0, for every

x A Xb take U1x A U with x A U1x and let Ux be an open nbd of x in X such that

x A Ux HUx
X 0

HU1x. Let U1 ¼ fUx j x A Xbg, then U1 is an open cover of Xb in

X . Since f is paracompact, there exists an open (in X ) cover U2 of Xb which is a

b-star refinement of U1 in X . Then there exists W A NðbÞ and an open family U3

in X which is a locally finite (in XW ) cover of XW and satisfies U3 < fXWg5U2.

For every V A U3 take an open set UðVÞHX 0
W in X 0 such that UðVÞVX ¼ V .

Let U4 ¼ fUðVÞ jV A U3g and G ¼ fx A X 0 j U4 is locally finte at xg. Then G is

open in X 0 and XW HG since X ¼ X 0. Let P ¼ fGVU jU A U4g which is an

open (in X 0) cover of Xb and satisfies (2). For every x A 6P let fP A P j x A Pg ¼
fP1; . . . ;Pkg. For ia k take UðViÞ A U4 such that Pi ¼ GVUðViÞ. Then since

UðViÞVUðVjÞVX 0q for every i; ja k, we have Vi VVj 0q for every

i; ja k. Since U3 < fXWg5U2 and U2 is a b-star refinement of U1 in X ,

there exists x0 A Xb and Ux0 A U1 such that 6
iak

Vi HUx0 . Then, stðx;PÞX 0 ¼
stðx;PÞVX X 0

HUx0
X 0

HU1x0 A U, and (1) is satisfied. r

We can now prove Theorem 5.2.

Proof (Theorem 5.2). Since f : X ! B is a p-map, take a T2-

compactification f 0 : X 0 ! B of f such that for every b A B there exists a se-

quence fPngn AN of open covers of Xb in X 0 satisfying:

(1) For every n A N, Xb H6Pn;

(2) For every x A Xb, 7
n AN stðx;PnÞVX 0

b HXb.

By Lemma 5.4 we can suppose the following.

(3) For every n A N and x A 6Pn, Pn is locally finite at the point x;

(4) For every n A N and x A 6Pnþ1, there exists P A Pn such that

stðx;Pnþ1ÞX
0
HP.

Furthermore, we show that the following (5), (6), (7) and (8) hold.

(5) For every b A B if x A X 0
bnXb, then 7

n AN stðx;PnÞVX 0
b HX 0

bnXb.

If not, there exist x0 A Xb and Pn A Pn for every n A N such that fx; x0gHPn.

Then x A 7
n AN stðx0;PnÞVX 0

b, which contradicts (2).

(6) If F HXb is compact, then 7
n AN stðF ;PnÞVX 0

b HXb.
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If not, there exists x A 7
n AN stðF ;PnÞV ðX 0

bnXbÞ. Then for every n A N,

there exists Pn A Pn such that x A Pn and Pn VF 0q. For every n A N,

Fn ¼ F V stðx;PnÞX
0

is compact and Fnþ1 HFn from (4). Therefore, there

exists x0 A Xb such that x0 A 7
n AN Fn. However, x0 A 7

n AN stðx;PnÞX
0
VX 0

b ¼
7

n AN stðx;PnÞVX 0
b , which contradicts (5).

(7) If F HXb is compact, then stðF ;PnÞX
0
H stðF ;Pn�1Þ for every n A N.

For every n A N, since Pn is locally finite at every point of 6Pn, let

fP A Pn jPVF 0qg ¼ fP1; . . . ;Pkg. By (4), for each ia k there exists P 0
i A Pn�1

such that Pi
X 0

HP 0
i . Thus stðF ;PnÞX

0 ¼ 6
iak

Pi
X 0

H6
iak

P 0
i H stðF ;Pn�1Þ.

(8) For every b A B and n A N, let Un ¼ fstðl�1ðyÞ;PnÞ j y A Ybg. Then

7
n AN stðl�1ðyÞ;UnÞVX 0

b HXb for every y A Yb.

If not, there exist yn A Yb and x A 7
n AN stðl�1ðyÞ;UnÞV ðX 0

bnXbÞ such that

stðl�1ðynÞ;PnÞV l�1ðyÞ0q and x A stðl�1ðynÞ;PnÞ. Thus stðl�1ðyÞ;PnÞV
l�1ðynÞ0q and stðx;PnÞV l�1ðynÞ0q. Let xn A stðl�1ðyÞ;PnÞV l�1ðynÞ,
x 0
n A stðx;PnÞV l�1ðynÞ and T1 ¼ ð7

n AN stðl�1ðyÞ;PnÞX
0 ÞVX 0

b. Then T1 is

compact in X 0
b and T1 ¼ 7

n AN stðl�1ðyÞ;PnÞÞVX 0
b HXb from (6) and (7). Let

T2 ¼ ð7
n AN stðx;PnÞX

0 ÞVX 0
b . Then T2 is also compact in X 0

b and T2 ¼
ð7

n AN stðx;PnÞÞVX 0
b HX 0

bnXb from (4) and (5).

Let g 0 : Y 0 ! B be a T2-compactification of g and let l 0 : f 0 ! g 0 be a

morphism extension of l satisfying properties (1) and (2) of Lemma 5.3. Then,

for the above subsets T1 and T2 we have that l 0ðT1Þ and l 0ðT2Þ are compact in

Y 0
b with l 0ðT1ÞV l 0ðT2Þ ¼ q. Therefore, there exist nbds Vi of l 0

i ðTiÞ ði ¼ 1; 2Þ
such that V1 VV2 ¼ q.

Since yn A Yb and xn A stðl�1ðyÞ;PnÞV l�1ðynÞHXb HX 0
b, fxngn AN HXb H

X 0
b. Then, there exists n1 A N such that xn A l 0�1ðV1Þ for all nb n1. Otherwise, for

every n A N there exists kn b n such that xkn B l 0�1ðV1Þ. Then fxkngn AN V l 0�1ðV1Þ
¼ q and therefore, fxkngn AN V l 0�1ðV1Þ ¼ q. Since fxkngn AN H fxngn AN HX 0

b,

fxkngn AN has adherence points in X 0
b. Suppose x0 is such a point. From

(7), stðl�1ðyÞ;PnÞX
0
H stðl�1ðyÞ;Pn�1Þ. It follows that fxkigibn H fxigibn H

stðl�1ðyÞ;PnÞ. Consequently, x0 A fxkigibn
X 0

H stðl�1ðyÞ;PnÞX
0
and therefore,

x0 A 7
n AN stðl�1ðyÞ;PnÞX

0
VX 0

b ¼ T1, which contradicts fxkngn AN V l 0�1ðV1Þ ¼ q.

Since yn A Yb and x 0
n A stðx;PnÞV l�1ðynÞHXb HX 0

b, fx 0
ngn AN HXb HX 0

b.

Analogous to the above one can prove that there exists n2 A N such that

x 0
n A l 0�1ðV2Þ for every nb n2. Let n0 ¼ maxfn1; n2g, then for every nb n0,

xn A l 0�1ðV1Þ and x 0
n A l 0�1ðV2Þ. Thus yn ¼ l 0ðxnÞ ¼ l 0ðx 0

nÞ A V1 VV2, which

contradicts V1 VV2 ¼ q.

Thus (8) is completely proved.
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Finally, for every n A N let Gn ¼ fG ¼ Y 0nl 0ðX 0nUÞ : U A Ung. Then

ð1 0Þ For every y A Yb and n A N there exists U A Un such that l�1ðyÞHU ,

then y A G ¼ Y 0nl 0ðX 0nUÞ A Gn and hence, Yb H6Gn;

ð2 0Þ Since l 0�1ðGnÞ is a refinement of Un, for every y A Yb,

l 0�1ðð7
n AN stðy;GnÞÞVY 0

bÞ ¼ ð7
n AN l 0�1ðstðy;GnÞÞÞVX 0

b

H ð7
n AN stðl 0�1ðyÞ;UnÞÞÞVX 0

b HXb:

Hence ð7
n AN stðy;GnÞÞVY 0

b HYb.

Consequently, from ð1 0Þ, ð2 0Þ and Theorem 3.2, g is a p-map. Since par-

acompactness is preserved by closed maps ([5] Theorem 2.11), g is a paracompact

p-map. r

In connection with Theorem 5.2, note that if f is not paracompact, the result

does not necessarily hold. For this, consider the case when B is the singleton set

and [3] Example 2.1.

6. Metrizable Type (MT -)maps and p-maps

In this section, we investigate the relations of MT -maps with (paracompact)

M-maps and some problems analogous to those encountered in the relations of

metrizable spaces with (paracompact) M-spaces.

Theorem 6.1. Suppose that B is regular. If a T2-compactifiable map

f : X ! B has an f -development, then it is a p-map.

Proof. Since f has an f -development, for every b A B there is a sequence

fUngn AN of open (in X ) covers of Xb which is a b-development. For every n A N

and x A Xb take Ux A Un and Vx A NðxÞ such that x A Vx HVx HUx. Let

Vn ¼ fVx j x A Xbg and V ¼ fVngn AN. For n A N and x A Xb, if x A Vn A Vn, there

exists Un A Un with x A Vn HVn HUn, so that ð7
n AN VnÞVXb � ð7

n AN UnÞVXb.

If there exists x0 A ðXbnfxgÞV ð7
n AN VnÞ, then x A Xnfx0g and x0 A Un for every

n A N. Since fUngn AN is a b-development, there exists n0 A N and W A NðbÞ such

that stðx;Un0ÞVXW HXnfx0g, which is a contradiction. Thus ð7
n AN VnÞVXb ¼

fxg is compact. From the definition of b-development, for every open subset U

of X with ð7
n AN VnÞVXb ¼ fxgHU , there exist n A N and W A NðbÞ such

that fxg A stðx;UnÞVXW HU and therefore, ð7
n AN VnÞVXb ¼ fxg A ð7

ian
ViÞV

XW HU . Hence f is a p-map. r

Corollary 6.2. If B is regular then every MT-map f : X ! B is a para-

compact p-map.
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Corollary 6.3. Suppose that B is regular. Let f : X ! B and g : Y ! B

be maps and l : f ! g a perfect morphism. If g is an MT-map, then f is a

paracompact p-map (and therefore, an M-map).

For two maps f : X ! B and g : Y ! B, f is said to be (resp. closedly)

embeddable to g if there exists a morphism l : f ! g such that lðX Þ is a (resp.

closed) subspace of Y .

We now cite two problems related to (paracompact) M-maps and para-

compact p-maps, that are analogous to results pertaining to (paracompact) M-

spaces ([11]) and paracompact p-spaces ([13]).

Problem 6.4. Let f : X ! B be an M-map (resp. paracompact M-map).

Does there exist an MT -map g : Y ! B and a quasi-perfect (resp. perfect)

morphism l : f ! g?

In this case, we call f the preimage-map of g under l.

Problem 6.5. Let f : X ! B be a paracompact p-map. Can f be closedly

embeddable to a product of an MT-map and a compact map?

The next theorem is a partial answer of Problem 6.5. It follows from this

theorem that if Problem 6.4 is a‰rmative, then so is Problem 6.5.

Theorem 6.6. Let f : X ! B be a map that is a preimage-map of an MT-

map g : Y ! B under a perfect morphism l : f ! g. Then f is closedly embed-

dable to a product of g and a T2-compactification f 0 : X 0 ! B of f .

Proof. First, since the MT -map g is a paracompact T2-map, it follows from

[4] Proposition 4.4 that f is a paracompact T2-map, and therefore f has a

T2-compactification f 0 : X 0 ! B. Let m ¼ lDBe : X ! Y �B X 0 be the map

defined by mðxÞ ¼ ðlðxÞ; eðxÞÞ, where e : X ! X 0 is the fibrewise embedding. Then

m ¼ ðl�B idX 0 Þ � ðidX DBeÞ : X ! X �B X 0 ! Y �B X 0 is one-to-one. We now

prove that Z ¼ ðidX DBeÞðXÞ is closed in X �B X 0. Let ðx; x 0Þ A ðX �B X 0ÞnZ,

then eðxÞ0 x 0 and f ðxÞ ¼ f 0ðx 0Þ. Since f 0ðeðxÞÞ ¼ f 0ðx 0Þ, there exist U A NðeðxÞÞ
and V A Nðx 0Þ in X 0 such that U VV ¼ q. Then it is easy to see that

e�1ðUÞ �B V is a nbd of ðx; x 0Þ satisfying ðe�1ðUÞ �B VÞVZ ¼ q. Conse-

quently, Z is closed in X �B X 0. Since l and idX 0 are perfect, l�B idX 0 is perfect,

and therefore ðl�B idX 0 Þ jZ is perfect. Thus mðX Þ is closed in Y �B X 0. r
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