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A NOTE ON THE FUSION OF TWO VERTICES

IN A FUZZY GRAPH

By

P. V. Ramakrishnan and T. Lakshmi

Abstract. The concept of fuzzy sets was introduced by L. A. Zadeh

in 1965. The concept of fuzzy graph was introduced by A. Rosenfeld

[5] in 1975. Many of the crisp graph concepts have been extended to

fuzzy graph theory. Here we define the fusion of two vertices in a

fuzzy graph and investigate some properties and also give fusion

algorithm for e¤ective connectedness and for adjacency matrix.

1 Preliminaries

A fuzzy graph G ¼ ðs; mÞ is a pair of functions s : S ! ½0; 1� and

m : SXS ! ½0; 1� such that for all x, y in S we have mðx; yÞa sðxÞ5sðyÞ where S

is the underlying (vertex) set. (In this paper we always consider S as a finite set.)

For the fuzzy graph G, G � ¼ ðs�; m�Þ is called the corresponding (crisp) support

graph where s� ¼ Support of s and m� ¼ Support of m. The fuzzy graph

H ¼ ðt; nÞ is called a (partial) fuzzy subgraph of G if tðxÞa sðxÞ and

nðx; yÞa mðx; yÞ for all x, y in S. The fuzzy graph H ¼ ðt; nÞ is called a spanning

fuzzy subgraph of G if tðxÞ ¼ sðxÞ for all x in S. A fuzzy graph G ¼ ðs; mÞ is

called a complete fuzzy graph if mðx; yÞ ¼ sðxÞ5sðyÞ for all x and y; it is called

quasi complete if G � is complete (clearly complete implies quasi complete). A

complete fuzzy graph with n vertices is denoted by sn.

We shall call a fuzzy graph G ¼ ðs; mÞ, bipartite� if the graph G � ¼ ðs�; m�Þ is
bipartite where s� ¼ Supp s and m� ¼ Supp m. We call a fuzzy graph G ¼ ðs; mÞ,
fuzzy bipartite� if it has a spanning fuzzy subgraph F ¼ ðs; nÞ which is

bipartite� and for all arcs ðx; yÞ not in F (i.e. nðx; yÞ ¼ 0), we have, mðx; yÞ <
nyðx; yÞ.

A fuzzy graph G ¼ ðs; mÞ is called complete bipartite� if G � ¼ ðs�; m�Þ is a

complete bipartite graph. G is called complete fuzzy bipartite� fuzzy graph if G

Key words. Fuzzy graph, complete fuzzy graph, fusion of vertices in a graph, adjacency matrix.

Received June 28, 2007.



has a spanning fuzzy subgraph F ¼ ðs; m 0Þ which is complete bipartite� and for

all arcs ðx; yÞ not in F , mðx; yÞ < m 0yðx; yÞ.
An edge ðx; yÞ of a fuzzy graph G ¼ ðs; mÞ is called an e¤ective edge

if mðx; yÞ ¼ sðxÞ5sðyÞ. A path in G is called an e¤ective path if all the

edges in that path are e¤ective edges. A pair of vertices of G are called

e¤ectively connected if there is an e¤ective path between them. A fuzzy

graph is called e¤ectively connected if every pair of vertices are e¤ectively

connected.

The terms undefined here may be seen in [1], [2] & [5].

2 Fusion of Vertices in A Fuzzy Graph

Definition 2.1. A fuzzy graph G ¼ ðs; mÞ is called strong complete fuzzy

bipartite� fuzzy graph if G is complete fuzzy bipartite� and mðx; yÞ ¼ sðxÞ5sðyÞ
for all ðx; yÞ in F and it is denoted by sm;n.

Example 2.2.

Definition 2.3. Let G ¼ ðs; mÞ be a fuzzy graph and let u; v A s�. By the

fusion of two vertices u and v we mean the following:

(i) Fuse the vertices u and v as uv in the corresponding crisp graph

G � ¼ ðs�; m�Þ and then consider its underlying simple graph.

(ii) The resulting fuzzy graph is Guv ¼ ðsuv; muvÞ where
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suvðxÞ ¼
max½sðuÞ; sðvÞ�; if x ¼ uv

sðxÞ; if x0 uv

�

and

muvðx; yÞ ¼
max½mðx; uÞ; mðx; vÞ�; if y ¼ uv

max½mðu; yÞ; mðv; yÞ�; if x ¼ uv

mðx; yÞ; if x0 uv and y0 uv

8<
:

Example 2.4.

Proposition 2.5. The fusion of two vertices of Kn results in Kn�1.

The analogous result in fuzzy graphs is as follows:

Proposition 2.6. The fusion of two vertices of a complete fuzzy graph on n

vertices results in a complete fuzzy graph.

(i.e.) The fusion of two vertices of sn results in sn�1.

Proof. Let G ¼ ðs; mÞ be a complete fuzzy graph with n vertices. (i.e.)

G ¼ sn. Suppose x and y are fused together and get Gxy ¼ ðsxy; mxyÞ. By defi-

nition, sxyðx; yÞ ¼ Max½sðxÞ; sðyÞ�. Without loss of generality assume that

sðxÞ < sðyÞ. Therefore, sxyðxyÞ ¼ sðyÞ. Suppose z is any vertex other than xy in

Gxy. Hence sxyðzÞ ¼ sðzÞ. Then

mxyðxy; zÞ ¼ Max½mðx; zÞ; mðy; zÞ�

¼ Max½sðxÞ5sðzÞ; sðyÞ5sðzÞ�

¼ ðsðxÞ5sðzÞÞ4ðsðyÞ5sðzÞÞ

¼ ðsðxÞ4sðyÞÞ5sðzÞ

¼ sxyðxyÞ5sxyðzÞ
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By definition,

mxyðu; vÞ ¼ mðu; vÞ for all u; v where u0 ðx; yÞ and v0 ðx; yÞ

¼ sðuÞ5sðvÞ

¼ sxyðuÞ5sxyðvÞ

Hence Gxy ¼ sn�1. G

Proposition 2.7. The fusion of any two vertices of K1;n results in

K1;n�1.

The above result need not be true in fuzzy graphs. The fusion of two vertices

of s1;n with both vertices in V1 or in V2 results in s1;n�1; fusion with one vertex

in V1 and another in V2 need not result in s1;n�1. (i.e.)

Proposition 2.8. The fusion of two vertices of s1;n with both the vertices in

same set (V1 or V2) results in s1;n�1.

Example 2.9.

Clearly G ¼ s1;2 but Gab 0 s1;1.

Proposition 2.10. The fusion of two vertices of s1;n with one vertex in

V1 and another in V2 results in s1;n�1 iff for every pair of vertices u2 and v2 of

V2,

sðv1ÞbMin½sðu2Þ; sðv2Þ� where V1 ¼ fv1g ð1Þ
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Proof.

Suppose the inequality (1) is true. Let v1 be fused with v2. Then

sv1v2ðv1v2Þ ¼ Max½sðv1Þ; sðv2Þ�. Let u2 be any vertex other than v2 in V2. Then

mv1v2ðv1v2; u2Þ ¼ mðv1; u2Þ

¼ sðv1Þ5sðu2Þ ð2Þ

Case-(i)

Suppose sðu2Þ < sðv1Þ < sðv2Þ. Then (2) implies

mv1v2ðv1v2; u2Þ ¼ sðu2Þ

¼ sv1v2ðu2Þ

¼ sv1v2ðv1v2Þ5sv1v2ðu2Þ

Case-(ii)

Suppose sðv2Þ < sðv1Þ < sðu2Þ. Then (2) implies

mv1v2ðv1v2; u2Þ ¼ sðv1Þ

¼ sv1v2ðv1v2Þ5sv1v2ðu2Þ

Case-(iii)

Suppose sðu2Þ < sðv2Þ < sðv1Þ. Then (2) implies

mv1v2ðv1v2; u2Þ ¼ sðu2Þ

¼ sv1v2ðu2Þ

¼ sv1v2ðv1v2Þ5sv1v2ðu2Þ
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Case-(iv)

Suppose sðv2Þ < sðu2Þ < sðv1Þ. Then (2) implies

mv1v2ðv1v2; u2Þ ¼ sðu2Þ

¼ sv1v2ðu2Þ

¼ sv1v2ðv1v2Þ5sv1v2ðu2Þ

Hence in all cases, we have Gv1v2 is strong complete fuzzy bipartite�.

Therefore Gv1v2 ¼ s1;n�1.

Conversely, suppose the fusion of two vertices of s1;n with one vertex in V1

and another in V2 results in s1;n�1.

To prove that (1) is true. Suppose not. Then,

sðv1Þ < Min½sðu2Þ; sðv2Þ� for some pair of vertices u2; v2 of V2: ð3Þ

Without loss of generality, assume that

Min½sðu2Þ; sðv2Þ� ¼ sðu2Þ

From (3), sðv1Þ < sðu2Þa sðv2Þ. If we fuse u2 with v1 then

sv1u2ðv1u2Þ ¼ sðu2Þ

mv1u2ðv1u2; v2Þ ¼ mðv1; v2Þ

¼ sðv1Þ5sðv2Þ

¼ sðv1Þ

< sðu2Þ

¼ sv1u2ðv1u2Þ5sv1u2ðv2Þ

Which is a contradiction. Hence (1) is true. G

Proposition 2.11. If m0 10 n, then the fusion of two vertices of Km;n with

both vertices in V1 or in V2 results in Km�1;n or Km;n�1.

The analogous result in fuzzy graphs is as follows:

Proposition 2.12. The fusion of two vertices of sm;n ðm0 10 nÞ with both

the vertices in V1 or in V2 results in sm�1;n or sm;n�1.

The proof is as similar as that of Proposition 2.6.
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In crisp graph theory, there is an algorithm to compute the adjacency matrix

of the resulting graph after fusing two adjacent vertices. In a similar way we give

algorithm to compute the adjacency matrix of a fuzzy graph after fusion of two

adjacent vertices.

Algorithm to compute the adjacency matrix of a fuzzy graph after fusion of two

adjacent vertices

Let G ¼ ðs; mÞ be a fuzzy graph whose adjacency matrix [1] is denoted by

AðGÞ. Suppose u and v are adjacent. (i.e.) mðu; vÞ > 0. Suppose we fuse u and v.

Then the adjacency matrix of Guv is denoted by AðGuvÞ and it can be obtained by

the following steps:

Step-1

Change u’s row to the maximum of u’s row and v’s row and change u’s

column to the maximum of u’s column and v’s column.

Step-2

Delete the row and column corresponding to v.

Step-3

Name u’s row and u’s column as uv and put the entry as 0 corresponding to

ðuv; uvÞ.
Then the resulting matrix is the adjacency matrix of the new fuzzy graph

Guv.

Illustration

AðGÞ ¼

a b c d s

a 0 :8 0 :7 :8

b :8 0 :9 :8 :9

c 0 :9 0 1 1

d :7 :8 1 0 1

0
BBB@

1
CCCA
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Step-1

a b c d s

a :8 :8 :9 :8 :9

b :8 0 :9 :8 :9

c :9 :9 0 1 1

d :8 :8 1 0 1

0
BBB@

1
CCCA

Step-2

a c d s

a :8 :9 :8 :9

c :9 0 1 1

d :8 1 0 1

0
B@

1
CA

Step-3

AðGabÞ ¼

ab c d s

ab 0 :9 :8 :9

c :9 0 1 1

d :8 1 0 1

0
B@

1
CA

The fusion algorithm for e¤ective connectedness

Let G ¼ ðs; mÞ be a fuzzy graph whose adjacency matrix is denoted by

AðGÞ.
Step-1

Fuse vertex v1 to the first of the vertices v2; v3; . . . vn with which it is ef-

fectively adjacent. In which the new fuzzy graph is also denoted by G and the

new vertex is also denoted by v1. (The above 3-step process gives the adjacency

matrix AðGÞ).
Step-2

Repeat step-1 until v1 is not e¤ectively adjacent to any of the other

vertices.

Step-3

Repeat steps-1&2 on all the remaining vertices vi of the resulting fuzzy

graphs. The final fuzzy graph is (e¤ectively) empty and the number of its (ef-

fectively isolated) vertices is the number of e¤ectively connected components of the

given fuzzy graph G.
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Illustration

Step-1

Step-2

Step-3
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