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Many information sharing services currently exist, such as community knowledge

sharing sites, blogs, and micro-blogs. Twitter, which is one of the most popular social

media services, had 280 million monthly active users at the end of the September

2013. Since it only permits users to post short passages up to 140 characters, users

can easily share their experiences and opinions about daily events. Twitter posts are

often both useful and timely because they typically comment on current events. For

example, tweets about traffic jams or accidents are quite valuable for users who will

travel past those places. Supermarket sales and bargain information are also helpful

for neighborhood consumers. Such tweets, which are highly regional, up-to-date, and

beneficial to others. We call such tweets real life tweets.

Information is used in various aspects of life. Real life tweets can accommodate

such aspects. For example, such tweets as “My train is late!” are categorized as a

“Traffic” aspect and support train commuters. Such posts as “Today, bargain sale

items are 50% off!” are categorized as an “Expense” aspect and support shoppers.

For presenting real life tweets based on user contexts, we classify them into 14 aspects,

which are assumed to be the life aspects of users, based on the Yahoo directory, “local

community”, and “life” in the Japanese version of Wikipedia.

Users post various types of tweets. “Nods” and sympathetic phrases frequently

appear on Twitter. For example, “Thank you” and “I see” often appear in posts.

These posts do not directly support the real life situations of other users. We believe

that users want a method of locating beneficial tweets on Twitter. Such nods and

sympathies simply impede the discovery of substantive tweets.

Users generally expect contents that reflect their particular interests. However,

the above problems occurr in many applications and social media. For example, many
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spam e-mails are delivered daily. Some blogs offer no interesting content, and news

articles mention various categories. These hinder not only the access to information

by users but also bury interesting contents under a flood of excessive information.

Such problems can be solved by estimating the labels of each bit of content so that

users can rapidly access contents based on labels of interests.

In this study, we estimate the aspects of unknown tweets by addressing a super-

vised machine learning approach that trains a model by labeled data to estimate

unknown data using it. To estimate the aspects of unknown tweets, we faced these

four challenges:

1. We must estimate the aspects of unknown tweets with just a few feature terms

because 45, which is the average number of characters in tweets, is shorter than

general documents.

2. We must achieve the highest accuracy by the latest labeled tweets because the

lives of people change quickly and new terms might appear. Annotating the

aspects of many tweets is difficult because the aspects are hand-labeled, and so

we need to estimate them by a small set of labeled tweets.

3. Depending on the tweets, we have to estimate several aspects of a tweet. For

example, the following tweet “A heavy snowstorm caused a traffic accident near

the JFK airport,” mentions a snowstorm and a traffic accident. Its main topic is

the accident, but it also provides weather information. Therefore, we multi-label

it as both Traffic and Weather.

4. An approach that estimates several aspects of a tweet can clearly provide real

life information for specific users. On the other hand, exhaustive-oriented users

might expect broad information that includes the specific aspects. In other

words, accuracy-oriented users might desire strictly selected real life information

on specific aspects. When we visit sightseeing locations, we want information
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about them. The multi-label classification approach fails to achieve such tightly

associated aspects with the same weight.

In typical supervised machine learning methods as document classification, naive

Bayes classifier and support vector machine (SVM) are widely known. Both methods

have been extended to multi-labeling, and labeled-latent Dirichlet allocation (L-LDA)

has also been proposed to multi-label documents. These methods address the classifi-

cation of relatively long documents and achieve high accuracy using sufficient training

datasets. However, in the cases of such short documents as tweets and a small set of

labeled data, these methods probably cannot achieve adequate performance because

tweets have too few feature terms.

In this study, we propose a hierarchical estimation framework (HEF) based on as-

sociations between topics and aspects to satisfy the above challenges. Its fundamental

idea is composed of both unsupervised and supervised machine learning techniques.

In the first phase, it extracts topics from a sea of tweets using latent Dirichlet al-

location (LDA). In the second phase, it calculates the relevance among topics and

aspects using a small set of labeled tweets to build associations among them. HEF

calculates the aspect scores for unknown tweets using the association between topics

and aspects based on the terms extracted from the tweets.

Although typical machine learning methods directly calculate the likelihood of

terms, HEF calculates the relevance between topics and aspects using a small set of

labeled tweets and builds associations based on relevance. One HEF feature expands

the terms of the tweet to topics, estimates the contents in the topics, and calculates

the aspect scores by associations between topics and aspects. Thus, by two-phase

estimation based on topics as the middle-layer, even if a term does not appear as

training data, we can calculate the aspect scores using it. In other words, HEF

stochastically expands the terms of tweets using topics. Although it inadequately

expand terms, estimation performance decrease. Therefore, we preliminarily calculate

the occurrence probability of the terms in each topic by LDA using a large amount
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of tweets.

In multi-label classification, when the aspect scores exceed a threshold, the aspects

are estimated for tweets. HEF introduced entropy feedback mechanisms in the second

phase to overcome the problem of competitive associations among aspects. Based on

these extensions, the associations between topics and aspects are refined and the es-

timation precisions are increased. In experimental evaluations using Japanese tweets

posted in the Kyoto area, we clarified that HEF appropriately estimates the aspects

for unknown tweets. HEF, which introduced entropy feedback, builds refined asso-

ciations that linked feature topics to each aspect and showed the highest F-measure

among typical methods of multi-label classification. With less training data, the pre-

cision, recall, and F-measure values of the typical methods rapidly dropped; however,

HEF retained its high evaluation values.

The aspect distribution is represented by the probability distribution in each tweet.

Accurately inferring the probability distribution of aspects means supporting either

the strict or broad associations between tweets and aspects. As an inference approach

of probability distribution, we naturally extend HEF by normalizing scores and pro-

pose an optimal association building method based on t-test, which is an efficient

strategy to manage the relationship between topics and aspects. We assume that the

training data are not given as the probability distributions of the aspects based on

a training model of a typical classification method. Our challenge in this study is

to train from labeled tweets and infer the probability distribution of the aspects of

unknown tweets. The experimental evaluations of this study prepared a small set of

labeled tweets based on classifications by three examinees and calculated the proba-

bility distributions of each tweet from them. In the case of single label training, HEF

showed significantly lower JS Divergence and Euclidean Distance values than every

baseline method based on sharing topics by several aspects.

From these results, the HEF scheme is an effective life aspect inference method of

multi-label classification and probability distribution using a small labeled dataset for
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such short sentences as tweets because the associations between topics and aspects

appropriately expanded the terms.
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潜在トピックとの対応関係に基づく生活の局面推定に関する研究

山本 修平

現在，知識共有コミュニティサイトやブログ，マイクロブログなど，多くの情報

共有サービスが存在している．ツイートと呼ばれる短文を投稿するTwitterは，最も

広く普及しているマイクロブログの 1つであり，2013年 9月末に 2億 8000万を超え

る月間アクティブユーザ数を記録している．ユーザは自らの経験や意見，また日常生

活でのイベントなど，身近な「今」を投稿している．このため，他のユーザにとって

も最新かつ有益なツイートが多く，たとえば，電車の遅延情報は交通機関を利用する

ユーザに役立ち，近所のスーパーマーケットの特売情報は買物に出かけようとしてい

るユーザを支援できる．これらのような地域性が高く新鮮かつ，他のユーザに有益な

ツイートを本研究では「実生活ツイート」と呼ぶ．

実生活ツイートが実際にユーザを支援した場面として，2011年 3月に起きた東日

本大震災が挙げられる．地震の直後，震災の被害に遭った地域では断水や食料共有の

不足，交通機関の運行停止など，大きな混乱が生じた．その際，給水や食料配布が行

われる場所，電車やバスの運行情報について記述された有益なツイートが数多く投稿

され，多くの生活者を支援したと報告されている．

実生活ツイートは生活の様々な局面に対応している．たとえば，「電車が来ない」

というツイートは生活の中の「交通」の局面に対応し，これから電車に乗ろうとして

いるユーザを支援できる．「雨が降ってきた」というツイートは「気象」の局面に対

応し，これから外出する人や，洗濯しようとする人など，幅広いユーザを支援でき

る．本研究では，人々の生活を典型的な 14の局面に整理している．　特定の局面に関

するツイートを頻繁に投稿するユーザも多く存在する．たとえば，災害の局面では，

Twitterが公式にライフラインに関するツイートを投稿するユーザを地域毎に収集し

ている．東京都交通局は，電車の遅延などの運行情報をつぶさに投稿している．この

ような公式アカウントをフォローすることにより，ある局面に関して公の情報が得ら

れる．しかし，より局所的な生活情報を素早く取得するためには，日常生活における

ソーシャルセンサとして機能している一般ユーザのツイートも無視できない．
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一方で，ユーザは実生活ツイート以外のツイートも数多く投稿している．特に，「あ

りがとう」や「そうなんだ」といった，誰かの投稿に対する相槌や共感など，ユーザ

の生活を直接支援しないツイートが多い．このようなツイートの混在は，実生活ツ

イートの発見を妨げる原因となっている．

一般的に，ユーザは自身にとって興味のある情報の取得を望んでいると考えられ

る．しかし，これまでに述べた課題は，多くのアプリケーションやソーシャルメディ

アに起きている．このような課題により，ユーザが必要な情報に即座にアクセスでき

ないだけでなく，必要な情報が埋没してしまう．この解決方法として，各情報に対し

てユーザに理解できるラベルを推定することが挙げられる．

本研究の目標は，ユーザの所望する特定の局面を提供するために，未知のツイー

トに局面を推定することである．この目標を達成するための素朴な方法は，人手で各

局面に強く関連する単語を列挙し，未知のツイート中に出現する単語と照合すること

により，関連度の高い局面を推定することである．このような方法は高い精度を実現

できるが，本研究で対象とする実生活ツイートは様々な局面を含んでおり，局面に関

連するすべてのキーワードを列挙することは困難である．そこで，本研究では教師あ

り機械学習に基づくアプローチにより，ツイートに局面を推定することを試みる．こ

こでの課題は，以下に示す 4項目である．

1. ツイートは平均 45文字と短いことから，少ない手がかり語からツイートの言及

している局面を推定する必要があること．

2. 人々の生活は時間とともに変化していくことから，なるべく最新に投稿された

ツイートを訓練データとすることが望ましく，できる限り少量の訓練データで

高い推定精度が得られること．

3. ツイートによっては，複数の局面を推定する必要があること．たとえば，「猛吹

雪が原因で，JFK空港の近くで交通事故が起きました」というツイートは，「猛

吹雪」と「交通事故」に言及している．ツイートの主題は「交通事故」である

が，同時に「猛吹雪」という気象情報も提供している．このため，このツイー

トには「交通」と「気象」の両局面を推定することが相応しい．
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4. ツイートに局面のラベルを割り当てることにより，明確な実生活情報をユーザ

に提供することができる．一方で，ある局面に少しでも関連しているツイートは

全て閲覧したい網羅性を重視するユーザや，ある局面に対して正確に言及して

いるツイートのみ閲覧したい正確性を重視するユーザの存在が考えられる．こ

のような指向を持つユーザに対しては，マルチラベル分類によるアプローチで

は対応できない．

従来の教師あり機械学習による手法では，Naive Bayes分類器や SVMを用いた手

法が広く知られている．両手法ともマルチラベリングへ拡張されており，またトピッ

クモデルの 1つであるLabeled LDAもマルチラベリングを目的に提案されている．い

ずれの手法も十分な訓練データを用いることで，ブログやニュース，Webページなど

の比較的長い文書を分類することを目的とし，高い推定精度を示している．しかし，

本論文で課題とする，短文である場合や訓練データが少ない場合には，考慮できる手

がかり語が少なくなるため，十分な性能が得られないと考えられる．

本研究では，上記で述べた課題を解決するために，潜在的なトピックと局面の対

応関係に基づく階層的推定法を提案する．階層的推定法の基本的なアイデアは，教師

なし学習と教師あり学習の両方を組み合わせ，2段階の学習を行うことにある．第 1

段階では，教師なし学習として知られる潜在的ディリクレ配分法（LDA）を用いて，

大量のツイート集合からトピックを抽出する．第 2段階では，局面ラベルが付与され

た少量のツイートを用いて，抽出した潜在トピックと局面の関連度を算出し，局面に

複数トピックを結びつけた対応関係を構築する．実際に未知のツイートに局面を推定

する際は，ツイートに出現する単語から，その単語の出現するトピックの生起確率と

そのトピックが対応関係を持つ局面への関連度を用いて，局面毎にスコアを算出する．

従来の教師あり機械学習手法は，訓練データから直接クラスラベルに対する単語

の尤度を学習しているが，提案する階層的推定法は．局面とトピックの関連度を算出

し，関連度に基づいて対応関係を構築する．提案手法の特徴は，ツイートに出現する

単語をトピックに展開し，ツイートが言及している話題をトピックという単位で確率

的に拡張した後に，少量の訓練データであらかじめ学習したトピックと局面の関連度

からツイートに局面を推定することにある．すなわち，局面を推定しようとするツ
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イートに出現する単語を，トピックを使って確率的に拡張していることに特徴がある．

しかし，むやみに拡張するとノイズとなる単語によって推定精度が低下することから，

LDAによって大量のツイートからトピックに属する単語の出現確率をあらかじめ学

習しておく．

マルチラベル分類においては，スコアが閾値を超えた局面をツイートに付与する

ことにより実現する．ここでは，多くの局面が同じトピックに対して結びつく競合問

題を解決するために，Entropy Feedbackという機構を階層的推定法の第 2段階に導

入する．この拡張に基づき，トピックと局面の対応関係は洗練され，推定性能の向上

を狙う．Entropy Feedbackは現時点でのトピックと局面の対応関係に対してエント

ロピーを算出し，その値に基づいてフィードバック係数を求め，再度関連度を算出し

直すことによって実現する．京都市内で投稿された日本語ツイートを用いた評価実験

の結果，階層的推定法は未知のツイートに適切に局面を付与できることを明らかにし

た．Entropy Feedbackを導入した提案手法は，それぞれの局面に特徴的なトピック

が強い関連度で結びついており，実際に対応関係が洗練されたことを確認した．提案

手法と従来のマルチラベル分類手法の適合率，再現率，F値を用いて推定性能を比較

した結果，階層的推定法は高いF値を示した．特に，訓練データの数を減らした場合

で，比較手法の推定精度が低下した中で，提案手法はほとんど下降しないという特徴

が明らかになった．

ユーザの指向に合わせた実生活ツイートを提供するタスクにおいては，未知のツ

イートに対して生起する局面の確率分布を推定することで実現する．ここでは，t検

定に基づく最適なトピックと局面の対応関係を構築する手法を提案する．また，本研

究ではラベルが付与された訓練データでモデルを学習し，入力された未知のツイート

に対しては確率分布を推定する．評価実験の結果，提案した t検定に基づくトピック

と局面の対応関係構築方法が，ベースライン手法に比べて高い推定性能を示すことを

確認した．訓練データに単一ラベルを付与した場合と，複数ラベルを付与した場合で，

JS Divergenceによって確率分布の推定性能を評価した結果，特に単一ラベルという

状況で階層的推定法は有意に良い推定ができることが明らかになった．

以上の結果から，ツイートのような短文に対して，より少ない訓練データでマル
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チラベル分類をする場合や，確率分布推定をする場合に，提案した階層的推定法が有

効であることを明らかにした．
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Chapter 1

Introduction

Many information sharing services currently exist, such as community knowledge

sharing sites, blogs, and microblogs. Twitter [2], which is one of the most popular

social media services, had 280 million active users per month at the end of September

2013 [71]. Since Twitter only permits users to post short sentences up to 140 charac-

ters, users can easily post their experiences and opinions about daily events. Thus,

Twitter posts are often both useful and timely because they typically discuss current

events. For example, tweets about traffic jams or traffic accidents are quite valuable

for users who will pass those places. Supermarket sales and bargain information are

also helpful for neighborhood consumers. Such tweets, which are highly regional,

up-to-date, and beneficial to others, are called real life tweets.

The Great East Japan Earthquake Disaster, which occurred in March of 2011

[1], is a actual example of the benefits of real life tweets. There was great amount

of confusion in the stricken area immediately following the earthquake. There was

a lack of food, suspension of water supply, and train service cancellations. At that

time, useful tweets reported the location of water supplies and food distributions, as

well as the service status of trains, demonstrating that such real life tweets helped

the users in the devastated region [84].

Information is used in various aspects of life. Real life tweets can accommodate

1
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such aspects. For example, tweets such as “Train is not coming!” are categorized in

the “Traffic” aspect and will support users who want to ride the train. Posts such

as “Today, bargain sale items are 50% off!” are categorized as “Expense” aspects

and will support users who are going shopping. For presenting real life tweets based

on user contexts, we classify them into 14 aspects. The 14 aspects shown in Table

1.1 are assumed to be users life aspects that refer to the Yahoo directory 1, “local

community” 2, and “life” 3in the Japanese version of Wikipedia.

Users who provide particular aspect information sometimes can be found on Twit-

ter. For example, in the Disaster aspect, Twitter officially collects users who posts

lifeline information and create users lists in each prefecture and in each public in-

stitution in Japan. In the Weather aspect, the Japan weather association officially

operates an account that posts the latest weather information. In the Traffic aspect,

the Tokyo Transportation Bureau’s account provides train information. However,

these accounts generally post information that is already known to users. To detect

daily local information, we also need to collect general user tweets because they func-

tion as sensors that observe daily events. In fact, several studies on event detection

treat general users as social sensors to achieve their goal [62, 61, 51, 66].

On the other hand, users post various types of tweets. “Nod” and sympathetic

phrases frequently appear on Twitter. For example, “Thank you” and “I see” often

appear in posts. These posts do not directly support the real life situations of other

users. We believe that users want a method of locating beneficial tweets on Twit-

ter. These types of nods and sympathies simply impede the discovery of substantive

tweets.

Users generally expect to get contents that reflect their particular interests. How-

ever, the above problems occurred in many applications and social media. For exam-

ple, many spam e-mails are delivered daily. Some blogs offer no content of interest.

1http://business.yahoo.com
2https://ja.wikipedia.org/wiki/地域コミュニティ
3https://ja.wikipeda.org/wiki/生活
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News articles mention various categories. These hinder not only the information ac-

cess of users but also bury user interesting contents under too much information.

These problems can be solved by estimating the labels of each bit of content so that

users can rapidly access contents by labels of interests.

The objective of this research is to estimate the aspects of unknown tweets to

provide real life tweets to users who expect particular aspects. The simplest idea to

achieve this goal is to define terms with high relevance to each aspect by hand and

calculate the aspect scores based on them. Although these approaches have achieved

high accuracy in many studies, estimating real life tweets is hard because each aspect

includes many keywords without completely enumerating the important terms for

estimating aspects.

In this study, we address a supervised machine learning approach that trains a

model by labeled data and estimates unknown data using the model. To estimate the

aspects of unknown tweets, we follow these four challenges.

Challenge 1 We must estimate the aspects of unknown tweets from a few feature

terms because 45, which is the average number of characters in tweets, is short

compared with general documents [49].

Challenge 2 We must achieve the highest accuracy by the latest labeled tweets

because the lives of people momentarily change and new terms might appear.

Since annotating the aspects of many tweets is difficult because the aspects are

hand-labeled, we need to estimate them by a small set of labeled tweets.

Challenge 3 Depending on the tweets, we have to estimate several aspects of a

tweet. For example, the following tweet “A heavy snowstorm caused a traffic

accident near the JFK airport,” mentions a snowstorm and a traffic accident. Its

main topic is the accident, but it also provides weather information. Therefore,

we multi-label it as both Traffic and Weather.

Challenge 4 An approach that estimates several aspects of a tweet can clearly pro-
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vide real life information for specific users. On the other hand, exhaustive-

oriented users might expect broad information that includes the specific as-

pects. In other words, accuracy-oriented users might desire strictly selected

real life information on specific aspects. When we visit sightseeing locations,

we want information about them. The multi-label classification approach failed

to achieve such tightly associated aspects with the same weight.

In typical supervised machine learning methods as document classification, naive

Bayes classifier [17] and support vector machine (SVM) [15] are widely known. Both

methods are extended to multi-labeling [33, 12] and labeled latent Dirichlet allo-

cation (L-LDA) [58] also proposed to multi-label for documents. These methods

address classification of relatively long documents and achieve high accuracy using

enough training dataset. However, in cases of short document as tweet and a small

set of labeled data, that is suggested that these methods cannot achieve adequate

performance because feature terms of tweet is few.

In this study, we propose the hierarchical estimation framework (HEF) based on

associations between topics and aspects to achieve above challenges. The fundamental

idea of it is composed of both unsupervised and supervised machine learning tech-

niques. In the first phase, it extracts topics from a sea of tweets using latent Dirichlet

allocation (LDA). In the second phase, it calculates the relevance between topics and

aspects using a small set of labeled tweets to build associations among them. HEF

calculates aspect scores for unknown tweets using the association between topics and

aspects based on the terms extracted from tweets.

Although typical machine learning methods directly calculate the likelihood of

terms, HEF calculates relevance between topics and aspects using a small set of

labeled tweets and build the associations based on relevance. HEF feature is to

expand terms of tweet to topics, estimate contents in topics, and calculate aspect

scores by associations between topics and aspects. Thus, by two phase estimation

based on topics as middle-layer, even if a term do not appear training data, we can
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calculate aspect scores using it. In other words, HEF stochastically expand terms

of tweets using topics. Though, it tries to immoderately expand terms, estimation

performance decrease. Therefore, we preliminarily calculate occurrence probability

of terms in each topic by LDA using a large amount of tweets.

In multi-label classification, when the aspect scores exceed a threshold, the aspects

are estimated for tweets. The HEF is introduced entropy feedback mechanisms in the

second phase to overcome the problem of competitive associations among aspects.

Based on these extensions, the associations between topics and aspects are refined

and the estimation precisions are increased. We evaluate the Shannon entropy of

each association between the aspects and topics and iteratively calculate the feedback

coefficients by entropy to achieve optimal associations.

The aspect distribution is represented by the probability distribution in each tweet.

Accurately inferring the probability distribution of the aspects means supporting

either the strict or broad associations between tweets and aspects. As an inference

approach of probability distribution, we naturally extend HEF by normalizing scores

and propose an optimal association building method based on t-test, which is an

efficient strategy to manage the relationship between topics and aspects. We assume

that the training data are not given as the probability distributions of the aspects

based on a training model of a typical classification method. Our challenge in this

study is to train from labeled tweets and infer the probability distribution of the

aspects of unknown tweets.

The organization of this dissertation is as follows. Chapter 2 describes related

works. Chapter 3 proposes the fundamental of HEF. Chapter 4 extends HEF to

multi-label classification by introducing entropy feedback and evaluates estimation

performance using actual real life tweets. Chapter 5 explains probability distribution

inference based on HEF and examines inference accuracy by comparing with other

methods. Chapter 6 widely discusses the effectiveness of HEF, and conclude this

study and briefly describe future works in Chapter 7.
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Chapter 2

Related works

2.1 Information extraction from Twitter

The study of information extraction from Twitter is flourishing. Mathioudakis et al.

[46] extracted burst keywords in automatically collected tweets and found trends that

fluctuated in real time by creating groups using the co-occurrence of keywords. Zhao

et al. [88] extracted tweets about information needs using a Support Vector Machine

(SVM) to discover real world trends and events. Wang et al. [73] estimated user in-

terests using posted tweets to discover effective users for tweet diffusion. Li et al. [42]

proposed the extraction method for named entity posted to Twitter by unsupervised

learning. They split a tweet to term chain and calculate its score based on mutual

information. Based on the hypothesis that a named entity frequently co-occurs other

named entity, they ranks named entities by co-occurrence frequency in tweets posted

in periods. Rajadesingan et al. [57] detect the sarcasm in Twitter to help company’s

customer services. They introduce psychological studies and sentiment score of term

into the modeling framework to discover the sarcasm. Bollen et al. [9] analyzed senti-

ment on Twitter based on a six-dimensional mood (tension, depression, anger, vigor,

fatigue, and confusion) representation, and determined that on Twitter, it correlates

with such real-worlds values as stock prices and coincides with cultural events. Wang

7
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et al. [75] extracted bursty topics with high correlation by comparing burst pat-

terns among different news streams for various viewpoints. Iwaki et al. [30] detected

the beneficial articles posted in Twitter by calculating similarity between users and

tweets posted in previous. Sriram et al. [64] classified tweets into five categories such

as news, events, opinions, deals, and private messages by preliminarily extracting

features from author’s profile and text. Li et al. [41] detected the burst intervals

whose combinations of words rapidly increased in Twitter. They similarly detected

the events for newly obtained document streams, calculated the similarity between

these and old events, and tracked them. Xie et al. [81] also proposed a topic tracking

method called TopicSketch to achieve the same purpose with low calculation costs.

Their method detects the bursty topics by concurrently observing all Twitter streams

and the documents of each term and each term’s pair. In this paper, we estimate real

life aspects of unknown tweets.

Several studies are focusing on user interests at Twitter. Hannon et al. [20] pro-

posed the users recommendation method using their past tweets and followee/follower.

They calculated the weight for each feature by machine learning and achieved the high

recommendation performance. Michelson and MacsKassy [47] discovered user’s top-

ics on Twitter by categorizing the entities in the tweets and developing user profiles

by adopting categorization results. Wu et al. [80] automatically generated person-

alized tags to label Twitter’s user interests. They extracted keywords from Twitter

messages and calculated TF-IDF and TextRank [48] scores for them. Yamaguchi et

al. [82] proposed a user tagging method using Twitter lists to discover user topics.

Based on their observations, they assumed that the users included on identical lists

probably posted on the same topic. From experimental evaluations with two datasets,

their method effectively acted as a user tagging method. Cha et al. [10] analyzed user

features with influence by comparing the number of followers, followees, and replies.

Those users with maximum influence wield critical power on various topics. They

also clarified that influence cannot be obtained by only posting on a single topic. The
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objective of this research is to infer the aspects of tweet without reference to users.

2.2 Experience mining

Real life tweets consist of both the experiences and the knowledge of users. Several

studies on experience mining have extracted experiences from documents. Kurashima

et al. [39] divided human experience into five areas: time, space, action, object, and

feeling. Inui et al. [27] indexed personal experience information from the viewpoints

of time, polarity, and speaker modality. This information is indexed as topic object,

experiencer, event expression, event type, and factuality. Ikeda et al. [26] and Takano

et al. [67] defined the combination rules of word class to extract sentences about user’s

experience. They extracted sentences as experience information when they include

rules. Hattori and Nadamoto [21] extracted important and unique information re-

lated to social media as tip information and comments including user experiences

by using common important words. The et al. [69] automatically extracted all the

basic attributes, such as actor, action, object, time, and location from weblogs using

conditional random fields and self-supervised learning. Nishihara et al. [53] proposed

a support system for obtaining personal experience from blogs using images. They

extracted terms that represent events including place, object, and action, and pro-

vided such images as term objects to users. Their system showed high effectivity in

obtaining personal experiences.

These mining methods are effective for relatively long documents such as blogs.

But they are inappropriate for Twitter posts, which consist of many short sentences.

In addition, experience mining is much more difficult because subjects and objects

are often omitted in Twitter sentences.

Arimitsu et al. [6] proposed a retrieval method for experiences that users frag-

mentally posted in Twitter. They argued that one experience is consisted of several

behavior transitions, and their method searches for articles including specific ex-
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periences by inputting the keyword chains into their system. However, they don’t

automatically generate keyword chains related to experience.

2.3 Local information recommendation

Real life tweets often include the fresh local information. Many studies related to its

extraction exist. Kurashima et al. [38] recommended locations from users’ location

log data. They proposed a probabilistic behavior model based on both user interests

and the activity area that hosts user homes, offices, and so on. Ma and Tanaka [43]

proposed a regional information retrieval method from web pages utilizing the current

location data and keywords of users. Regional information was ranked based on the

notion of localness degree. Lee et al. [40] proposed an urban regional characteristics

extraction method using tweets whose geo-locations were tagged. Their method ex-

tracted the feature behavior patterns in the region by analyzing crowd behavior in

tweets.

As a feature of location information, regional and establishment names that only

exist in only specific regions are used. The study of the extraction of these feature

terms in locations is flourishing. Oku et al. [54] defined high regional terms whose

occurrence frequency in the target regions is relatively high compared with other

regions and proposed a regional score calculation method for terms by introducing

inverse document frequency (IDF) and term co-occurrence frequency with municipal-

ity names. Cheng et al. [13] detected the terms for specific regions from geo-tagged

tweets and obtained the features to determine regional attributions by their proposed

methods. Doumae and Seki [18] automatically selected feature topics for specific re-

gions to estimate the user’s life area by applying the Dirichlet Process with Mixed

Random Measures (DP-MRM) [34] which is a semi-supervised topic model. Yam-

aguchi et al. [83] detected the feature terms in spatiotemporal areas to infer user

locations. Their method assumed social media contents that are generated in real
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time, and the terms are continuously updated by newly arriving contents. Arakawa

et al. [4] extracted keywords with high dependency for locations by splitting them

into 100-km grids and calculated the content percentage of the geo-tagged tweets in

each grid.

This research estimates not just for the Locality but for 14 real life aspects.

2.4 Extracting information related to user’s life

Many studies have extracted beneficial information for the lives of users. Extracting

traffic information from social media has been particularly widely studied. Sakaki et

al. [61] extracted real-time driving information from social media to provide current

traffic situations to users. Their developed system incorporated geographically related

terms into geographical coordinates. Nagano et al. [51] developed a system for de-

tecting railway information from train schedules from Twitter. Their system collects

the latest tweets posted within three minutes, including railway names. When the

number of tweets, which satisfied their three defined rules, exceeded their threshold,

they judged that a target railway is late. Tsuchiya et al. [70] classified train problems

into stoppages, partial suspensions, and other troubles using a SVM that is trained

by tweets including railway names.

Ishino et al. [29] proposed a transportation route extraction method during dis-

aster by tagging such terms as departures, destinations, and transportation devices.

Sakaki et al. [62] assumed that Twitter users act as social sensors that identify both

earthquakes and typhoons in real time in the real world. They estimated the occur-

rence locations and the period of these events. Kawaguchi et al. [32] proposed an

information collecting system during disasters using Twitter. Their system extracts

tweets including location names related to user attributions and situations.

Aramaki et al. [5] predicted influenza epidemics using Twitter. They extracted

tweets related to influenza based on an SVM modeled by tweets that literally mention
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influenza patients. Takahashi and Noda [66] developed a pollen visualization system

on a Japan map using Twitter. The tweets related to pollen are collected by SVM.

Nakajima et al. [52] recommended the travel routes by collecting tweets posted

on popular sightseeing spots and classifying them into three categories (eating, land-

scape, and activity) using feature terms and parts of speech. Ishino et al. [28]

extracted both information of souvenir and tourist spots as travel information from

travel blog entries. Moreover, they built a collection of travel information links by

extracting hyperlinks from travel blog entries.

Although these studies extract beneficial information in particular life aspects, our

research concurrently estimates several aspects of unknown tweets based on multi-

label classification and probability distribution.

2.5 Hierarchical manner

Hierarchical frameworks have been adopted in many studies to achieve various tasks.

Chan et al. [11] proposed term selection and weighting methods using hierarchical

category classification to achieve question retrieval and ranking in community ques-

tion answers. Ren et al. [59] proposed a hierarchical multi-label classification method

which considered three core factors: short document expansion, time-aware topic

tracking, and chunk-based structural learning. Zhu et al. [89] generated topics from

a social media corpus and constructed a topic hierarchy in the information of each

user need in such noun phrases as “iPhone 5” and “Facebook Inc.”. They achieved

optimal topic hierarchy by calculating its likelihood based on the weight of the edges

between subtopics. Wang et al. [74] iteratively split the topic set into subtopics to

build a hierarchy of topics. Their constructed hierarchy is integrated by a ranked list

of mixed length phrases. Hu et al. [25] achieved intent-aware search result diversifica-

tion for information retrieval systems by hierarchically representing user intents and

proposed two hierarchical diversification models based on the novelty and popularity
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of each topic.

Our hierarchical estimation framework (HEF) consists of tweets, topics, and as-

pects. HEF extracts topics from a sea of tweets using topic models and associates

topics to aspects. One of the HEF’s features is to build the appropriate associations

between many topics and aspects for estimating the aspects of unknown tweets.

2.6 Topic model

Topic model studies widely use LDA [8], which is a latent topic extracting method

that was devised for a probability topic model. LDA supposes that a document is

a mixture distribution of plural topics. Each topic is expressed by the probability

distribution of the terms. Zhao et al. [87] proposed a model called Twitter-LDA,

based on the hypothesis that one tweet expresses one slice of a topic’s content. They

classified tweets by topics and extracted keywords to express their contents. Diao

et al. [16] detected bursty topics using Time-User-LDA, which is an extension of

LDA. They evaluated the accuracy of topic detection among three LDA models and

clarified that Time-User-LDA detects with the highest accuracy. Ma et al. [44] auto-

matically annotated hashtags to tweets. Their PLSA-style models include user, time,

and tweet content factors and achieved higher precision than other methods. Hong

and Davison [23] evaluated how the restricted length of tweets limits the potential

of traditional topic models and showed that training a topic model on aggregated

messages significantly enhanced the experiment performance.

Topic model is applying to many studies. Kimura and Miyamori [35] classified the

relationship between hashtags into four classes such as similarity, conflict, relevance,

and irrelevance by estimating topic distribution of hashtags using LDA. Koike et al.

[36] extracted the bursty topics with a correlation between news streams and Twit-

ter by applying dynamic topic model (DTM) [7], which analyzes topic distribution

transitions of each document on time-series. Weng et al. [78] estimated user topics
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using LDA and detected the users who exert great influence on Twitter. They built

a network for each topic based on follows and followers and calculated each user’s

score in each network using TwitterRank which extended PageRank [55]. Zhang et

al. [86] recommended bands to music lovers using LDA by calculating the degree of

artist similarity based on generated topics. Users received recommendations about

artists in whom they might be interested. Pennacchiotti and Popescu [56] classified

the user’s political orientation based on user-centered attributes (profile, vocabulary,

behavior, and sociality) using LDA in feature selection of SVM. Riedl et al. [60]

found the change-points of topics using LDA by calculating the similarity between

sentences that express the vectors of topic frequency. In this paper, we build associ-

ations between aspects and topics generated by LDA.

2.7 Multi-label classification

Multi-label classification studies are widely known methods based on SVM, naive

Bayes classifiers, and LDA. SVM, which is one identification method that performs

supervised learning, has high generalizing capability and classification performance

[15]. Chang et al. [12] developed a SVM library called LIBSVM, which achieves

multi-label classification by building models by combining several labels.

A naive Bayes classifier assumes that the term occurrence in a document is inde-

pendent, and label probabilities are calculated from these terms using Bayes rules. It

estimates labels with the highest probability for a document [17]. Wei et al. [76] pro-

posed multi-label classification based on naive Bayes classifiers and estimated several

labels with the probability that exceeds the average score calculated by all the label

probabilities. Hong et al. [22] propose a multi-label classification based on prob-

abilistic approach using conditional tree-structured Bayesian networks. They build

the hypothesis that each label is depending on others and showed higher performance

than other methods.
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Ramage et al. [58] suggested a model called Labeled LDA (L-LDA) that expanded

LDA to supervised learning. To extract latent topics, it assumes the labels to be the

contents of documents. L-LDA can extract a one-to-one correspondence between

LDA’s latent topics and document labels.

Kase and Miura [31] estimated the new labels for existing news-corpus. They

calculate occurrence probability of each feature in each class from multi-label dataset

and estimate additional label with high probability using EM algorithm based on

multinomial mixture model.

These methods show high estimation performance of such long documents as blogs

and newspapers using sufficient training data. However, tweets consist of fewer terms

because their length averages 45 characters [49]. Moreover, as training data, fresh

tweets are preferred because they are easily influenced by the real world. In these

conditions, typical multi-label classification methods fail to produce adequate perfor-

mance to estimate several aspects of unknown tweets [85].

2.8 Summary

This dissertation studies the life aspect inferences of unknown tweets by a hierarchical

estimation framework (HEF), which consists of an unsupervised topic model and

associations built by supervised learning. One of the most characteristic points of

this dissertation is how we construct effective associations between topics and aspects

for estimating the aspects of unknown tweets in HEF. We describe a construction

method of refined associations by iteratively calculating entropy based on the current

associations in Chapter 4. We also explain the extraction method of the optimal

topic set for each aspect by a t-test in Chapter 5. As an inference approach, HEF

deals with multi-label classification and the probability distribution inference of the

aspects. Users can get real life tweets with freshness and high regionality because

these two approaches can be applied to various user orientations. Although tweets
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are shorter than general documents, HEF expands the terms using topics generated

by LDA and uses them for estimations. Therefore, our proposed scheme will achieve

higher completeness than previous approaches.



Chapter 3

Hierarchical estimation framework

3.1 Overview of HEF

The overview of hierarchical estimation framework is shown in Fig. 3.1. In the first

phase of HEF, a large numbers of topics are extracted from a sea of tweets using LDA.

In its second phase, associations between topics and aspects are constructed using a

small set of labeled tweets. We calculated the aspect scores for unknown tweets using

the associations based on the terms extracted from them.

Typical supervised machine learning methods directly calculate the term likeli-

hood from labeled training data. The terms in unknown tweets, which do not appear

in the training data, cannot play a effective role in the estimation of conventional

methods. In contrast, HEF is composed of a triple hierarchy: Tweet-Topic-Aspect.

The terms in a tweet are expanded using co-occurrence terms in appropriate topics.

From these reasons, we clarified that HEF can estimate several appropriate aspects

from a small set and the short sentences of labeled data: i.e., tweets.

The organization of this section is as follow. Section 3.2 compactly explains topic

extraction using LDA. Section 3.3 calculates relevance between topics and aspects.

Section 3.4 describes necessity of relevance normalization. Section 3.5 build associa-

tions between topics and aspects based on relevance. Section 3.6 explains calculation

17
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Figure 3.1: Hierarchical estimation framework

method of aspect scores of tweet.

3.2 Topic extraction using LDA

LDA is a latent topic extracting method using a probability topic model devised by

Blei. A graphical model of it showed in Fig. 3.2. LDA supposes a document to be

a mixture distribution of plural topics. Each topic is expressed by the probability

distribution of the terms.

A document-term model consisting of n documents and m terms is expressed

by a n × m matrix. In LDA, r latent topics are generated document-term models

represented by n× r and r×m matrices. The fundamental idea of LDA is that doc-

uments are expressed in a mixture topic distribution and topics are expressed by the

probabilistic distribution of terms. LDA applies a Dirichlet prior on the multinomial

distribution over the topics for the documents. The LDA proceeds in the following
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steps:

1. For all documents d sample θd ∼ Dirichlet(α)

2. For all topics t sample φt ∼ Dirichlet(β)

3. For each Nd term wi in document d:

(a) Sample topic zi ∼ Multinomial(θd)

(b) Sample topic wi ∼ Multinomial(φz)

where α and β are the hyper parameters for the Dirichlet prior. To generate an LDA

model, we must estimate topic collection Z. We used a collapsed Gibbs sampling

method[19]. Probability P (zi = k|Z−i,W ), in which the nth term in document d

belongs to topic zi = k, can be calculated as follows:

P (zi = k|Z−i,W ) =
Nd

k−i + α

Nd
−i + Tα

·
Nd

k−i + β

Nd
k−i +Wβ

(3.1)

, where i means the nth term in document d. Nd
k−i denotes the number of assignments

of topic k in document d without term i, Nd
−i counts the terms in document d without

term i, N v
k−i represents the frequency of term v in topic k without term i, and Nk−i

denotes the number of terms in topic k without term i. T and W are the number of

topics and the vocabulary.

Term-topic distribution φ and topic-document distribution θ are estimated from

topic collection Z calculated by a collapsed Gibbs sampling. Probability φ̂w
k , whose

term t is generated from topic k, and θ̂kd , whose topic k is generated from document

d, are estimated as follows:

θ̂kd =
Nd

k + α

Nd + Tα
, φ̂w

k =
N v

k + β

Nk +Wβ
. (3.2)

Topic k is expressed as the occurrence probability of terms. All terms have prob-

ability in all topics.
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Figure 3.2: Graphical model of LDA

3.3 Relevance calculation

For building associations, relevances between topics and aspects are calculated using

a small set of labeled tweets. A set of extracted terms from tweets is W . Relevance

R(a, t) between topics t and aspects a is calculated as follows:

R(a, t) =
∑

w∈W

p(a, w)α ∗ p(t, w)β, (3.3)

where p(t, w) denotes the occurrence probability of term w in topic t preliminarily

calculated by LDA. p(a, w) denotes the occurrence probability of term w in aspect a

calculated by a small set of labeled tweets and is calculated as follows:

p(a, w) =
nw,a∑

w′∈W nw′,a
, (3.4)

where nw,a denotes the occurrence number of term w in tweets where aspect a is

labeled. Note this equation only calculates the relevance between topics and aspects

using the occurrence probability. α and β, which are feedback coefficients to control

the extent of occurrence probability, are calculated in Section 4.1.1.
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3.4 Relevance normalization

To build the optimal associations between topics and aspects, we focus on the rela-

tionship between topics and aspects. The relevance R(a, t) calculated by Eq. (3.3)

is greatly different by feature in each topic t and aspect a. In an aspect side, when

number of labeled tweets in particular aspect a is much compared with other aspects,

relevance R(a, t) is large value compared with other aspects because Eq. (3.3) cal-

culates summation values. The importance R̂a(a, t) of topic t in each aspect a is

obtained by normalizing for all topics T and is calculated as follows:

R̂a(a, t) =
R(a, t)∑

t′∈T R(a, t′)
. (3.5)

Next, we consider a topic side. For example, topic, which are aggregated by

location names extracted by LDA with high occurrence probability, are connected

with high relevance to many aspects because real life tweets often contain location

names. Similarly, topics including stop-words [65] will be associated with strong

relevance to many aspects. This problem can be solved by normalizing for all aspects

A. The normalized relevance R̂t(a, t) is calculated as follows:

R̂t(a, t) =
R(a, t)∑

a′∈A R(a′, t)
. (3.6)

3.5 Association building

We make associations between topics and aspects. Here, depending on the aspects,

note that the associations with topics are different. For example, the Eating aspect

may be supported by fewer topics with high probabilities, and the Living aspect

may be supported by many topics with mid-level probabilities (Fig. 3.3). We must

construct various associations of each aspect because the optimal topic set is different

for each aspect.

Therefore, we make an association between topics and aspects when R̂a(a, t) ex-
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Figure 3.3: Association examples

ceeds a calculated threshold in each aspect a. Topic set Ta of aspect a is shown as

follows:

Ta = {t|R̂a(a, t) > max
t∈T

R̂a(a, t)− σ(R̂a(a, T )) ∗ d}, (3.7)

where σ(R̂a(a, T )) denotes the standard deviation in R̂a(a, t) for all topics. σ(R̂a(a, T ))

play a role of feature value to represent relevance distribution of each aspect a. When

σ(R̂a(a, T )) is a high value compared with other aspects, aspect a is associated to

specific topics with high relevance. Thus, aspect a is supported by fewer topics.

According to increase the parameter d, aspects are associated to more topics. The

optimal value of d is caused when associations between topics and aspects achieve the

maximum estimation performance.
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Figure 3.4: Aspect estimation method

3.6 Aspect score calculation

To estimate the aspects of unknown tweets, we use the associations between top-

ics and aspects. The estimation flow using the associations is shown in Fig. 3.4.

First, nouns, verbs, and adjectives are extracted from tweets. Second, the occurrence

probabilities of all the terms are calculated for each topic. Then, the aspect score is

calculated based on the tweet’s probabilities and associations. Aspect scores S(tw, a)

between tweets tw and aspects a are calculated as follows:

S(tw, a) =
∑

t∈Ta

∑

w∈Wtw

p(t, w)β ∗ R̂a(a, t) ∗ R̂t(a, t), (3.8)

where Wtw denotes a set of terms extracted from unknown tweet tw and p(t, w)

denotes the occurrence probability of terms w in topic t. β denotes the feedback

coefficient calculated by Eq. (4.3).

R̂a(a, t) gives high relevance to important topics for aspects. However, several

aspects might strongly associate with the same topics. For example, topics in which

verbs have a high rank of occurrence probability are given high relevance from many

aspects because verbs often appear in many aspects. We believe that these topics

decrease the estimation precision of aspects. R̂t(a, t) also gives high relevance to the
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characteristic topics of aspects, and low relevance to topics that share several aspects.

Here, we must consider the properties of real life aspects with examples. For example,

flood and heavy rain often appear in the same sentence because floods are generally

caused by heavy rain; they are aggregated in the same topic by LDA. From Table

1.1, because flood and heavy rain are respectively included in Disaster and Weather

aspects, both should share flood and heavy rain topics. However, R̂t(a, t) gives low

relevance to Disaster and Weather aspects.

To consider the relevance of both R̂a(a, t) and R̂t(a, t), we multiply both the

relevances of the score calculation with Eq. (3.8).



Chapter 4

Multi-label classification

4.1 HEF extension for multi-label classification

4.1.1 Entropy feedback

Although HEF consists of the flows that achieved high estimation performance in

average values, we clarified the aspects with low estimation performance [85] and the

following two problems:

Problem 1 In relevance R̂a(a, t) that was calculated by both Eq. (3.5), topics ap-

pear that are strongly associated to many aspects. Therefore, the topics are

competitive among particular aspects. For example, the Disaster, Event, Lo-

cality, and Traffic aspects were associated with similar topics, which had such

regional names as “Kyoto” and “Shijo”. Tweets indicating these aspects proba-

bly appear in the regional names in a sentence because real life tweets mention

the real world. This problem caused incorrect estimations and lowered estima-

tion precision.

Problem 2 The aspects represented by some topics cannot build suitable associa-

tions because the relevance to the topics explained in problem 1 has high value.

For example, in the case of the Disaster aspect that is appropriately repre-

25
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sented by such topics as earthquakes and typhoons, the verb topics in problem

1 have higher relevance than these topics. Since tweet scores are calculated by

un-feature terms, the estimation performance fell.

To solve problems 1 and 2, we can exclude terms by preliminarily defined stop-

words. However, it is difficult for Twitter, which is a fast-changing medium. More-

over, since LDA generates topics including stop-words with high occurrence proba-

bility [65], we can exclude these topics with many stop-words. Although these topics

do not need many aspects, we believe that they are important for particular topics.

Therefore, we cannot completely exclude them.

LDA primarily provides high occurrence probability for high frequency terms in

the dataset. Regional location terms have higher occurrence probability because they

often appear in tweets. Therefore, to accurately calculate the relevance between

topics and aspects, HEF has two kinds of parameters, α and β (Eq. (3.3)). In this

paper, we propose a feedback method using Shannon entropy [63] to determine these

parameters.

Entropy can evaluate the untidiness of probability distribution. R̂a(a, ·) and

R̂t(·, t) express the probability distribution in each aspect a and topic t. The en-

tropies of both H(a) and H(t) are defined as follows:

H(a) = −
∑

t∈T

R̂a(a, t) ∗ log2 R̂a(a, t), (4.1)

H(t) = −
∑

a∈A

R̂t(a, t) ∗ log2 R̂t(a, t). (4.2)

Here, we must consider the association balance from some topics to an aspect.

For example, as mentioned above, if such special terms as location names have high

occurrence probability, the relevance is greatly high and entropy is low. Such asso-

ciation creates an unbalance for all the aspects. Hence, to control the occurrence

probability of the terms, we calculate the feedback coefficients of both α and β on

the basis of minimum entropy. α and β are calculated as follows:
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α =
1

|A|
∑

a∈A

MA

H(a)
, MA = min

x∈A
H(x),

β =
1

|T |
∑

t∈T

MT

H(t)
, MT = min

x∈T
H(x),

(4.3)

where |A| and |T | denote the number of aspects and topics.

If the entropy difference of all the aspects and topics is increased, α and β are

decreased. When both feedback coefficients are introduced to Eq. (3.3) within 1.0, the

difference of the occurrence probability in the topics or the aspects is reduced; α and

β lower the effectivity of the terms with especially high occurrence probability, such

as place names. As a result, the entropy difference of every aspect and topic decrease,

and the association balance of every aspect is preserved. Suitable associations between

aspects and topics are built when α and β converge.

HEF is iteratively calculated in the order of Eqs. (3.3), (3.5), (3.6) (4.1), and

(4.3). When α and β sufficiently converge compared to previous iteration values,

HEF builds associations between topics and aspects by Eq. (3.7).

4.1.2 Aspect estimation

Aspects with high scores should be estimated for tweets. We estimate the top K

aspects that are flexibly decided. In HEF, each aspect a score S(tw, a) is normalized

using score average µ(S(tw,A)) and standard deviation σ(S(tw,A)). If the normal-

ized aspect score exceeds each aspect’s threshold r(a), aspects are more likely to be

estimated for the tweet. Some aspects Atw for unknown tweet tw are estimated as

follows:

Atw =

{
a

∣∣∣∣
S(tw, a)− µ(S(tw,A))

σ(S(tw,A))
> r(a)

}
. (4.4)

Depending on the aspects, the estimation probabilities of the labels are intrinsi-

cally different. HEF decides threshold r(a) in each aspect a from the number of labels

L(a) in the training data. Each aspect threshold r(a) is calculated as follows:
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r(a) =
µ(L(A))− L(a)

σ(L(A))
, (4.5)

where µ(L(A)) and σ(L(A)) denote both labels average and standard deviations of

labels. This equation subtracts the number of each labeling aspect L(a) from average

value µ(L(A)); the threshold is high when the number of labelings is less, and it is

low when the number of labelings is great.

4.1.3 Optimal number of topics

LDA needs the number of topics as a parameter, which is important for our method

because associations between topics and aspects are based on relevance. If the number

of topics changes, the number associated with the aspects also changes.

Teh et al. [68] proposed the HDP(Hierarchical Dirichlet Process)-LDA to auto-

matically optimize the number of topics for LDA by stratifying parameters. Although

this method can decide the optimal number in LDA model, it is not necessarily op-

timal for our proposed method built by the association between topics and aspects.

To select the best number of topics in LDA for our proposed method, we used

the JS Divergence [50] between each aspect and applied it to calculate the similarity

between one aspect and others. When the JS Divergence is high, the probability dis-

tribution among aspects is much different. When it is 0, the probability distribution

is identical. In this case, the maximum value of the JS Divergence sum indicates the

optimal aspect set. Probability distributions use the R̂a(a, t) of the aspects and the

topics matrix. JS Divergence sum JSsum is calculated as follows:

JSsum =
∑

(∀p,∀q)∈A

DJS(R̂a(p, ·), R̂a(q, ·)),

DJS(x, y) =
1

2

(
∑

t∈T

x(t) log
x(t)

z(t)
+
∑

t∈T

y(t) log
y(t)

z(t)

)
,

(4.6)

where z(t) denotes the average of x(t) and y(t).
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4.2 Experimental evaluations

To clarify the effectiveness of our HEF which introduced feedback entropy method, we

evaluated the precision, recall, and the F-measure values of the estimated aspects. As

baseline methods, we used L-LDA, SVM, and NBML. By analyzing the associations

between topics and aspects, we clarified the aspects for which the entropy feedback

method was effective.

4.2.1 Dataset and parameter settings

Collecting many regional tweets

Our method requires many tweet datasets for generating topics using LDA. We col-

lected 2,390,553 tweets posted from April 15, 2012 to August 14, 2012 using the Search

API [3] on Twitter, each of which has “Kyoto” as the Japanese location information.

Real life tweets

To construct associations between the extracted topics and aspects, we prepared a

small set of 1,500 labeled tweets, each of which has “Kyoto” as the Japanese location

information. We used three examinees: examinee E1 is the first author, and E2 and

E3 are university students living in Tsukuba City. During the labeling process, the

examinees freely consulted Table 1.1 and viewed the example tweets in each aspect

and why they were classified as such. They selected the most suitable aspect for each

tweet as the first aspect and the next two most suitable aspects as the second and

third aspects. If no suitable aspect remained, they selected “other” to identify it as a

non-real life tweet. Aspects that do not correspond to any candidate are listed fourth.

We evaluated the κ coefficients among the first candidates of the examinees [14].

When the κ coefficient is high, the classification agreement rate among the examinees

is also high. The κ coefficient for examinees E1 and E2 was 0.687; it was 0.595 for

examinees E1 and E3 and 0.576 for examinees E2 and E3. The average was 0.619,
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which is a substantial match rate.

To appropriately give aspects to each tweet, we used the results from the labeling

of all three examinees. Correct aspects ACtw of each tweet tw are shown as follows:

ACtw = {a|Uscore(tw, a) ≤ 10},

Uscore(tw, a) =
∑

u∈U

candidate(tw, a, u), (4.7)

where U denotes all the examinees. candidate(tw, a, u) is a candidate number: the

1st, 2nd, 3rd, and 4th rankings of aspects a labeled by examinee u for tweet tw. Hence,

maximum Uscore(tw, a) is 12 with three examinees when all candidate(tw, a, u) = 4.

Minimum Uscore(tw, a) is three when all candidate(tw, a, u) = 1.

For this determination, the number of labeling aspects of 1,500 tweets is shown

in Table 4.1. The number of labels in the Appearance aspect is 181. The minimum

number of labels is 86 in the Disaster aspect. The number of all labels for 1,500

tweets is 5,092, and the per tweet average of the labels was 3.39.

Next, we examined the co-occurrence aspects labeled by the examinees. The

probability of co-occurring with other aspects is shown in Table 4.2. There are

three rank columns, each of which shows an aspect having a top, second, and third

probability in each aspect. The Appearance aspect co-occurs with the Expense aspect

at 0.365 probability. The co-occurrence probability between Disaster and Weather,

and between Traffic and Locality exceeds 0.5. These two aspects are concurrently

mentioned in a tweet. The Locality aspect appeared with the high co-occurrence in

other aspects: Disaster rank 2, Eating rank 3, Event rank 1, and so on.

Parameter settings

LDA requires hyperparameters. Based on related works [19], we set α to 50
|T | and β to

0.1. |T | denotes the number of topics, chosen based on JSsum from among 50, 100,

200, 500, and 1,000 topics in the Section 4.2.4. The iterative calculation count in

LDA is 100 times in every case.
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Table 4.1: Number of correctly labeled aspects

Aspect Label d |Ta|

Appearance 181 17 451

Contact 379 3 16

Disaster 86 5 5

Eating 287 8 35

Event 311 10 159

Expense 435 13 500

Health 177 10 104

Hobby 348 17 500

Living 213 16 500

Locality 432 10 80

School 195 6 11

Traffic 169 10 5

Weather 226 5 2

Working 262 12 500

Other 1,391 1 12

Total 5,092

4.2.2 Evaluation metrics

To discuss the effectiveness of our method, we evaluated the precision, recall, and

F-measure values [45] in each aspect and these are calculated as follows:

Precision(a) =
|{tw ∈ D : a ∈ ACtw ∧ a ∈ Atw}|

|{tw ∈ D : a ∈ ACtw}|
, (4.8)

Recall(a) =
|{tw ∈ D : a ∈ ACtw ∧ a ∈ Atw}|

|{tw ∈ D : a ∈ Atw}|
, (4.9)
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Table 4.2: Co-occurrence aspects ratio by examinee aspects

Co-occurrence Rank 1 Co-occurrence Rank 2 Co-occurrence Rank 3

Aspect Probability Aspect Probability Aspect Probability

Appearance Exp. 0.365 Hob. 0.232 Liv. 0.155

Contact Eve. 0.335 Hob. 0.303 Exp. 0.219

Disaster Wea. 0.523 Loc. 0.430 Tra. 0.174

Eating Exp. 0.446 Con. 0.279 Loc. 0.247

Event Loc. 0.460 Con. 0.408 Hob. 0.283

Expense Eat. 0.294 Loc. 0.269 Hob. 0.221

Health Eat. 0.249 Liv. 0.209 Wea. 0.192

Hobby Con. 0.330 Exp. 0.276 Eve. 0.253

Living Exp. 0.197 Wea. 0.183 Hob. 0.183

Locality Eve. 0.331 Exp. 0.271 Tra. 0.245

School Con. 0.323 Wor. 0.251 Eve. 0.190

Traffic Loc. 0.627 Eve. 0.166 Wor. 0.148

Weather Loc. 0.336 Dis. 0.199 Liv. 0.173

Working Exp. 0.279 Loc. 0.218 Con. 0.191

F−measure(a) =
2 ∗ Precision(a) ∗ Recall(a)
Precision(a) + Recall(a)

, (4.10)

where D is the number of tweets for evaluation.

We judged the experimental evaluations by 10-fold cross validation. We split the

datasets into 10 subsets, only one of which is circularly selected as a test dataset. We

built associations between topics and the aspects using the remaining nine subsets.
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4.2.3 Baseline methods

We prepared such typical multi-label classification methods as L-LDA [58], LIBSVM

[12], and NBML [76] for evaluating HEF’s effectiveness with the entropy optimiza-

tions. We extracted nouns, verbs, and adjectives using a Japanese morphological an-

alyzer called MeCab [37] and entered the sets of words and label(s) to every method

in common.

LIBSVM requires some parameters. We chose a linear kernel and set parameter

C to 1.0, indicated by a grid search in the LIBSVM tools[24]. The features for all

the methods are nouns, verbs, and adjectives, which were obtained by morphological

analysis.

L-LDA has to set the hyperparameters of both α and β, like in LDA. We experi-

mentally set α to 0.1 and β to 0.1, and the iterative calculation count in L-LDA was

100.

4.2.4 Experimental results

Number of topics

We evaluated JSsum to tune the number of topics. The list of JSsum that varies

the number of topics is shown in Fig. 4.1. The maximum value appears in 500

topics. We concurrently evaluated the precision, the recall, and the F-measure in

each topic. The maximum precision and recall were achieved in 200 and 1,000 topics,

and the maximum F-measure was achieved in 500 topics. Therefore, we used 500 as

the optimal number of topics for HEF. The decision method of the optimal number

of topics by the JSsum value is generally effective for HEF because stable evaluation

values were achieved in about 500 topics.
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Figure 4.1: JSsum, Precision, Recall, and F-measure values of each number of topics

Feedback coefficients

The feedback coefficients of both α and β vary, as shown in Fig. 4.2. The convergence

condition was set within a difference of 0.00001 compared to previous iteration values.

The starting value was set to 1.0. Both converged at eight iterations. From this result,

α and β became 0.85626 and 0.22655.

Threshold parameters

To confirm the automatically decided threshold r(a) of Eq. (4.5), we evaluated the

precision, recall, and F-measure values of our proposed method by three simple thresh-

olds: r = 0.0, r = 0.5, and r = 1.0. The feedback coefficients have identical values in

all the thresholds.

The precision, recall, and F-measure values by each threshold are shown in Table

4.3. The maximum precision and recall values were achieved by r = 1.0 and r = 0.0.

However, the minimum recall and precision values also are demonstrated by these

thresholds. r(a), which automatically decided the threshold, achieved the highest

F-measure value in all the thresholds. This result shows that our proposed threshold
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Figure 4.2: Converging state of feedback coefficients

Table 4.3: Compared to estimation performance of HEF using each threshold value

Threshold Precision Recall F-measure

r = 0.0 0.57 0.66 0.59

r = 0.5 0.61 0.57 0.58

r = 1.0 0.68 0.54 0.58

r(a) 0.63 0.63 0.63

is effective for HEF.

Connections from topics to each aspect

To analyze the association between topics and aspects, we evaluated the number of

connections from the topics to each aspect. The number of topics connecting each

aspect varying to parameter d is shown in Fig. 4.3. In all aspects, the number of

topics increased based on d. The Appearance aspect is most closely connected to one

topic, d ≤ 11. The Hobby aspect connects to much topics with fewer value of d, and

it completely connects to all the topics at d=6. When d exceeds 18, the associations
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Figure 4.3: Connectivity among topics and aspects

between topics and aspects become a complete bipartite graph.

Transitions of precision, recall, and F-measure values

The precision, recall, and F-measure values are shown in from Fig. 4.4 to Fig. 4.18

for all aspects. The horizontal axis is parameter d, which decides the association

between topics and aspects.

In the Disaster aspect, recall slowly increased based on d. In contrast, precision

decreased based on d. The maximum F-measure was achieved at d=5.

In the School aspect, precision rapidly increased until d ≤ 6 and then quickly

decreased until d ≤ 9. Recall decreased until d ≤ 4 and then increased until d ≤ 9.

The maximum F-measure was achieved at d=6.

In the Traffic aspect, the precision, recall, and F-measure values increased until

4 ≤ d ≤ 6. There are three topics at d=6. Precision increased until d ≤ 10 and then

decreased until d ≤ 14. The maximum F-measure was achieved at d=10.

The evaluation values change even after they are connected to all the topics in

these aspects. The associations of other aspects change based on an increased d until
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d ≤ 18, and the aspect scores also change. We show the optimal d of each aspect in

the next section.

Estimation performance of each method

The precision, recall, and F-measure values of each method are shown in Table 4.4,

4.5, and 4.6. All of the methods were evaluated using 10-fold cross validations. In

each evaluation, 1,350 tweets were used for model training, and the remaining 150

tweets were used to evaluate the precision, recall, and F-measure values. We also

calculated their macro averages. The highest value in each row is shown in bold.

The HEF columns show our method, where associations were built using entropy

feedback. The HEF0 columns show the 0 iteration cases of entropy feedback, and

both α and β are 1.0. Optimal values of d and number of topics when achieved the

highest F-measure are shown in the d and |Ta| columns in Table 4.1. Optimal d of

Appearance is 17 when precision and recall are 0.74 and 0.53. In the Disaster and

Traffic aspects, HEF’s precisions greatly increased without decreasing recall more

than HEF0’s. Disaster’s F-measure by HEF surpassed 0.25 points (= 0.54 − 0.29)

compared with HEF0. HEF’s average F-measure showed the highest value in all the

methods.

The number of labels, each of which was estimated as an aspect of the tweets by

all methods and the examinees, is shown in Table 4.7. In the examinees and SVM,

there are three labeling modes. The maximum and minimum numbers of labeling

modes in every method are found in the HEF and NBML values.
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Figure 4.4: Precision, Recall, and F-measure of Appearance
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Figure 4.5: Precision, Recall, and F-measure of Contact
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Figure 4.6: Precision, Recall, and F-measure of Disaster
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Figure 4.7: Precision, Recall, and F-measure of Eating
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Figure 4.8: Precision, Recall, and F-measure of Event
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Figure 4.9: Precision, Recall, and F-measure of Expense
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Figure 4.10: Precision, Recall, and F-measure of Health
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Figure 4.11: Precision, Recall, and F-measure of Hobby
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Figure 4.12: Precision, Recall, and F-measure of Living
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Figure 4.13: Precision, Recall, and F-measure of Locality
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Figure 4.14: Precision, Recall, and F-measure of School
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Figure 4.15: Precision, Recall, and F-measure of Traffic
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Figure 4.16: Precision, Recall, and F-measure of Weather

0.2

0.4

0.6

0.8

1.0

 0  2  4  6  8  10  12  14  16  18
 1

 10

 100

 500

Es
tim

at
io

n 
pe

rfo
rm

an
ce

N
um

be
r o

f t
op

ic
s

parameter d

Precision
Recall

F-measure
F-measure

Figure 4.17: Precision, Recall, and F-measure of Working
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Figure 4.18: Precision, Recall, and F-measure of Other
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Table 4.4: Precision of each method

Precision

Aspect HEF0 HEF L-LDA SVM NBML

Appearance 0.61 0.74 0.43 0.64 0.82

Contact 0.40 0.34 0.43 0.41 0.53

Disaster 0.21 0.55 0.67 0.44 0.76

Eating 0.66 0.75 0.41 0.51 0.73

Event 0.41 0.39 0.47 0.56 0.56

Expense 0.39 0.47 0.64 0.43 0.52

Health 0.31 0.62 0.43 0.48 0.76

Hobby 0.32 0.32 0.44 0.43 0.57

Living 0.34 0.63 0.38 0.64 0.71

Locality 0.65 0.65 0.62 0.62 0.62

School 0.57 0.81 0.37 0.88 0.81

Traffic 0.54 0.72 0.33 0.71 0.82

Weather 0.28 0.89 0.25 0.47 0.81

Working 0.38 0.69 0.64 0.52 0.56

Other 0.93 0.93 0.94 0.93 0.93

Average 0.47 0.63 0.50 0.58 0.70
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Table 4.5: Recall of each method

Recall

Aspect HEF0 HEF L-LDA SVM NBML

Appearance 0.54 0.53 0.69 0.28 0.37

Contact 0.55 0.71 0.68 0.35 0.54

Disaster 0.49 0.54 0.49 0.44 0.21

Eating 0.74 0.77 0.77 0.64 0.51

Event 0.55 0.62 0.51 0.20 0.45

Expense 0.65 0.57 0.40 0.45 0.46

Health 0.56 0.38 0.55 0.28 0.38

Hobby 0.84 0.87 0.62 0.54 0.44

Living 0.74 0.50 0.62 0.34 0.41

Locality 0.66 0.73 0.73 0.54 0.65

School 0.59 0.59 0.81 0.36 0.52

Traffic 0.68 0.71 0.82 0.44 0.50

Weather 0.81 0.50 0.84 0.63 0.58

Working 0.64 0.36 0.50 0.19 0.35

Other 0.99 0.99 0.51 0.99 0.93

Average 0.67 0.63 0.63 0.44 0.49
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Table 4.6: F-measure of each method

F-measure

Aspect HEF0 HEF L-LDA SVM NBML

Appearance 0.57 0.62 0.52 0.38 0.51

Contact 0.46 0.46 0.53 0.37 0.53

Disaster 0.29 0.54 0.54 0.44 0.33

Eating 0.70 0.76 0.53 0.57 0.60

Event 0.47 0.48 0.48 0.29 0.49

Expense 0.49 0.51 0.49 0.43 0.49

Health 0.40 0.46 0.48 0.35 0.50

Hobby 0.46 0.47 0.51 0.48 0.49

Living 0.46 0.55 0.46 0.44 0.51

Locality 0.65 0.69 0.67 0.57 0.63

School 0.58 0.67 0.51 0.49 0.63

Traffic 0.60 0.71 0.47 0.54 0.62

Weather 0.41 0.64 0.38 0.53 0.67

Working 0.47 0.47 0.55 0.28 0.43

Other 0.96 0.96 0.66 0.96 0.93

Average 0.55 0.63 0.52 0.47 0.56

Topics associated with each aspect

Next we examined the topics connected to each aspect. The associations built by

HEF0 are shown in Table 4.8. This table shows the topic ids of top four that

are strongly connected to each aspect. Three or more times appearing topics in

every aspect are marked in bold. For example, the Appearance aspect is associated

to topic 119 with highest relevance R̂a(a, t). Topic 125 associates to the Disaster,

Event, Locality, and Traffic with the highest (1st rank) relevances and Weather with

the second highest (2nd rank) relevance. Moreover, topics 125, 299, and 469 appear
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Table 4.7: Number of labelings by each method

Labels HEF L-LDA SVM NBML Examinees

1 0 101 0 165 1

2 0 154 137 531 111

3 22 259 1,250 442 820

4 389 369 80 243 442

5 574 307 33 90 115

6 382 182 0 23 11

7 118 80 0 6 0

8 15 37 0 0 0

9 0 9 0 0 0

10 0 2 0 0 0

Average 5.15 4.16 3.00 2.75 3.39

together in the Disaster, Event, and Locality aspects. Topic 60 appears in the aspects

of Disaster, Locality, and Traffic.

Similarly, the associations built by HEF are shown in Table 4.9. Note that these

topic ids are same as HEF0’s topic ids. The associations built by HEF are quite

different from those by HEF0. For example, topic 125 appears only in the Locality

aspect with 4th rank unlike in HEF0’s associations. The aspects of Disaster and

Event are associated topic 178 and 345 with 1st rank. Topic 60 connects to both

aspects of Locality and Traffic with 1st rank.



50 CHAPTER 4. MULTI-LABEL CLASSIFICATION

T
ab

le
4.
8:

R
el
ev
an

ce
of

h
ig
h
R̂
a
to
p
ic
s
b
u
il
t
by

H
E
F
0

R̂
a
R
an

k
1

R̂
a
R
an

k
2

R̂
a
R
an

k
3

R̂
a
R
an

k
4

A
sp
ec
t

to
p
ic

R̂
a

R̂
t

to
p
ic

R̂
a

R̂
t

to
p
ic

R̂
a

R̂
t

to
p
ic

R̂
a

R̂
t

A
p
p
ea
ra
n
ce

#
11
9

0.
09
9

0.
98
1

#
36
8

0.
04
8

0.
20
4

#
45
8

0.
04
4

0.
19
9

#
16
4

0.
04
3

0.
20
6

C
on

ta
ct

#
49

0.
03
9

0.
56
0

#
9

0.
03
3

0.
46
6

#
15
7

0.
03
2

0.
23
6

#
49
0

0.
02
3

0.
15
5

D
is
as
te
r

#
1
2
5

0.
19
6

0.
18
9

#
2
9
9

0.
07
6

0.
17
9

#
4
6
9

0.
06
4

0.
19
1

#
6
0

0.
05
2

0.
15
5

E
at
in
g

#
20
7

0.
06
9

0.
77
1

#
19
7

0.
06
8

0.
75
8

#
48
4

0.
03
9

0.
79
0

#
35
2

0.
03
8

0.
76
6

E
ve
nt

#
1
2
5

0.
13
5

0.
17
9

#
34
5

0.
05
3

0.
58
9

#
2
9
9

0.
05
3

0.
17
1

#
4
6
9

0.
04
4

0.
17
7

E
xp

en
se

#
43
7

0.
05
8

0.
45
8

#
45
4

0.
05
4

0.
44
3

#
11

0.
02
7

0.
16
4

#
22
3

0.
02
2

0.
16
6

H
ea
lt
h

#
23
7

0.
07
5

0.
20
5

#
35
9

0.
06
4

0.
20
0

#
47
9

0.
05
5

0.
19
6

#
39
3

0.
05
5

0.
84
7

H
ob

by
#
22
1

0.
04
8

0.
62
9

#
33
2

0.
04
0

0.
63
0

#
31
1

0.
03
3

0.
62
1

#
49
7

0.
03
1

0.
61
7

L
iv
in
g

#
29
0

0.
06
2

0.
94
8

#
27
5

0.
04
6

0.
30
9

#
30
1

0.
03
9

0.
75
2

#
11

0.
03
1

0.
22
8

L
oc
al
it
y

#
1
2
5

0.
12
2

0.
26
7

#
2
9
9

0.
05
0

0.
26
9

#
6
0

0.
04
1

0.
28
0

#
4
6
9

0.
03
9

0.
26
2

S
ch
oo

l
#

3
0.
06
6

0.
85
7

#
49
0

0.
02
6

0.
12
6

#
44
3

0.
02
5

0.
14
2

#
27
5

0.
02
5

0.
19
5

T
ra
ffi
c

#
1
2
5

0.
11
9

0.
17
0

#
6
0

0.
05
4

0.
23
9

#
2
9
9

0.
05
3

0.
18
6

#
20
1

0.
04
5

0.
87
1

W
ea
th
er

#
45
1

0.
04
4

0.
39
0

#
1
2
5

0.
03
5

0.
13
8

#
49
0

0.
03
3

0.
31
3

#
23
0

0.
02
9

0.
58
2

W
or
ki
n
g

#
33
4

0.
06
8

0.
61
1

#
25
3

0.
06
5

0.
47
1

#
21

0.
06
0

0.
19
4

#
46
3

0.
05
8

0.
19
6

O
th
er

#
23
7

0.
02
0

0.
16
2

#
35
9

0.
01
8

0.
16
7

#
47
9

0.
01
6

0.
16
9

#
49
0

0.
01
5

0.
13
1



4.2. EXPERIMENTAL EVALUATIONS 51

T
ab

le
4.
9:

R
el
ev
an

ce
of

h
ig
h
R̂
a
to
p
ic
s
b
u
il
t
by

H
E
F

R̂
a
R
an

k
1

R̂
a
R
an

k
2

R̂
a
R
an

k
3

R̂
a
R
an

k
4

A
sp
ec
t

to
p
ic

R̂
a

R̂
t

to
p
ic

R̂
a

R̂
t

to
p
ic

R̂
a

R̂
t

to
p
ic

R̂
a

R̂
t

A
p
p
ea
ra
n
ce

#
11
9

0.
02
9

0.
66
8

#
47
4

0.
01
0

0.
35
8

#
24
0

0.
00
7

0.
31
4

#
45
4

0.
00
6

0.
14
7

C
on

ta
ct

#
49

0.
00
9

0.
31
2

#
42
9

0.
00
8

0.
19
2

#
15
7

0.
00
7

0.
17
7

#
46
6

0.
00
6

0.
14
0

D
is
as
te
r

#
17
8

0.
02
1

0.
27
1

#
38
0

0.
01
7

0.
38
2

#
4
6
9

0.
01
4

0.
21
5

#
27
7

0.
01
2

0.
40
5

E
at
in
g

#
34
1

0.
02
2

0.
77
6

#
48
4

0.
01
8

0.
53
7

#
35
2

0.
01
7

0.
57
7

#
20
7

0.
01
6

0.
52
9

E
ve
nt

#
34
5

0.
02
6

0.
32
0

#
31
4

0.
01
8

0.
22
5

#
19
0

0.
01
7

0.
30
0

#
30
7

0.
01
5

0.
21
7

E
xp

en
se

#
43
7

0.
01
0

0.
28
1

#
35

0.
01
0

0.
21
0

#
45
4

0.
00
9

0.
22
8

#
41
9

0.
00
9

0.
19
4

H
ea
lt
h

#
39
3

0.
02
2

0.
46
8

#
22

0.
02
1

0.
59
1

#
34
8

0.
01
3

0.
25
9

#
19
3

0.
01
3

0.
41
7

H
ob

by
#

75
0.
00
7

0.
20
6

#
41
2

0.
00
7

0.
43
0

#
27
3

0.
00
7

0.
17
0

#
43
0

0.
00
7

0.
36
2

L
iv
in
g

#
29
0

0.
02
2

0.
52
0

#
13
3

0.
01
2

0.
34
9

#
23
0

0.
01
1

0.
27
0

#
30
1

0.
00
7

0.
32
2

L
oc
al
it
y

#
6
0

0.
02
2

0.
28
2

#
31
4

0.
01
7

0.
26
4

#
2
9
9

0.
01
1

0.
19
9

#
1
2
5

0.
01
0

0.
23
3

S
ch
oo

l
#

3
0.
01
5

0.
46
4

#
11
1

0.
01
4

0.
58
2

#
11
8

0.
01
1

0.
51
9

#
41
8

0.
01
0

0.
32
9

T
ra
ffi
c

#
6
0

0.
03
1

0.
34
2

#
20
1

0.
02
2

0.
58
8

#
14
9

0.
01
9

0.
46
8

#
42

0.
01
4

0.
40
3

W
ea
th
er

#
23

0.
02
0

0.
44
1

#
45
1

0.
01
3

0.
29
2

#
49
0

0.
00
9

0.
23
6

#
17
8

0.
00
9

0.
21
2

W
or
ki
n
g

#
32
1

0.
01
7

0.
46
6

#
43
6

0.
01
4

0.
25
8

#
25
3

0.
01
0

0.
22
0

#
33
4

0.
00
9

0.
21
5

O
th
er

#
28
1

0.
00
5

0.
12
5

#
33
0

0.
00
5

0.
14
7

#
30
4

0.
00
5

0.
15
0

#
21

0.
00
5

0.
12
9



52 CHAPTER 4. MULTI-LABEL CLASSIFICATION

Table 4.10: High occurrence probability terms in each topic associated to many aspecs

Topic Characteristic words

Topic 125 Kyoto, newspapers, city centers, aquariums,

towers, Yamashina, Sakyo, living, Fushimi

Topic 299 Kyoto, sightseeing, hotels, taxis,

roaming, travel, school trips, lodging

Topic 469 Kyoto, citizens, institutions, environments,

nursing, welfare, newspapers, medical

Topic 490 today, work hard, tomorrow, energy,

hot, part-timer, work, sunny

Estimation precision using a small bit of labeled data

In all the methods, we evaluated the estimation performance using less training data.

We split the datasets into 10 subsets, and only one subset is circularly selected as a test

dataset. From the remaining nine subsets, we randomly extracted 1 set (150 tweets),

3 sets (450), 5 sets (750), and 7 sets (1050) as the training data. We calculated

the average evaluation value by repeating ten times changing the test data. Each

evaluation value is shown in Fig. 4.19, 4.20, and 4.21. We chose optimal d as the

HEF parameters. The optimal number of the topics in all the training data was 500,

depending on JSsum.

HEF’s precision is lower than NBML’s with training dataset 9 (1350). However,

based on the decreasing training data, the precision difference of both methods was

small. The precision of our method did not fall even when the amount of training

data decreased. In recall, the precision of L-LDA and SVM rapidly fell with less

training data; however, HEF and NBML showed almost no drop. In the F-measures,

HEF achieved the high score until training dataset 3, and it is usually the maximum

F-measure in all the methods. The F-measure of SVM rapidly dropped with less

training data.
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Figure 4.19: Precision evaluated by varying amount of training data
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Figure 4.20: Recall evaluated by varying amount of training data
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Figure 4.21: F-measure evaluated by varying amount of training data

4.3 Discussions

4.3.1 Effectiveness of feedback entropy

According to Table 4.6, HEF’s F-measure increased more than HEF0’s F-measure in

many aspects, especially for Disaster, Traffic, and Weather F-measure values. From

Table 4.8, Disaster is strongly associated to Topics 125, 299, 460, and 60. Part

or all of them were also associated with Event, Locality, Traffic, and Weather as-

pects. The characteristic words in HEF0 are shown in Table 4.10. Topic 125 has

“aquarium” and “tower” that denote the names of structures, and “Yamashina” and

“Sakyo” denote place names. Topic 125 is related to the names of geographic elements

around Kyoto. Topic 299 is related to tourism/tourists in Kyoto because it includes

“sightseeing” and “travel.” Topic 469 is related to living in Kyoto because “welfare”

and “nursing” are found in it. In these topics, “Kyoto” exists at the top priority of

the characteristic words. Therefore, these topics describe the Kyoto district and are
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connected to the Locality aspect; however, they are also connected to other aspects,

such as Disaster, Event, and Traffic. To explain these diverse connections, Disaster

or Event tweets frequently include such place words. For example, earthquake tweets

usually describe not only the earthquake itself but also its center, which is obviously

a geographic name. In topics about districts, geographic names have very high occur-

rence probability, as shown in Table 4.10. For these reasons, similar sets of topics

are connected to the Disaster, Event, and Traffic aspects.

On the other hand, for the associations built by HEF, almost none of these topics

appeared in all of the aspects (Table 4.9). The most strongly associated topics with

Disaster, Locality, Traffic, and Weather are Topics 178, 60, and 23, respectively. Their

characteristic words are shown in Table 4.11. Topic 178 has “typhoon” and “storm,”

which denote natural disasters, and the tweet was associated with a Weather aspect

in R̂a rank 4. Topic 60 has such place names as “Kyoto” and “Kawaramachi.” It also

has “subway” and “city bus,” which are usually used for the Traffic aspect. For these

reasons, the Locality and Traffic aspects share Topic 60. Topic 23 has “sunny” and

“forecast,” which are usually used for the Weather aspect. These relationships among

characteristic words and real life aspects are also shown in Table 1.1. From these

results, higher F-measures in the aspects of Disaster, Locality, Traffic, and Weather

are achieved by strongly connected topics: Topics 178, 60, and 23.

4.3.2 Estimation performance of each method

From Table 4.4, 4.5, and 4.6, HEF’s average precision (0.63) is lower than NBML’s.

But HEF’s average recall (0.63) and its average F-measure (0.63) are higher than

NBML’s. In Table 4.7, the number of labelings by NBML is the lowest in all the

methods and fewer than the labels of the examinees. NBML’s precision rose but its

recall fell. When we compare the average recalls of HEF and L-LDA, we see that

HEF’s recall is the same as L-LDA’s. From Table 4.7, HEF estimates more labels

than L-LDA. However, its precision and its F-measure are higher than L-LDA’s. Since
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HEF estimated more correct aspects than L-LDA, our method accurately calculated

the aspect scores of tweets. To enhance HEF’s precision, we introduce into Eq. (4.5)

an adjustment parameter, which is a threshold that controls the number of labels.

We increase the threshold values with all the aspects by a parameter. HEF estimates

the aspects with higher scores, and the number of labels by HEF approaches to the

number of human labelings. The optimal threshold value, which approaches the

number of human labelings, is obtained by calculating the parameter regarding it.

From Fig. 4.19, 4.20, and 4.21, our method shows the results where the descent

of the precision is small. The recalls of HEF and L-LDA have almost no difference

with training dataset 9. With less training data, L-LDA’s recall rapidly dropped.

However, HEF showed almost no drop. In every method except HEF, the recall

values rapidly fell because the terms decreased based on less training data. On the

other hand, in our method, topics are associated to aspects. Therefore, the terms

don’t decrease even if the number of training data decreased. For these reasons,

the HEF’s recall almost didn’t fall based on less training data. Hence, the HEF’s

F-measure is higher than all the other methods.

A sample tweet is shown in Table 4.12. The examinee aspect column shows the

aspects labeled by the examinees, based on Eq. (4.7). The columns of the HEF,

HEF0, and NBML aspects estimated the aspects by each method. Table 4.12 is

a completely matched example whose aspects were labeled by the examinees and

estimated by HEF. It shows the effectivity and the characteristics of HEF estimation

and mentions a restaurant’s opening in “Takaragaike”. The examinee aspects are

Eating, Expense, and Locality, all of which coincide with the tweet’s topics. NBML

estimated Eating and Expense aspects but failed to estimate the Locality aspect

because it was not trained by the likelihood between “Takaragaike” and Locality

by the training data. HEF0 estimates many aspects: Eating, Expense, Locality,

Disaster, Event, and Traffic. Obviously, this tweet does not mention Traffic, Disaster,

or Event. HEF0 excessively estimated aspects because it built associations between
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many aspects and local topics, such as Topic 125. On the other hand, the aspects

estimated by HEF match the examinees’ aspects. HEF estimated Locality because it

built associations between the Locality aspect and a topic including “Takaragaike”.

Since other aspects were not associated to the local topics, HEF accurately estimated

the aspects.

Table 4.13 is an example where our prototype system estimated other aspects, in

addition to the aspects of the examinees. This tweet mentions conducting a workshop.

The examinee aspects are School and Event, and they coincide with the tweet’s topic.

The tweet includes the term “Katsura-River” which is the name of a river in Kyoto.

Because this tweet is about an event being held in the “Katsura-River” neigborhood,

it includes the Locality aspect which our prototype system can estimate. This sample

is a good example that our proposed method effectively identified.
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Table 4.11: High occurrence probability terms in each topic strongly associated to

each aspect

Topic 119 wear, Yukata, t-shirt, one-piece,

(Appearance) suit, costume, uniform, Kimono

Topic 49 fun, everyone, drink, partying,

(Contact) wild, yesterday, meet, party

Topic 178 typhoons, Kyoto, alarm, heavy rain,

(Disaster) storms, influence, precautions, floods

Topic 341 curry, vegetable, tomato, delicious, cook

(Eating) soup, salad, sauce, eat

Topic 345 participation, event, hold, plan,

(Event) detail, offer, decision, member

Topic 437 buy, cheap, price, supermarket

(Expense) convenience store, half price, used, sell

Topic 393 hospital, expert, outpatient clinic, health

(Health) treatment, diagnosis, examination, causation

Topic 75 watch, think, interesting, uninteresting,

(Hobby) miracle, animation, theater, boy

topic 290 room, cleaning, open, dirty

(Living) clear, toilet, close, door

Topic 60 Kyoto, traffic, Kawaramachi, Shijyo,

(Locality and Traffic) Torimaru, subways, guides, city buses

Topic 3 study, exam, finish, concentration

(School) period, practice exam, subject, score

Topic 23 weather, sunny, forecast, Kyoto,

(Weather) rainy season, clouds, temperature

Topic 321 company, corporation, finding employment, employee

(Working) company president, management, career-change
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Table 4.12: Complete estimated aspects for tweet by HEF

Answers Locality, Expense, Eating

HEF Locality, Expense, Eating

HEF0 Locality, Expense, Eating, Event, Disaster, Traffic

NBML Expense, Eating

Tweet Any plans for the weekend? How about some curry? We’re opening a new

curry restaurant in front of the Takaragaike baseball stadium on the 24th.

Table 4.13: Estimated extra aspects for tweet

Answers School, Event

HEF School, Event, Locality

NBML School, Event

Tweet Attention! We will hold the first Katsura gathering on May 31 at 18:00.

The meeting place is the Katsura-River station neighborhood. The content

is a workshop for postgraduate examination. Feel free to drop by!





Chapter 5

Probability distribution inference

5.1 HEF extension for probability distribution in-

ference

5.1.1 Optimal association building

We make associations between topics and aspects based on relevance R(a, t). Our

approach assumes that each aspect consists of many topics. Here, since we consider

that important topics for each aspect have high relevance, an effective strategy of

association building connects topics to aspects based on the strength of the relevance.

We arranged the topics in descending order of the relevance strength in each aspect

and divided the topics into two sets. Our purpose is to discover a significantly high

dividing point between a set of topics with high and low relevance. A set of topics

with high relevance is our candidate of associations. To achieve this, we adopt a

t value in Welch’s t-test [77], which is a certification test between two independent

groups. When the Welch’s t-test value exceeds a threshold, two independent groups

are significantly different.

Topic set Ta in aspect a is given as follows:

61
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Ta = argmax
Tx⊂T

t-test(Tx, Ty|a), Ty = T \ Tx, (5.1)

where Tx denotes the set of topics with high relevance. Ty denotes the complement

set of Tx in all topics T extracted by LDA. Ta is given as Tx when the t-test value

between Tx and Ty is the highest in all the dividing points. Welch’s t-test is defined

as follows:

t-test(Tx, Ty|a) =
µx − µy√
σx
|Tx| +

σy

|Ty |

, (5.2)

µi =
1

|Ti|
∑

t∈Ti

R(a, t), σi =

√
1

|Ti|
∑

t∈Ti

{R(a, t)−µi}2, (5.3)

where |Tx| and |Ty| denote the number of topics. Normalized both relevances of

R̂a(a, t) and R̂t(a, t) are calculated as follows:

R̂a(a, t) =
R(a, t)∑

t′∈Ta
R(a, t′)

, R̂t(a, t) =
R(a, t)∑

a′∈A R(a′, t)
, (5.4)

where Ta denotes the topics associated with aspect a. A denotes all the aspects.

5.1.2 Inference

To infer the probability distribution of real life aspects for unknown tweets, we use

aspect scores calculated in Eq. (3.8). Aspect a probability p(a|tw) for tweet tw is

calculated as follows:

p(a|tw) = Score(a, tw)∑
a′∈A Score(a′, tw)

. (5.5)
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5.2 Experimental evaluations

To clarify the effectiveness of our proposed method that infers the probability dis-

tribution, we evaluated the JS divergence (JSD) and the Euclidean distance (ED)

between each method’s inferred and correct probability distributions. As baseline

methods, we adopted Naive Bayes, SVM, and L-LDA. To extract topics by LDA

and evaluate estimation performance of each method, we used Tweets explained in

Section 4.2.1 and 4.2.1.

5.2.1 Dataset

Single label dataset for training

To identify the most appropriate aspect for each tweet, we extracted the aspect se-

lected as the top candidate assigned by two or three examinees. The number of labels

of each aspect is shown in the “single label” column in Table 5.1. The Eating aspect

received the most labels: 136 out of 1,500 tweets. Eight aspects were labeled by 100

tweets. The total number of aspects labeled by tweets was 1,345. The tweets, which

didn’t completely match by the three examinees, was 155 (= 1, 500− 1, 345).

Multi-label dataset for training

The appropriate several aspects for each tweet is given at least once a selected as

the 1st candidate aspects from either three examinees. Therefore, multi-label dataset

is superset of single label dataset. The number of labels of each aspect is shown in

“multi-label” column in Table 5.1. The aspect of Eating and Event are the most

labeling ones. The aspects of Contact, Event, Expense, and Locality increased over

twice number of labels compared with single label dataset.
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Probability distribution dataset for evaluation

To give the probability distribution of the aspects for each tweet, we used all the

candidate aspects assigned by the three examinees. Based on the reciprocal rank (RR)

[72], which is one evaluation metric for search engine effectiveness, we assumed that

the aspects selected with a higher rank have greater weight for the tweets. Correct

probability distribution P (a|tw) of each aspect a in tweet tw is shown as follows:

RR(a|tw) = 1

|A| +
∑

e∈E

1

rank(a|tw, e) , (5.6)

P (a|tw) = RR(a|tw)∑
a′∈A RR(a′|tw) , (5.7)

where E denotes all the examinees. rank(a|tw, e) is a candidate number: 1st, 2nd,

and 3rd rankings of aspects a labeled by examinee e for tweet tw. The 1
|A| is a constant

value for probability distribution smoothing. In this paper, we gave by the reciprocal

value is given by the aspect number. Probability P (a|tw) of aspect a is given as the

value divided by the summation of RR.

Parameter settings

LDA requires hyper parameters. Based on related works[19], we set α to 50
|T | and β

to 0.1. |T | denotes the number of topics chosen from among 50, 100, 200, 500, and

1,000 topics in Section 5.2.4. The iterative calculation count in LDA is 100 times

in every case.

5.2.2 Evaluation metrics

To correctly evaluate our method performance, we used 10-fold cross validation. We

evaluate the JSD and ED between the inference and correct probability distributions.

JSD is a metrics that measures the similarity among probability distributions [50].

When both metrics are low, our method accurately infers the probability distribution
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Table 5.1: Number and probability of labels by aspect

Single label Multi-label

Aspects Number P (a) |Ta| Number P (a) |Ta|

Appearance 104 0.0773 341 151 0.0636 329

Contact 100 0.0743 343 208 0.0877 341

Disaster 39 0.0290 379 52 0.0219 363

Eating 136 0.1011 247 219 0.0923 296

Event 85 0.0632 241 219 0.0923 288

Expense 76 0.0565 334 211 0.0889 387

Health 92 0.0684 348 121 0.0510 322

Hobby 108 0.0803 339 200 0.0843 312

Living 97 0.0721 332 141 0.0594 328

Locality 68 0.0506 320 147 0.0619 348

School 110 0.0818 321 153 0.0645 323

Traffic 107 0.0796 346 136 0.0573 306

Weather 111 0.0825 291 157 0.0662 291

Working 105 0.0781 299 176 0.0742 303

Other 7 0.0052 248 82 0.0346 375

Total 1,345 1.0000 2,373 1.0000

of tweets. JSD and ED between the probability distributions of x and y are calculated

as follows:

JSD(x, y) =
1

2

(
∑

a∈A

x(a) log
x(a)

z(a)
+
∑

a∈A

y(a) log
y(a)

z(a)

)
, (5.8)

ED(x, y) =

√∑

a∈A

{x(a)− y(a)}2, (5.9)

where z(a) denotes the average of x(a) and y(a).
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5.2.3 Baseline methods

We extracted nouns, verbs, and adjectives using a Japanese morphological analyzer

called MeCab [37] and entered the sets of words and label(s) to every method in

common.

Uniform distribution (UD)

As the most simplest comparison method, we prepared the uniform distribution of

aspects, each of which has 1
|A| probability. |A| is the number of aspects.

Prior distribution (PD)

Prior distribution is calculated from the ratio of the number of aspects in the training

dataset. UD and PD do not depend on the set of words appearing in the tweets.

Naive Bayes (NB)

A Naive Bayes classifier [15], which is one of the most typical and effective clas-

sification methods, classifies the labels with the highest posterior probability for a

document. In our experimental evaluations, we used the normalized posterior prob-

ability of each document.

Support vector machine (SVM)

We used LIBSVM [12] as a support vector machine library. LIBSVM provides a

probability estimation tool [79] for each class in addition to document classification.

As SVM parameters, we chose a linear kernel and set parameter C to 1.0, indicated

by a grid search in the LIBSVM tools [24].

Labeled LDA (L-LDA)

Labeled LDA is an LDA extended models, which was proposed by Ramage et al. [58].

L-LDA sets the hyperparameters of both α and β, as in LDA. We experimentally set



5.2. EXPERIMENTAL EVALUATIONS 67

α to 0.1 and β to 0.1, and the iterative calculation count in L-LDA was 100.

5.2.4 Experimental results

Comparison of number of topics

We evaluated the micro-average value of JSD between the inference and correct prob-

ability distributions in both the single and multi-label cases (Table 5.2). In both

cases, according to an increasing number of topics, JSD decreased. Its decrease stabi-

lized from 500 topics because the JSD difference at 500 and 1,000 topics is slight. A

minimum JSD was achieved at 1,000 topics in both the single and multi-label cases.

Therefore, we used 1,000 as the optimal number of topics for HEF.

Number of topics connected to each aspect

We show the number of topics associated to each aspect in the |Ta| column of Table

5.1. These numbers are optimized by Welch’s t-test. The maximum topic numbers

of single and multi-label cases are the aspects of Disaster at 379 and Expense at 387

respectively. The minimum topic number is the Event aspect in both the single and

multi-label cases.

We show the relevance and the t-test distributions of the Disaster and Event

aspects in Figs. 5.1 and 5.2. The horizontal axes of all the figures are the topic

rankings that are arranged in descending order of the relevance strength. The left and

right vertical axes of both figures are the relevance and t-test values. The Disaster

aspect achieved the maximum t-test value from 300 to 400 topics. On the other hand,

the Event aspect was achieved the maximum from 200 to 300 topics.

We show the relevance and the t-test distributions of each aspect in Fig. 5.3 and

5.4. The horizontal axes of both figures are the topic rankings that are arranged in

descending order of the relevance strength. In each figure, the strength of the value

is shown by a color chart mapped from red to white. For example, in Fig. 5.3, the

color of every aspect changes from red to white based on the decreased topic ranking
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because topics are arranged in descending order of relevance strength. The Disaster

aspect more rapidly changed from red to blue compared to other aspects.

In Fig. 5.4, every aspect was red from 200 to 500 topics, suggesting that every

aspect is optimally divided in this range. Here, the topics with the highest t-test

value in each aspect are shown in the |Ta| column of Table 5.1. The Disaster aspect

is nor red or yellow because its relevance strength is low.

Comparison of association building methods

To evaluate the effectiveness of our association building method, we implemented

three simple methods to build associations; first, we associated a topic with the highest

relevance to each aspect; second, we associated ten topics with higher relevance to

each aspect; finally, we associated all topics to each aspect.

The JSD value by each method is shown in Table 5.3. The minimum JSD value

was achieved by t-test topics. The first and second methods showed higher JSD values

than the third method. Based on these results, the aspect architecture is insufficient

in for just a few topics. However, to build refined associations, the architecture needs

to delete extra topics from the third method’s result.

Inference performance of each method

We show the micro-average value and the standard deviation of JSD and ED by each

method in Figs. 5.5 and 5.6. The vertical axis shows the JSD and ED values. We

took a one-sided t-test of HEF’s JSD and ED values against the baseline methods’

values. That result was drawn on the top of each baseline method as “*” symbols in

the figures; “***” represents a significantly-high value at 1%, “**” at 5%, and “*”

at 10%.

From the t-test results, our method efficiently estimated the probability distribu-

tions against all the baseline methods in the single label case. In the multi-label case,

HEF performed significantly better than every baseline method except SVM.
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Table 5.2: JSD scores in each number of topics in HEF

Number of topics Single label Multi-label

50 0.2408 0.2170

100 0.2324 0.2127

200 0.2159 0.1977

500 0.1987 0.1852

1,000 0.1926 0.1820

Table 5.3: JSD by each association building method

Method Single label Multi-label

Highest topic 0.3376 0.2921

Highest 10 topics 0.2391 0.2281

All topics 0.2068 0.1935

t-test topics 0.1926 0.1820
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5.3 Discussions

From Figs. 5.5 and 5.6, the multi-label dataset achieved lower JSD and ED values

than the single label dataset, except for the uniform distribution. This reason is clear

because multi-label dataset has more detailed training information than the single

label one to infer the probability distributions. SVM especially decreased the JSD

values of 0.04 (= 0.22−0.18) in the multi-label case compared with the single label one.

These results suggest that SVM outperformed HEF when it built a model by training

datasets with more detailed information, such as the multi-label classification dataset

used in Chapter 4. On the other hand, generally, a cost for obtaining multi-label

training datasets by human annotation is more than single-label ones. Therefore,

we think important to estimate the correct probability distribution of aspects by

single-label datasets.

Our method showed the lowest JSD and ED values in both the single and multi-

label cases. In the single label case, HEF showed significantly higher performance

than the other methods. We can see an optimal example tweet that explains this

reason in Table 5.4 and Fig. 5.7. Table 5.4 shows the example tweet sentence and

its labels. The main topic of this tweet is open campus, and two examinees selected

the School aspect as its top candidate. Therefore, this tweet received the School

aspect label. On the other hand, examinee E3 selected the Event aspect as its top

candidate because he defined open campus as an event. In fact, examinee E1 selected

the Event aspect as his second highest candidate. In multi-label cases, this tweet was

labeled by School and Event aspects.

Fig. 5.7 shows the correct probability distributions of Table 5.4’s tweet as a

black solid line. The School and Event aspects have higher probability than the other

examinee labeling results. In addition to the same figure, we show the probability

distributions estimated by each method that was trained by a single label dataset. We

focus on the probabilities of the Event and School aspects. The inferred probability

of the School aspect by each method is higher than the other aspects. NB inferred
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Figure 5.1: Relevance and t-test value distributions of Disaster
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Figure 5.2: Relevance and t-test value distributions of Event
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Figure 5.3: Relevance distributions of all aspects

a higher probability than 0.50. SVM and HEF showed a lower probability than

the correct one. Next, in the inferred probabilities of Event by each method, HEF

successfully estimated the most approximate probability for answering it.

This tweet includes many terms that suggest the School aspect: “university”,

“professor”, and “lecture”. However, the only term for estimating the Event aspect

is the verb “held”. For these reasons, the estimations of NB, SVM, and L-LDA, all

of which directly calculate the likelihood of terms, were not appropriate.

Here, we show the high occurrence probability words in the topic associated with

the highest relevance to the Event aspect by HEF in Table 5.5. This topic includes

terms related to the Event aspect: “participation”, “held”, and “conference”. On the
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Figure 5.4: t-test value distributions of all aspects

other hand, such terms as “lecture”, “campus”, and “university” are also included in

the topic, suggesting that they often appear together in many tweets. Therefore, such

terms such as “campus” and “university” are frequently mentioned in connection with

Event aspect terms, including “held”. Our method can build associations between

this topic and the Event and School aspects because it can use such terms as “held”

assigned Event aspect and “lecture” assigned School aspect. So, HEF inferred the

Event aspect with high probability for Table 5.4’s tweet.

Finally, we show the number of average labels (Mean), its standard deviation (SD),

and the assigned labels for a tweet by each examinee in Table 5.6. The mean and
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Table 5.4: Effectively inferred probability distributions of aspects by HEF

Examinees 1st 2nd 3rd

E1 School Event Hobby

E2 School Other

E3 Event School Other

Tweet We’ll hold an open campus for Kyoto Seika University on

June 9, and some professors will provide special lectures!

Single label School

Multi-label School, Event

Table 5.5: High occurrence probability terms in highest relevance topic associated to

Event

Topics Characteristic words

Topic 387 participation, Kyoto, lecture, held, hall,

culture, campus, conference, university

standard deviation of examinees E1 and E3 are approximate values. The number of

assigned labels for them is also shown as similar distributions. However, the number

of average assigned labels by examinee E2 shows greater values than E1 and E3. E2

tended to assign many labels for a tweet from the values in the Three labels column.

These results suggest that the criteria of the users for requiring aspects are different.

For example, E1 and E2 are more accuracy-oriented users and E3 is an exhaustive-

oriented user. A multi-label classification approach has difficulty accommodating an

individual user’s requirements or various situations. However, the representation of

probability distribution on tweets can be applied to these users.
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Figure 5.7: Probability distributions of aspects estimated by each method for Table

5.4’s tweet

Table 5.6: Number of average labels for a tweet in each examinee

Mean SD One label Two labels Three labels Total

E1 1.519 0.633 834 (55.6%) 553 (36.9%) 113 (7.5%) 1,500

E2 2.498 0.700 180 (12.0%) 393 (26.2%) 927 (61.8%) 1,500

E3 1.497 0.625 859 (57.3%) 536 (35.7%) 105 (7.0%) 1,500



Chapter 6

Discussions

6.1 Achievements in this dissertation

This section summarizes the achievements of the four challenges explained in Chapter

1.

Achievement 1 Table 4.7 nicely represents the effectiveness of HEF for short sen-

tence estimation. Its maximum average value was 5.15 for the number of label-

ings in all comparison methods. In other words, HEF approximately estimated

five aspects for each tweet whose maximum number of characters is 140. If it

randomly estimates five aspects of each tweet, the precision value will be the

lowest in all the methods because the number of labelings of other methods

is lower than HEF. However, HEF’s precision value is second highest at 0.63

after NBML. This suggests that HEF frequently estimates extra aspects in ad-

dition to the correct labels of each tweet. That example was shown in Table

4.13, which was estimated an extra Locality aspect by HEF. From these re-

sults, HEF achieved appropriate estimation for short sentences using tweets as

demonstrations.

Achievement 2 In multi-label classification, though the precision, recall, and f-

measure values of the typical methods rapidly dropped when the training data
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decreased, HEF retained its high evaluation values in Figs. 4.19, 4.20, and

4.21. In the probability distribution inference, HEF showed significantly lower

JSD and ED values than the typical methods when it built associations between

the topics and the aspects by the single label dataset in Fig. 5.5 and 5.6. As

reasons why HEF appropriately estimated the aspects of unknown tweets, we

believe that HEF effectively expanded the terms using topics extracted by LDA

and calculated the aspect scores from unknown terms that do not appear in

the training dataset. Moreover, we confirmed that the number of topics con-

nected to the aspects was adjustd by the precision and recall curves in Fig.

4.1. Therefore, HEF can obtain higher performance by selecting the optimal

number of topics for the given tasks. These results suggest that HEF achieved

high estimation performance using a small amount of training data, as described

in Challenge 2.

Achievement 3 Chapter 4 demonstrated that our proposed method appropriately

estimates several aspects for unknown tweets. In the comparison evaluations

shown in Table 4.4, 4.5, and 4.6, the fundamental proposal method (HEF0)

achieved the highest recall value at 0.67 in the baseline methods. HEF, which

introduced an entropy feedback mechanism, showed the maximum f-measure

value at 0.63 because it was the refined associations between the topics and

the aspects. From these results, HEF achieved multi-label classification which

estimated several aspects of unknown tweets.

Achievement 4 Chapter 5 showed that HEF effectively infers the aspect probabil-

ity distribution of unknown tweets. Our sophisticated experimental evaluations

clarified that our proposed method achieved significantly higher estimation per-

formance than typical methods from Figs. 5.5 and 5.6. Although the JSD and

ED values of SVM in single label training greatly increased more than multi-

label training, HEF retained low values in both situations. From these results,

HEF appropriately inferred the probability distribution of unknown tweets by
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training using labeled data.

6.2 Associations with latent topics

This section summarizes the advantages and weaknesses of the associations between

the topics and the aspects based on the experimental evaluations results of both

Chapters 4 and 5. First, Chapter 4 showed that HEF0 achieved maximum recall and

minimum precision in all the comparison methods. The basic purpose for making

associations with latent topics is to expand the terms using topics and to increase the

completeness in the estimation aspects of unknown tweets. Although HEF0 achieved

it purpose, terms were excessively expanded because the fundamental associations

with the topics are competitive among the aspects. For example, when regional

names appeared in unknown tweets, HEF0 estimated many aspects such as Disaster,

Event, Locality, and Traffic in Table 4.12’s tweet since these aspects are strongly

associated to the same topics. Therefore, HEF0 had many wrong estimations, which

lowered the precision.

To overcome this weakness, HEF was introduced into the entropy feedback mech-

anism, which can refine competitive topics among aspects. Although HEF’s recall

decreased by 0.04 (0.63−0.67), it’s precision increased by 0.16 (0.63−0.47) and HEF

achieved the highest F-measure among all of the compared methods. In other words,

HFE overcame the weakness by the entropy feedback mechanism. Even if the num-

ber of aspects increases, we believe that HEF shows higher estimation performance

than the other methods because it is an estimation model that isn’t dependent on

the number of aspects.

HEF can incorporate other topic models and matrix factorization algorithms as

well as LDA because in the first phase, HEF essentially extracts the latent topics

from documents. Each topic has similar terms with high occurrence probability in

the documents. Even if the topic tendency differs among topic models and matrix
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factorization algorithms, HEF can enhance the estimation performance because it

associates several feature topics to given human labels, such as life aspects, by entropy

feedback mechanism and the optimal association building method. In the future, we

will evaluate the HEF performance by extracting topics using various topic models.

On the other hand, the associations between the topics and the aspects have to

decide some parameters such as the number of topics and d in Eq. (3.7). The optimal

number of topics achieved by the maximum F-measure was obtained by maximizing

JSsum. Although the optimal number of topics to achieve the maximum F-measure

was obtained by maximizing JSsum, optimal parameter d must explore the value that

maximizes the F-measure in each aspect. To optimize the associations between the

topics and the aspects, Chapter 5 proposed an association building method based on

the t-test. It achieved the minimum JSD in all the association building strategies in

both cases of single label and multi-label training. However, the number of topics is

not automatically optimized in it. The optimizing all the parameters is future work.

Finally, we discuss the single label estimation task, which classifies the most suit-

able label for each datum. Chapter 5’s results suggest that HEF is less effective in

this task compared with multi-label classification and probability distribution infer-

ence tasks. The correct single aspect in Table 5.4’s tweet is School because the two

examinees selected it as the most suitable aspect for this tweet. From Fig. 5.7,

which shows the probability distributions of the aspects estimated by the comparison

methods for that tweet, Event is the aspect with the highest probability by HEF.

Generally, the single label estimation task gives a label with the highest probability

in all the labels. Therefore, HEF estimation is wrong in this case. The single label

estimation task is important to obtain a clearly higher score than the other aspects,

but HEF does not satisfy that requirement based on these dissertation evaluation

results. However, we believe that the number of life aspects, which are imagined from

a tweet by human, is essentially multi-labels. We think important to achieve the mild

estimation like HEF to infer several life aspects of each tweet.



Chapter 7

Conclusion

This dissertation proposed the life aspect inference method by hierarchical estimation

framework (HEF) based on associations between topics and aspects. This framework

feature is composed of two phase semi-supervised machine learning, in which many

topics are extracted from a sea of tweets using an unsupervised machine learning

model LDA. Associations among many topics and fewer aspects are built using labeled

tweets. Using topics, aspects are associated with various keywords by a small set of

labeled tweets.

Chapter 4 extended HEF to multi-label classification to clearly provide real life

information with particular aspects for users. To refine the associations between top-

ics and aspects, HEF introduced the entropy feedback mechanism, which iteratively

calculates feedback coefficients calculated by entropy between topics and aspects. In

experimental evaluations using actual collected real life tweets, our prototype system

demonstrated that HEF can appropriately estimate some aspects of all the unknown

tweets. Entropy feedback effectively refines the associations between topics and as-

pects. HEF showed the highest F-measure among typical methods of multi-label

classification. With less training data, the precision, recall, and F-measure values

of the typical methods rapidly dropped; however, HEF retained its high evaluation

values. Especially in F-measure, HEF usually achieved the highest score in every
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method.

Chapter 5 extended HEF to life aspect distribution inference to provide real life in-

formation on specific aspects according to user orientation such as users with exhaus-

tive and accuracy oriented. HEF introduced the optimal association build method

based on t-test, which is an efficient strategy to manage the relationships between

topics and aspects. This study challenge is to train from labeled tweets and infer

the probability distribution of the aspects of unknown tweets based on a natural ex-

tension of HEF. The experimental evaluations of this study prepared a small set of

labeled tweets based on the classifications of three examinees and calculated proba-

bility distributions of each tweet from them. In the case of single label training, HEF

showed significantly lower JS Divergence and Euclidean Distance values than every

baseline method based on sharing topics by several aspects.

From Chapter 4 and 5 results, HEF scheme is an effective life aspect inference

methods of the multi-label classification and probability distribution using a small

labeled dataset for such short sentences as tweets because associations between top-

ics and aspects appropriately expanded terms. In the future, we will confirm the

effectiveness of our method using other datasets, such as newspapers and blogs.
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