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Abstract. This paper provides a careful and accessible exposition

of an L p approach to boundary value problems of nonlinear

elastostatics in the case where solutions of the linearized problem

correspond faithfully to those of the nonlinear problem, that is, in

the case where there is no bifurcation. We prove that if the linearized

problem has unique solutions, then so does the nonlinear one,

nearby. This is done by using the linear L p theory and the inverse

mapping theorem. The main theorem can be applied to the Saint

Venant–Kirchho¤ elastic material and the Hencky–Nadai elasto-

plastic material in a unified theory. The approach here is dis-

tinguished by the extensive use of the ideas and techniques

characteristic of the recent developments in the theory of partial

di¤erential equations.
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1. Introduction and Main Results

This paper is devoted to an L p approach to boundary value problems of

nonlinear elastostatics in the case where solutions of the linearized problem

correspond faithfully to those of the nonlinear problem. We prove that if the

linearized problem has unique solutions, then so does the nonlinear one, nearby

(Main Theorem). This is done by using the Lp theory of pseudo-di¤erential

operators and the inverse mapping theorem. Our boundary condition is a

‘‘regularization’’ of the genuine mixed displacement-traction boundary condition;

more precisely, it is a smooth linear combination of displacement and traction

boundary conditions, but is not equal to the pure traction boundary condition.

Moreover, it should be emphasized that our problem becomes a degenerate

elliptic boundary value problem from an analytical point of view. The crucial

point is how to find a function space associated with the degenerate boundary

condition in which the linearized problem has unique solutions. Main Theorem

can be applied to the Saint Venant–Kirchho¤ elastic material and the Hencky–

Nadai elasto-plastic material in a unified theory (Theorem 1.1 and Theorem 1.2).

The approach here is distinguished by the extensive use of the ideas and

techniques characteristic of the recent developments in the theory of partial

di¤erential equations ([Ta4]). This expository paper is an expanded and revised

version of the previous paper [Ta3].
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1.1 Formulation of a Problem

We start with the basic equations for continuum mechanics, providing a

quick survey of a few standard topic in elasticity theory from a classical point

of view. The treatment is exclusively in Euclidean space R3, by using standard

Euclidean coordinates. For more thorough treatments of this subject, the reader

might be referred to Ciarlet [Ci] and Marsden–Hughes [MH].

Let W be an open, connected subset of R3 with piecewise smooth boundary

qW. We think of its closure W ¼ WU qW as representing the volume occupied by

an undeformed body; so the set B ¼ W is called the reference configuration. A

deformation of the reference configuration B is a vector field

f ¼
f1
f2
f3

0
B@

1
CA : B! R3

which is a continuously di¤erentiable, orientation-preserving and invertible map.

Given a reference configuration B and a deformation f : B! R3, the set fðBÞ
is called the deformed configuration (see Figure 1.1). Points in B are denoted

by X ¼ ðX1;X2;X3Þ A B and are called material points, while points in R3 are

denoted by x ¼ ðx1; x2; x3Þ A R3 and are called spatial points. We write as

x ¼ fðX Þ; xi ¼ fiðXÞ:

The 3� 3 matrix of partial derivatives of f is denoted by FðXÞ ¼ ‘fðXÞ, and
is called the deformation gradient:

Figure 1.1
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FðXÞ ¼
F11 F12 F13

F21 F22 F23

F31 F32 F33

0
B@

1
CA; Fij ¼

qfi
qXj

:

The deformation gradient is simply the matrix representing the Fréchet derivative

of the mapping f. We remark that det F > 0, since the mapping f is orientation-

preserving.

It is often convenient to introduce the displacement u of B, which is a vector

field

u ¼
u1

u2

u3

0
B@

1
CA : B! R3;

defined by the formula

u :¼ f� id;

where id is the identity map of R3 onto itself. Componentwise, the displacement u

of B can be written as follows:

uðXÞ ¼
u1ðX Þ
u2ðX Þ
u3ðX Þ

0
B@

1
CA :¼

f1ðX Þ � X1

f2ðX Þ � X2

f3ðX Þ � X3

0
B@

1
CA:

The 3� 3 matrix of partial derivatives of u is denoted by ‘u, and is called the

displacement gradient. We remark that

‘u ¼

qu1
qX1

qu1
qX2

qu1
qX3

qu2
qX1

qu2
qX2

qu2
qX3

qu3
qX1

qu3
qX2

qu3
qX3

0
BBB@

1
CCCA;

so that

‘u ¼ ‘f� I ;

where I ¼ ðdijÞ is the 3� 3 unit matrix.

The symmetric two-tensor

C :¼ tFF; Cij :¼
X3
k¼1

FkiFkj;

is called the (right) Cauchy–Green strain tensor.
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A body fðBÞ is acted on by applied body forces bðxÞ in its interior and by

applied surface forces tðxÞ on a portion of the boundary. The pair ðb; tÞ of forces
is called the load, and is given or prescribed in advance (see Figure 1.2). An

applied body force is called a dead load if its associated density per unit volume

in the reference configuration is independent of the particular deformation f

considered. This is the case of the gravity field. Similarly, an applied surface force

is called a dead load if its associated density per unit area in the reference

configuration is independent of the particular deformation f considered. This is

the case where a portion of the boundary of the body is held fixed, while the

remaining portion is considered as free from all external actions (see Figure 1.3).

In addition, the body generally experiences internal forces of stress across any

given surface. Let tðx; nÞ be the force at position x across an oriented surface

element with unit outward normal n (see Figure 1.2). We present the basic three

equations for continuum mechanics in nonlinear elastostatics.

Figure 1.2

Figure 1.3

71Boundary value problems of nonlinear elastostatics



(1) First, the celebrated Cauchy theorem asserts (cf. [Ci, Chapter 2]; [MH,

Chapter 2]) that if the balance of momentum holds true, then the stress vector

tðx; nÞ ¼ ðtiðx; nÞÞ depends linearly on n, that is, there exists a two-tensor sðxÞ ¼
ðsijðxÞÞ such that

tðx; nÞ ¼ sðxÞ � n; tiðx; nÞ ¼
X3
j¼1

sijðxÞnj:

The vector tðx; nÞ is called the Cauchy stress vector and the tensor sðxÞ is called

the Cauchy stress tensor.

(2) Secondly, the balance of angular momentum leads to the symmetry of the

two-tensor sðxÞ: sijðxÞ ¼ sjiðxÞ.
(3) Thirdly, the balance of linear momentum leads to the nonlinear equa-

tions of elastostatics: div s þ rðxÞbðxÞ ¼ 0 where rðxÞ is the mass density in the

deformed configuration fðBÞ.
The vector TðX ;NÞ, defined by the formula

TðX ;NÞ :¼ PðXÞ �N ;

PðXÞ :¼ detð‘fðXÞÞsðfðXÞÞ � ð t‘fðXÞÞ�1;

is called the first Piola–Kirchho¤ stress vector, where N is the unit outward

normal at X . It should be emphasized that the vector TðX ;NÞ is parallel to the

Cauchy stress vector tðx; nÞ, but measures the force per unit undeformed area

with normal N (see Figure 1.4). The two-tensor PðX Þ ¼ ðPijðX ÞÞ, which is the

Piola transform of the Cauchy stress tensor sðxÞ, is called the first Piola–

Kirchho¤ stress tensor.

Figure 1.4
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The second Piola–Kirchho¤ stress vector is obtained by transforming T ¼
P �N , which is a vector at x, to a vector based at X by setting T ¼ F�1 � T.
Hence T ¼ S �N , where S ¼ F�1P. Componentwise, this can be written as

follows:

SijðX Þ ¼
X3
k¼1

qXi

qxk
PkjðXÞ:

The 3� 3 matrix SðX Þ ¼ ðSijðXÞÞ is called the second Piola–Kirchho¤ stress

tensor.

The following three diagrams give a bird’s eye view of basic equations in

nonlinear elastostatics from a classical point of view:

Cauchy’s theorem Balance of momentum

Eulerian form tðx; nÞ ¼ sðxÞ � n

Lagrangian form TðX ;NÞ ¼ PðXÞ �N

Balance of angular momentum

Eulerian form sðxÞ ¼ tsðxÞ

Lagrangian form SðXÞ ¼ tSðXÞ

Balance of linear momentum

Eulerian form div s þ rðxÞbðxÞ ¼ 0

Lagrangian form DIV P þ r0ðX ÞBðXÞ ¼ 0

r0ðX Þ ¼ rðfðXÞÞ detð‘fðXÞÞ

A material is said to be elastic if we can write the first Piola–Kirchho¤ stress

tensor PðXÞ ¼ ðPijðXÞÞ as a function P̂PðX ;FÞ ¼ ðP̂PijðX ;FÞÞ of points X A B and

3� 3 matrices F with det F > 0 such that

PðXÞ ¼ P̂PðX ;‘fðXÞÞ:

Specification of a function P̂PðX ;FÞ for an elastic material is called a stress-strain

law, and the function P̂PðX ;FÞ is called a constitutive function.

An elastic material is said to be hyperelastic if there exists a smooth function

WðX ;FÞ of points X A B and 3� 3 matrices F with det F > 0 such that
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P̂PðX ;FÞ ¼ qW

qF
ðX ;FÞ; P̂PijðX ;FÞ ¼ qW

qFij

ðX ;FÞ:

The function WðX ;FÞ is called a stored energy function. The four-index tensor

AðX ;FÞ ¼ ðqP̂P=qFÞðX ;FÞ ¼ ðq2W=qFqFÞðX ;FÞ, defined by the formula

AijlmðX ;FÞ :¼ qP̂Pij

qFlm
ðX ;FÞ ¼ q2W

qFijqFlm
ðX ;FÞ;

is called the first elasticity tensor.

Some boundary conditions often encountered are the following:

(a) The boundary condition of place: fðX Þ ¼ fdðX Þ is described for

X A qB.

(b) The boundary condition of traction: P̂PðX ;‘fðXÞÞ �NðX Þ ¼ tðXÞ
is described for X A qB, where NðXÞ is the unit outward normal to qB at

X .

We make the following two assumptions (H.1) and (H.2) throughout the

paper:

(H.1) The reference configuration is a bounded region B ¼ WHR3 with

smooth boundary qW.

(H.2) The material is hyperelastic.

We give two important examples of stored energy functions for hyperelastic

materials:

Example 1.1 (The Hencky–Nadai elasto-plastic material). The stored energy

function WðX ;FÞ has the form

WðX ;FÞ ¼ 3

4

ðGðFÞ
0

gðxÞ dxþ K

2

X3
k¼1

Fkk � 3

 !2
;

where g A Cyð½0;yÞ;RÞ, the constant K is the modulus of compression and

GðFÞ ¼ 4

3

X3
i; j¼1

1

2
ðFij þ FjiÞ �

1

3

X3
k¼1

FkkFkk

 !
dij

 !2
:

The first Piola–Kirchho¤ stress tensor PðXÞ ¼ ðPijðX ÞÞ is given by the

formula
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PijðXÞ ¼ P̂PijðX ;FðXÞÞ

¼ qW

qFij

ðX ;FðXÞÞ

¼ K � 2

3
g GðFðX Þð Þ

� � X3
k¼1

FkkðX Þ � 3

 !
dij

þ gðGðFÞðX ÞÞðFijðXÞ þ FjiðXÞ � 2dijÞ;

where

FðXÞ ¼ ðFijðXÞÞ ¼
qfi
qXj

� �
:

Example 1.2 (The Saint Venant–Kirchho¤ isotropic material). The stored

energy function WðX ;FÞ has the form

WðX ;FÞ ¼ lðXÞ
8

X3
k¼1

CkkðFÞ � 3

 !2
þ mðX Þ

4

X3
i; j¼1
ðCijðFÞ � dijÞ2;

where lðXÞ, mðXÞ are smooth Lamé functions and the two-tensor

CijðFÞ ¼
X3
k¼1

FkiFkj

is the (right) Cauchy–Green strain tensor.

The first Piola–Kirchho¤ stress tensor PðXÞ ¼ ðPijðX ÞÞ is given by the

formula

PijðXÞ ¼ P̂PijðX ;FðXÞÞ

¼ qW

qFij

ðX ;FðXÞÞ

¼ lðXÞ
2

X3
k¼1

CkkðFðXÞÞ � 3

 !
� mðX Þ

" #
FijðX Þ

þ mðXÞ
X3
m¼1

FimðXÞCmjðFðX ÞÞ;

where

FðXÞ ¼ ðFijðXÞÞ ¼
qfi
qXj

� �
:
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Remark 1.1. If we define the Green–Saint Venant strain tensor E ¼ ðEijÞ by
the formula

E :¼ 1

2
ðC � IÞ;

or componentwise,

Eij :¼
1

2

qui

qXj

þ quj

qXi

þ
X3
k¼1

quk

qXi

quk

qXj

 !
;

then it is easy to see that the stored energy function WðX ;FÞ in Example 1.2 can

be written in the form (cf. [MH, Chapter 4, Proposition 3.12])

WðX ;FÞ ¼ lðXÞ
2
ðtr EÞ2 þ mðXÞ trðE2Þ:

It should be noticed that the first Piola–Kirchho¤ stress tensors in Examples

1.1 and 1.2 are not linear functions of the deformation gradient F , which leads to

equations of nonlinear elastostatics.

Let B : W! R3 be the density of a given body force per unit volume in the

reference configuration and t : qW! R3 the density of a given surface force per

unit area in the reference configuration (see Figure 1.5).

We consider the following equilibrium equations for the unknown defor-

mation f:

DIV P̂PðX ;‘fðXÞÞ þ BðXÞ ¼ 0 in W;

aðXÞP̂PðX ;‘fðXÞÞ �NðX Þ þ ð1� aðXÞÞfðX Þ ¼ tðXÞ on qW:

�
ð1:1Þ

Figure 1.5
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Here aðXÞ is a smooth function on qW such that

0a aðX Þa 1 on qW:

We remark that our boundary condition is a ‘‘regularization’’ of the genuine

mixed displacement-traction boundary condition; more precisely, it is a smooth

linear combination of displacement and traction boundary conditions, but is not

equal to the pure traction boundary condition (see Figure 1.6). Moreover, it

should be emphasized that our problem (1.1) becomes a degenerate elliptic

boundary value problem from an analytical point of view. This is due to the fact

that the so-called Shapiro–Lopatinskii complementary condition is violated at

the points X A qW where aðXÞ ¼ 0. Marsden–Hughes [MH] studied the non-

degenerate case. More precisely, they assume that the boundary qW is the

disjoint union of the two closed subsets G0 ¼ fX A qW : aðX Þ ¼ 0g and qWnG0 ¼
fX A qW : aðXÞ > 0g.

1.2 Statement of Main Results

We study the nonlinear problem (1.1) in the framework of Sobolev spaces of

L p type. The process of linearization provides a key link between the linear and

nonlinear theories of elasticity. The crucial point is how to find a function space

associated with the boundary condition (1.2) in which the linearized problem has

unique solutions (see [Ta2]).

If s A R and 1 < p < y, we define the Sobolev space (see Section 2.1)

Hs;pðWÞ ¼ the space of restrictions to W of functions in Hs;pðRnÞ:

Figure 1.6
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The space Hs;pðWÞ is a Banach space with the norm

kuks;p ¼ inffkUks;p : U A Hs;pðRnÞ;U jW ¼ ug;

where the infimum is taken over all functions U A Hs;pðRnÞ which equal u in W.

Furthermore, if s > 1=p, we define the boundary space

Bs�1=p;pðqWÞ ¼ the space of the boundary values of functions in Hs;pðWÞ:

In the space Bs�1=p;pðqWÞ, we introduce a norm

jjjs�1=p;p ¼ inffkuks;p : u A Hs;pðWÞ; ujqW ¼ jg;

where the infimum is taken over all functions u A Hs;pðWÞ which equal j on qW.

The space Bs�1=p;pðqWÞ is a Banach space with respect to this norm j � js�1=p;p;
more precisely, it is a Besov space (cf. [AF], [BL], [Tr]).

Now we let

H s;pðW;R3Þ :¼ the space of all Hs;p functions f : W! R3;

B s�1=p;pðqW;R3Þ :¼ the space of all Bs�1=p;p functions j : qW! R3:

We introduce a subspace of the Besov space B s�1�1=p;pðqW;R3Þ which is asso-

ciated with the boundary condition

aðX ÞP̂Pð‘fÞ �N þ ð1� aðXÞÞf ¼ t on qW;

0a aðXÞa 1 on qW

�
ð1:2Þ

as follows: We let

B
s�1�1=p;p
ðaÞ ðqW;R3Þ ¼ ff ¼ aðXÞf1 þ ð1� aðX ÞÞf2 : f1 A B s�1�1=p;pðqW;R3Þ;

f2 A B s�1=p;pðqW;R3Þg;

and define the norm

jfja; s�1�1=p;p ¼ inffjf1js�1�1=p;p þ jf2js�1=p;p : f ¼ aðX Þf1 þ ð1� aðXÞÞf2g:

Then it is easy to verify (see [Ta2]) that the space B
s�1�1=p;p
ðaÞ ðqW;R3Þ is a Banach

space with the norm j � ja; s�1�1=p;p. It is worth while pointing out here that

B
s�1�1=p;p
ðaÞ ðqW;R3Þ

¼
B s�1=p;pðqW;R3Þ if aðXÞ1 0 on qW (the pure displacement case);

B s�1�1=p;pðqW;R3Þ if aðXÞ1 1 on qW (the pure traction case).

(
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If s > 3=pþ 1, we let

X ¼ the space H s;pðW;R3Þ of all Hs;p vector functions f;

and

C ¼ the subspace of all configurations f in X:

It should be emphasized that the set C is open in the space X. Indeed, this

follows from an application of the inverse mapping theorem, since the Sobolev

imbedding theorem asserts that the Hs;p topology is stronger than the C1 to-

pology for s > 3=pþ 1 (see [AF, Theorem 4.12]). We let

Y ¼ the space of all pairs ðB; tÞ A H s�2;pðW;R3Þ � B
s�1�1=p;p
ðaÞ ðqW;R3Þ:

We associate with problem (1.1) a nonlinear mapping between Banach spaces

F : X! Y

as follows:

F ðfÞ ¼ ð�DIV P̂Pð‘fÞ; aðX ÞP̂Pð‘fÞ �N þ ð1� aðXÞÞfjqWÞ; f A C:

The assumption s > 3=pþ 1 is crucial for F to be of class C1. Indeed, it follows

from an application of the o-lemma (cf. [MH, Chapter 3, Theorem 1.13]; [Va,

Chapter II, Section 4]) that the mappings

H s�1;pðW;R3 � R3Þ ! H s�1;pðWÞ

‘f 7! P̂Pijð‘fÞ

are of class C1 if sb 2 and s > 3=pþ 1.

Now we can state our main existence and uniqueness theorem for problem

(1.1) of nonlinear elastostatics (cf. [MH, Chapter 6, Theorem 4.2]; [Va, Chapter

IV, Theorem 4.5]):

Main Theorem. Let 1 < p < y, s > 3=pþ 1 and sb 2. We assume that the

following three conditions (P), (S) and (A) are satisfied:

(P) P̂Pð‘f
�
Þ ¼ 0 when f

�
¼ IW (the identity map on W).

(S) The elasticity tensor A
�
ðX Þ ¼ ðq2W=qFqFÞðXÞ evaluated at f

�
¼ IW enjoys

the property of symmetry

A
�
ijlmðX Þ ¼ A

�
lmijðXÞ ¼ A

�
jilmðXÞ; X A W;

and is uniformly pointwise stable, that is, there is a constant h > 0 such that
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1

2
e � A
�
ðX Þ � eb hkek2; X A W;

for all symmetric two tensors e.

(A) 0a aðXÞa 1 on qW, but aðX ÞD 1 on qW.

Then there exist a neighborhood U of the configuration f
�
in H s;pðW;R3Þ and

a neighborhood V of the point

ð�DIV P̂Pð‘f
�
Þ; aðXÞP̂Pð‘f

�
Þ �N þ ð1� aðXÞÞf

�
jqWÞ

in H s�2;pðW;R3Þ � B
s�1�1=p;p
ðaÞ ðqW;R3Þ such that the map F : U!V is one-to-one

and onto.

Condition (P) implies that the undeformed state is stress free. We remark that

the first Piola–Kirchho¤ stress tensors in Examples 1.1 and 1.2 satisfy condition

(P). Condition (A) implies that our boundary condition (1.2) is not equal to the

pure traction boundary condition. It should be noticed (cf. [MH, Chapter 7,

Section 7.3]) that the pure traction problem may have non-unique solutions even

for small loads and near a stress free state.

Rephrased, Main Theorem asserts that if the linearized problem is uniformly

pointwise stable, then, for slight perturbations of the load or boundary conditions

from their values at the undeformed state, the nonlinear problem (1.1) has a

unique solution f near f
�
¼ IW.

For the Hencky–Nadai elasto-plastic material, we have the following result

(cf. [Di, Théorème 2]):

Theorem 1.1. Let 1 < p < y, s > 3=pþ 1 and sb 2. We assume that the

following two conditions (B) and (A) are satisfied:

(B) gð0Þ > 0 and K > 0.

(A) 0a aðXÞa 1 on qW, but aðX ÞD 1 on qW.

Then condition (S) is satisfied and so Main Theorem applies.

For the Saint Venant–Kirchho¤ isotropic material, we have the following

result (cf. [Ci, Theorem 6.7-1]):

Theorem 1.2. Let 1 < p < y, s > 3=pþ 1 and sb 2. We assume that the

following two conditions (C) and (A) are satisfied:

(C) There exist constants c1 > 0 and c2 > 0 such that
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mðXÞb c1 on W;

lðX Þ þ 2

3
mðXÞb c2 on W:

8<
:

(A) 0a aðX Þa 1 on qW, but aðXÞD 1 on qW.

Then condition (S) is satisfied and so Main Theorem applies.

Remark 1.1. Theorem 1.2 contains [Ci, Theorem 6.4-1] as a special case if

we take s ¼ 2, p > 3 and aðXÞ1 0 on qW (the pure displacement problem).

The rest of this paper is organized as follows.

In Chapter 2 we present a brief description of the basic concepts and results

of the L p theory of pseudo-di¤erential operators which may be considered as a

generalization of the classical potential theory. This forms a functional analytic

background for the proof of Main Theorem.

In Chapter 3 we linearize problem (1.1) as follows:

DIVðA
�
� ‘VÞ ¼ �DIV P̂PðF

�
Þ � B in W;

aðXÞðA
�
� ‘V �NÞ þ ð1� aðXÞÞV

¼ t� aðX ÞP̂PðF
�
Þ �N � ð1� aðX ÞÞf

�
on qW;

8>><
>>: ð1:3Þ

where

A
�
:¼ qP̂P

qF
ðF
�
Þ; F

�
:¼ ‘f

�
;

is the first elasticity tensor evaluated at the given configuration f
�
.

Therefore, we are reduced to the study of a problem of linear elastostatics for

the unknown vector function v:

Av :¼ divðaðxÞ � ‘vÞ ¼ f in W;

Bav :¼ aðxÞðaðxÞ � ‘v � nÞ þ ð1� aðxÞÞv ¼ j on qW;

�
ð1:4Þ

where aðxÞ is a smooth elasticity tensor and n is the unit outward normal to the

boundary qW.

In Chapters 4 through 7 we study the linearized problem (1.4) in the

framework of Sobolev spaces of L p type, by using the Lp theory of pseudo-

di¤erential operators. Our fundamental existence and uniqueness theorem for

problem (1.4) is stated as Theorem 3.1 in Chapter 3. This fundamental theorem

(Theorem 3.1) is an essential step in the proof of Main Theorem, and is proved in

a series of theorems (Theorems 5.1, 6.1 and 7.1).
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Step 1: In Chapter 4 we show that problem (1.4) can be reduced to the study

of a 3� 3 matrix-valued, pseudo-di¤erential operator on the boundary. We

explain more precisely the idea of our approach to problem (1.4).

Step 1-a: First, we consider the pure displacement problem (Dirichlet

problem)

Av ¼ divðaðxÞ � ‘vÞ ¼ f in W;

v ¼ j on qW:

�
(D)

The existence and uniqueness theorem for problem (D) is well established in the

framework of Sobolev spaces of Lp type (Theorem 4.1). Thus we can introduce

the Poisson operator

P : B s�1=p;pðqW;R3Þ ! H s;pðW;R3Þ

as follows: For any j A B s�1=p;pðqW;R3Þ, the function Pj is the unique solution of

the pure displacement problem

Av ¼ 0 in W;

v ¼ j on qW:

�

Step 1-b: Next, we consider the following non-degenerate mixed displacement-

traction problem:

Av ¼ divðaðxÞ � ‘vÞ ¼ f in W;

ðaðxÞ � ‘v � nÞ þ v ¼ j on qW:

�
(M)

The existence and uniqueness theorem for problem (M) is also well established in

the framework of Sobolev spaces of L p type (Theorem 4.2).

Step 1-c: Then, by using problems (D) and (M) we show that problem (1.4)

can be reduced to the study of a 3� 3 matrix-valued, pseudo-di¤erential operator

on the boundary, which is a generalization of the classical Fredholm integral

equation.

Indeed, if we let

Taj :¼ BaðPjÞ;

then we have the formula

Ta ¼ aðxÞP þ ð1� aðxÞÞI ;

where

Pj ¼ aðxÞ � ‘ðPjÞ � njqW:
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It is known that the operator P is a 3� 3 matrix-valued, classical pseudo-

di¤erential operator of first order on the boundary qW; hence the operator Ta is a

3� 3 matrix-valued, classical pseudo-di¤erential operator of first order on the

boundary qW.

We can show that problem (1.4) can be reduced to the study of the system

Ta of pseudo-di¤erential operators on the boundary qW (Theorems 4.4 and

4.5). However, it should be emphasized here that the operator Ta ¼ aðxÞP þ
ð1� aðxÞÞI is degenerate elliptic at the points x A qW where aðxÞ ¼ 0.

Section 4.2 is devoted to the study of the pseudo-di¤erential operator P (and

hence Ta) in question. In particular, by using Green’s formula (Theorem 4.6) and

Korn’s inequality (Theorem 4.7) we show that the operator P is strongly elliptic

on the boundary qW (Theorem 4.8).

Step 2: In Chapter 5 we prove a regularity theorem for problem (1.4). More

precisely, we can construct a parametrix Sa for the operator Ta in the Hörmander

class L0
1;1=2ðqW;R3Þ (Lemma 5.2), and then apply a Besov-space boundedness

theorem (Theorem 2.11) to the parametrix Sa to obtain the regularity theorem for

problem (1.4) (Theorem 5.1).

Step 3: Chapter 6 is devoted to a uniqueness theorem for problem (1.4)

(Theorem 6.1). By using the regularity theorem for problem (1.4) (Theorem 5.1),

we prove that the operator

Aa :¼ ðA;BaÞ : H s;pðW;R3Þ 7! H s�2;pðW;R3Þ � B
s�1�1=p;p
ðaÞ ðqW;R3Þ

is injective. In the proof we make good use of Korn’s inequality (Theorem 4.7) to

show an inequality of Gårding type for problem (1.4).

Step 4: Chapter 7 is devoted to an existence theorem for problem (1.4)

(Theorem 7.1), which is an essential step in the proof of our fundamental theorem

(Theorem 3.1).

By the uniqueness theorem (Theorem 6.1), we know that the operator Aa is

injective, that is, dim NðAaÞ ¼ 0. Hence, in order to prove the surjectivity of Aa

(or equivalently codim RðAaÞ ¼ 0) it su‰ces to show that the index of the

operator Aa is equal to zero (Proposition 7.2), that is,

ind Aa :¼ dim NðAaÞ � codim RðAaÞ ¼ 0:

Step 4-a: To do this, we replace the operator A by the operator A� lI

with lb 0, and consider instead of problem (1.4) the following boundary value

problem:
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ðA� lIÞv ¼ divðaðxÞ � ‘vÞ � lv ¼ f in W;

Bav ¼ aðxÞðaðxÞ � ‘v � nÞ þ ð1� aðxÞÞv ¼ j on qW:

�
ð1:5Þl

It should be noticed that problem ð1:5Þl coincides with problem (1.4) when l ¼ 0.

Step 4-b: To study problem ð1:5Þl, we shall make use of a method essentially

due to Agmon [Ag]. This is a technique of treating a spectral parameter lI as a

second-order di¤erential operator of an extra variable and relating the old

problem to a new one with the additional variable, which we will explain more

precisely.

We introduce an auxiliary variable y of the unit circle

S ¼ R=2pZ;

and replace the parameter �lI by the second-order di¤erential operator

q2

qy2
I :

Namely, we replace the operator A� lI by the operator

~LL ¼ Aþ q2

qy2
I ;

and consider instead of problem ð1:5Þl the following boundary value problem:

~LL~vv ¼ divðaðxÞ � ‘~vvÞ þ q2~vv

qy2
¼ ~ff in W� S;

Ba~vv ¼ aðxÞðaðxÞ � ‘~vv � nÞ þ ð1� aðxÞÞ~vv ¼ ~jj on qW� S:

8><
>: ð1:6Þ

Then the most fundamental relationship between problems ð1:5Þl and problem

(1.6) is the following (Proposition 7.4):

If the index of problem (1.6) is finite, then there exists a finite subset K of Z

such that problem ð1:5Þl is uniquely solvable for all l 0 ¼ l2 satisfying l A ZnK.

The proof of this assertion is given in Section 7.2, due to its length.

Step 4-c: We show that there exists a parametrix ~SSa for the operator ~TTa in the

Hörmander class L0
1;1=2ðqW� S;R3Þ (Lemma 7.3). Therefore, by applying the

Besov-space boundedness theorem (Theorem 2.11) and Peetre’s lemma (Lemma

7.5) to our situation we obtain that the index of problem (1.6) is finite. By

Step 4-b, this proves that the index of Aa is equal to zero.

Step 5: Chapter 8 is devoted to the proof of Main Theorem, Theorem 1.1

and Theorem 1.2. By the existence and uniqueness theorem for problem (1.4)

(Theorem 3.1), our Main Theorem follows from an application of the inverse
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mapping theorem (Theorem 8.1). In the proof of Theorems 1.1 and 1.2 we

calculate explicitly the first elasticity tensor A
�
, and verify that either condition (B)

or condition (C) implies condition (S).

In the final Chapter 9 we give two important open problems concerning the

boundary value problems of nonlinear elastostatics for future study.

2. Theory of Pseudo-Di¤erential Operators

In this chapter we present a brief description of the basic concepts and results

of the L p theory of pseudo-di¤erential operators which may be considered as a

generalization of the classical potential theory. This forms a functional analytic

background for the proof of Main Theorem. For detailed studies of pseudo-

di¤erential operators, the reader is referred to Chazarain–Piriou [CP], Hörmander

[Ho3], Kumano-go [Ku] and Taylor [Ty].

2.1 Function Spaces

Let W be a bounded domain of Euclidean space Rn with smooth boundary

qW. Its closure W ¼ WU qW is an n-dimensional, compact smooth manifold with

boundary. Without loss of generality, we may assume that the domain W is a

relatively compact open subset of an n-dimensional, compact smooth manifold M

without boundary (see Figure 2.1). This manifold M is called the double of W.

The function spaces we shall treat are the following (cf. [AF], [BL], [Fr],

[Tr]):

(i) The generalized Sobolev spaces Hs;pðWÞ and Hs;pðMÞ, consisting of all

potentials of order s of L p functions. When s is integral, these spaces coincide

with the usual Sobolev spaces W s;pðWÞ and W s;pðMÞ, respectively.

(ii) The Besov spaces Bs;pðqWÞ. These are functions spaces defined in terms of

the L p modulus of continuity, and enter naturally in connection with boundary

value problems.

First, if 1a p < y, we let

L pðWÞ ¼ the space of ðequivalence classes ofÞ Lebesgue measurable

functions uðxÞ on W such that juðxÞjp is integrable on W:

The space L pðWÞ is a Banach space with the norm

kukp ¼
ð
W

juðxÞjp dx
� �1=p

:
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For p ¼y, we let

LyðWÞ ¼ the spaceof ðequivalence classes ofÞ essentially bounded;

Lebesgue measurable functions uðxÞ on W:

The space LyðWÞ is a Banach space with the norm

kuky ¼ ess supx AWjuðxÞj:

We recall the basic definitions and facts about the Fourier transform. If

f ðxÞ A L1ðRnÞ, we define its (direct) Fourier transform Ff ðxÞ by the formula

Ff ðxÞ ¼
ð
R n

e�ix�xf ðxÞ dx; x ¼ ðx1; x2; . . . ; xnÞ;

where x � x ¼ x1x1 þ x2x2 þ � � � þ xnxn. We also denote Ff ðxÞ by f̂f ðxÞ.
Similarly, if gðxÞ A L1ðRnÞ, we define its inverse Fourier transform F�gðxÞ by

the formula

F�gðxÞ ¼ 1

ð2pÞn
ð
R n

eix�xgðxÞ dx:

We introduce a subspace of L1ðRnÞ which is invariant under the Fourier

transform. We define the Schwartz space

SðRnÞ ¼ the space of smooth functions jðxÞ on Rn such that we have;

for any non-negative integer j;

Figure 2.1
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pjðjÞ ¼ sup
x AR n

jajaj

fð1þ jxj2Þ j=2jqajðxÞjg < y:

We equip the space SðRnÞ with the topology defined by the countable family

fpjg of seminorms. The space SðRnÞ is a Fréchet space. The Fourier transforms

F and F� map SðRnÞ continuously into itself, and FF� ¼F�F ¼ I on

SðRnÞ.
Since the injection of Cy

0 ðRnÞ into SðRnÞ is continuous, it follows that the

dual space S 0ðRnÞ of SðRnÞ consists of those distributions T A D 0ðRnÞ that have
continuous extensions to SðRnÞ. The elements of S 0ðRnÞ are called tempered

distributions on Rn. The direct and inverse Fourier transforms can be extended to

the space S 0ðRnÞ by the following formulas:

hFu; ji ¼ hu;Fji; j A SðRnÞ:

hF�u; ji ¼ hu;F�ji; j A SðRnÞ:

Once again, the Fourier transforms F and F� map S 0ðRnÞ continuously into

itself, and FF� ¼F�F ¼ I on S 0ðRnÞ.
If s A R, we define a linear map

J s : S 0ðRnÞ !S 0ðRnÞ

by the formula

J su :¼F�ðð1þ jxj2Þ�s=2FuÞ; u A S 0ðRnÞ:

This can be visualized as follows:

u A S 0ðRnÞ ������!J s

S 0ðRnÞ C J su

F

???y
x???F �

Fu A S 0ðRnÞ ������!
ð1þjxj2Þ�s=2

S 0ðRnÞ C ð1þ jxj2Þ�s=2Fu

Then it is easy to see that the map J s is an isomorphism of S 0ðRnÞ onto itself

and that its inverse is the map J�s. The function J su is called the Bessel potential

of order s of u.

(I) Now, if s A R and 1 < p < y, we let
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Hs;pðRnÞ ¼ the image of L pðRnÞ under the mapping J s:

We equip Hs;pðRnÞ with the norm kuks;p ¼ kJ�sukp for u A Hs;pðRnÞ. The space

Hs;pðRnÞ is called the (generalized) Sobolev space of order s.

We list four basic topological properties of Hs;pðRnÞ:
(1) The Schwartz space SðRnÞ is dense in each Hs;pðRnÞ.
(2) The space H�s;p

0 ðRnÞ is the dual space of Hs;pðRnÞ, where p 0 ¼ p=ðp� 1Þ
is the exponent conjugate to p.

(3) If s > t, then we have the inclusions

SðRnÞHHs;pðRnÞHHt;pðRnÞHS 0ðRnÞ;

with continuous injections.

(4) If s is a non-negative integer, then the space Hs;pðRnÞ is isomorphic to

the usual Sobolev space W s;pðRnÞ, that is, the space Hs;pðRnÞ coincides with the

space of functions uðxÞ A L pðRnÞ such that DauðxÞ A L pðRnÞ for jaja s, and the

norm k � ks;p is equivalent to the norm

X
jajas

ð
R n

jDauðxÞjp dx

0
@

1
A1=p:

(II) Next, if 1a p < y, we let

B1;pðRn�1Þ ¼ the space of ðequivalence classes ofÞ functions

jðx 0Þ A L pðRn�1Þ for which the integralð ð
R n�1�Rn�1

jjðx 0 þ y 0Þ � 2jðx 0Þ þ jðx 0 � y 0Þjp

jy 0jðn�1Þþp
dy 0dx 0

is finite:

The space B1;pðRn�1Þ is a Banach space with respect to the norm

jjj1;p ¼
�ð

R n�1
jjðx 0Þjp dx 0

þ
ð ð

R n�1�R n�1

jjðx 0 þ y 0Þ � 2jðx 0Þ þ jðx 0 � y 0Þjp

jy 0jn�1þp
dy 0dx 0

�1=p
:

If p ¼y, we let
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B1;yðRn�1Þ ¼ the space of ðequivalence classes ofÞ functions

jðx 0Þ A LyðRn�1Þ for which the quantity

sup
jy 0 j>0

kjð� þ y 0Þ � 2jð�Þ þ jð� � y 0Þky
jy 0j is finite:

The space B1;yðRn�1Þ is a Banach space with respect to the norm

jjj1;y ¼ kjky þ sup
jy 0 j>0

kjð� þ y 0Þ � 2jð�Þ þ jð� � y 0Þky
jy 0j :

If s A R and 1a pay, we let

Bs;pðRn�1Þ ¼ the image of B1;pðRn�1Þ under the mapping J 0s�1; where

J 0s�1 is the Bessel potential of order s� 1 on Rn�1:

We equip the space Bs;pðRn�1Þ with the norm jjjs;p ¼ jJ 0�sþ1jj1;p for

j A Bs;pðRn�1Þ. The space Bs;pðRn�1Þ is called the Besov space of order s.

We list four basic topological properties of Bs;pðRn�1Þ:
(1) The Schwartz space SðRn�1Þ is dense in each Bs;pðRn�1Þ.
(2) The space B�s;p

0 ðRn�1Þ is the dual space of Bs;pðRn�1Þ, where p 0 ¼
p=ðp� 1Þ is the exponent conjugate to p.

(3) If s > t, then we have the inclusions

SðRn�1ÞHBs;pðRn�1ÞHBt;pðRn�1ÞHS 0ðRn�1Þ;

with continuous injections.

(4) If 1a p < y and if s ¼ mþ s with a non-negative integer m and

0 < s < 1, then the Besov space Bs;pðRn�1Þ coincides with the space of functions

jðx 0Þ A Hm;pðRn�1Þ such that, for jaj ¼ m, the integral (Slobodeckiı̆ seminorm)

ð ð
R n�1�R n�1

jDajðx 0Þ �Dajðy 0Þjp

jx 0 � y 0jn�1þps
dx 0dy 0

is finite. Furthermore, the norm jjjs;p is equivalent to the norm

X
jajam

ð
Rn�1
jDajðx 0Þjp dx 0 þ

X
jaj¼m

ð ð
R n�1�Rn�1

jDajðx 0Þ �Dajðy 0Þjp

jx 0 � y 0jn�1þps
dx 0dy 0

0
@

1
A1=p:

Now we define the generalized Sobolev spaces Hs;pðWÞ, Hs;pðMÞ and the

Besov spaces Bs;pðqWÞ for arbitrary values of s.
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For each s A R, we define the Sobolev space

Hs;pðWÞ ¼ the space of restrictions to W of functions in Hs;pðRnÞ:

We equip the space Hs;pðWÞ with the norm

kuks;p ¼ inffkUks;p : U A Hs;pðRnÞ;U jW ¼ ug:

The space Hs;pðWÞ is a Banach space with respect to the norm k � ks;p. We

remark that

H 0;pðWÞ ¼ L pðWÞ; k � k0;p ¼ k � kp:

The Sobolev spaces Hs;pðMÞ are defined to be locally the spaces Hs;pðRnÞ,
upon using local coordinate systems flattening out M, together with a partition

of unity. The Besov spaces Bs;pðqWÞ are defined similarly, with Hs;pðRnÞ replaced
by Bs;pðRn�1Þ. The norms of Hs;pðMÞ and Bs;pðqWÞ will be denoted respectively

by k � ks;p and j � js;p.
We state two important theorems that will be used in the study of boundary

value problems in the framework of Sobolev spaces of Lp type (see [AF], [BL],

[St], [Tr]):

(I) (The trace theorem) Let 1 < p < y. Then the trace map

r : Hs;pðWÞ ! Bs�1=p;pðqWÞ

u 7! ujqW

is continuous for all s > 1=p, and is surjective.

(II) (The Rellich–Kondrachov theorem) If s > t, then the injections

Hs;pðMÞ ! Ht;pðMÞ;

Bs;pðqWÞ ! Bt;pðqWÞ

are both compact (or completely continuous).

Finally, we introduce a space of distributions on W which behave locally just

like the distributions in Hs;pðRnÞ:

H
s;p
loc ðWÞ ¼ the space of distributions u A D 0ðWÞ such that

ju A Hs;pðRnÞ for all j A Cy
0 ðWÞ:

We equip the localized Sobolev space H
s;p
loc ðWÞ with the topology defined by the

seminorms u 7! kjuks;p as j ranges over Cy
0 ðWÞ. It is easy to verify that Hs;p

loc ðWÞ
is a Fréchet space. The localized Besov space B

s;p
loc ðqWÞ is defined similarly, with

Hs;pðRnÞ replaced by Bs;pðRn�1Þ.
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2.2 Pseudo-Di¤erential Operators

This section is devoted to a brief description of the basic concepts and results

of the L p theory of pseudo-di¤erential operators—a modern theory of classical

potentials.

2.2.1 Symbol Classes. Let W be an open subset of Rn. If m A R and

0a d < ra 1, we let

Sm
r; dðW� RNÞ ¼ the set of all functions aðx; yÞ A CyðW� RNÞ with the

property that; for any compact KHW and any multi-indices

a; b; there exists a constant CK;a;b > 0 such that we have;

for all x A K and all y A RN ;

jqa
yq

b
xaðx; yÞjaCK ;a;bð1þ jyjÞm�rjajþdjbj:

The elements of Sm
r; dðW� RNÞ are called symbols of order m. We drop the

W� RN and use Sm
r; d when the context is clear.

Examples 2.1. (1) A polynomial pðx; xÞ ¼
P
jajam aaðxÞxa of order m with

coe‰cients in CyðWÞ is in Sm
1;0ðW� RnÞ.

(2) If m A R, the function

W� Rn C ðx; xÞ 7! ð1þ jxj2Þm=2

is in Sm
1;0ðW� RnÞ.

(3) A function aðx; yÞ A CyðW� ðRNnf0gÞ is said to be positively homo-

geneous of degree m in y if it satisfies the condition

aðx; tyÞ ¼ tmaðx; yÞ; t > 0:

If aðx; yÞ is positively homogeneous of degree m in y and if jðyÞ is a smooth

function such that jðyÞ ¼ 0 for jyja 1=2 and jðyÞ ¼ 1 for jyjb 1, then the

function jðyÞaðx; yÞ is in the class Sm
1;0ðW� RNÞ.

If K is a compact subset of W and j is a non-negative integer, we define a

seminorm pK; j;m on Sm
r; dðW� RNÞ by the formula

Sm
r; dðW� RNÞ C a 7! pK ; j;mðaÞ ¼ sup

x AK
y ARN

jajaj

jqa
yq

b
xaðx; yÞj

ð1þ jyjÞm�rjajþdjbj :
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We equip the space Sm
r; dðW� RNÞ with the topology defined by the family

fpK; j;mg of seminorms where K ranges over all compact subsets of W and

j ¼ 0; 1; . . . . The space Sm
r; dðW� RNÞ is a Fréchet space.

We set

S�yðW� RNÞ ¼ 7
m AR

Sm
r; dðW� RNÞ:

The next theorem gives a meaning to a formal sum of symbols of decreasing

order:

Theorem 2.1. Let ajðx; yÞ A S
mj

r; dðW� RNÞ, mj # �y, j ¼ 0; 1; . . . : Then there

exists a symbol aðx; yÞ A Sm0

r; dðW� RNÞ, unique modulo S�yðW� RNÞ, such that we

have, for all k > 0,

aðx; yÞ �
Xk�1
j¼0

ajðx; yÞ A Smk

r; dðW� RNÞ: ð2:1Þ

If formula (2.1) holds true, we write

aðx; yÞ@
Xy
j¼0

ajðx; yÞ:

The formal sum
Py

j¼0 ajðx; yÞ is called an asymptotic expansion of aðx; yÞ.
A symbol aðx; yÞ A Sm

1;0ðW� RNÞ is said to be classical if there exist smooth

functions ajðx; yÞ, positively homogeneous of degree m� j in y for jyjb 1, such

that, for all positive integers k,

aðx; yÞ �
Xk�1
j¼0

ajðx; yÞ A Sm�k
1;0 ðW� RNÞ:

The homogeneous function a0ðx; yÞ of degree m is called the principal part of

aðx; yÞ.
We let

Sm
cl ðW� RNÞ ¼ the set of all classical symbols of order m:

For example, the symbols in Examples 2.1 are all classical.

A symbol aðx; yÞ in Sm
r; dðW� RNÞ is said to be elliptic of order m if, for any

compact KHW, there exists a constant CK > 0 such that
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jaðx; yÞjbCKð1þ jyjÞm; x A K; jyjb 1

CK

:

There is a simple criterion in the case of classical symbols.

Theorem 2.2. Let aðx; yÞ be in Sm
cl ðW� RNÞ with principal part a0ðx; yÞ.

Then aðx; yÞ is elliptic if and only if we have the condition

a0ðx; yÞ0 0; x A W; jyj ¼ 1:

2.2.2 Pseudo-Di¤erential Operators. Let W be an open subset of Rn. If

jðx; y; xÞ is a phase function on W�W� ðRnnf0gÞ such that

jðx; y; xÞ ¼ ðx� yÞ � x;

we define a first-order di¤erential operator

L :¼ 1

i

1� rðxÞ
2þ jx� yj2

Xn
j¼1
ðxj � yjÞ

q

qxj
þ
Xn
k¼1

xk

jxj2
q

qxk
þ
Xn
k¼1

�xk
jxj2

q

qyk

( )
þ rðxÞ;

where i ¼
ffiffiffiffiffiffiffi
�1
p

and rðxÞ is a function in Cy
0 ðRnÞ such that rðxÞ ¼ 1 for jxja 1.

Then it is easy to see that the operator L enjoys the property

LðeijÞ ¼ eij:

We let

Sy
r; dðW�W� RnÞ ¼ 6

m AR

Sm
r; dðW�W� RnÞ;

and we wish to give a meaning to the integral

IjðawÞ ¼
ð ð

W�W�R n

eijðx;y;xÞaðx; y; xÞwðx; yÞ dxdydx; w A Cy
0 ðW�WÞ; ð2:2Þ

for each symbol aðx; y; xÞ A Sy
r; dðW�W� RnÞ. If we replace eij in formula (2.2)

by LðeijÞ, then a formal integration by parts gives us that

IjðawÞ ¼
ð ð

W�W�R n

eijðx;y;xÞL 0ðaðx; y; xÞwðx; yÞÞ dxdydx:

However, the transpose L 0 of L maps Sr
r; d continuously into S

r�h
r; d for all r A R,

where h ¼ minðr; 1� dÞ. Thus, continuing this process we can reduce the growth

of the integrand at infinity until it becomes integrable, and give a meaning to

the integral (2.2) for each symbol aðx; y; xÞ A Sy
r; dðW�W� RnÞ.
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More precisely, we have the following:

Theorem 2.3. (i) The linear functional

S�yðW�W� RnÞ C a 7! IjðawÞ A C

extends uniquely to a linear functional l on Sy
r; dðW�W� RnÞ whose restriction

to each Sm
r; dðW�W� RnÞ is continuous. Furthermore, the restriction to

Sm
r; dðW�W� RnÞ of l is expressed as the formula

lðaÞ ¼
ð ð

W�W�RN

eijðx;y;xÞðL 0Þkðaðx; y; xÞwðx; yÞÞ dxdydx;

where k > ðmþNÞ=h and h ¼ minðr; 1� dÞ.
(ii) For any fixed aðx; y; xÞ A Sm

r; dðW�W� RnÞ, the mapping

Cy
0 ðW�WÞ C w 7! IjðawÞ ¼ lðaÞ A C ð2:3Þ

is a distribution of ordera k for k > ðmþNÞ=h.

We call the linear functional l on Sy
r; d an oscillatory integral, but use the

standard notation as in formula (2.2). The distribution (2.3) is called the Fourier

integral distribution associated with the phase function jðx; y; xÞ and the am-

plitude aðx; y; xÞ, and is denoted as follows:

kðx; yÞ ¼
ð
R n

eijðx;y;xÞaðx; y; xÞ dx:

The distribution kðx; yÞ defines a continuous linear operator

A : Cy
0 ðWÞ ! D 0ðWÞ

by the formula

hAu; vi ¼ hk; vn ui; u A Cy
0 ðWÞ; v A Cy

0 ðWÞ:

The operator A is called a pseudo-di¤erential operator, and is denoted as follows:

AuðxÞ ¼
ð ð

W�R n

e iðx�yÞ�xaðx; y; xÞuðyÞ dydx; u A Cy
0 ðWÞ: ð2:4Þ

For example, the distribution

kðx; yÞ ¼ 1

ð2pÞn
ð
R n

eiðx�yÞx
1

ð1þ jxj2Þs=2
dx A D 0ðRn � RnÞ

defines the Bessel potential J s ¼ ðI � DÞ�s=2 for any s > 0.
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We summarize three basic properties of the operator A:

(1) A pseudo-di¤erential operator A maps Cy
0 ðWÞ continuously into CyðWÞ,

and extends to a continuous linear operator A : E 0ðWÞ ! D 0ðWÞ.
(2) The distribution kernel kAðx; yÞ of a pseudo-di¤erential operator A

satisfies the condition

sing supp kA H fðx; xÞ : x A Wg;

that is, the kernel kAðx; yÞ is smooth o¤ the diagonal fðx; xÞ : x A Wg in W�W.

Here we recall that if u is a distribution on W, the singular support of u is the

smallest closed subset of W outside of which u is smooth; the singular support of

u is denoted by sing supp u.

(3) sing supp AuH sing supp u, u A E 0ðWÞ.
In other words, Au is smooth whenever u is. This property is referred to as the

pseudo-local property.

A pseudo-di¤erential operator A is said to be of order m if it is an operator

of the form (2.4) with some aðx; y; xÞ A Sm
r; dðW�W� RnÞ. We let

Lm
r; dðWÞ ¼ the set of all pseudo-di¤erential operators of order m on W;

and

L�yðWÞ ¼ 7
m AR

Lm
r; dðWÞ:

The next theorem characterizes the class L�yðWÞ:

Theorem 2.4. The following three conditions (i), (ii) and (iii) are equivalent:

(i) A A L�yðWÞ.
(ii) A is written in the form (2.4) with some aðx; y; xÞ A S�yðW�W� RnÞ.
(iii) A is a regularizer, or equivalently, its distribution kernel kAðx; yÞ is a

smooth function on W�W.

A continuous linear operator A : Cy
0 ðWÞ ! D 0ðWÞ is said to be properly

supported if the following two conditions (a) and (b) are satisfied:

(a) For any compact subset K of W, there exists a compact subset K 0 of W

such that

supp vHK ) supp AvHK 0:

(b) For any compact subset K 0 of W, there exists a compact subset KIK 0 of

W such that
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supp vVK ¼q) supp AvVK 0 ¼q:

If A is properly supported, then it maps Cy
0 ðWÞ continuously into E 0ðWÞ, and

further it extends to a continuous linear operator on CyðWÞ into D 0ðWÞ.
The next theorem states that every pseudo-di¤erential operator can be written

as the sum of a properly supported operator and a regularizer:

Theorem 2.5. If A A Lm
r; dðWÞ, then we have the formula

A ¼ A0 þ R;

where A0 A Lm
r; dðWÞ is properly supported and R A L�yðWÞ.

If pðx; xÞ A Sm
r; dðW� RnÞ, then the operator pðx;DÞ, defined by the formula

pðx;DÞuðxÞ :¼ 1

ð2pÞn
ð
R n

eix�xpðx; xÞûuðxÞ dx; u A Cy
0 ðWÞ; ð2:5Þ

is a pseudo-di¤erential operator of order m on W, that is, pðx;DÞ A Lm
r; dðWÞ.

The next theorem asserts that every properly supported pseudo-di¤erential

operator can be reduced to the form (2.5):

Theorem 2.6. If A A Lm
r; dðWÞ is properly supported, then we have the formula

pðx; xÞ ¼ e�ix�xAðeix�xÞ A Sm
r; dðW� RnÞ;

and

A ¼ pðx;DÞ:

Furthermore, if aðx; y; xÞ A Sm
r; dðW�W� RnÞ is an amplitude for A, we have the

following asymptotic expansion:

pðx; xÞ@
X
ab0

1

a!
qa
xD

a
y ðaðx; y; xÞÞjy¼x:

The function pðx; xÞ is called the complete symbol of A.

We extend the notion of a complete symbol to the whole space Lm
r; dðWÞ. If

A A Lm
r; dðWÞ, we choose a properly supported operator A0 A Lm

r; dðWÞ such that

A� A0 A L�yðWÞ, and let

sðAÞ :¼ the equivalence class of the complete symbol of A0 in

Sm
r; dðW� RnÞ=S�yðW� RnÞ:
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By virtue of Theorems 2.4 and 2.5, it follows that sðAÞ does not depend on

the operator A0 chosen. The equivalence class sðAÞ is called the complete symbol

of A. It is easy to see that the mapping

Lm
r; dðWÞ C A 7! sðAÞ A Sm

r; dðW� RnÞ=S�yðW� RnÞ

induces an isomorphism

Lm
r; dðWÞ=L�yðWÞ ! Sm

r; dðW� RnÞ=S�yðW� RnÞ:

We shall often identify the complete symbol sðAÞ with a representative in the

class Sm
r; dðW� RnÞ for notational convenience, and call any member of sðAÞ a

complete symbol of A.

A pseudo-di¤erential operator A A Lm
1;0ðWÞ is said to be classical if its

complete symbol sðAÞ has a representative in the class Sm
cl ðW� RnÞ.

We let

Lm
cl ðWÞ ¼ the set of all classical pseudo-di¤erential operators of order m

on W:

Then the mapping

Lm
cl ðWÞ C A 7! sðAÞ A Sm

cl ðW� RnÞ=S�yðW� RnÞ

induces an isomorphism

Lm
cl ðWÞ=L�yðWÞ ! Sm

cl ðW� RnÞ=S�yðW� RnÞ:

Also we have the formula

L�yðWÞ ¼ 7
m AR

Lm
cl ðWÞ:

If A A Lm
cl ðWÞ, then the principal part of sðAÞ has a canonical representative

sAðx; xÞ A CyðW� ðRnnf0gÞÞ which is positively homogeneous of degree m in the

variable x. The function sAðx; xÞ is called the homogeneous principal symbol of A.

The next two theorems assert that the class of pseudo-di¤erential operators

forms an algebra closed under the operations of composition of operators and

taking the transpose or adjoint of an operator:

Theorem 2.7. If A A Lm
r; dðWÞ, then its transpose A 0 and its adjoint A� are

both in Lm
r; dðWÞ, and the complete symbols sðA 0Þ and sðA�Þ have respectively the

following asymptotic expansions:
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sðA 0Þðx; xÞ@
X
ab0

1

a!
qa
xD

a
xðsðAÞðx;�xÞÞ;

sðA�Þðx; xÞ@
X
ab0

1

a!
qa
xD

a
xðsðAÞðx; xÞÞ:

Theorem 2.8. If A A Lm 0

r 0; d 0
ðWÞ and B A Lm 00

r 00; d 00
ðWÞ where 0a d 0 < r 00a 1 and

if one of them is properly supported, then the composition AB is in Lm 0þm 00
r; d ðWÞ

with r ¼ minðr 0; r 00Þ and d ¼ maxðd 0; d 00Þ, and we have the following asymptotic

expansion:

sðABÞðx; xÞ@
X
ab0

1

a!
qa
x ðsðAÞðx; xÞÞ �Da

xðsðBÞðx; xÞÞ:

A pseudo-di¤erential operator A A Lm
r; dðWÞ is said to be elliptic of order m if

its complete symbol sðAÞ is elliptic of order m. By virtue of Theorem 2.2, it

follows that a classical pseudo-di¤erential operator A A Lm
cl ðWÞ is elliptic if and

only if its homogeneous principal symbol sAðx; xÞ does not vanish on the space

W� ðRnnf0gÞ.
The next theorem states that elliptic operators are the ‘‘invertible’’ elements in

the algebra of pseudo-di¤erential operators:

Theorem 2.9. An operator A A Lm
r; dðWÞ is elliptic if and only if there exists a

properly supported operator B A L�mr; d ðWÞ such that

AB1 I mod L�yðWÞ;
BA1 I mod L�yðWÞ:

�

Such an operator B is called a parametrix for A. In other words, a para-

metrix for A is a two-sided inverse of A modulo L�yðWÞ. We observe that a

parametrix is unique modulo L�yðWÞ.
The next theorem proves the invariance of pseudo-di¤erential operators under

change of coordinates:

Theorem 2.10. Let W1 and W2 be two open subsets of Rn and w : W1 ! W2 a

Cy di¤eomorphism. If A A Lm
r; dðW1Þ, where 1� ra d < ra 1, then the mapping

Aw : C
y
0 ðW2Þ ! CyðW2Þ

v 7! Aðv � wÞ � w�1
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is in Lm
r; dðW2Þ, and we have the asymptotic expansion

sðAwÞðy; hÞ@
X
ab0

1

a!
ðqa

xsðAÞÞðx; t w 0ðxÞ � hÞ �Da
z ðeirðx; z;hÞÞjz¼x; ð2:6Þ

with

rðx; z; hÞ :¼ hwðzÞ � wðxÞ � w 0ðxÞ � ðz� xÞ; hi:

Here x ¼ w�1ðyÞ, w 0ðxÞ is the derivative of w at x and tw 0ðxÞ its transpose.

The situation may be represented by the following diagram:

Cy
0 ðW1Þ ���!A CyðW1Þ

w �

x???
???yw�

Cy
0 ðW2Þ ���!

Aw

CyðW2Þ

Here w�v ¼ v � w is the pull-back of v by w and w�u ¼ u � w�1 is the push-forward

of u by w, respectively.

Remark 2.1. Formula (2.6) shows that

sðAwÞðy; hÞ1 sðAÞðx;t w 0ðxÞ � hÞ mod S
m�ðr�dÞ
r; d :

Note that the mapping

W2 � Rn C ðy; hÞ 7! ðx;t w 0ðxÞ � hÞ A W1 � Rn

is just a transition map of the cotangent bundle T �ðRnÞ. This implies that the

principal symbol smðAÞ of A A Lm
r; dðRnÞ can be invariantly defined on T �ðRnÞ

when 1� ra d < ra 1.

A di¤erential operator of order m with smooth coe‰cients on W is con-

tinuous on H
s;p
loc ðWÞ (resp. B

s;p
loc ðWÞ) into H

s�m;p
loc ðWÞ (resp. Bs�m;p

loc ðWÞ) for all s A R.

This result extends to pseudo-di¤erential operators (cf. [Bo, Theorem 1]; [Ta4,

Theorem A.6]):

Theorem 2.11. Every properly supported operator A A Lm
1; dðWÞ, 0a d < 1,

extends to a continuous linear operator A : Hs;p
loc ðWÞ ! H

s�m;p
loc ðWÞ for all s A R and

all 1 < p < y, and also it extends to a continuous linear operator A : Bs;p
loc ðWÞ !

B
s�m;p
loc ðWÞ for all s A R and all 1a pay.
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Now we can define the concept of a pseudo-di¤erential operator on a

manifold, and transfer all the machinery of pseudo-di¤erential operators to

manifolds. Let M be an n-dimensional, compact smooth manifold without

boundary. Theorem 2.10 leads us to the following:

Definition 2.1. Let 1� ra d < ra 1. A continuous linear operator

A : CyðMÞ ! CyðMÞ is called a pseudo-di¤erential operator of order m A R if

it satisfies the following two conditions (i) and (ii):

(i) The distribution kernel kAðx; yÞ of A is smooth o¤ the diagonal

fðx; xÞ : x A Mg in M �M.

(ii) For any chart ðU ; wÞ on M, the mapping

Aw : C
y
0 ðwðUÞÞ ! CyðwðUÞÞ

u 7! Aðu � wÞ � w�1

belongs to the class Lm
r; dðwðUÞÞ.

We let

Lm
r; dðMÞ ¼ the set of all pseudo-di¤erential operators of order m on M;

and set

L�yðMÞ ¼ 7
m AR

Lm
r; dðMÞ:

Some results about pseudo-di¤erential operators on Rn stated above are also

true for pseudo-di¤erential operators on M. In fact, pseudo-di¤erential operators

on M are defined to be locally pseudo-di¤erential operators on Rn.

For example, we have the following five results (1) through (5):

(1) A pseudo-di¤erential operator A extends to a continuous linear operator

A : D 0ðMÞ ! D 0ðMÞ.
(2) sing supp AuH sing supp u, u A D 0ðMÞ.
(3) A continuous linear operator A : CyðMÞ ! D 0ðMÞ is a regularizer if and

only if it is in the class L�yðMÞ.
(4) The class Lm

r; dðMÞ is stable under the operations of composition of

operators and taking the transpose or adjoint of an operator.

(5) A pseudo-di¤erential operator A A Lm
1; dðMÞ, 0a d < 1, extends to a con-

tinuous linear operator A : Hs;pðMÞ ! Hs�m;pðMÞ for all s A R and all

1 < p < y and also a continuous linear operator A : Bs;pðMÞ ! Bs�m;pðMÞ for
all s A R and all 1a pay, respectively.
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A pseudo-di¤erential operator A A Lm
1;0ðMÞ is said to be classical if, for any

chart ðU ; wÞ on M, the mapping Aw : C
y
0 ðwðUÞÞ ! CyðwðUÞÞ belongs to the class

Lm
cl ðwðUÞÞ.

We let

Lm
cl ðMÞ ¼ the set of all classical pseudo-di¤erential operators of order

m on M:

We observe that

L�yðMÞ ¼ 7
m AR

Lm
cl ðMÞ:

Let A A Lm
cl ðMÞ. If ðU ; wÞ is a chart on M, there is associated a homogeneous

principal symbol sAw
ðx; xÞ A CyðwðUÞ � ðRnnf0gÞÞ. In view of Remark 2.1, by

smoothly patching together the functions sAw
ðx; xÞ we can obtain a smooth

function sAðx; xÞ on T �ðMÞnf0g ¼ fðx; xÞ A T �ðMÞ : x0 0g, which is positively

homogeneous of degree m in the variable x. The function sAðx; xÞ is called the

homogeneous principal symbol of A.

A classical pseudo-di¤erential operator A A Lm
cl ðMÞ is said to be elliptic of

order m if its homogeneous principal symbol sAðx; xÞ does not vanish on the

bundle T �ðMÞnf0g of non-zero cotangent vectors.

Then we have the following result:

(6) An operator A A Lm
cl ðMÞ is elliptic if and only if there exists a parametrix

B A L�mcl ðMÞ for A:

AB1 I mod L�yðMÞ;
BA1 I mod L�yðMÞ:

�

Let W be an open subset of Rn. A properly supported pseudo-di¤erential

operator A on W is said to be hypoelliptic if it satisfies the condition

sing supp u ¼ sing supp Au; u A D 0ðWÞ:

For example, Theorem 2.9 asserts that elliptic operators are hypoelliptic. It

should be emphasized that this notion may be transferred to manifolds.

The following criterion for hypoellipticity is due to Hörmander (cf. [Ho2,

Theorem 4.2]):

Theorem 2.12. Let A ¼ pðx;DÞ A Lm
r; dðWÞ be properly supported. Assume

that, for any compact KHW and any multi-indices a, b, there exist constants

CK;a;b > 0, CK > 0 and m A R such that we have, for all x A K and all jxjbCK ,
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jDa
xD

b
x pðx; xÞjaCK ;a;bjpðx; xÞjð1þ jxjÞ�rjajþdjbj; ð2:7aÞ

jpðx; xÞ�1jaCKð1þ jxjÞm: ð2:7bÞ

Then there exists a parametrix B A L
m
r; dðWÞ for A.

Remark 2.2. It should be emphasized that Theorem 2.12 extends to the

class Lm
r; dðW;RnÞ of n� n matrix-valued, pseudo-di¤erential operators on W.

3. Linear Elastostatics

The process of linearization provides a key link between the linear and

nonlinear theories of elasticity. In this chapter we study a linearization of

problem (1.1) of nonlinear elastostatics, and state our fundamental existence

and uniqueness theorem (Theorem 3.1) for the linearized problem (1.4) in the

framework of Sobolev spaces of L p type.

3.1 Linearization of Nonlinear Elastostatics

Let B : W! R3 be a given body force and t : qW! R3 a given surface force.

In this section we study a linearization of problem (1.1) of nonlinear elastostatics

for the unknown configuration f:

DIV P̂PðX ;‘fðXÞÞ þ BðX Þ ¼ 0 in W;

aðXÞP̂PðX ;‘fðXÞÞ �NðXÞ þ ð1� aðX ÞÞfðXÞ ¼ tðXÞ on qW:

�
ð1:1Þ

Componentwise, our problem (1.1) can be written as follows:

P3
j¼1

q

qXj

ðP̂PijðX ;‘fðXÞÞÞ þ BiðXÞ ¼ 0 in W;

aðXÞ
P3

j¼1 P̂PijðX ;‘fðX ÞÞNjðX Þ þ ð1� aðXÞÞfiðXÞ ¼ tiðXÞ on qW;

8><
>:

where 1a ia 3. Indeed, it su‰ces to recall that if T is a tensor field

T ¼
T11 T12 T13

T21 T22 T23

T31 T32 T33

0
B@

1
CA;

then the divergence DIV T is defined by the formula

DIV T :¼

qT11

qX1
þ qT12

qX2
þ qT13

qX3

qT21

qX1
þ qT22

qX2
þ qT23

qX3

qT31

qX1
þ qT32

qX2
þ qT33

qX3

0
BBB@

1
CCCA:
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It should be noticed that a simple application of Green’s formula implies the

divergence theorem for tensor fieldsð
W

DIV T dx ¼
ð
qW

T �N da;

where da is the area element on the boundary qW.

First, we linearize the nonlinear equations of elastostatics

DIV P̂Pð‘fÞ þ B ¼ 0 in W:

The corresponding equations linearized at a configuration f
�
are the following

(cf. [MH, Chapter 4, Section 4.2]):

DIVðP̂PðF
�
Þ þ A

�
� ‘VÞ þ B ¼ 0 in W;

where

A
�
¼ qP̂P

qF
ðF
�
Þ; F

�
¼ ‘f

�
;

is the first elasticity tensor evaluated at f
�
.

Similarly, the linearization of the boundary condition

aðXÞP̂Pð‘fÞ �N þ ð1� aðXÞÞf ¼ t on qW;

0a aðX Þa 1 on qW

�
ð1:2Þ

about a configuration f
�
is the following:

aðX ÞðP̂PðF
�
Þ þ A

�
� ‘VÞ �N þ ð1� aðX ÞÞðf

�
þ VÞ ¼ t on qW:

Summing up, we obtain the following linearization of problem (1.1) for the

unknown vector function V :

DIVðA
�
� ‘VÞ ¼ �DIV P̂PðF

�
Þ � B in W;

aðXÞðA
�
� ‘V �NÞ þ ð1� aðX ÞÞV

¼ t� aðXÞP̂PðF
�
Þ �N � ð1� aðXÞÞf

�
on qW:

8>><
>>: ð1:3Þ

3.2 Existence and Uniqueness Theorem for Problem (1.4)

In this section we consider problem (1.3) of linear elastostatics in the fol-

lowing form:

divðaðxÞ � ‘vÞ ¼ f in W;

aðxÞðaðxÞ � ‘v � nÞ þ ð1� aðxÞÞv ¼ j on qW;

�
ð1:4Þ

103Boundary value problems of nonlinear elastostatics



where aðxÞ is a smooth elasticity tensor and n is the unit outward normal to the

boundary qW. Componentwise, these equations can be written as follows:

P3
j¼1

q

qxj

P3
l;m¼1aijlmðxÞ

qvl

qxm

� �
¼ fiðxÞ in W;

aðxÞ
P3

j¼1
P3

l;m¼1 aijlmðxÞ
qvl

qxm

� �
njðxÞ þ ð1� aðxÞÞviðxÞ ¼ jiðxÞ on qW;

8>>><
>>>:

where 1a ia 3.

We study problem (1.4) in the framework of Sobolev spaces of L p type, by

using the Lp theory of pseudo-di¤erential operators.

If s A R and 1 < p < y, we let

H s;pðW;R3Þ ¼ the Banach space of all Hs;p vector functions u;

B s;pðqW;R3Þ ¼ the Banach space of all Bs;p vector functions f:

We introduce a subspace of Bs;pðqW;R3Þ which is associated with the

boundary condition

aðxÞðaðxÞ � ‘v � nÞ þ ð1� aðxÞÞv ¼ j on qW:

If s A R and 1 < p < y, we let

B s;p
ðaÞ ðqW;R3Þ ¼ ff ¼ aðxÞf1 þ ð1� aðxÞÞf2 : f1 A B s;pðqW;R3Þ;

f2 A B sþ1;pðqW;R3Þg;

and define the norm

jfja; s;p ¼ inffjf1js;p þ jf2jsþ1;p : f ¼ aðxÞf1 þ ð1� aðxÞÞf2g:

Then it is easy to verify (see [Ta2, Lemma 4.7]) that the space B
s;p
ðaÞ ðqW;R3Þ is

a Banach space with the norm j � ja; s;p. Furthermore, we remark that

B
s;p
ðaÞ ðqW;R3Þ ¼ B sþ1;pðqW;R3Þ if aðxÞ1 0 on qW (the pure displacement case);

B s;pðqW;R3Þ if aðxÞ1 1 on qW (the pure traction case);

�

and we have, for general aðxÞ, the continuous injections

B sþ1;pðqW;R3ÞHB
s;p
ðaÞ ðqW;R3ÞHB s;pðqW;R3Þ:

Now we let

Av :¼ divðaðxÞ � ‘vÞ;

Bav :¼ aðxÞðaðxÞ � ‘v � nÞ þ ð1� aðxÞÞvjqW;
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and associate with problem (1.4) a linear operator

ðA;BaÞ : H s;pðW;R3Þ 7! H s�2;pðW;R3Þ � B
s�1�1=p;p
ðaÞ ðqW;R3Þ:

Then it is easy to verify that the operator ðA;BaÞ is continuous, for s > 1þ 1=p.

Our fundamental result is the following existence and uniqueness theorem for

problem (1.4) (cf. [It1, Theorem I]):

Theorem 3.1. Let 1 < p < y and s > 1=pþ 1. We assume that the following

two conditions (T) and (A) are satisfied:

(T) The elasticity tensor aðxÞ enjoys the property of symmetry

aijlmðxÞ ¼ almijðxÞ ¼ ajilmðxÞ; x A W;

and is uniformly pointwise stable, that is, there is a constant h > 0 such that

1

2
e � aðxÞ � eb hkek2; x A W;

for all symmetric two tensors e.

(A) 0a aðxÞa 1 on qW, but aðxÞD 1 on qW.

Then the operator

ðA;BaÞ : H s;pðW;R3Þ 7! H s�2;pðW;R3Þ � B
s�1�1=p;p
ðaÞ ðqW;R3Þ

is an algebraic and topological isomorphism.

It should be noticed that condition (T) is nothing but condition (S) in Main

Theorem if we take aðxÞ :¼ A
�
ðX Þ.

We give a typical example of a homogeneous, isotropic, elastic material

whose reference configuration is a natural state (cf. [MH, Chapter 4, Proposition

3.13]):

Example 3.1. We let

aijlm ¼ ldij dlm þ mðdildjm þ dim djlÞ;

where l and m are Lamé moduli, and assume that the following two conditions

(L) and (A) are satisfied:

(L) m > 0 and lþ 2

3
m > 0.

(A) 0a aðxÞa 1 on qW, but aðxÞD 1 on qW.

Then the mixed displacement-traction problem
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divðl trðeðuÞÞI þ 2meðuÞÞ ¼ f in W;

aðxÞðtðuÞ � nÞ þ ð1� aðxÞÞu ¼ j on qW

�

has a unique solution u A H s;pðW;R3Þ for any f A H s�2;pðW;R3Þ and any j A

B
s�1�1=p;p
ðaÞ ðqW;R3Þ. Here eðuÞ ¼ ðeijðuÞÞ is the linearized strain tensor defined by

the formula

eijðuÞ :¼
1

2

qui

qxj
þ quj

qxi

� �
;

and tðuÞ ¼ ðtijðuÞÞ is the linearized stress tensor defined by the formula

tijðuÞ :¼ l
X3
k¼1

ekkðuÞ
 !

dij þ 2meijðuÞ:

It should be noticed that condition (L) is nothing but condition (C) in Theorem

1.2.

In order to prove Theorem 3.1, it su‰ces to show that the operator ðA;BaÞ is
bijective. Indeed, the continuity of the inverse of ðA;BaÞ follows immediately from

an application of Banach’s open mapping theorem, since ðA;BaÞ is a continuous

operator.

Theorem 3.1 will be proved in a series of theorems (Theorems 5.1, 6.1 and

7.1) in the subsequent chapters.

4. Reduction to the Boundary

In Chapters 4 through 7 we study the linearized problem (1.4) in the

framework of Sobolev spaces of L p type, by using the Lp theory of pseudo-

di¤erential operators. In this chapter we show that problem (1.4) can be reduced

to the study of a 3� 3 matrix-valued, pseudo-di¤erential operator on the

boundary.

4.1 Operator Ta

First, we consider the pure displacement problem (Dirichlet problem)

divðaðxÞ � ‘vÞ ¼ f in W;

v ¼ j on qW:

�
(D)

We let
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Av ¼ divðaðxÞ � ‘vÞ;

gv ¼ vjqW;

and associate with problem (D) a linear operator

ðA; gÞ : H s;pðW;R3Þ 7! H s�2;pðW;R3Þ � B s�1=p;pðqW;R3Þ:

Then we have the following existence and uniqueness theorem for problem

(D) (cf. [MH, Chapter 6, Theorem 1.11]; [It1, Lemma 1.3]):

Theorem 4.1. Let 1 < p < y. If condition (T) is satisfied, then the operator

ðA; gÞ : H s;pðW;R3Þ ! H s�2;pðW;R3Þ � B s�1=p;pðqW;R3Þ

is an algebraic and topological isomorphism, for all s > 1=p.

By Theorem 4.1, we can introduce a linear operator

P : B s�1=p;pðqW;R3Þ ! H s;pðW;R3Þ

as follows: For any j A B s�1=p;pðqW;R3Þ, the function Pj is the unique solution of

the pure displacement problem

Av ¼ 0 in W;

v ¼ j on qW:

�

The operator P is called the Poisson operator for problem (D).

It should be noticed that the spaces

NðA; s; pÞ ¼ fw A H s;pðW;R3Þ : Aw ¼ 0 in Wg

and

B s�1=p;pðqW;R3Þ

are isomorphic in such a way that

NðA; s; pÞ !g B s�1=p;pðqW;R3Þ:

NðA; s; pÞ  
P

B s�1=p;pðqW;R3Þ:

Secondly, we consider the following non-degenerate mixed displacement-

traction problem:
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divðaðxÞ � ‘vÞ ¼ f in W;

ðaðxÞ � ‘v � nÞ þ v ¼ j on qW:

�
ðMÞ

We let

Av ¼ divðaðxÞ � ‘vÞ;

Bv ¼ ðaðxÞ � ‘v � nÞjqW;

and associate with problem (M) a linear operator

ðA;B þ gÞ : H s;pðW;R3Þ 7! H s�2;pðW;R3Þ � B s�1�1=p;pðqW;R3Þ:

Then we have the following existence and uniqueness theorem for problem

(M) (cf. [MH, Chapter 6, Theorem 1.11]; [It1, Lemma 1.3]):

Theorem 4.2. Let 1 < p < y. If condition (T) is satisfied, then the operator

ðA;B þ gÞ : H s;pðW;R3Þ 7! H s�2;pðW;R3Þ � B s�1�1=p;pðqW;R3Þ

is an algebraic and topological isomorphism, for all s > 1=pþ 1.

Now, by making use of problems (D) and (M) we show that problem (1.4)

can be reduced to the study of a 3� 3 matrix-valued, pseudo-di¤erential operator

on the boundary.

Let f be an arbitrary element of H s�2;pðW;R3Þ, and j an arbitrary element

of B
s�1�1=p;p
ðaÞ ðqW;R3Þ such that

j ¼ aðxÞj1 þ ð1� aðxÞÞj2

with

j1 A B s�1�1=p;pðqW;R3Þ; j2 A B s�1=p;pðqW;R3Þ:

We assume that u A H s;pðW;R3Þ is a solution of the mixed displacement-traction

problem

Au ¼ f in W;

Bau ¼ aðxÞBuþ ð1� aðxÞÞgu ¼ j on qW:

�
ð1:4Þ

By Theorem 4.2, we can find an element v A H s;pðW;R3Þ such that

Av ¼ f in W;

Bvþ gv ¼ j1 � j2 on qW:

�
ðMÞ

We let
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w ¼ u� v:

Then it is easy to see that w A H s;pðW;R3Þ is a solution of the mixed

displacement-traction problem

Aw ¼ 0 in W;

Baw ¼ j2 þ ð2aðxÞ � 1Þgv on qW:

�
ð4:1Þ

However, the Poisson operator P is an isomorphism of B s�1=p;pðqW;R3Þ onto the

null space NðA; s; pÞ. Therefore, we find that w A H s;pðW;R3Þ is a solution of

problem (4.1) if and only if c A B s�1=p;pðqW;R3Þ is a solution of the equation

BaðPcÞ ¼ j2 þ ð2aðxÞ � 1Þgv on qW: ð4:2Þ

Here c ¼ gw, or equivalently, w ¼ Pc. This is a generalization of the classical

Fredholm integral equation.

Summing up, we have proved the following:

Proposition 4.3. Let 1 < p < y and s > 1=pþ 1. Then problem (1.4) has

a solution u A H s;pðW;R3Þ for f A H s�2;pðW;R3Þ and j A B
s�1�1=p;p
ðaÞ ðqW;R3Þ if

and only if equation (4.2) has a solution c A B s�1=p;pðqW;R3Þ.

Now we let

Ta : C
yðqW;R3Þ ! CyðqW;R3Þ

j 7! BaðPjÞ:

Then we have the formula

Ta ¼ aðxÞP þ ð1� aðxÞÞI ;

where

Pj ¼ BðPjÞ ¼ aðxÞ � ‘ðPjÞ � njqW:

It is known (cf. [Ho1], [Se]) that the operator P is a 3� 3 matrix-valued, classical

pseudo-di¤erential operator of first order on the boundary qW; hence the operator

Ta is a 3� 3 matrix-valued, classical pseudo-di¤erential operator of first order on

the boundary qW.

Consequently, Proposition 4.3 asserts that problem (1.4) can be reduced to

the study of the system Ta of pseudo-di¤erential operators on the boundary qW.

We shall formulate this fact more precisely in terms of functional analysis.

We associate with problem (1.4) a continuous linear operator
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Aa ¼ ðA;BaÞ : H s;pðW;R3Þ ! H s�2;pðW;R3Þ � B
s�1�1=p;p
ðaÞ ðqW;R3Þ:

Similarly, we associate with equation (4.2) a linear operator

Ta : B
s�1=p;pðqW;R3Þ ! B s�1=p;pðqW;R3Þ

as follows.

(a) The domain DðTaÞ of Ta is the space

DðTaÞ ¼ fj A B s�1=p;pðqW;R3Þ : Taj A Bs�1=p;pðqW;R3Þg:

(b) Taj ¼ Taj, j A DðTaÞ.
It should be noticed that the operator Ta is a densely defined, closed linear

operator, since the operator Ta : B
s�1=p;pðqW;R3Þ ! B s�1�1=p;pðqW;R3Þ is con-

tinuous and since the domain DðTaÞ contains the space CyðqW;R3Þ.
Then Proposition 4.3 can be reformulated in the following form (cf. [Ta1,

Section 8.3]):

Theorem 4.4. (i) The null space NðAaÞ of Aa has finite dimension if and

only if the null space NðTaÞ of Ta has finite dimension, and we have the formula

dim NðAaÞ ¼ dim NðTaÞ:

(ii) The range RðAaÞ of Aa is closed if and only if the range RðTaÞ of Ta is

closed; and RðAaÞ has finite codimension if and only if RðTaÞ has finite codi-

mension, and we have the formula

codim RðAaÞ ¼ codim RðTaÞ:

(iii) The operator Aa is a Fredholm operator if and only if the operator Ta is

a Fredholm operator, and we have the formula

ind Aa ¼ ind Ta:

Here we recall that a densely defined, closed linear operator T from a Banach

space X into a Banach space Y is called a Fredholm operator if it satisfies the

following three conditions (a), (b) and (c):

(a) The null space NðTÞ ¼ fx A DðTÞ : Tx ¼ 0g of T has finite dimension;

dim NðTÞ < y.

(b) The range RðTÞ ¼ fTx : x A DðTÞg of T is closed in Y .

(c) The range RðTÞ has finite codimension in Y ; codim RðTÞ ¼
dim Y=RðTÞ < y.

In this case, the index of T is defined by the formula
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ind T :¼ dim NðTÞ � codim RðTÞ:

Furthermore, the next theorem states that the operator Aa has regularity

property if and only if the operator Ta has.

Theorem 4.5. Let 1 < p < y and s > 1=pþ 1. Then the following two

conditions (i) and (ii) are equivalent:

u A LpðW;R3Þ; Au A H s�2;pðW;R3Þ; ðiÞ

Bau A B
s�1�1=p;p
ðaÞ ðqW;R3Þ ) u A H s;pðW;R3Þ:

j A B�1=p;pðqW;R3Þ; Taj A B s�1=p;pðqW;R3Þ ) j A B s�1=p;pðqW;R3Þ: ðiiÞ

Proof. (i)) (ii): First, just as in [Ta1, Proposition 8.3.2] we can prove that

the boundary condition Bau is defined as an function in B�1�1=p;pðqW;R3Þ if

u A LpðW;R3Þ and Au A H s�2;pðW;R3Þ. Furthermore, we remark that the Poisson

operator P is an isomorphism of B t�1=p;pðqW;R3Þ onto the null space NðA; t; pÞ ¼
fw A H t;pðW;R3Þ : Aw ¼ 0 in Wg for all t A R.

Now we assume that

j A B�1=p;pðqW;R3Þ and Taj A B s�1=p;pðqW;R3Þ:

Then, by letting u ¼ Pj we obtain that

u A L pðW;R3Þ; Au ¼ 0 and Bau ¼ Taj A B s�1=p;pðqW;R3Þ:

Hence it follows from condition (i) that

u A H s;pðW;R3Þ;

so that, by Theorem 4.1,

j ¼ gu A B s�1=p;pðqW;R3Þ:

(ii)) (i): Conversely, we assume that

u A LpðW;R3Þ; Au A H s�2;pðW;R3Þ and Bau A B
s�1�1=p;p
ðaÞ ðqW;R3Þ;

where

Bau ¼ aðxÞj1 þ ð1� aðxÞÞj2;

with

j1 A B s�1�1=p;pðqW;R3Þ; j2 A B s�1=p;pðqW;R3Þ:
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Then the function u can be decomposed as follows:

u ¼ vþ w;

where v A H s;pðW;R3Þ is a unique solution of the non-degenerate mixed

displacement-traction problem

Av ¼ Au in W;

Bvþ gv ¼ j1 � j2 in qW;

�
ðMÞ

and so

w ¼ u� v A NðA; 0; pÞ:

Theorem 4.1 asserts that the function w can be written as follows:

w ¼ Pj; j ¼ gw A B�1=p;pðqW;R3Þ:

Hence we have the formula

Taj ¼ Baw ¼ Bau� Bav ¼ j2 þ ð2aðxÞ � 1Þgv A B s�1=p;pðqW;R3Þ:

Thus it follows from condition (ii) that

j A B s�1=p;pðqW;R3Þ;

so that, again by Theorem 4.1,

w ¼ Pj A H s;pðW;R3Þ:

This proves that

u ¼ vþ w A H s;pðW;R3Þ:

The proof of Theorem 4.5 is complete. r

4.2 Operator P

We recall that the operator Ta, defined by the formula

Ta : C
yðqW;R3Þ ! CyðqW;R3Þ

j 7! BaðPjÞ;

can be written as follows:

Ta ¼ aðxÞP þ ð1� aðxÞÞI ;

where

112 Kazuaki Taira



Pj ¼ BðPjÞ ¼ aðxÞ � ‘ðPjÞ � njqW:

In this section we prove some properties of the operator P as a 3� 3 matrix-

valued, pseudo-di¤erential operator. To do this, we need the following Green’s

formula and Korn’s inequalities:

Theorem 4.6 (Green’s formula). We have, for all u; v A CyðW;R3Þ,
ð
W

u � divðaðxÞ � ‘vÞ dx ¼
ð
qW

u½aðxÞ � ‘v � n� da�
ð
W

‘u � aðxÞ � ‘v dx: ð4:3Þ

Here da is the area element on the boundary qW.

By the symmetry of the tensor aðxÞ, Green’s formula (4.3) follows from an

application of the divergence theorem.

We recall that the linearized strain tensor eðuÞ ¼ ðeijðuÞÞ is defined by the

formula

eijðuÞ :¼
1

2

qui

qxj
þ quj

qxi

� �
:

The next inequalities are special cases of Gårding’s inequality for the elliptic

operator u 7! eðuÞ (cf. [DL, Chapitre 3, Théorèmes 3.1 et 3.3]):

Theorem 4.7 (Korn’s inequalities). (i) For every non-empty open subset

gH qW, there exists a constant cðgÞ > 0 such that

ð
W

keðuÞk2 dxb cðgÞ
ð
W

kuk2 dxþ
ð
W

k‘uk2 dx
� �

ð4:4Þ

for all u A H 1;2ðW;R3Þ satisfying the condition u ¼ 0 on g.

(ii) There exists a constant c > 0 such that

ð
W

keðuÞk2 dxþ
ð
W

kuk2 dxb c

ð
W

kuk2 dxþ
ð
W

k‘uk2 dx
� �

ð4:5Þ

for all u A H 1;2ðW;R3Þ.

Now we can prove the following (cf. [It1, Proposition 1.4]):

Theorem 4.8. (i) The operator P is formally self-adjoint: P � ¼ P .
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(ii) The operator P is strongly elliptic, that is, there exist constants c1 > 0 and

c2 > 0 such that we have, for all j A CyðqW;C3Þ,
ð
qW

Pj � j dab c1jjj21=2;2 � c2jjj2�1=2;2: ð4:6Þ

Here j denotes the complex conjugate of j.

(iii) The principal symbol p1ðx 0; x 0Þ of P satisfies the condition

p1ðx 0; x 0Þb c0jx 0jI on T �ðqWÞ; ð4:7Þ

with a constant c0 > 0. Here T �ðqWÞ is the cotangent bundle of qW and jx 0j is the

length of x 0 with respect to the Riemannian metric of qW induced by the natural

metric of R3.

Proof. (i) If j and c are functions in CyðqW;C3Þ, then, by applying

Green’s formula (4.3) with u :¼ Pj and v :¼ Pc we obtain that

0 ¼
ð
qW

j � ½aðxÞ � ‘ðPcÞ � n� da�
ð
W

‘ðPjÞ � aðxÞ � ‘ðPcÞ dx

¼
ð
qW

j �Pc da�
ð
W

‘ðPjÞ � aðxÞ � ‘ðPcÞ dx;

or equivalently, ð
qW

Pj � c da ¼
ð
W

‘ðPcÞ � aðxÞ � ‘ðPjÞ dx: ð4:8Þ

Therefore, by the symmetry of the tensor aðxÞ it follows thatð
qW

Pj � c da ¼
ð
W

‘ðPcÞ � aðxÞ � ‘ðPjÞ dx

¼
ð
W

‘ðPjÞ � aðxÞ � ‘ðPcÞ dx

¼
ð
qW

j �Pc da:

This proves the formal self-adjointness of the operator P .

(ii) Since the tensor aðxÞ is uniformly pointwise stable, it follows from

an application of the second Korn inequality (4.5) that we have, for all

u A H 1;2ðW;C3Þ,
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ð
W

‘u � aðxÞ � ‘u dx ¼
ð
W

eðuÞ � aðxÞ � eðuÞ dx

b 2h

ð
W

keðuÞk2 dx

b 2hckuk21;2 � 2hkuk20;2:

In particular, by taking u ¼ Pj we have, with C1 :¼ 2hc and C2 :¼ 2h,ð
W

‘ðPjÞ � aðxÞ � ‘ðPjÞ dxbC1kPjk21;2 � C2kPjk20;2:

Hence, by combining this inequality and equality (4.8) with j :¼ c we obtain thatð
qW

Pj � j dabC1kPjk21;2 � C2kPjk20;2: ð4:9Þ

However, we recall that the Poisson operator P is an isomorphism of the space

B s�1=2;2ðqW;R3Þ

onto the null space

NðA; s; 2Þ ¼ fw A H s;2ðW;R3Þ : Aw ¼ 0 in Wg

for all s A R.

Therefore, the desired inequality (4.6) follows from inequality (4.9).

(iii) It is known (cf. [Ho3], [Ku], [Ty]) that inequality (4.6) implies the strong

ellipticity (4.7) of the operator P .

The proof of Theorem 4.8 is complete. r

5. Regularity Theorem for Problem (1.4)

In this chapter we prove the following regularity theorem for problem (1.4):

Theorem 5.1. Let 1 < p < y. If condition (T) is satisfied, then we have,

for any s > 1=pþ 1,

u A LpðW;R3Þ; Au A H s�2;pðW;R3Þ;

Bau A B
s�1�1=p;p
ðaÞ ðqW;R3Þ ) u A H s;pðW;R3Þ:

Proof. By Theorem 4.5, we are reduced to the study of a 3� 3 matrix-

valued, pseudo-di¤erential operator
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Ta ¼ aðxÞP þ ð1� aðxÞÞI

on the boundary qW. Therefore, it su‰ces to prove the following:

Lemma 5.2. If condition (T) is satisfied, then we have, for all s A R,

j A D 0ðqW;R3Þ; Taj A B s;pðqW;R3Þ ) j A B s;pðqW;R3Þ: ð5:1Þ

Furthermore, for any t < s, there exists a constant Cs; t > 0 such that

jjjs;p aCs; tðjTajjs;p þ jjjt;pÞ: ð5:2Þ

Proof. We prove that there exists a parametrix Sa for the operator Ta in

the Hörmander class L0
1;1=2ðqW;R3Þ of 3� 3 matrix-valued, pseudo-di¤erential

operators on the boundary qW. The proof of Lemma 5.2 is divided into three

steps.

Step 1: The essential step in the proof is to verify the following matrix

version of conditions (2.7a) and (2.7b) with m :¼ 0, r :¼ 1 and d :¼ 1=2 (cf.

Remark 2.2):

Lemma 5.3. Assume that condition (T) is satisfied. Then, for each point x 0 of

qW, we can find a neighborhood Uðx 0Þ of x 0 such that:

For any compact K HUðx 0Þ and any multi-indices a, b, there exist constants

CK;a;b > 0 and CK > 0 such that we have, for all x 0 A K and all jx 0jbCK ,

kDa
x 0D

b
x 0 tðx 0; x

0Þk ktðx 0; x 0Þ�1kaCK ;a;bð1þ jx 0jÞ�jajþð1=2Þjbj; ð5:3aÞ

ktðx 0; x 0Þ�1kaCK : ð5:3bÞ

Here k � k denotes a norm in the space of 3� 3 matrices with complex entries.

Granting Lemma 5.3 for the moment, we shall prove Lemma 5.2.

Step 2: First, we cover the boundary qW by a finite number of local charts

fðUj; wjÞg
m
j¼1 in each of which inequalities (5.3a) and (5.3b) hold true. Since the

operator Ta satisfies conditions (2.7a) and (2.7b) of a matrix-valued version of

Theorem 2.12 with m :¼ 0, r :¼ 1 and d :¼ 1=2, it follows from an application

of the same theorem that there exists a parametrix Sa in the Hörmander class

L0
1;1=2ðUj ;R

3Þ for the operator Ta. Let ffjg
m
j¼1 be a partition of unity subordinate

to the covering fUjgmj¼1, and choose a function cj A Cy
0 ðUjÞ such that cj ¼ 1 on

supp fj , so that fjcj ¼ fj .
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Now we may assume that j A B t;pðqW;R3Þ for some t < s and that Taj A

B s;pðqW;R3Þ. We remark that the operator Ta can be written in the following

form:

Ta ¼
Xm
j¼1

fjTacj þ
Xm
j¼1

fjTað1� cjÞ:

However, the second terms fjTað1� cjÞ are in L�yðqW;R3Þ, since fjð1� cjÞ ¼ 0.

Hence we are reduced to the study of the first terms fjTacj. This implies that we

have only to prove the following local version of assertions (5.1) and (5.2):

cjj A B t;pðUj ;R
3Þ; TaðcjjÞ A B s;pðUj;R

3Þ ) cjj A B s;pðUj;R
3Þ: ð5:1 0Þ

jcjjjs;p aCs; tðjTaðcjjÞj
2
s;p þ jcjjj

2
t;pÞ: ð5:2 0Þ

However, by applying Theorem 2.11 to our situation we obtain that the para-

metrix Sa maps Bs;p
loc ðUj;R

3Þ continuously into itself for all s A R. This proves the

desired assertions ð5:1 0Þ and ð5:2 0Þ, since we have the formula

cjj1SaTaðcjjÞ mod CyðUj;R
3Þ:

Lemma 5.2 (and hence Theorem 5.1) is proved, apart from the proof of

Lemma 5.3.

Step 3: Proof of Lemma 5.3

By Theorem 4.8, we find that the symbol of P has the following asymptotic

expansion:

p1ðx 0; x 0Þ þ p0ðx 0; x 0Þ þ terms of ordera�1;

where (cf. inequality (4.5))

p1ðx 0; x 0Þb c0jx 0jI on T �ðqWÞ: ð5:5Þ

Thus it follows that the symbol tðx 0; x 0Þ of the operator

Ta ¼ aðxÞP þ ð1� aðxÞÞI

has the following asymptotic expansion:

tðx 0; x 0Þ ¼ aðx 0Þp1ðx 0; x 0Þ þ ½ð1� aðx 0ÞÞI þ aðx 0Þp0ðx 0; xÞ�

þ terms of ordera�1: ð5:6Þ

Step 3-a: First, we verify condition (5.3b):
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By assertions (5.6) and (5.5), we can find a constant 0 < c1 < 1=2 such that

we have, for jx 0j su‰ciently large,

Re tðx 0; x 0Þ :¼ tðx 0; x 0Þ þ tðx 0; x 0Þ�

2
b

c0aðx 0Þjx 0j þ
1

4

� �
I if 0a aðx 0Þa c1;

c0

2
aðx 0Þjx 0j þ 1

8

� �
I if c1 a aðx 0Þa 1:

8>>>><
>>>>:

Hence there exists a constant C1 > 0 such that we have, for jx 0j su‰ciently large,

Re tðx 0; x 0ÞbC1ðaðx 0Þjx 0j þ 1ÞI : ð5:7Þ

Inequality (5.7) implies condition (5.3b):

ktðx 0; x 0Þ�1ka 1

C1
: ð5:8Þ

Indeed, it su‰ces to note the following:

C1kuk2 aReðtðx 0; x 0Þu; uÞa ktðx 0; x 0Þuk � kuk; u A C3;

so that

C1kuka ktðx 0; x 0Þuk; u A C3:

Step 3-b: Secondly, we verify condition (5.3a) for jaj ¼ 1 and jbj ¼ 0.

Since there exists a constant C2 > 0 such that we have, for jx 0j su‰ciently

large,

kDa
x 0 tðx

0; x 0ÞkaC2ðaðx 0Þ þ jx 0j�1Þ;

it follows from inequality (5.7) that

kDa
x 0 tðx

0; x 0Þka 2C2ð1þ jx 0jÞ�1ðaðx 0Þjx 0j þ 1Þ

a
2C2

C1
ð1þ jx 0jÞ�1ktðx 0; x 0Þk:

This inequality proves condition (5.3a) for jaj ¼ 1 and jbj ¼ 0.

Step 3-c: We verify condition (5.3a) for jbj ¼ 1 and jaj ¼ 0. To do this, we

need the following elementary lemma on non-negative functions:

Lemma 5.4. Let f ðxÞ be a non-negative, C2 function on R such that, for some

constant g > 0,

sup
x AR
j f 00ðxÞja g:
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Then we have the inequality

j f 0ðxÞja
ffiffiffiffiffi
2g

p ffiffiffiffiffiffiffiffiffi
f ðxÞ

p
on R:

Since there exists a constant C3 > 0 such that we have, for jx 0j su‰ciently

large,

kDb
x 0 tðx 0; x

0ÞkaC3ðjDb
x 0aðx 0Þj � jx

0j þ aðx 0Þjx 0j þ 1Þ;

it follows from an application of Lemma 5.4 and inequalities (5.7) and (5.8) that,

for some constant C4 > 0,

kDb
x 0 tðx 0; x

0ÞkaC4fð
ffiffiffiffiffiffiffiffiffiffiffi
aðx 0Þ

p
jx 0j þ 1Þ þ ðaðx 0Þjx 0j þ 1Þg

aC4fjx 0j1=2ðaðx 0Þjx 0j þ 1Þ1=2 þ ðaðx 0Þjx 0j þ 1Þg

a
C4

C1
ktðx 0; x 0Þkðjx 0j1=2

ffiffiffiffiffiffi
C1

p
ktðx 0; x 0Þk�1=2 þ 1Þ

a
2C4

C1
ktðx 0; x 0Þkð1þ jx 0jÞ1=2:

This inequality proves condition (5.3a) for jbj ¼ 1 and jaj ¼ 0.

Step 3-d: Similarly, we can verify condition (5.3a) for the general case:

jaj þ jbj ¼ k, k A N.

The proof of Lemma 5.3 is complete. r

Now the proof of Lemma 5.2 and hence that of Theorem 5.1 is com-

plete. r

6. Uniqueness Theorem for Problem (1.4)

We associate with problem (1.4) a linear operator

Aa ¼ ðA;BaÞ : H s;pðW;R3Þ 7! H s�2;pðW;R3Þ � B
s�1�1=p;p
ðaÞ ðqW;R3Þ:

Then the next uniqueness theorem for problem (1.4) asserts that the operator Aa

is injective, that is, we have the assertion

dim NðAaÞ ¼ 0:

Theorem 6.1. Let 1 < p < y and s > 1=pþ 1. Assume that conditions (T)

and (A) are satisfied. If a function v A H s;pðW;R3Þ is a solution of the mixed

displacement-traction problem
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divðaðxÞ � ‘vÞ ¼ 0 in W;

aðxÞðaðxÞ � ‘v � nÞ þ ð1� aðxÞÞv ¼ 0 on qW;

�
ð1:4Þ

then it follows that v ¼ 0 in W.

Proof. First, by Theorem 5.1 we may assume that

v A CyðW;R3Þ:

Moreover, it should be noticed that the homogeneous boundary condition

aðxÞðaðxÞ � ‘v � nÞ þ ð1� aðxÞÞv ¼ 0 on qW

includes the condition

v ¼ 0 on the set G0 :¼ fx A qW : aðxÞ ¼ 0g:

Hence it follows from an application of Green’s formula (4.3) that

0 ¼
ð
W

‘v � aðxÞ � ‘v dx�
ð
qW

v½aðxÞ � ‘v � n� da

¼
ð
W

eðvÞ � aðxÞ � eðvÞ dx�
ð
qWnG0

v½aðxÞ � ‘v � n� da

¼
ð
W

eðvÞ � aðxÞ � eðvÞ dxþ
ð
qWnG0

1� aðxÞ
aðxÞ

� �
kvk2 da

b

ð
W

eðvÞ � aðxÞ � eðvÞ dx;

where eðvÞ ¼ ðeijðvÞÞ is the linearized strain tensor associated with the function v.

However, since the elasticity tensor aðxÞ is uniformly pointwise stable, it follows

that

1

2
eðvÞ � aðxÞ � eðvÞb hkeðvÞk2; x A W:

Hence we have the inequality

0b 2h

ð
W

keðvÞk2 dx; x A W;

and so

eðvÞ ¼ 0 in W: ð6:1Þ
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This implies that

0 ¼ aðxÞðaðxÞ � ‘v � nÞ þ ð1� aðxÞÞv

¼ aðxÞðaðxÞ � eðvÞ � nÞ þ ð1� aðxÞÞv

¼ ð1� aðxÞÞv on qW:

Thus, if we let

g ¼ fx A qW : aðxÞ < 1g;

we find that

v ¼ 0 on g:

Furthermore, condition (A) implies that the open set g is non-empty.

Therefore, we can make use of the first Korn inequality (4.4) to obtain that

v ¼ 0 in W: ð6:2Þ

Indeed, we have, by assertion (6.1) and inequality (4.4) with u :¼ v,

0 ¼ 2h

ð
W

keðvÞk2 dxb 2hcðgÞ
ð
W

kvk2 dxþ
ð
W

k‘vk2 dx
� �

;

which proves the desired assertion (6.2).

The proof of Theorem 6.1 is complete. r

7. Existence Theorem for Problem (1.4)

The next existence theorem for problem (1.4) asserts that the operator Aa is

surjective, that is, we have the assertion

codim RðAaÞ ¼ 0:

Theorem 7.1. Let 1 < p < y and s > 1=pþ 1. If conditions (T) and (A)

are satisfied, then, for any f A H s�2;pðW;R3Þ and any j A B
s�1�1=p;p
ðaÞ ðqW;R3Þ, the

mixed displacement-traction problem

divðaðxÞ � ‘vÞ ¼ f in W;

aðxÞðaðxÞ � ‘v � nÞ þ ð1� aðxÞÞv ¼ j on qW

�
ð1:4Þ

has a solution v A H s;pðW;R3Þ.
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7.1 Proof of Theorem 7.1

By Theorem 4.4, we know that

ind Aa ¼ ind Ta;

where the operator

Ta : B
s�1=p;pðqW;R3Þ ! B s�1=p;pðqW;R3Þ

is defined as follows:

(a) The domain DðTaÞ of Ta is the space

DðTaÞ ¼ fj A B s�1=p;pðqW;R3Þ : Taj A Bs�1=p;pðqW;R3Þg:

(b) Taj ¼ Taj, j A DðTaÞ.
However, Theorem 6.1 asserts that the operator Aa is injective. By using

again Theorem 4.4, we obtain that

dim NðAaÞ ¼ dim NðTaÞ ¼ 0:

Hence, in order to prove the surjectivity of Aa, or equivalently,

codim RðAaÞ ¼ codim RðTaÞ ¼ 0;

it su‰ces to show the following:

Proposition 7.2. The index of the operator Ta is equal to zero, that is,

ind Ta ¼ dim NðTaÞ � codim RðTaÞ ¼ 0:

Proof. The proof of Proposition 7.2 is divided into three steps.

Step 1: First, we replace the operator A by the operator A� lI with lb 0,

and consider instead of problem (1.4) the following boundary value problem:

ðA� lIÞu ¼ f in W;

Bau ¼ aðxÞBuþ ð1� aðxÞÞu ¼ j on qW:

�
ð1:5Þl

We associate with problem ð1:5Þl a linear operator

AaðlÞ ¼ ðA� lI ;BaÞ : H s;pðW;R3Þ 7! H s�2;pðW;R3Þ � B
s�1�1=p;p
ðaÞ ðqW;R3Þ:

It should be noticed that the operator AaðlÞ coincides with the operator Aa

when l ¼ 0, that is, Aað0Þ ¼Aa.

We reduce the study of problem ð1:5Þl to that of a 3� 3 matrix-valued,

pseudo-di¤erential operator on the boundary, just as in the proof of Theorem 5.1.
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We can prove that Theorem 4.1 remains valid for the operator A� lI . More

precisely, we have the following two assertions (a) and (b):

(a) The pure displacement problem (Dirichlet problem)

ðA� lIÞw ¼ 0 in W;

w ¼ j on qW

�

has a unique solution w in H t;pðW;R3Þ for any j A B t�1=p;pðqW;R3Þ (t A R).

(b) The Poisson operator

PðlÞ : B t�1=p;pðqW;R3Þ ! H t;pðW;R3Þ;

defined by the formula w ¼ PðlÞj, is an isomorphism of B t�1=p;pðqW;R3Þ onto the

null space NðA� lI ; t; pÞ ¼ fu A H t;pðW;R3Þ : ðA� lIÞu ¼ 0 in Wg for all t A R;

and its inverse is the trace operator on qW.

Let TaðlÞ be a 3� 3 matrix-valued, classical pseudo-di¤erential operator of

first order on the boundary qW defined as follows:

TaðlÞ :¼ BaPðlÞ ¼ aðxÞPðlÞ þ ð1� aðxÞÞI ; lb 0;

where

PðlÞ : CyðqW;R3Þ ! CyðqW;R3Þ

j 7! BaðPðlÞjÞ

Since the operator TaðlÞ : CyðqW;R3Þ ! CyðqW;R3Þ extends to a continuous

linear operator TaðlÞ : B t;pðqW;R3Þ ! B t�1;pðqW;R3Þ for all t A R, we can in-

troduce a densely defined, closed linear operator

TaðlÞ : B s�1=p;pðqW;R3Þ ! B s�1=p;pðqW;R3Þ

as follows.

ðaÞ The domain DðTaðlÞÞ of TaðlÞ is the space

DðTaðlÞÞ ¼ fj A B s�1=p;pðqW;R3Þ : TaðlÞj A B s�1=p;pðqW;R3Þg:

ðbÞ TaðlÞj ¼ TaðlÞj, j A DðTaðlÞÞ.
It should be noticed that the operator TaðlÞ coincides with the operator Ta when

l ¼ 0, that is, Tað0Þ ¼Ta.

Then we can obtain the following three assertions (I), (II) and (III),

analogous to Theorem 4.4:

(I) The null space NðAaðlÞÞ of AaðlÞ has finite dimension if and only if the

null space NðTaðlÞÞ of TaðlÞ has finite dimension, and we have the formula
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dim NðAaðlÞÞ ¼ dim NðTaðlÞÞ:

(II) The range RðAaðlÞÞ of AaðlÞ is closed if and only if the range RðTaðlÞÞ
of TaðlÞ is closed; and RðAaðlÞÞ has finite codimension if and only if RðTaðlÞÞ
has finite codimension, and we have the formula

codim RðAaðlÞÞ ¼ codim RðTaðlÞÞ:

(III) The operator AaðlÞ is a Fredholm operator if and only if the operator

TaðlÞ is a Fredholm operator, and we have the formula

ind AaðlÞ ¼ ind TaðlÞ:

Step 2: To study problem ð1:5Þl, we shall make use of a method essentially

due to Agmon (cf. [Ag], [LM] and also [Ta1, Section 8.4]). This is a technique of

treating a spectral parameter lI as a second-order di¤erential operator of an

extra variable and relating the old problem to a new one with the additional

variable.

We introduce an auxiliary variable y of the unit circle

S ¼ R=2pZ;

and replace the parameter �lI by the second-order di¤erential operator

q2

qy2
I :

Namely, we replace the operator A� lI by the operator

~LL ¼ Aþ q2

qy2
I ;

and consider instead of problem ð1:5Þl the following boundary value problem:

~LL~uu ¼ Aþ q2

qy2
I

 !
~uu ¼ ~ff in W� S;

Ba~uu ¼ aðxÞB~uuþ ð1� aðxÞÞ~uu ¼ ~jj on qW� S:

8>><
>>: ð1:6Þ

We can prove that Theorem 4.1 remains valid for the operator ~LL ¼
Aþ q2=qy2I . More precisely, we have the following two assertions ð~aaÞ and ð~bbÞ:
ð~aaÞ The pure displacement problem (Dirichlet problem)

~LL~ww ¼ 0 in W� S;

~ww ¼ ~jj on qW� S

�
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has a unique solution ~ww in H t;pðW� S;R3Þ for any ~jj A B t�1=p;pðqW� S;R3Þ
(t A R).

ð~bbÞ The Poisson operator

~PP : B t�1=p;pðqW� S;R3Þ ! H t;pðW� S;R3Þ;

defined by the formula ~ww :¼ ~PP~jj, is an isomorphism of B t�1=p;pðqW� S;R3Þ onto
the null space Nð ~LL; t; pÞ ¼ f~uu A H t;pðW� S;R3Þ : ~LL~uu ¼ 0 in W� Sg for all t A R;

and its inverse is the trace operator on qW� S.

We let

~TTa : C
yðqW� S;R3Þ ! CyðqW� S;R3Þ

~jj 7! Bað ~PP~jjÞ:

Then the operator ~TTa can be decomposed as follows:

~TTa ¼ aðxÞ ~PP þ ð1� aðxÞÞI ;

where

~PP ~jj ¼ Bð ~PP~jjÞ ¼ aðxÞ � ‘ð ~PP~jjÞ � njqW�S:

The operator ~PP is a 3� 3 matrix-valued, classical pseudo-di¤erential operator of

first order on the boundary qW� S, and its symbol is given by the following

formula:

~ttðx 0; x 0; y; hÞ ¼ aðx 0Þ~pp1ðx 0; x 0; y; hÞ þ ½ð1� aðx 0ÞÞI þ aðx 0Þ~pp0ðx 0; x 0; y; hÞ�

þ terms of ordera�1;

where (cf. inequality (5.5))

~pp1ðx 0; x 0; y; hÞb ~cc0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx 0j2 þ h2

q
I on T �ðqW� SÞ: ð7:1Þ

Thus we find that the operator

~TTa ¼ aðx 0Þ ~PP þ ð1� aðx 0ÞÞI

is a 3� 3 matrix-valued, classical pseudo-di¤erential operator of first order on the

boundary qW� S and its symbol is given by the following formula:

tðx 0; x 0Þ ¼ aðx 0Þp1ðx 0; x 0Þ þ ½ð1� aðx 0ÞÞI þ aðx 0Þp0ðx 0; xÞ�

þ terms of ordera�1: ð7:2Þ
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Then, by virtue of assertions (7.2) and (7.1) it is easy to verify that the operator
~TTa satisfies conditions (2.7a) and (2.7b) of a matrix-valued version of Theorem

2.12 with m :¼ 0, r :¼ 1 and d :¼ 1=2, just as in the proof of Lemma 5.3. Hence

there exists a parametrix ~SSa in the Hörmander class L0
1;1=2ðqW� S;R3Þ for the

operator ~TTa.

Therefore, we obtain the following result, analogous to Lemma 5.2:

Lemma 7.3. If condition (T) is satisfied, then we have, for all s A R,

~jj A D 0ðqW� SÞ; ~TTa~jj A B s;pðqW� S;R3Þ ) ~jj A B s;pðqW� S;R3Þ:

Furthermore, for any t < s, there exists a constant ~CCs; t > 0 such that

j~jjjs;p a ~CCs; tðj ~TTa~jjjs;p þ j~jjjt;pÞ: ð7:3Þ

We introduce a densely defined, closed linear operator

~TTa : B
s�1=p;pðqW� S;R3Þ ! B s�1=p;pðqW� S;R3Þ

as follows.

ð~aaÞ The domain Dð ~TTaÞ of ~TTa is the space

Dð ~TTaÞ ¼ f~jj A B s�1=p;pðqW� S;R3Þ : ~TTa~jj A B s�1=p;pðqW� S;R3Þg:

ð~bbÞ ~TTa~jj ¼ ~TTa~jj, ~jj A Dð ~TTaÞ.
Then the most fundamental relationship between the operators ~TTa and TaðlÞ

ðlb 0Þ is the following:

Proposition 7.4. If ind ~TTa is finite, then there exists a finite subset K of Z

such that the operator Taðl 0Þ is bijective for all l 0 ¼ l2 satisfying l A ZnK.

Granting Proposition 7.4 for the moment, we shall prove Proposition 7.2

(and hence Theorem 7.1).

Step 3: End of Proof of Proposition 7.2

Step 3-a: We show that if condition (T) is satisfied, then we have the as-

sertion

ind ~TTa ¼ dim Nð ~TTaÞ � codim Rð ~TTaÞ < y: ð7:4Þ

To this end, we need a useful criterion for Fredholm operators (cf. [Ta1,

Theorem 3.7.6]):
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Lemma 7.5 (Peetre). Let X , Y , Z be Banach spaces such that X HZ is a

compact injection, and let T be a closed linear operator from X into Y with

domain DðTÞ. Then the following two conditions (i) and (ii) are equivalent:

(i) The null space NðTÞ of T has finite dimension and the range RðTÞ of T is

closed in Y.

(ii) There is a constant C > 0 such that

kxkX aCðkTxkY þ kxkZÞ; x A DðTÞ:

Now, estimate (7.3) gives that we have, for t < s� 1=p,

j~jjjs�1=p;p a ~CCtðj ~TT~jjjs�1=p;p þ j~jjjt;pÞ; ~jj A Dð ~TTaÞ: ð7:5Þ

However, it follows from an application of the Rellich–Kondrachov theorem that

the injection B s�1=p;pðqW� S;R3Þ ! B t;pðqW� S;R3Þ is compact (or completely

continuous) for t < s� 1=p. Thus, by applying Lemma 7.5 with

X ¼ Y :¼ B s�1=p;pðqW� S;R3Þ;

Z :¼ B t;pðqW� S;R3Þ;

T :¼ ~TTa;

we obtain that the range Rð ~TTaÞ is closed in B s�1=p;pðqW� S;R3Þ and that

dim Nð ~TTaÞ < y: ð7:6Þ

On the other hand, by formula (7.2) we find that the symbol of the adjoint
~TT � is given by the following formula (cf. Theorem 2.7):

aðx 0Þð~pp1ðx 0; x 0; y; hÞ �
ffiffiffiffiffiffiffi
�1
p

~qq1ðx 0; x 0; y; hÞÞ

þ
 "

1� aðx 0Þ þ aðx 0Þ~pp0ðx 0; x 0; y; hÞ �
X2
j¼1

qxj ðaðx 0Þ � qxj ~qq1ðx 0; x
0; y; hÞÞ

#

�
ffiffiffiffiffiffiffi
�1
p

"
aðx 0Þ~qq0ðx 0; x 0; y; hÞ þ

X2
j¼1

qxj ðaðx 0Þ � qxj ~pp1ðx 0; x
0; y; hÞÞ

#!

þ terms of ordera�1:

However, by virtue of Lemma 5.4 it follows that

qxjaðx 0Þ ¼ 0 on M ¼ fx 0 A qW : aðx 0Þ ¼ 0g:
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Thus we can easily verify that the pseudo-di¤erential operator ~TT � satisfies con-

ditions (2.7a) and (2.7b) of a matrix-valued version of Theorem 2.12 with m :¼ 0,

r :¼ 1 and d :¼ 1=2. This implies that estimate (7.5) remains valid for the adjoint

operator ~TT�
a of ~TTa:

j ~ccj�sþ1=p;p 0 a ~CCtðj ~TT �a ~ccj�sþ1=p;p 0 þ j ~ccjt;p 0 Þ; ~cc A Dð ~TT�
a Þ;

where t < �sþ 1=p and p 0 ¼ p=ðp� 1Þ is the exponent conjugate to p. Hence

we have, by the closed range theorem (cf. [Yo, Chapter VII, Section 5]) and

Lemma 7.5,

codim Rð ~TTaÞ ¼ dim Nð ~TT�
a Þ < y; ð7:7Þ

since the injection B�sþ1=p;p
0 ðqW� S;R3Þ ! B t;p 0 ðqW� S;R3Þ is compact for

t < �sþ 1=p.

Therefore, the desired assertion (7.4) follows from assertions (7.6) and (7.7).

Step 3-b: By assertion (7.4), we can apply Proposition 7.4 to obtain that

the operator Taðl2Þ : B s�1=p;pðqW;R3Þ ! B s�1=p;pðqW;R3Þ is bijective if l A ZnK
for some finite subset K of Z. In particular, we have the formula

ind Taðl0Þ ¼ 0 if l0 ¼ l2; l A ZnK : ð7:8Þ

However, it is easy to see that the symbol tðx 0; x 0; lÞ of the operator

TaðlÞ ¼ aðx 0ÞPðlÞ þ ð1� aðx 0ÞÞI ; lb 0;

has the following asymptotic expansion:

tðx 0; x 0; lÞ ¼ aðx 0Þ½p1ðx 0; x 0Þ þ
ffiffiffiffiffiffiffi
�1
p

q1ðx 0; x 0Þ�

þ ½ð1� aðx 0Þ þ aðx 0Þp0ðx 0; xÞÞ þ
ffiffiffiffiffiffiffi
�1
p

aðx 0Þq0ðx 0; x 0Þ�

þ terms of ordera�1 depending on l: ð7:9Þ

Thus, by taking l :¼ 0 and l :¼ l0 in formula (7.9) we can find a 3� 3 matrix-

valued, classical pseudo-di¤erential operator Kð0; l0Þ of order �1 on the

boundary qW such that

Ta ¼ Taðl0Þ þ Kð0; l0Þ:

Furthermore, the Rellich–Kondrachov theorem asserts that the operator

Kð0; l0Þ : B s�1=p;pðqW;R3Þ ! B s�1=p;pðqW;R3Þ

is compact. Hence we have the formula
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ind Ta ¼ ind Taðl0Þ: ð7:10Þ

Therefore, Proposition 7.2 follows by combining formulas (7.10) and (7.8).

Now the proof of Proposition 7.2 is complete. r

Theorem 7.1 is proved, apart from the proof of Proposition 7.4. The proof of

Proposition 7.4 is given in the next Section 7.2, due to its length.

7.2 Proof of Proposition 7.4

The proof of Proposition 7.4 is divided into three steps.

Step 1: First, we study the null spaces Nð ~TTaÞ and NðTaðl 0ÞÞ when l 0 ¼ l2

with l A Z:

Nð ~TTaÞ ¼ f~jj A B s�1=p;pðqW� S;R3Þ : ~TTa~jj ¼ 0g;

NðTaðl 0ÞÞ ¼ fj A B s�1=p;pðqW;R3Þ : Taðl 0Þj ¼ 0g:

Since the pseudo-di¤erential operators ~TTa and Taðl 0Þ are both hypoelliptic, it

follows that

Nð ~TTaÞ ¼ f~jj A CyðqW� S;R3Þ : ~TTa~jj ¼ 0g;

NðTaðl 0ÞÞ ¼ fj A CyðqW;R3Þ : Taðl 0Þj ¼ 0g:

Therefore, we can apply [Ta1, Proposition 8.4.6] to obtain the following most

important relationship between the null spaces Nð ~TTaÞ and NðTaðl 0ÞÞ when

l 0 ¼ l2 with l A Z:

Lemma 7.6. The following two conditions (1) and (2) are equivalent:

(1) dim Nð ~TTaÞ < y.

(2) There exists a finite subset I of Z such that

dim NðTaðl2ÞÞ < y if l A I ;

dim NðTaðl2ÞÞ ¼ 0 if l B I :

�

Moreover, in this case we have the formulas

Nð ~TTaÞ ¼0
l A I

NðTaðl2ÞÞn l ily;

dim Nð ~TTaÞ ¼
X
l A I

dim NðTaðl2ÞÞ:
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Step 2: Secondly, we study the ranges Rð ~TTaÞ and RðTaðl 0ÞÞ when l 0 ¼ l2

with l A Z. To do this, we consider the adjoint operators ~TT�
a and Taðl 0Þ� of ~TTa

and Taðl 0Þ, respectively.

The next lemma allows us to give a characterization of the adjoint operators
~TT�
a and Taðl 0Þ� in terms of pseudo-di¤erential operators (cf. [Ta1, Lemma

8.4.8]):

Lemma 7.7. Let M be an n-dimensional, compact smooth manifold without

boundary. If T is a classical pseudo-di¤erential operator of order m on M, we

define a densely defined, closed linear operator

T : Bs;pðMÞ ! Bs�mþ1;pðMÞ ðs A RÞ

as follows.

(a) The domain DðTÞ of T is the space

DðTÞ ¼ fj A Hs;pðMÞ : Tj A Hs�mþ1;pðMÞg:

(b) Tj ¼ Tj, j A DðTÞ.
Then the adjoint operator T� of T is characterized as follows:

(c) The domain DðT�Þ of T� is contained in the space

fc A B�sþm�1;p
0 ðMÞ : T �c A B�s;p

0 ðMÞg;

where p 0 ¼ p=ðp� 1Þ and T � A Lm
cl ðMÞ is the adjoint of T.

(d) T�c ¼ T �c, c A DðT�Þ.

It should be noticed that the pseudo-di¤erential operators TðlÞ� and ~TT � also

satisfy conditions (2.7a) and (2.7b) of a matrix-valued version of Theorem 2.12

with m :¼ 0, r :¼ 1 and d :¼ 1=2; hence they are hypoelliptic.

Therefore, by applying Lemma 7.7 to the operators ~TT and Tðl 0Þ we obtain

the following:

Lemma 7.8. The null spaces Nð ~TT�
a Þ and NðTaðl 0Þ�Þ are characterized re-

spectively as follows:

Nð ~TT�
a Þ ¼ f ~cc A CyðqW� S;R3Þ : ~TT �a ~cc ¼ 0g:

NðTaðl 0Þ�Þ ¼ fc A CyðqW;R3Þ : Taðl 0Þ�c ¼ 0g:

By Lemma 7.8, we find that Lemma 7.6 remains valid for the adjoint

operators ~TT�
a and Taðl 0Þ� (cf. [Ta1, Lemma 8.4.10]):
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Lemma 7.9. The following two conditions (1) and (2) are equivalent:

(1) dim Nð ~TT�
a Þ < y.

(2) There exists a finite subset J of Z such that

dim NðTaðl2Þ�Þ < y if l A J;

dim NðTaðl2Þ�Þ ¼ 0 if l B J:

�

Moreover, in this case we have the formula

dim Nð ~TT�
a Þ ¼

X
l A J

dim NðTaðl2Þ�Þ:

Hence, by combining Lemma 7.9 and the closed range theorem we obtain the

most important relationship between codim Rð ~TTaÞ and codim RðTaðl 0ÞÞ when

l 0 ¼ l2, l A Z (cf. [Ta1, Proposition 8.4.11]):

Lemma 7.10. The following two conditions (1) and (2) are equivalent:

(1) codim Rð ~TTaÞ < y.

(2) There exists a finite subset J of Z such that

codim RðTaðl2ÞÞ < y if l A J;

codim NðTaðl2ÞÞ ¼ 0 if l B J:

�

Moreover, in this case we have the formula

codim Rð ~TTaÞ ¼
X
l A J

codim RðTaðl2ÞÞ:

Step 3: Proposition 7.4 is an immediate consequence of Lemmas 7.6 and

7.10, with K :¼ I U J.

Now the proof of Proposition 7.4 and hence that of Theorem 7.1 is

complete. r

8. Proof of Theorems

This chapter is devoted to the proof of Main Theorem, Theorem 1.1 and

Theorem 1.2. After reviewing some di¤erential calculus in Banach spaces in

Subsection 8.1.1, we prove Main Theorem in Section 8.1. A basic result that

relates linearized and nonlinear theories is the inverse mapping theorem (Theorem

8.1). In the proof of Theorems 1.1 and 1.2, we calculate explicitly the first
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elasticity tensor A
�
, and verify that either condition (B) or condition (C) implies

condition (S) in Sections 8.2 and 8.3.

8.1 Proof of Main Theorem

By the existence and uniqueness theorem for problem (1.4) (Theorem 3.1),

our Main Theorem follows from an application of the inverse mapping theorem

(Theorem 8.1).

8.1.1 The Inverse Mapping Theorem. Let X and Y be Banach spaces, U

an open set in X and f : U! Y a map. We say that the map f is di¤erentiable

at a point x of U if there exist a continuous linear operator A : X! Y and a

map c defined for all su‰ciently small h in X, with values in Y, such that

f ðxþ hÞ ¼ f ðxÞ þ Ahþ khkcðhÞ;
limh!0 cðhÞ ¼ 0:

�
It should be emphasized that the continuous linear operator A is uniquely

determined by f and x. The operator A is called the Fréchet derivative of f at x,

and is denoted by f 0ðxÞ or Df ðxÞ. A map f is said to be di¤erentiable on U if it

is di¤erentiable at every point of U. In this case, the derivative f 0 is a map of U

into the Banach space BðX;YÞ of continuous linear operators:

Df ¼ f 0 : U! BðX;YÞ

x 7! f 0ðxÞ:

If f 0 is continuous from U into BðX;YÞ, we say that f is of class C 1.

We can define inductively the derivatives Dkf for general kb 2. A map f

is said to be of class C r ðrb 2Þ if all derivatives Dkf exist and are continuous

for 1a ka r.

The next inverse mapping theorem provides a criterion for a map to be a local

Cr-di¤eomorphism in terms of its derivative (cf. [MH, Chapter 4, Theorem 1.2]):

Theorem 8.1 (The inverse mapping theorem). Let X and Y be Banach

spaces, and let f be a C r-map ðrb 1Þ of an open subset U of X into Y. Assume

that the Fréchet derivative f 0ðx0Þ : X! Y is an algebraic and topological iso-

morphism at a point x0 of U. Then the map f is a Cr-di¤eomorphism of some

neighborhood of x0 onto some neighborhood of f ðx0Þ.

8.1.2 Proof of Main Theorem. We recall that the linearization of problem

(1.1) is nothing but problem (1.3) or problem (1.4) with aðxÞ :¼ A
�
ðXÞ. However,

Theorem 3.1 asserts that:
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The Fréchet derivative F 0ðf
�
Þ of the map F at f

�
¼ IW is an algebraic and

topological isomorphism of H s;pðW;R3Þ onto H s�2;pðW;R3Þ � B
s�1�1=p;p
ðaÞ ðqW;R3Þ.

Therefore, Main Theorem follows immediately from an application of the

inverse mapping theorem (Theorem 8.1). r

8.2 Proof of Theorem 1.1

The stored energy function WðX ;FÞ for the Hencky–Nadai elasto-plastic

material has the form

WðX ;FÞ ¼ 3

4

ðGðFÞ
0

gðxÞ dxþ K

2

X3
k¼1

Fkk � 3

 !2
;

where g A Cyð½0;yÞ;RÞ, the constant K is the modulus of compression and

GðFÞ ¼ 4

3

X3
i; j¼1

1

2
ðFij þ FjiÞ �

1

3

X3
k¼1

FkkFkk

 !
dij

 !2
:

We have only to verify condition (S). First, it follows (cf. [MH, Chapter 3,

Proposition 4.4]) that the first Piola–Kirchho¤ stress tensor PðXÞ ¼ ðPijðXÞÞ is

given by the formula

PijðXÞ ¼ P̂PijðX ;FðXÞÞ

¼ qW

qFij

ðX ;FðXÞÞ

¼ K � 2

3
gðGðFðX ÞÞÞ

� � X3
k¼1

FkkðX Þ � 3

 !
dij

þ gðGðFðX ÞÞÞðFijðX Þ þ FjiðXÞ � 2dijÞ;

and that the first elasticity tensor AðXÞ ¼ ðAijlmðXÞÞ is given by the formula

AijlmðX Þ ¼
qP̂Pij

qFlm
ðX ;FðX ÞÞ

¼ gðGðFðXÞÞÞðdildjm þ dimdjlÞ þ K � 2

3
gðGðFðXÞÞÞ

� �
dij dlm

þ 16

3
g 0ðGðFðX ÞÞÞeijðFðXÞÞelmðFðXÞÞ;

where
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eijðFðXÞÞ ¼
1

2
ðFijðXÞ þ FjiðXÞÞ �

1

3

X3
k¼1

FkkðXÞFkkðX Þ
 !

dij ;

FðX Þ ¼ ðFijðXÞÞ ¼
qfi
qXj

� �
:

Thus we find that the elasticity tensor A
�
ðXÞ ¼ ðA

�
ijlmðXÞÞ evaluated at f

�
¼ IW is

equal to the following:

A
�
ijlmðXÞ ¼ gð0Þðdildjm þ dim djlÞ þ K � 2

3
gð0Þ

� �
dij dlm:

However, it is easy to see (cf. [MH, Chapter 4, Proposition 3.13]) that the

elasticity tensor A
�
ðXÞ is uniformly pointwise stable if and only if gð0Þ > 0 and

K > 0.

Therefore, we have proved that condition (B) implies condition (S).

The proof of Theorem 1.1 is complete. r

8.3 Proof of Theorem 1.2

The stored energy function WðX ;FÞ for the Saint Venant–Kirchho¤ isotropic

material has the form

WðX ;FÞ ¼ lðXÞ
8

X3
k¼1

CkkðFÞ � 3

 !2
þ mðXÞ

4

X3
i; j¼1
ðCijðFÞ � dijÞ2;

where lðXÞ, mðXÞ are smooth Lamé functions, and the two-tensor

C ¼ ðCijðFÞÞ ¼
X3
k¼1

FkiFkj

 !

is the (right) Cauchy–Green strain tensor.

We have only to verify condition (S). First, it follows (cf. [MH, Chapter

3, Proposition 4.4]) that the second Piola–Kirchho¤ stress tensor SðX Þ ¼
ðŜSijðX ;CðXÞÞÞ is given by the formula

ŜSijðX ;CðXÞÞ ¼ 2
qW

qCij

ðX ;FðXÞÞ

¼ lðX Þ
2

X3
k¼1

CkkðXÞ � 3

 !
� mðX Þ

" #
dij þ mðX ÞCijðX Þ;
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and that the second elasticity tensor CðX Þ ¼ ðCijlmðX ÞÞ is given by the formula

CijlmðXÞ ¼
qŜSij

qClm
ðX ;CðXÞÞ ¼ lðXÞ

2
dij dlm þ

mðXÞ
2
ðdildjm þ dimdjlÞ:

Then we find (cf. [MH, Chapter 3, Proposition 4.5]) that the first elasticity

tensor AðXÞ ¼ ðAijlmðX ÞÞ is given by the following formula:

AijlmðX Þ ¼ 2
X3
a;b¼1

CajbmðXÞFiaðX ÞFlbðXÞ þ ŜSjmðX ;CðXÞÞdil

¼
X3
a;b¼1
ðlðX Þdaj dbm þ mðXÞðdabdjm þ damdbjÞÞFiaðXÞFlbðX Þ

þ lðX Þ
2

X3
k¼1

CkkðFðX ÞÞ � 3

 !
� mðXÞ

" #
djm þ mðX ÞCjmðFðXÞÞ

 !
dil:

Thus it follows that the elasticity tensor A
�
ðX Þ ¼ ðA

�
ijlmðXÞÞ evaluated at f

�
¼ IW is

equal to the following:

A
�
ijlmðXÞ ¼ mðX Þðdildjm þ dimdjlÞ þ lðXÞdij dlm:

However, it is easy to see (cf. [MH, Chapter 4, Proposition 3.13]) that if con-

dition (C) is satisfied, then the elasticity tensor A
�
ðX Þ is uniformly pointwise

stable. This proves that condition (C) implies condition (S).

The proof of Theorem 1.2 is complete. r

9. Summary and Discussion

We have studied boundary value problems of nonlinear elastostatics in the

case where solutions of the linearized problem correspond faithfully to those of

the nonlinear problem, that is, in the case where there is no bifurcation. We have

proved that if the linearized problem has unique solutions, then so does the

nonlinear one, nearby (Main Theorem). This is done by using the L p theory of

pseudo-di¤erential operators and the inverse mapping theorem. Our boundary

condition is a ‘‘regularization’’ of the genuine mixed displacement-traction

boundary condition; more precisely, it is a smooth linear combination of dis-

placement and traction boundary conditions, but is not equal to the pure traction

boundary condition. Moreover, it should be emphasized that our problem

becomes a degenerate elliptic boundary value problem from an analytical point of

view. The crucial point is how to find a function space associated with the
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degenerate boundary condition in which the linearized problem has unique

solutions. Main Theorem could be applied to the Saint Venant–Kirchho¤ elastic

material and the Hencky–Nadai elasto-plastic material (Theorem 1.1 and

Theorem 1.2). Some previous results with pure displacement boundary condition

are due to Ciarlet [Ci], Dinca [Di], Marsden–Hughes [MH] and Valent [Va].

The results here have extended and improved substantially those results in a

unified theory. Our approach is distinguished by the extensive use of the ideas and

techniques characteristic of the recent developments in the theory of partial

di¤erential equations ([Ta4]).

Finally, we give two important open problems concerning the boundary

value problems of nonlinear elastostatics (see Figure 9.1):

(1) The first problem is to generalize main results to the case where the

domain W has corner singularities.

(2) The second problem is to study the case where the function aðxÞ is the

characteristic function of a subset of the boundary qW.

It should be emphasized that Ito [It2] obtained some important results in the

framework of Sobolev spaces of L2 type, by using Melin’s inequality [Me].

We leave these open problems for future study.
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[Ho2] L. Hörmander, Pseudo-di¤erential operators and hypoelliptic equations, Proc. Sym. Pure

Math. Vol. X (Singular integrals), Amer. Math. Soc., Providence, Rhode Island, 1967,

pp. 138–183.
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