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ON GRAPHS LIKE HYPERCUBES

By

Juhani Nieminen, Matti Peltola and Pasi Ruotsalainen

Abstract. By defining new concepts like pseudocomplements in

graphs a new class of graphs is obtained. They have very many

properties in common with hypercubes and therefore they are called

pseudocubes. Pseudocubes are Hasse diagram graphs (covering

garphs) of finite lattices, where pseucomplements constitute a sub-

lattice. As an application, the routing and fault tolerance properties

of certain pseudocubes are determined.

1. Introduction

Hypercubes constitute a very remarkable class of graphs especially for

transmitting communication and therefore the graphs having many properties in

common with hypercubes are an alternative for hypercubes. When looking after

properties of hypercubes one has to find a model the properties of which one can

translate into graphs. The model of this paper is the class of finite Boolean

lattices, the properties of which we are monitoring and translating into graphs. As

well known, the Hasse diagram graph (the covering graph) of a finite Boolean

lattice is a hypercube, and conversely each finite hypercube can be identified as a

finite Boolean lattice by using e.g. the well known labeling of vertices by 0,1-

strings. Each Boolean lattice is distributive and complemented, and by weakening

these properties we try to find alternatives for hypercubes. Each vertex of a finite

hypercube has the same degree and thus a good generalization must have this

property. An arbitrary vertex of finite hypercube can be identified as a least

element of a finite Boolean lattice, and thus this kind of symmetry must exist in a

good generalization. Moreover, in a finite Boolean lattice each vertex is on a

shortest path between the least and greatest element, and also this property must
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exist in a good generalization. The complementarity of Boolean lattices seem

to be a too weak property to a¤ect to all vertices of a graph but its weakened

form called pseudocomplementarity will order the vertices of a graph rather

throughout, and thus a good generalization must be pseudocomplemented. After

this list we are able to define pseudocubes, the graphs like hypercubes. Before the

definition, we need some notations.

2. Weak Pseudocubes

The graphs G ¼ ðV ;EÞ of this paper are finite, connected and undirected with

vertex set V and edge set E. A vertex set AHV is a convex, if x; y A A and z on

a shortest x� y path (on an x� y geodesic) imply that z A A. Clearly a non-

empty intersection AVB of two convexes is a convex, too. By hDi we denote

the least convex containing the vertex set D: hDi ¼ 7fC jC is a convex and

DHCg. The least convex containing the vertices x and y is briefly denoted by

hx; yi, and by ½x; y� we denote the set of all vertices locating on an x� y

geodesic. Clearly the convex hx; yi also contains vertices on an x� y geodesic

and hence ½x; y�H hx; yi. In the covering graph of a finite distributive lattice,

½x; y� ¼ hx; yi for each two vertices x and y, and thus in each (finite) hypercube

hx; yiH ½x; y� for all x; y A V . In the covering graph of a finite Boolean lattice, if

x 0 is the complement of x, then ½x; x 0� ¼ V . In a graph G, a vertex x has a

complement y, if ½x; y� ¼ V . In a finite lattice L with a least element 0 an element

a has a pseudocomplement a�, if a5a� ¼ 0 and a5x ¼ 0 imply xa a�. In a

graph G a vertex x has a pseudocomplement x�
z relative to a vertex z if and only

if hx�
z ; zi is the greatest convex such that hx�

z ; ziVhz; xi ¼ fzg. This means that

if hb; ziVhz; xi ¼ fzg then hz; biH hx�
z ; zi.

Definition 1. A finite graph G ¼ ðV ;EÞ is called a weak pseudocube, if

(i) for each convex A of G there are vertices a; b A A such that ½a; b� ¼ A,

especially we have ha; bi ¼ ½a; b� for each pair a, b of vertices in G.

(ii) for each vertex a A V there is a unique vertex a 0 such that V ¼ ½a; a 0�;
(iii) for each triple a, b, c of vertices in G there is a unique vertex a�

b such

that ½a�
b ; b�V ½a; b� ¼ fbg and the relation ½a; b�V ½b; c� ¼ fbg implies the relation

½b; c�H ½b; a�
b �.

As one can easily check, each cycle C2n with even number of vertices is a

weak pseudocube but an odd cycle is not: if a is a vertex of C2n�1, there is no

vertex a 0 such that ½a; a 0� ¼ V .
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We prove some results of weak pseudocubes.

Lemma 1. In a weak pseudocube WP ¼ ðV ;EÞ, if vertices s and z are

adjacent, then

(i) dða; zÞ ¼ dða; sÞ þ 1 for all a A ½s; z 0�;
(ii) ½s; z 0�V ½s 0; z� ¼ q.

Proof. (i) Clearly jdða; sÞ � dða; zÞja 1 for all a A V . If a A ½s; z 0� ¼ ½z 0; s�,
then ½z 0; a�J ½z 0; s�JV ¼ ½z 0; z�. Thus there exists a shortest z 0 � z path which

goes through z 0, a, s, z in this order and the last edge of the path is sz.

(ii) Assume that a A ½s; z 0�V ½s 0; z�. Since a A ½s 0; z�, we have ½a; z�J ½s 0; z�, thus
s A ½s 0; z�, which is absurd.

Lemma 2. In a weak pseudocube WP ¼ ðV ;EÞ diameter of WP,

diamðWPÞ ¼ dða; a 0Þ for all a A V.

Proof. Assume that s and z are adjacent vertices of V . Since z 0 A ½s; z 0�
and s A ½z 0; s� the previous lemma implies that dðz 0; zÞ ¼ dðz 0; sÞ þ 1 and dðs; s 0Þ ¼
dðs; z 0Þ þ 1. Thus we have dðs; s 0Þ ¼ dðz; z 0Þ and since weak pseudocubes are

clearly connected, this implies that dða; a 0Þ ¼ dðb; b 0Þ for each pair of vertices a

and b. Since V ¼ ½a; a 0� ¼ ½b; b 0�, the assertion follows.

Lemma 3. In a weak pseudocube WP ¼ ðV ;EÞ, if s and z are adjacent, then s 0

is adjacent to z 0, s 0 ¼ s�z , and if yð0 sÞ is adjacent to z, then y A ½z; s 0�. Moreover

½z; s 0�U ½z 0; s� ¼ V.

Proof. Since ½s; z 0�J ½s; s 0�, there exists a shortest s� s 0 path which goes

through z 0, thus dðs; s 0Þ ¼ dðs; z 0Þ þ dðz 0; s 0Þ. By the proof of the previous lemma

we have dðs; z 0Þ ¼ dðs; s 0Þ � 1, which implies that s 0 and z 0 are adjacent.

Since z B ½s; z 0�, we have ½s; z 0�V ½s; z� ¼ ½s; z 0�V fs; zg ¼ fsg. By the definition

of the weak pseudocube, we have ½s; z 0�J ½s; z�s �, thus there exists a shortest s� z�s
path through z 0. Since dðs; z 0Þ ¼ dðs; s 0Þ � 1, then z�s A fz 0; s 0g. If z�s ¼ s 0, then

we have fs; zg ¼ ½z; s� ¼ ½s; s 0�V ½z; s� ¼ ½s; z�s �V ½z; s� ¼ fsg, which is absurd. Thus

z�s ¼ z 0.

Assume now that y is adjacent to z, y0 s and y B ½s 0; z�. This implies that

½s 0; z�V ½y; z� ¼ fzg, whence y�
z ¼ s 0. On the other hand, s 0 ¼ s�z , and analogously,

y 0 ¼ y�
z . This means that the vertex y 0 ¼ s 0 has two complements y and s, which

is absurd. Hence, if y is adjacent to z and y0 s, then y A ½z; s 0�.
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Assume now that y B ½z; s 0�. Then z B ½s; y�, since otherwise there exists a

shortest s� s 0 path which goes through z and y on this order. Thus ½s; y�V ½s; z� ¼
fsg. Then ½s; y� � ½s; z�s � ¼ ½s; z 0�, so y A ½z 0; s�, which implies that ½z; s 0�U ½z 0; s� ¼ V .

A convex K is a prime convex, if also the set VnK is a convex in G. A graph

G is a prime convex intersection graph if each convex D of G is the intersection

of prime convexes containing D. As known, each (finite) hypercube is a prime

convex intersection graph.

By the previous lemmas we have proved the following result.

Theorem 1. In a weak pseudocube, if vertices z and s are adjacent, then ½z; s 0�
and ½s; z 0� are prime convexes.

Theorem 2. Weak pseudocubes are bipartite, i.e. each of a cycle of weak

pseudocube has an even length.

Proof. Assume that a weak pseudocube WP ¼ ðV ;EÞ contains an odd

cycle P. Then there exist three vertices s, z, a of P such that s and z are adjacent

and dðs; aÞ ¼ dðz; aÞ. Since by the previous lemmas we have V ¼ ½s; z 0�U ½s 0; z� and
½s; z 0�V ½s 0; z� ¼ q, we may assume that a A ½s; z 0�. Since V ¼ ½z; z 0�, there exists a

shortest z� z 0 path which goes through a. Then dðz; z 0Þ ¼ dðz; aÞ þ dða; z 0Þ ¼
dðs; aÞ þ dða; z 0Þ ¼ dðs; z 0Þ < dðs; s 0Þ, which is absurd by Lemma 2.

Theorem 3. In a weak pseudocube WP ¼ ðV ;EÞ, degðzÞ ¼ degðz 0Þ for each

vertex z.

Proof. Let y and s be adjacent to z and y0 s. By Lemma 3, y A ½z; s 0�. By
(iii) of Definition 1, each vertex y has a unique complement y 0, and because

½y; y 0� ¼ V 0 ½z; s 0�, y 0 cannot belong to the convex ½z; s 0�. Because ½z; s 0�U ½s; z 0� ¼
V , the vertex y 0 belongs to the convex ½s; z 0�, and by Lemma 3, y 0 is adjacent to

z 0. Thus for each vertex x adjacent to z there is a unique vertex x 0 adjacent to z 0,

which shows that degðzÞ ¼ degðz 0Þ.

Theorem 4. Weak pseudocubes are prime convex intersection graphs.

Proof. Assume that A is a convex of a weak pseudocube WP ¼ ðV ;EÞ and
let B ¼ 7fPC jPC is a prime convex, A a convex and AHPCg. If B contains a

vertex z such that z B A, we can choose z so that z is adjacent to a vertex s A A. If
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there is another vertex t A A which also is adjacent to z, then t and s are adjacent,

because otherwise z is on a shortest t� s path and thus belongs to convex A. But

since weak pseudocube is bipartite, this is absurd. Thus z is adjacent to a single

vertex (here s) of A.

By (i) in Definition 1, A ¼ ½u;w�, and thus s is on a shortest u� w path. If

u;w A ½s; z 0�, then A ¼ ½u;w�H ½s; z 0�, where ½s; z 0� is a prime convex containing A

and not z. Thus z B B, and hence we must assume that the vertices u and w

cannot simultaneously belong to one of the prime convexes ½s; z 0� and ½z; s 0�: in the

following we assume that u A ½z; s 0� and w A ½s; z 0�. Let t be the vertex of A nearest

to s on a shortest u� z path; in an extreme case t ¼ u. If dðs; tÞ < dðz; tÞ, then
dðz; tÞb dðz; sÞ þ dðs; tÞ ¼ 1þ dðs; tÞ, and thus s A ½z; t�J ½z; s 0�, which is absurd.

If dðs; tÞ > dðz; tÞ, we similarly see that z A ½s; z 0�, which is absurd, too. Hence

dðz; tÞ ¼ dðs; tÞ ¼ a. Because t is on a shortest u� z path, it also is on a shortest

z� s 0 path, and we denote dðt; s 0Þ ¼ h. On the other hand, t also is on a shortest

z� z 0 path and we denote dðt; z 0Þ ¼ k. By using these notations, we have

dðz; z 0Þ ¼ dðz; tÞ þ dðt; z 0Þ ¼ aþ k and dðs; s 0Þ ¼ dðs; tÞ þ dðt; s 0Þ ¼ aþ h. By

Lemma 2, dðs; s 0Þ ¼ dðz; z 0Þ, and thus h ¼ k. But then dðz; s 0Þ ¼ dðz; tÞ þ dðt; s 0Þ ¼
aþ h ¼ dðz; z 0Þ, which is absurd. This implies that u and w must simultaneously

belong to one of the prime convexes ½z; s 0� and ½s; z 0�, whence 7fPC jPC is a

prime convex and AHPCg ¼ A and each weak pseudocube is a prime convex

intersection graph.

3. Pseudocubes

In Figure 1a there is a weak pseudocube which cannot be mapped onto a

hypercube with respect to vertex b. Thus some more properties are needed.

Definition 2. A weak pseudocube is called a pseudocube P, if for each three

vertices a, b, c of P there is a vertex d such that ½a; c�V ½b; c� ¼ ½d; c�.

Consider the weak pseudocube of Figure 1a, where ½a; b�V ½c; b� ¼ ½d; e�,
which shows that the graph of the figure is not a pseudocube.

Because for each vertex z of a pseudocube P ¼ ðV ;EÞ there is a unique

vertex z 0 such that ½z; z 0� ¼ V , we can order the vertices of P such that z is the

least and z 0 the greatest element of P. Since ½a; z�V ½b; z� ¼ ½d; z�, we see that for

any two elements/vertices a and b of P there is a greatest lower bound d, and

thus the vertices of P constitute a meet-semilattice with z as least element.

Because P is finite and there is a greatest element z 0, the vertices of P constitute a
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lattice with z 0 as a greatest element, a5b ¼ d if and only if ½a; z�V ½b; z� ¼ ½d; z�,
and a4b ¼ e if and only if ½e; z� ¼ 7f½x; z� j ½a; z�; ½b; z�H ½x; z�g. Thus

½a; z�U ½b; z�H ½a4b; z�. Denote by Lðz; z 0;PÞ the lattice generated by P with z as

the least element and z 0 as the greatest element. One can now see that a

pseudocomplement a�
z of a vertex a in pseudocube P is the same element/vertex

as the pseudocomplement a� of the element a in the lattice Lðz; z 0;PÞ, since a� is

the greatest element of Lðz; z 0;PÞ having the property a5a� is the least element

of the lattice.

Theorem 5. A vertex b of a pseudocube P is a pseudocomplement p�
z with

respect to a vertex z if and only if the convex ½b; z� has an expression as an

intersection of the prime convexes ½s 0; z�, where s is adjacent to z, i.e. ½ p�
z ; z� ¼

½b; z� ¼ 7f½s 0; z� j s is adjacent to z and b A ½s 0; z�g.

Proof. Let b ¼ p�
z , S ¼ fs1; . . . ; sng the set of all vertices adjacent to z,

and let fs1p; . . . ; supg ¼ ½ p; z�VS. Because sip A ½ p; z� and ½ p; z�V ½ p�
z ; z� ¼ fzg, we

have ½sip; z�V ½ p�
z ; z� ¼ fzg. As stated in Theorem 1, the convex ½s 0ip; z� is a prime

convex not containing the vertex sip, and thus ½sip; z�V ½s 0ip; z� ¼ fzg as well as

p�
z A ½s 0ip; z� for each sip A ½ p; z�. This implies that ½ p�

z ; z�H7f½s 0ip; z� j sip A ½ p; z�g. If
½ p; z�V ð7f½s 0ip; z� j sip A ½ p; z�gÞ0 fzg, this intersection must contain also a vertex

adjacent to z, which is absurd, and hence ½ p; z�V ð7f½s 0ip; z� j sip A ½ p; z�gÞ ¼ fzg.

Figure 1: a) a weak pseudocube, b) a pseudocube c) a strong pseudocube.
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By the definition, ½ p�
z ; z� is the greatest convex containg each convex ½x; z� with

the property ½ p; z�V ½x; z� ¼ fzg, and thus ½b; z� ¼ ½ p�
z ; z� ¼ 7f½s 0ip; z� j sip A ½ p; z� and

sip is adjacent to zg.
Conversely, let ½b; z� ¼ 7f½s 0jb; z� j sjb A Sb and Sb is a subset of Sg.

Denote Scb ¼ SnSb. Because ½s; z 0�, ½s 0; z� is a pair of prime convexes for each

vertex s A S, we have s B ½s 0; z� and SnfsgH ½s 0; z�. Thus Scb H7f½s 0jb; z� j sjb A Sbg
and Sb H7f½s 0kcb; z� j skcb A Scbg, and this implies, because Sb VScb ¼ q, that

ð7f½s 0jb; z� j sjb A SbgÞV ð7f½s 0kcb; z� j skcb A ScbgÞ ¼ fzg. By the proof of the first

part of this theorem, ½b�
z ; z� ¼ 7f½s 0; z� j s A Sn½b; z� ¼ Scbg. By the same reason

½ðb�
z Þ

�
z ; z� ¼ 7f½s 0; z� j s A Sn½b�

z ; z� ¼ Sbg, and the theorem follows.

Note that not each convex of a pseudocube P is the intersection of the prime

convexes ½s 0; z� with s as a vertex adjacent to z. Thus the lattice Lðz; z 0;PÞ need

not be distributive and also not Boolean. Although each convex ½x; z� of P is the

intersection of prime convexes of P, these prime convexes need not simulta-

neously be prime ideals of the lattice Lðz; z 0;PÞ (see the pseudocube of Figure 1b).

This is the reason for the essential di¤erence between the graph P and the lattice

Lðz; z 0;PÞ.

Theorem 6. Let P be a pseudocube. The following equation holds in the

lattice Lðz; z 0;PÞ : ða4bÞ� ¼ a�
z5b�

z .

Proof. Let S be the set of all vertices adjacent to z, S V ½a; z� ¼ Sa

and S V ½b; z� ¼ Sb. By Theorem 5, ½a�
z ; z� ¼ 7f½s 0; z� j s A Sag and ½b�

z ; z� ¼
7f½s 0; z� j s A Sbg. By the definition of the meet in the lattice Lðz; z 0;PÞ,
½a�

z5b�
z ; z� ¼ 7f½s 0; z� j s A Sa USbg. This implies by Theorem 5 that a�

z5b�
z is a

pseudocomplement with respect to z in P. Because ½a�
z ; z�V ½a; z� ¼ fzg and

½b�
z ; z�V ½b; z� ¼ fzg we also have ½a�

z5b�
z ; z�V ½a; z� ¼ fzg ¼ ½a�

z5b�
z ; z�V ½b; z� ¼

fzg. By the definition of a pseudocomplement, ½ p�
z ; z� is the greatest convex

containing all convexes ½x; z� with the property ½ p; z�V ½x; z� ¼ fzg, and thus

the equation ½a�
z5b�

z ; z�V ½a; z� ¼ fzg ¼ ½a�
z5b�

z ; z�V ½b; z� ¼ fzg implies ½a4b; z�H
½ða�

z5b�
z Þ

�
z ; z�, whence ½a4b; z�V ½a�

z5b�
z ; z� ¼ fzg and ½a�

z5b�
z ; z�H ½ða4bÞ�z ; z�.

By Theorem 5, ½ða4bÞ�z ; z� ¼ 7f½s 0; z� j s A ½a4b; z�VSg, and because ½a4b; z�V
SISa USb, we have ½ða4bÞ�z ; z�H7f½s 0; z� j s A Sa USbg ¼ ½a�

z5b�
z ; z�, and thus

ða4bÞ�z ¼ a�
z5b�

z as asserted.

Theorem 7. Let P be a pseudocube. The relation y, where ða; bÞ A y ,
a�
z ¼ b�

z is a congruence relation in the lattice Lðz; z 0;PÞ.
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Proof. Clearly the relation y is reflexive and symmetric, and thus it remains

to show that it is compatible with respect to the lattice operations 5 and 4.

Let ða; bÞ; ðc; dÞ A y and thus a�
z ¼ b�

z and c�z ¼ d �
z . By Theorem 6, ða4cÞ�z ¼

a�
z5c�z ¼ b�

z5d �
z ¼ ðb4dÞ�z , whence ða4c; b4dÞ A y. We use the brief expres-

sion p��z instead of the long one ðp�
z Þ

�
z . By the definition of the pseudocomple-

ment in P, we have p���z ¼ p�
z in P as well as in Lðz; z 0;PÞ. Now the equation of

Theorem 6 implies ðp5qÞ�z ¼ ðp5qÞ���z ¼ ððp5qÞ�z Þ
��
z ¼ ðp�

z4q�
z Þ

��
z . Thus the

relation ða; bÞ; ðc; dÞ A y implies ða5cÞ�z ¼ ða5cÞ���z ¼ ðða5cÞ�z Þ
��
z ¼ ða�

z4c�z Þ
��
z ¼

ðb�
z4d �

z Þ
��
z ¼ ððb5dÞ�z Þ

��
z ¼ ðb5dÞ���z ¼ ðb5dÞ�z , whence also ða5c; b5dÞ A y as

asserted.

The congruence y of Theorem 7 shows that each lattice Lðz; z 0;PÞ is

homomorphic to the lattice of pseudocomplements of Lðz; z 0;PÞ, and as known

(see for example Theorem I.4.6 in Grätzer’s book [2]), the lattice of pseudo-

complements is a Boolean lattice (a hypercube). This is the reason for calling the

graphs P of this paper pseudocubes. By Lemma 3, each vertex s 0 adjacent to the

vertex z 0 is the pseudocomplement of a vertex s adjacent to the vertex z. Thus if

degðzÞ ¼ n, then the lattice homorphism j generated by the congruence relation y

on the lattice Lðz; z 0;PÞ maps Lðz; z 0;PÞ onto a Boolean lattice the covering

graph of which is the n-dimensional hypercube Qn.

4. Strong Pseudocubes

Definition 3. A pseudocube P is a strong pseudocube SP if for any pair of

prime convexes ½s 0; z�, ½s; z 0�, where s and z are adjacent vertices of P, there is a

(graph) isomorphism f from the graph induced by ½s 0; z� onto the graph induced

by ½s; z 0� such that if y and x are two adjacent vertices belonging to disjoint prime

convexes (e.g. x A ½s 0; z� and y A ½s; z 0�) then f maps x onto y and vice versa.

As well known, each hypercube Qn satisfies the isomorphism condition of

Definition 3 but it does not hold for all pseudocubes. The pseudocube of Figure

1c is a strong one but the pseudocube of Figure 1b is not. In the case of strong

pseudocubes we can prove

Theorem 8. Strong pseudocubes are regular.

Proof. Let SP be a strong pseudocube. Let s and z be adjacent vertices.

Because f ðzÞ ¼ s and f ðs 0Þ ¼ z 0 in the (graph) isomorphism between the sub-
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graphs induced by the convexes ½z; s 0� and ½s; z 0�, we have degðzÞ ¼ degðsÞ
and degðs 0Þ ¼ degðz 0Þ. On the other hand, by Theorem 3 degðzÞ ¼ degðz 0Þ, and

thus degðzÞ ¼ degðsÞ ¼ degðz 0Þ ¼ degðs 0Þ for each two adjacent vertices z and s.

But this implies that degðuÞ ¼ degðsÞ ¼ degðzÞ for each vertex u adjacent to s.

Because SP is connected we see by induction that each vertex of SP has the same

degree.

As the pseudocube P of Figure 1b) shows, each vertex of a not strong

pseudocube may have the same degree. We have not succeeded to find a

pseudocube having at least two vertices x and y with degðxÞ0 degðyÞ nor to

prove that each vertex of a pseudocube has the same degree.

The cartesian product G1 � G2 ¼ ðVG1�G2
;EG1�G2

Þ of two graphs

G1 ¼ ðV1;E1Þ and G2 ¼ ðV2;E2Þ is a graph, where VG1�G2
is the cartesian

product V1 � V2 of the sets V1 and V2 and where ðða1; a2Þ; ðb1; b2ÞÞ A EG1�G2

if and only if ða1; a2Þ and ðb1; b2Þ are vertices in G1 � G2 and either

a1 ¼ b1 and ða2; b2Þ A E2 or ða1; b1Þ A E1 and a2 ¼ b2. Consider a path

ðc10; c20Þ; ðc11; c21Þ; ðc12; c22Þ; ðc13; c23Þ; . . . ; ðc1n; c2nÞ of the cartesian product

G1 � G2. The path has two projections: one on the graph G1 and another on the

graph G2. The projection on G1 is c10; c11; c12; c13; . . . ; c1n and the projection on

G2 is c20; c21; c22; c23; . . . ; c2n. By removing the multiple vertices from the pro-

jections we obtain two paths and by the definition of G1 � G2 we see that the

length n of the path ðc10; c20Þ; ðc11; c21Þ; ðc12; c22Þ; ðc13; c23Þ; . . . ; ðc1n; c2nÞ is the sum

of the lengths of the projections in G1 and G2, respectively. Thus a path

ðc10; c20Þ; ðc11; c21Þ; ðc12; c22Þ; ðc13; c23Þ; . . . ; ðc1n; c2nÞ in G1 � G2 is a shortest path

between ðc10; c20Þ and ðc1n; c2nÞ if and only if the corresponding projections are

shortest paths in G1 and G2, respectively. This implies that if A is a convex in

G1 � G2, then its respective projections in A1 and A2 in G1 and G2 are convexes

too. Now, if the graphs G1 and G2 are weak pseudocubes, then A1 ¼ ½a1; b1� and
A2 ¼ ½a2; b2�, which imply that A ¼ ½ða1; a2Þ; ðb1; b2Þ�. By the definition one can

also see that the intersection of vertex sets in G1 � G2 reduces to the intersection

of projected vertex sets in G1 and G2, respectively. This implies the validity of the

following theorem

Theorem 9. If the graphs G1 and G2 are

(i) weak pseudocubes then the cartesian product G1 � G2 is a weak pseudocube;

(ii) pseudocubes then the cartesian product G1 � G2 is a pseudocube;

(iii) strong pseudocubes then the cartesian product G1 � G2 is a strong

pseudocube.
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The isomorphism f of Definition 3 implies an automorphism of SP. Because

an arbitrary vertex of SP can be chosen as the vertex z and an arbitrary vertex

adjacent to z as the vertex s, there is an automorphism of SP mapping any

two adjacent vertices onto each other. If ða1; a2Þ; ða2; a3Þ A ESP, then the auto-

morphisms of SP from a1 to a2 and from a2 to a3 imply an automorphism

from a1 to a3. Because SP is connected, we see by induction that there is an

automorphism of SP mapping an arbitary vertex a to another arbitrary vertex b

(a property which holds in every hypercube). Thus we have

Theorem 10. Strong pseudocubes are vertex transitive, i.e. for any two

vertices a and b of a strong pseudocube SP there exists an automorphism of SP

mapping a to b.

5. An Application

Finally we consider shortly fault tolerance in strong pseucocubes.

Interconnection networks are usually modeled by graphs in which the vertices

represent processors and the edges communication links. The message delivery

system must find a route along with which to send each message to its desti-

nation, where a route is a path from one vertex to another. The problem is

greatly simplified if one chooses a route in advance for each source/destination

pair and uses that route for all messages. Such choice of routes is called routing,

and if the routing is computed only once for a given graph, considerable e¤ort

can be put into its computation.

For a graph G ¼ ðV ;EÞ a routing r is a function which assigns to each pair

x; y A V , x0 y, a fixed x� y path. The routing r is called a shortest path

routing/geodetic routing, if its each path/route is a shortest path/geodesic in G. A

fault in G is either a vertex or an edge in G. Let F be a set of faults in G. An

x� y route rðx; yÞ is said to avoid F if no fault is contained in it. Given a set F

of faults in G, the fault free routing r=F is defined to be a reduction of r to fault

free routes.

The e‰ciency of fault tolerance of a fixed routing r in a graph G is measured

by counting how many fault free shortest paths of routing r one must use in

order to transmit a message from a vertex v to another vertex y. Dolev et al. [1]

have proved in Theorem 1 that in a hypercube Qn one must use at most three

fault free paths of an arbitrary shortest path routing r to transmit a message from

an arbiray vertex v to another arbitrary vertex y if the hypercube contains at

most n� 1 faults; see also the paper [3] by Opatrny, Srinivasan and Alagar.
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Denote by SPn a strong pseudocube where degðaÞ ¼ n for each vertex a.

Let Qn be the Boolean lattice/hypercube image of the lattice Lðz; z 0;SPnÞ under

the homorphism j determined by the congruence relation y (ða; bÞ A y , a�
z ¼ b�

z )

on Lðz; z 0;SPnÞ. We say that a vertex v of Qn is fault free if and only if the

congruence class Cv in Lðz; z 0;SPnÞ corresponding to v is fault free, and an edge

ðv; uÞ in Qn is fault free if and only if all edges joining the vertices of congruence

classes Cv and Cu in Lðz; z 0;SPnÞ corresponding to v and u are fault free.

Theorem 11. Let SPn be a strong pseudocube where degðaÞ ¼ n for each

vertex a. If SPn contains at most n� 1 faults then for any two vertices a and b

from any two fault free congruence classes of the congruence y (ðe; cÞ A y ,
e�z ¼ c�z in the lattice Lðz; z 0;SPnÞ with freely chosen vertex z) can be joined by

using at most three fault free shortest paths of an arbitrary shortest path routing r

on SPn.

Proof. Let Qn be the Boolean lattice/hypercube image of the lattice

Lðz; z 0;SPnÞ of the strong pseudocube SPn under the homorphism j determined

by the congruence relation y (ða; bÞ A y , a�
z ¼ b�

z ) on Lðz; z 0;SPnÞ. Consider a

convex (note that each convex of Qn determines a convex sublattice and vice

versa) of Qn. In a finite lattice Qn each convex can be expressed as a set ½aQl ; bQg�,
where aQl a bQg and where aQl is the least and bQg the greatest element of

the convex ½aQl ; bQg�. Let ½a1Ll ; b1Lg� and ½a2Ll ; b2Lg� be the convex sublattices of

Lðz; z 0;SPnÞ for which jðcÞ ¼ aQl for each c A ½a1Ll ; b1Lg� and jðcÞ ¼ bQl for each

c A ½a2Ll ; b2Lg�. Because of the properties jðc4eÞ ¼ jðcÞ4jðeÞ, jðc5eÞ ¼
jðcÞ5jðeÞ for all c; e A Lðz; z 0;SPnÞ and jðcÞ � jðeÞ for ca e in Lðz; z 0;SPnÞ of

the homorphism j, the convex ½aQl ; bQg� induces the convex ½a1Ll ; b2Lg� in

Lðz; z 0;SPnÞ. Moreover, for any vertex c A ½a1Ll ; b2Lg� we have jðcÞ A ½aQl ; bQg�,
and because jðcÞ A ½aQl ; bQg�, c belongs to one of the congruence classes the

images of which are the vertices of the convex ½aQl ; bQg�. This means that a

convex in Qn corresponds to a convex of congruence classes in Lðz; z 0;SPnÞ.
By the definition of fault free elements in Qn, a fault free convex ½aQl ; bQg� in

Qn implies a fault free convex ½a1Ll ; b2Lg� in Lðz; z 0;SPnÞ. The proof of Theorem 1

in [Dolev et al] constructs for each two vertices v, y of Qn with at most n� 1

faults three fault free convexes ½v; u�, ½u;w� and ½w; y� in Qn so that some of the

vertices or even all three of the vertices u, w and y may coincide. The shortest

x� s path of any shortest path routing belongs to the convex ½x; s�. Thus the

construction implies that that any two vertices x, y of Qn can be joined by using

at most three fault free shortest paths of any arbitrary shortest path routing on
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Qn. If SPn contains at most n� 1 faults, then the homorphic image Qn of

Lðz; z 0;SPnÞ also contains at most n� 1 faults. Thus if the vertices a and b of SPn

belong to fault free congruence classes, there are in Qn vertices jðaÞ, u, w and

jðbÞ such that the convexes ½jðaÞ; u�, ½u;w�, ½w; jðbÞ� are fault free and imply fault

free convexes in SPn, whence the vertices a and b can be joined in SPn by using

at most three fault free paths of any shortest path routing r on SPn.

6. Open Problems

Is there any other way than the cartesian product of graphs to create large

pseudocubes?

Improve Theorem 11 for any two vertices of a strong pseudocube.

Is there any special shortest path routing so that one can join vertices by

using at most two fault free shortest paths of the special shortest path routing (see

Theorem 2 in [1]).

Construct a pseudocube with at least two vertices having unequal degrees.
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