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TRANSFERRED KINEMATIC FORMULAE

IN TWO POINT HOMOGENEOUS SPACES

By

Takashi Sakai*

Abstract. We give kinematic formulae for integral invariants of

degree 2 for hypersurfaces in two point homogeneous spaces

explicitly. The discussion here we use is a certain generalization of

the transfer principle in integral geometry.

1. Introduction

Let M and N be submanifolds in a Riemannian homogeneous space G=K ,

one fixed and the other moving under the action of g A G. Consider an ‘‘integral

invariant’’ IðM V gNÞ of the intersection submanifold M V gN. Then a formula

which expresses the integral ð
G

IðM V gNÞ dmGðgÞð1:1Þ

in terms of some geometric invariants of M and N, where dmG is the invariant

measure of G, is called a kinematic formula. For example, in the case where M

and N are submanifolds of a real space form G=K and IðM V gNÞ ¼
volðM V gNÞ, then the evaluation of (1.1) leads to the Poincaré formula, which

expresses it as a constant times of volumes of M and N (see [8] for reference).

Chern [3] and Federer [4] obtained a remarkable kinematic formula as follows:

Theorem 1.1. Let IðRnÞ denote the isometry group of n-dimensional

Euclidean space Rn. Assume that 0a 2la pþ q� n. Then there exist constants

cðp; q; n; i; lÞ determined by indicated parameters so that
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ð
IðRnÞ

m2lðM V gNÞ dmGðgÞ ¼
Xl

i¼0

cðp; q; n; i; lÞm2iðMÞm2ðl�iÞðNÞ

holds for any compact submanifolds M and N in Rn of dimensions p and q,

respectively.

Here the invariants m2i are those that appear in the Weyl tube formula.

Definition and some fundamental properties of them will be explained in Section

2.

Later Howard [5] defined integral invariants of submanifolds in Riemannian

homogeneous spaces from invariant polynomials on the space of second fun-

damental forms. He showed that kinematic formulae for these invariants can be

expressed by invariants of M and N if G is unimodular and acts transitively on

the sets of tangent spaces to each of M and N. Moreover, he showed the

‘‘transfer principle’’ in integral geometry. Roughly speaking, it guarantees that the

same kinematic formulae hold in homogeneous spaces which have the same

isotropy groups.

The linear isotropy action of a two point homogeneous space is transitive on

the hypersphere in the tangent space at the origin. Therefore, from the transfer

principle, kinematic formulae for hypersurfaces in two point homogeneous spaces

can be expressed by invariants of two submanifolds. However, it is not obvious

how to obtain explicit forms of such kinematic formulae. In his paper, Howard

showed the following Poincaré formula by transferring from the case of real space

forms.

Proposition 1.2 ([5] paragraph 3.12). Let G=K be a two point homogeneous

space of dimension n. Let M be a submanifold of dimension p and N a

hypersurface in G=K. If M and N have finite volume thenð
G

volðM V gNÞ dmGðgÞ ¼
volðKÞ volðSp�1Þ volðSnÞ

volðSpÞ volðSn�1Þ volðMÞ volðNÞ

holds.

A Poincaré formula is a kinematic formula for the volume functional, that is,

an integral invariant of degree 0. Therefore our interest goes to the higher degree

cases.

In the present paper, we shall study the kimematic formulae for hypersurfaces

in two point homogeneous spaces. We generalize the transfer principle, and

eventually obtain the following kinematic formulae.
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Main Theorem. Let M and N be real hypersurfaces in a two point homo-

geneous space G=K. Then the following kinematic formulae hold:ð
G

IW2ðM V gNÞ dmGðgÞ

¼ volðKÞ
volðSOðnÞÞ aðn� 1; n� 1; nÞðIW2ðMÞ volðNÞ þ volðMÞIW2ðNÞÞ;

ð
G

I Un�2ðM V gNÞ dmGðgÞ

¼ volðKÞ
volðSOðnÞÞ bðn� 1; n� 1; nÞðI Un�1ðMÞ volðNÞ þ volðMÞI Un�1ðNÞÞ:

Integral invariants IW2 and I Up will be explained in the next section.

2. Preliminaries

We shall use this section to recall the general theory of the kinematic

formulae in Riemannian homogeneous spaces due to Howard, which is necessary

for our discussion. Refer to his paper [5] for details.

Let G be a Lie group and K a compact subgroup of G. We assume that G

has a left invariant metric that is also right invariant under K, then G=K is a

homogeneous space with an invariant metric. We denote by T ¼ ToðG=KÞ the

tangent space of G=K at the origin o. Let V be a linear subspace of T . A

submanifold M of G=K is said to be of type V if and only if for each x A M

there exists gx A G such that ðgxÞ�V ¼ TxM.

For a linear subspace V of T , we define a vector space IIðVÞ to be

IIðVÞ ¼ fh j h : V � V ! V?; symmetric bilinearg;

where V? is the normal space of V in T . A second fundamental form of a

submanifold of G=K which passes through o and has V as the tangent space at o

is an element of IIðVÞ. Let KðVÞ be the stabilizer of V in K , that is, KðVÞ ¼
fk A K j k�V ¼ Vg. The group KðVÞ acts on IIðVÞ by the following manner:

ðkhÞðu; vÞ ¼ k�ðhðk�1
� u; k�1

� vÞÞ ðu; v A VÞð2:1Þ

for k A KðVÞ and h A IIðVÞ. Here we consider a polynomial P on IIðVÞ which is

invariant under KðVÞ, that is, PðkhÞ ¼ PðhÞ for all k A KðVÞ and h A IIðVÞ. Let
M be a submanifold of G=K of type V . For the second fundamental form hM

x of

M at x A M, we define
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PðhM
x Þ ¼ Pðhg�1

x M
o Þ:

Then we can define an integral invariant I PðMÞ of M from a polynomial P by

I PðMÞ ¼
ð
M

PðhM
x Þ dmMðxÞ:ð2:2Þ

We also define a vector space EIIðTÞ to be

EIIðTÞ ¼ fh j h : T � T ! T ; symmetric bilinearg:

Since K also acts on EIIðTÞ in the same way as in (2.1), we can define integral

invariants of a submanifold from polynomials on EIIðTÞ invariant under K in the

same way as in (2.2).

With these notations, we can now state the kinematic formulae in Rie-

mannian homogeneous spaces as follows:

Theorem 2.1 ([5] paragraph 4.10). Let G=K be a Riemannian homogeneous

space and assume that G is unimodular. Let V and W be linear subspaces of T

with dimðVÞ þ dimðWÞb dimðTÞ, and P a homogeneous polynomial of degree l

on EIIðTÞ which is invariant under K , such thatð
K

sðV?; k�W
?Þ1�l

dmKðkÞ < y:ð2:3Þ

Then there exists a finite set of pairs ðQa;RaÞ such that

(1) each Qa is a homogeneous polynomial on IIðVÞ invariant under KðVÞ,
(2) each Ra is a homogeneous polynomial on IIðWÞ invariant under KðWÞ,
(3) deg Qa þ deg Ra ¼ l for each a,

(4) for all compact submanifolds (possibly with boundaries) M of type V and

N of type W in G=K the kinematic formulað
G

I PðM V gNÞ dmGðgÞ ¼
X
a

I QaðMÞI RaðNÞð2:4Þ

holds.

Here sðV ;WÞ is the angle between linear subspaces V of dimension p and W

of dimension q in an inner product space E. That is defined by

sðV ;WÞ ¼ kv15� � �5vp5w15� � �5wqk;

where v1; . . . ; vp and w1; . . . ;wq are orthonormal bases of V and W , respectively.

In the condition (2.3), we required the integral to be convergent. If G=K is a real
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space form, then the condition (2.3) can be replaced by the manageable inequality

la dimðVÞ þ dimðWÞ � dimðTÞ þ 1.

In order to explain how Theorem 2.1 is obtained, we need some definitions

and lemmas. For 0 < p < n, GrpðTÞ denotes the Grassmannian manifold of all

p-dimensional subspaces in T . Then we set

IIpðTÞ ¼ fðV ; hÞ jV A GrpðTÞ; h A IIðVÞg:

For ðV ; hÞ A IIpðTÞ and a subspace W in T with V þW ¼ T , we define

GW ðV ; hÞ A EIIðTÞ by

GW ðV ; hÞðu; vÞ ¼ PV
W ðhðPu;PvÞÞ ðu; v A TÞ:

Here PV
W is the projection T ! ðV VWÞ? VW with kernel V , and P is the

orthogonal projection T ! V VW .

Assume that pþ qb n. For ðV ; h1Þ A IIpðTÞ, ðW ; h2Þ A IIqðTÞ and a poly-

nomial P on EIIðTÞ invariant under K , we define

I PK ðV ; h1;W ; h2Þ

¼
ð
K

PðGk�1
� W ðV ; h1Þ þ GV ðk�1

� W ; k�1h2ÞÞsðV?; k�1
� W?Þ dmKðkÞ

provided this integral converges.

Lemma 2.2 ([5] paragraph 6.5). Under the hypothesis of Theorem 2.1 there

exists a finite set of pairs ðQa;RaÞ such that

(1) each Qa is a homogeneous polynomial on IIðVÞ invariant under KðVÞ,
(2) each Ra is a homogeneous polynomial on IIðWÞ invariant under KðWÞ,
(3) deg Qa þ deg Ra ¼ l for each a,

(4) for all h1 A IIðVÞ and h2 A IIðWÞ

I PK ðV ; h1;W ; h2Þ ¼
X
a

Qaðh1ÞRaðh2Þ:

When M and N are submanifolds in G=K of type V and W , we define

I PK ðV ; hM
x ;W ; hN

y Þ ¼ I PK ðV ; hg�1
x M

o ;W ; h
g�1
y N

o Þ:

Lemma 2.3 ([5] paragraph 7.2). Under the hypothesis of Theorem 2.1ð
G

I PðM V gNÞ dmGðgÞ ¼
ð
M�N

I PK ðV ; hM
x ;W ; hN

y Þ dmM�Nðx; yÞ

holds for any compact submanifolds M of type V and N of type W in G=K.
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From these two lemmas we conclude Theorem 2.1.

Remark 2.4. From these facts finally we arrive at the ‘‘transfer principle’’,

that is a method of transferring kinematic formulae from one homogeneous space

to any other homogeneous space with the same isotropy subgroup.

Now we give some concrete forms of invariant polynomials and kinematic

formulae. Take an orthonormal basis e1; . . . ; en of T such that e1; . . . ; ep is a basis

of V and epþ1; . . . ; en is a basis of V?. Then components of h A IIðVÞ and

H A EIIðTÞ are represented by

hk
ij ¼ hhðei; ejÞ; eki ð1a i; ja p; pþ 1a ka nÞ

Hk
ij ¼ hHðei; ejÞ; eki ð1a i; j; ka nÞ

The following polynomials W2l are homogeneous polynomials on IIðVÞ of degree

2l invariant under OðVÞ �OðV?Þ.

W2lðhÞ ¼
X

1ai1 ;...; i2lap

pþ1a k1 ;...; klan

det

hk1
i1i1

hk1
i1i2

� � � hk1
i1i2l

hk1
i2i1

hk1
i2i2

� � � hk1
i2i2l

..

. ..
. . .

. ..
.

hkl
i2l�1i1

hkl
i2l�1i2

� � � hkl
i2l�1i2l

hkl
i2l i1

hkl
i2l i2

� � � hkl
i2l i2l

2
666666664

3
777777775
:

We define homogeneous polynomials, also denoted by W2l , on EIIðTÞ of degree

2l invariant under OðTÞ by

W2lðHÞ ¼
X

1ai1 ;...; i2lan

1a k1 ;...; klan

det

Hk1
i1i1

Hk1
i1i2

� � � Hk1
i1i2l

H k1
i2i1

Hk1
i2i2

� � � Hk1
i2i2l

..

. ..
. . .

. ..
.

Hkl
i2l�1i1

Hkl
i2l�1i2

� � � Hkl
i2l�1i2l

H kl
i2l i1

Hkl
i2l i2

� � � Hkl
i2l i2l

2
666666664

3
777777775
:

In the both cases, W0 ¼ 1 by definition. A second fundamental form h A IIðVÞ
can be extended to H A EIIðTÞ by

Hðu; vÞ ¼ hðPu;PvÞ ðu; v A TÞ;

where P : T ! V is the orthogonal projection. If H A EIIðTÞ is the extension of

h A IIðVÞ, then we have
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W2lðhÞ ¼ W2lðHÞ:

Furthermore, these polynomials W2l are characterized as the invariant poly-

nomials which vanish on (extended) second fundamental forms with relative rank

less than 2l. For a submanifold M of G=K , we introduce the integral invariants

m2lðMÞ defined by

m2lðMÞ ¼ IW2l ðMÞ:

For these integral invariants m2l , the Chern-Federer kinematic formula (Theorem

1.1) holds. In fact, this formula holds in any real space forms by the transfer

principle. The value of the constants aðp; q; n; i; lÞ were computed by Chern [3]

and Nijenhuis [7].

The space of homogeneous polynomials on IIðVÞ of degree 2 invariant under

OðVÞ �OðV?Þ is spanned by two polynomials

Q1ðhÞ ¼
X
i; j;k

ðhk
ij Þ

2; Q2ðhÞ ¼
X
k

X
i

hk
ii

 !2
;

where 1a i; ja p, pþ 1a ka n. If 2a pa n� 1, these two polynomials are

independent. Geometrically, Q1ðhÞ is the square of the norm of the second

fundamental form, and Q2ðhÞ is p2 times the square of the mean curvature.

However, it is convenient for us to take the basis

W2 ¼ Q2 � Q1; Up ¼ pQ1 � Q2:

For these polynomials we have the following:

Proposition 2.5 ([5] paragraph 8.5). Assume that 2a pþ q� n. Then there

exist constants aðp; q; nÞ and bðp; q; nÞ so that

ð
G

IW2ðM V gNÞ dmGðgÞ ¼ aðp; q; nÞIW2ðMÞ volðNÞ þ aðq; p; nÞ volðMÞIW2ðNÞ

ð
G

I Upþq�nðM V gNÞ dmGðgÞ ¼ bðp; q; nÞI UpðMÞ volðNÞ þ bðq; p; nÞ volðMÞI UqðNÞ

holds for any compact submanifolds M and N of dimensions p and q in a real

space form G=K.

The first one is entirely the Chern-Federer formula of degree 2. The constants

aðp; q; nÞ and bðp; q; nÞ were determined in the previous paper [6]. The polynomial
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Up is characterized as the invariant polynomial which vanishes at an umbilic

point. The integral invariant

I U
p=2
p ðMÞ ¼

ð
M

ðUpðhM
x ÞÞp=2 dmMðxÞ

is an conformal invariant, called the Willmore-Chen functional, of p-dimensional

submanifold M (see [1], [2], [9]).

3. Two Point Homogeneous Spaces

A connected Riemannian manifold M is called a two point homogeneous

space if, for any pairs of points xi; yi A M with distance dðx1; y1Þ ¼ dðx2; y2Þ,
there exists an isometry g A IðMÞ such that gx1 ¼ x2 and gy1 ¼ y2. On the other

hand, a Riemannian manifold M is said to be isotropic at x A M if IðMÞx ¼
fg A IðMÞ j gx ¼ xg acts transitively on the unit hypersphere in TxM, and M is

isotropic if and only if it is isotropic at every point. It is well known that these

two notions are equivalent. Furthermore, two point homogeneous spaces are

completely classified; a two point homogeneous space is a Euclidean space

Rn ¼ IðRnÞ=OðnÞ or an irreducible symmetric space of rank 1: a sphere

Sn ¼ Oðnþ 1Þ=OðnÞ, a real projective space RPn ¼ Oðnþ 1Þ=Oð1Þ �OðnÞ, a

complex projective space CPn ¼ Uðnþ 1Þ=Uð1Þ �UðnÞ, a quaternionic projective

space HPn ¼ Spðnþ 1Þ=Spð1Þ � SpðnÞ, the Cayley projective plane Cay P2 ¼
F4=Spinð9Þ, and their non-compact duals.

Lemma 3.1. Let M ¼ G=K be a two point homogeneous space. Assume that

G is the isometry group of M listed above. Then there is no homogeneous

polynomial on IIðVÞ (resp. EIIðTÞ) of odd degree invariant under KðVÞ (resp. K).

Proof. Since KðVÞ (resp. K) acts on IIðVÞ (resp. EIIðTÞ) by (2.1), it is

enough if we find an element k A K which acts on T as �idT . It is easy to find

such k A K in the case of K ¼ OðnÞ;Oð1Þ �OðnÞ;Uð1Þ �UðnÞ;Spð1Þ � SpðnÞ. It
remains the case of K ¼ Spinð9Þ. The spinor group SpinðnÞ is defined as a subset

of the Cli¤ord algebra Cln, and it is well known that a Cli¤ord algebra is

isomorphic to a matrix algebra. In this case,

Spinð9ÞHCl even9 GCl8 GMð16;RÞ

where Mð16;RÞ denotes the algebra of 16� 16 matrices over R. This inclusion

defines the spin representation of Spinð9Þ, that is equivalent to the linear isotropy
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representation of K ¼ Spinð9Þ. Through these isomorphisms, �1 A Spinð9Þ cor-

responds to minus the identity matrix �I A Mð16;RÞ. Thus �1 A Spinð9Þ acts on

T as �idT . This completes the proof. r

4. Proof of the Main Theorem

Let G=K be a two point homogeneous space of dimension n. Then it is

isotropic; K acts transitively on the hypersphere in T by the linear isotropy

representation. For v A T we denote by KðvÞ the stabilizer of v in K , and then

K=KðvÞ is homothetic to the unit sphere Sn�1. We note that if we put W ¼ v?

then KðvÞHKðWÞ.
Let P be a polynomial on EIIðTÞ invariant under the orthogonal group OðTÞ

acting on T . From the definition (2.5), we have

I PK ðV ; h1;W ; h2Þð4:1Þ

¼
ð
K

PðGk�1
� W ðV ; h1Þ þ GV ðk�1

� W ; k�1h2ÞÞsðV?; k�1
� W?Þ dmKðkÞ

¼
ð
K

PðGk�W ðV ; h1Þ þ GV ðk�W ; kh2ÞÞsðV?; k�W
?Þ dmKðkÞ

for ðV ; h1Þ A IIpðTÞ and ðW ; h2Þ A IIn�1ðTÞ. The last equality holds since K is a

compact Lie group.

We take a second fundamental form hðrÞ A IIðWÞ of a hypersurface which is

tangent to W and umbilic at that point with principal curvature r. It is not a

problem whether such a hypersurface exists. We are just considering an element

of IIðWÞ formally. If we take an orthonormal basis of T and regard IIðWÞ as the
space of ðn� 1Þ by ðn� 1Þ symmetric matrices then hðrÞ is expressed as rIn�1,

where In�1 is the identity matrix. Since KðvÞ acts on IIðWÞ by (2.1), it is clear

that hðrÞ A IIðWÞ is fixed by the action of KðvÞ;

ghðrÞ ¼ hðrÞ ðEg A KðvÞÞ:ð4:2Þ

If ½k� ¼ ½k 0� A K=KðvÞ, then there exists g A KðvÞ such that k 0 ¼ kg. Therefore,

when we apply h2 ¼ hðrÞ in (4.1), from (4.2) we have

PðGk 0
�W ðV ; h1Þ þ GV ðk 0

�W ; k 0hðrÞÞÞsðV?; k 0
�W

?Þ

¼ PðGkg�W ðV ; h1Þ þ GV ðkg�W ; kghðrÞÞÞsðV?; kg�W
?Þ

¼ PðGk�W ðV ; h1Þ þ GV ðk�W ; khðrÞÞÞsðV?; k�W
?Þ:
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This implies that, when we regard K as a principal fiber bundle on K=KðvÞ with

fiber KðvÞ, the integrand in (4.1) is constant on each fiber. Thus the integration

on K is reduced to that on K=KðvÞ. Hence we have

I PK ðV ; h1;W ; hðrÞÞð4:3Þ

¼ volðKðvÞÞ
ð
K=KðvÞ

PðG½k��W ðV ; h1Þ þ GV ð½k��W ; ½k�hðrÞÞÞ

� sðV?; ½k��W?Þ dmK=KðvÞð½k�Þ

¼ volðKÞ
volðSn�1Þ

ð
K=KðvÞ

PðG½k��W ðV ; h1Þ þ GV ð½k��W ; ½k�hðrÞÞÞ

� sðV?; ½k��W?Þ dmS n�1ð½k�Þ

¼ volðKÞ
volðSOðnÞÞ I

P
SOðnÞðV ; h1;W ; hðrÞÞ:

We have the second equality normalizing the invariant measure of K=KðvÞ to

that of unit sphere Sn�1. The last equality is obtained by the opposite procedure

of reducing the integration on K to that on the sphere.

Now we restrict ourselves to the case dim V ¼ dim W ¼ n� 1. In addition,

we take an OðTÞ-invariant homogeneous polynomial P ¼ W2 on EIIðTÞ.
Without loss of generality, we can assume V ¼ W , since K acts transitively on

Grn�1ðTÞ. In Lemma 3.1 we showed that there is no homogeneous polynomial of

odd degree invariant under KðWÞ. Therefore, from Lemma 2.2, there exists a

homogeneous polynomial Q on IIðWÞ of degree 2 invariant under KðWÞ so that

IW2

K ðW ; h1;W ; h2Þ ¼ Qðh1Þ þ Qðh2Þ:

In the case of K ¼ SOðnÞ, this is entirely Proposition 2.5. Thus we have

IW2

SOðnÞðW ; h1;W ; h2Þ ¼ aðn� 1; n� 1; nÞðW2ðh1Þ þW2ðh2ÞÞ:

From (4.3) we have

Qðh1Þ þ QðhðrÞÞ ¼ volðKÞ
volðSOðnÞÞ aðn� 1; n� 1; nÞðW2ðh1Þ þW2ðhðrÞÞÞ:

Since Q is homogeneous polynomial of degree 2 and hðrÞ ¼ rIn�1

Qðh1Þ þ r2Qðhð1ÞÞ ¼ volðKÞ
volðSOðnÞÞ aðn� 1; n� 1; nÞðW2ðh1Þ þ r2W2ðhð1ÞÞÞ:
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Here r is arbitrary real number, thus coe‰cients of polynomials with respect to r

agree in each degree. Thus we have

Qðh1Þ ¼
volðKÞ

volðSOðnÞÞ aðn� 1; n� 1; nÞW2ðh1Þ:

The same discussion holds when we take an invariant polynomial P ¼ Un�2.

Consequently we have the Main Theorem.

5. Problems

We shall conclude this paper by posing some related problems. In the Main

Theorem we showed that the kinematic formulae for integral invariants of degree

2 can be obtained transferring from the case of real space forms. Then our

interest is in the case of higher degree.

Problem 5.1. Can all kinematic formulae for hypersurfaces in two point

homogeneous spaces for integral invariants defined from OðTÞ-invariant ho-

mogeneous polynomials be obtained by transferring from the case of real space

forms?

In Proposition 1.2, Howard showed the Poincaré formula for a real

hypersurface N and any dimensional submanifold M in a two point homogeneous

space. Therefore it is natural to pose the following problem:

Problem 5.2. Does the Main Theorem hold for a real hypersurface N and

any dimensional submanifold M?
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