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REMARKS ON THE CLIFFORD INDEX
OF ALGEBRAIC CURVES

By

Katsumi AKAHORI

Abstract. Let Cliff(X) be the Clifford index of a curve X and L
be a base-point-free line bundle on X which satisfies Cliff (L) =
Cliff(X) + k (k= 3). We determine sufficient conditions for the
|L| = g} being simple (i.e. birationally very ample).

1. Introduction

Let X be a smooth irreducible projective curve of genus g >4 over an
algebraically closed field of characteristic 0 and L be a line bundle on X. A g}
on X be a linear series of degree d and projective dimension r. If |L| = g/, then
the Clifford index of L is defined by Cliff(L) = d — 2r and the Clifford index of
X is defined by Cliff (X) = Min{Cliff (L) |r > 1,9 — 1 —d +r = 1}. We say that a
|L| =g} on X computes Cliff(X) if r>1, g—1—d+r=1, and Clff(X) =
d — 2r. The following result about Cliff(X) is known:

ProposiTION 1.1 ([4]). Let a |L| =g]; on X compute Cliff (X), r > 3. Then
the g, is simple (ie. birationally very ample) unless X is hyperelliptic or bi-
elliptic.

Furthermore, the same type results in the case of CIiff(L) = Cliff(X) + &
(k=1,2) are known. Those results are as follows:

ProposiTION 1.2 (2], (2.2)). Let a |L| =g be a base-point-free linear
series on X. Assume that CIUff(L) = Clff(X)+ 1, ClUff(X)>1, r>3, and

g—1—d+r=1. Then the g} is simple.
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ProposiTION 1.3 (2], (2.3)). Let a |L| =g} be a base-point-free linear
series on X. Assume that ClLff(L) = Cliff(X)+2, Cliff(X)>1, r>3, and
g—1—d+r=1 Then the g, is simple unless X and the g/, are the following
cases:

(1) X is a trigonal curve, CLiff(X) =1, and |L| = g3;

(2) X is a triple covering of an elliptic curve, Cliff(X) =4, and |L| = g3,;

(3) X is a double covering of a curve of genus g(Y) =2,3,4,5,10.

Our main purpose in this paper is to generalize the propositions stated above,
that is to say, to describe ClLff(X) and |L| =g} which satisty Cliff(L) =
Cliff(X) + k (k = 3). We get the same type consequences for the case of k = 3,4.
Our results are the following:

THEOREM 1.4. Let a |L| = g, be a base-point-free linear series on X of genus
g = 16. Assume that Cliff (L) = Cliff(X)+3,r>3,9—1—d +r > 1. Then the g}
is simple unless X and the g are the following cases:

(1) X is a trigonal curve, Ciff(X) =1, and |L| = g}, = 4¢3;

(2) X is a triple covering of an elliptic curve, CLiff(X) =4, and |L| = gfs;

(3) X is a double covering of a curve and Clift(X) is odd.

THEOREM 1.5. Let a |L| = g); be a base-point-free linear series on X of genus
g > 16. Assume that Cliff (L) = Cliff(X) +4, r >3, g—1—d+r > 1. Then the g}
is simple unless X and the g}, are the following cases:

(1) X is a 4-gonal curve, Cliff(X) =2, and |L| = g3,;

(2) X is a 4-sheeted covering of an elliptic curve, Cliff (X) = 6, and |L| = gi;

(3) X is a trigonal curve, Ciff(X) =1, and |L| = g3s;

(4) X is a triple covering of an elliptic curve, Cliff(X) =4, and |L| = giy;

(5) X is a double covering of a curve and ClIff(X) is even.

In the case of k > 5, the result is similar to the preceding theorems.

THEOREM 1.6. Let a |L| = g/, be a base-point-free linear series on X of genus
g > 16. Assume that Ciff(L) = Cliff (X)+k (k=5), r=>k—-1, g—1—-d+r>
1. Then the g} is simple unless X and the g}, are the following cases:

(1) X is a trigonal curve, Cliff(X) =1, and |L| = gglz:i)l);

(2) X is a triple covering of an elliptic curve, Cliff (X) =4, and |L| = gglzlll;);

(3) X is a double covering of a curve and Cliff(X) + k is even.
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The organization of our paper is as follows. First we shall prove our
theorems in §2. Next we shall derive d < 3(CIiff(X) + k) under some conditions
from the main theorem in §3.

2. On Linear Series |L| with Cliff(L) = Cliff(X) + k

We shall study about a linear series g/, which satisfies d — 2r = Cliff (X) + k
(k>0).

ProposITION 2.1. Let a |L|=g; on X satisfy CIff(L) = ClLff(X)+k
(k=0),r=3,9g—1—d+r=>=1 Assume that the g} is base-point-free and defines
a morphism ©: X — P, of degree m > 2 onto a curve Y in P". If

k/2+2 for k=2l

deg”:mz{(k—l)/uz for k=21+1,

then X, CIiff(X), and the g), are the following cases:
(@) if k is even ie. k=2l then
(i) X is a (I +2)-gonal curve, Cliff(X) =1, and

G4, for =0
|L| = 3 1> 0:
I3y Sor 1>0;

(i) X is a (I + 2)-sheeted covering of an elliptic curve, Clift(X) = k + 2, and

) = Yare1y SJor =0
o gi(uz) for 1> 0;

(b) if k is odd ie. k=2I+1, then

() n: X =Y cP' is a (I+2)-sheeted covering of a rational curve Y,
CUff(X) =1~ 1, and |L| = g3, = 391,

(i) k =3, X is a trigonal curve, Cliff (X) =1, and |L| = g}, = 4¢3;

(ili) k=3, X is a triple covering of an elliptic curve, Cliff(X) =4, and
L] = gis:

(iv) X is a (I 4 2)-sheeted covering of an elliptic curve, Cliff(X) =k, and
IL| = gi(m)-
Proor. Let ¢ = Cliff(X) and d’ =deg Y. Then we have

d =d/m={(c+k)+2r}/m
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and consider the induced complete linear series g}, on the normalization of Y. If
g% is not very ample, then there is a ¢!, (3], IV. 3.1) on the normalization of

Y. Hence X admits a g,’”’(é,_z) and we get

c—2 fork=2I

m( )—20r—1)=c+ (m )_{cl for k =21+ 1.

This contradicts with the definition of CIliff(X). Therefore g}, is very ample.

Thus Y is a smooth non-degenerate and linearly normal curve of degree d’
in P'. We assume that d’ > r+2. Since it is well-known that any reduced
irreducible and non-degenerate curve of degree >r+2 (r>3) in P' has an
r-secant-(r — 2)-plane, we have a projection of Y onto P! with center an r-secant-
(r — 2)-plane, and we obtain a g}, _ on Y. Hence there is a g;( 41—y ON X and we
get

c—2 fork=2]

d =P =2=ctk-2—(m=2)r<
m(d’ =) ot (m =2)r {c—l for k =21 + 1.

This is a contradiction.
Therefore Y in P' is the following 3 cases:
(1) Y is a rational normal curve of degree r;
(2) Y is a rational curve of degree r+ I;
(3) Y is an elliptic curve of degree r+ 1.

Case (1): In this case, X has a g! and d’ =r. Hence we have
m—=2={(c+k)+2r}/r=2=(c+k)/r=c 1)
By deriving from (I), we get k > ¢(r—1). Since r > 3,

{k/Zzl for k =21

<
“CAk-1)/2=1 fork=21+1.

First we shall consider the case of k=2/. Let ¢=k/2=1. We have
m—2=3l/r>1by (I). If / =0, then m =2 for any r. If / > 0, then 3 > r. Since
r>3, we get r=3 and m =17+ 2. This case is (i) of (a). Let ¢ </— 1. In this
case, since c+k<I—1+2/=3/—-1<3], we get (c+k)/r<I whence
m < 1+2 by (I). This contradicts the assumption on m.

Next we shall consider the case of k =2/ + 1. Let c = (k — 1)/2 = I. We have
m—2=3l+1)/r=1by (I). Hence we get / =1, r =4, and m = 3. This case is
(ii) of (b). Let ¢ </—1, whence we obtain (c+ k)/r <3//r <I. On the other
hand, we have / < (¢ + k)/r by combining the assumption about m with (I).
Hence we get (¢c+k)/r=1,m=1+2,r=3,and ¢ =/ — 1. This case is (i) of (b).
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Case (2): In this case, X has a g! and d’ =r+ 1, whence we have
m—=2={(c+k)+2r}/r+1)=2=(c+k-2)/(r+1) >c. (II)

By deriving from (II), we obtain k—2>¢>0. Since r>3, we

get ¢<(k—-2)/3<(k—2)/2. By using (II) again, we have m—2<

{(k—=2)/2+k—=2}/(r+1) <k/2— 1. This contradicts the assumption about m.
Case (3): In this case, X has a g} and d'=r+ 1. Therefore we have

2m—2=2(c+k+2r/(r+1)-2=2(c+k—14+r)/(r+1)=c ()

By deriving from (III), we get (¢c—2)(r—1)<2k. Since r>3, we have
c<k+2.

First we shall consider the case of k=2/. Let c=k+2. We have
m=2k/(r+1)+2. If /=0, then m=2 for any r. If />0, then m < 2k/
(34+1)4+2=4k/2+42. By virtue of the assumption, we get m =k/2+2 and
r=3. This case is (ii) of (a). Let ¢ <k + 1. We have m < k/2 + 2. This con-
tradicts the assumption.

Next we shall consider the case of k = 2/ + 1. By the same way stated above,
we have m < k/2 4 2. Combining this with the assumption, we get m = (k — 1)/
242and c<k+1.lfc=k+ 1, thenm=(k—1)/24+2=02k—-1)/(r+ 1) + 2,
whence we obtain k = 3, r =4, and m = 3. This case is (iii) of (b). Let ¢ = k. We
have m < (k —1)/2 + 2. By virtue of the assumption, we get m = (k —1)/2+2
and r = 3. This case is (iv) of (b). Let ¢ <k — 1. We have m < (k—1)/2+ 2.
This contradicts the assumption. O

Needless to say, the case of k =0 in (2.1) coincides with (1.1). Relating to
this case, we shall prove the following lemma needed later.

LemMa 2.2, Let a |L| = g, on X compute Cliff(X), r > 2. Assume that g} is
not simple and defines a morphism n: X — P*, of degree m > 2 onto a curve Y in
P". Then degm=m = 2.

Proor. Let deg Y =d’ and |Lo| =g} be the induced complete linear
series on the normalization of Y. If m >3, then we have h’(L(-zn*y)) =
WO (Lo(=»)) = K(Lo(—y)) =r > 2, W(L(=n"»)) =2, and CHff(L(~7"y))
< Cliff(X) for any y e Y. This is a contradiction. Therefore m = 2. O

Here we shall provide the proof for the case of k >3 by using (2.1).
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ProOOF OF THEOREM 1.4. Thanks to (2.1), we have only to consider the four
cases. If X is both a hyperelliptic curve and a trigonal curve, then we have g < 2
by Castelnuovo’s lemma ([1], p. 366, C-1). It is a contradiction. If X is a trigonal
curve, then we are in case (1). If X is a triple covering of an elliptic curve and
Cliff(X) = 4, then we are in case (2). Let X be a triple covering of an elliptic
curve and Cliff (X) = 3. Since we assume that g > 16, X carries gi by virtue of
[5]. Applying Castelnuovo’s lemma ([1], p. 366, C-1), we get g < 1l. It is a
contradiction. O

ProOF OF THEOREM 1.5. Assume that the g, is not simple and defines a
morphism 7 : X — P’, of degree m > 2 onto a curve Y in P". Let ¢ = Cliff (X)
and d’ =deg Y. Then we have

d=d/m={(c+4)+2r}/m

and consider the induced complete linear series g}, on the normalization of Y. If
m >4, we get the case (1) and (2) by means of (2.1). Let m = 3. If g/, is not very
ample, X has a gé‘(‘dl_z) and we get 3(d' —2) —2(r — 1) = ¢. By virtue of (2.2), X
must be a double covering of a curve. This contradicts m = 3. Hence g/, is very
ample and we can get d’ <r+ 1 by repeating the way used in (2.1).

Here we may use the same method stated in (2.1). If Y is a rational normal
curve of degree r, then

3-2=(c+4+2r/r—-2=(c+4d)/r>c.

Since 4 >c¢(r—1) and r>3, we get ¢ <2. Let ¢=0. Since X is both a
hyperelliptic and a trigonal curve, we have g <2 by ([1], p. 366, C-1). It is a
contradiction. Let ¢ = 1. We get r = 5 and we are in case (3). Let ¢ = 2. We have
1 =5/r>2 and it is a contradiction. If Y is a rational curve of degree r + 1, then

3-2=(c+4+2r/(r+1)-2=(c+2)/(r+1)=c

Since 2 > rc and r > 3, we obtain ¢ =0. Let ¢ =0. We have 1 =2/(r+1) >0,
whence r = 1. This contradicts the assumption. If Y is an elliptic curve of degree
r+1, then

2:3-2=2(c+4+2r)/(r+1)=2=2(c+3+r)/(r+1)=c

Since (¢ —2)(r—1) <8 and r > 3, we get ¢ < 6. Let ¢ =0 (resp. ¢ = 1). We get
r=1 (resp. r=2). It is a contradiction. Let ¢=2. Since we assume that
g >16>10, X carries g by virtue of [5]. Applying ([1], p. 366, C-1), we get
g <9. It is a contradiction. Let ¢ = 3. By the same way, we obtain g < 11 and
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this is a contradiction. Let ¢ =4. We obtain r =5 and we are in case (4). Let
c=25 (resp. c=6). We have 4 > ¢ =5 (resp. 4 > ¢ = 6). It is a contradiction. If
m =2, then we are in (5). O

PrOOF OF THEOREM 1.6. Assume that the g, is not simple and defines a
morphism 7 : X — P, of degree m > 2 onto a curve Y in P". Let ¢ = CIiff(X)
and d' =deg Y. Then

d' =d/m={(c+k)+2r}/m

and consider the induced complete linear series g, on the normalization of Y.
We shall prove this theorem by induction on k(>5).

First let £k = 5. If m =2, then we are in case (3). If m > 4, thanks to (2.1)
there doesn’t exist the g/, which satisfies our condition. Let m = 3. If g/, is not
very ample, X has a gg(dl,_z) and 3(d’ —2) —2(r—1) =c+ 1. By applying the
results of the case of kK < 1, X has no complete linear series |M| which satisfies
Cliff(M) < ¢+ 1. It is a contradiction. Therefore the g, is very ample and we
may apply the same method used in (2.1). If deg Y >r+ 2, then we have a
projection of Y onto P! with center an r-secant-(r — 2)-plane and obtain a gl .
on Y. Therefore there is a 931(51'4)' Since r > 4, we get

3d' —r)—2=c+3-r<c-1<ec

This is a contradiction, whence deg ¥ <r+ 1.
If Y is a rational normal curve of degree r, then

3-2=(c+54+2r)/r=2=(c+5)/r=c

Since 5 > ¢(r—1) and r > 4, we get ¢ < 1. Let ¢ = 0. By using ([1], p. 366, C-1),
we get g < 2. It is a contradiction. Let ¢ = 1. We get r = 6 and we are in case (1).
If Y is a rational curve of degree r+ 1, then

3-2=(c+5+2n/(r+1)=2=(c+3)/(r+1)=>c

Since 3 > rc and r > 4, we obtain ¢ =0. Let c=0. We have 1 =3/(r+1) =0,
whence r = 2. This contradicts the assumption.
If Y is an elliptic curve of degree r+ 1, then

2:3-2=2(c+54+2r)/(r+1)=2=2(c+4+r)/(r+1) >c.

Since (¢ —2)(r—1) <10 and r > 4, we get ¢ < 5. Let ¢ =0 (resp. ¢ = 1). We get
r =2 (resp. r = 3). It is a contradiction. Let ¢ =2 (resp. ¢ = 3). By the same way
we stated in the proof of (1.5), we get g <9 (resp. g < 11). It is a contradiction.
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Let ¢ =4. We get r = 6 and we are in case (2). Let c=5. We have 4 > ¢c=5. It
is a contradiction.
Next let k > 6. If m =2, then we are in case (3). If

kj2+2=1+2, for k = 21
MENk—1)242=1+2, fork=21+1,

by virtue of (2.1) there doesn’t exist the g/ which satisfies our condition. Let
m=23. If g/, is not very ample, X has gg(‘d'_z) and 3(d'-2)-2(r—1)=
¢+ k — 4. Here we may apply the results of the case of k < 5 and the induction
hypothesis to the complete linear series |N| which satisfies Cliff(N) < ¢ + k — 4.
Since we assumed the X is a triple covering of a curve, we obtain r—1 <
(k—4)+1=k—3. This contradicts r —1 >k —2. Let 4 <m<I+1. If g} is
not very ample, we get a contradiction by the same way. Therefore the g/, is
very ample and we can repeat the way stated in the the case of kA =15. If
deg Y > r+2, by virtue of a projection of ¥ onto P! with center an r-secant-
(r —2)-plane we obtain a gy, on ¥ and a g, , on X. Since m >3 and
r=k—1, we get

md —r)—2=c+k—-2-(m-2)r<c+k-2-03-2)-(k—1)=c—1<c.

Since this contradicts the definition of CIliff(X), we have deg ¥ <r+ 1.
If Y is a rational normal curve of degree r, then

m—2=(c+k+2r)/r—=2=(c+k)/r=c

Since k > ¢(r—1) and r>k —1, we get ¢ < 1. Let ¢ =0. We get r =k, m=3.
Applying ([1], p. 366, C-1), we get g < 2. It is a contradiction. Let ¢ = 1. We get
r=k+1, m=3, and we are in case (1).

If Y is a rational curve of degree r+ 1, then

m—2=(+k+2r)/r+1)-2=(c+k-2)/(r+1) =c.

Since kK — 2 > ¢r and r > k — 1, we obtain ¢ = 0. Therefore we have | <m —2 =
(k—2)/(r+1), whence r < k — 3. This contradicts r > k — 1.
If Y is an elliptic curve of degree r+ 1, then

2m—=2=2c+k+2r/r+1)-2=2(c+k—-14+r/r+1)=c

Since (¢ —2)(r—1)<2kand r>k—1, we get ¢ < 5. Let ¢ =0 (resp. ¢ = 1). We
have 2< (k—1+7r)/(r+1) (resp. 2< (k+7r)/(r+1)), whence r <k —3 (resp.
r <k —2). These contradicts the assumption. Let ¢ =2 (resp. ¢ =3). We get
(r,m) = (k—1,3) (resp. (r,m)= (k,3)). But the same reason we stated above
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in the case of k=15, we can omit these cases. Let ¢ =4. We obtain 2 <
(k+r+3)/(r+1), whence r =k + 1, m =3, and we are in case (2). Let ¢ = 5.
We get 2 < (k+r+4)/(r+ 1), whence r = k + 2 and m = 3. But this contradicts
2m—1)>¢c. O

Furthermore, if d is odd and r > k + 2, then we can provide a sufficient
condition for g} being simple by using (1.2), (1.3), (1.4), (1.5), and (1.6).

COROLLARY 2.3. Let a |L| =g be a base-point-free linear series on X of
genus g > 16. Assume that Cliff (L) = Cliff (X)) +k (k>1), g—1—-d+r>1 If
d is odd and r > k + 2, then g} is simple.

3. Some Corollaries

In this section, we shall derive some corollaries from (2.3).

COROLLARY 3.1. Let a |L| =g be a base-point-free linear series on X of
genus g > 16. Assume that Cliff (L) = Cliff (X)+k (k>1)and g—1—d+r> 1.
If d is odd, Cliff(X) =2k + 1, and

3(CLff(X) +2)/2 + 2k < d < 2(Cliff (X) + 2),
then we have g < 2(Cliff(X) +2 + k).

Proor. Let ¢ =CIff(X). If d > g, then this is trivial. Therefore we may
assume d < g — 1. Since d > 3(c+2)/2+ 2k and ¢ > 2k + 1, we get 2r=d — c—
k > 2(k + 1), whence r > k + 2. By using (2.3), we have g} is simple and X may
be regarded as a curve of degree d in P". Assume that X lies on a quadric Q in
P" of rank s < 4. Then the two pencils of (r — 2)-planes on Q sweep out pencil
gl and g} on X such that a+b<d, a—2>c and b —2 > ¢. This contradicts
d < 2(c+ 2). Therefore the space of quadrics containing X does not meet the
closed subvariety of quadrics of rank s <4 in P" which has codimension
(r—3)(r—2)/2 in the projective space of all quadrics in P*. Hence we have
(P, Ix(2)) < (r—3)(r—2)/2 and

(X, 0x(2)) = K(P, 0(2)) — i°(P", I (2))
>(r+D)r+2)2-0F-3)(r—2)/2=4r-2.
Since this means h°(2L) > 4r — 2, we get

g=2d+1-n°Q2L)+h'(2L) <2d + 1 — (4r —2) + h'(2L).
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If h'(2L) <1, then we have g <2(c+2+k). If h'(2L) > 2, then we have
c<2d—2(h°2L) — 1) <2d —2(4r —2) + 2 =4dc + 4k +6 —2d.

This contradicts our hypothesis on d. O

By applying the famous formula of Castelnuovo ([1], p. 116) to the result
stated above, we get the following corollary.

COROLLARY 3.2. Let a |L| =g be a base-point-free linear series on X of
genus g > 16. Assume that Cliff (L) = Cliff (X)+k (k>=1)and g—1—-d+r> 1.
If dis odd, d <g—1, Cliff(X) >2k+ 1, and g = 3(Cliff (X) + k+ 1), then

d < 3(Cliff (X) +2)/2 + 2k, 2(Chff(X) +2) < d < 2(Clff(X) + 2 + k).

Proor. Let ¢=CIliff(X). By virtue of (3.1), we may assume that
d>2(c+2+k). Since ¢>2k+1, we have 2r=d—-c—k>c+k+4>
2k +1)+k+3>2(k+1) ie r>k+2, whence g} is simple by (2.3). We
remark that 2(r— 1) > c+k+ 1. Hence we have d — 1 =2(r— 1)+ c+k+1<
4(r — 1). Therefore we see that 2 < (d —1)/(r—1) <4. Letm=[(d—1)/(r—1)].
In our case we have m is 2 or 3. Now we use Castelnuovo’s bound ([1], p. 116).

If m=2 then we get ¢g<2d—-3r+1. Since [(d—1)/(r—1)]=
{e+k+14+2(r—1}/(r—1)]=2, we have c+k+1<r—1, whence d=
2r+c+k<2r+(r—2)=3r—2<3r—1<2d—g. Therefore g<d. It is a
contradiction.

If m=3 then we get g<3(d—-2r+1)=3(c+k+1). Since g¢g>=>
3(c+k+1), we get g=3(c+k+1), ie. X has the maximum possible genus. It
is known that these curves of maximal genus have a g} ([1], III, (2.6)). Therefore
CIiff (X) < 2. This contradicts Cliff(X) > 2k + 1. O

In [4] we find the result that d < 3Cliff (X)) for Cliff(X) > 3. We shall present
a similar type result in next corollary.

COROLLARY 3.3. Let a |L| =g}, be a base-point-free linear series on X of
genus g > 16. Assume that Ciff (L) = Cliff (X)+k (k>1)and g—1—-d+r> 1.
If dis odd, d < g—1, and Cliff(X) > 2k + 1, then we have d < 3(Cliff(X) + k).

Proor. Let ¢ = Cliff(X). If g > 3(c + k + 1), then thanks to (3.2) we obtain
d<2(c+k)+3<3(c+k). If g<3(c+k)+2, then we have d<g-—-1<
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3(c+k)+1. But d=3(c+k)+1 means d #c+k (mod?2). Since d—2r=
¢ + k, this is a contradiction. O
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