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RIEMANNIAN MANIFOLDS REFERRED TO WARPED

PRODUCT MODELS

By

Hyunjin Lee

Abstract. We prove a sphere theorem for manifolds referred to

spherical warped product models and obtain the optimal result.

1. Introduction

We investigate curvature and topology of Riemannian manifolds referred to

warped product models. A spherical warped product model ð ~MM;Sn�1Þ is by

definition a pair ð ~MM;Sn�1Þ of compact Riemannian n-manifold ~MM and the

standard unit ðn� 1Þ-sphere Sn�1 which is totally geodesically embedded into ~MM.

Its metric d~ss2 is expressed in terms of the normal exponential map along Sn�1 as:

d~ss2 ¼ dt2 þ f 2ðtÞ ds2
S n�1ðYÞ; ðt;YÞ A ð� ~ll�; ~llþÞ � Sn�1:ð1:1Þ

Here ~ll�; ~llþ < y are constants and t : ~MM ! ½� ~ll�; ~llþ� is the oriented distance

function to Sn�1. The function f : ð� ~ll�; ~llþÞ ! R is positive smooth and called

the warping function of ~MM, and satisfies

lim
t#� ~ll�

f ðtÞ ¼ lim
t" ~llþ

f ðtÞ ¼ 0

and the Jacobi equation

f 00 þ Kf ¼ 0; f ð0Þ ¼ 1; f 0ð0Þ ¼ 0:

Here the function K : ½�~ll�; ~llþ� ! R is called the radial curvature function of

ð ~MM;Sn�1Þ.
We discuss a pair ðM;NÞ of Riemannian manifolds, where N is totally

geodesically embedded into M such that the oriented distance function

rN : M ! R is well defined. A unit speed geodesic g : ½0; a� ! M is called a
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minimizing geodesic from N if and only if g 0ð0Þ is normal to N and jrNðgðtÞÞj ¼ t,

t A ½0; a�. A plane section containing g 0ðtÞ is called a radial plane and the sectional

curvature KMðPÞ with respect to a radial plane P is called the radial curvature of

ðM;NÞ. The class of all the pairs ðM;NÞ of complete n-manifold M and compact

ðn� 1Þ-manifold N totally geodesically embedded into M has been classified into

seven types (see Theorem 1.1: [6]), if the radial curvature of ðM;NÞ depends only
on the (oriented) distance function to N. A similar result for model surfaces of

revolution was obtained in [2] (see Theorem A).

The purpose of the present paper is to prove a topological sphere theorem for

manifolds referred to spherical warped product models. Moreover, we prove the

optimal topological sphere theorem.

Definition 1.1. ðM;Sn�1Þ is by definition referred to a spherical warped

product model ð ~MM;Sn�1Þ if and only if every radial curvature at every point

p A M is bounded below by KðrNðpÞÞ.

Recently, Kondo and Ohta have obtained the following optimal result when

the reference space ð ~MM; ~ooÞ is a von Mangoldt surface of revolution, that is, the

radial curvature function K : ½0; ~llÞ ! R of ð ~MM; ~ooÞ is monotone and non-

increasing.

Theorem A [Kondo-Ohta; [3]). Let ðM; oÞ be a compact Riemannian

n-manifold whose radial curvature is bounded from below by K : ½0; ~llÞ ! R for
~ll < y, and let dð~oo�Þ be the convexity radius at ~oo�. If

l :¼ sup
x AM

roðxÞ > ~ll� dð~oo�Þ

and if ~oo� A M is a critical point for the distance function to o, then ðM; oÞ is

homeomorphic to Sn. Here, ~oo� A ~MM is the point furthest from ~oo, that is,
~ll :¼ dð~oo; ~oo�Þ.

In a previous paper [4], we have proved the following theorem. We don’t

require a model surface to be a von Mangoldt surface of revolution.

Let ð ~MM; ~ooÞ be a model surface of revolution with ~ll < y and f : ð0; ~llÞ ! Rþ

be a warping function of ð ~MM; ~ooÞ. Let dð ~MMÞ be the convexity radius of ~MM and

hð ~MMÞ > 0 be a constant such that

hð ~MMÞ :¼ inf h > 0; f ðhÞ ¼ min
dð~ooÞata ~ll�dð~oo �Þ

f ðtÞ; h A ½0; dð~ooÞ�U ½ ~ll� dð~oo�Þ; ~ll�
( )

:
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Let eð ~MMÞ is defined by

eð ~MMÞ :¼ min
1

3
dð ~MMÞ; hð ~MMÞ

� �
:

With these notations, we state as follows.

Theorem B (Lee; [4]). Let ðM; oÞ be referred to ð ~MM; ~ooÞ. Then M is

homeomorpic to Sn if

diamðMÞa ~ll; dðoÞb dð ~MMÞ; l > ~ll� eð ~MMÞ:

We observe that every compact model surface of revolution ð ~MM; ~ooÞ can be

thought of as a spherical warped product model. Therefore, we discuss when

ðM;NÞ is referred to a spherical warped product model.

Some notations are needed to state our theorem.

Let ð ~MM;Sn�1Þ be a spherical warped product model. The oriented distance

function t : ~MM ! ½� ~ll�; ~llþ� attains its extremal value at the points ~ooG A ~MM

such that tð~ooGÞ ¼G~llG respectively. Let ~ddG > 0 be the convexity radius at ~ooG.

We then observe that f 0ð� ~ll� þ ~dd�Þ ¼ f 0ð~llþ � ~ddþÞ ¼ 0 and f 0ðtÞ0 0 on t A

½� ~ll�;� ~ll� þ ~dd�ÞU ð~llþ � ~ddþ; ~llþ�. Let ðM;Sn�1Þ be referred to ð ~MM;Sn�1Þ. In [5], we

have proved that the oriented distance function rN : M ! R attains its minimum

and maximum at a unique point, say, oG A M such that rNðoGÞ ¼GlG. Setting
~MMG :¼ f~pp A ~MM j tð~ppÞ0 0g and MG :¼ fp A M j rNðpÞ0 0g, we compare MG

to ~MMG respectively. We define positive constants hGð ~MMGÞ on ~MMG by

hþð ~MMþÞ :¼ sup h > 0; f ð~llþ � lÞ ¼ min
0ata ~llþ�l

f ðtÞ for El A ½0; hÞ
� �

;

h�ð ~MM�Þ :¼ sup h > 0; f ð� ~ll� þ lÞ ¼ min
� ~ll�þlata0

f ðtÞ for El A ½0; hÞ
� �

and further,

eð ~MMÞ :¼ minf~ddþ; ~dd�; hþð ~MMþÞ; h�ð ~MM�Þg:

With this notation our result is stated as:

Theorem I. Let ðM;Sn�1Þ be referred to ð ~MM;Sn�1Þ. Then M is homeo-

morphic to Sn if

lG > ~llG� eð ~MMÞ:
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Remark 1.2. The conditions in Theorem I are optimal in the sense that if

one of the two inequality is not satisfied, we then have a counter example, as

stated later.

The Bishop-Gromov volume comparison theorem is valid for ðM;Sn�1Þ
referred to ð ~MM;Sn�1Þ. From the Berger comparison theorem on the focal point

distance to N, we observe

lGa ~llG

and equality holds if and only if r�1
N ½0; ~llþ� is isometric to t�1½0; ~llþ�, etc. The

Bishop-Gromov volume comparison theorem in our case is stated as follows.

Proposition 1.3. Let ðM;Sn�1Þ be referred to ð ~MM;Sn�1Þ. Then

s 7! vol r�1
N ½0; s�

vol t�1½0; s� ; sb 0

and

s 7! vol r�1
N ½s; 0�

vol t�1½s; 0� ; sa 0

is monotone non-increasing on s A ½0; ~llþ� and monotone non-decreasing on

s A ½� ~ll�; 0�.

Making use of the above Proposition we have the following

Corollary to Theorem I. Let ðM;Sn�1Þ be referred to ð ~MM;Sn�1Þ. Let

Mþ :¼ r�1
N ð0; lþ� and M� :¼ r�1

N ½�l�; 0Þ. Then M is homeomorphic to Sn if

volðMþÞ > volðt�1½0; ~llþ � eð ~MMÞ�Þ

and

volðM�Þ > volðt�1½� ~ll� þ eð ~MMÞ; 0�Þ:

We observe that the two volume conditions are optimal by the same reason

as in Theorem I.
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2. Review of the Known Results

Because our models do not have constant curvature, we can not apply the

spherical trigonometry. The Clairaut relation gives restrictions to the behavior of

geodesics on models and plays an essential role for our study. The following

proposition is valid for all the warped product models as stated in the classi-

fication [6].

Proposition 2.1 (Mashiko-Shiohama; The Clairaut Relation for warped

product models). Let ð ~MM;NÞ be a warped product model with the metric (1.1).

Let ~gg : R ! ~MM be a geodesic transversal to a meridian. If we set

aðsÞ :¼Jð~gg 0ðsÞ;‘tð~ggðsÞÞÞ A � p

2
;
p

2

� �
; s A R

then there exists a constant Cð~ggÞ depending only on ~gg such that

f ðtð~ggðsÞÞÞ sin aðsÞ ¼ Cð~ggÞ; s A R:ð2:1Þ

We next see that the axiom of plane holds for all the warped product models

as stated (see [7]):

Theorem 2.2 (Mashiko-Shiohama; The Axiom of plane for warped product

models). Let ð ~MM;NÞ be a warped product model and ~gg : ½0; aÞ ! ~MM a unit speed

geodesic which is transversal to a meridian. Then, Sð~ggÞH ~MM is totally geodesic.

Moreover, the inner distance of Sð~ggÞ coincides with that of ~MM if ~gg is minimizing.

Here Sð~ggÞ is the ruled surface consisting of all the meridians passing through points

on ~gg½0; aÞ.

We finally introduce the Toponogov comparison theorem for generalized

narrow triangles on ð ~MM;NÞ. We assume that ðM;NÞ is referred to ð ~MM;NÞ. A

generalized geodesic triangle sðNxyÞHM is defined by a triple of minimizing

geodesics a; b; g : ½0; 1� ! M such that

a 0ð0Þ; b 0ð0Þ A N?; að1Þ ¼ gð1Þ ¼ y; bð1Þ ¼ gð0Þ ¼ x:

Here x; y A MnN are taken in the same component of MnN and a, b are

minimizing geodesics from N. A sðNxyÞ is called a generalized narrow triangle if

and only if aðtÞ A BðbðtÞ; dðMÞÞ, t A ½0; 1�. Here dðMÞ is the convexity radius of

M. The following theorem has been established in [6] and valid for pointed

manifolds referred to model surfaces of revolution (see [1]).
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Theorem 2.3 (Mashiko-Shiohama; Generalized narrow triangle comparison).

Assume that ðM;NÞ is referred to ð ~MM;NÞ. Assume further that a generalized

narrow triangle sðNxyÞHM admits the corresponding generalized narrow triangle

sðN ~xx~yyÞH ~MM such that

dðN; xÞ ¼ dðN; ~xxÞ; dðN; yÞ ¼ dðN; ~yyÞ; dðx; yÞ ¼ dð~xx; ~yyÞ:ð2:2Þ

Then we have

JNxybN ~xx~yy; JNyxbN~yy~xx:ð2:3Þ

Notice that the existence of the corresponding generalized narrow triangle

sðN ~xx~yyÞH ~MM is ensured by the Berger comparison theorem for focal point

distance.

3. Example of Spherical Warped Product Model

Let a > 0 be a constant. A point ðx1; . . . ; xnþ1Þ A M̂MHRnþ1 on a convex

C1-hypersurface in Rnþ1 is expressed as:

ðxnþ1 þ aÞ2 þ
Xn

i¼1

x2
i ¼ 1; xnþ1 a�a

Xn

i¼1

x2
i ¼ 1; �aa xnþ1 a a

ðxnþ1 � aÞ2 þ
Xn

i¼1

x2
i ¼ 1; xnþ1 b a

8>>>>>>>>>><
>>>>>>>>>>:

Let i : Rnþ1 ! Rnþ1 be the symmetry with respect to the origin and set

M :¼ M̂M=fi; i2 ¼ id:g. We denote by p : M̂M ! M the covering projection and set

N :¼ pðx�1
nþ1ðf�agÞÞHM. Clearly, N is a standard unit ðn� 1Þ-sphere. For the

pair ðM;NÞ, we define a warped product model ð ~MM;NÞ as follows. A point

ðx1; x2; . . . ; xnþ1Þ A ~MMHRnþ1 is expressed as:

ðxnþ1 þ aÞ2 þ
Xn

i¼1

x2
i ¼ 1; xnþ1 a�a

Xn

i¼1

x2
i ¼ 1; �aa xnþ1 a 0

Xnþ1

i¼1

x2
i ¼ 1; xnþ1 b 0

8>>>>>>>>>>><
>>>>>>>>>>>:
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Let N :¼ x�1
nþ1ðf�agÞH ~MM. The radial curvature function K : ½�p=2; aþ p=2� !

R is given by

KðtÞ ¼
1; � p

2
a ta 0; aa ta aþ p

2

0; 0 < t < a

8<
:

Clearly, the radial curvature of ðM;NÞ is K j½�p=2;a�. We then observe that

lþ ¼ ~llþ � eð ~MMÞ; l� > ~ll� � eð ~MMÞ:

Here, lþ ¼ a, l� ¼ p=2, ~llþ ¼ aþ p=2 and ~ll� ¼ eð ~MMÞ ¼ p=2. Therefore we see

that the assumptions in Theorem I are optimal.

From the above example, we also see the volume conditions in Corollary

to Theorem I are optimal. To simplify a calculation, we put n ¼ 2. Then since
~llþ � eð ~MMÞ ¼ ðaþ p=2Þ � p=2 ¼ a, we get

volðt�1½0; ~llþ � eð ~MMÞ�Þ ¼
ð a

0

ð2p

0

dydt ¼ 2pa ¼ volðMþÞ:

Also, we have from � ~ll� þ eð ~MMÞ ¼ 0

volðt�1½� ~ll� þ eð ~MMÞ; 0�Þ ¼ 0 < 2p ¼
ð2p

0

dy

ð0

�p=2

cos t dt ¼ volðM�Þ:

4. Proofs

The crucial point of the proof of our theorem is to verify that if ðM;Sn�1Þ
is referred to a spherical warped product model ð ~MM;Sn�1Þ then M can be

decomposed into two disks. This is achieved by showing that the distance

function to N :¼ Sn�1 has exactly two critical points.

We first apply the Clairaut relation to a broken geodesic on a model surface
~MM.

Let sðNxyÞ be a generalized geodesic triangle in M. We choose a division

0 ¼ u0 < u1 < � � � < uk ¼ 1 of ½0; 1� as follows. Let g : ½0; 1� ! M be the edge of

sðNxyÞ such that gð0Þ ¼ x, gð1Þ ¼ y and xi :¼ gðuiÞ, i ¼ 0; . . . ; k. Then the

sequence fsðNxi�1xiÞgi¼1;...;k has the following properties:

(1) si :¼ sðNxi�1xiÞ is a narrow triangle for i ¼ 1; . . . ; k,

(2) Each si admits the corresponding narrow triangle

~ssi :¼ sðN ~xxi�1~xxiÞ:

By using Theorem 2.3, we see
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JNxi�1xi bJN ~xxi�1 ~xxi; JNxixi�1 bJN ~xxi ~xxi�1; i ¼ 1; . . . ; k:ð4:1Þ

Thus we obtain a broken geodesic with vertices ~xx0; ~xx1; . . . ; ~xxk. We observe from

(4.1) that

J~xxi�1 ~xxi ~xxiþ1 a p; i ¼ 1; . . . ; k � 1;ð4:2Þ

and hence ~xx0; ~xx1; . . . ; ~xxk forms a convex broken geodesic. Let ~gg : ½0; 1� ! ~MM be

the broken geodesic and set ~ggi : ½ui�1; ui� ! ~MM, ~ggi ¼ ~ggj½ui�1;ui �, 1a ia k. The

Clairaut constant Cð~ggiÞ for i ¼ 1; . . . ; k satisfies, setting ðti; yiÞ :¼ ~ggðuiÞ, where

ti ¼ dðN; ~ggðuiÞÞ,

Cð~ggiÞ ¼ f ðti�1Þ sinJð‘tð~ggiðui�1ÞÞ; ~gg 0i ðui�1ÞÞð4:3Þ

¼ f ðtiÞ sinJð‘tð~ggiðuiÞÞ; ~gg 0i ðuiÞÞ:

Hence from (4.2), we get the following

Jð‘tð~ggiþ1ðuiÞÞ; ~gg 0iþ1ðuiÞÞbJð‘tð~ggiðuiÞÞ; ~gg 0i ðuiÞÞ;ð4:4Þ

for i ¼ 0; . . . ; k � 1.

Summing up the above discussion, we have proved the following.

Proposition 4.1. If a broken geodesic ~gg : ½0; 1� ! ~MM satisfies (4.4) and if

t � ~gg : ½0; 1� ! R is monotone, then fCð~ggiÞgi¼1;...;k is monotone.

Remark 4.2. Proposition 4.1 plays an important role for the proof of the

non-existence of critical points of distance function to Sn�1.

Proposition 4.3. The distance function rN has the following properties:

(1) The oriented distance functions GrN are concave on the sets

r�1
N ½ ~llþ � eð ~MMÞ; lþ� and r�1

N ½�l�;� ~ll� þ eð ~MMÞ�.
(2) CritðrNÞ ¼ fo�gU foþg, where oG A M satisfies

r�1
N ðf�l�gÞ ¼ fo�g and r�1

N ðflþgÞ ¼ foþg:

Remark 4.4. The concavity of two functions in (1) is a direct consequence

of the second variation formula along every minimizing geodesic from N to a

point r�1
N ½ ~llþ � eð ~MMÞ; lþ� and r�1

N ½�l�;� ~ll� þ eð ~MMÞ� respectively. Therefore we

only prove the statement (2) in Proposition 4.3.

Proof of Proposition 4.3-(2). Suppose we have two points o1þ; o
2
þ A Mþ

such that rNðo1þÞ ¼ lþ ¼ rNðo2þÞ. Let g : ½0; 1� ! Mþ be a minimizing geodesic
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with gð0Þ ¼ o1þ and gð1Þ ¼ o2þ. We may assume that rN � g : ½0; 1� ! Rþ takes

a minimum at an interior point u� A ð0; 1Þ. Choose a finite division, 0 ¼ u0 <

u1 < � � � < ui < � � � < uk ¼ 1, of ½0; 1� such that u� ¼ ui and such that for each

j ¼ 1; . . . ; k the generalized geodesic triangle sðNgðuj�1ÞgðujÞÞ is a narrow tri-

angle. The narrow triangle comparison theorem (See Theorem 2.3) implies that

J~ggðuj�1Þ~ggðujÞ~ggðujþ1Þa p for j ¼ 1; . . . ; k:

In particular, we have JN~ggðuiÞ~ggðui�1Þa p=2 and JN~ggðuiÞ~ggðuiþ1Þa p=2 since

JNgðuiÞgðui�1Þ ¼JNgðuiÞgðuiþ1Þ ¼ p=2. Suppose JN~ggðuiÞ~ggðuiþ1Þ < p=2. Then

(2.2) implies that

rNðgðuiþ1ÞÞ ¼ tð~ggðuiþ1ÞÞ < tð~ggðuiÞÞ ¼ rNðgðuiÞÞ;

a contradiction. Therefore, we have JN~ggðuiÞ~ggðuiþ1Þ ¼ p=2. Also, we have

JN~ggðuiÞ~ggðui�1Þ ¼ p=2.

Setting ~ggj the edge of sðN~ggðuj�1Þ~ggðujÞÞ opposite to N, we have convex

broken geodesics ~ggiþ1 U � � �U ~ggk and ~ggi U � � �U ~gg1 with corners ~ggðuiÞ; ~ggðuiþ1Þ; . . . ;
~ggðukÞ ¼ ~ggð1Þ and ~ggðuiÞ; ~ggðui�1Þ; . . . ; ~ggðu0Þ ¼ ~ggð0Þ, respectively. They are transversal

to the meridian at every point on it. The transversality follows from the Clairaut

relation. Therefore, Proposition 4.1 implies that fCð~ggjÞgj¼i;...;1 and fCð~ggjÞgj¼iþ1;...;k

are monotone non-decreasing and hence we have Cð~ggiþ1Þa � � �aCð~ggkÞ. Since o2þ
is a critical point of rN , we see thatJN~ggðukÞ~ggðuk�1Þa p=2. Thus we have, using

(2.1)

Cð~ggkÞ ¼ f ðrNðo2þÞÞ sinJN~ggðukÞ~ggðuk�1Þa f ðrNðo2þÞÞ:

On the other hand, since JN~ggðuiÞ~ggðuiþ1Þ ¼ p=2, this implies that

Cð~ggiþ1Þ ¼ f ðrNðgðuiÞÞÞ sinJN~ggðuiÞ~ggðuiþ1Þ ¼ f ðrNðgðuiÞÞÞ

and hence we get

f ðrNðgðuiÞÞÞa f ðrNðo2þÞÞ:ð4:5Þ

From (1) in Proposition 4.3 we observe that rN � g : ½0; 1� ! R is concave.

Therefore (4.5) implies that it is constant. In particular, we have JNgðuiÞgðuiþ1Þ
¼ p=2. However, the corresponding generalized narrow triangle sðN~ggðuiÞ~ggðuiþ1ÞÞ
has its edge angle at ~ggðuiÞ greater than p=2. This contradicts to the generalized

narrow triangle comparison theorem. We have proved the uniqueness of the

maximal set r�1
N ðflþgÞ ¼: foþg.

The uniqueness of the critical point of rN on Mþ has already been shown in

the above argument. In fact, suppose that q A Mþnfoþg is a critical point of rN .

For a minimizing geodesic g : ½0; 1� ! Mþ with gð0Þ ¼ oþ, gð1Þ ¼ q, we choose
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minimizing geodesics a; b : ½0; 1� ! Mþ from N such that að0Þ; bð0Þ A N, að1Þ ¼
gð0Þ, bð1Þ ¼ gð1Þ and such that

Jð� _aað1Þ; _ggð0ÞÞa p

2
; Jð _bbð1Þ; _ggð1ÞÞa p

2
:

Choose a finite division 0 ¼ u0 < u1 < � � � < uk ¼ 1 and ui A ½0; 1� such that

ðrN � gÞðuiÞ ¼ min
0aua1

ðrN � gÞðuÞ:

We then observe that ðrN � gÞj½0;ui � is constant. A contradiction is derived by the

same reason. Thus we have proved that CritðrNÞVMþ ¼ foþg. r

Remark 4.5. We can obtain the same consequence to M� by using a

method similar to that which is used in Proposition 4.3. From these facts, we see

that ðM;Sn�1Þ is composed with two topological disks.

Proof of Corollary to Theorem I. Since volðMþÞ > volðt�1½0; ~llþ � eð ~MMÞ�Þ
¼ volðMþÞ � volðt�1½ ~llþ � eð ~MMÞ; ~llþ�Þ, we have lþ > ~llþ � eð ~MMÞ. r
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