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Abstract 

 

 Poplar trees (from the genus Populus) have been utilized for industrial and 

environmental applications such as wood production, biomass feedstock, and 

environmental conservation and restoration throughout the ages. The practical 

importance and the biological properties of poplars have enhanced many fields of study 

such as physiology, ecology, molecular biology, genetic engineering, forestry, chemistry, 

wood science and environmental science. Thereby, poplars have been recognized as a 

woody plant model species. For the advancement of science and applications of poplars 

as the woody plant model species, it was thought to be important to pioneer new fields 

of study on poplars and develop new technologies for the study. Thus, the objectives of 

this study are to elucidate the biological response to ionizing radiation as an abiotic 

stress in Populus nigra and improve the transformation system for P. nigra. 

 Ionizing radiation is an environmental stress; however, little is known about its 

effects on poplars or the tolerance mechanism of woody plants to ionizing radiation. 

Therefore, in this study, we investigated the biological effects of γ-rays and the 

tolerance mechanism of P. nigra as a model species. Poplar plantlets irradiated with 50–

100 gray (Gy) of γ-rays were able to survive, although growth inhibition or 

morphological abnormalities were observed. A total dose of 200–300 Gy of γ-rays 

killed almost all poplar samples. A high dose of γ-rays also inhibited the regeneration of 

the shoots and roots. Comet assays demonstrated that the γ-rays damaged the nuclear 

DNA of the irradiated cells. To characterize the tolerance mechanism to ionizing 

radiation stress, six DNA repair-related cDNAs, PnLIG4, PnKU70, PnXRCC4, 
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PnRAD51, PnPCNA, and PnOGG1, were isolated and structurally analyzed. The 

expression of PnLIG4, PnKU70, PnXRCC4, PnRAD51, and PnPCNA was upregulated 

by γ-irradiation in a dose-dependent manner, while PnOGG1 was downregulated. The 

expression of PnLIG4, PnKU70, and PnRAD51 was also upregulated by the treatment 

of a DNA cleavage agent. Accordingly, it is concluded that the gene expression of 

PnLIG4, PnKU70, and PnRAD51 was directly induced by DNA strand breaks. 

 A highly efficient transformation system for P. nigra was required to further 

study the DNA repair-related genes that were regulated in response to ionizing radiation 

stress. To improve the transformation system for P. nigra, it was aimed to construct a 

new binary vector, to shorten the time required and increase the efficiency of 

transformation. The newly designed binary vector has 11 restriction enzyme sites for 

DNA cloning and demonstrated higher resistance to selective antibiotics. P. nigra was 

transformed by Agrobacterium harboring the new vector fused to the enhanced green 

fluorescent protein gene. Successful transformation was confirmed by polymerase chain 

reaction (PCR), fluorescence microscopy, immunoblotting, Southern blotting, and 

resistance to kanamycin and G418. The period of transformation was shortened to a 

minimum of approximately 4 months by the direct regeneration of transgenic shoots 

from the Agrobacterium-infected stems. In the co-cultivation of poplars stems and 

Agrobacterium, the addition of dithiothreitol to the medium increased the 

transformation efficiency by approximately 20%. 

 In the present study, the response and tolerance mechanisms of P. nigra to 

ionizing radiation stress were elucidated for the first time. In addition, the 

transformation system for P. nigra was effectively improved. In the future, these results 

may lead to the generation of useful transgenic poplars, the study of gene function, 
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applications in environmental conservation, or mutation breeding. Furthermore, the 

value of P. nigra as the woody plant model species has been enhanced by understanding 

radiation stress physiology as a new field of study and by the development of improved 

tools for genetic engineering. Poplars can thus play the key role as the model species for 

studying the science and technology of woody plants. In turn, it is hoped that the 

science and applications of poplar can contribute to the research of woody plant species, 

the supply of forest resources, and the conservation of the global environment.  
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要旨 

 

 ポプラは、木材生産やバイオマス原料、環境保護や環境修復といった産業分

野や環境分野で、長い間利用されてきた。ポプラの産業的な重要性と生物学的

な特徴が、生理学や生態学、分子生物学、遺伝子工学、林学、化学、木材科学、

環境科学など多くの研究を発展させてきた。それゆえ、ポプラは木本植物のモ

デル生物種として認識されている。モデル生物種としてポプラの科学と応用を

進展させるためには、新しい研究分野を開拓すること、およびその研究に必要

な技術開発を進めることが重要と考えられた。そのため、放射線による Populus 

nigra（クロポプラ）の生物学的応答の解明と形質転換法の改良を研究の目的と

した。 

 電離放射線ストレスは環境ストレスの一種である。しかし、ポプラにおける

電離放射線の影響、および木本植物における放射線ストレスの耐性機構はほと

んど分かっていない。そのため、モデル生物種として P. nigra に対するガンマ線

の生物学的影響とその耐性機構を調べた。P. nigra の苗木は、50グレイ（Gy）か

ら 100Gy の高線量ガンマ線を急照射しても生き残ることができた。しかし、一

部の苗木には、成長の阻害や停止、形態的な異常が生じた。200Gy から 300Gy

のガンマ線は、ほとんどの P. nigra を枯死させた。また、高線量のガンマ線は、

シュートや根の形成を阻害した。コメットアッセイ法により、ガンマ線を照射

した細胞では細胞核の損傷が生じていることが示された。電離放射線ストレス

に対する耐性機構を解明するため、DNA 修復系タンパク質の６種の遺伝子、

PnLIG4、PnKU70、PnXRCC4、PnRAD51、PnPCNA、PnOGG1の各 cDNAを P. nigra

から単離し、構造を明らかにした。ガンマ線量に依存して、PnLIG4、PnKU70、

PnXRCC4、PnRAD51、PnPCNA の遺伝子発現が増加する一方で、PnOGG1 の発

現は減少することが分かった。PnLIG4、PnKU70、PnRAD51 の発現は、DNAの

化学的切断処理によっても上昇することから、これらの遺伝子は DNAの切断損

傷が引き金となって発現が誘導されると結論された。 
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 上記の放射線ストレスの研究を進めるため、遺伝子工学技術の進展が必要と

された。P. nigra の形質転換法を改良するため、新しいベクターの構築、形質転

換にかかる期間の短縮、および形質転換効率の上昇を目指した。構築した新し

いベクターは、遺伝子クローニングのための 11の便利な制限酵素切断部位を有

し、選抜薬剤耐性を向上させることができた。この新しいベクターに緑色蛍光

タンパク質遺伝子を組み込み、アグロバクテリウム法を用いて P. nigra を形質転

換した。形質転換の成功は、PCR 法、蛍光顕微鏡観察、免疫ブロット法、サザ

ンブロット法、およびカナマイシンと G418に対する耐性で確認した。アグロバ

クテリウムに感染した茎切片から、直接、遺伝子組換えシュートを再生させる

ことにより、遺伝子組換えに必要な時間は最短で４か月に短縮できた。また、

アグロバクテリウム感染時に還元剤であるジチオスレイトールを添加すること

により、形質転換効率を約 20％に上昇させることができた。 

 本研究により、P. nigra の電離放射線ストレスに対する応答と耐性機構が初め

て解明された。また、形質転換法が効率的に改善された。将来的に、これらの

結果は有用な遺伝子組換えポプラの作出や、遺伝子機能の研究、環境保全への

応用、突然変異育種につなげることができる。さらに、新しい研究分野である

放射線ストレス生理学の開拓と遺伝子工学技術の進展は、木本植物のモデル生

物の一種として P. nigra の価値を高めたと考えられた。ポプラは木本植物の科学

と技術のためのモデル生物種として、鍵となる役割を果たすことができる。ポ

プラの科学と応用が、木本植物の研究や森林資源の供給、地球環境の保全に貢

献することが望まれる。 
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Chapter 1 Introduction 

 

 Poplars (also known as aspens or cottonwoods) are deciduous trees in the genus 

Populus (family Salicaceae), which consists of approximately 30 species. Poplar trees 

are familiar to humans and have been utilized since ancient times, appearing in Greek 

mythology and the Bible. They are important in industrial applications as a source of 

wood materials, paper, fuel, and forage. In addition, poplar trees have been utilized for 

the provision of preferable landscapes and farmland and in environmental conservation 

and restoration. These industrial, agricultural, and environmental uses of poplars have 

driven the investigation of their science; and improved scientific knowledge of these 

trees has led to them being recognized as model species for woody plants (Bradshaw et 

al. 2000; Taylor 2002; Jansson and Douglas 2007). 

 This chapter provides an overview of the science and applications of poplars. It 

includes a wide range of information about these trees, demonstrating why they are 

considered woody plant model species and are the subject of this thesis. 

 

1.1 Taxonomy and distribution 

 It has been proposed that the genus Populus consists of either 29 species 

(Eckenwalder 1996) or 32 species (Dickmann and Kuzovkina 2014), which are further 

classified into six sections (Table 1). Various hybrids of poplar exist in nature, because 

they have the ability to hybridize with other species from the same section or from 

closely related sections (Willing and Pryor 1976; Vanden Broeck et al. 2005). Artificial 

hybrids have also been produced for the improvement of their agronomic and industrial 



7 

 

traits. The International Poplar Commission (IPC) holds the International Cultivar 

Registration Authority (ICRA) for poplars and maintains the Populus Cultivar Register 

(Kuzovkina and Vietto 2014). A database of poplar cultivars is open to the public and 

available at http://www.populus.it/. 

 Poplar trees mostly inhabit the Northern Hemisphere, including Asia, Europe, 

North Africa, Russia, and North America (Dickmann and Kuzovkina 2014) (Table 1). 

However, poplars are planted in both the Northern and Southern Hemispheres. In 2011, 

the reported total area of poplars worldwide was estimated at 87.3 million ha (FAO 

2012), which compares with a total forest area on Earth of 4.03 billion ha in 2010 (FAO 

2010). Poplar forests mainly consist of indigenous forests, planted forests, and 

agroforests (Table 2). Indigenous poplar forests cover approximately 75.5 million ha, 

and are mostly found in Canada (30.3 million ha), the Russian Federation (24.8 million 

ha), the USA (17.7 million ha in 2008), and China (2.5 million ha). Planted poplar 

forests cover approximately 8.6 million ha and are mostly found in China (7.6 million 

ha), France (236,000 ha), Iran (150,000 ha), Turkey (125,000 ha), Spain (105,000 ha), 

and Italy (101,430 ha). The area of poplar plantations in China is increasing rapidly, 

because these plantations only covered 4.3 million ha in 2008 and 3.9 million ha in 

2004. Planted poplar forests also occur in the Southern Hemisphere, being found in 

Argentina and Chile. In New Zealand, poplars are planted alongside willows (Salix 

spp.). In agroforestry systems, poplar trees are cultivated with herbaceous crops or 

livestock. 

 

1.2 Industrial applications 

 Poplars are used for fuel, timber, wood products, and environmental 
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conservation (Fig. 1). In 2011, the total amount of harvested poplar wood across the 

world (with the exception of Russia, China, and the USA) was 20.3 million m
3
 (FAO 

2012). The majority of this wood (17.4 million m
3
) originated from planted poplar 

forests in India (5.1 million m
3
), Iran (3.7 million m

3
), Turkey (3.5 million m

3
), Belgium 

(3.2 million m
3
), and Argentina (1.67 million m

3
), while the remaining 2.9 million m

3
 

originated from indigenous forests, mainly in Canada (2.8 million m
3
). In contrast, the 

global amount of forest products from poplar in 2011 was estimated to be at least 70.4 

million m
3
 (FAO 2012) (Table 3). Although China did not release figures for the amount 

of harvested poplar wood, it consumed 50 million m
3
 of logs for the production of 

plywood and wood pulp. Russia and the USA have vast areas of poplar forest; however, 

their consumption of poplar wood has not been made publicly available. 

 Poplar has a number of uses in the industrial sector, including timber, veneer, 

plywood, wood composites, pulp, paper, chemicals, fuel, and energy. In 2011, 44 

million m
3
 of veneer and plywood, 16.6 million m

3
 of pulp, 5.7 million m

3
 of timber, 

2.2 million m
3
 of wood composite panels, and 1.7 million m

3
 of fuel wood and chips 

were produced globally (FAO 2012) (Table 4). Poplar wood is important in the 

manufacture of forest products, including pulp and paper, timber, veneer and plywood, 

composite panels, structural composite timber, pallets, furniture components, fruit 

baskets, containers, and chopsticks (Balatinecz and Kretschmann 2001). Wood-based 

composites include various products, such as veneer, plywood, fiberboard (categorized 

as insulation board, medium-density fiberboard, and hardboard), particle board, oriented 

strandboard, wood-cement composites, wood-plastic composites, and glued timber 

(categorized as laminated strand lumber, paraller strand lumber, and laminated veneer 

lumber) (Balatinecz et al. 2014). 
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1.3 New industrial applications 

 As new technologies are developed, new uses for poplar are being investigated. 

When used as a fuel source, poplars have traditionally been used in the form of 

firewood and branches. However, alternatives to fossil fuels are desired to meet 

increasing human demands and to mitigate global warming. One solution for this is the 

conversion of plant biomass to biofuels, and poplar is expected to be used as a feedstock 

for biofuels (Sannigrahi et al. 2010). An early experiment showed that when 

acid-treated hardwood of Populus eugenii DN34 (a hybrid of P. deltoides × P. nigra) 

was saccharified and fermented with thermotolerant yeast species, ethanol was 

produced at a concentration of 10–14 g l
−1

 of medium (Kadam and Schmidt 1997). 

Since this experiment, the production of ethanol from poplar wood has continued to be 

refined (Negro et al. 2003; Wang et al. 2012c) and bioethanol has also been produced 

from the leaves of P. nigra (Gupta et al. 2014). Poplar trees have also been genetically 

modified to increase the efficiency of ethanol production. For example, transgenic P. 

alba that expressed Aspergillus aculeatus xyloglucanase had 10–15% higher ethanol 

productivity than the wild type (Kaida et al. 2009). Bioethanol productivity was also 

examined in the knockdown poplars of p-coumarate 3-hydroxylase by RNAi (reduction 

in lignin content) and in poplars that overexpressed ferulate 5-hydroxylase (reduction in 

guaiacyl lignin) (Mansfield et al. 2012). A reduction in the lignin content in P. tremula × 

P. alba by the downregulation of cinnamoyl-CoA reductase improved the ethanol yield 

(Van Acker et al. 2014). 

 It is also expected that poplar will be able to be used as an ingredient for the 

production of bioplastics. Poly-3-hydroxybutyrate (PHB) is a biodegradable 
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thermoplastic material that is produced by bacteria such as Pseudomonas oleovorans 

(Anderson and Dawes 1990). PHB was successfully produced by the bacterial 

fermentation of a hydrolysate that was prepared from poplar wood (Dai et al. 2015). The 

hydrolysate, which included simple sugars, was prepared by soaking the wood in hot 

water at 200°C followed by treatment with lignocellulolytic enzymes. Mixed bacteria 

were then cultured in a bioreactor, using the hydrolysate as a carbon source. This 

resulted in the bacterial cells accumulating a maximum of 0.32 g of PHB per gram of 

bacteria (dry weight). An attempt has also been made to directly produce PHB in poplar 

plants by developing transgenic hybrid poplars (P. tremula × P. alba) that expressed 

three bacterial genes for PHB synthesis (Dalton et al. 2011). These transgenic poplars 

contained 1–2% (dry weight) PHB in their leaves, with the PHB granules being detected 

in the chloroplasts. The direct production of PHB in poplars could be less expensive 

than bacterial PHB production, which requires additional energy. 

 Phytochemicals from poplars are also expected to be utilized and 

commercialized in the future (Devappa et al. 2015). Poplars contain more than 160 

types of chemicals, which have a number of useful functions, including pesticidal, 

antimicrobial, antioxidant, and anticancer properties. Although the wood of poplars is 

well utilized, the other parts are not. However, the value of bark, leaves, branches, and 

other residues including phytochemicals may be appreciated in the near future. 

 

1.4 Environmental applications 

 Poplars are planted not only for wood production but also for environmental 

purposes (Fig. 1). For example, poplars are used as windbreaks and shelterbelts in 

Europe, North America, Russia, Chile, Argentina, northern India, and northern China 
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(Isebrands et al. 2014). In China, the Three North Shelterbelt Program (the Green Great 

Wall), which started in 1978, has established a putative 20 million ha of tree plantations, 

including P. simonii in 1991 (Carle and Ma 2005), although this poplar planting had low 

genetic diversity and was attacked by insect pests and diseases. Since then, the 

improvement of poplar has been actively advanced to enhance its vigor, disease 

resistance, and stress tolerance. 

 Poplars are often utilized for the prevention of soil erosion by water or wind, as 

they are able to stabilize large amounts of soil due to their extensive root systems. For 

example, in New Zealand, which is a mountainous country that experiences heavy 

rainfall over short periods of time leading to soil erosion, over 2 million poplars were 

planted for erosion control during the 1960s and 1970s (Wilkinson 1999); and the Three 

North Shelterbelt Program in China aims to prevent soil erosion as a result of strong 

wind. 

 Native poplar forests are thought to be valuable for the original landscape in 

their natural habitats. Furthermore, both native and planted poplar forests contribute to 

the maintenance of biological diversity, carbon sequestration, and the supply of 

ecosystem services (Rotach 2004; Kuhn et al. 2011; Isebrands et al. 2014). 

 Poplars are also considered to be suitable for phytoremediation (defined as the 

use of green plants to remove, contain, or render harmless environmental contaminants 

(Cunningham and Berti 1993)) because of their rapid growth, perennial habit, and 

deeper root systems than herbaceous plants, and therefore, this has been the subject of 

several studies (Yadav et al. 2010; Marmiroli et al. 2011). It has also been recently 

suggested that parasitism by endophytes are involved in the tolerance of poplars to 

pollutants. Novel endophytes were isolated from poplar trees and were able to degrade 
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organic pollutants such as benzene, toluene, ethylbenzene, xylene, and trichloroethylene 

(Moore et al. 2006; Taghavi et al. 2011; Van Aken et al. 2011; Kang et al. 2012). 

Furthermore, P. trichocarpa × P. deltoides trees that were inoculated with the endophyte 

Burkholderia cepacia, which normally parasitizes herbaceous yellow lupin (Lupinus 

luteus), exhibited a higher tolerance to toluene than non-inoculated poplars (Taghavi et 

al. 2005). 

 It is also intended that poplars will be used as biomonitors. The concentrations 

of trace elements in the leaves of P. alba are correlated with the levels of Cd, Zn, Mn, 

and Cu in surface soils and Cd, Zn, As, and Cu in deep soils (Madejon et al. 2004); and 

the concentrations of heavy metals in the bark of P. nigra have been investigated using 

neutron activation analysis to monitor the levels of air pollution (Berlizov et al. 2007). 

Chromosomal aberrations at the anaphase stage and the sterility of pollen in P. simonii 

were also attempted to be used as an indicator for assessing the levels of pollution in an 

urban area (Sluchyk et al. 2014). A technique that combines genetic engineering and a 

new technology, namely fluorescent resonance energy transfer (FRET), was recently 

invented for monitoring the levels of Zn in poplar (Adams et al. 2012). FRET is a 

fluorescent indicator that can be used to monitor the concentration of chemicals in a 

living cell. A FRET construct that was fused to the Zn transporter from P. trichocarpa 

was introduced into P. tremula × P. alba, following which the transgenic poplar leaves 

were treated with 1–10 mM Zn. The intracellular level of Zn was then detected as a 

change in the FRET fluorescence spectrum. 

 

1.5 Biology of poplars 

 The biological properties of poplars are not only important for industry but are 
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also of interest as a model for other woody plant species (Table 5). The fast growth of 

poplars is one of the reasons they are frequently used in plantation forests. Poplars have 

very high growth rates in industrial plantations (Stanturf and Oosten 2014). For instance, 

an experiment with P. trichocarpa × P. deltoides yielded 15.6–27.8 Mg dry weight ha
−1

 

year
−1

 (Heilman and Stettler 1985). The rotation length in plantation forests varies 

depending on the purpose of production and the environmental conditions. For example, 

the rotation length is 12–15 years for log and veneer production in the western USA but 

a minimum of 2–3 years for a bioenergy system (Stanturf and Oosten 2014). The growth 

of poplar trees directly contributes to the production of woody biomass; therefore, 

poplar cultivars with higher growth potential have been produced through selective 

breeding and crossbreeding. 

 The ability of poplars to propagate vegetatively is useful in plantations. 

Vegetative (asexual) reproduction occurs naturally from crown breakage and treefall 

(Braatne et al. 1996). The broken branches become buried in the soil and then develop 

roots and shoots after a certain period of time. Any remaining tree stumps and roots are 

also able to produce adventitious shoots, and root suckers are formed under natural 

conditions. It is particularly easy to root cuttings from poplars belonging to sections 

Aigeiros and Tacamahaca; therefore, plantations of poplars outside these sections are 

less common globally (Dickmann and Kuzovkina 2014). 

 The major species of poplars can be artificially crossed (sexual reproduction) 

for breeding. Most poplar species are dioecious, but P. lasiocarpa is usually monoecious 

(Boes and Strauss 1994). The length of the juvenile stage, from germination to 

flowering, varies from 5 years to >10 years between species. In the reproductive stage, 

poplars bloom in early spring and have catkins (inflorescences) with many solitary 
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flowers. Poplars are wind-pollinated plants; therefore, their pollen can travel long 

distances. Following pollination and fructification, small seeds with hair-like cotton or 

silk are dispersed by the wind. The seeds of poplars are short lived and rapidly lose their 

germination ability (Popova et al. 2013). Intraspecific or interspecific crossing can be 

performed in some poplar species; however, self-fertilization is impossible due to the 

dioecism. 

 There is some controversy regarding sex determination in poplars. 

Chromosome 19 is responsible for sex determination, which occurs via a ZW system 

whereby the female is the heterogametic gender (Yin et al. 2008). In P. tremula × P. 

tremuloides, the sex trait was mapped on a non-terminal position of the linkage group 

19 on the male map (Pakull et al. 2009). Three putative transcription factor genes and 

four genes that were potentially involved in flower development were identified in this 

region in P. trichocarpa (Kersten et al. 2014), and a male-specific gene from the DNA 

pools of P. tremula and P. tremuloides accorded with one of these candidate genes 

(Pakull et al. 2015). This candidate gene corresponded to Potri.019G047300 (TOZ19) in 

P. trichocarpa and was homologous to the Arabidopsis thaliana gene 

TORMOZEMBRYO DEFECTIVE (TOZ), which is involved in early embryo 

development and in meristem transition from the vegetative to reproductive phase in the 

early stages of flower development. Potri.019G047300 and Potri.014G155300 showed 

higher levels of expression in male P. tremula than in females (Robinson et al. 2014). 

 

1.6 Biodiversity and conservation 

 Some native populations of poplar are threatened with extinction. One of the 

reasons for this is habitat destruction as a result of human activities such as agriculture, 
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deforestation, and urbanization. In addition, hybrid poplars compete with native poplars. 

Poplars have a high ability to cross with other Populus species to generate interspecific 

hybrids both naturally and artificially. Many hybrid poplars grow faster than native 

species. For example, the productivity of an indigenous P. nigra was lower than that of 

an interspecific hybrid (P. maximowiczii × P. trichocarpa) under unfavorable soil and 

climate conditions but statistically no different under marginal or favorable conditions 

in the Czech Republic (Benetka et al. 2014).  

Genetically, pure P. nigra trees have been in danger of extinction in Europe 

(Lefèvre et al. 1998; Smulders et al. 2008; Vanden Broeck et al. 2012); therefore, 

activities for their conservation and management are being continued by the European 

Forest Genetic Resources Programme (EUFORGEN) Populus nigra Network among 

European countries (Lefèvre et al. 2001; Koskela et al. 2004). To preserve the diversity 

of natural Populus species, the short- and long-term storage of seeds is being attempted. 

Seeds of P. alba × Populus glandulosa (P. tremula var. glandulosa) exhibited a high 

germination rate and the normal proportion of seedlings when stored at 5°C for 7–10 

weeks (Popova et al. 2013), and the same seeds were also successfully cryopreserved in 

liquid nitrogen. 

 

1.7 Stress physiology 

 Higher plants such as poplars generally cannot move freely. These plants are 

exposed to a number of environmental stresses in their habitat through their lives; 

however, most are able to avoid the effects of these via stress response and tolerance 

mechanisms. Environmental stresses can mostly be divided into two groups: abiotic and 

biotic. Abiotic stresses includes physical, chemical, and meteorological stresses, such as 
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light (intensity, spectrum, and time), temperature, humidity, hypoxia, gravity, ionizing 

radiation, gases, chemicals, salinity, nutrients and metals in the soil, and wind. In 

contrast, biotic stresses originate from living organisms and ecosystems in the plant’s 

surroundings, including pests, herbivores, fungal and bacterial pathogens, parasites, and 

allelopathic organisms. The harmful effects of both abiotic and biotic stresses on woody 

plants can result in growth retardation, low productivity of timber, unsuitable quality of 

the wood, increased forestry costs, deterioration of biodiversity, and forest degradation. 

Therefore, it is extremely important that the various effects of environmental stresses 

and woody plant defense mechanisms are elucidated, as increased knowledge about 

stress physiology in woody plants will enable their defense mechanisms to be enhanced 

or utilized to better control any stress effects. 

 Many physiological studies of stress responses have been conducted in poplars. 

For instance, salinity stress as a result of a 0.5% NaCl solution affects growth, 

photosynthesis, stomatal resistance, leaf water potential, and leaf area in various poplar 

clones (Fung et al. 1998), while treatment with 100 mM NaCl reduced the height 

growth, photosynthetic rate, and stomatal conductance in P. nigra and P. alba (Mao et al. 

2010). It has also been shown that salinity stress changes the cell wall composition 

through the induction of the genes involved in tension wood formation in P. × canescens 

(a hybrid clone of P. alba × P. tremula) and P. euphratica (Janz et al. 2012). The 

concentration of Na
+
, K

+
, and other ions and solutes has also been comprehensively 

investigated in P. euphratica under saline conditions (Zeng et al. 2009).  

Different genotypes of P. × euramericana (P. deltoides × P. nigra) were also 

found to have different levels of productivity under drought conditions (Monclus et al. 

2006), and chilling stress altered the soluble carbohydrate content and protein 
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expression in P. tremula × P. tremuloides (Renaut et al. 2004). In addition, elevated CO2 

enhanced growth in P. tremula × P. alba, while ozone exposure decreased it (Richet et al. 

2012). Low nitrogen levels have also been shown to increase the growth of roots and the 

number of lateral roots in poplars (Wei et al. 2013), while cadmium caused leaf 

chlorosis, inhibited growth, and changed the expression of proteins (Marmiroli et al. 

2013). For a more detailed review of the effects of abiotic stresses and the tolerance of 

poplars to these stresses, see Chen and Polle (2010), Harfouche et al. (2014), and 

Marron et al. (2014). 

 Frequently, poplars are eaten by herbivores or affected by disease. The main 

insects that harm poplars and their distributions, types of damage, and control methods 

are listed in de Tillesse et al. (2007) and Charles et al. (2014). Several studies have 

investigated the defense systems that poplars use to prevent these insects from causing 

serious damage. One such study showed that the expression of the Win3 gene from P. 

trichocarpa × P. deltoides was systemically induced by wounding (Bradshaw et al. 

1990). The predicted Win3 protein is similar to Kunitz-type trypsin inhibitors, which 

have insecticidal and antifungal activity (Haq et al. 2004; Huang et al. 2010). 

Furthermore, wounding in P. tremuloides increased the number of transcripts of a 

dihydroflavonol reductase and thus, the concentration of condensed tannins, which are 

important for defense against herbivory (Peters and Constabel 2002). It has also been 

reported that P. nigra trees that were attacked by a herbivorous gypsy moth produced 

volatile compounds that attracted parasitic bees as parasitoids (Clavijo McCormick et al. 

2014).  

Poplars also become infected by many pathogenic fungi and bacteria (Anselmi 

2009; Ostry et al. 2014), and specific elicitors derived from these pathogens are known 
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to initiate their defense system. For example, transcripts that code for 14-3-3 proteins in 

P. trichocarpa × P. deltoides were induced by chitosan, which is a constituent of fungal 

cell walls (Lapointe et al. 2001). Several elicitors from pathogenic fungi and bacteria 

also activated mitogen-activated protein kinases (MAPKs) in P. trichocarpa × P. 

deltoides (Hamel et al. 2005). Furthermore, rust disease, which is caused by pathogenic 

fungi and is the most important disease in poplars, induces oxidative stress, and has 

been shown to activate antioxidant enzymes (Zhang et al. 2010), as well as affecting 

carbohydrate metabolism, photosynthesis, and respiration (Major et al. 2010). 

 Comprehensive genetic resources are useful for investigating the stress 

physiology of poplars. Full-length cDNA libraries from poplars have been constructed 

for annotation and isolation of the genes involved in responses to abiotic stresses (Nanjo 

et al. 2004; Nanjo et al. 2007) and to insect herbivory (Ralph et al. 2006; Ralph et al. 

2008). Stress-related small non-coding RNAs (ncRNAs), or microRNAs (miRNAs), 

have also been identified. The expression of small RNAs is regulated by mechanical, 

cold, heat, salt, and dehydration stresses in P. trichocarpa (Lu et al. 2005; Lu et al. 

2008; Shuai et al. 2013), by UV-B stress in P. tremula (Jia et al. 2009), by a fungal 

pathogen stress in P. cathayana × P. nigra (Chen et al. 2012), and by salt stress in P. 

euphratica (Li et al. 2013a; Si et al. 2014). In addition, long intergenic non-coding 

RNAs (lincRNAs) of more than 200 base pairs (bp) in length were newly isolated from 

P. trichocarpa under drought stress, while six lincRNAs were upregulated following a 

drought treatment (Shuai et al. 2014). Therefore, in addition to the mRNAs that encode 

stress-related proteins, these non-coding RNAs probably play important roles in stress 

responses in poplars. 

 Advances in comprehensive analysis methods such as DNA microarray 
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analysis and next-generation sequencing technologies have allowed genome-wide 

transcriptome analysis to be performed to elucidate the stress response mechanisms in 

poplars. The first such study was conducted using a DNA microarray that consisted of 

315 cDNAs to investigate salt stress and recovery in P. euphratica (Gu et al. 2004). 

Once the P. trichocarpa genome had been sequenced (Tuskan et al. 2006), a 

whole-genome array could be used to elucidate various stress responses in poplars, 

including defense mechanisms against a rust fungus in P. trichocarpa × P. deltoides 

(Rinaldi et al. 2007), changes in gene expression in response to aluminum stress in P. 

tremula roots (Grisel et al. 2010), the comparison of two hybrid genotypes (P. deltoides 

× P. nigra) with different drought tolerances (Cohen et al. 2010), gene regulation in the 

leaves of P. × euramericana that were subjected to excess zinc (Di Baccio et al. 2011), 

and drought and salt stress in P. alba × P. glandulosa (Yoon et al. 2014). More recently, 

RNA-Seq by next-generation sequencing was used to investigate the salt stress response 

(Qiu et al. 2011), cold and chilling stress (Chen et al. 2014b), heat shock stress (Chen et 

al. 2014c), and rust infection response (Petre et al. 2012) in poplars. Genome-wide 

analysis can be used to examine the changes in several hundred to thousand genes as a 

result of environmental stress at a given time. All of this information is extremely 

valuable for elucidating the stress response and tolerance mechanisms in poplars. 

 

1.8 Genetics and genomics 

 Genetics and genomics have accelerated the development of model organisms 

for scientific studies. Poplars usually have two sets of 19 chromosomes (2n = 38) in the 

nucleus. However, triploid or tetraploid plants have occasionally been found (Smith 

1943; Mock et al. 2012), and polyploidy can be artificially induced by crossbreeding 
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(Bradshaw and Stettler 1993), colchicine treatment (Cai and Kang 2011), and high 

temperatures (Wang et al. 2012a). The segregation of many restriction fragment length 

polymorphism (RFLP), sequence-tagged site (STS), and random amplified polymorphic 

DNA (RAPD) markers was used to develop a genetic map for P. trichocarpa × P. 

deltoides, which resulted in the identification of 19 linkage groups (Bradshaw et al. 

1994), indicating that the poplar genome consisted of 19 pairs of chromosomes. The 

genome size of poplars was also estimated to be approximately 1.2 pg (= 2C) in P. 

deltoides and 1.4 pg in P. trichocarpa (Bradshaw and Stettler 1993), which were 

relatively small in plants (Garcia et al. 2014). Recently, the 2C values of P. trichocarpa 

and P. nigra were reported to be 1.0 pg and 1.1 pg, respectively (Bennett and Leitch 

2011). 

 The elucidation of the gene function in poplars began with a study on two 

wound-responsive genes from P. trichocarpa × P. deltoides in the late 1980s (Parsons et 

al. 1989). Since then, many genes involved in wood and cell wall formation, biotic and 

abiotic stress responses, flowering, metabolism, and transcription have been isolated 

from various poplars using protein sequences or homologous genes from other species 

of plants, animals, and microorganisms. Analysis of the isolated genes was accelerated 

by the development of genetic engineering for Populus species. Furthermore, progress 

in automatic DNA sequencing made the high-speed reading of many genes possible. For 

instance, the cDNA from the cambium of P. tremula × P. tremuloides and from the 

xylem of P. trichocarpa were analyzed, resulting in 5,692 expressed sequence tags 

(ESTs) being obtained (Sterky et al. 1998). Additional ESTs were then obtained to 

investigate leaf senescence (Bhalerao et al. 2003), the root system (Kohler et al. 2003), 

organs and tissues (Déjardin et al. 2004; Sterky et al. 2004), wound defense 
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(Christopher et al. 2004), and stress tolerance (Brosché et al. 2005). The full-length 

cDNA library was utilized not only for the collection of ESTs but also for the annotation 

of genes (Nanjo et al. 2004; Ralph et al. 2006; Nanjo et al. 2007; Ralph et al. 2008). The 

number of poplar ESTs registered in public databases has continued to increase, with the 

number of EST sequences in the National Center for Biotechnology Information 

(NCBI) increasing from 376,565 in August 2006 (Jansson and Douglas 2007) to 

422,517 in August 2015. 

 In 2006, the genome of P. trichocarpa was revealed for the first time in woody 

plants (Tuskan et al. 2006). This was the third analysis of a genome in Spermatophyta, 

continuing on from work on A. thaliana (Arabidopsis Genome Initiative 2000) and rice 

(Oryza sativa) (Goff et al. 2002; Yu et al. 2002). The genome size of P. trichocarpa was 

initially estimated to be approximately 485 Mbp, and 45,555 protein-coding loci were 

identified. In addition, the chloroplast genome was estimated to be 157 kbp in length, 

including 101 genes, and the mitochondrial genome was estimated to be 803 kbp 

including 52 genes. The accuracy of genome sequencing and gene annotation have been 

gradually improved, and the latest version of the P. trichocarpa genome is open to the 

public through the Phytozome project (http://phytozome.jgi.doe.g.,ov/pz/portal.html). 

The assembled genome is approximately 423 Mbp, and 41,335 protein-coding loci and 

73,013 protein-coding RNAs, including splicing variants, have been identified. The 

genome sequence of P. euphratica was also recently reported (Ma et al. 2013) and 

34,279 protein-coding genes were predicted in this genome. Approximately 94% of 

these could be annotated using public databases. 

 The genome sequencing of P. trichocarpa enabled genome-wide comparative 

analyses to be conducted. Computational analyses and transcriptomics have been 
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vigorously conducted for the following specific gene families in P. trichocarpa, A. 

thaliana, O. sativa, as well as other plant species: protease family (García-Lorenzo et al. 

2006), major intrinsic proteins including aquaporins (Gupta and Sankararamakrishnan 

2009), CCCH zinc finger proteins (Chai et al. 2012), homeodomain-leucine zipper 

proteins (Hu et al. 2012), late embryogenesis abundant (LEA) proteins (Lan et al. 2013), 

leucine-rich repeat receptor-like protein kinases (Zan et al. 2013), WRKY transcription 

factors (Jiang et al. 2014a), and C2H2 zinc-finger transcription factors (Liu et al. 2015). 

 The genomics of poplars is progressing together with other areas in the omics 

field of study, including transcriptomics, proteomics, and metabolomics. It is expected 

that the knowledge obtained from these studies will help provide us with a better 

understanding of the biology of poplars, which can then be applied to their breeding, 

conservation of their biological diversity, and the development of new industrial 

applications. Two commendable books have recently been published on the genomics of 

poplars (Jansson et al. 2010; Joshi et al. 2011). 

 

1.9 Genetic engineering 

 Poplar was the first woody plant to be successfully genetically transformed. 

Stems of the hybrid P. trichocarpa × P. deltoides that had been infected with 

Agrobacterium tumefaciens were demonstrated to form tumors producing 

Agrobacterium strain-specific opines and containing T-DNA sequences (Parsons et al. 

1986). Over the next year, transgenic shoots were successfully regenerated using 

Agrobacterium rhizogenes in P. trichocarpa × P. deltoides (Pythoud et al. 1987) and A. 

tumefaciens in P. alba × P. grandidentata (Fillatti et al. 1987). Since then, 

Agrobacterium-mediated transformation has been applied to and advanced in other 
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Populus species and hybrids, including P. nigra (Confalonieri et al. 1994), P. tomentosa 

(P. alba × P. adenopoda) (Wang et al. 1990), and P. tremula × P. tremuloides (Nilsson et 

al. 1992). The neomycin phosphotransferase II (NPTII) gene and kanamycin were 

initially used as the selectable marker and antibiotic, respectively, for the selection of 

transgenic poplar plants. Subsequently, several combinations of the phosphinothricin 

acetyltransferase (bar) gene and phosphinothricin (glufosinate) (De Block 1990), the 

hygromycin phosphotransferase (HPT) gene and hygromycin (Nilsson et al. 1992), and 

the mutant acetolactate synthase (crsl-1) gene and chlorsulfuron (Brasileiro et al. 1992) 

have also been utilized. Furthermore, marker-free transgenic P. sieboldii × P. 

grandidentata were generated using the isopentenyl transferase (ipt) gene and the Ac 

transposable element (Ebinuma et al. 1997). 

 A direct gene transfer method that does not use Agrobacterium has also been 

studied. Electric discharge particle acceleration was used to introduce a Cry toxin from 

Bacillus thuringiensis into a hybrid poplar (P. alba × P. grandidentata), conferring pest 

resistance on the transgenic plants (McCown et al. 1991). Microprojectile DNA delivery 

by helium gas was also used to transform suspension-cultured cells of P. nigra × P. 

maximowiczii (Devantier et al. 1993). Electroporation of the protoplast of P. tremula × P. 

alba produced stable transgenic trees (Chupeau et al. 1994), and was also used for the 

transient expression of a foreign gene in P. alba protoplasts (Qiao et al. 1997). The 

microprojectile DNA delivery system was also used for the transformation of P. alba 

plastids, enabling the spectinomycin resistance gene and green fluorescent protein 

(GFP) gene to be integrated into the plastid genome (Okumura et al. 2006). However, 

these direct gene transfer systems are no longer greatly used due to the development of 

the Agrobacterium-mediated transformation system. 



24 

 

 There are two main purposes of genetic engineering in poplar: to elucidate the 

function of the genes that are involved in various biological processes and to develop 

new, improved trees with excellent properties. Gene-specific overexpression (sense) and 

suppression (antisense and RNAi) techniques are often used to investigate gene 

functions in poplar. The modification of one particular gene sometimes confers multiple 

new traits, and in some cases, the genes from other plant species, animals or 

microorganisms are exploited in the development of useful transgenic poplars with new 

traits. Many types of transgenic poplar plants have been generated till date, information 

about which can be obtained from a number of comprehensive reviews (Busov et al. 

2005; Ye et al. 2011; Dubouzet et al. 2013; Polle et al. 2013) and books (Klopfenstein et 

al. 1997; Fladung and Ewald 2006). 

 Wood formation is a typical property of woody plants, and therefore, the 

modification of wood properties is one of the main topics of interest for genetic 

engineering. Wood consists of cellulose, hemicellulose, and lignin, the synthesis and 

degradation of which are regulated by a number of enzymes. The pulp and paper 

industries desire a high cellulose content and low hemicellulose and lignin contents. 

One study showed that the downregulation of 4-coumarate:CoA ligase in P. tremuloides 

not only led to a 45% reduction in lignin but also a 9–15% increase in the cellulose 

content and enhanced growth (Hu et al. 1999). However, other studies reported that the 

reduction of 4-coumarate:CoA ligase by another distinct promoter did not lead to 

growth enhancement in transgenic poplars (Li et al. 2003; Voelker et al. 2010). When 

the Arabidopsis ferulate 5-hydroxylase (F5H) gene was introduced into P. tremula × P. 

alba, the resulting transgenic poplars showed a remarkable reduction in guaiacyl lignin 

(Franke et al. 2000). It has also been shown that transgenic P. alba expressing A. 
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aculeatus xyloglucanase contained 10% more cellulose than the wild type (Park et al. 

2004) and that the overexpression of cotton (Gossypium hirsutum) sucrose synthase in P. 

alba × P. grandidentata increased the cellulose content by 2–6% (Coleman et al. 2009). 

 It is convenient to be able to artificially control morphogenesis and flowering 

in trees for forestry. For example, an increased number of branches is desirable to 

increase the leaf area and thus biomass production. It has been shown that P. tremula × P. 

alba that overexpress the sweet chestnut (Castanea sativa) RAV1 gene exhibit the early 

formation of sylleptic branches (Moreno-Cortés et al. 2012). Some flowering-regulated 

genes have also been found in A. thaliana, mediating the analysis of many flowering 

mutants, and homologs of these flowering genes exist in poplars. The constitutive 

expression of the Arabidopsis LEAFY (LFY) gene in P. tremula × P. tremuloides 

produced solitary lateral and terminal flowers on 5-month-old shoots (Weigel and 

Nilsson 1995), and male P. trichocarpa that overexpressed PtFT1 (P. trichocarpa 

FLOWERING LOCUS T homolog) produced normal flowers (inflorescences) with 

normal pollen within a year (Böhlenius et al. 2006). However, the overexpression of 

PTLF (P. trichocarpa LFY homolog) in P. tremula × P. tremuloides was not particularly 

successful in promoting early flowering (Rottmann et al. 2000). Recently, an early 

flowering male P. tremula that had been transformed with the Arabidopsis FT (AtFT) 

gene was successfully crossed with a wild type female P. tremula, and approximately 

half of the F1 seedlings possessed AtFT (Hoenicka et al. 2014). This demonstrates that 

the juvenile phase of poplar can be shortened through genetic engineering and that the 

introduced foreign gene can be eliminated by crossing. 

 Abiotic and biotic stresses reduce the biomass of trees and, in extreme cases, 

may destroy the forest. Therefore, trees that are tolerant to a range of stresses have been 
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bred, and genetic engineering provided the opportunity for the rapid breeding of such 

stress-tolerant trees. For example, the overexpression of a TaLEA gene from Tamarix 

androssowii in P. simonii × P. nigra enhanced salt and drought tolerance (Gao et al. 

2013); and Populus davidiana (P. tremula var. davidiana) × Populus bolleana (P. alba 

var. pyramidalis) that overexpressed the type I proton pyrophosphatase gene produced 

18–27% more fresh shoot mass than the wild type in the presence of 150 mM NaCl and 

showed a superior survival rate after the salt treatment (Yang et al. 2015). Transgenic P. 

tomentosa with introduced Arabidopsis homeodomain-START transcription factor, 

AtEDT1/HDG11 (ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN 

GLABROUS11), also exhibited significantly enhanced salt and drought stress tolerance 

(Yu et al. 2015). In addition, a synthetic antimicrobial peptide, D4E1, was expressed in 

P. tremula × P. alba, conferring resistance to two bacterial pathogens, A. tumefaciens 

and Xanthomonas populi (Mentag et al. 2003). 

 Transgenic poplars that are tolerant to organic pollutants or heavy metals are 

believed to be more useful for phytoremediation. The hybrid P. tremula × P. alba with 

overexpressed γ-glutamylcysteine synthetase from Escherichia coli produced higher 

levels of glutathione, exhibited enhanced tolerance to chloroacetanilide herbicides, and 

accumulated more Cd in the root tissue than wild type plants (Gullner et al. 2001; 

Koprivova et al. 2002). In addition, transgenic P. deltoides expressing a modified 

mercuric ion reductase gene (merA9 or merA18) were able to grow in the soil containing 

400 ppm Hg
2+

, whereas the wild-type shoots died (Che et al. 2003); and P. deltoides 

that expressed both merA9 and merA18 were able to detoxify phenylmercury acetate 

(Lyyra et al. 2007). Furthermore, yeast cadmium factor 1 from Saccharomyces 

cerevisiae conferred tolerance to high levels of As, Zn, Pb, and Cd in P. alba × P. 
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tremula, and the transgenic poplars had increased levels of Cd in their upper shoots and 

Cd, Zn, and Pb in their roots (Shim et al. 2013). 

 Genetic transformation has been successfully used to produce systematically 

tagged lines of poplars, similar to those produced for A. thaliana. Using the CaMV 35S 

enhancer, 627 activation-tagged transgenic P. tremula × P. alba were generated, with 

nine lines exhibiting an obvious morphological change. Among these nine lines, a dwarf 

mutant was discovered in which the endogenous GA2-oxidase had been activated 

(Busov et al. 2003). Several phenotypic variants were also obtained from the transposon 

and T-DNA tagged lines of P. tremula and P. tremula × P. tremuloides, and the tagged 

sites were sequenced (Fladung et al. 2004). To determine which genes were involved in 

the vascular system, 708 gene trap and 674 enhancer trap tagged trees of P. tremula × P. 

alba were established, and the expression of β-glucuronidase (GUS) was detected in 55 

and 455 lines, respectively (Groover et al. 2004). A total of 12,083 activation-tagged 

trees of P. tremula × P. tremuloides have also been generated using the activation 

tagging Ds system with a heat-inducible Ac-transposase, which resulted in various types 

of phenotypic variation, including growth deficiency, chlorophyll abnormalities, and 

alterations in leaf form and shape (Fladung and Polak 2012). These tagged poplars are 

useful for clarifying the relationship between mutant phenotypes and the functions of 

unknown genes. 

 When transforming poplars, various factors need to be considered: suitable 

poplar clones or varieties; the type of initial explant (leaves, shoots or calli) for 

transformation; a plant regeneration system that is highly efficient and fast; a convenient 

vector for DNA manipulation; a method for selecting transgenic poplars; the selection of 

introduced genes controlling the target traits; and a regulation system for gene 
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expression, such as a promoter and enhancer. There is currently no common solution for 

each of these; therefore, further development is required to help address these issues and 

to contribute to the utilization of poplar trees. Attention also needs to be paid to the 

inherent problems of transgenic poplars as living modified organisms (LMOs). 

 

1.10 Populus nigra 

 Populus nigra (black poplar) is one of the most important poplar species, 

having a wide range of applications. This species has a large distribution area 

throughout Europe, and is also found in North Africa and Central and West Asia 

(Vanden Broeck 2003). It is used for wood production, windbreaks, and landscaping all 

over the world. It has also often been used as a parent species for crossbreeding because 

of its excellent characteristics, such as wide adaptability to many environments, ease of 

rooting stem cuttings, and resistance to pests and pathogens (Cagelli and Lefèvre 1995), 

and the hybrid clones of P. nigra are planted widely worldwide. Native P. nigra is a 

typical pioneer tree that occurs in riparian areas. However, as described in section 1.6, 

native P. nigra forests are at a risk of extinction in Europe due to the reduction in 

riparian habitats and intercrossing with hybrid poplars. Therefore, measures to conserve 

native P. nigra have been taken by the EUFORGEN Populus nigra Network and 

individual country (Lefèvre et al. 2001; Koskela et al. 2004). Cryopreservation of the 

seeds has also been attempted to preserve the intraspecific diversity of this species 

(Suszka et al. 2014; Michalak et al. 2015). 

 Populus nigra was first imported to Japan in the middle Meiji era. Following 

World War II, P. nigra and improved hybrid poplars were imported once again, and 

planting tests were conducted. Poplar trees are familiar to Japanese people and are often 
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admired in streets and parks, including the well-known rows of P. nigra trees in 

Hokkaido. 

 Similar to other poplar species, P. nigra is considered to be a suitable model 

species for woody plants (Fig. 2). This species can be grown quickly and is also easily 

propagated from stem cuttings, allowing the plantlets of P. nigra to be used as 

homogenous experimental materials. Furthermore, sterile cell- and tissue-culturing 

systems are available, and in vitro organogenesis, such as shoot regeneration and rooting, 

can be controlled. There are also rich genomic resources on P. nigra. For example, a 

total of 54,152 genes and ESTs of P. nigra were registered in the DNA Data Bank of 

Japan (DDBJ) as at December 2015. Studies on P. nigra have progressed around the 

world, including in Japan (Mohri et al. 1996; Mohri et al. 1999; Kato et al. 2001; 

Nishiguchi et al. 2002; Nanjo et al. 2004; Nanjo et al. 2007; Igasaki et al. 2008; Mao et 

al. 2010). 

 Populus nigra can be transformed using an Agrobacterium-mediated method 

(Confalonieri et al. 1994; Mohri et al. 1996). In this method, A. tumefaciens harboring a 

binary vector that includes the intended target genes and selection marker genes is 

inoculated into poplar explants, such as leaf discs or stem segments. The 

Agrobacterium-infected explants are then cultured for several days to transfer a T-DNA 

region from the Agrobacterium into the poplar cells. Subsequently, the explants are 

transferred into a selection medium containing antibiotics that will kill non-transgenic 

cells. The explants are then subcultured for several weeks, during which time they 

generate transgenic calli or shoots (the transgenic calli are able to regenerate into 

transgenic shoots at a later date). Finally, regenerated transgenic shoots are excised and 

transferred into a root-induction medium (RIM). 
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 Various transgenic trees of P. nigra have been generated, including those that 

contain the GUS gene (Confalonieri et al. 1994; Confalonieri et al. 1995; Mohri et al. 

1996), a B. thuringiensis toxin gene that confers insect resistance (Wang et al. 1996), a 

soybean (Glycine max) Kunitz trypsin proteinase inhibitor gene (Confalonieri et al. 

1998), and a rice homeodomain protein (OSH1) gene (Mohri et al. 1999). Hybrid clones 

from P. nigra have also been utilized for transformation (Han et al. 2000; Davis et al. 

2006; Yevtushenko and Misra 2010; Gao et al. 2013). 

 As outlined in section 1.7, environmental stress often severely impacts the 

survival and growth of poplars. Various stress physiological studies have been 

conducted for P. nigra till date. For example, it was found that the expression of a 

lectin-like receptor protein kinase (PnLPK) gene from P. nigra was increased by 

wounding young leaves, suggesting that PnLPK is involved in the plant response to 

wounding (Nishiguchi et al. 2002). It was also shown that water limitation reduced the 

growth and photosynthetic rate of P. nigra and activated starch-degrading enzymes and 

peroxidase depending on the genotype (Regier et al. 2009). High temperatures have 

been linked to reduced photosynthesis, which is affected by water stress (Centritto et al. 

2011); and treatment with high levels of nickel also resulted in reduced photosynthesis 

(Velikova et al. 2011). To elucidate the response mechanism to environmental stress, 

full-length cDNA libraries were constructed from various stress-treated P. nigra and 

approximately 20,000 ESTs were analyzed (Nanjo et al. 2004; Nanjo et al. 2007). In 

addition, the expression of two transcription factors, PnDREB68 and PnDREB69, was 

elevated by cold, salinity, and osmotic stress in the leaves and stems of P. nigra (Chu et 

al. 2014). 
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1.11 Objectives 

 Many studies have been performed on poplars to date. Therefore, the question 

is what should be studied next to better understand the science of poplars as woody 

plant model species? One option is to use poplars to pioneer new fields of research on 

woody plants. A wide range of research topics have already been studied on woody 

plants, but unresolved issues and untouched areas of research remain. Therefore, such 

topics could be addressed using poplars, with their advanced technologies and research 

resources, and then applied to other woody plants. Another option is to further develop 

the technologies for poplars, including cultivation, biotechnology, genetic engineering, 

and other biological techniques, to support the research and application of poplars as 

model species. In this thesis, both of these options are explored by investigating the 

biological response of P. nigra to ionizing radiation as an abiotic stress and by 

improving the transformation system for this species (Fig. 3). 

 The effects of ionizing radiation on woody plants, including poplars, and their 

tolerance mechanisms for this remain to be understood in detail. Ionizing radiation is 

considered to be an inescapable abiotic stress. Almost all living organisms on Earth are 

exposed to natural ionizing radiation, such as cosmic radiation, terrestrial radiation, and 

internal radiation. The leaves of trees are estimated to generally be exposed to 0.6–7 

mGy per year of natural radiation (UNSCEAR 1996) (Fig. 4). Because most woody 

plants are perennial and long lived, they are exposed to natural radiation over a long 

period of time. Therefore, it is assumed that woody plants must possess resistance 

mechanisms against ionizing radiation to avoid its harmful effects. In the 1960s and 

1970s, the radiosensitivity of herbaceous and woody plants including poplar species 

were investigated (Scandalios 1964; Ohba and Murai 1966; Sparrow et al. 1968). 
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However, since then, the basic radiation biology of woody plants has not been advanced, 

with the exception of radiation breeding of fruit trees. Following the Chernobyl accident 

in 1986, the effects of ionizing radiation on local forest trees such as Scots pine (Pinus 

sylvestris) were studied with respect to the protection of the environment from ionizing 

radiation. However, the response and tolerance mechanisms of poplars to ionizing 

radiation have not been studied.  

We currently have some scientific knowledge about the effects of 

environmental stresses on poplars and also have many genomic resources. Both of these 

will be very useful for analyzing the molecular mechanism of the response of poplars to 

exposure to ionizing radiation. In addition, the genetic engineering techniques that have 

been developed for poplars can help to clarify the functions of genes that are involved in 

radiation stress. Elucidation of the response and tolerance mechanisms of poplars as 

model trees will be very valuable for understanding radiation stress in woody plants. 

Therefore, in this thesis, the various biological effects of γ-irradiation on P. nigra were 

examined, and the DNA-repair related genes were newly isolated and characterized (Fig. 

3). The obtained results may be used for the radiological protection of woody plants, 

environmental application, mutation breeding, or the generation of stress-tolerant trees. 

 Genetic engineering is potentially a valuable tool for the elucidation of stress 

tolerance mechanisms. Transformation systems for P. nigra have been reported 

previously (Confalonieri et al. 1994; Confalonieri et al. 1995; Mohri et al. 1996), but 

these have some practical issues (Fig. 5). Firstly, the transformation efficiency of P. 

nigra is not sufficiently high, making it difficult to produce a large number of transgenic 

poplar plants. Secondly, the previous transgenic system, which uses callus regeneration, 

takes a long time, because callus-, shoot-, and root-induction require 1–2 months each, 
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meaning that it takes more than 6 months for the generation of transgenic P. nigra. A 

more convenient binary vector is also desirable for the transformation of plant species 

including poplars, which would have characteristics such as many cloning sites that are 

recognized by restriction enzymes; selection marker genes that are suitable for plant 

species and have high selectivity; timely and spatially regulated promoters; and stability 

in E. coli and Agrobacterium. Therefore, one of the goals of this thesis was to improve 

the transformation system for P. nigra, to give a higher transformation efficiency and a 

shorter regeneration time and to simultaneously design and construct a new binary 

vector for transformation (Fig. 3). It was considered that the improved transformation 

system and the advanced new vector would contribute to the development of genetic 

engineering of not only P. nigra but also other poplar and plant species. 

 As mentioned in section 1.10, P. nigra is considered to be one of the most 

suitable poplar species for use as an experimental model of woody plants. Therefore, the 

information obtained from studies on P. nigra can be generalized to other species of 

poplars or plants using comparative studies. Furthermore, although it may be difficult to 

directly apply a specific technology such as transformation to other plant species, the 

information that is obtained may be valuable as a reference for similar studies. 
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Chapter 2 Elucidation of biological response to ionizing 

radiation in Populus nigra 

 

2.1 Introduction 

 Ionizing radiation has been shown to deleteriously affect the growth and 

reproduction of herbaceous and woody plants. Early studies made detailed examinations 

of the radiosensitivity of various herbaceous and woody plants to gamma (γ) rays 

(Sparrow and Sparrow 1965; Capella and Conger 1967; Sparrow et al. 1968; Sparrow et 

al. 1970). These studies showed that woody gymnosperms are generally more sensitive 

to ionizing radiation than woody angiosperms and that the radiosensitivity of plant 

species is affected by the interphase chromosome volume. Following the Chernobyl 

Nuclear Power Plant accident in 1986, many important studies on the harmful effects of 

ionizing radiation and fallout on forest trees were performed (Arkhipov et al. 1994; 

Kaľchenko and Fedotov 2001; Kovalchuk et al. 2003; Tulik and Rusin 2005). 

Conversely, ionizing radiation has also been used as a tool for plant breeding. A total of 

2,252 mutant varieties including woody plant species were recorded in the FAO/IAEA 

Mutant Varieties Database by the end of 2000, with 1,411 of these having been obtained 

using ionizing radiation as the mutagen (Maluszynski et al. 2000). 

 Ionizing radiation is considered an environmental stress alongside light, 

temperature, and water, with X- and γ-rays having been reported to cause DNA damage 

in plants such as Vicia faba (Koppen and Angelis 1998) and Nicotiana tabacum 

(Gichner et al. 2000). Ionizing radiation not only arises from human activities but also 

exists as natural background radiation, including cosmic and terrestrial radiation. 
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Almost all terrestrial plants are continuously exposed to natural background radiation 

during their growth and dormant periods. Although this natural background radiation is 

usually negligible, it is sufficient to ionize water and biological molecules such as DNA 

and proteins in cells; and if the free radicals and abnormal molecules that are generated 

by ionization increase and accumulate in such cells, they may be damaged and die. 

Perennial woody plants are particularly likely to be subjected to natural background 

radiation for an extended period due to their longevity and consequently, are likely to 

have developed adaptation and tolerance mechanisms to enable them to survive. 

 Versatile DNA repair systems have been reported as one of the mechanisms of 

radiation resistance. A wide range of DNA repair-related proteins for the detection and 

elimination of DNA damage and for DNA synthesis are believed to play an important 

role in maintaining genome stability. Consequently, activation of the genes that encode 

each of these proteins is considered to be a key event in the mechanism for tolerating 

ionizing radiation. The genes that encode DNA repair-related proteins have been 

isolated from plants such as A. thaliana. (Bleuyard et al. 2006), rice (Kimura and 

Sakaguchi 2006), and moss (Physcomitrella patens) (Ayora et al. 2002), and it has been 

shown that the knockout of these DNA repair-related genes partially reduces the 

tolerance of the knockout plants to γ-irradiation (Riha et al. 2002; Osakabe et al. 2005). 

However, to the best of our knowledge, DNA repair-related proteins in woody plants 

have not been studied in detail. 

 In the present study, P. nigra was acutely exposed to γ-rays to examine the 

adaptation and tolerance mechanisms to ionizing radiation in woody plants. Populus 

nigra is considered a good model for woody plant biology because of its rapid growth, 

the ease of clonal propagation, the ability to use in vitro cultured-plants and cells, the 
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advanced level of genetic engineering, and the abundance of molecular biological 

information about this species, as outlined in Chapter 1. Although various stress 

responses of this species have been elucidated, there has been very little study on the 

biological effects of ionizing radiation on P. nigra (Scandalios 1964) or other species of 

poplar (Ohba and Murai 1966; Stettler and Guries 1976). In this study, it was found that 

exposure of P. nigra to various doses of acute γ-irradiation caused morphological 

changes, delayed growth, withering, and nuclear DNA breaks, and that γ-rays or a DNA 

cleavage agent affected the gene expression of several DNA repair-related proteins, the 

cDNAs of which were newly isolated from this species. 

 

2.2 Materials and methods 

2.2.1 Plant materials 

 Young branches of P. nigra that were approximately 10 cm in length were 

excised and rooted in moist vermiculite. The rooted branches were then grown in a 

growth chamber (phytotron) at 25°C and 70% relative humidity under metal halide 

lamps (500 µmol m
−2

 s
−1

 of photosynthetically active radiation (PAR), 16:8 h light:dark 

photoperiod). An aseptic tissue culture of the P. nigra plants was also maintained in 

RIM containing 20 mM 2-(N-morpholino)ethanesulfonic acid (MES)-KOH (pH 5.8), 

0.5 × Murashige and Skoog Basal Salts (MSBS) (Murashige and Skoog 1962), 1 × 

Murashige and Skoog vitamin (MSV), 3% sucrose, 0.5 mg l
−1

 indole-3-butyric acid, 

0.02 mg l
−1

 1-naphthaleneacetic acid, and 0.6% (w/v) Phytagar (Invitrogen, Carlsbad, 

CA, USA). 
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2.2.2 Gamma irradiation 

 Poplar plantlets that were approximately 15 cm in height (6 weeks after 

excision) were used for the γ-irradiation experiments. The plantlets were transplanted 

into a Wagner pot and concomitantly exposed to γ-rays at doses of 0 (control), 10, 20, 

50, 100, 200, and 300 Gy (dose rates ranged from 0.5 to 15 Gy h
−1

) for 20 h in the 

cobalt-60 (
60

Co) gamma room at the Institute of Radiation Breeding (Hitachiohmiya, 

Japan). Following γ-exposure, the irradiated plants were returned to the phytotron. For 

RNA isolation, shoots were harvested from each plantlet 1, 6, and 24 h after the end of 

γ-irradiation and frozen in liquid nitrogen. The other irradiated plants were allowed to 

continue to grow in the phytotron to observe and measure their growth. Each 

γ-irradiation treatment was replicated twice. 

 For in vitro organogenesis, the stems, petioles, and shoots of the tissue-cultured 

poplar plants were excised aseptically and exposed to γ-rays. The γ-irradiated stems and 

petioles were then transferred onto a new shoot-induction medium (SIM) containing 20 

mM MES-KOH (pH 5.8), 1 × MSBS, 1 × MSV, 3% sucrose, 0.5 mg l
−1

 trans-zeatin, 0.1 

mg l
−1

 6-benzylaminopurine (BAP), and 0.8% (w/v) Bacto™ Agar (BD Diagnostic 

Systems, Sparks, MD, USA). The γ-irradiated-shoots were planted in a new RIM for the 

regeneration of roots. They were cultured at 25°C under cool white fluorescent light. 

 

2.2.3 Measurement of growth 

 The plant height and stem diameter at ground level of the control 

(non-irradiated) and γ-irradiated poplar plants were measured immediately after 

irradiation and at weekly intervals for 10 weeks. The dry mass of the roots, stems, and 

leaves was also measured by harvesting these parts 10 weeks after γ-irradiation or when 
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the whole plant had turned brown and drying each sample at 60°C to a constant weight. 

 

2.2.4 Treatment of suspension-cultured poplar cells with γ-rays and a DNA cleavage 

agent 

 Suspension-cultured poplar cells were derived from sterile calli (Nishiguchi et 

al. 2002) of P. nigra in a liquid medium containing 20 mM MES-KOH (pH 5.8), 1 × 

MSBS, 1 × MSV, 3% (w/v) sucrose, and 2 mg l
−1

 2,4-dichlorophenoxyacetic acid 

(2,4-D). The suspension-cultured cells were cultivated in 100-ml Erlenmeyer flasks on 

orbital shakers (120 rpm) in the dark, and 1 ml of the cell suspension was subcultured 

every 14 days in 25 ml of the same fresh medium. For the γ-irradiation experiments, the 

cells were transferred into a thin-walled plastic flask 7 days after subculturing and 

exposed to γ-rays for 20 h. The irradiated cells were collected 1 h after the end of 

γ-irradiation and cooled on ice for a Comet assay. To treat the cells with a DNA 

cleavage agent, Zeocin™ (Invitrogen) was added to the medium at a concentration of 10, 

50, or 250 µg ml
−1

 7 days after subculturing. The cells were collected after being 

cultivated with Zeocin for 1, 6, and 24 h, and were either cooled on ice for the Comet 

assay or frozen in liquid nitrogen for RNA preparation. 

 

2.2.5 Comet assay 

 Nuclei were isolated from the suspension-cultured poplar cells using a 

previously reported method with modifications (Ptáček et al. 2001). The cells were 

harvested using a cell strainer with 40-μm pores (BD Falcon, Bedford, MA, USA), and 

sliced with a razor blade in 50 mM sodium phosphate buffer (pH 6.8) containing 1 mM 

ethylenediaminetetraacetic acid (EDTA) and 0.5% (v/v) dimethyl sulfoxide in a Petri 
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dish kept on ice. The released nuclei were separated from the cell debris using a cell 

strainer. A Comet assay was performed using a CometAssay Kit (Trevigen, 

Gaithersburg, MD, USA) according to the manufacturer’s instructions. Following 

alkaline electrophoresis, the nuclei were stained with SYBR® Green I and observed by 

fluorescence microscopy. Images of the nuclear DNA were taken with a digital camera 

and analyzed using the CASP Program (Comet Assay Software Project, 

http://casp.sourceforge.net/) for semi-quantification of the DNA damage based on the 

amount of DNA in the tail. 

 

2.2.6 RNA preparation 

 Total RNA was prepared from each frozen sample as described by Shinohara 

and Murakami (1996), with the following modifications. The samples were ground in 

liquid nitrogen and subsequently mixed with 10 volumes (v/w) of a lysis solution of 100 

mM Tris-HCl (pH 9.5), 20 mM EDTA, 1.4 M NaCl, 2% (w/v) 

hexadecyltrimethylammonium bromide, and 2% (v/v) 2-mercaptoethanol. This mixture 

was then heated at 65°C for 10 min. Following extraction with chloroform:isoamyl 

alcohol (24:1) and centrifugation, the supernatant was mixed with one-quarter of the 

volume of ice-cold 10 M LiCl and stored at −20°C for 2 h or overnight. The precipitated 

RNA was recovered by centrifugation and dissolved in an SV RNA lysis buffer from 

the SV Total RNA Isolation System (Promega, Madison, WI, USA). The RNA was then 

further purified to remove contaminated DNA and polysaccharides according to the 

manufacturer’s instructions. Quantification of RNA was performed using a Quant-iT™ 

RiboGreen® RNA Assay Kit (Invitrogen). 
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2.2.7 cDNA cloning of DNA repair-related genes 

 PnRAD51, PnKU70, and PnLIG4 cDNAs were cloned by reverse transcription 

PCR (RT-PCR) using the total RNA from the apical buds of P. nigra. Reverse 

transcription was performed using Transcriptor Reverse Transcriptase (Roche Applied 

Science, Penzberg, Germany) and oligo(dT)18 primers. The genome sequence of P. 

trichocarpa (Tuskan et al. 2006) was used to design specific primer sets for PCR 

amplification of each target cDNA (Table 6). PCR was performed with the first-strand 

cDNA using KOD Plus DNA Polymerase (Toyobo, Osaka, Japan). The amplified DNA 

fragments were then cloned into pBluescript II KS(+) (Stratagene, La Jolla, CA, USA) 

and sequenced. The 5′ and 3′-end sequences of each cDNA were obtained using a 5′/3′ 

RACE Kit (Roche Applied Science). PnXRCC4 and PnOGG1 cDNAs were identified 

by screening the full-length cDNA library of P. nigra (Nanjo et al. 2007) using the 

BLAST program. PnPCNA cDNA was obtained from our previous cDNA library from 

poplar buds (Nishiguchi et al. 2002).  

The DNA sequences were analyzed using GENETYX (Genetyx, Tokyo, Japan), 

EMBOSS (Rice et al. 2000), and InterProScan (Quevillon et al. 2005). Multiple 

alignments of protein sequences were conducted using MAFFT (Katoh and Toh 2008). 

The cloned DNA sequences were submitted to DDBJ, and their accession numbers are 

shown in Table 7. 

 

2.2.8 Semi-quantitative low-cycle RT-PCR and Southern blot assay 

 RT-PCR was performed with 1 µg RNA and gene-specific primers (Table 6), 

using the AccessQuick™ RT-PCR System (Promega) and 13 PCR cycles, to avoid 

reaching the plateau phase. The amplified DNA (which was not visible on ethidium 
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bromide-stained gel) was separated by 1% agarose gel electrophoresis and transferred 

onto a positively charged nylon membrane. Gene-specific DIG-labeled probes were 

synthesized with the same primers that were used for each RT-PCR from each cDNA 

using a PCR DIG Probe Synthesis Kit (Roche Applied Science). Hybridization and 

chemiluminescent detection were performed using CDP-Star® according to the 

manufacturer’s instructions. 

 

2.2.9 Reverse transcription quantitative real time PCR (RT-qPCR) 

 First-strand cDNA was synthesized from 2 µg of total RNA using a 

AffinityScript QPCR cDNA Synthesis Kit (Stratagene), and a mixture of oligo(dT) and 

random primers according to the manufacturer’s instructions. RT-qPCR was performed 

using the Mx3000P Real-Time PCR System (Stratagene) and the Brilliant II SYBR 

Green QPCR Master Mix (Stratagene). The sequences of the primers used for RT-qPCR 

are shown in Table 6. The RT-qPCR reaction conditions were as follows: 95°C for 10 

min, followed by 40 cycles of 95°C for 30 s, 58°C for 1 min, and 72°C for 30 s. Three 

biological replicates were conducted. The specificity of each amplified DNA fragment 

was checked with a heat dissociation curve (55–95°C), and by agarose gel 

electrophoresis and DNA sequencing. The relative mRNA level was calculated by the 

standard curve method using serial dilution of the cDNA and was normalized to the 

mRNA level of the poplar ubiquitin gene homolog (GenBank ID: DB883027 and 

DB901131) of the Arabidopsis UBQ5 gene (TAIR ID: AT3G62250). 

 

2.3 Results 
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2.3.1 Morphological change in the γ-irradiated poplars 

 Populus nigra plantlets were first irradiated with a dose of 10 or 20 Gy of 
60

Co 

γ-rays for 20 h. However, this had no visible effects on tree growth. Therefore, the 

poplar plantlets were subsequently exposed to 50–300 Gy of γ-rays, which led to 

changes in their growth and development (Fig. 6). 

 The growth of poplar plantlets was markedly suppressed by high doses of 

γ-irradiation (Figs. 6 and 7). There were no significant differences in height, stem 

diameter, or biomass between the non-irradiated control poplars and the 50 Gy 

γ-irradiated poplars. However, the 100 Gy γ-irradiated poplars fell into two groups. In 

the first group (shown as 100-A in Fig. 7), tree growth was arrested for approximately 3 

weeks after γ-irradiation, following which the apical bud and axillary buds slowly 

developed, and new leaves were formed. Consequently, these plants had lower plant 

heights, stem diameters, and biomasses than the control trees 10 weeks after irradiation. 

In the second group (shown as 100-B in Fig. 7), tree growth was completely aborted but 

the leaves remained green for 10 weeks after γ-irradiation. None of the trees in this 

group died; however, because new shoots sprouted from the underground stems of all 

plants 4–10 weeks after γ-irradiation. All plantlets that received doses of 200 or 300 Gy 

of γ-rays stopped growing, and 87.5% (7/8) and 100% of these, respectively, turned 

brown and withered 4–10 weeks after γ-irradiation. 

 Morphological changes were also detected in the leaves of some of the poplar 

plants that were irradiated with 50 or 100 Gy of γ-rays, including the production of 

oblanceolate, lobed, or cleft leaves (Fig. 8B), whereas non-irradiated control plants 

produced normal deltoid-shaped leaves (Fig. 8A). Moreover, two types of unusual 

leaves that had a petiole with two leaf blades developed in the γ-irradiated plants. The 
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first type had adaxial surfaces that were in the same direction (Fig. 8C), while the 

second had abaxial surfaces that were opposite to each other and partially coalesced 

(Fig. 8D). Asymmetric and curved leaves with severely bent petioles (Fig. 8E) and a 

mosaic pale green leaf (Fig. 8F) were also observed. 

 Morphological changes in organs other than the leaves also occurred. In some 

cases, the internodes were partly shortened, as if there was an opposite or whorled 

phyllotaxis (Fig. 8G), whereas P. nigra leaves are usually arranged in a spiral pattern. 

Branching at an internode was also occasionally observed (Fig. 8H), the lower part of 

which fused and was somewhat fasciated. The time of occurrence of these 

morphological changes was restricted to around 4–6 weeks after 50 Gy of γ-irradiation, 

following which normal new leaves and stems developed. In some poplar plants that 

were irradiated with 100 Gy of γ-rays, apical growth was arrested, resulting in axillary 

buds developing and elongating (Fig. 8I). No change in plant shape was detected in 

plants that were irradiated with 200 or 300 Gy of γ-rays because all of these plants 

stopped growing, and therefore, no new stems and leaves developed (Fig. 6). 

 

2.3.2 Inhibitory effect of γ-rays on organogenesis of the shoots and roots 

 γ-irradiation affected the growth and morphogenesis of poplar plantlets, as 

outlined in section 2.3.1. In the next experiments, it was investigated whether γ-rays 

affected the in vitro organogenesis of the shoots or roots. The stems, petioles, and shoots 

from tissue-cultured poplar plants were aseptically exposed to γ-rays. The formation of 

new shoots was inhibited in a dose-dependent manner in γ-irradiated stems and petioles 

(Fig. 9). A total of 200 Gy of γ-rays resulted in the complete arrest of regeneration and 

elongation of new shoots 4 weeks after irradiation. By contrast, 100 or 200 Gy of γ-rays 
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suppressed the regeneration of new roots from the shoots (Fig. 10), while new roots 

were formed following 50 Gy of γ-rays. These results demonstrate that high doses of 

γ-rays have harmful effects on the organogenesis of shoots and roots in P. nigra. 

 

2.3.3 Nuclear DNA damage induced by γ-irradiation 

 It has previously been reported that ionizing radiation causes DNA damage in 

some plant species (Koppen and Angelis 1998; Gichner et al. 2000). To investigate 

whether γ-rays cause nuclear DNA damage in poplar cells, a Comet assay (alkaline 

single-cell gel electrophoresis assay) was performed, a test that is used to investigate the 

genotoxicity of physical and chemical factors (Hartmann et al. 2003). The 

suspension-cultured cells of P. nigra were used as the experimental materials for the 

Comet assay due to the difficulty in isolating intact nuclei from the leaves of poplar 

plantlets. DNA damage was evaluated based on the percentage of DNA in the tail (%T) 

as compared with the total DNA in the head and the tail. 

 The Comet assay showed that the nuclear DNA in the suspension-cultured 

poplar cells was broken by γ-irradiation (Fig. 11A). Approximately 36% of the total 

nuclei examined in the non-irradiated control cells were within the range of 0–20%T, 

indicating that these nuclei were undamaged (Fig. 11B and Table 8). Similarly, in the 50 

Gy γ-irradiated poplar cells, approximately 49% of the nuclei ranged from 0 to 20%T. 

However, only 6.6% of the 100 Gy, 7.7% of the 200 Gy, and 4.9% of the 300 Gy 

γ-irradiated cells fell within the same range of 0–20%T. When compared with the total 

nuclei examined, the mean values of %T were 27.2 ± 14.6 for the control group and 

24.3 ± 16.4 for the 50 Gy γ-irradiated poplar cells, which were not significantly 

different (non-parametric Steel-Dwass test, p = 0.088). By contrast, the mean values 
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of %T for the other treatment groups were 43.0 ± 15.7 for 100 Gy, 38.6 ± 14.9 for 200 

Gy, and 36.7 ± 12.0 for 300 Gy γ-irradiated cells, with the 100 Gy group being 

significantly higher than the 50 Gy group (p = 9.7E-07). These results indicate that the 

nuclear DNA in the poplar cells was severely damaged by exposure to 100–300 Gy of 

γ-rays. 

 

2.3.4 Cloning and sequence analysis of cDNAs encoding DNA repair-related 

proteins 

 There were obvious harmful effects of γ-irradiation on the growth, morphology, 

and DNA structure of poplar trees, as outlined in sections 2.3.1–2.3.3. Therefore, it was 

predicted that the γ-irradiated poplar plants would change the pattern of gene expression 

to protect themselves from the harmful effects of γ-rays. The expression of genes 

encoding DNA repair-related proteins was particularly focused on because DNA 

double-strand breaks induced by ionizing radiation are one of the most serious threats to 

cells and lead to cell death (Kobayashi et al. 2008), and the observed abnormalities in 

the γ-irradiated poplar plants were likely caused by DNA double-strand breaks induced 

by the γ-rays (Fig. 11). The repair of DNA damage is mediated by various DNA repair 

systems in living organisms and is vital for maintaining cellular function and ensuring 

cell survival (Fleck and Nielsen 2004) (Fig. 12). However, no information concerning 

the genes for DNA repair-related proteins in woody plants has been reported to date. 

 To investigate the expression of genes encoding DNA-repair related proteins in 

the γ-irradiated poplars, six cDNAs from P. nigra were newly cloned and sequenced 

(Table 7 and Fig. 13). The PnRAD51 cDNA encoded the RAD51-homologous protein, 

and in the budding yeast (S. cerevisiae), the RAD51 gene is involved in mitotic 
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recombination and DNA repair, as well as in meiosis (Shinohara et al. 1992). The 

PnLIG4, PnKU70, and PnXRCC4 cDNAs encoded DNA ligase IV, the Ku70 protein, 

and the XRCC4 protein, respectively, all three of which are involved in the repair of 

DNA double-strand breaks by mediating non-homologous end-joining (Sancar et al. 

2004). The PnOGG1 cDNA encoded an 8-oxoguanine DNA glycosylase; this enzyme 

removes 7,8-dihydro-8-oxoguanine (8-oxoG) (Van Der Kemp et al. 1996), which is an 

oxidative DNA damage and is generated by ionizing radiation (Cadet et al. 2004). The 

PnPCNA cDNA encoded the proliferating cell nuclear antigen (PCNA) protein, which is 

a member of the DNA sliding clamp family; this protein binds to the DNA and is 

essential for providing DNA polymerase with high processivity in DNA synthesis 

(Maga and Hübscher 2003). 

 The predicted amino acid sequences of the DNA repair-related proteins from P. 

nigra were compared with those from P. trichocarpa, A. thaliana, humans, and budding 

yeast (Table 7 and Figs. 14–19). The degree of homology of each protein varied widely 

between species. For example, the PnRAD51 protein showed high identity with the 

RAD51 proteins from P. trichocarpa (91.9%), A. thaliana (90.4%), humans (68.9%), 

and the yeast (53.5%), whereas the PnXRCC4 protein showed a much lower degree of 

identity with the XRCC4 proteins from humans (19.9%) and budding yeast (10.9%) but 

correlated well with the XRCC4 proteins from P. trichocarpa (84.0%) and A. thaliana 

(58.2%). Each DNA repair-related protein was well conserved across the three plant 

species, however, with 58–99% identity. 

 

2.3.5 Expression of the DNA repair-related genes in P. nigra 

 To explore the expression patterns of the cloned DNA repair-related genes 
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under normal growth conditions in P. nigra, low-cycle RT-PCR followed by Southern 

blotting was conducted for semi-quantitative evaluation. Each gene exhibited a diverse 

expression pattern across various organs and cells (Fig. 20). PnLIG4, PnKU70, 

PnXRCC4, PnPCNA, and PnOGG1 were detected in all of the sampled organs and cells, 

i.e., the roots, stems, leaves, apical buds, calli, and suspension-cultured cells. The 

expression levels of PnRAD51, PnKU70, PnXRCC4, and PnPCNA were highest in the 

apical buds, with little to no mRNA of PnRAD51 in the leaves. 

 

2.3.6 Effect of γ-irradiation on the expression of DNA repair-related genes 

 To investigate the effect of γ-irradiation on the expression of genes encoding 

the DNA repair-related proteins, RNA was prepared from non-irradiated and 

γ-irradiated poplar shoots that included a stem, an apical bud, and three or four leaves. 

The mRNA levels of each DNA repair-related protein were then quantified using 

RT-qPCR. 

 The expression of the PnKU70 and PnLIG4 genes was found to have increased 

markedly 1 h after the shoots had been exposed to γ-irradiation for 20 h (Fig. 21). For 

example, the expression of PnKU70 in the 200 Gy γ-irradiated shoots was 

approximately 48-fold higher than that in the non-irradiated poplars, and the expression 

of PnLIG4 was also approximately 26-fold higher in the 200 Gy group. These increased 

levels of mRNA of PnKU70 and PnLIG4 were dependent on an increase in the dose of 

γ-rays up to 200 Gy. The elevated expression levels of both PnKU70 and PnLIG4 were 

found to have decreased 6 h after the end of γ-irradiation, but even after 24 h, their 

expression remained significantly higher in the γ-irradiated poplars than in the 

non-irradiated poplars. 
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 The expression of PnXRCC4, PnPCNA, and PnRAD51 was also upregulated by 

γ-irradiation, although to a lesser extent than that of PnKU70 and PnLIG4. One hour 

after the end of γ-irradiation, their expression had increased by 1.9–2.9-fold for 

PnXRCC4, 2.1–4.0-fold for PnPCNA, and 1.6–2.4-fold for PnRAD51, with the increase 

largely depending on the radiation dose. The expression levels of PnXRCC4 and 

PnPCNA remained high 24 h after the end of γ-irradiation, whereas that of PnRAD51 

returned to the basal level. 

 In contrast, the expression of PnOGG1 decreased to approximately 30% of the 

non-irradiated control 1 h after the end of γ-irradiation. The downregulation of 

PnOGG1 was observed across all doses of γ-rays (50–300 Gy). These reduced 

expression levels then gradually elevated and had almost returned to the basal level after 

24 h. 

 

2.3.7 Effect of treatment with Zeocin on the expression of DNA repair-related genes 

 To determine whether the change in gene expression caused by γ-irradiation 

was due to DNA strand breaks, the effect of the DNA cleavage agent Zeocin 

(phleomycin D1) on the gene expression was examined. Zeocin is a glycopeptide 

antibiotic of the bleomycin/phleomycin family, which causes single- and double-strand 

breaks in DNA (Huang et al. 1981). The addition of Zeocin to the medium fragmented 

the nuclei of suspension-cultured cells of P. nigra (Fig. 22A). Thus, it was inferred that 

Zeocin cleaved nuclear DNA in poplar cells, although the type of DNA strand breaks 

caused by Zeocin may not be exactly the same as that by γ-rays. 

 Treatment of the suspension-cultured cells with Zeocin significantly affected 

the expression of the genes encoding DNA repair-related proteins (Fig. 22B). One hour 
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after the addition of Zeocin, the expression levels of PnKU70 and PnLIG4 in 

Zeocin-treated cells were the same as that in the control cells with the addition of sterile 

water. However, 6 hours after the addition of Zeocin, the mRNA level of PnKU70 

increased by approximately 1.2-, 1.5-, and 3.5-fold in 10, 50, and 250 µg/ml of 

Zeocin-treated cells, respectively, in comparison to the control cells; and similarly, the 

expression of PnLIG4 increased by approximately 1.3-, 1.4-, and 3.8-fold in 10, 50, and 

250 µg/ml of Zeocin-treated cells, respectively. The expression levels of both genes 

remained substantially elevated 24 h after the addition of Zeocin.  

The transcription of PnRAD51 was also induced by Zeocin treatment, with 

poplar cells that were exposed to 250 µg/ml of Zeocin for 6 h showing an approximately 

1.8-fold increase in expression compared with the control cells, which was a statistically 

significant change (two-way ANOVA, p = 1.61E-3) In contrast, the expression of 

PnPCNA, PnXRCC4, and PnOGG1 appeared to be unaffected by Zeocin (two-way 

ANOVA, p > 0.05). Therefore, it was concluded that the expression of PnKU70, 

PnLIG4, and PnRAD51 was induced by DNA strand breaks, whereas the expression of 

PnPCNA, PnXRCC4, and PnOGG1 was not. 

 

2.4 Discussion 

 The effects of ionizing radiation on the growth and morphology of many plant 

species have previously been reported and reviewed (Gunckel 1957; Sparrow et al. 

1971; Holst and Nagel 1997; De Micco et al. 2011). In the present study, the biological 

effects of γ-rays on P. nigra plants were investigated in detail (Table 8), because despite 

the genus Populus having been extensively studied as a model organism for woody 

plant biology, very few studies have investigated the effects of γ-rays on these trees. 
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60
Co-gamma irradiation of P. nigra plantlets induced various morphological 

abnormalities, such as reduced growth, abnormally shaped leaves, distorted venation, 

fused leaf blades, chlorosis, stunted shoots, and fasciation (Fig. 8). These malformations 

were roughly similar to those observed in other plant species exposed to γ- or X-rays. 

 The poplar plantlets that had been exposed to 100 Gy (dose rate, 5 Gy h
−1

) of 

γ-rays exhibited two types of growth: transient growth arrest (group 100-A in Fig. 7) 

and complete growth arrest (group 100-B in Fig. 7). However, all of these plants 

survived, and even in the completely growth-arrested 100-B group, new shoots sprouted 

on the lower parts of the γ-irradiated stems 4–10 weeks after γ-irradiation. These two 

different types of abnormal growth are believed to have arisen due to the differences in 

the viability of γ-irradiated cells in the shoot apical meristem (SAM). As in other higher 

plants, the SAM of poplars consists of many proliferating cells, the nuclear DNA of 

which is damaged by γ-rays. Although slight DNA damage is completely repaired, 

severe DNA damage is not, and any remaining DNA damage triggers cell death. If the 

number of cells in the SAM is greatly reduced by γ-rays, it will take a significant length 

of time for them to recover, resulting in an apparent cessation in shoot growth. It is 

likely that the surviving cells proliferated to reform the SAM, resulting in the 

γ-irradiated shoots starting to grow. However, if all of the cells in the SAM are killed by 

γ-rays, the SAM will surely lose its function, preventing the shoot from elongating. 

 Almost all of the poplar plantlets that were exposed to 200 Gy (10 Gy h
−1

) or 

300 Gy (15 Gy h
−1

) of γ-rays stopped growing and then withered within 10 weeks of 

γ-irradiation. Sparrow et al. (1968) determined the LD50 (dose at which 50% of subjects 

will die) of γ-rays for many woody plant species based on the relationship between 

γ-ray survival curves and interphase chromosome volumes for each species. For 
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quaking aspen (P. tremuloides), which belongs to the same genus as P. nigra, the LD50 

was predicted to be 4,800 roentgen for acute 
60

Co-γ-irradiation (16 h), which 

corresponds to approximately 46.8 Gy (2.93 Gy h
−1

) in terms of the absorbed dose to 

water. In the present experiment, however, 50 Gy (2.5 Gy h
−1

) of γ-irradiation did not 

cause any withering in P. nigra. Although this result did not necessarily match the 

prediction of Sparrow et al. (1968), the biological effects of ionizing radiation have 

been shown to vary depending on the biological, radiological, and environmental factors 

(Sparrow et al. 1971). Therefore, the value of the lethal dose probably varies even 

within the genus Populus due to the differences between species, individual plants (e.g., 

size and age differences), and abiotic factors. 

 A Comet assay indicated that poplar cells that were exposed to γ-rays at doses 

of 100–300 Gy exhibited increased levels of DNA damage, while non-irradiated control 

cells and 50 Gy-irradiated cells were hardly damaged (Fig. 11). These results suggest 

that γ-rays have a dose-dependent biological effect on the growth and development of 

poplar plantlets. However, it was difficult to clearly quantify the degree of DNA 

damage in a dose-dependent manner in the γ-irradiated poplar cells. One possible 

explanation for this is that the DNA damage caused by γ-rays may be rapidly repaired 

during and after γ-irradiation. It has previously been reported that the time taken to 

repair 50% of the DNA damage after γ-irradiation is approximately 50 min in N. 

tabacum seedlings (Ptáček et al. 2001) and approximately 100 min in Calamagrostis 

epigejos leaves (Ptáček et al. 2002). In the present experiment, the γ-irradiation 

occurred for 20 h, following which the irradiated cells were harvested and analyzed 

using a Comet assay. Because the upregulation of the expression of the genes encoding 

DNA repair-related proteins was detected 1 h after the end of γ-irradiation (Fig. 21), it 
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seems that these genes were already activated during γ-irradiation, and thus it is likely 

that the DNA damage had started to be repaired. 

 Six cDNAs of DNA repair-related proteins were isolated from P. nigra and 

their gene expression patterns were investigated. It was found that the PnLIG4, PnKU70, 

PnXRCC4, PnPCNA, and PnRAD51 genes were upregulated by γ-irradiation, whereas 

the PnOGG1 gene was downregulated (Fig. 21). The five upregulated genes are likely 

to be involved in adaptation and tolerance to γ-rays based on protein function prediction, 

although the degree of increase in gene expression varied considerably for each of these 

genes. The expression of PnLIG4 and PnKU70 peaked 1 h after the end of γ-irradiation 

for each dose and then gradually declined, although the expression levels were still 

significantly higher than in the non-irradiated poplars 24 h after irradiation. In contrast, 

the highest level of mRNA expression of PnRAD51 also occurred 1 h after the end of 

γ-irradiation, but this had almost returned to the original expression level 6–24 h after 

irradiation; and the high level of expression observed in PnXRCC4 and PnPCNA 

remained constant even 24 h after the end of γ-irradiation. Expression of the AtRAD51, 

AtLIG4, and AtXRCC4 genes in A. thaliana have previously been reported to increase in 

response to γ-irradiation (Doutriaux et al. 1998; West et al. 2000); however, it was 

unclear whether the upregulated gene expression was sustained at a high level, because 

gene expression was only investigated 1–6 h after the start of γ-irradiation. In the 

present study, PnLIG4, PnKU70, PnXRCC4, and PnPCNA remained activated until 24 

h after the end of γ-irradiation, suggesting that DNA damage by γ-rays continues during 

this time. 

 The regulation of gene expression by γ-irradiation did not necessarily match 

that by Zeocin, a DNA breaking agent that is similar to bleomycin. Comet assay 
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analysis revealed that treatment with Zeocin caused nuclear DNA breaks in the poplar 

cells, as observed with γ-rays (Fig. 22A). Furthermore, Zeocin treatment led to an 

increase in the expression of the three genes PnLIG4, PnKU70, and PnRAD51 (Fig. 

22B), suggesting that either Zeocin itself or the DNA strand breaks and triggers the 

expression of these genes. It has previously been reported that bleomycin treatment 

results in an increase in the expression of AtKu70 in A. thaliana (Tamura et al. 2002); 

however, this is the first study to demonstrate that a DNA breaking agent induces the 

expression of the genes encoding DNA ligase IV and RAD51 from plant species. Based 

on the findings of this study, it was concluded that the expression of PnLIG4, PnKU70, 

and PnRAD51 are directly induced by DNA strand breaks, because all three of these 

genes are upregulated by both γ-rays and Zeocin. In contrast, the expression of 

PnXRCC4 and PnPCNA was not elevated by treatment with Zeocin, despite both genes 

being upregulated by γ-rays, suggesting that neither of these genes are directly induced 

by DNA strand breaks. 

 The expression pattern of PnOGG1 was completely different from the five 

γ-ray-induced genes. The OGG1 protein is an important DNA glycosylase that removes 

8-oxoG (Van Der Kemp et al. 1996), which is generated by hydroxyl radicals produced 

in the γ-radiolysis of water, and is an oxidative DNA damage (Cadet et al. 2004). 

PnOGG1 was predicted to encode an 8-oxoguanine DNA glycosylase and was 

expressed in P. nigra under normal conditions (Figs. 20 and 21). However, γ-irradiation 

reduced the expression level of PnOGG1 and the subsequent disappearance of γ-rays 

increased the mRNA of PnOGG1. These observations imply that the PnOGG1 gene is 

not required for the repair of oxidative DNA damage by γ-rays. In A. thaliana, AtOGG1 

is capable of nicking an oligonucleotide duplex containing a single 8-oxoG, but its 
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expression is not influenced by either γ-rays or hydrogen peroxide (Dany and Tissier 

2001). However, A. thaliana also possesses the AtMMH/AtFPG gene, which encodes a 

formamidopyrimidine-DNA glycosylase (Gao and Murphy 2001; Ohtsubo et al. 1998). 

AtMMH/AtFPG is not homologous to AtOGG1 but is able to nick double-stranded 

oligonucleotides containing 8-oxoG. Therefore, although it is presently unclear why P. 

nigra that were exposed to γ-irradiation had reduced the levels of PnOGG1 mRNA, it is 

possible that an as yet unknown poplar homolog of AtMMH/AtFPG is involved in the 

cellular response to oxidative DNA damage by γ-rays. 

 It was initially speculated that any induced gene expression would reflect part 

of the defense mechanisms of P. nigra against γ-irradiation. However, the obtained data 

are insufficient to explain the response mechanism to ionizing radiation stress in poplars 

because more than 45,000 protein-coding genes have been predicted to exist in the 

Populus nuclear genome (Tuskan et al. 2006). In the future, it will be possible to use 

gene expression profiling by DNA microarray analysis or transgenic technology to 

identify the genes that are involved in the adaptation to ionizing radiation stress. 

 

2.5 Conclusion 

 In this study, the biological effects of γ-rays on P. nigra were investigated to 

elucidate the mechanisms of adaptation and tolerance to ionizing radiation in woody 

plants. The γ-irradiated poplar plants exhibited abnormal leaf shapes and colors, fusion, 

distorted venation, shortened internodes, fasciation of the stems, and the induction of 

axillary shoots. In addition, acute γ-irradiation at a dose of 100 Gy greatly reduced the 

height, stem diameter, and biomass of poplar plantlets; and after receiving doses of 200 

and 300 Gy, all of the plantlets stopped growing, and most withered 4–10 weeks after 
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γ-irradiation. Comet assays showed that the nuclear DNA in suspension-cultured poplar 

cells was damaged by γ-rays. To determine whether DNA repair-related proteins are 

involved in the response to γ-rays in P. nigra, the cDNAs of PnRAD51, PnLIG4, 

PnKU70, PnXRCC4, PnPCNA, and PnOGG1 were cloned and their mRNA expressions 

were investigated. The PnRAD51, PnLIG4, PnKU70, PnXRCC4, and PnPCNA mRNAs 

were increased by γ-rays, but the PnOGG1 mRNA was decreased. Moreover, the 

expression of PnLIG4, PnKU70, and PnRAD51 was upregulated by Zeocin, which is a 

known DNA cleavage agent. These observations suggest that morphogenesis, growth, 

and protective gene expression are severely affected by DNA damage and unknown 

cellular events that are caused by γ-irradiation in P. nigra. 
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Chapter 3 An improved transformation system for 

Populus nigra 

 

3.1 Introduction 

 Genetic engineering can allow the selective improvement of individual traits in 

forest trees without losing any of the desirable traits of the parental line and is thought 

to be useful for overcoming the difficulties associated with breeding long-lived 

perennials, which take a long time to produce progeny. Agrobacterium-mediated 

transformation has traditionally been the preferred method for introducing foreign genes 

into plants. Numerous plant species, including a wide range of woody species, are 

susceptible to infection by the genus Agrobacterium (Gelvin 2003). However, many 

difficulties have been encountered when attempting to regenerate transgenic woody 

plants and, in many cases, appropriate regeneration systems have not yet been 

established. Efficient and reproducible transformation systems have been reported for a 

limited number of broadleaved trees, however, including poplars. 

 Efforts to develop a model tree have focused on the genus Populus (Bradshaw 

et al. 2000; Nanjo et al. 2004). This genus consists of six sections: Abaso, Turanga, 

Leucoides, Aigeiros (cottonwoods), Tacamahaca (balsam poplars), and Populus (aspens 

and white poplars) (Eckenwalder 1996). Because Aigeiros and Tacamahaca can 

hybridize with each other, both are termed cottonwoods in some instances. The 

frequency of successful transformation varies between Populus species. In general, 

aspens have a much higher transformation frequency than cottonwoods; for example, 

the transformation frequency in aspens is 25–75% in P. tremula × P. tremuloides 
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(Nilsson et al. 1992), 80% in P. tremula (Tzfira et al. 1997a), and 40% in P. sieboldii × P. 

grandidentata (Ebinuma et al. 1997), while that in cottonwoods is 10% in P. 

trichocarpa × P. deltoids (De Block 1990), 2% in P. × euramericana (Heuchelin et al. 

1997), and 2% in a wide variety of other cottonwood genotypes (P. deltoides, P. 

deltoides × P. nigra, and P. trichocarpa × P. deltoides) (Han et al. 2000). 

 Populus nigra is one of the important trees for forestry and is also an 

appropriate species for scientific research, as described in Chapter 1. Some 

transformation systems for P. nigra have previously been reported for leaves 

(Confalonieri et al. 1994; Confalonieri et al. 1995) or stems (Mohri et al. 1996). In these 

systems, however, a long time is required for the regeneration of the transgenic plants 

because calli need to form in the Agrobacterium-infected leaves and stems (Fig. 5). 

Furthermore, the efficiency of the transformation is not sufficiently high and 

non-transgenic poplar plants often appear. To facilitate the development of molecular 

biology and molecular breeding of P. nigra, a highly efficient and reproducible 

transformation system is required for this species. Therefore, in this study, a novel 

binary vector was designed and constructed, and an improved procedure for A. 

tumefaciens-mediated transformation of P. nigra was developed, which used the direct 

regeneration of adventitious shoots rather than relying on the formation of calli. 

 

3.2 Materials and methods 

3.2.1 Plant Material 

 Populus nigra plants were propagated by excising young branches and rooting 

these in moist vermiculite. Rooted branches were then grown in a phytotron at 25°C and 

70% relative humidity under metal halide lamps (500 µmol m
−2

 s
−1

 of PAR, 16:8 h 
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light:dark photoperiod). Young stems that were approximately 2 weeks old were used as 

the explants in the transformation experiment. 

 

3.2.2 Construction of binary vectors 

 The binary vector pBI121 (Jefferson et al. 1987) was digested with SmaI and 

SacI, and then ligated to a DNA linker that had been prepared by annealing two 

synthetic oligonucleotides, BF-1 (5′-GGGTCGACGGTACCTAGGCGTACGACTAGT 

CTCGAGTATACGAGCT-3′) and BF-2 (5′-CGTATACTCGAGACTAGTCGTACGCCT 

AGGTACCGTCGACCC-3′). The resulting binary vector, which was designated pBF1, 

had lost the GUS gene and instead carried 11 unique recognition sites for restriction 

enzymes. 

 Following the digestion of pBF1 with ApaI and NotI, the excised DNA 

fragment (4 kbp) that contained the NPTII gene was inserted into the ApaI and NotI 

sites of pBluescript II KS(+) (Stratagene). The resulting plasmid, pBS2NPT, was then 

digested with ApaI and PstI, and the excised DNA fragment (0.9 kbp) was newly 

inserted into the ApaI and PstI sites of another pBluescript II KS(+). This plasmid was 

digested with NcoI and SphI for the removal of the mutation site, and then ligated to a 

DNA linker that had been prepared by annealing two oligonucleotides, TTOG1 

(5′-CCCGACGGCGAGGATCTCGTCGTGACC-3′) and TTOG2 (5′-CATGGGTCACG 

ACGAGATCCTCGCCGTCGGGCATG-3′). The resulting plasmid was digested with 

ApaI and PstI, and the excised DNA fragment (0.9 kbp) was inserted again into ApaI 

and PstI predigested pBS2NPT. Following the digestion of this plasmid with ApaI and 

NotI, the resulting fragment (4 kbp) was reinserted into the first ApaI and NotI digested 

pBF1. The resulting binary vector was designated pBF2. 
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 To use the enhanced green fluorescent protein (EGFP) gene as a reporter gene, 

pBF2::EGFP was constructed. A fragment of the EGFP gene was amplified by means of 

PCR using pEGFP (Clontech, Palo Alto, CA, USA), and the oligonucleotide primers 

GFP1 (5′-GGATCCCCGGGTACC-3′) and GFP2 (5′-ACGAGCTCAGTTGGTAATGG 

TAGCGA-3′). Following digestion of the amplified DNA fragment with BamHI and 

SacI, the excised fragment was inserted into the BamHI and SacI sites of pBF2. The 

sequence of each constructed plasmid was confirmed by DNA sequencing. 

 

3.2.3 Transformation of P. nigra 

 Agrobacterium tumefaciens EHA105 (Hood et al. 1993) harboring either 

pBF2::EGFP or pIG121Hm (Ohta et al. 1990) was grown in 2 × YT liquid medium 

(Sambrook and Russell 2001) containing 20 mg l
−1

 rifampicin and 50 mg l
−1

 kanamycin 

at 28°C for 24 h. The cells were harvested by centrifugation and suspended to an optical 

density of 600 nm (OD600) = 0.5 in 20 mM MES-KOH (pH 5.8), 200 mM glucose, 1 × 

MSBS, and 1 × MSV. 

 Stems of P. nigra were sterilized with sodium hypochlorite solution 

(approximately 1% active chlorine) for 10 min, and then washed with sterile water. 

Following this, 1-cm-long segments were excised from the stems (avoiding the nodes) 

and divided in half vertically. The stem segments were soaked for 30 min in the 

bacterial suspension. The inoculated explants were then cultured on a cocultivation 

medium containing 20 mM MES-KOH (pH 5.8), 1 × MSBS, 1 × MSV, 3% sucrose, 50 

mM glucose, 0.5 mg l
−1

 2,4-D, 1 mg l
−1

 BAP, 5 mM dithiothreitol (DTT), 40 mg l
−1

 

acetosyringone (4-hydroxy-3,5-dimethoxyacetophenone), and 0.8% Bacto Agar at 25°C 

in the dark for 3 days. Next, they were washed three times with sterilized water and 
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once with a mixture of 20 mM MES-KOH (pH 5.8), 1 × MSBS, 1 × MSV, and 500 mg 

l
−1

 cefotaxime. The washed explants were transferred into a bactericidal medium 

containing 20 mM MES-KOH (pH 5.8), 1 × MSBS, 1 × MSV, 3% sucrose, 0.5 mg l
−1

 

2,4-D, 1 mg l
−1

 BAP, 5 mM DTT, 500 mg l
−1

 cefotaxime, and 0.8% Bacto Agar, and 

were then incubated at 25°C in the dark for a further 3 days. 

 For regeneration of the transgenic shoots, the explants were subcultured every 

2 weeks on SIM (Table 9) containing 20 mM MES-KOH (pH 5.8), 1 × MSBS, 1 × MSV, 

3% sucrose, 0.5 mg l
−1

 trans-zeatin, 0.1 mg l
−1

 BAP, and 0.8% Bacto Agar with the 

appropriate antibiotics, as follows: 50 mg l
−1

 kanamycin and 500 mg l
−1

 cefotaxime at 

25°C under cool white fluorescent light (approximately 6 µmol m
−2

 s
−1

 of PAR, 16:8 h 

light:dark photoperiod) in weeks 1 and 2; 100 mg l
−1

 kanamycin and 500 mg l
−1

 

cefotaxime under the same temperature and light conditions in weeks 3 and 4; and 100 

mg l
−1

 kanamycin and 500 mg l
−1

 cefotaxime under the same temperature but stronger 

light (approximately 60 µmol m
−2

 s
−1

 of PAR, 16:8 h light:dark photoperiod) from week 

5 onward. Regenerated shoots were excised and transferred into RIM (Table 10) 

containing 20 mM MES-KOH (pH 5.8), 0.5 × MSBS, 1 × MSV, 3% sucrose, 0.5 mg l
−1

 

indole-3-butyric acid, 0.02 mg l
−1

 1-naphthaleneacetic acid, and 0.6% Phytagar with 20 

mg l
−1

 kanamycin, and 250 mg l
−1

 cefotaxime in a Petri dish. After 4 weeks, each rooted 

shoot was transferred into RIM containing 10 mg l
−1

 kanamycin in a plastic plant 

culture jar, in which the shoots continued to be incubated. 

 

3.2.4 Fluorescent microscopy 

 Expression of the EGFP gene in the transgenic poplar plants was detected 

using an SZX12 stereomicroscope (Olympus, Tokyo, Japan) equipped with an 
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epifluorescence attachment. A GFP filter set (a 460–490 nm excitation filter and a 

510-nm long-pass emission filter) was used for detection. 

 

3.2.5 Protein analysis 

 A crude protein solution was prepared from the leaves of the transgenic poplar 

plants as follows. The leaves were frozen in liquid nitrogen and then ground using a cell 

disruptor (Yasui Kikai, Osaka, Japan). The disrupted leaves were mixed with an 

extraction buffer containing 10 mM Tris-HCl (pH 7.5), 150 mM NaCl, 5 mM EDTA, 

1% (w/v) Nonidet P-40, 2 mM DTT, and cOmplete™, EDTA-free Protease Inhibitors 

(Roche Diagnostics, Mannheim, Germany) at 4°C for 15 min. Following centrifugation 

at 18,000 g for 10 min, the crude protein solution was obtained. The protein 

concentration was determined using the Coomassie Plus Protein Assay Reagent (Pierce, 

Rockford, IL, USA), with bovine serum albumin as the standard. The crude protein was 

subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on 

12% gels. The fractionated proteins were then stained with Coomassie blue R-350 or 

blotted onto polyvinylidene fluoride (PVDF) membranes. Immunoblotting was 

performed using either the Living Colors® A.v. Peptide antibody (Clontech) against 

EGFP or immunoglobulin G (IgG) (Molecular Probes, Eugene, OR, USA) against GUS. 

The signal was detected using the ECL Plus Western Blotting Detection Reagent 

(Amersham Biosciences, Piscataway, NJ, USA). 

 

3.2.6 DNA analysis 

 Genomic DNA was isolated from leaves of the transgenic poplar plants using a 

DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). The foreign NPTII gene was 
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detected by PCR using two primers, the NPT2U primer (5′-GCTATTCGGCTATGACT 

GG-3′) and the NPT2R primer (5′-ATAGAAGGCGATGCGCTG-3′). Southern 

hybridization was performed using 
32

P-labeled NPTII, GUS, and EGFP genes as the 

probes (Nishiguchi et al. 2002). 

 

3.3 Results and discussion 

3.3.1 Construction of a new binary vector 

 A new binary vector, pBF2, was designed and constructed to enable versatile 

DNA cloning and to enhance the resistance of transformed plants to antibiotics (Fig. 23). 

The pBI121 vector, which has generally been used for the transformation of plants 

including P. nigra, contains only four restriction enzyme sites (XbaI, BamHI, SmaI, and 

SacI) for DNA cloning (Fig. 23). By substituting the DNA cloning site of pBI121, the 

recognition sites of seven restriction enzymes (SalI, KpnI, BlnI, BsiWI, SpeI, XhoI, and 

Bst1107I) were added to the pBF2 vector, allowing 11 unique restriction enzyme sites to 

be utilized for DNA cloning. Among these restriction enzymes, XbaI, BlnI, and SpeI 

produce the common cleaved ends, which can ligate to each other. SalI and XhoI 

generate other common cleaved ends, while SmaI and Bst1107I produce blunt ends. The 

arrangement of these restriction enzyme sites will likely facilitate the cloning of various 

DNA fragments into pBF2 (Fig. 24). 

 The NPTII gene in pBI121 is known to contain a mutation. The resulting 

mutant NPTII enzyme exhibits lower levels of kanamycin phosphorylation than the 

normal NPTII enzyme (Yenofsky et al. 1990). Since this reduced activity decreases 

resistance to antibiotics, it may explain the low transformation efficiency in Brassica 

napus (Datla et al. 1992). To improve the activity of the mutant NPTII, the aspartic acid 
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residue at position 182 in the mutant NPTII enzyme was replaced with glutamic acid 

during the construction of the pBF2 vector. The normal NPTII enzyme can inactivate 

not only kanamycin but also G418 (Geneticin®), which is an aminoglycoside antibiotic 

similar to kanamycin. It was demonstrated that E. coli JM109 harboring pBF2 could 

survive in the presence of 50 mg l
−1

 kanamycin or 20 mg l
−1

 G418, while E. coli 

harboring pBI121 could not grow on G418 (Fig. 25), demonstrating that the reverse 

mutation of NPTII succeeded and that the activity of NPTII from pBF2 is higher than 

that from pBI121. 

 

3.3.2 Improvement of the transformation process 

 It usually takes 1–2 months to induce the formation of calli and increase their 

size, and a similar period to regenerate and elongate shoots in the transformation of P. 

nigra (Mohri et al. 1996). In addition, the appearance of non-transformed cells and 

somaclonal variation has been detected in the regeneration of organs from calli (Tzfira 

et al. 1997b). To reduce the time required for transformation and to avoid these risks, 

the present study attempted to directly induce adventitious shoots from poplar explants 

rather than from calli (Fig. 26).  

Populus nigra explants were infected with A. tumefaciens EHA105 harboring 

either pBF2::EGFP or pIG121Hm (Fig. 27) as the control, and were then subcultured in 

SIM containing kanamycin along with trans-zeatin and BAP. This mixture induced the 

production of adventitious shoots within 1–2 months (Fig. 28A). These shoots were then 

excised and transferred into RIM supplemented with kanamycin, which resulted in 

approximately 20% of the shoots rooting within 4 weeks (Fig. 28B and Table 11). PCR 

showed that almost all of the rooted plants contained the NPTII gene (Fig. 29). 
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3.3.3 Characterization of the transgenic poplars 

 All of the regenerated transgenic poplar plants exhibited normal growth, 

without any obvious morphological changes (Fig. 28C–D). The expression of EGFP in 

the pBF2::EGFP-transformed poplars was mainly detected in the roots and at the edges 

of the leaves (Fig. 30). The fluorescent segments along the leaf edges were considered 

to be hydathodes (Curtis and Lersten 1974; Wilson et al. 1991). The GFP fluorescence 

was not observed in the stems or the mesophyll cells in the leaves likely due to the 

strong intrinsic fluorescence of the chlorophylls interfering with the detection of the 

emitted EGFP signal in these parts.  

To examine the protein levels in the transgenic poplars, immunoblotting was 

performed with antibodies against EGFP and GUS. Nine of 18 transgenic poplars 

harboring the GUS gene expressed GUS (Fig. 31A), and 12 of 18 randomly selected 

transgenic poplars harboring the EGFP gene expressed EGFP (Fig. 31B). This 

demonstrates that the levels of protein expression varied among the transgenic lines, 

with the GUS or EGFP proteins not being detected in several transgenic plants. To 

estimate the copy number of the introduced foreign genes, Southern blotting was 

performed using the probes of the EGFP, NPTII, or GUS genes (Fig. 32). Based on the 

number of signals detected, it was estimated that one to multiple copies of these genes 

had been inserted in the transgenic plants. Thus, not all of the transgenic poplars 

harboring the foreign gene were able to produce the foreign proteins.  

It was found that most of the transgenic poplars carrying the multicopy transgenes 

did not express GUS (lines 3-1, 3-6, 3-30, and 3-33) or EGFP (lines 4-9, 4-13, 4-20, 

4-26, and 4-31) (Figs. 31 and 32). One possible explanation for this may be epigenetic 
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gene silencing by multicopy integration of the transgenes (Rajeevkumar et al. 2015). 

However, some of the transgenic poplars that only contained one copy of the transgene 

also did not express the gene (lines 3-4 and 3-14). The reason for this is unknown, but 

the findings infer that there may be a position effect on expression, as the upstream or 

downstream region of integrated foreign genes affects their expression (Gallie 1998; 

Matzke and Matzke 1998). Although the dispersion of the expression levels of 

transgenes cannot be completely controlled at present, the high productivity of 

transgenic plants contributes to the acquisition of suitable transformants. As an alternate 

approach, heterogeneity in protein expression may be eliminated by using a more potent 

promoter or several matrix attachment regions (Han et al. 1997). 

 

3.3.4 Increased efficiency of transformation of P. nigra 

 Each transgenic poplar was regarded as a different genotype based on the 

differences in the signal patterns in the Southern blots (Fig. 32). The transformation 

frequency was calculated by dividing the number of genetically independent 

transformants by the number of infected explants (Table 11), which provided values of 

11.7% with the pBF2::EGFP vector and 6.6% with the pIG121Hm vector, in the absence 

of DTT. The elevated transformation frequency with pBF2::EGFP may have resulted 

from the use of the improved NPTII gene. These results are consistent with 

transformation frequency values for B. napus (Datla et al. 1992). 

 To further increase the transformation efficiency of P. nigra, the use of 

reducing agents was investigated. Several antioxidants have been shown to increase the 

efficiency of Agrobacterium-mediated transformation of soybean (Olhoft et al. 2003) 

and maize (Zea mays) (Frame et al. 2002). The presence of DTT in the cocultivation and 
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bactericidal media increased the transformation frequency to 19.4% with pBF2::EGFP 

and 21.4% with pIG121Hm (Table 11). The positive effect of antioxidants on the 

transformation of grape (Vitis vinifera) has been explained by the reduction in tissue 

necrosis caused by a hypersensitive response and increased peroxidase activity (Perl et 

al. 1996). Thus, DTT may also prevent the necrosis of Agrobacterium-infected poplar 

cells, increasing the number of viable cells. 

 

3.3.5 pBF2-conferred resistance to G418 

 As described in section 3.3.1, E. coli harboring pBF2 exhibited resistance to 

G418 (Fig. 25). G418 is an antibiotic that is similar to kanamycin or gentamycin, and 

which inhibits cell proliferation in tobacco (N. tabacum) (Ursic et al. 1981), A. thaliana 

(Sheikholeslam and Weeks 1987), and rice (Dekeyser et al. 1989). Normal NPTII can 

inactivate G418 and therefore, has sometimes been used for plant transformation. To 

reconfirm the antibiotic resistance of the regenerated transgenic poplars, the effects of 

kanamycin and G418 on callus formation and organogenesis were examined (Fig. 33). 

The cell growth of non-transgenic P. nigra was inhibited by 20 mg l
−1

 G418 (data not 

shown). The petioles and stems of transgenic poplars with the pBF2::EGFP vector could 

produce calli and adventitious shoots, respectively, in the presence of 50 mg l
−1

 G418 or 

100 mg l
−1

 kanamycin. In contrast, the segments of transformants with the pIG121Hm 

vector were unable to produce calli or shoots in the presence of G418 but could grow in 

kanamycin. These results indicate that the pBF2 binary vector provided resistance to 

both G418 and kanamycin in the transgenic poplars, maybe allowing G418 to be used as 

a selection agent in the transformation of P. nigra. 

 



67 

 

3.4 Conclusion 

 In the present study, an improved transformation system was developed for P. 

nigra. A new binary vector, pBF2, was constructed, which contained 11 unique 

restriction enzyme sites and the normal NPTII gene. Stem segments were cocultivated 

with A. tumefaciens EHA105 harboring pBF2 inserted in the EGFP gene. Genetically 

transformed adventitious shoots were directly regenerated from the stem segments and 

rooted. Successful transformation was confirmed by demonstrating resistance to 

kanamycin and G418 and performing PCR, fluorescence microscopy, immunoblotting, 

and Southern blotting analyses. Furthermore, when explants were incubated in a 

medium containing DTT, the transformation frequency increased to approximately 20%. 

This improved transformation system requires less time for the regeneration of 

transgenic shoots and thus is valuable for efficiently generating transgenic poplar plants 

in a short time. This, in turn, will facilitate the genetic improvement of traits through the 

introduction of useful genes involved in growth, wood formation, flowering, tolerance 

to environmental stress, and resistance to pests and disease. 
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Chapter 4 Conclusion 

 

4.1 Conclusions and perspectives 

 As described in Chapter 1, research into the biology and utilization of poplars 

is a topic of great interest. Poplar research includes a wide range of studies in areas such 

as physiology, ecology, molecular biology, genetic engineering, forestry, chemistry, 

wood science, and environmental science. This wide range of research is due to the fact 

that poplars are not only important in industrial applications but are also key model 

organisms representing woody plants. To promote the usage of poplars as a model 

species, it is important to pioneer new fields of poplar research and develop new 

technologies for their study. Therefore, the elucidation of its biological response to 

ionizing radiation and the improvement of the transformation system for P. nigra were 

performed in this thesis (Fig. 3). 

 In Chapter 2, ionizing radiation was used as an abiotic stress to study the 

biological effects on P. nigra. Various abiotic and biotic stresses have been examined in 

Populus species; however, the effects of ionizing radiation have not been well studied. 

All living organisms on Earth are exposed to ionizing radiation and should be 

influenced by it. Many organisms are equipped with response and tolerance mechanisms 

to deal with the harmful effects of ionizing radiation. Understanding the biological 

response to ionizing radiation in P. nigra is important to understand its adaptive strategy 

not only under ionizing radiation stress, but also under various other environmental 

stresses. Moreover, γ-irradiated P. nigra trees showed growth retardation, withering, 

morphological changes and the suppression of organ regeneration in a dose-dependent 
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manner (Table 8 and Figs. 6–10). Nuclear DNA was damaged by the γ-rays (Table 8 and 

Fig. 11). Six cDNAs of the DNA repair-related proteins, PnRAD51, PnLIG4, PnKU70, 

PnXRCC4, PnOGG1, and PnPCNA were isolated and structurally analyzed (Figs. 13–

19). PnRAD51, PnLIG4, PnKU70, PnXRCC4, and PnPCNA were upregulated by 

γ-irradiation, whereas PnOGG1 was downregulated (Fig. 21). The expression of 

PnLIG4, PnKU70, and PnRAD51 was also increased in cells with DNA damage induced 

by Zeocin, therefore, it was concluded that these three genes were induced by DNA 

cleavage (Fig. 22). 

 To the best of our knowledge, for the first time, these results demonstrated that 

γ-rays are a genotoxic stress for P. nigra and that P. nigra probably has a defense 

mechanism against them (Fig. 34). P. nigra was able to survive in 50–100 Gy of 

γ-irradiation. Considering the dose of natural radiation that wild woody plants are 

exposed to (Fig. 4), P. nigra has a high and excessive tolerance to γ-rays. Furthermore, 

in comparison to other woody plant species, P. nigra is thought to possess a higher 

tolerance to ionizing radiation (Table 12). As the nuclear DNA content of a cell becomes 

larger, the radiation sensitivity is generally considered to increase (Sparrow and 

Miksche 1961). Therefore, one of the reasons for the high tolerance of P. nigra to 

ionizing radiation may be due to the smaller genome size of poplars as compared to 

other woody plant species, which are more sensitive to ionizing radiation. 

 On the other hand, almost all the poplar plantlets died under a higher dose 

(200–300 Gy) of γ-irradiation. However, the Comet assay showed that the DNA damage 

suffered by poplar cells under this amount of γ-irradiation was the same as that under 

100 Gy (Table 8 and Fig. 11). Although the Comet assay is able to determine DNA 

cleavage, it cannot usually find any qualitative DNA damage such as DNA oxidation by 
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γ-rays-induced reactive oxygen species (ROS). In addition, the lethal effect of γ-rays 

probably depends not only on DNA damage but also on the synergistic effect of damage 

and other adverse reactions induced by radiation. For example, the higher dose of γ-rays 

may directly destroy not only DNA but also other intracellular molecules or organelles. 

A larger amount of ROS, which is generated by high doses of γ-rays, may more 

intensely damage lipids or proteins in poplar cells. 

 Although the isolated DNA-repair related proteins have been thought to be 

involved in the tolerance response to genotoxic stress via DNA repair, the function and 

relationships of these proteins need to be clarified to better understand the poplar 

defense mechanisms against genotoxic stress. In addition to DNA repair-related proteins, 

many other proteins perhaps are involved in the tolerance response to genotoxic stress. P. 

nigra, as well as P. trichocarpa, is expected to have many genes encoding proteins 

(Tuskan et al. 2006; Nanjo et al. 2007). For instance, enzymes that remove ROS are 

potential candidates for mediators of radiation tolerance. The relationship between such 

candidate proteins and tolerance to genotoxic stress should be investigated to better 

understand stress tolerance mechanisms. 

 Genetic engineering has been crucial for investigating tolerance mechanisms 

including assaying DNA repair-related proteins. However, further development was 

required to make these studies possible in P. nigra (Fig. 5), although the transformation 

of P. nigra has been reported previously (Confalonieri et al. 1994; Confalonieri et al. 

1995; Mohri et al. 1996). In Chapter 3, the transformation system for P. nigra was 

originally improved, via the creation of a new binary vector, and the transformation 

process was examined (Fig. 35). The transformation efficiency improved to 

approximately 20% of the infected explants using DTT (Table 11). The raised efficiency 
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was estimated to be 1.6- to 3.2-fold higher compared with experiments without DTT. It 

was difficult to directly compare the improved method to previous methods, because the 

clone of P. nigra utilized was different from those in previously reported studies. Due to 

the omission of callus induction, the regeneration time of transgenic poplar plants was 

shortened from approximately 6 months to 4 months, thus, it is reported to be an 

approximately 1.5-fold rise in transgenic efficiency. Consequently, the productivity of 

transgenic P. nigra was computationally estimated to increase to 2.4- to 4.8-fold per 

year by the improved method (Fig. 35).  

 The newly constructed vector, pBF2, has many restriction enzyme sites (Fig. 

23). Some restriction enzymes give compatible ends in pBF2 (Fig. 24). For example, 

XbaI, BlnI and SpeI produce the same cleaved ends, which can ligate to each other. SalI 

and XhoI also generate common cleaved ends. On the other hand, SmaI and Bst1107I 

create blunt ends. The design of pBF2 is convenient for ligating foreign DNA fragments. 

Thus, pBF2 should be useful for the transformation of not only P. nigra but also other 

plant species. The pBF2 vector also conferred G418 resistance in addition to kanamycin 

resistance on the transformants (Figs. 25 and 33). These results were probably caused 

by the reverse mutation of the NPTII gene on pBF2. G418 has not been previously 

reported as a selection reagent for transgenic poplars. Although G418 is assumed to be 

used as a selection reagent for the poplar transformation, the appropriate concentration 

of G418 for the selection of transgenic poplars remains to be examined. 

 By improving the transformation system, P. nigra is easier to transform than 

that reported previously, enhancing the value of P. nigra as a woody plant model species. 

The improved system is available for the study of gene function and for the generation 

of transgenic poplars. However, some limitations remain. The established 
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transformation system may require modification for other clones or hybrids of P. nigra. 

Unlike general herbaceous model plants such as A. thaliana and rice, poplar plants are 

heterozygous genotypically. Poplars with different genotypes may show different 

responses during regeneration and antibiotic selection; thus, their transformation 

efficiency may be reduced. Moreover, in comparison with herbaceous model plants, few 

promoters and enhancers that regulate gene expression have been isolated and 

characterized from poplars. To control gene expression and avoid adverse effects, 

various promoters or enhancers with distinct expression patterns are needed. On the 

other hand, although the traits of transgenic poplars are controlled by introduced 

transgenes, reliable methods for the selection of useful transgenes have not been 

established. These difficult problems must be resolved to optimally utilize not only P. 

nigra but also other Populus species as woody plant models. 

 In terms of practical applications, the tolerance of poplars to ionizing radiation 

is higher than that of humans, a trait that may prove beneficial. P. nigra trees can 

survive under >50 Gy of γ-irradiation, although the radiation doses at which 10%, 50% 

and 90% of humans die after whole body exposure are estimated to be 1–2 Gy, 4 Gy and 

5–7 Gy, respectively (ICRP 2007). Thereby, poplar trees are able to grow where humans 

cannot continuously live due to ionizing radiation above the natural background, such as 

at uranium ore mines or atomic accident locations that are cited as 

radioactively-contaminated areas. The phytoremediation of radionuclides in the soil has 

been studied (Dushenkov 2003; Gupta and Walther 2014; Sharma et al. 2015). As 

described in Chapter 1, poplars are suitable plants for phytoremediation because they 

are perennials with rapid growth and deep root systems. Therefore, if poplar trees are 

planted in such places, they may enhance the accumulation and elimination of 
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radionuclides. Moreover, using genetic engineering, transgenic poplars with higher 

tolerance to ionizing radiation may enhance environmental restoration in higher-dose 

regions polluted by radionuclides. 

 To biologically monitor radiation dose, chromosomal aberrations in living 

organisms have often been employed. After the Chernobyl accident in 1986, transgenic 

plants were tested for their use in radiation monitoring. To analyze the influence of 

chronic irradiation from radioactive-contaminated soil, the transgenic A. thaliana plant 

harboring a chimeric GUS gene was generated as a bioindicator (Kovalchuk et al. 1998). 

In this transgenic line, the chimeric GUS gene was repaired by homologous 

recombinational repair, stimulated by ionizing radiation. Radioactive pollution could be 

significantly detected from 3,700 Bq m
−2

 to 33 MBq m
−2

. On the other hand, a 

γ-irradiation hypersensitive mutant of A. thaliana was used for the detection of γ-rays 

(Peng et al. 2014). AtATM is a DNA repair-related protein, and an AtATM-disrupted 

mutant does not have a functioning DNA repair system. Subsequently, the GFP gene 

was introduced into the AtATM mutant. In this transgenic A. thaliana line, the 

radiation-damage GFP was not adequately repaired, and thus, the quenching of GFP 

was utilized to monitor γ-ray exposure. 

 As described in Chapter 1, poplar trees have been utilized as environmental 

monitors. Genes encoding DNA repair-related proteins from P. nigra may also be 

utilized for radiation monitoring. The expression of PnLIG4 and PnKU70 increased 

under exposure to γ-rays or Zeocin (Figs. 21 and 22). These results show that the 

promoters of PnLIG4 and PnKU70 are activated by genotoxic stress. If the promoters of 

these genes are fused to a suitable reporter gene, and the fused genes are introduced into 

poplars, it may become possible to generate transgenic genotoxic-monitoring trees that 
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recognize γ-rays or genotoxic agents and express the reporter gene of interest. By 

combining genetic engineering technology and DNA repair-related genes, the 

monitoring of genotoxic environmental pollution by radioactive substances or chemical 

carcinogens may be possible by transgenic poplars. 

 The control and utilization of DNA repair mechanisms may make mutation 

breeding advantageous. Although ionizing radiation has often been utilized for mutation 

breeding, the probability of a mutation occurring in a target gene is low, because 

radiation randomly damages DNA, and the induced DNA damage is mostly repaired. A 

higher dose of ionizing radiation raises the efficiency of generating mutations; however, 

it also increases harmful effects such as protein and membrane lipid damage, excessive 

ROS production and death of the irradiated cells in the extreme case. Therefore, a high 

frequency of mutation should be balanced with the the mitigation of cell damage by 

ionizing radiation. If the DNA repair system is temporarily weakened by genetic 

engineering during irradiation, a lower radiation level may be sufficiently able to cause 

the desired mutation. 

 Consequently, the present study increased the value of P. nigra as a woody 

plant model species by pioneering a new field of study, radiation stress physiology, and 

the development of better genetic engineering technologies (Fig. 36). In addition, 

synergy between a greater understanding of stress physiology and improved genetic 

engineering has the potential to spark the creation of new technology and applications 

for poplars. However, transgenic poplars, which are generated by modern genetic 

engineering techniques, have intrinsic and difficult limitations that are related to 

biosafety. For the practical utilization of transgenic poplars, these problems must be 

resolved. In the later sections, new technology beyond traditional genetic engineering 



75 

 

methods and the assessment of risk in the use of transgenic poplars will be addressed. 

 

4.2 New plant breeding techniques (NPBT) 

 NPBT are expected to substitute for conventional mutation breeding or 

transgenic technology, because some NPBT allow site-specific and targeted changes in 

the genome with no traces of the foreign gene (Lusser et al. 2011). Zinc finger nuclease 

(ZFN) technology is an NPBT that introduces site-specific mutations into the plant 

genome or allows the site-specific integration of genes (Lloyd et al. 2005). In addition, 

TAL effector nuclease (TALEN) technology (Cermak et al. 2011) and the clustered 

regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated 

protein 9 (Cas9) system (Li et al. 2013b) were recently developed as tools for genome 

editing in plants. 

The CRISPR/Cas9 system was used to independently disrupt two 

4-coumarate:CoA ligase genes (4CL1 and 4CL2) in P. tremula × P. alba (Zhou et al. 

2015), resulting in the lignin content being reduced in the 4CL1 mutants but remaining 

the same as control plants in the 4CL2 mutants. The CRISPR/Cas9 system was also 

used to disrupt the phytoene desaturase (PDS) gene in P. tomentosa, leading to albino 

shoots being formed that had lost their green color (Fan et al. 2015). 

Virus-induced gene silencing or gene expression is also an NPBT, which uses a 

virus that cannot be integrated into the host genome as the vector. Gene silencing based 

on the tobacco rattle virus led to a reduction in the phytoene desaturase in P. tomentosa 

(Jiang et al. 2014b), and in P. euphratica and P. × canescens (Shen et al. 2015). Another 

NPBT is the grafting of a non-transgenic scion on a transgenic rootstock. Here, the 

scion does not contain the foreign gene. However, one study showed that the Bt toxin 
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protein that was expressed in transgenic rootstock poplars was translocated within the 

phloem and detected in the grafted scion, resulting in the leaves of the grafted scion 

having a lethal effect on herbivorous larvae (Wang et al. 2012b). 

 Although NPBT are very useful for gene targeting or for the introduction of 

new traits, there is controversy over whether NPBT products lack foreign genes such as 

NPTII are LMOs (Podevin et al. 2012; Heap 2013; Hartung and Schiemann 2014). Each 

country independently regulates LMOs through process- or product-based regulatory 

frameworks; however, the regulation of NPBT remains under consideration (Araki and 

Ishii 2015). If the new annual crops that are produced by NPBT possess no foreign 

genes, they may not be treated as LMOs for agriculture and commerce in the future. 

However, the improved trees produced by NPBT may need to be assessed in terms of 

safety and risk due to their perennial longevity. 

 

4.3 Risk assessment for transgenic poplars as living modified organisms 

 The planted area of living modified crops for commercialization reached 181.5 

million ha across 28 countries in 2014 (James 2014). However, genetically engineered 

forest trees, including transgenic poplars, are hardly used for practical purposes. For 

example, the only country that has commercially planted transgenic poplars is China, 

where trees expressing B. thuringiensis toxin genes were first planted in 2002. The 

plantation area of the transgenic poplars has since increased, reaching 490 ha in 2011 

(Hu et al. 2014); and in 2015, the commercial cultivation of transgenic eucalyptus 

(Eucalyptus spp.) was approved in Brazil (ISAAA 2015). One of the reasons why 

transgenic trees are less popular than transgenic herbaceous crops is likely due to the 

difficulties in assessing their risks as LMOs to the environment. 
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 The issue of LMOs was first addressed at the Convention on Biological 

Diversity at the Rio Earth Summit in 1992 (UN 1992). Following this, the Cartagena 

Protocol on Biosafety defined an LMO as any living organism that possesses a novel 

combination of genetic material obtained through the use of modern biotechnology such 

as in vitro nucleic acid techniques (SCBD 2000). The original aim of the Cartagena 

Protocol was to prevent LMOs from having an impact on biological diversity. Because 

transgenic poplars are LMOs, their generation, utilization, and management should be 

conducted with a consideration for biological diversity and according to their regulatory 

framework. Therefore, the risks and environmental impacts of transgenic poplars need 

to be assessed in the laboratory, greenhouse, and field, according to the laws of each 

country. 

 Gene flow and transfer from LMOs may affect other plants, animals, and 

microorganisms. Recombinant DNA is discharged from transgenic poplars into the soil 

through their elongated roots, and fallen leaves and branches; for example, the DNA 

sequences of the introduced T-DNA were detected in the soil of cultivated transgenic P. 

alba using PCR/Southern blot hybridization (Bonadei et al. 2009). However, any DNA 

that is present in the soil is not consistently transferred into other organisms. For 

example, in the case of transgenic P. tomentosa containing the introduced Atriplex 

hortensis DREB1 (AhDREB1) gene and the NPTII gene, 37 species of microorganisms 

in the planted soil showed a tolerance to kanamycin, but none contained the introduced 

NPTII gene (Lu et al. 2014). The transfer of the bar gene from transgenic poplars to 

Amanita muscaria, an ectomycorrhizal fungus, was also examined, which showed that 

35,000 ectomycorrhizas did not show phosphinothricin resistance, and 102 of these did 

not possess the bar gene (Zhang et al. 2005). Horizontal gene transfer between 
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transgenic poplars and other organisms is crucial for biosafety; therefore, this should be 

tested and challenged continuously. 

 The pollen of poplars is wind-dispersed and can be spread widely, with 

estimates including 7.6 km (Slavov et al. 2009) and 8.2 km (Rathmacher et al. 2010). 

The seeds of poplars are also very small and have light hair, allowing them to be 

transferred a great distance from the mother tree. The seeds of P. nigra have been 

reported to move more than 100 km along an entire river system (Imbert and Lefèvre 

2003). Moreover, vegetative reproduction by root suckers (root sprouts) is well known 

in some poplar species. Therefore, to avoid hybridization between transgenic and 

non-transgenic poplars, transgenic poplars should be cultivated in a confined field that 

is a sufficient distance from natural poplar trees and that is surrounded by an 

impermeable barrier. Moreover, any disused transgenic poplars should be cut down and 

completely withered by a herbicide. Transgenic sterility has also been studied to prevent 

the dispersal of pollen and seed. For example, male sterile transgenic poplars harboring 

tapetum-specific promoter-driven barnase (ribonulease) were produced, and the 

barnase-expressed poplars did not produce pollen for 4 years in the field (Elorriaga et al. 

2014). 

 Investigation of the effects of transgenic poplars on biological diversity is 

essential. The environmental impact of transgenic P. alba × P. glandulosa that 

expressed insecticidal proteins, Bt-Cry3A, and oryzacystatin I was investigated in field 

studies over 3 years, which showed that they had no effect on non-target pests and other 

arthropods (Zhang et al. 2011a; Zhang et al. 2011b). Similarly, transgenic P. tremula × 

P. alba with modified lignin metabolism had no effect on the fungal communities in the 

roots or soil (Danielsen et al. 2012). However, the fallen leaves of the Bt-Cry3A 



79 

 

expressed P. tremula ×P. tremuloides were reported to affect aquatic insect communities 

(Axelsson et al. 2011). Because different transgenic poplars are likely to have different 

impacts on biological diversity, these should be investigated carefully over long time 

periods. 

 Poplar is likely to continue to be planted for many years both for commercial 

cultivation and environmental conservation. Therefore, when utilizing transgenic 

poplars, it is essential that the stability of the transgenes is investigated. Transgenic P. 

tremula × P. alba expressing cytosolic pine glutamine synthetase exhibited a higher 

growth rate than wild type trees for 3 years in a field test, and the amount of glutamine 

synthetase also remained at a higher level (Jing et al. 2004); and 3 years later, the fiber 

length of the transgenic poplars was still longer than that of the wild type (Coleman et al. 

2012). Similarly, 2,256 transgenic P. tremula × P. tremuloides and P. tremula × P. alba 

that were planted and grown in a greenhouse and in the field expressed the rbcS 

promoter-driven bar gene and the CaMV 35S promoter-driven GFP gene for 3 years (Li 

et al. 2009); expression of the Agrobacterium rolC gene in transgenic P. tremula × P. 

tremuloides was detected in 19-year-old tissue cultures and more than 18-year-old trees 

in a glasshouse (Fladung et al. 2013); and the AhDREB gene in transgenic P. tomentosa 

was expressed 7 years after cultivation in the field (Lu et al. 2014). These results 

suggest that transgenes are stably maintained and expressed in transgenic poplars over a 

long time period. 

 The results obtained in the laboratory do not always match those in the 

greenhouse or field. For instance, transgenic P. alba overexpressing Aspergillus 

xyloglucanase exhibited faster growth than non-transgenic poplars in a growth chamber 

(Park et al. 2004); however, both types exhibited similar growth in a greenhouse 
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(Taniguchi et al. 2008), and the transgenic poplars exhibited slower growth than the 

non-transgenic poplars in the field (Taniguchi et al. 2012). It was also found that 

although transgenic P. trichocarpa had a lower lignin content than the wild type in a 

greenhouse, this increased in field trials (Stout et al. 2014). These differences between 

laboratory and field results may be attributed to differences in the environmental 

conditions, but are not yet fully understood. 

 There are many things that we do not yet understand about the risks of living 

modified trees to the environment and to humans. Therefore, assessment of the 

environmental impacts of transgenic poplars is important and related research into the 

practical utilization of transgenic poplars should continue. The risk assessment of 

transgenic poplars is also considered to be of great importance and value for the 

assessment of transgenic trees of other woody plant species. 

 

4.4 The role of the poplar in science and its applications 

 In 1990, the total forested area in the world was 4.17 billion ha. Due to 

deforestation, the forested area decreased to 4.03 billion ha in 2010 (FAO 2010). A total 

of 135 million ha of forest disappeared in 1990–2010. The deforested area is equal to 

5.4-fold of the total forested area in Japan (approximately 25 million ha). Deforestation 

was particularly prevalent in South America, Africa, and Oceania. The world’s forests 

accumulate enormous biomass and contribute to carbon sequestration. In addition, the 

total biomass in the world’s forests has been estimated to be 600 gigatons (Gt) in dry 

weight (FAO 2010). The carbon stock pooled in biomass, soil, and other factors in 

forests have further been calculated as 289, 292, and 72 Gt, respectively. Accordingly, 

the decrease in the world’s forests led to the reduction of available woody biomass and 
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the progress of global warming by the emission of carbon. Furthermore, an increasing 

human population requires the products and services of forests more than ever. 

 Under these circumstances, the advancement of the science of woody plants is 

significantly important for resource and environmental conservation. The study of 

woody plants is required for optimizing the high productivity of tree biomass, the 

quality of wood, accessible resources, economic benefits, greening, environmental 

protection and restoration, and sustainable ecosystem services. However, most forest 

tree species remain underrepresented in biological research, with less scientific 

knowledge about them than poplar trees. For instance, adequate genomic resources such 

as molecular markers, ESTs, and genomic sequences are unavailable, and experimental 

techniques such as cell engineering or genetic engineering remain underdeveloped for 

many tree species. Therefore, it is often difficult to study various problems directly 

using such forest tree species. 

 Poplars can play a key role as the woody plant model species for developing 

the science and technology of these forest trees. Various studies on poplars have been 

widely performed and can provide not only poplar biologists but also other many 

scientists with useful information. For example, the number of studies including the 

term “Populus” per year in NCBI Medline increased nearly tenfold from 1998 to 2006 

(Jansson and Douglas 2007). In 2014, this number was approximately 2-fold more than 

that in 2006, representing over 400 publications/year. Moreover, poplar research has 

incorporated innovative concepts and technologies such as genomics, other omics, 

NPBT, and systems biology approaches (Street et al. 2011; Chen et al. 2014a; Dash et al. 

2015). As in this thesis that focuses on studying ionizing radiation stress, a large number 

of genomic resources for poplar research is also available for research into various other 
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fields. Genetic engineering of poplars can be used to develop experimental tools for the 

investigation of genes not only from poplars but also from other woody plants. Thus, the 

knowledge gained from studying poplars should be applied to research other woody 

plants. 

 However, poplars also have limitations as a model species. Bradshaw et al. 

(2000) explained that because of the long juvenile period, it takes long time to select 

homozygous mutants by mutagenesis and crossing. In addition, self-fertilization cannot 

occur due to dioecism; and thus, backcrosses must be performed for the production of 

inbred lines. The experimental cultivation of poplars requires large facilities or fields. 

From the viewpoint of industrial application, poplars are regarded as less important than 

eucalyptus for paper production or softwoods such as pines and cedars for wood 

materials. In addition to these factors, poplars are often difficult to use as model plants 

as they do not always have the characteristic properties of the target woody plant such 

as chemical composition or specific stress tolerance. Considering these problems, it is 

better to consider poplars as experimental materials. 

 On the other hand, in industrial applications using poplars, various issues of 

forestry and economy remain, such as productivity and wood quality, control of pests 

and disease, stressful environmental conditions, labor, costs, industrial demand and the 

environmental impact of poplar plantations. The developing science and technology of 

poplars as a model species are also likely to be useful for the solution of these practical 

problems. Further development of the science and application of poplars will likely 

contribute to the sustainable supply of forest resources and the conservation of the 

global environment.  
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Tables 

 

Table 1. Taxonomy and distribution of 32 species of the genus Populus. 

 

Section Species Distribution 

   

Abaso P. mexicana Wesmael Mexico 

   

Turanga P. euphratica Olivier North Africa and Asia 

 P. ilicifolia (Engler) Rouleau Kenya 

 P. pruinosa Schrenk China and Central Asia 

   

Leucoides P. glauca Haines India and China 

 P. heterophylla Linnaeus Eastern North America 

 P. lasiocarpa Oliver China 

   

Aigeiros P. deltoides Marshall North America 

 P. fremontii S. Watson North America 

 P. nigra Linnaeus Europe, North Africa and West Asia 

   

Tacamahaca P. angustifolia James North America 

 P. balsamifera Linnaeus North America 

 P. cathayana Rehder China 

 P. ciliate Royle Central Asia 

 P. koreana Rehder East Asia 

 P. laurifolia Ledebour Asia 

 P. maximowiczii Henry East Asia 

 P. simonii Carrière Asia 

 P. suaveolens Fischer Asia 

 P. szechuanica Schneider China 

 P. trichocarpa Torrey & Gray North America 

 P. yunnanensis Dode China 

   

Populus P. adenopoda Maximowicz China 

 P. alba Linnaeus Europe and North Africa 

 P. gamblei Haines Himalaya 

 P. grandidentata Michaux Eastern North America 

 P. guzmanantlensis Vazquez & Cuevas Mexico 

 P. monticola Brandegee Mexico 

 P. sieboldii Miquel Japan 

 P. simaroa Rzedowski Mexico 

 P. tremula Linnaeus Eurasia 

 P. tremuloides Michaux North America 

 

(Eckenwalder 1996; Dickmann and Kuzovkina 2014)  
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Table 2. Area of poplar forests in 2011. 

 

Category Country Area (thousand ha) 

   

Indigenous forests      Canada 30,296 

      Russian Federation 24,757 

      USA  17,653
a
 

      China  2,530 

      India    47 

      Italy    42 

      France    40
a
 

      Other countries    99 

      Subtotal 75,464 

   

Planted forests      China  7,570 

      France   236
a
 

      Iran   150 

      Turkey   125 

      Spain   105 

      Italy   101 

      Sweden    49 

      Romania    48 

      USA    45
a
 

      Canada    44 

      Argentina    41 

      Other countries   132 

      Subtotal  8,646 

   

Agroforestry      China  2,800 

      India   315 

      Other countries    57 

      Subtotal  3,172 

   

Total  87,282 

 
a
 The data was reported in 2008.  

(FAO 2012) 
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Table 3. Poplar wood production in 2011. 

 

Country Product (thousand m
3
) 

  

     China  50,000
a
 

     India  5,290 

     Canada  4,450 

     Turkey  3,501 

     Argentina  1,639 

     Iran  1,460 

     Italy    973 

     Belgium    780 

     Spain    675 

     Other countries   1,584 

     Russian Federation     NR 

     USA     NR 

     Total  70,352 

 

NR, not reported. 
a
 The data was estimated by the consumption. 

(FAO 2012) 
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Table 4. Uses for poplar wood in 2011. 

 

Use Product (thousand m
3
) 

  

Round timber (for logs or pulp)  3,415 

Sawn timber  2,307 

Veneer sheets  1,162 

Plywood 42,919 

Composites  2,190 

Pulp 16,626 

Fuelwood  1,734 

Total 70,352 

 

(FAO 2012) 
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Table 5. Relationship between biological properties and applications of poplars. 

 

Event/field of study Biological property Related issue 

Growth Fast growth Productivity 

Costs of silviculture 

 Wood production (lignification) Suitable quality of wood for 

applications 

 Susceptibility and tolerance to abiotic 

and biotic stresses 

Productivity 

Conservation 

Improvement of stress 

tolerance 

Ecology Threat of extinction of some native 

species such as P. nigra 

Conservation of genetic 

resources and biological 

diversity 

Asexual (vegetative) 

reproduction  

Root suckering 

Easy to root from cuttings (in mainly 

Aigeiros and Tacamahaca)  

Natural regeneration 

Plantation 

Ecological invasion 

Sexual reproduction Dioecism Difficulty of inbreeding 

 Interspecific crossability Crossbreeding 

 Wind dispersal of pollen and seeds  Ecological invasion 

Gene flow from transgenic 

poplars 

Male or female sterility 

 Long juvenile period of 5–10+ years Long breeding period 

Flowering control 

Genetics and 

genomics 

Small genome size (485 MBp, 2C = 

1.0 pg) 

Richest genetic and genomic 

information in woody plants 

(Genes, genome sequences, ESTs 

and molecular markers) 

Extension of genetic and 

genomic resources 

Utilization for breeding and 

conservation 

Biotechnology and 

genetic 

engineering 

In vitro culture system 

Earliest and advanced transgenic 

technology in woody plants 

Technological development 

Generation of excellent 

transgenic poplars 

Safety management of 

transgenic poplars 
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Table 6. PCR primers used for cDNA cloning, semi-quantitative RT-PCR/Southern blot assay and 

RT-qPCR analysis. 

 

Gene Primer sets 

   

cDNA cloning   

  PnRAD51 5´-GAGCTCAGTAGATCTCTGGAN-3´ 5´-CAGGAGATGATAACTAAAATAGN-3´ 

  PnKU70 5´-ATCAACAAAGAAAGAAAGAAATG-3´ 5´-CTCATGCCCTTGTGAAAACA-3´ 

  PnLIG4 5´-GAAAAAAAAAGCCCCCGAAAATG-3´ 5´-GCAACAAAATACACTTAAGTTGCTA-3´ 

   

Semi-quantitative RT-PCR/Southern blot assay 

  PnRAD51 5´-TGGTCAGAGGCAAGAGATAA-3´ 5´-ACACCGAACTCATCTGCTAA-3´ 

  PnKU70 5´-TAGTGGTGGTGGTCAGGTTG-3´ 5´-AGCTGCATTTTCGACAGCTG-3´ 

  PnLIG4 5´-CTAAATTCCGCAAATTCATCG-3´ 5´-ATTCAGCTCCTCAATCGTCA-3´ 

  PnXRCC4 5´-AAGGCACTTGGTTTCCCTTT-3´ 5´-TGTGCCAAACACTTCTCAGC-3´ 

  PnOGG1 5´-CTGCCAAATCAGCTCTCCTC-3´ 5´-CAAGCCATTTCACACCTCCT-3´ 

  PnPCNA 5´-TCAAATCGGAGGGTTTTGAG-3´ 5´-TTCTGGCTTGTCAACAGTGG-3´ 

  PnPGK 5´-TGCTCAGAGGCAAGAGATAA-3´ 5´-AGGTCAACCTTCTCCAAGAG-3´ 

   

RT-qPCR analysis   

  PnRAD51 5´-CTGGACCTCAAATCAAGCCTA-3´ 5´-GATCTGGAACCGTGCTTCA-3´ 

  PnKU70 5´-CCCTGGTTTGCAGAGACACTA-3´ 5´-CTGCTTTAACAACTCCTGGTCTG-3´ 

  PnLIG4 5´-GGACATGCCGAGTGCTTC-3´ 5´-TCTCCGTCCGATTACTTCTCC-3´ 

  PnXRCC4 5´-ACAGAGAGGCATGGTGAAGTG-3´ 5´-CCTCGGGAGAAACTTGCAG-3´ 

  PnOGG1 5´-TGGCCGTAAATCTTCAAACTG-3´ 5´-CTTCCAGACCAGAAAATGGTG-3´ 

  PnPCNA 5´-ACAAGCCAGAAGATGCAACAG-3´ 5´-CAACCACAACAGGCAGGTC-3´ 

  PnUBQ5 5´-ACCTACACGAAGCCCAAGAAG-3´ 5´-CATGAAAGTACCAGCACCACA-3´ 
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Table 7. Properties of the predicted DNA repair-related proteins from P. nigra. 

 

cDNA 
Accession 

number 

Length of 

the 

predicted 

protein 

(Amino acid 

residues) 

Identity
a
 (%) of amino acid residues to homologous 

proteins
b
 

   P. trichocarpa A. thaliana humans yeast 

       

PnRAD51 AB269815  342 

91.9 90.4 68.9 53.5 

POPTR_0006s1

3750 

U43528 D14134 D10023 

       

PnLIG4 AB269887 1319 

85.7 58.7 22.1 17.2 

POPTR_0018s1

3870 

AF233527 BC037491 Z74913 

       

PnKU70 AB270699  627 

98.7 71.0 31.7 17.4 

POPTR_0011s1

0870 

AF283759 AK055786 D15052 

       

PnXRCC4 AB270700  255 

84.0 58.2 19.9 10.9 

POPTR_0010s0

8650 

AF233528 U40622 Z72612 

       

PnOGG1 AB270701  378 

95.5 58.7 32.4 27.4 

POPTR_0005s2

0290 

AJ302082 U96710 U44855 

       

PnPCNA AB041506  264 

99.6 86.9 64.8 35.2 

POPTR_0009s0

4560 

AF083220 M15796 X16676 

       

 
a
 The sequence identity was observed from the global alignment of the predicted amino acid 

sequence of the DNA repair protein between P. nigra and other organisms using the 

Needleman-Wunsch algorithm. 
b
 Locus name of gene model in the P. trichocarpa genome assembly v2 

(http://www.phytozome.net/poplar) and GenBank accession number of the homologous protein are 

represented under each amino acid sequence identity.  
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Table 8. Biological effects of γ-rays on P. nigra. 

 

Dose of 

γ-rays 

(Gy) 

Growth of plantlets Morphogenesis 

In vitro 

regeneration 

of shoot and 

root 

Damage of nuclear DNA 

Average tail 

DNA%
a
 

% of a few 

damaged 

cells
b
 

      

  0 NE NE NE 27.2 ± 14.6 35.8 

      

 50 NE 

Some transient 

mutations in 

leaves and stems 

NE 24.3 ± 16.4 48.6 

      

100 

Transient or 

completely growth 

arrest but no 

withering, and 

sprouting 

Transient 

mutations in 

leaves and stems 

Suppression 

of shoot 

regeneration, 

No roots 

43.0 ± 15.7  6.6 

      

200 

Completely growth 

arrest and withering 

after 4–10 weeks 

Stopped 
No shoots or 

roots 
38.6 ± 14.9  7.7 

      

300 

Completely growth 

arrest and withering 

after 4–10 weeks 

Stopped ND 36.7 ± 12.0  4.9 

 

NE, no effect. ND, not determined. 
a
 Average percentage of DNA in the tail compared to the total DNA in the Comet assay. 

b
 The rate of cells of which tail DNA% was in the range of 0 to 20%. 
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Table 9. Composition of shoot-induction medium (SIM) for transformation of P. nigra. 

 

Medium composition 

1 × Murashige and Skoog basal salts 

1 × Murashige and Skoog vitamin 

3% sucrose 

20 mM MES-KOH (pH 5.8) 

0.5 mg l
−1

 trans-zeatin 

0.1 mg l
−1

 6-benzylaminopurine 

50–100 mg l
−1

 kanamycin 

500 mg l
−1

 cefotaxime 

0.8 % Bacto Agar 
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Table 10. Composition of root-induction medium (RIM) for transformation of P. nigra. 

 

Medium composition 

0.5 × Murashige and Skoog basal salts 

1 × Murashige and Skoog vitamin 

3% sucrose 

20 mM MES-KOH (pH 5.8) 

0.5 mg l
−1

 indole-3-butyric acid 

0.02 mg l
−1

 1-naphthaleneacetic acid 

20 mg l
−1

 kanamycin 

250 mg l
−1

 cefotaxime 

0.6 % Phytagar 
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Table 11. Frequency of the transformation of P. nigra with two types of binary vectors in the 

presence and absence of dithiothreitol (DTT). 

 

Vector DTT 

Number Frequency of 

trans- 

formation 

(%)a 

Explants infected 

with 

Agrobacterium 

Shoots 

transferred to 

RIM 

Shoots 

rooted on 

RIM 

NPTII 

positive 

shoots 

Genetically 

independent 

transformants 

        

pBF2::EGFP – 111  94 20 18 13 11.7 

pIG121Hm – 106  61 12  8  7  6.6 

pBF2::EGFP +  93 115 28 25 18 19.4 

pIG121Hm +  98 151 41 39 21 21.4 

 
a
 Transformation frequency was calculated from the number of genetically independent transgenic 

poplar plants divided by the number of Agrobacterium-infected explants. 
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Table 12. Relationship between the radiation sensitivity and the nuclear DNA content of woody plant 

species. 

 

Species LD100 (Gy)
a
 Nuclear DNA C-value (pg)

b
 

   

Angiosperm   

   Populus nigra >100  0.54 

   Fraxinus americana   97  1.37
c
 

   Acer saccharum   78   0.7
c
 

   Prunus laurocerasus   58  3.65 

   Clematis virginiana   26 11.96
d
 

   Sambucus canadensis   19  14.3
c
 

   Paeonia suffruticosa   10 19.99
d
 

   

Gymnosperm   

   Taxus canadensis   16 11.60 

   Abies balsamea   15 16.40 

   Sequoiadendron giganteum   15  9.93 

   Picea abies   13 20.01 

   Larix laricina   11 9.50 

   Tsuga canadensis   10 18.60 

   Pinus strobus    7 25.65 

 
a
 Radiation sensitivity of each woody plant species is shown as the dose of γ-rays that caused 100% 

mortality (LD100) (Sparrow et al. 1968). Although the original data had been measured in the unit of 

roentgen, they were converted to the unit of gray for comparison with P. nigra. One kiloroentgen 

was calculated as 9.747 Gy (based on absorbed dose to water). 
b
 C-values of plant species are cited from the Plant DNA C-value Database (release 6.0, December 

2012) (http://data.kew.org/cvalues/). 
c
 Cited from Bai et al. (2012). 

d
 C-value has not been reported. The mean C-value of the same genus species is shown on the Plant 

DNA C-value Database. 
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Figures 

 

 

 

 

Figure 1. Utilization and applications of poplars. Poplars are versatile and their usage is mainly 

divided into three groups, industrial application (pink), environmental application (green), and the 

overlap between them (yellow). In addition to traditional applications such as timber and 

landscaping, new fields of use have recently been exploited, including, for example, bioplastics, 

phytochemicals, biofuels and biomonitoring.  
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Figure 2. Biological properties of Populus nigra. As well as some other Populus species, P. nigra 

(black poplar) is considered to be one of the important woody plant model species for scientific 

research and applications.  
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Figure 3. Flow of the research in this thesis. The pioneering of new fields of study and the 

development of technology are important in poplars as a woody plant model species. Therefore, this 

study aimed to elucidate the biological response to ionizing radiation in Populus nigra and improve 

its genetic transformation system.  
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Figure 4. Exposure of trees to natural background radiation. External radiation consists of cosmic 

rays from space and terrestrial rays from radionuclides in the soil. Internal radiation is emitted from 

absorbed radionuclides. The total dose to the leaves of trees are estimated to be 0.6–7 mGy per year.  



124 

 

 

 

 

Figure 5. The transformation process of P. nigra as reported previously. Using Agrobacterium, P. 

nigra can be transformed. The Agrobacterium-infected explants (leaves or stems) are regenerated to 

produce transgenic poplar plants under antibiotic selective pressure. However, the transformation of 

P. nigra was not optimal. 
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Figure 6. The effect of γ-irradiation on the growth of P. nigra. The poplar plantlets were exposed to 0, 

50, 100, 200, and 300 Gy of γ-rays (left to right) for 20 h and were then grown under normal 

conditions. Photographs were taken immediately (A), and 2 weeks (B), 4 weeks (C), 6 weeks (D), 8 

weeks (E), and 10 weeks (F) after γ-irradiation. The pot of the 300 Gy of γ-irradiated poplar plant 

was moved after 8 weeks (E and F). (Continued on next page)  
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Figure 6. (Continued from previous page)   
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Figure 7. The effect of γ-irradiation on the tree growth of P. nigra. Plant height (A) and stem 

diameter at the ground level (B) of each main stem directly exposed to γ-rays were measured. Closed 

circles (●), 0 Gy; open circles (○), 50 Gy; closed squares (■), 100 Gy-A group; open squares (□), 

100 Gy-B group; closed triangles (▲), 200 Gy; open triangles (∆), 300 Gy. (C) Dry weight 10 weeks 

after γ-irradiation or at the time when the entire plant turned brown. Dry weight of leaves and stems 

includes not only each main stem directly exposed to γ-rays but also axillary branches that sprouted 

and elongated after γ-irradiation. The number of plantlets was initially eight (n = 8) in each γ-rays 

group. The plantlets exposed to 100 Gy of γ-rays were separated into two groups, the 100 Gy-A 

group (n = 3) and the 100 Gy-B group (n = 5) according to their growth. At 200 and 300 Gy, the 

number of plantlets gradually decreased for 10 weeks (0 ≤ n ≤ 8). The data are expressed as mean ± 

standard deviation (SD) of the indicated measurements.  
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Figure 8. Morphological effects of γ-irradiation on P. nigra. (A) A normal deltoid leaf of a 

non-irradiated poplar plantlet. (B) An oblanceolate and cleft leaf of a γ-irradiated poplar plantlet. (C–

D) Two leaf blades with a petiole. (E) An asymmetric leaf with a bent petiole. (F) A mosaic pale 

green leaf. (G) Severely shortened internodes. (H) A stem branched off and partly fascinated in an 

internode. (I) Arrest of apical growth and elongated lateral shoots. (B–D) and (H–I) were exposed to 

100 Gy of γ-rays. (E–G) were exposed to 50 Gy of γ-rays.  
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Figure 9. Inhibition of shoot regeneration by γ-irradiation. Stems and petioles were cut off from 

aseptic poplar plants and exposed to the indicated dose of γ-rays on the shoot-induction medium 

(SIM). After exposure, they were transferred onto a new SIM and cultivated. Photographs were 

taken 4 weeks after γ-irradiation.  
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Figure 10. Inhibition of root regeneration by γ-irradiation. Apical stems of aseptic poplar plants 

(approximately 1 cm in length) were put into root-induction medium (RIM) and exposed to the 

indicated dose of γ-rays. After exposure, the stems were transferred into a new RIM and cultivated. 

Photographs were taken 4 weeks after γ-irradiation. 
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Figure 11. Nuclear DNA damage caused by γ-irradiation in suspension-cultured poplar cells. (A) 

Photographs of the electrophoresis of nuclear DNA damaged by γ-irradiation. Mid-log phase 

suspension-cultured cells were exposed to γ-rays at the indicated dose and were subjected to a 

Comet assay. Scale bar = 50 µm. (B) Comparison of the degree of DNA damage among cells 

irradiated with γ-rays at doses from 0 to 300 Gy. DNA damage is expressed as %T, which is a 

percentage of the amount of DNA in the tail divided by the total amount of DNA in the head and the 

tail. n represents the number of nuclei examined by the Comet assay.  
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Figure 12. DNA damage and repair system in eukaryotes. Ionizing radiation (IR) induces oxidative 

DNA damage via reactive oxygen species. IR also directly cleaves DNA strands. Oxidative DNA 

damage is repaired by the base excision repair system (BER). DNA double-strand breaks are 

repaired by homologous recombinational repair (HR) or non-homologous end joining (NHEJ). Each 

repair system consists of various DNA-repair related proteins as shown in the lower part of the 

figure.  
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Figure 13. Schematic models of the DNA repair-related proteins predicted from the cDNA of P. 

nigra. The number of amino acid residues of each protein is indicated under the gene/protein name. 

The predicted functional domains and motifs are shown in each protein model.  
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Figure 14. Comparison of the deduced amino acid sequence of PnRAD51 with related sequences. 

The amino acid identities to PnRAD51 are boxed in black, and gaps in the alignment are denoted by 

dashes. PtRAD51, a hypothetical protein from P. trichocarpa (JGI v2 gene model name: 

POPTR_0006s13750); AtRAD51, A. thaliana RAD51 homolog (GenBank ID: U43528); HsRAD51, 

human RAD51 homolog (D14134); ScRAD51, budding yeast RAD51 (D10023). The lines indicate 

the helix-hairpin-helix motif (InterPro ID: IPR000445) and the core domain of AAA+ ATPase 

(IPR003593).  



135 

 

 

 

 

Figure 15. Comparison of the deduced amino acid sequence of PnLIG4 with related sequences. The 

amino acid identities to PnLIG4 are boxed in black, and gaps in the alignment are denoted by dashes. 

PtLIG4, a hypothetical protein from P. trichocarpa (JGI v2 gene model name: 

POPTR_0018s13870); AtLIG4, A. thaliana DNA ligase IV homolog (GenBank ID: AF233527); 

HsLIG4, human DNA ligase IV (BC037491); DNL4, budding yeast DNA ligase IV (Z74913). The 

lines indicate the central domain of ATP dependent DNA ligase (InterPro ID: IPR012310) and two 

BRCT domains (IPR001357). (Continued on next page)  
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Figure 15. (Continued on next page)  
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Figure 15. (Continued from previous page)   
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Figure 16. Comparison of the deduced amino acid sequence of PnKU70 with related sequences. The 

amino acid identities to PnKU70 are boxed in black, and gaps in the alignment are denoted by 

dashes. PtKU70, a hypothetical protein from P. trichocarpa (JGI v2 gene model name, 

POPTR_0011s10870); AtKU70, A. thaliana KU70 homolog (GenBank ID: AF283759); HsKU70, 

human KU70 subunit (XRCC6) (AK055786); YKU70, YKU70 Subunit in budding yeast (D15052). 

The lines indicate the N-terminal alpha/beta domain of Ku70/Ku80 (InterPro ID: IPR005161), the 

Ku type ATP-dependent DNA helicase domain (IPR006164), the C-terminal arm domain of 

Ku70/Ku80 (IPR005160) and the SAP DNA binding domain (IPR003034). (Continued on next page)  
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Figure 16. (Continued from previous page) 
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Figure 17. Comparison of the deduced amino acid sequence of PnXRCC4 with related sequences. 

The amino acid identities to PnXRCC4 are boxed in black, and gaps in the alignment are denoted by 

dashes. PtXRCC4, a hypothetical protein from P. trichocarpa (JGI v2 gene model name, 

POPTR_0010s08650); AtXRCC4, A. thaliana XRCC4 homolog (GenBank ID: AF233528); 

HsXRCC4, human XRCC4 (U40622); LIF1, budding yeast XRCC4 homolog (Z72612). The line 

indicates the N-terminal domain of DNA double-strand break repair and VJ recombination XRCC4 

(InterPro ID: IPR009089).  
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Figure 18. Comparison of the deduced amino acid sequence of PnOGG1 with related sequences. The 

amino acid identities to PnOGG1 are boxed in black, and gaps in the alignment are denoted by 

dashes. PtOGG1, a hypothetical protein from P. trichocarpa (JGI v2 gene model name, 

POPTR_0005s20290); AtOGG1, A. thaliana OGG1 homolog (GenBank ID: AJ302082); hOGG1, 

human OGG1 (U96710); ScOGG1, budding yeast OGG1 (U44855). The lines indicate the 

N-terminal domain of 8-oxoguanine DNA glycosylase (InterPro ID: IPR012904) and the HhH-GPD 

domain (IPR003265).  
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Figure 19. Comparison of the deduced amino acid sequence of PnPCNA with related sequences. The 

amino acid identities to PnPCNA are boxed in black, and gaps in the alignment are denoted by 

dashes. PtPCNA, a hypothetical protein from P. trichocarpa (JGI v2 gene model name, 

POPTR_0009s04560); AtPCNA, A. thaliana PCNA homolog (GenBank ID: AF083220); HsPCNA, 

human PCNA (M15796); POL30, budding yeast POL30 protein homologous to PCNA (X16676). 

The lines indicate the typical N-terminal and C-terminal domains which exist in the proliferating cell 

nuclear antigen family (InterPro ID: IPR000730).  
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Figure 20. Expression of DNA repair-related genes in different organs and cells of P. nigra. The 

leaves are numbered from the most apical unfolded but not yet expanded leaf to the bottom. 

S.C.cells, suspension-cultured cells. One microgram of RNA was used for RT-PCR/Southern 

blotting. The gene-specific RT-PCR products were separated by a 1% agarose gel, blotted, and 

hybridized with each gene-specific DIG-labeled probe. The PnPGK (cytosolic phosphoglycerate 

kinase 1) gene was used as a control (Nishiguchi et al. 2002).  
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Figure 21. The effect of γ-irradiation on the gene expression of DNA repair-related proteins. P. nigra 

plantlets were exposed to the indicated doses of γ-rays for 20 h. For RNA preparation, the irradiated 

shoots were collected 1 h (black), 6 h (dark gray), and 24 h (light gray) after the end of γ-exposure. 

Total RNA was used for RT-qPCR as described in the Materials and Methods. Relative mRNA 

levels were normalized to the ubiquitin mRNA. The mRNA level of each gene in the non-irradiated 

plantlets (0 Gy) sampled at 1 h was defined as 1.0. Error bars represent ± SD (n = 3).  
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Figure 22. Effects of Zeocin treatment on DNA damage and gene expression in suspension-cultured 

poplar cells. (A) DNA damage of poplar nuclei induced by Zeocin treatment. The indicated 

concentration of Zeocin was added to the medium of mid-log phase suspension-cultured cells. A 

Comet assay was performed 6 h after the addition of Zeocin. As the control, sterile water was added 

to the medium. Scale bar = 50 µm. (B) The gene expression of DNA repair-related proteins in the 

Zeocin-treated cells. Sterile water or Zeocin solution was added to the suspension-cultured cells, 

which were incubated at 25ºC with rotary shaking. For RNA preparation, the cells were collected 

before (white) and after incubation for 1 h (light gray), 6 h (dark gray), and 24 h (black). RT-qPCR 

were performed as described in Fig. 21. The mRNA level of each gene in the cells before the 

treatment was defined as 1.0. Error bars represent ± SD (n = 3). 
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Figure 23. Schematic representation of the T-DNA regions of pBI121 (upper) and pBF2 (lower) 

binary vectors. Restriction enzyme sites are indicated by lines and arrow heads. The amino acid 

residue at position 182 of NPTII in pBI121 is aspartic acid, while the aspartic acid is replaced with 

glutamic acid in pBF2. Abbreviations: RB, right border of T-DNA; LB, left border of T-DNA; PNOS, 

promoter of the gene for nopaline synthase; NPTII, neomycin phosphotransferase II; TNOS, 

terminator of the gene for nopaline synthase; P35S, promoter of the gene for the 35S RNA of 

cauliflower mosaic virus; GUS, β-glucuronidase. 
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Figure 24. Examples of the cloning of foreign DNAs into pBF2. pBF2 possesses 11 restriction 

enzyme sites downstream of the promoter (P35S) of the gene for the 35S RNA of cauliflower mosaic 

virus. (Ex. 1) Insertion of the SalI-BlnI fragment into SalI-BlnI sites. (Ex. 2) Opposite insertion of 

the same SalI-BlnI fragment as Ex. 1 into XbaI-SalI sites. (Ex. 3) Opposite and right insertions of 

two XbaI-XhoI fragments into different sites. (Ex.4) Insertion of the EcoRV (blunt end)-SpeI 

fragment into SmaI-BlnI sites. (Ex. 5) Opposite insertion of the same EcoRV-SpeI fragment as Ex. 4 

into SpeI-Bst1107I sites.  
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Figure 25. Improved resistance to antibiotics by a reverse mutation of the NPTII gene. Escherichia 

coli JM109 was transformed with pBI121 or pBF2. Bacteria harboring the indicated plasmid were 

streaked onto LB agar medium containing 50 mg l
−1

 kanamycin (upper) or 20 mg l
−1

 G418 (lower). 

The culture media were incubated at 37°C overnight.  
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Figure 26. Strategy for the improvement of the transformation process of P. nigra. To shorten the 

time for transformation, the transgenic shoots were directly regenerated from the 

Agrobacterium-infected stems and not via calli. Moreover, the use of dithiothreitol (DTT), a 

reducing agent, at the infection and bactericidal steps of Agrobacterium was expected to increase the 

transformation efficiency.  
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Figure 27. Schematic representation of the T-DNA regions of pBF2::EGFP (upper) and pIG121Hm 

(lower) binary vectors for the transformation experiments. Restriction enzyme sites are indicated by 

lines and arrow heads. RB, right border of T-DNA; LB, left border of T-DNA; PNOS, promoter of 

the gene for nopaline synthase; TNOS, terminator of the gene for nopaline synthase; NPTII, 

neomycin phosphotransferase II; P35S, promoter of the gene for the 35S RNA of cauliflower mosaic 

virus; EGFP, enhanced green fluorescent protein; GUS, β-glucuronidase; HPT, hygromycin 

phosphotransferase. 
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Figure 28. The regeneration process for transgenic P. nigra. (A) Regeneration of adventitious shoots 

8 weeks after transfer into SIM containing kanamycin. (B) Rooting of the transgenic shoots 4 weeks 

after transfer into RIM containing kanamycin. (C) An EGFP-expressed transgenic plantlet. (D) A 

control non-transgenic plantlet. All scale bars represent 1 cm. 
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Figure 29. Confirmation of the introduced NPTII gene in the transgenic poplar plants. The 

PCR-amplified DNA fragments of the NPTII gene were separated by electrophoresis on 0.7% 

agarose gels (arrow). The lines of the transgenic poplar plants are indicated above. Marker, 

HindIII-digested λDNA.  
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Figure 30. Fluorescent microscopy of the EGFP-expressed transgenic (pBF2::EGFP) and 

non-transgenic (WT) poplar plants. All scale bars represent 1 mm.  

  



154 

 

 

 

 

Figure 31. Analysis of the foreign proteins in the transgenic poplars by SDS-PAGE. The crude 

proteins (50 µg) extracted from non-transgenic (WT) and transgenic poplar plants were subjected to 

SDS-PAGE and analyzed. The lines of the transgenic poplar plants are indicated above. (A) The 

poplars transformed with pIG121Hm. The gel was stained with Coomassie blue R-350 (upper). 

Immunoblotting was performed using rabbit IgG against GUS (lower). (B) The poplars transformed 

with pBF2::EGFP. Coomassie blue staining (upper) and immunoblot analysis using rabbit antibody 

against synthetic peptides of GFP (lower) are shown.  
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Figure 32. Southern analysis of the transgenic poplar plants. The genomic DNAs from the transgenic 

and non-transgenic (WT) poplars were digested with HindIII, electrophoresed, and blotted on 

Hybond-N+. The lines of the transgenic poplar plants are indicated above. (A) The poplars 

transformed with pIG121Hm. The DNA-bearing membranes were hybridized with the 
32

P-labeled 

GUS gene, washed, and autoradiographed (upper). After the GUS probe had been removed, the same 

membranes were rehybridized with the 
32

P-labeled NPTII gene (lower). (B) The poplars transformed 

with pBF2::EGFP. The membranes were hybridized with the 
32

P-labeled EGFP gene, washed, and 

autoradiographed (upper). After the EGFP probe had been removed, the same membranes were 

rehybridized with the 
32

P-labeled NPTII gene (lower).  
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Figure 33. Antibiotic resistance of the transgenic P. nigra plants. Explants of the transgenic poplars 

with the pBF2::EGFP (top) and pIG121Hm (middle) vectors, and of the control non-transgenic 

poplar (WT, bottom) were placed on the growth medium in a petri dish. Callus-induction medium 

(CIM) containing 20 mM MES-KOH (pH 5.8), 1 × Murashige and Skoog basal salts (MSBS), 1 × 

Murashige and Skoog vitamin (MSV), 3% sucrose, 2 mg l
−1

 2,4-D, and 0.8% Bacto Agar was used 

for callus formation from the petioles (left). SIM was used for the regeneration of adventitious 

shoots from the stem segments (right). Each medium contained 50 mg l
−1

 G418 (upper) or 100 mg 

l
−1

 kanamycin (lower). Photographs were taken 4 weeks after the start of this experiment. All scale 

bars represent 1 cm.  
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Figure 34. Biological effects of γ-rays on P. nigra. The plantlets of P. nigra were able to survive in 

50–100 Gy of γ-irradiation, though a growth abnormality was caused. The genes of DNA-repair 

related proteins were upregulated or downregulated by γ-rays and were probably involved in the 

repair of the damaged DNA. At the higher dose of γ-irradiation, however, almost all poplars died. 

This result may be due to unknown harmful effects of γ-rays in addition to DNA damage.   
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Figure 35. Improved transformation system for P. nigra. A new binary vector, pBF2, was constructed 

(upper). The transformation process was examined, and consequently the transformation efficiency 

was increased (lower).  
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Figure 36. Summary of the research in this thesis. The elucidation of biological responses to ionizing 

radiation (IR) and the improvement of the transformation system for P. nigra enhance the value of P. 

nigra as a woody plant model species. A greater understandings of IR stress physiology and 

improved genetic engineering techniques increase the possibility of developing new applications for 

poplars. 


