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Abstract 

Cryopreservation has been proved as an indispensable tool in the research of animal 

reproductive biology and in conservation of animal genetic resources. However, 

cryopreservation has some disadvantages for storage and transportation. These issues 

emphasize the need for alternative safe and low-cost storage systems for biological 

specimens. Therefore, freeze-drying (FD) of sperm without liquid nitrogen has been special 

of interest. 

Sperm DNA is the most important molecule to ensure normal fertilization and 

subsequent development. It is reported that defects in the structure of chromatin can severely 

reduce fertility and early embryo development, increase spontaneous abortions and birth 

defects. The maintenance of DNA integrity during FD procedures and storage, thus, is 

extremely important. The objectives of this study were to expand basic knowledge of FD 

associated sperm DNA damage and improve the efficacy of sperm preservation method by 

FD. 

In Chapter II, we examined the effect of a combination of ethylene 

glycol-bis(2-aminoethylether)-N,N,N0,N0-tetraacetic acid and different concentrations of 

trehalose in FD medium on sperm DNA integrity and the in vitro development of IVM (in 

vitro maturation) porcine oocytes after intracytoplasmic sperm injection (ICSI) using 

freeze-dried boar sperm. Ejaculated sperm from a boar were suspended in basic FD medium 

supplemented with different concentrations of trehalose and freeze-dried. The results 

showed that the level of DNA damage, assessed by Halomax kit, in the 15 mM group was 

significantly lower than that in the 0 mM (control) group, and no difference was observed 

between the 15, 7.5, and 3.75 mM groups. Moreover, there were no significant differences in 

the DNA damage level among 0, 3.75 mM, and the other groups. When freeze-dried sperm 

were used for ICSI, the fertilization rates and blastocyst formation rates in the 7.5 and 15 

mM groups were not different from those in the control group. These results suggest that FD 

medium supplemented with trehalose at appropriate concentrations improves sperm DNA 

integrity, but does not improve fertilization and preimplantation embryo development of 

IVM oocytes following ICSI. 

Previous studies demonstrated that the oocytes have ability to repair DNA damaged 

sperm. The DNA damaged sperm may activate maternal DNA repair genes when injected to 

oocytes. Accompany with the results from Chapter II, we hypothesized that different levels 

of DNA damage in sperm may lead to various expression levels of DNA repair genes in 
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oocytes injected with those sperm. Therefore, in Chapter III, we investigated the expression 

profile of some DNA repair genes in porcine oocytes after ICSI. Firstly, the expression 

levels of MGMT, UDG, XPC, MSH2, XRCC6, and RAD51 genes that concerned with the 

different types of DNA repair were examined in IVM oocytes injected with ejaculated sperm, 

or freeze-dried sperm with or without trehalose. Quantitative RT-PCR revealed that 

expression of six DNA repair genes in the oocytes at 4 hour after injection did not differ 

among the four groups. Next, we investigated the gene expression levels of these genes at 

different stages of maturation. The relative expression levels of UDG and XPC were 

significantly up-regulated in mature oocytes compared with earlier stages. Furthermore, 

there was an increased tendency in relative expression of MSH2 and RAD51. These results 

suggested two possible mechanisms that mRNA(s) of DNA repair genes are either 

accumulated during IVM to be ready for fertilization or increased expression levels of DNA 

repair genes in oocytes caused by suboptimal IVM conditions. 

In order to improve the efficacy of in vitro porcine embryonic production following ICSI 

using freeze-dried sperm, the effects of freeze-dried sperm treatment with Triton X-100 (TX) 

were examined in Chapter IV. Freeze-dried sperm with (15 mM group) or without (0 mM 

group) trehalose were rehydrated and centrifuged and sonicated to isolate the heads from 

their tails and treated with 0, 0.5% or 1.0% TX for 10 min at room temperature. The 

percentages of oocytes displaying two polar bodies and two pronuclei after injection and 

electrical stimulation were highest in the 15 mM trehalose group treated with the 0.5% TX 

(77.52%) but not significantly different from the remaining sperm-injected groups. In 

conclusion, the present study showed that freeze-dried boar sperm treated with TX at 

different concentrations did not improve normal fertilization of IVM oocytes after ICSI.  

In Chapter V, the effects of centrifugation and electric stimulation on ICSI-oocytes 

were examined. Firstly, the effects of oocyte centrifugation before injection were assessed. 

Freeze-dried sperm after 0 mM trehalose treatment were injected into 3 different layers of 

centrifuged oocytes. The results showed that there were no differences in normal or 

abnormal fertilization among all groups compared with the control. Next, the effects of 

oocyte centrifugation after ICSI were investigated. Freeze-dried sperm from the 15 mM 

trehalose group were used for injection. One hour after injection, the oocytes were subject to 

centrifugation (CF+) or without centrifugation (CF–) combined with electrical activation 

(EA+) or without electrical activation (EA–) and cultured in vitro for 9 hours to examine 

fertilization status. Normal fertilization rates were significantly higher in the groups with 

electric activation than those of without electric activation. In addition, these rates were 
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significantly higher in the control group compared with the remaining groups. The results 

confirmed the importance of additional electric stimulation to activate the porcine 

ICSI-oocytes. In addition, centrifugation showed a negative effect on normal fertilization in 

case of electric activation and no effect on normal fertilization in case of no electric 

activation was applied.  

In parallel, we tried to transfer embryos obtained after ICSI using freeze-dried sperm 

into recipients to generate live piglets in Chapter VI. Freeze-dried sperm from the 0 mM and 

15 mM trehalose groups were used for this experiment. Sperm-injected oocytes and 

parthenogenetic embryos were co-transferred into the oviducts of recipients to observe 

full-term development. After 7 trials, we have not been succeeded in producing live piglets. 

Consider that blastocyst quality may responsible for failed outcome of embryo transfers, we 

continued to conduct the experiments in Chapter VII to compare DNA fragmentation level 

(apoptosis) in nuclei of blastocysts obtained from different types of sperm both in IVF and 

ICSI assessed by TUNEL assay. However, our results suggest that blastocyst quality (total 

cell number and nucleus DNA fragmentation) might not a reason for failure in embryo 

transfer in this research. 

In conclusion, the positive effect of trehalose on DNA integrity of freeze-dried sperm 

provides important information for the improvement of FD methods associated FD medium; 

expand basic knowledge of FD associated sperm DNA damage in pigs. This research also 

has contributions in practice since FD will greatly simplify the establishment and 

management of biobanks. It also helps to minimize the environmental costs arising from the 

production and use of liquid nitrogen and other activities for maintenance of facilities of 

cryopreservation system.  

 

Keywords: trehalose, freeze-drying, pig, gene expression, sperm treatment, oocyte 

treatment, embryo transfer, TUNEL assay 
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Chapter I 

General Introduction 

1.1. Pig as a good model for bio-medical research 

Pigs play an important role not only in meat supply for human beings but also in 

biomedical research. Pigs contribute about 37.7% of meat consumption of the world (FAO, 

2009). However, according to a report of FAO in 2000, 47 pig breeds are categorized as 

critical, another 85 breeds are endangered and 151 breeds have become extinct (FAO, 2000). 

These statistics show clearly a globally serious reduction of pig biodiversity. In Vietnam, 

there are about 27.6 million pigs, ranked the fourth in the world in number of pigs and 

contributes 3.03 million ton pork per year, ranked the sixth in the world in pork production 

(FAO, 2009). According to latest data of FAO, the number of pigs slightly decreased to 26.3 

million, supplied 3.22 million ton pork in 2013. In general, pigs always play the most 

important role in livestock animals in Vietnam and make a very far distance in number of 

heads related to cattle, buffalos and goats (FAO, 2013). Vietnam is also the country where 

many endemic breeds are found: I pig, Mongcai pig, Muongkhuong pig, Meo pig, Soc pig, 

Vanpa or mini pig, Co pig (Dang Nguyen et al. 2010). Exceptional characteristics of local 

breeds are well-adaptable to changes of environmental condition, good severe tolerance, 

specific pathogen tolerance, especially good taste of meat. However, slow converting ability 

from energy into muscle and protein of local breed, rapid development of hybrid and 

high-yield breeds and the poor management of breed conservation are main reasons leading 

to serious reduction in pig biodiversity in Vietnam. With above dominant characteristics and 

high genetic diversity, long-term conservation of Vietnamese pigs for future generation is 

important and urgent. 

Pigs are also one of animals suitable as a valuable preclinical model for biomedical 

research because they own the physiological, genomic (Humphray et al. 2007), and 

anatomical similarities to humans (Swanson et al. 2004). Pigs, therefore, have become 

increasingly important as potential xenograft donors and transgenic animals to produce 

specific proteins (Hornak et al. 2012). Traditionally, toxicity tests often utilize rat and dog 

models without considering whether there is an alternative species that might be more 

appropriate for testing a specific compound. While no animal model can completely 

recapitulate the effects of every drug administered to humans, previous research have shown 
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that large animals are better preclinical models for drug toxicity than rodents (Olson et al. 

2000). In this respect, pigs have been proved the most suitable choice.  

Potential of minipig as a platform for future developments in genomics, transgenic 

technology, in vitro toxicology and related emerging technologies has been recognized since 

some decades ago (reviewed by Forster et al. 2010). This is due to the fact that the current 

knowledge bases for the most of the field of study such as genomics, reproductive biology, 

immunology and genetic manipulation is significantly greater for the pigs than the dogs or 

non-human primates.  

In addition, domestic pigs are plentiful and inexpensive, because they are 

well-established as a food source for human beings. They are used in medical training 

programs with a mature body weight of approximately 100 kg (Kobayashi et al. 2012). More 

suitable for medical research than domestic pigs, however; miniature pigs with a mature 

body weight of 40 to 50 kg are more expensive because of limited annual production. Under 

both the economic aspect and the ethical point of view, the pattern of sharing and reuse of 

miniature-pig tissues and cells for research are recommended to reduce the total number of 

pigs needed for medical research (Kobayashi et al. 2012). 

The other advantages of utilization the pigs in research are also recognized. Research 

with human materials (oocytes and sperm) is basically limited; the use of domestic species, 

therefore, will rapidly promote our understanding of the fundamental mechanism of 

intracytoplasmic sperm injection (ICSI) (Catt & Rhodes 1995). Pig ovaries from 

slaughter-house are waste materials and abundant sources. This is also a great advantage of 

in vitro research related to pig ovaries compared with other livestock. In the studies related 

to female reproductive tract, porcine Fallopian tubes are prominent and tortuous, making 

them readily accessible to surgical procedures. In pharmaceutical safety studies, non-human 

primates are also often used; however, pigs are ideal substituted animals because they are 

sexually mature at about 4–6 months of age while the age of non-human primate is much 

later (for example, 3–4 years for macaques). The expense for housing and feeding for pigs 

can be reduced significantly. Additionally, pigs have multipule litters rather than single birth 

of primates potentially reduced genetic variability between the litters.  

In brief, with the importance mentioned above, conservation activities including the 

establishment of gene bank for long-term storage and the utilization of assisted reproductive 

technologies (ARTs) are extremely necessary. In the effort to conserve minipigs in Vietnam, 

ARTs have been used to produce embryos in vitro from Ban pigs (Nguyen et al. 2007; 

Dang-Nguyen et al. 2010). 
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1.2. Freeze-drying as an effective approach for preservation of mammalian sperm 

Prokaryotic and eukaryotic organisms contain approximately 70‒90% water, which is 

required to create the intracellular aqueous environment in which all biological processes 

occur (Billy & Potts 2001). However, the organisms are generally unstable when kept in 

aqueous solutions at room temperature because of the degradation, denaturation and growth 

of microbial contaminants (Arakawa et al. 2007). In other words, water is an important 

contributing factor to the conformational stability of a protein; on the other hand, water is a 

destabilizing factor in the long-term preservation of the chemical and structural integrity of a 

protein. Therefore, various preservation methods, such as cryopreservation, vitrification, 

lyophilization or freeze-drying (FD), air drying or vacuum drying, have been developed to 

avoid/reduce the negative effect of water. Lyophilization is the process which extracts the 

water from a product to the level at which the biological growth and chemical reactions are 

no longer supported, thus the product can retain stable and easy to store. Lyophilization uses 

the simple principle of physics called sublimation. Sublimation is the transition of a 

substance from solid (ice) state to the vapor state without passing first through a liquid 

(water) phase. It is an effective method for preserving a wide variety of heat-sensitive 

materials such as proteins, microbes, pharmaceuticals, tissues and plasma. This process 

consists of two major steps: 1) freezing of a protein solution, and 2) drying of the frozen 

solid under vacuum. The drying step is further divided into two phases: primary and 

secondary drying. The primary drying removes the frozen water and the secondary drying 

removes the non-frozen ‘bound’ water (Arakawa et al. 1993). 

It is recognized that the maintenance of cells in liquid nitrogen (LN) is the golden 

standard for storing frozen cells (Loi et al. 2008). ARTs in general and cryopreservation in 

particular have been proved as an indispensable tool in the animal reproduction field, not 

only to maintain and improve the quality of livestock animals, but also to conserve the 

genetic diversity of rare species, or maintain the large number of genetically modified mouse 

strains (Wakayama et al. 2010). Unlikely oocyte cryopreservation, sperm cryopreservation 

has early succeeded in retaining fertilization of sperm and in producing viable piglets 

(Mattioli et al. 1989; Yoshida et al. 1993b). Sperm cryopreservation is important for the 

following purposes: 1) maintenance of genetic diversity in domestic and wild species 

populations; 2) facilitating the distribution of genetically superior domestic species lines; 3) 

treatment of iatrogenic infertility and 4) genetic banking of genetically modified animal 

models of human health and diseases. The novel discovery of Polge et al. (1949) showed that 
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the use of glycerol and its analog could provide protection ablility to cells at low 

temperatures. This is often cited as the defining moment in the establishment of modern 

sperm cryobiology. The discovery paved the way for deep-freezing cells in LN. Then the 

process of finding a solution for avoiding intracellular ice formation in freezing resulted in 

the evolution of the freezing paradigms, such as slow freezing and rapid freezing 

(vitrification). Vitrification is a powerful technique for cryopreservation of mammalian 

sperm, oocytes and embryos (Rall & Fahy 1985; Kasai 2002). In general, the current 

freezing protocols are straightforward and efficient, with a good recovery rate after thawing 

(Shevde & Riker 2009), but cryopreservation in general and vitrification in particular are not 

devoid of problems (reviewed by Loi et al. 2013) because of following disadvantages: the 

need for a stable replacement supply of LN for storage, the expense of long-term storage of 

LN, the difficulties with international transportation, and the effects of unpredicted disasters. 

Especially, aside from these practical inconveniences, the storage of genetic materials in LN 

also pose an environmental concern, since industrial production of LN and the maintenance 

of its storage centers have a high carbon emission (Loi et al. 2013). In addition, LN which is 

not readily available in some parts of the world, especially in developing countries, also is a 

big obstacle. These issues emphasize the need for alternative safe and low-cost storage 

systems for biological specimens. Therefore, cheaper and safer solutions for long-term 

storage of sperm have been sought and deployed, among which preservation by FD without 

LN has been a focus of attention. However, boar semen differs from the semen of other 

domestic animals in several aspects. It is produced in large volumes and is extremely 

vulnerable to sudden cooling immediately after collection (cold shock) (Ericksson 2000). 

Therefore, boar semen requires special consideration in the design of freezing protocols 

(Pursel & Johnson 1971). Undoubtedly, the efforts to develop FD method would open the 

promised new perspective to the conservation of animal genetic resources.  

Various reports have claimed that freeze-dried sperm which are not motile but have an 

intact DNA were able to fertilize oocytes. Katayose et al. (1992) firstly demonstrated that 

hamster and human sperm can form a pronucleus (PN) following microinjection into 

hamster eggs and prior storage in the dehydrated state for 12 months at 4°C. Offsprings after 

microinjection of freeze-dried sperm that had been stored at room temperature were 

produced in mice (Wakayama & Yanagimachi 1998, Kusakabe et al. 2001), rabbits 

(Yushchenko 1957; Liu et al. 2004), and rats (Hiraybayashi et al. 2005). These findings 

demonstrated that nuclear and cellular viability are not equivalent. Despite drastic physical 

alternations in sperm structures the nuclei of freeze-dried sperm seems to be cytogenetically 
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intact, because 92% of oocytes injected with a rabbit freeze-dried sperm had normal 

chromosome constituents when examined before the first cleavage (Liu et al. 2004). In pigs, 

it has been reported that ICSI-oocytes using freeze-dried sperm have the ability to develop to 

the blastocyst stage (Kwon et al. 2004) and day 39 of gestation period after transferring to 

recipients (Nakai et al. 2007). Next target would be the generation of normal offsprings from 

freeze-dried sperm in remaining species and those experiments are currently ongoing.  

Freeze-dried sperm losses of motility since process of FD deeply damages sperm 

membranes including acrosome membrane (Gianaroli et al. 2012). However, the sperm 

acrosome contains a variety of hydrolytic enzymes; the release of these enzymes into the 

ooplasm might be harmful (Tesarik & Mendoza 1999). Based on the findings that the 

injection of an intact hamster spermatozoon into a mouse oocyte leads to degeneration of the 

ooplasm, whereas the injection of a demembraned hamster spermatozoon without acrosome 

forms two normal pronuclei; Kimura et al. (1998) suggested that there is species-specific 

tolerance of the ooplasm to exotic acrosomal contents. Similarly, in golden hamsters, 

Yamauchi et al. (2002) reported that all oocytes injected with acrosome-intact sperm heads 

died within 3 h after injection, while those oocytes injected with acrosome-free sperm heads 

survived. It also has been demonstrated that  the rupture of the sperm plasma membrane 

prior to injection allows sperm decondensing factors in oocytes an easy access to the sperm 

nucleus following ICSI in humans (Dozortsev et al. 1995) and presence of an intact 

acrosome in ooplasm might hamper this process. In FD preservation, the loss of sperm 

acrosome is not a challenge because acrosomal damage has no effect to fertilization ability 

of freeze-dried sperm injected into ooplasm; in addition, the concern about negative effect of 

hydrolytic enzymes in acrosome is also eliminated. More interestingly, it is reported that 

ability of dead, immotile and motile sperm to decondense and to form male PN after ICSI 

was not significantly different (Wei & Fukui 1999). Provided that DNA integrity of the 

sperm nucleus is maintained, embryos could be generated by ICSI technique even using 

severely membrane damaged sperm that are no longer capable of normal physiological 

activity (Kusakabe et al. 2001). 

Advantages of sperm FD can be further emphasized in case of bulls with high economic 

importance because of the sensitivity of sperm of these individuals to the process of 

cryopreservation (Hochi et al. 2011). Likewise, in species whose sperm are difficult to be 

preserved by freezing, FD will be a good replacement. However, the high initial cost and 

expensive equipments may be the disadvantages of FD preservation. Also, freeze-dried 

sperm are dead in conventional sense after dehydration and rehydration; therefore, they 
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cannot be used in artificial insemination or in vitro fertilization (IVF) programs (Hochi et al. 

2011), ICSI is the only way to use freeze-dried sperm.  

The research in the field of sperm FD was intermittent until ICSI using nonmotile sperm 

was proven efficiently in practice starting with mice (Kimura &Yanagimachi 1995). The 

successful production of live offsprings derived from ICSI with freeze-dried sperm has been 

reported in mice (Wakayama & Yanagimachi 1998; Kusakabe et al. 2001; Kaneko et al. 

2003; Ward et al. 2003), in rats (Hirabayashi et al. 2005; Kaneko et al. 2007; Hochi et al. 

2008), in hamsters (Muneto et al. 2011) and in rabbits (Liu et al. 2004). In other domestic 

species, only blastocysts have been obtained in cattle, (Keskintepe et al. 2002; Martins et al. 

2007; Hara et al. 2011) and in pigs, development to the blastocyst stage (Kwon et al. 2004) 

and 39-day fetuses (Nakai et al. 2007) have been reported until now. In monkeys, the 

pronuclear-stage zygotes have just been obtained (Sanchez-Partida et al. 2008) (Table 1- that 

was modified and updated from Hochi et al. 2011). There is still a problem in producing live 

offspring from freeze-dried sperm in many other animals such as cattles, pigs, and monkeys. 

In a recent study, Gianaroli et al. (2012) attempted to freeze-dry human sperm and reported 

that sperm viability and motility were totally compromised after FD but sperm chromatin 

structure was not altered in comparison with fresh sperm. The author demonstrated that FD 

procedure did not affect DNA integrity of human sperm.  

Similar to cryopreservation, in lyophilization, discovery and selection of lyoprotectants 

(protectants used for lyophilization) play a very important role for the success of this 

methodology. Studies of substances supplemented to FD media to reduce the DNA damage 

of freeze-dried sperm have been of special interest. Wakayama and Yanagimachi (1998) two 

conventionally used culture media (CZB; Chatot Ziomek Bavister and DMEM; Dulbecco 

modified Eagle medium) to FD solution and produced successfully live pubs (Wakayama & 

Yanagimachi 1998). On the other hand, Kusakabe et al. (2001) recommended the use of a 

solution composed from 10 mM Tris-HCl, 50 mM NaCl and 50 mM ethylene glycol-bis 

(β-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA) for FD of mouse sperm. During 

the process of FD or freezing without cryoprotectant, damaged plasma membrane released 

endonucleases which are responsible for DNA fragmentation (Kusakabe et al. 2001; 2008) 

and this enzymes are activated by divalent cation such as Ca2+ and Mg2+ (Sotolongo et al. 

2005). However, activation of the endonuclease will be inhibited by the addition of chelating 

agents such as EGTA to the FD buffer. The positive effect of EGTA continued to be 

demonstrated in other species including pigs (Nakai et al. 2007) and cattle (Martins et al. 2007).  
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Trehalose (α-D-glucopyranosyl α-D-glucopyranoside, molecular formula: 

C12H22O11.2H2O) is a non-reducing disaccharide formed by the linkage of two glucose 

molecules. It shows mild sweetness (45% sucrose), high solubility, low cariogenicity, low 

hygroscopicity, and high glass transition temperature, good stability during processing and 

storage and excellent protein protection properties. It is more widely applicable to food 

technology and biotechnology (Schiraldi et al. 2002). It was first described in the early 19th 

century as a component of the ergot of rye, later discovered in a great variety of species include 

the so-called “resurrection plant” (Selaginella lepidophylla), certain brine shrimps, nematodes 

and baker's yeast showing the incredible property of surviving for years to dehydration 

(reviewed by Schiraldi et al. 2002). 

In previous studies, trehalose has also proved effective in the cryopreservation of 

sperm (Eroglu et al. 2009; Hu et al. 2009; Kozdrovski 2009), oocytes (Eroglu et al. 2002), 

and stem cells (Gordon et al. 2001). The high glass transition temperature is one of the 

major advantages of this sugar compared with conventional cryoprotectants inculuding 

dimethyl sulfoxide (DMSO), ethylene glycol (EG) and propanol (PROH). In addition, 

mammalian cell membranes are practically impermeable to sugars; thus, it has been used 

as an extracellular additive (Eroglu et al. 2009). This property helps cells to minimize 

intracellular ice formation during cryopreservation which is one of the main reasons for 

reduced quality of frozen-thawed sperm.  

Besides, trehalose was also reported to have notable ability in stabilizing protein 

structure and bio-membrane in the dry state. Trehalose has multiple functions, and some of 

them are species-specific. The anhydrobitic organisms are able to tolerate the lack of water 

owing to their ability to synthesize large quantities of trehalose including plants, fungi, 

bacteria and invertebrate animals, and trehalose plays a key role in stabilizing membranes 

and other macromolecular assemblies under extreme environmental conditions 

(Higashiyama 2002). Moreover, in anhydrobiosis, every metabolic process is switched off, 

and then can be restored without any irreversible damage upon rehydration, thus, such 

organisms can survive for decades in the dry state. Nematodes, when dehydrated slowly, 

convert as much as 20% of their dry weight to trehalose, helping them survive 

dehydration (Crowe et al. 1992). The large amount accumulation of trehalose is restricted 

to some desiccation tolerant plants such as some ferns and the angiosperm Myrothamnus 

flabellifolia (Muller et al. 1995).  

Previously, trehalose was considered as a storage molecule, aiding the release of glucose 

for carrying out cellular functions but the role of trehalose has expanded up to now 
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(reviewed by Jain & Joy 2008). It is synthesized as a stress-responsive factor and help in 

retaining cellular integrity when cells are exposed to environmental stresses like heat, cold, 

oxidation and desiccation.  

However, studies in some anhydrobiotic organisms have indicated that the mechanism 

of desiccation tolerance involves not only sugars but also several osmolytes, non-enzymatic 

antioxidants and even protein (Crow et al. 2005). Understanding these mechanisms have 

many applications in cell biology because the elucidation of how anhydrobiotic organisms 

escape irreversible damage caused by dehydration can contribute to the understanding of the 

importance of water in maintaining the structural and functional integrity of  membranes and 

fully hydrated cells (Crowe et al. 1987). 

Inspired by these survival schemes in nature, many studies have been conducted on the 

protective effect of trehalose on different biomolecules, mainly proteins and membranes. 

Accumulating evidence suggests that trehalose is very effective for cells in preventing 

drought injury. It also may act as a free radical scavenger (Benaroudj 2001). Although, the 

exact mechanism mediates the protective effects of trehalose is not completely defined. 

Trehalose, even in small quantities, inhibits vesicles fusion completely and depresses the 

phase transition temperature of dry lipids, maintaining them in the liquid crystalline phase in 

the absence of water (Crowe et al. 1992). Because of its high hydration potential, trehalose 

may stabilize biological membranes and proteins in the dry state by hydrogen bonds of its 

hydroxyl groups to the polar groups of proteins and phosphate groups of membranes (Kawai 

et al. 1992). Moreover, trehalose has the tendency to form a protective glass-like structure 

that has a low reactivity, making it more stable than other disaccharides due to its 

non-reducing characteristic. In this hygroscopic glass-like structure, trehalose is extremely 

stable both at high temperature and when completely desiccated and may hold biomolecules 

in a form that allows them to return to their native structure and function following 

rehydration (Crowe & Crowe 2000). In fact, very labile proteins such phosphofructokinase 

which completely inactivates after dehydration, restores its complete (100%) activity when 

rehydrated following a FD process in the presence of trehalose, but only small (13% of the 

original) activity is restored if trehalose is replaced by glucose (Carpenter et al. 1987).  

Although trehalose has been used as a cryoprotectant for oocyte cryopreservation, but it 

is the most effective in stabilizing membranes in the dry state (Crowe et al. 1992). 

Remarkably, protective effect of trehalose is strongly enhanced when combined with late 

embryogenesis abundant (LEA) proteins – a protein first identified in land plant, originally 

discovered in the late stages of embryo development in plant seeds and their expression is 
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associated with desiccation tolerance in seeds and anhydrobiotic plants. LEA protein is 

expressed in eukaryotes, suggesting that mammalian cells may be protected by the same 

mechanisms although the path to lyophilization of larger organisms is not so straightforward 

(Hand et al. 2011).  

1.3. Intracytoplasmic sperm injection as a unique method for freeze-dried sperm  

ICSI is an advanced technique in which one single sperm is injected directly into an 

oocyte. Firstly, Uehara and Yanagimachi (1976) carried out successfully the microinjection 

of human and golden hamster sperm into hamster oocytes. Since then, ICSI has been used to 

generate live offspring of rabbits (Deng & Yang 2001; Hosoi et al. 1988), cattle (Goto et al. 

1990), humans (Palermo et al. 1992), mice (Kimura & Yanagimachi 1995), sheep (Catt et al. 

1996), horses (Cochran et al. 1998), cats (Pope et al. 1998), monkeys (Hewitson et al. 1999), 

pigs (in vivo matured oocytes, Martin 2000; in vitro matured oocyte, Nakai et al. 2003) and 

golden hamsters (Yamauchi et al. 2002). This technique has widely accepted in assisted 

reproductive technologies in human to overcome subfertility or infertility mainly caused by 

male factors. Heterologous ICSI could be a powerful tool to study human sperm 

functionality using pigs as the oocyte donor (Canovas et al. 2007). Interestingly, while direct 

sperm injection into human oocytes (ICSI) results in high fertilization, development and 

pregnancy rates, equivalent to those found with embryos produced by conventional IVF 

(Van Steirteghem et al. 1993); the outcomes of ICSI in domestic species are still low. On the 

other hand, ICSI has become the potential tool for the conservation of endangered species 

(Iritani 1991), for the propagation of livestock species with the high genetic merit and for the 

research of fertilization mechanisms.  

There are two areas where ICSI has already had a direct impact (Catt & Rhodes 

1995). One is direct propagation and the other is to test of X and Y sperm separation or sex 

sorted semen technique. First piglets were produced with the desired sex by intracytoplasmic 

injection of flowcytometrically sorted sperm (Probst & Rath 2003). In some cases, the 

semen can be unsuitable for artificial insemination or even IVF, but ICSI can be successfully 

used to generate embryos. For the sperm separation technique, sperm subjecting to 

procedures of flowcytometry could have low motility because of their susceptibility and low 

numbers because of technical restriction, ICSI can be used to overcome this limitation. 

Especially, immature sperm, sub-fertile sperm, epididymal sperm, testicular sperm and even 

only sperm head (Hamano et al. 1999; Nakai et al. 2003) can be used for ICSI (Anees 2008). 

Injection of a sperm head produced a blastocyst rate similar to injection of a whole 



10 
 

spermatozoon (Lee et al. 2004). This suggests that components of the sperm tail and 

mid-piece are not essential for fertilization and embryo development in the case of ICSI 

since isolated sperm heads contains a complete haploid set of chromosomes in their nucleus, 

the nucleus could fuse with female chromatin and develop into an embryo. Actually, healthy 

piglets were produced from ICSI of a sperm head in pigs (Nakai et al. 2003). 

ICSI is a procedure that bypasses not only the female reproductive tract but also 

sperm capacitation, acrosome reaction, zona pellucida penetration, and membrane fusion 

between gametes (Danan et al. 1999). Each of natural steps involved in fertilization may 

play an important role in the physiological control of reproduction. In natural fertilization 

process, a sperm head is penetrated into cytoplasm via zona pellucida with the absence of a 

mid-piece and a tail. However, ICSI allows the injection of either whole sperm or sperm 

head only into ooplasm with the same outcome. It is reported that the injection of isolated 

sperm head can still activate an oocyte and only the sperm head is critical for egg activation 

and subsequent embryonic development at least in mice (Kuretake et al. 1996; Kimura et al. 

1998). Although the sperm mid-piece with paternal mitochondria is introduced into the 

ooplasm by ICSI in case of whole sperm injection, the mitochondria of offsprings are 

inherited exclusively maternally (Danan et al. 1999), therefore, deficient mitochondria 

diseases from paternal origin will not be a troublesome when this technique is used. 

ICSI and xenografting of gonadal tissue into immunodeficient experimental animals 

combined with optimal in vitro embryo production (IVP) system have been expected to be 

useful for the conservation of gametes (oocyte, sperm) from important genetic resources 

(Kikuchi et al. 2008). ICSI using fresh xenogeneic sperm has generated live offsprings for 

the first time in rabbits (Shinohara et al. 2002) and pigs (Nakai et al. 2010). Xenogeneic 

transplantation into immunodeficient mice may become a crucial approach for the 

preservation of fertility in prepubertal male oncology patients and for studying 

spermatogenic failure in infertile men (Shinohara et al. 2002). However, the fact that 

immediate testis transplantation is not always possible, thus, testicular tissues may need to 

be stored until offspring production (Kaneko et al. 2013). Based on the fact, this researcher 

group used xenogeneic sperm obtained from immature pig testicular tissue after 

cryopreservation to produce successfully live piglets (Kaneko et al. 2013).  

Besides, sperm-mediated gene transfer through ICSI technique has been 

successfully utilized in mice, monkeys, cattles and pigs by binding exogenous DNA to 

sperm prior to the fertilization/injection (Perry 1999; Chan et al. 2000; Shemesh et al. 

2000; García-Vázquez et al. 2010).  
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It is reported that a high incidence of polyspermic penetration and a low incidence of 

male pronuclear formation have been observed repeatedly in porcine oocytes matured and 

fertilized in vitro (reviewed by Niwa et al. 1993; Coy & Romar 2002); ICSI is one 

alternative way for in vitro production of monospermic zygotes to solve polyspermy 

problem in IVF system. In addition, cryopreserved oocytes were also reported evidences of 

polyspermy by the early extrusion of cortical granules (Vincent et al. 1990) and zona 

pellucida hardening through premature cortical-granule release (Schalkoff et al. 1989) as a 

result, cryopreservation decreased fertilization ability by IVF. In these cases, ICSI would be 

a reasonable alternative. Last but not the least; if the sperm have lost their motility, ICSI is 

indispensable for fertilization to produce the next generation (Kikuchi et al. 2008). It is the 

unique method available to use immobile sperm such as round spermatid (Ogura et al. 1994; 

Hirabayashi et al. 2002) and freeze-dried sperm (Wakayama & Yanagimachi 1998). 

1.4. Improvements for in vitro production of porcine embryos  

Collection of oocytes or embryos from donor animals via surgery is time consuming and 

expensive, and numbers are limited. Alternatively, the efficient utilization of ovaries from 

slaughterhouse animals to generate mature oocytes and embryos via in vitro techniques is 

very important (Abeydeera 2002). Ovaries from slaughtered animals are the cheapest and 

the most abundant source of primary oocytes for large-scale production of embryos by IVP 

system. In vitro embryonic development depends on many factors: culture media, culture 

condition, physical manipulation, semen quality, oocyte quality. In general, the studies 

toward the improvements in IVP system have been designed based on these factors. In this 

study, I will focus on sperm factors and oocyte factors, treatments that have been attempted 

for sperm and oocytes in order to improve fertilization in particular and enhance the efficacy 

of IVP system in general. 

In vitro developmental competence of porcine in vitro matured and fertilized oocytes to 

the blastocyst stage and the birth of live piglets were first confirmed and reported (Mattioli et al. 

1989; Yoshida et al. 1993b; Kikuchi et al. 2002a). These achievements paved the way for 

further research in order to improve intensively IVP of porcine embryos, serve for basic and 

applied research. However, IVP system in pigs is still poor compared to in vivo counterpart 

(Kikuchi et al. 1999) as well as comparing to in vitro development of other species such as cattle 

or mice. This slows down the progress of other reproductive techniques such as embryo transfer 

(ET) and establishment of embryonic stem cells because these techniques depend on the 

blastocyst yield and quality as the material source. 
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Indeed, various modifications to IVP system have been attempted with significant 

findings, starting from in vitro maturation (IVM). IVM of oocyte is a critical component of 

IVP system. The immature oocytes collected from ovaries at slaughterhouse are subject to in 

vitro maturation from the germinal versicle (GV) stage to the metaphase-II (M-II) stage and 

ready for fertilization and subsequent development. The oocyte quality directly influences 

on the outcome of IVP. Many studies have been conducted to enhance oocyte quality after 

IVM as well as to improve the effectiveness of IVM. For example, in order to increase 

maturation rate and developmental ability, selection of oocytes based on morphological 

criteria, the modification of culture media, the supplementation of hormones (LH, FSH, 

PMSG, hCG and so on) or some substances (cysteine, cysteamine, vitamins, porcine 

follicular fluid (pFF), serum and so on) into IVM media has been investigated intensively in 

the literature until now. Nuclear maturation of oocyte along with cytoplasmic maturation is 

important for the completion of meiotic division for the success of fertilization. Nuclear 

maturation can be determined visually by the extrusion of the first polar body (PB). 

However, nuclear maturation is not a prerequisite determinant of oocyte developmental 

potential. Inadequate cytoplasmic maturation of in vitro matured oocytes and/or suboptimal 

embryo culture condition may be responsible for poor embryo quality (Abeydeera 2002). 

Unfortunately, indicators for cytoplasmic maturation are unable to be accessed by vision. 

For examples, oocyte glutathione content is considered as an indicator of cytoplasmic 

maturation of oocytes (Funahashi et al. 1994) but not visually inspected. The oocytes with 

full cytoplasmic maturity can only be determined after fertilization by the presence of a male 

PN, a female PN and two PBs. In the efforts to improve the cytoplasmic maturation of in 

vitro matured oocytes, various meiotic inhibitors (roscovitine-Coy et al. 2005; butyrolactone 

I and cycloheximide-Marques et al. 2007) have been used for porcine oocytes which maintain 

the oocyte at the germinal vesicle stage, trying to mimic the in vivo conditions of the follicles, 

and increase the cytoplasmic maturation period.  

Recently, assessment of oocyte quality and maturity based on molecular markers has 

become more important. It is reported that genes involved in metabolism such as nucleotide, 

carbonhydrate and protein metabolism were reported to be decreased in prepubertal female 

derived porcine oocytes (ovaries without corpora lutea) compared with the oocytes derived 

from cyclic females (Paczkowski et al. 2011). The importance of metabolism in oocyte 

maturation and the relationship between metabolic rates and developmental competence 

were well-documented in previous studies (Krisher & Bavister 1999; Preis et al. 2005). 

Therefore, compromised developmental competence of in vitro vs. in vivo mature oocytes 
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and prepubertal vs. cyclic derived oocytes is attributed to the non-fulfillment of metabolic 

requirement for fertilization and embryo development. The next key objective toward 

achieving more efficient IVM will be to establish the molecular determinants/markers of 

oocyte quality (Lee et al. 2008).  

Regarding to sperm factors, in fact, differences in sperm treatments prior to ICSI may 

result in different amount of damages to sperm membrane and thereby affect the calcium 

oscillation, oocyte activation and PN formation after ICSI (Yanagida et al. 1997; Morozumi 

et al. 2006). In order to improve PN formation following ICSI of porcine and bovine oocytes, 

various pretreatments have been attempted, including immobilizing sperm and damaging the 

sperm membrane by repeated freezing and thawing without cryoprotectants (Kolbe & Holtz 

1999; Katayama et al. 2002b; Tian et al. 2006), treatment with Triton-X 100 (TX), for 

removing sperm plasma and acrosomal membrane (Lee & Yang 2004; Tian et al. 2006), 

using dithiothreitol (DTT) to reduce disulfide bonds (Rho et al. 1998; Suttner et al. 2000) 

and induce in vitro decondensation of the sperm nuclei (Katayose 1992; Nakai et al. 2006). 

Besides, pretreating sperm with calcium ionophore (Nakai et al. 2003) or with progesterone 

(Katayama et al. 2002b) to have acrosome-reacted sperm for the injection also have been 

applied to improve the efficiency of ICSI in pigs. In cattle, efficiency of ICSI can be 

improved by sperm pretreatment with DTT and by oocyte activation with ionomycin plus 

6-dimethylaminopurine (6-DMAP), although the developmental capacity of the resulting 

embryos remains limited (Rho et al. 1998). However, according to results of Nakai et al. 

(2006), pretreatment of boar sperm with TX and DTT shifted up the timing of sperm nuclear 

decondensation but did not improve the development to the pronuclear and blastocyst stage 

in vitro. 

After sperm penetration, the sperm undergoes chromatin decondensation, nuclear 

enlarging and pronuclear formation. Remodeling of sperm nuclei requires the reduction of 

disulfide bonds (S–S) regulated by ooplasmic glutathione (Perreault et al. 1987; 1988, 

Yoshida et al. 1993a) and replacement of protamines by histones, a necessary change to 

render the sperm nucleus transcriptionally active (Yanagimachi 1994) to form successfully a 

male PN. Concomitantly, the maternal genome is also modified and prepared for integration 

with the paternal genome. 

Regarding to oocyte factors, previous studies suggested that induction of oocyte 

activation was one of the most important factors for male PN formation in ICSI-oocytes 

(Nakai et al. 2006; Lee et al. 2003). In mice (Kimura & Yanagimachi 1995, Kuretake et al. 

1996), hamsters (Hoshi et al. 1992), human (Tesarik & Sousa 1995) and rabbits (Keefer 
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1989), ICSI alone is sufficient to activate oocytes for embryonic development. However, in 

pigs, artificial oocyte activation is considered essential for successful ICSI (Lee et al. 2003; 

Nakai et al. 2006). Numerous procedures have been developed to artificially activate 

oocytes, mimicking the pattern of calcium oscillation after sperm penetration in 

physiological fertilization process directly or indirectly. These procedures consist of 

mechanical (Macháty et al. 1996), chemical (Ca2+ ionophore, Kline & Kline 1992; Nakai et 

al. 2003; Ito et al. 2004, ionomycin, Cibelli et al, 1998, ethanol, Presicce & Yang 1994, 

strontium chloride, Wakayama et al. 1998) and electrical stimuli, in which activation by 

electric pulse after sperm injection has been considered as an indispensible step in IVP 

system in some laboratories (pig, Nakai et al. 2003; 2006; 2007, 2010; Lee et al. 2003; rabbit, 

Zhou et al. 2013; cattle, Hwang et al. 2000). However, there are still inconsistent data about 

effect of electric stimulation on efficacy of oocyte activation, fertilization and subsequent 

development. Kim et al. (1999) showed that electrical stimulation following sperm injection 

did not enhance the incidence of male PN formation or pronuclear apposition compared with 

sperm injection alone. In contrast, the improved fertilization rate (Lai et al. 2001; Lee et al. 

2003) and blastocyst formation rate (Lai et al. 2001; Lee et al. 2003; Nakai et al. 2006) were 

reported in vitro matured porcine oocytes subject to electric stimulus after intracytoplasmic 

injection of frozen-thawed sperm.  

Porcine oocytes are characterized by a dark, granulated ooplasm due to its high lipid 

content and thus, considered more difficult to manipulate than other species such as human, 

mice. Oocyte/embryo centrifugation facilitates the observation of sperm release from pipette 

into ooplasm in ICSI method (in bovine, Rho et al. 1998; in pig, Lai et al. 2001) or the 

visibility of nuclear elements such as GVs, metaphase spindle or PNs or other internal 

organelles in other micromanipulation techniques in pigs (Wall et al. 1985; Yong et al. 2005) 

and in bovine (Wall et al. 1988; Tatham et al. 1996). It was reported that the centrifugation of 

bovine, porcine and murine zygotes does not affect the subsequent development (Wall et al. 

1985; Chung et al. 2001). It has been recognized to have potential applications in 

microinjection of DNA into zygotes in rabbits, sheep, mice and pigs (Hammer et al. 1985; 

Brinster et al. 1986). 

1.5. Activation mechanisms of expression of DNA repair genes in oocytes 

DNA integrity of a cell is threatened from three sides (Hoeijmakers 2009). Firstly, 

spontaneous reactions (mostly hydrolysis) intrinsic to the chemical nature of DNA in 

anaqueous solution create abasic sites and cause deamination (Lindahl et al. 1993). Secondly, 
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metabolism generates reactive oxygen and nitrogen species, lipid peroxidation products, 

endogenous alkylating agents, estrogen and cholesterol metabolites, and reactive carbonyl 

species (De Bont & van Larebeke, 2004), all of which damage DNA. Thirdly, DNA is 

damaged by exogenous physical and chemical agents, but this damage to some extent is 

avoidable. DNA damage includes single stranded breaks (SSBs) and double stranded breaks 

(DSBs).  

DSBs arise from endogenous processes including reactive oxygen species generated 

during cellular metabolism, collapsed replication forks, and nucleases; and from exogenous 

agents including ionizing radiation and chemicals that directly or indirectly damage DNA, 

and can be repaired by non-homologous end-joining (NHEJ) and homologous 

recombination (HR), and defects in these pathways cause genome instability and promote 

tumorigenesis (Shrivastav et al. 2008). NHEJ and HR repair various types of double strand 

breaks. NHEJ simply brings two ends together, but bases may be lost or added. This 

inaccurate process takes place mostly before replication, in the absence of an identical copy 

of DNA. After replication, HR, acting through a series of complex DNA transactions, uses 

the identical sister chromatid to properly align the broken ends and unerringly insert missing 

information (Shrivastav et al. 2008).  

DNA repair activities are extremely important because unrepaired DNA damage has 

the risks to be mutagenic, cytotoxic and carcinogenic or lead to apoptosis, necrosis or other 

forms of cell death. The components of the DNA repair system act in three levels: (1) 

arresting the cell cycle to allow time for DNA repair; (2) triggering the signal transduction 

events to activate the repair components; and (3) directly reversing, excising or tolerating 

DNA damage via constitutive and induced activities (Begley & Samson 2004).  

Oocyte quality is strongly associated with advanced reproductive age. Some studies 

have indicated differential gene expressions between younger and older oocytes in human 

(Steuerwald et al. 2007; Grondahl et al. 2010) and mouse (Hamatani et al. 2004b; Pan et al. 

2008). Age affects the expression of genes responsible for cell cycle regulation, cytoskeletal 

structure, energy pathways, transcription control, and stress responses (Steuerwald et al. 

2007) in human oocytes. Compromised DNA repair has also associated with accelerated 

oocyte aging. The G1 phase of the first cell cycle also represents the first opportunity for the 

repair of DNA lesions. The early steps in preimplantation development including maturation, 

fertilization, and onset of first cleavage, activation of the embryonic genome, compaction, 

and blastocyst formation can be affected by the culture media and conditions. Microarray 

technologies were efficiently applied to humans and to mice to identify the differences in 
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developmental ability between in vitro versus in vivo matured oocytes (Jones et al. 2008; 

Pan et al. 2005).  

DNA repair gene expression was investigated in human oocytes and blastocysts to 

identify the pathways involved at these stages and to detect potential differences in DNA 

repair mechanisms of pre- and postembryonic genome activation (EGA) (Jaroudi et al. 

2009). Large numbers of repair genes were detected indicating that all DNA repair pathways 

are potentially functional in human oocytes and blastocysts. Expression levels of DNA 

repair genes at the pre- and post-EGA transcriptional level suggest differences in DNA 

repair mechanisms at these developmental stages (Jaroudi et al. 2009). However, the 

elucidation of complex mechanisms of DNA repair system remains a challenge (Begley & 

Samson 2004). 

Problem description 

A progressive loss of biodiversity is occurring at an unprecedented pace (Loi et al. 2013). 

Not only wildlife, even domestic animals are disappearing and being replaced by a smaller 

number of more productive animals. For this reason, the establishment, regulation, and 

management of biological resources from natural habitats for ex situ conservation purposes 

are emergent demands (Loi et al. 2013). Dry storage would greatly simplify the 

establishment and management of biobanks; minimize the environmental costs arising from 

the production and use of LN and other activities for maintenance of facilities of 

cryopreservation system, especially in developing countries. Stored genomes may 

regenerate future generations of the endangered or extinct animals, or may be used to expand 

animal populations through somatic cell nuclear transfer (SCNT). 

It was demonstrated that sperm containing damaged DNA are able to penetrate the oocyte 

and fertilize it but the DNA fragmentation in sperm distinctly negatively influences the results 

of assisted reproduction (Henkel et al. 2004). Similarly, there was a negative correlation 

between the percentage of sperm with fragmented DNA and fertilization rates in IVF (Sun et 

al. 1997) and ICSI (Lopes et al. 1998; Sakkas et al. 1996). DNA damage leads to the failure of 

fertilization if sperm containing fragmented DNA are selected for injection (Lopes et al. 

1998). For freeze-dried sperm, fragmentation of DNA decreased the developmental ability 

of the sperm-injected oocytes (Nakai et al. 2007). Defects in the structure of chromatin can 

severely reduce fertility and early embryo development, increase spontaneous abortions as 

well as birth defects (Evenson et al. 1980; Cordelli et al. 2005). The maintenance of DNA 

integrity during FD procedures and storage, thus, is extremely important.  
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Although embryo development up to the blastocyst stage is possible by in vitro culture, 

the ultimate test of embryonic viability is to establish pregnancies and live births following 

transfer into recipients. To date, the ability of porcine oocytes fertilized by ICSI with 

freeze-dried sperm to be implanted, sustain a pregnancy and develop into offsprings has not 

been demonstrated in the literature although the offsprings of laboratory animals such as 

mouse, rabbit and rat have been generated successfully quite long time ago (mouse, 

Wakayama & Yanagimachi 1998; rabbit, Liu et al. 2004; rat, Hirabayashi et al. 2005). 

Major objectives of the study  

Sperm DNA is the most important molecule to ensure normal fertilization and 

subsequent development. FD preservation without LN is one of the great benefits for 

gene-bank establishment. Minimizing sperm DNA damage during FD procedure is 

extremely important for any purposes of sperm usage. 

This thesis focused on how to improve the DNA integrity of freeze-dried boar sperm in 

Chapter II; then, hypothesis testing about the relationship between DNA damage in 

freeze-dried sperm and the expression of DNA repair genes in oocytes injected with those 

sperm was conducted in experiments of Chapter III. The effect of some treatments for sperm 

and oocyte to improve the efficacy of in vitro porcine embryonic production following ICSI 

using freeze-dried sperm were investigated in Chapters IV and V. And finally, we have tried 

to produce live piglets from freeze-dried sperm by embryo transfer into recipients in Chapter 

VI. The general aims of this research were to expand basic knowledge of FD associated 

sperm DNA damage in pigs and to improve the efficacy of FD preservation. 
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Table 1. Achievements in freeze-drying preservation of mammalian sperm 

Species Highest achievements References Published year 

Mouse 

Live offspring 

 

 

Wakayama & 

Yanagimachi 

Kusakube et al. 

Kaneko et al. 

Ward et al. 

1998 

2001 

2003 

2003 

Rabbit Live offspring Liu et al. 2004 

Rat 

Live offspring 

 

 

(heat-dried sperm) 

Hirabayashi et al. 

Kaneko et al. 

Hochi et al. 

Lee et al. 

2005 

2007 

2008 

2013 

Hamster Live offspring Muneto et al. 2011 

Horse Live offspring Choi et al. 2011 

Cattle Blastocyst 

Keskintepe et al. 

Martins et al. 

Hara et al. 

2002 

2007 

2011 

Pig 
Blastocyst and 

pregnancy 

Kwon et al. 

Nakai et al. 

2004 

2007 

Monkey Pronuclear zygote Sanchez-Partida et al. 2008 
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Chapter II 

Effect of trehalose on DNA integrity of freeze-dried boar sperm, 

fertilization, and embryo development after intracytoplasmic sperm 

injection 

 

Introduction 

Cryopreserved boar sperm have been commercially available since 1975 (Johnson & 

Larsson, 1985). The ultimate goal of semen preservation is to achieve, using artificial 

insemination, a pregnancy rate equivalent to that after natural mating. Although 

cryopreservation of sperm has approached to achieve this goal, certain disadvantages with 

this approach still exist, for example, the need for a constant replacement supply of liquid 

nitrogen (LN) for storage, the expense of long-term storage using LN, difficulties with 

international transportation, and the effects of unexpected disasters. Therefore, cheaper and 

safer solutions for long-term storage of sperm have been sought (Wakayama & 

Yanagimachi 1998), among which preservation by FD without LN has been a focus of 

attention. It is believed that sometime in the future it will be possible to store freeze-dried 

sperm indefinitely at ambient temperature and to ship it all over the world without the need 

for dry ice or LN (Kusakabe et al. 2008). If the DNA integrity of the sperm nucleus could be 

maintained, embryos could be generated by ICSI technique using severely damaged sperm 

that are no longer capable of normal physiological activity (Kusakabe et al. 2001). 

Interestingly, damage to the sperm plasma membrane appears to facilitate oocyte 

activation rather than the case for membrane-intact sperm (Morozumi et al. 2006), especially 

in species such as cattle and pigs, their sperm have stable membranes. However, Nakai et al. 

(2006) have reported in pigs that development to the pronuclear and blastocyst stages after 

ICSI in vitro was not improved even by pretreatment of sperm with 1% Triton X-100 and 

5mM dithiothreitol to remove the plasma membrane and promote decondensation of sperm 

chromatin. More importantly, even if the chromatin organization in somatic cells is 

extremely vulnerable to combined osmotic/dehydration stress during the FD process (Loi et 

al. 2008), sperm cells in which the chromatin is extremely condensed due to cross-linked 

disulfide bonds of protamines may be much more resistant to potentially damaging agents. 

Because of this prevailing property, efforts to preserve sperm by FD may hold promise for 

conservation of animal genetic resources. A combination of FD and ICSI might facilitate 

such an approach, especially for precious and endangered breeds. 
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Although ICSI in human oocytes results in high rates of successful fertilization, 

yielding a pregnancy rate equivalent to that of conventional IVF (Van Steirteghem et al. 

1993), the outcome of ICSI in domestic species is still low. Successful production of viable 

piglets after ICSI using in vivo matured (Kolbe & Holtz 2000; Martin 2000) and in vitro 

matured oocytes (Nakai et al. 2003) has been reported. However, when freeze-dried boar 

sperm is used, the outcome of ICSI is still poor in terms of fertilization and blastocyst 

formation (Kwon et al. 2004). Generation of offspring using freeze-dried sperm has been 

achieved in experimental animals (mouse, Wakayama & Yanagimachi 1998; rabbit, Liu et al. 

2004; rat, Hirabayashi et al. 2005) but not in large domestic animals. So far, no healthy 

piglets, only 39 days fetuses of gestation, have been produced after transfer to recipients 

(Nakai et al. 2007). The reasons(s) for this poor developmental competence is unclear; 

however, during the FD procedure, DNA in the sperm head might become further damaged 

by both freezing and drying stresses in comparison with cryopreserved sperm after 

conventional freezing. Therefore, it is important to identify the strategies that would reduce 

damage to sperm DNA.  

There have been several attempts to reduce DNA damage during FD procedures. 

Sperm endonucleases are released from plasma membrane-damaged sperm during FD or 

freezing without a cryoprotectant and these can be activated by divalent cations such as Ca2+ 

and Mg2+ (Sotolongo et al. 2005). Studies using mice (Kusakabe et al. 2001) and pigs (Nakai 

et al. 2007) have reported that when ethylene glycol-bis (2-aminoethylether) -N,N,N’,N’- 

tetraacetic acid (EGTA), as a typical chelating agent, is added to FD medium, Ca2+ is 

chelated, thus protecting sperm DNA from degradation. Trehalose is a non-reducing 

disaccharide exhibiting a high glass transition temperature and stability during processing 

and storage and is capable of stabilizing and protecting membranes and proteins under 

extreme environmental conditions, allowing anhydrobiotic organisms to survive cycles of 

dehydration-rehydration (reviewed by Jain & Roy 2008). The natural process by which 

trehalose helps anhydrobiotic organisms to survive dehydration (Crowe et al. 1992) has 

attracted a lot of interest with regard to its potential role in protecting biomolecules, 

including sperm DNA. Application of this reagent to the FD procedure is also expected; so 

far, however, there have been no detailed reports about the effects of EGTA combined with 

trehalose in FD medium on sperm DNA integrity, IVF, and subsequent development of 

ICSI-oocytes in pigs.  

The objective of this Chapter was to clarify whether trehalose would improve the 

DNA integrity of freeze-dried boar sperm in combination with EGTA and also to assess its 
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effect on IVP following ICSI using the freeze-dried sperm. The integrity of DNA in a male 

PN in zygotes was also examined by immunostaining of histone H2A.X phosphorylated at 

serine 139 (γH2A.X), which is a marker of DNA double-strand breaks (DSBs) responsible 

for serious damages affecting fertilization and subsequent development (Enciso et al. 2009). 

 

Materials and Methods 

Chemicals and media 

All chemicals were purchased from Sigma-Aldrich (St. Louis, USA), unless 

otherwise stated. The FD medium contained 10 mM Tris-HCl buffer supplemented with 50 

mM EGTA (346-01312; Dojindo Laboratories, Kumamoto, Japan) and is referred to as basic 

FD medium hereafter. This medium was then supplemented with different concentrations of 

trehalose (T0167; 0 as the control, 3.75, 7.5, 15, 30, 60 and 90 mM) and also NaCl (50, 47.5, 

45, 40, 33.3, 16.7, and 0 mM, respectively). The pH and osmolality of the final solutions 

were adjusted to 8.0 to 8.5 and 265 to 270 mOsm/kg, respectively, and then they were 

filtered and stored at 4 °C. These media were prepared from stock solutions of 1.0 M 

Tris-HCl, 250 mM EGTA, 1.0 M trehalose and 1.0 M NaCl.  

The maturation medium was modified North Carolina State University (NCSU)-37 

solution containing 10% (v/v) porcine follicular fluid, 0.6 mM cysteine, 50 mM 

β-mercaptoethanol, 1 mM dibutyl cAMP, 10 IU/mL eCG (Serotropin; ASKA 

Pharmaceutical Co. Ltd., Tokyo, Japan) and 10 IU/mL hCG (Puberogen 500 units, Novartis 

Animal Health, Tokyo, Japan) (Kikuchi et al. 2002a). Two media were used for IVC of 

sperm-injected oocytes: the first one was modified NCSU-37 supplemented with 0.17 mM 

sodium pyruvate, 2.73 mM sodium lactate, 4 mg/mL bovine serum albumin (BSA), 50 mM 

β-mercaptoethanol (IVC-PyrLac), and the second one was modified NCSU-37 

supplemented with 5.55 mM glucose (IVC-Glu) (Kikuchi et al. 2002a). The osmolality of 

these media was adjusted to 285 mOsm/kg. 

Sperm collection and FD 

Ejaculated semen was collected from a Landrace boar and transferred to the 

laboratory within 1 h. After determination of the sperm concentration, the semen was 

centrifuged for 10 min at 900 × g at 30°C and the seminal plasma was removed by aspiration 

of the supernatant. The pellet were resuspended in FD medium containing different 

concentrations of trehalose prewarmed to 30°C, and the supernatant was removed after 
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centrifugation. The final pellet was resuspended again in FD media containing different 

concentrations of trehalose (0, 3.75, 7.5, 15, 30, 60, and 90 mM) to obtain a final 

concentration of 4 × 108 cells/mL (control, 3.75, 7.5, 15, 30, 60, and 90 mM groups, 

respectively). One milliliter of sperm suspension from each group was placed into an 

individual glass vial (5-mL glass vial, Maruemu Corporation, Tokyo, Japan). The vials were 

covered with aluminum foil and placed in a refrigerator at −80°C for at least 4 h. The 

aluminum foil was removed, and a rubber cap (Maruemu Corporation, Tokyo, Japan) was 

placed on the vial, enabling passage of the air through small gaps between the cap and vial 

containing the specimens, and then they were placed in an FD system (FTS systems 

DuraDry µP, SP Scientific, Warminster, PA, USA). The FD program was as follows: 

specimens were dried primarily for 19 h at 0.13 hPa and secondarily for 3 h at 0.13 hPa. 

During the process of primary drying, the shelf temperature was controlled at −30°C and 

then increased to 30°C during the last 1 h 20 min (0.75°C/min). After flushing with inactive 

N2 gas, the vials were sealed with rubber caps and further fastened with aluminum caps 

(Maruemu Corporation, Tokyo, Japan) using a crimping tool. The freeze-dried samples were 

transferred to a refrigerator at 4°C and stored under dark conditions until the time of 

experiments. 

Rehydration of freeze-dried spermatozoa 

For rehydration, the same volume (1 mL) of deionization distilled water was added 

to vials immediately after opening the rubber and aluminum caps using a decapper. The 

sperm suspension was centrifuged for 2 min at 600 × g and the supernatant was removed. 

The sperm pellet was resuspended and diluted in PBS (−) to a final concentration of 3 × 106 

cells/mL. DNA damage was detected in all groups using a Halomax kit (Sperm-Halomax for 

analysis in Sus scrofa sperm, Halotech DNA SL, Tres Cantos, Madrid, Spain) modified from 

the sperm chromatin dispersion test (Fernández et al. 2005). 

Halomax kit for detecting sperm DNA fragmentation 

Firstly, the lysis solution was allowed to reach room temperature (22°C). Then, a 

plastic tube containing agarose (supplied in a kit) was placed in a water bath at 90°C to 

100°C for 5 min or until the agarose had fully melted, and then equilibrated in a water bath at 

37°C for 5 min. Meanwhile, 25 µL of each diluted sperm sample was added to an empty tube, 

and 50 µL of liquefied agarose was then added followed by gentle mixing, and the 

temperature of the tubes was maintained at 37°C. Then, 2 µL of the mix was placed in drop 

form onto marked wells and each drop was covered with an 18 × 18 mm glass coverslip. The 
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slides were held in a horizontal position throughout the entire process. The slides were 

placed on a cold surface precooled at 4°C in a refrigerator for 5 min to solidify the agarose 

and to produce a thin microgel. The coverslips were gently removed and the slides were fully 

immersed horizontally in lysis solution for 5 min to remove the sperm membrane and 

partially deproteinize the nuclei. After washing for 5 min in a tray containing an excess of 

distilled water, the slides were dehydrated in increasing concentrations of ethanol (70% and 

100% for 2 min each), air-dried, and immediately observed or stored at room temperature in 

tightly closed dark boxes. The slides were stained using a mixture of 5 µg/mL Hoechst 

33342 and DABCO antifade mounting medium (1:1) just before observation by 

fluorescence microscopy. Additionally, all sperm images in each group were captured on the 

same day, under the same conditions, using a CCD camera (CoolSNAP CF; Roper Scientific, 

USA) connected to RS Image as the operating software (Roper Scientific). Freshly 

ejaculated sperm without FD was used as the control. These images were converted to 

measurable format using Photoshop (version 5.0, Adobe Systems Incorporated, San Jose, 

CA, USA), and then ImageJ (version 1.41, National Institutes of Health, Bethesda, MD, 

USA) was used to measure the area of both the DNA dispersion halo and the sperm head (not 

including the tail), referred to as the “DNA dispersion halo” hereafter. Only a single 

spermatozoon was measured, and overlapped ones were avoided. Sperm located close to a 

dark background were excluded. The area of the DNA dispersion halo was measured in 

terms of pixels. 

Oocyte collection and IVM 

Oocyte collection and IVM were conducted as described (Kikuchi et al. 2002a). 

Briefly, ovaries were obtained from prepubertal crossbred gilts (Landrace × Large White × 

Duroc breeds) at a local slaughterhouse and transported to the laboratory at 35°C. 

Cumulus-oocyte complexes (COCs) were collected from follicles 2-6 mm in diameter in 

Medium 199 (with Hanks' salts) supplemented with 10% (v/v) fetal bovine serum (Gibco, 

Life Technologies Corporation, Grand Island, NY, USA), 20 mM Hepes (Dojindo), 100 

IU/mL penicillin G potassium, and 0.1 mg/mL streptomycin sulfate. About 40 to 50 COCs 

were cultured in 500 µL of maturation medium for 20-22 h in four-well dishes (Nunclon 

Multidishes; Kamstrupvej, Roskilde, Denmark). The COCs were subsequently cultured for 

24 h in maturation medium without dibutyl cAMP and hormones. IVM was carried out at 

39°C under conditions in which CO2, O2, and N2 were adjusted to 5%, 5%, and 90%, 

respectively. After IVM, the cumulus cells were removed from the oocytes by repeated 
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pipetting in Medium-199 in air supplemented with 150 IU/mL hyaluronidase. Denuded 

oocytes with the first polar body (PB) were harvested under a stereomicroscope and used as 

IVM oocytes. 

ICSI and oocyte stimulation 

Freeze-dried sperm were rehydrated with 1 mL deionization water and 

centrifugation for 2 min at 600 × g and then the supernatant was removed. The sperm pellet 

was resuspended in PBS (−) with 5 mg/mL BSA and kept at room temperature for no longer 

than 2 h during ICSI, which was carried out as described (Nakai et al. 2003; Nakai et al. 

2006; Nakai et al. 2010) with minor modifications. Briefly, the basic medium for sperm 

treatment was IVC-PyrLac supplemented with 20 mM Hepes and 4% (w/v) 

polyvinylpyrrolidone (MW 360,000) (IVC-PyrLac-Hepes-PVP). About 20 IVM oocytes 

were transferred to a 20-µL drop of Medium 199 (with Hanks’ salts). The solution 

containing the oocytes was placed on the cover of a plastic dish (Falcon 35-1005; Becton 

Dickinson and Company, Franklin Lakes, NJ, USA). A small volume (0.5 µL) of the sperm 

suspension was transferred to a 2-µL drop of IVC-PyrLac-Hepes-PVP, which was prepared 

close to the drops containing the oocytes. All drops were covered with paraffin oil (Paraffin 

Liquid; Nacalai Tesque, Inc., Kyoto, Japan). A single sperm in the suspension was aspirated 

from its tail into the injection pipette, and the pipette was moved to the drop containing the 

oocyte. The sperm was injected into the ooplasm using a piezo-actuated micromanipulator 

(PMAS-CT150; Prime Tech Ltd., Tsuchiura, Japan). This process was repeated until all the 

oocytes in the droplet had been injected. ICSI was completed within 2 h after rehydration of 

freeze-dried sperm, and sperm-injected oocytes were recovered in IVC-PyrLac for 1 h 

before electrical activation. As control groups, IVM oocytes were injected with a small 

amount of injection solution without sperm (sham-injection group) or injected with 

ejaculated sperm (fresh sperm group). One hour after the injection, the oocytes in all groups 

were separately transferred to an activation solution consisting of 0.28 M d-mannitol, 0.05 

mM CaCl2, 0.1 mM MgSO4 and 0.1 mg/mL BSA. Once the oocytes were sunk down on the 

bottom of the drop, they were then stimulated with a direct current pulse of 1.5 kV/cm for 20 

µs under the same condition using a somatic hybridizer (SSH-10; Shimadzu, Kyoto, Japan), 

then washed three times and cultured in IVC-PyrLac. 
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IVC of sperm-injected oocytes 

Sperm-injected oocytes after electrical stimulation were cultured in vitro in 

IVC-PyrLac for 48 h and then transferred to IVC-Glu for subsequent culture for 144 h (6 

days) at 38.5°C under 5% O2. 

DNase I treatment 

Sperm treated with DNase I to induce purposely the DNA damage was used as a 

control group according to Villani et al. (2010) with some modification. Briefly, freeze-dried 

sperm was rehydrated and centrifuged to remove supernatant. Sperm pellet was resuspended 

for 2 min in a permeabilizing solution consisting 0.1% sodium citrate and 0.1% Triton 

X-100 and digested for 60 min at room temperature with 1000 IU/mL of DNase I (2000 

IU/mg, Roche Diagnostics) in PBS with 5 mM MgCl2. To stop the activation of DNase I, 50 

mM EDTA was added to the sperm suspension and incubated for 2 min. The mixture was 

then centrifuged and resuspended in PBS-BSA twice to remove supernatant before injection 

to the matured oocytes. 

Immunofluorescence staining 

Freeze-dried sperm-injected oocytes were stained for γH2A.X to assess the DSBs 

level among groups. Freeze-dried sperm treated with DNase I was used as positive control. 

The immunostaining were carried out mainly according to the procedures of Somfai et al. 

(2011) with some modification. Briefly, pronuclear stage oocytes at 10 h after injection were 

fixed in 4% paraformaldehyde in PBS for at least 60 min, washed twice in PBS with 0.2% 

Triton X-100, and incubated in permeabilizing blocking solution PBS (−) with 5 mg/mL 

BSA and 0.2% Triton X-100 overnight at 4°C. They were then washed twice with the 

medium and incubated with the primary antibody, anti-phospho-histone H2A.X (Ser 139) 

raised in mice (1: 250 dilution, Clone JBW301, Millipore) at 37°C for 2 h. After the embryos 

were washed twice in PBS with 0.2% Triton X-100, they were incubated with 

Alexa-Flour-488-conjugated anti-mouse secondary antibody (1: 200 dilution, Molecule 

Probe) at 37°C for 1 h in dark. For negative control group, some oocytes were stained with 

secondary antibody without primary antibody incubation. The embryos were briefly washed 

twice and stained with Hoechst 33342 and DABCO (1:1) for several minutes and mounted 

on glass slides and observed under fluorescent microscope. 
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Fertilization assessment 

Some oocytes were taken out from the culture medium at 10 h after injection and 

fixed in fixative solution with a 1:3 mixture of acetic acid: ethanol (v/v) under 

vaseline-supported coverslips for several days. The oocytes were stained with 1% (w/v) 

orcein in 45% (v/v) acetic acid for several minutes, and then their fertilization status was 

examined using phase-contrast microscopy. 

Assessment of embryonic development 

The injected oocytes cultured for 6 days were mounted on glass slides, fixed, and 

stained using the same procedures as described above. The proportion of oocytes developing 

to blastocysts and the mean number of cells in each blastocyst were counted in all groups. In 

this study, only embryos with a clear blastocoel were considered to be blastocysts. 

Statistical analysis 

Data were expressed as mean ± SEM. The percentage data were arcsine-transformed 

(Snedecor & Cochran 1989), then subjected to ANOVA using the general linear model 

procedure and analyzed by Tukey's multiple range test (version 9.3; Statistical Analysis 

System Institute, Cary, NC, USA). Differences were considered significant at P<0.05. 

Results 

DNA damage in freeze-dried boar sperm 

After rehydration, stereomicroscopic observations revealed that there were no 

differences in morphological change of the sperm among all groups (Fig. 1). The sperm tail 

was not separated from the sperm head after FD procedure and rehydration. Use of the 

Halomax kit yielded clear figures reflecting the DNA fragmentation in each sperm head (Fig. 

2). The bigger size of halos indicates the more accelerated level of DNA fragmentation 

(arrow in Fig. 2b and 2e). The measurements of halo area (pixels) reflecting freeze-dried 

sperm fragmentation in different concentrations of trehalose are summarized in Fig. 3. When 

trehalose was added to FD medium at different concentrations, the results indicated that the 

protective effect of trehalose against DNA damage was dependent on its concentration. The 

DNA damage levels in the 7.5 and 15 mM groups were significantly lower than those in the 

control (0 mM) group (P<0.05). However, the halos were increased in size after treatment 

with higher concentrations (30, 60, and 90 mM), and were not different from that in the 

control group. DNA damage level of fresh sperm group was significantly lower than those of 
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the freeze-dried sperm groups (P<0.05). Within the trehalose concentrations tested, the 

sperm DNA fragmentation level was lowest in the 15 mM group; however, the level was not 

different from that in the 7.5 mM group. Therefore, freeze-dried sperm in these groups and 

also control group were used for injection into IVM oocytes for examination of in vitro 

subsequent developmental competence in Experiment 2. 

Pronuclear label of zygotes with γγγγH2A.X 

At the pronuclear stage, the normality of zygotic PNs was examined using 

immunostaining with marker of DSBs, γH2A.X. Embryos containing DSBs at different 

levels showed the various γH2A.X expressions (Fig. 4 and 4’). The signal of DSBs in a male 

PN was very strongly expressed in positive control group in which DNase I-treated sperm 

were injected to the oocytes; however, the signal from female PN was not detected (Fig. 

4’c’). There was no difference in the expression level of γH2A.X in a male PN at 10 h after 

injection between 0 and 15 mM trehalose groups (Fig. 4a’ and 4b’). Moreover, when two 

PNs have not entered fusion stage yet, as shown in Figure 4a’ (0 mM trehalose) and 4b’ (15 

mM trehalose), a female PN was localized close to a PB, and we found that the signals 

seemed to be similar in both male and female PNs (both PNs show an equal distribution and 

intense immunostaining against γH2A.X). 

Fertilization status of IVM-oocytes following ICSI 

The oocytes with two PBs and two PNs (defined as male and female PN) after 

injection and IVC for 10 h were considered to have undergone normal fertilization (Fig. 5a, 

5b, and 5c). As given in Table 2, the fertilization rate of fresh sperm-injected group did not 

differ from those of freeze-dried sperm-injected groups, except for 0 mM group. Moreover, 

there were no significant differences in term of fertilization rate among 0, 7.5, and 15 mM 

groups. A smaller percentage of oocytes with two PBs and two PNs was also observed in the 

sham-injection group. The rate was significantly lower than those in the groups injected with 

freeze-dried sperm (8.1% vs. 45.9% for 0 mM group, 52.9% for 15 mM group, and 60.8% 

for 7.5 mM group, P<0.05). On the other hand, the percentage of oocytes with two PBs and 

one PN, in other words, oocytes that had been activated without sperm participation in the 

sham-injection group, was higher than in the other groups (P<0.05).  

Ability of ICSI oocytes to develop to the blastocyst stage 

Blastocyst formation rates after 6 days of ICSI were not different in all groups 

injected with freeze-dried sperm and sham-injection group. However, the rate was 
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significantly lower in freeze-dried sperm-injected group compared with those in fresh 

sperm-injected group (P<0.05) (Table 3). On the other hand, blastocyst quality measured by 

cell number in blastocyst were not different among all groups ( Fig. 5a’, 5b’, and 5c’). 

Discussion 

In this study, we found that trehalose exerted a concentration-dependent protective 

effect against DNA fragmentation during FD procedures. Unexpectedly, within the dose 

range of trehalose investigated, optimal sperm DNA protection was achieved at 7.5 and 15 

mM, whereas lower or higher concentrations were not effective. It has been reported that 

sperm containing damaged DNA still have the ability to fertilize oocytes after ICSI (Zini et 

al. 2005). However, the ICSI oocytes showed poor embryo development and high pregnancy 

loss rates after embryo transfer (Sakkas et al. 1998). FD medium supplemented with 

trehalose is able to reduce the degree of DNA damage occurring during the FD in both 

somatic cells (Loi et al. 2008) and sperm (Martins et al. 2007). The effect of trehalose 

supplementation in FD medium is immediately evident from the morphological appearance 

of the dried cells observed by scanning electron microscopy (Loi et al. 2008; Martins et al. 

2007). It is suggested that trehalose molecules not only interact with DNA but also form a 

large number of hydrogen bonds among themselves, forming a glassy/viscose medium, 

thereby reducing structural fluctuations of DNA and preventing its denaturation (Loi et al. 

2008). Previous findings have also suggested that the structure of DNA is well-protected in a 

dry state by trehalose supplementation. Trehalose is also thought to increase cytoplasmic 

viscosity, thus reducing the likelihood of intracellular ice crystal formation, which is often 

fatal. It also may act as a free radical scavenger, as free radicals are known to damage 

proteins, lipids, and nucleic acids (Cui et al. 2000). The exact mechanism by which trehalose 

stabilizes living systems during freeze-thawing, heat-cooling, or dehydration-rehydration 

cycles remains a matter of debate, and no consensus has yet emerged (Pereira et al. 2004). 

However, the water-replacement hypothesis has been widely accepted as a suitable 

explanation for the DNA-trehalose system. Trehalose is thought to replace the water shell 

around proteins/membranes and to preserve the three dimensional structure of biomolecules 

by formation of hydrogen bonds between trehalose and the phosphate groups of DNA (Jain 

& Roy 2008). Moreover, rapid freezing also results in release of intracellular enzymes 

(Pursel & Johnson 1971) or lipids (Darin-Bennett 1973), and leads to redistribution of ions 

(Hood et al. 1970), the latter facilitating the formation of hydrogen bonds among trehalose, 

DNA and water molecules, thus protecting DNA from potential damage during FD.  
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The results of the present study indicated that the DNA integrity of freeze-dried 

sperm was improved by adding a combination of EGTA and trehalose to FD medium. There 

are possibilities that EGTA reduces sperm DNA fragmentation induced by the activity of 

endonucleases through its chelating effect and also that trehalose protects sperm DNA from 

potential damage induced by the FD process and storage as a result of its known stabilizing 

properties. It has been suggested that the calcium ion-chelating capacity of EGTA would 

have a negative impact on the outcome of fertilization, as calcium ions play an important 

role in the fertilization process. This possibility was obviated in our experiments because the 

freeze-dried sperm was rehydrated, centrifuged, and washed to eliminate the EGTA and 

trehalose before injection into oocytes. However, it is not easy to explain why higher 

concentrations (≥ 30 mM) of trehalose were not effective in protecting sperm DNA in 

comparison with lower concentrations such as 7.5 and 15 mM. As it is known that the pH 

and osmolality of FD medium have a very important impact on FD procedures, all FD media 

were adjusted to the same range of pH and osmolality to eliminate the influence of these 

factors. Furthermore, the concentration at which trehalose exerts optimal protection is 

dependent on species, cell type, cell state and the method of preservation (Mittal & 

Devireddy 2008). For example, in cryopreservation, Badr et al. (2010) have indicated that 

addition of trehalose (optimal at 100 mM) to the freezing extender leads to reduction of 

cryodamage and oxidative stress, and showed improvement of viability and in vitro 

embryonic development of cryopreserved buffalo sperm. In contrast, Kozdrovski et al. 

(2009) added 0, 50, and 100 mM trehalose to the freezing extender of European brown rabbit 

sperm and found that motility and progressive motility were lowest for semen frozen with 

100 mM trehalose, as assessed using a computer-assisted semen analysis system. Thus, it 

can be suggested that the optimum concentration of trehalose differs among species. In 

addition, it is of interest that, unlike cryopreservation, FD utilizes a simple principle of 

physics known as sublimation, which is the transition of a substance from the solid (ice) state 

to the vapor state without passing through the liquid (water) phase. The fact that higher 

concentrations of trehalose had no protective effect on sperm DNA may be due to the fact 

that sublimation may result in crystallization of the trehalose, thus disturbing the hydrogen 

bonding (Jain & Roy 2008).  

As I had expected, our results indicated that damage to sperm DNA decreased 

sharply when sperm was freeze-dried in the presence of trehalose at suitable concentrations 

(7.5 and 15 mM). More fragmentation of sperm DNA was observed if the FD medium 

contains only EGTA (Fig. 2a, 2b and 2e). However, the DNA damage level of freeze-dried 



30 
 

sperm in all groups was significantly higher than those of fresh sperm. These results are 

consistent with some previous reports in other species such as sheep (Iuso et al. 2013) and 

mice (Kusakabe et al. 2001). In sheep, Iuso et al. (2013) used a transmission electron 

microscopy to evaluate the ultrastructure of fresh, frozen thawed and freeze-dried 

lymphocytes and reported that plasma membrane and mitochondria of freeze-dried cells 

were degraded, whereas these anomalies were totally absent in fresh samples, and 

occasionally observed in frozen thawed cells. FD procedures most likely lead to a significant 

increase of DNA damage because of mechanical injury during desiccation. The fertilization 

after ICSI and development to the blastocyst stage did not differ significantly among 0, 7.5, 

and 15 mM groups. This finding indicated that DNA damage to sperm, at certain level, does 

not compromise fertilization, blastocyst yield or quality after ICSI. Our findings also support 

the results by Zini et al. (2005) who suggested that DNA fragmentation has no impact on the 

fertilization rate during ICSI. This can be explained by the fact that fertilized oocytes have 

the capacity to repair DNA damage in both parental genomes.  

All cells, except viruses and mature sperm, possess a variety of enzymatic 

mechanisms for repair of damaged DNA (Ashwood-Smith & Edwards 1996). These 

complex DNA repair mechanisms are important for maintaining genomic integrity and 

limiting the introduction of mutations into the gene pool. In the present study, we assumed 

that DNA damage in freeze-dried sperm might be repaired in porcine oocytes through pre- 

and postreplication repair mechanisms, as reported by Brandiff & Pedersen (1981) and 

Genesca et al. (1992). This repair capacity depends mainly on the extent of sperm DNA 

fragmentation, and the cytoplasmic and genomic quality of the oocyte. Loi et al. (2008) also 

confirmed this repair capacity because 16% of reconstructed embryos developed to the 

blastocyst stage, whereas 60% of donor nuclei had obvious DNA damage. SSBs are quickly 

repaired by oocytes after fertilization, but DSBs could be responsible for chromosome 

aberrations and loss of genetic materials, because the repair of DSBs in oocytes is more 

difficult than that of SSBs (Enciso et al. 2009). The result of zygote pronuclear labeling with 

γH2A.X, a marker of DSBs, indicated that there was no or very little signal of DSBs in a 

male PN formed in the oocytes at 10 h after injection with freeze-dried sperm in 0 and 15 

mM group. The difference in DNA damage level of sperm between 0 and 15 mM groups 

might be neutralized by the DNA repair ability of oocytes after fertilization. Because it is 

confirmed that damaged DNA repair in the oocytes occurs during first few hours of first cell 

cycle after fertilization (Ashwood-Smith & Edwards 1996). Therefore, most of damage (if 

any) was repaired before DNA replication takes place. However, if serious damage is 
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expressed in sperm (as in the positive control), it is most likely unable to be repaired by the 

oocytes, as a result, subsequent development of zygotes would be influenced. On the other 

hand, inefficient zygotic DNA repair increases the risk of inherited chromosomal aberration 

and the efficiency depends on the quality of oocyte. Wossidlo et al. (2010) reported in detail 

of a very dynamic pattern of γH2A.X appearance during zygotic pronuclear development in 

mice and suggested that DNA demethylation may be mediated to a large extent by DNA 

repair-induced mechanisms.  

In a previous study, it was reported that 23.1% of oocytes developed to the blastocyst 

stage after injection of freeze-dried boar sperm head in medium containing 50 mM EGTA 

(Nakai et al. 2007). Embryos obtained after ICSI with freeze-dried sperm head developed to 

the early fetal stage (39 days after ICSI and putative zygote transfer), but no viable offspring 

had been produced yet. In the present study, the blastocyst formation rate was 12.6% using 

this type of FD medium (0 mM group). The lower percentage in the present study might be 

attributable to the injection procedures using whole sperm, leading to introduction of a larger 

volume of injection medium into the ooplasm. Thadani (1980) reported that injection of 

excessive amounts of micromanipulation medium into oocytes appeared to have an adverse 

effect on subsequent embryonic development. The quantity of the medium injected with a 

whole spermatozoon was believed to be proportional to the length of the sperm tail, 

suggesting that diminishing the length of the sperm tail by cutting it could help minimize the 

volume of injected medium. A relatively high percentage of lysed oocytes (5%‒20%, data 

not shown) following ICSI and electric pulse also reflects the hypothesis mentioned above. 

The blastocyst formation rate of the oocytes injected with fresh sperm was significantly 

higher compared with freeze-dried sperm-injected groups (Table 3). This can be explained 

due to induced chromosomal damage and deterioration of the sperm-borne oocyte-activating 

factor during the FD process (Liu et al. 2004) or phospholipase C zeta (PLCζ), an 

oocyte-activating factor in sperm which was reported to be leaked or reduced in quantity 

after some pretreatment procedures of sperm (Nakai et al. 2011), might be also reduced after 

FD procedures. The lyophilization process may introduce chemical changes to the sperm 

plasma and nuclear membranes, rendering them more difficult to be dissolved than those of 

fresh, intact sperm (Liu et al. 2004). There is another possibility that the fresh sperm used for 

injection were sonicated several seconds to immobilize the sperm before injection to oocyte; 

however, sonication makes sperm head isolated from tail; therefore, only sperm heads were 

injected to the oocytes. And as mentioned above, this may lead to the reduction of injection 



32 
 

medium (containing PVP) amount into oocytes, thus, less harmful than whole sperm 

injection.  

Blastocyst quality measured in terms of the average number of cells in blastocysts in 

the freeze-dried injected groups did not differ from the other groups, and was comparable to 

the result obtained by Nakai et al. (2007), being 33.1 cells on average. In general, imbalance 

of nuclear and cytoplasmic maturation (Kikuchi et al. 2008) and the use of prepubertal 

oocytes, which have a poor quality with respect to adult oocytes (Ptak et al. 2006) in in vitro 

systems, are still the major causes of reduced fertilization and subsequent development in 

comparison with in vivo systems. The poor outcome of ICSI in this study may also be partly 

attributable to this. This study indicated that the percentage of oocytes with two PNs at 10 h 

after injection in the sham-injection group was significantly lower than those in the groups 

injected with freeze-dried sperm, whereas the blastocyst formation rates did not differ 

among these groups. It is presumed that two PN embryos with the presence of both male and 

female PNs are usually diploid (Lee et al. 2004). Therefore, most of the blastocysts obtained 

from sham injection seem to be euploid (haploid) because of the absence of a male PN. 

When a direct current pulse of 1.5 kV/cm was applied for 20 µs to ICSI oocytes matured in 

vitro for 44 h, Nakai et al. (2010) found that the rates of diploid blastocysts in the ICSI group 

(ranged from 48.9% to 60.6%) were significantly higher than those in sham group (28.0%). 

When ICSI is used, increased emphasis is placed on the quality of the sperm chromatin and 

the ability of the oocyte to initiate decondensation and PN formation (Nakai et al. 2007). 

Therefore, protection of sperm DNA integrity is important for maintaining the fertility of 

freeze-dried sperm. Although this study did not clarify the proportion of sperm with 

fragmented DNA, the data were sufficient to allow us to conclude that addition of trehalose 

to FD medium sharply reduced the degree of sperm DNA fragmentation in a 

concentration-dependent manner.  

Although the Halomax kit is easy and convenient to handle, its inability to 

differentiate between SSBs and DSBs in the same sperm cell was a limitation of the present 

study. The type of damage occurring in freeze-dried sperm may be correlated with the 

protective role of trehalose, and thus a suitable assay that can characterize the types of DNA 

fragmentation is needed. The previous study have also suggested that DNA damage might 

contribute to early postimplantation death (Singer et al. 2006) and full term development of 

oocytes injected with these sperm. Therefore, further research is necessary to investigate the 

effect of the combination of EGTA and trehalose in FD medium on the in vivo 

developmental competence of oocytes injected with the resulting freeze-dried sperm. In 
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conclusion, addition of trehalose to FD medium at suitable concentrations improves sperm 

DNA integrity after FD procedures, but does not promote fertilization and subsequent 

development to the blastocyst stage. To our knowledge, this is the first study to have 

examined the combined effect of EGTA and trehalose in FD solution on the DNA integrity 

of freeze-dried sperm and in vitro embryonic development of porcine IVM oocytes that have 

been injected with freeze-dried sperm. 
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Table 2. Female and male PN formationa of IVM  porcine oocytes injected with fresh or 

freeze-dried sperm 

Group 
No. of oocytes 

examined 

% of oocytes with  

2PB and 2PN 

% of oocytes with  

2PB and 1PN 

Fresh sperm 92 71.9 ± 2.0c 3.4 ± 2.0c 

Trehalose 0 mMb 145 45.9 ± 3.6d 11.7a ± 2.3c 

Trehalose 7.5 mMb 41 60.8 ± 6.3cd 13.3a ± 3.0c 

Trehalose 15 mMb 137 52.9 ± 3.8cd 13.5a ± 3.2c 

Sham injection 100 8.1 ± 3.2e 45.2b ± 6.8d 

Means ± SEM are presented 

Data were analyzed by ANOVA followed by Tukey’s multiple range tests. At least three 

replications were carried out in each group. 

PB: polar body; PN: pronucleus. 
a PN formation was examined after 10 h of IVC. 
b Freeze-dried sperm at different concentrations of trehalose. 
c-e Values with different superscripts within each column differ significantly (P<0.05). 
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Table 3. Preimplantation development of IVM porcine oocytes injected with fresh or 

freeze-dried sperm 

Group 
No. of oocytes 

examined 
Blastocyst % Mean cell number 

Fresh sperm 95 32.7 ± 1.5b 41.2 ± 3.9 

Trehalose 0 mMa 236 12.6 ± 2.0c 39.4 ± 4.0 

Trehalose 7.5 mMa 68 12.3 ± 1.5c 36.4 ± 6.3 

Trehalose 15 mMa 227 12.2 ± 2.2c 28.9 ± 3.1 

Sham injection  173  15.5 ± 3.3c 41.7 ± 3.3 

Means ± SEM are presented 

Data were analyzed by ANOVA followed by Tukey’s multiple range tests. At least three 

replications were carried out in each group. In this study, embryos with a clear blastocoel 

were defined as blastocysts after 6 days of IVC. 
a Freeze-dried sperm at different concentrations of trehalose. 
b,c Values with different superscripts within column differ significantly (P<0.05). 

  



36 
 

  

  

Fig. 1. Freeze-dried sperm after rehydration. Freeze-dried sperm after 

rehydration in all groups exhibited no morphological difference by naked eye. 

Trehalose (a) 0 mM, (b) 7.5 mM, (c) 15 mM, and (d) 90 mM group. Scale 

bar: 5 µm. 
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Fig. 2. DNA fragmentation of freeze-dried sperm assessed by Halomax kit. DNA 

fragmentation of freeze-dried sperm in the control (a, b, and e) and 15 mM trehalose (c 

and d) groups. (a and c) DNA chromatin was stained with Hoechst 33342. (b and d) 

after converting to measurable images by Photoshop 5.0. (e) A very large DNA 

dispersion halo is evident in 0-mM group using the filter function of Photoshop (arrow). 

Scale bar: 10 µm. 
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Fig. 3. DNA damage to sperm freeze-dried in the presence or absence of trehalose, 

as assessed using the Halomax kit. Data were analyzed by ANOVA followed by 

Tukey’s multiple range tests. a-d different superscripts show a significant 

difference (P<0.05). At least three replicate trials were performed for each group. 
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Fig. 4. DSBs in embryos produced by ICSI with freeze

10 h after injection completion, stained for histone H2A.X 

phosphorylated at serine 139 (

oocyte injected with sperm freeze

trehalose). γH2A.X forms “foci” at DSBs site in a male PN induced by 

DNase I digestion. Chromatin is counterstained with Hoechst 33342 (

b’). M: male pronucle

Scale bar: 20 µm.
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DSBs in embryos produced by ICSI with freeze-dried sperm at 

after injection completion, stained for histone H2A.X 

phosphorylated at serine 139 (γH2A.X). γH2A.X signal in a PN of the 

oocyte injected with sperm freeze-dried in (0 mM (a) and 15 mM (b) 

H2A.X forms “foci” at DSBs site in a male PN induced by 

DNase I digestion. Chromatin is counterstained with Hoechst 33342 (

). M: male pronucleus; F: female pronucleus; arrow head: polar body. 

m. 

 

 

dried sperm at 

after injection completion, stained for histone H2A.X 

H2A.X signal in a PN of the 

mM (a) and 15 mM (b) 

H2A.X forms “foci” at DSBs site in a male PN induced by 

DNase I digestion. Chromatin is counterstained with Hoechst 33342 (a’- 

polar body. 



 

Fig. 4’. DSBs in embryos produced by ICSI with freeze

after injection completion, stained for histone H2A.X phosphorylated at 

serine 139 (γH2A.X).

sperm freeze-dried in (0 mM

room temperature (

prevent nonspecific binding (

PN induced by DNase I digestion. Chromatin is counterstained with Hoechst 

33342 (c’- d’). The signal of DSBs in a male PN was very strongly expressed 

in positive control group in

oocyte. However, the signal in

detected. M: male pronucleus; F

Scale bar: 20 µm. 
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DSBs in embryos produced by ICSI with freeze-dried sperm at 10 

after injection completion, stained for histone H2A.X phosphorylated at 

H2A.X).  γH2A.X signal in a PN of the oocyte injected with

dried in (0 mM treated with 1000 IU/mL DNase I for 60 

room temperature (c). Primary antibody was omitted in some embryos to 

c binding (d). γH2A.X forms “foci” at DSBs site in a male 

induced by DNase I digestion. Chromatin is counterstained with Hoechst 

). The signal of DSBs in a male PN was very strongly expressed 

in positive control group in which DNase I–treated sperm were injected to the 

oocyte. However, the signal in female PN (overlapped to male PN) is not 

detected. M: male pronucleus; F: female pronucleus; arrow head:

 

 

dried sperm at 10 h 

after injection completion, stained for histone H2A.X phosphorylated at 

a PN of the oocyte injected with 

treated with 1000 IU/mL DNase I for 60 min at 

). Primary antibody was omitted in some embryos to 

H2A.X forms “foci” at DSBs site in a male 

induced by DNase I digestion. Chromatin is counterstained with Hoechst 

). The signal of DSBs in a male PN was very strongly expressed 

injected to the 

female PN (overlapped to male PN) is not 

: female pronucleus; arrow head: polar body. 
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Fig. 5. Pronuclear stage (10 h after injection, a - c) and blastocyst stage (6 days after 

IVC, a’ - c’). Embryos obtained from the oocyte injected with freeze-dried sperm 

treated with 0 mM (a and a’), 7.5 mM (b and b’) and 15 mM (c and c’) trehalose. In 

pronuclear-stage embryos, two PBs (arrow head) and two PNs (arrow) were clearly 

visible. Scale bar: 20 µm 
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Chapter III 

Expression of DNA repair genes in porcine oocytes before and after 

fertilization by intracytoplasmic sperm injection using freeze-dried sperm 

 

Introduction 

It is reported that newly fertilized oocytes in some species possess the ability to sense, 

respond to, and repair at least some types of DNA damage, particularly in the incoming 

sperm DNA (Zheng et al. 2005). DNA repair is an essential process for maintenance of 

genomic integrity in the preimplanation embryos to correct the damage existed in the 

gametes. The damage may be either inherent or arose during DNA replication and is also 

caused by genotoxic agents (Zheng et al. 2005). The DNA damage needs to be repaired 

before the first round of DNA replication of zygotes to minimize the mutation load of the 

developing embryos (Zheng et al. 2005). There are several DNA repair pathways in 

mammalian cells: direct reversal of damage, nucleotide excision repair (NER), base excision 

repair (BER), mismatch repair (MMR) and double strand break repair (DSBR) (Jaroudi et al. 

2009). Direct reversal of damage is the simplest form of DNA repair and also the most 

energy efficient method; it does not require a reference template as the other single strand 

repair mechanisms. O-6-methylguanine-DNA methyltransferase (known as MGMT) a 

specific DNA repair enzyme can remove the alkyl group from the O6-position of the guanine, 

thereby preventing its mutagenic and carcinogenic effects (Zuo et al. 2004), belonging to 

direct reversal pathway. There are a number of regulatory elements in the MGMT promoter 

region, and a number of stimuli may increase MGMT expression, such as irradiation, 

glucocorticoid exposure, and cAMP (Liu et al. 2012).  

Expression profile of maternal DNA repair genes correlates the ability of the oocytes 

to recognize and repair DNA damage at certain stages (oocyte/blastocyst). For instance, 

Jaroudi et al. (2009) demonstrated that the mRNA level for most repair genes was higher in 

oocytes compared with blastocysts in human and this is to ensure sufficient availability of 

template until zygotic or embryonic genome activation (so-called zygotic or embryonic 

genome activation (ZGA or EGA, respectively) (Zheng et al. 2005), and that the DNA repair 

transcripts accumulated in the human oocyte play an important role in chromatin remodeling 

and maintain chromatin integrity during fertilization. Furthermore, when the DNA damage 

caused during fertilization is recognized as irrepairable, embryos are excluded by cell cycle 

arrests or activation of apoptotic pathways (Jaroudi et al. 2009). To our knowledge, there are 
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a few works about the expression profiling of DNA repair transcripts in only human oocytes 

and early embryos due to the rare availability of the materials and the ethical considerations 

(Li et al. 2006). Usage of non-human primates, laboratory or domestic animals in this 

research area is more feasibled and has a great importance on providing novel knowledge on 

this field. 

It is considered that DNA repair ability of oocytes correlates with the amount of 

maternal repair mRNA in the cytoplasm which accumulated during the growth phase of 

oocytes and follicles, and required for completion of the meiotic cell cycle (Zheng et al. 

2005). Moreover, in vitro culture of oocytes and embryos may lead to dysregulation of many 

genes (Zheng et al. 2005; Jones et al. 2008, Salhab et al. 2013), resulting in low cellular 

viability and long-term embryo viability by the impaired competence for the repair of the 

DNA damage. Recent studies suggested the differential expression of several repair genes 

between in vivo matured and IVM oocytes in cattle (Thelie et al. 2007), in human (Jones et al. 

2008) and in non-human primates (Zheng et al. 2005). However, the expression of DNA 

repair-related genes after fertilization has not been examined in porcine oocytes.  

In Chapter II, I have shown that sperm freeze-dried in the basic medium containing 

15 mM trehalose showed less DNA damage compared with control group without trehalose 

treatment. However, normal fertilization and subsequent embryonic development were not 

different between both two groups. It is still unknown that whether higher DNA damage 

level of sperm in the control group compared with 15 mM trehalose group leads to the 

upregulation of expression of DNA repair genes in oocytes after injection of a spermatozoon 

from this group. The objective of this study was to estimate the expression levels of DNA 

repair-related genes in porcine oocytes after fertilization by ICSI before early cleavage stage. 

In addition, the expression profile of these genes was also detected in different stages of 

oocyte maturation. 

Based on previous studies (Harrouk et al. 2000; Wood et al. 2001; Zheng et al. 2005; 

Jaroudi & SenGupta 2007), I focused on the expression of six DNA repair genes related to 

repair ability of different kinds of DNA damage: MGMT (for direct reversal), UDG (for NER), 

XPC (for BER), MSH2 (for MMR), XRCC6 (for DSBR by homologous recombination) and 

RAD51 (for DSBR by non-homologous end-joining) (Tables 4 and 5). 

Many reports showed that DNA repair in oocytes occurs in the first few hours after 

fertilization (in rats, Harrouk et al. 2000; in mice, Derijck et al. 2006), or prior to S-phase 

(pronuclear stage) (in humans, Aitken & Koppers 2011). Therefore, in this Chapter, mRNAs 

were extracted from oocytes at 4 h after sperm injection (Experiment 1) and at four time 
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points of oocyte maturation (Experiment 2) and were subjected to quantitative RT-PCR to 

examine the expression of these genes. 

Materials and methods 

Chemicals and media 

All chemicals were obtained from Sigma-Aldrich, unless otherwise stated. The FD 

medium contained 10 mM Tris-HCl buffer supplemented with 50 mM EGTA and is referred 

to as basic FD medium. This medium was then supplemented with different concentrations 

of trehalose (0 (referred as the control) and 15 mM) and also NaCl (50 and 40 mM, 

respectively). The osmolality and pH of the final solutions were adjusted to 265 to 270 

mOsm/kg and 8.0 to 8.5, respectively, and then they were filtered and stored at 4oC. The 

IVM medium oocytes was NCSU-37 solution containing 10% (v/v) porcine follicular fluid, 

0.6 mM cysteine, 50 mM β-mercaptoethanol, 1 mM dibutyl cAMP, 10 IU/mL eCG, and 10 

IU/mL hCG (Kikuchi et al. 2002a). IVC medium for sperm-injected oocytes was modified 

NCSU-37 supplemented with 0.17 mM sodium pyruvate, 2.73 mM sodium lactate, 4 mg/mL 

BSA and 50 mM β-mercaptoethanol (IVC-PyrLac) (Kikuchi et al. 2002a). 

Sperm collection and FD 

Protocols for the use of animals were approved by the Animal Care Committee of the 

National Institute of Agrobiological Sciences, Tsukuba, Japan. Sperm collection and FD 

were conducted as described previously (Men et al. 2013). In brief, ejaculated semen was 

collected from a Landrace boar, which is used for reproductive program at National institute 

of Livestock and Grassland Science, Tsukuba Japan, and transferred to the laboratory within 

30 min. After determination of the sperm concentration, the semen was centrifuged for 10 

min at 900 × g at 30oC and the seminal plasma was removed. The pellet was re-suspended in 

FD medium containing trehalose prewarmed at 30oC, and the supernatant was removed after 

centrifugation. The final pellet was then re-suspended in FD media containing 0 or 15 mM 

trehalose at a final concentration of 4×108 cells/ mL. One milliliter of sperm suspension was 

placed into an individual glass vial, then the vials were covered with aluminum foil and 

placed in a refrigerator at –80oC for at least 4 h. The aluminum foil was replaced by a rubber 

cap with small gaps between the cap and the vial, and then they were placed in a FD system. 

The FD program was as follows: specimens were dried primarily for 19 h at 0.13 hPa and 

secondarily for 3 h at 0.13 hPa. During the process of primary drying, the shelf temperature 

was controlled at –30oC and then increased to 30oC during the last 1 h 20 min (0.75oC/min). 
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After filling with N2 gas, the vials were sealed with rubber caps and further fastened with 

aluminum caps. The freeze-dried samples were transferred to a refrigerator and stored at 4oC 

under dark condition until usage. 

Oocyte collection and in vitro  maturation (IVM) 

Oocyte collection and IVM were conducted as described (Kikuchi et al. 2002a). In 

brief, ovaries were obtained from prepubertal crossbred gilts (Landrace-Large White-Duroc 

breeds) at a local slaughterhouse and transported to the laboratory at 35oC. Cumulus-oocyte 

complexes (COCs) were collected from follicles 2 - 6 mm in diameter in Medium 199 (with 

Hanks’ salts) supplemented with 10% (v/v) fetal bovine serum, 100 IU/mL penicillin G 

potassium and 0.1 mg/mL streptomycin sulfate. About 40 to 50 COCs were cultured in 500 

µL of maturation medium for 20 - 22 h in four-well dishes. The COCs were subsequently 

cultured for 24 h in maturation medium without dibutyl cAMP and hormones. IVM was 

carried out at 39oC under conditions in which CO2, O2, and N2 were adjusted to 5%, 5%, and 

90%, respectively. After IVM, the cumulus cells were removed from the oocytes by repeated 

pipetting in Medium 199 supplemented with 150 IU/ mL hyaluronidase. Denuded oocytes 

with the first PB were harvested under a stereomicroscope and used as IVM oocytes. 

ICSI and oocyte stimulation 

Freeze-dried sperm were re-hydrated with deionization distilled water. The sperm 

suspension was centrifuged for 2 min at 600 × g and the sperm were washed with PBS (‒) 

containing 5 mg/mL BSA, then re-suspended in the same buffer. The sperm suspension was 

sonicated for about 5 to 10 sec to isolate a sperm head and kept at room temperature prior to 

ICSI, which was carried out as previously described (Nakai et al. 2006) with some 

modifications (Men et al. 2013). In brief, sperm were kept in IVC-PyrLac- Hepes-PVP. 

About 30 IVM oocytes were transferred to a 20-µL drop of Medium 199. A small volume 

(0.5 µL) of the sonicated sperm suspension was transferred to a 2-µL drop of 

IVC-PyrLac-Hepes-PVP. All drops were covered with paraffin oil. A single sperm head was 

aspirated into the injection pipette, and injected into the ooplasm using a piezo-actuated 

micromanipulator. ICSI was completed within 2 h after re-hydration of freeze-dried sperm, 

and sperm-injected oocytes were recovered in IVC-PyrLac for 1 h before electrical 

activation. The end of injection was considered as 0 h postinjection. As a control group, 

mature oocytes were injected with ejaculated sperm (fresh sperm group). One hour 

postinjection, the oocytes were transferred to an activation solution consisting of 0.28 M 
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d-mannitol, 0.05 mM CaCl2, 0.1 mM MgSO4, and 0.1 mg/mL BSA. Once the oocytes were 

sunk down the bottom of the drop, they were then stimulated with a direct current pulse of 

1.5 kV/cm for 20 µs under the same condition for each group using a somatic hybridizer, 

then washed three times and cultured in IVC PyrLac for 3 h before RNA extraction. 

RNA extraction, purification, cDNA systhesis and quantitative RT- PCR (qRT-PCR) 

Total RNAs of the pooled oocytes or putative zygotes were purified using an RNeasy 

Micro Kit (QIAGEN, Hilden, Germany) according to manufacturer’s instructions. Reverse 

Transcription was performed to synthesize cDNA using a Primescript II 1st strand cDNA 

Synthesis Kit (Takara Bio Inc., Shiga, Japan) according to manufacturer’s instructions. 

qRT-PCR was performed using a LightCycler® 480 SYBR Green I (Roche, Indianapolis, 

IN, USA) according to standard protocols. For each gene, the quantities of transcript were 

normalized to the reference transcript and tubulin α1 was used to standardize the data. 

Decondensation status of sperm head 

For assessment of fertilization status, putative zygotes were fixed at 4 h postinjection 

(3 h after electric activation) in fixative solution with a 1:3 mixture of acetic acid: ethanol 

(v/v) under vaseline-supported coverslips for several days. They were stained with 1% (w/v) 

orcein in 45% (v/v) acetic acid for several minutes, and then their fertilization status was 

examined using a phase-contrast microscopy 

Statistical analysis 

Data were expressed as mean ± SEM. The percentage data were arcsine-transformed 

(Snedecor & Cochran 1989) then subjected to one way-ANOVA using R packages 3.0.1 (R 

Core Team 2013). As the difference is found in groups by ANOVA, further analysis is 

conducted by Tukey’s posthoc test using the R packages. Differences at P<0.05 were 

considered to be significant. 

Results 

Expression levels of DNA repair genes in IVM- oocytes injected with sperm  

Damaged DNA in sperm should be repaired by oocytes before pronuclear formation. 

According to Nakai et al. (2006), the rate of pronuclear formation sharply increased at 4 h 

after electric stimulation, therefore, we analyzed the expression of DNA repair genes at the 

time point of 3 h after stimulation. There were no differences in expression level of 6 

investigated genes in oocytes at 4 h postinjection (Fig. 6). 



47 
 

Decondensation status of sperm head at 4 h postinjection (3 h after electric activation) 

DNA damage is believed to be detected during decondensation of the sperm head 

and induces activation of essential DNA repair pathways. Therefore, the decondensation 

status of freeze-dried sperm head and the pronuclear formation rate were also examined at 4 

h postinjection (Fig. 7A and 7B). As shown in Table 6, relatively high percentages of 

decondensed sperm head were observed in all three groups (62 to 71%) and there were no 

differences among the groups. Similarly, the rate of zygotes with two PBs and two PNs was 

also not different and ranged from 8 to 20% among groups. Newly formed PNs at 4 h 

postinjection were smaller, separately located and the female or male pronucleus was easily 

distinguishable (Fig. 7C). 

Results of nuclear status of oocytes at different maturational stages 

The data obtained from fixation and staining of oocytes (Table 7) showed that all 

COCs were at the GV stage just after collection and at the GVL (later of germinal vesicle) 

stage 20 h after IVM. And then 5.3% of oocytes had the first PN at 33 h of IVM and 61.8% 

of oocytes show the first PB at 44 h of IVM under light microscopic observation. At 33 h of 

IVM, oocytes had the first PB were removed and the remaining oocytes were fixed and 

stained. The data reveal that 95.7% of these remaining oocytes were at the metaphase-I 

(M-I) stage and 4.3% were at the GVL stage (Table 7). 

Expression levels of DNA repair genes in oocytes at different maturational stages  

The expression level of DNA repair genes in oocytes at different maturational stages 

were summarized in Fig. 8. Of the six genes investigated, expression levels of UDG and 

XPC were significantly up-regulated in M-II oocytes compared with earlier stages but did 

not differ between GV and GVL stage. There was an increased tendency in relative 

expression of MSH2 and RAD51 over time during IVM process although no differences in 

MGMT and XRCC6. 

Discussion 

It is generally accepted that there are mechanisms in a cell to maintain genome 

integrity including DNA damage detection, repair, cell cycle arrest and apoptosis. Such 

mechanisms coordinate together to protect the fetus from potential DNA damage originating 

either in parental gametes or in the embryo’s somatic cells (reviewed by Jaroudi & SenGupta 

2007). Moreover, the cell cycle of embryonic cells is much shorter than that of adult cells. 

The integrity of its genome is thus easy to be influenced. In other word, DNA repair at the 
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early stages is of great significance for the later development. During the early embryonic 

development, three main transitions occur in preimplantation development, and each 

transition is reflected by changes in gene expression patterns (Zheng et al. 2005). The first 

transition is the maternal to zygotic transition. The second transition occurs during 

compaction at the 8-cell stage (Fleming et al. 2001) and the last one occurs during blastocyst 

formation at the 32- to 64-cell stage (Zheng et al. 2005). In the first transition, mRNAs and 

proteins that are maternal factors and stored in the cytoplasm of the oocyte during oogenesis, 

and necessary for oocyte maturation, homeostasis and transision to the first stages of 

embryogenesis but become unnecessary or potential deleterious as the embryo develops are 

destroyed and replaced by novel transcripts which are specific to the zygotes or embryos 

(ZGA or EGA, respectively) (Zheng et al. 2005). It is well-documented that genome 

activation is an essential event in order to synthesize new protein preparing for the first cell 

division and subsequent events as well. The phenomenon of in vitro cultured mouse 1-cell 

embryos which were arrested at the 2-cell stage (2-cell block) was found to be related to the 

delay of ZGA (Qiu et al. 2003). The initiation of EGA varies between species. In mice, event 

of genome activation begins during the 1-cell stage and becomes evident by the 2-cell stage 

with a transcriptional and translational burst (Schultz 2002). In porcine embryos, EGA 

occurs during the 4-cell stage, promoting a dramatic reprogramming of gene expression 

accompanied by the generation of novel transcripts that are not expressed in the oocytes 

(Jarrell et al. 1991; Hyttel et al. 2000). A recent study uncovered a series of successive waves 

of embryonic transcriptional initiation that occur as early as the 2-cell stage in human 

preimplantation embryos (Vassena et al. 2011); in contrast to the previously accepted time 

point of embryonic genome activation at the 4- to 8-cell stage (Braude et al. 1988). EGA 

occurs in bovine embryos by the 8- to 16- cell stage (Memili & First 2000). In the present 

study, we attempted to investigate the expression pattern of DNA repair genes in porcine 

zygotes before genome activation. Previously, we showed that sperm freeze-dried in the 

presence of trehalose showed less DNA fragmentation than that in the absence of trehalose. 

However, the rates of oocytes with two PBs and two PNs (referred as normal fertilization), 

and blastocyst formation were not different between the two groups (Men et al. 2013). 

Therefore, we speculated that DNA damage in freeze-dried sperm might be repaired through 

pre- and postreplication repair mechanisms in oocytes (Genesca et al. 1992). This repair 

capacity depends mainly on the extent of sperm DNA fragmentation and the cytoplasmic 

quality of the oocyte. SSBs could be quickly repaired by oocytes after fertilization, but DSBs 
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could be responsible for chromosome aberrations and loss of genetic materials, thus the 

repair of DSBs in oocytes is more difficult than that of SSBs (Enciso et al. 2009).  

The objective of this study initially was to compare the induction of DNA repair 

genes in newly fertilized oocytes by ICSI of sperm freeze-dried in the presence or absence of 

trehalose because of observed different DNA integrity of these two groups after FD. Six 

candidate genes participating in the repair of various types of DNA damage were selected 

and their expressions were analyzed at a given time after fertilization. Three genes (MGMT, 

UDG and XPC) are candidate genes for repair of SSBs; one gene for mismatch repair 

(MSH2) and two remaining genes (XRCC6 and RAD51) are for repair of DSBs. As a result, 

there were no differences in relative gene expression level of six genes in the sperm injected 

oocytes at 4 h postinjection and mature oocytes. This means the expression level of these 

genes might have already been abundant in the oocytes matured at the M-II stage. Also 

probably, at 4 h postinjection, these genes have not been induced significantly or the DNA 

fragmentation of fresh sperm and two types of freeze-dried sperm was not sufficient to 

induce the differential expression. Harrouk et al. (2000) indicated that fertilization with 

sperm exposed to a DNA damaging agent alters the expression of DNA repair genes as early 

as the 1-cell stage in the rat preimplantation embryo. However, the expression of DNA 

repair genes in the 1-cell embryos is limited since 1-cell embryos are completely dependent 

on maternal proteins for DNA repair. The zygotes may be able to regulate its repair 

efficiency only after the first cell division (Harrouk et al. 2000).  

In the genes investigated in this study, MGMT works as DNA methyltransferase with 

the function of direct reversal alkylation at the O6 position of guanine, and it has an 

important role to avoid the lethal cross-linking resulting in enhanced resistance to alkylating 

agents (Pegg et al. 1995). The expression level of MGMT gene was not different in all groups. 

UDG gene was expressed abundantly in oocytes and zygotes and revealed a significantly 

higher level in the M-II oocytes compared with those at the earlier stages. Similarly, 

expression level of XPC gene in the M-II oocytes was significantly higher than those in 

oocytes at the earlier stages. For MSH2 gene, the expression of this gene had an increased 

tendency in the M-II stage oocytes relative to oocytes at the GV, GVL and M-I stages. Zheng 

et al. (2005) showed that the MSH2 gene was expressed throughout development from 

oocytes at the GV stage to the hatched blastocyst stage, with a transient increase in 

expression in embryos at the 8-cell and morula stages in a non-human primate, and our data 

were in agreement with this report. RAD51 is involved in the homologous recombination 

pathway of DSBR, and is essential for embryo viability (Zheng et al. 2005; Jaroudi & 
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SenGupta 2007). In the rhesus monkey, this gene was expressed in abundance in oocytes, 

but its expression decreased during oocyte maturation and then increased again at the 8-cell 

stage (Zheng et al. 2005). Unlike observed patterns in the rhesus monkey, our data in pigs 

revealed that the expression of RAD51 tends to up-regulate during IVM. According to 

results of Jaroudi et al. (2009), RAD51 and MSH2 were expressed at high levels in both 

human oocytes and blastocysts, on the other hand, XRCC6 had medium to high expression 

levels in the M-II oocytes and blastocysts.  

In the present study, it can not be denied that relative expression value of UDG gene 

in the M-II oocytes in Experiment 1 was almost two-fold lower than those in Experiment 2. 

The M-II oocytes used in Experiment 2 were denuded at 44 h of IVM and immediately 

subjected to RNA extraction. The M-II oocytes used in Experiment 1 were also denuded at 

44 h of IVM but subjected to RNA extraction at about 2 h later when ICSI was completed. 

As mentioned before, this gene showed highly expression in the M-II oocytes in Experiment 

2 relative to other genes at 44 h of IVM. It may be possible that lower expression value of the 

M-II oocytes in Experiment 1 was attributed to age-related degeneration of some DNA 

repair mRNAs in oocytes or the expression of this gene reached peak at 44 h then decreased. 

This explanation is clearly supported by the fact that the relative expression of this gene in 

the other groups of Experiment 1 also did not achieve the similar level of Experiment 2 

irrelevant to treatments.  

There are two possible explanations for the maturational stage-dependent changes of 

most of DNA repair genes in IVM oocytes observed in Experiment 2. One possibility is that 

during IVM, oocytes have accumulated mRNAs of DNA repair genes being ready for 

fertilization. The other possibility is that suboptimal IVM system stresses oocytes and it 

might induce up-regulation of these DNA repair genes. The later appears to be a more 

satisfactory explanation. Indeed, Jones et al. (2008) reported that several genes involved in 

many signaling pathways, such as response to stress, cell cycle, cell proliferation, cell 

division and cell death and so on, were up-regulated in IVM oocytes compared with in vivo 

matured oocytes, and this up-regulation may attribute to dysregulation occurring during 

IVM. Cumulus cells play an essential role in whole process of oocyte growth and 

maturation; therefore, their gene expression profiles according to IVM condition have been 

also investigated in detail (Tesfaye et al. 2009; Ouandaogo et al. 2012). In bovine cumulus 

cells, isolated from the COCs after IVM culture, genes involved in response to stress were 

up-regulated and genes related to cumulus expansion and oocyte maturation were 

down-regulated compared with the cumulus cells isolated from the COCs produced in vivo  
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(Tesfaye et al. 2009). Similarly, expression of genes involved in DNA replication, 

recombination and repair in human cumulus cells isolated from in vivo and in vitro at different 

nuclear maturation stages were up-regulated in cumulus cells after IVM (Ouandaogo et al. 2012). 

It should be noted that there are so many DNA repair genes and enzymes in the 

oocytes and zygotes in addition to those examined in the present study. Expression level of 

these genes may depend on unknown cellular signals related to normal development or 

delayed development in the oocytes injected with sperm that have various types or levels of 

DNA damage. The expression of those genes depends on the embryo developmental stage 

and/or influenced by many other unknown factors.  

In conclusion, the present study revealed that expression of DNA repair genes in 

fertilized oocytes at 4 h after ICSI using fresh sperm, freeze-dried sperm in the presence or 

absence of trehalose was not different. Likewise, no difference was observed in the 

expression of DNA repair genes between the sperm injected groups and the M-II oocyte 

group without sperm injection. On the other hand, during IVM, the expression of XPC was 

significantly increased in the M-II oocytes compared with earlier stages. The expression of 

UDG was significantly increased from the GV through GVL, M-I and M-II stages. Further 

experiments are needed to confirm whether increased expression levels of DNA repair genes 

in the oocytes are caused by suboptimal IVM conditions or their accumulation. If increased 

level of DNA repair genes is confirmed to be caused by IVM conditions, the efficient 

improvement of IVM system can be achieved based on expression profile of DNA repair 

genes. 
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Table 4. Repairable DNA damage type, proper functions, accession number and primer 

sequence of six investigated genes. 

Genes 

symbol 
Full name 

DNA damage 

type 
Proper function References 

MGMT 
O-6-methylguanine-DNA 

methyltransferase 

Direct 

reversal: 

alkylated 

guanine 

Removes 

alkylating lesions 

at the O6 of 

guanine residues 

Wood et al. 

2001; Jaroudi et 

al. 2009 

UDG Uracil -DNA glycosylase 
Single strand 

break (Base) 

DNA 

glycostylase, 

recognize and 

remove uracil 

opposite A 

Harrouk et al. 

2000; Wood et 

al. 2001; Zheng 

et al. 2005; 

Jaroudi et al. 

2009 

XPC 

Xeroderma 

pigmentosum, 

complementation group 

C 

Single strand 

break 

(Nucleotide) 

DNA binding 

Harrouk et al. 

2000; Wood et 

al. 2001; Zheng 

et al. 2005; 

MSH2 
mutS homolog 2, colon 

cancer 
Mispairing 

Mismatch and 

loop recognition 

Harrouk et al. 

2000; Wood et 

al. 2001; Zheng 

et al. 2005; 

Jaroudi et al. 

2009 

XRCC6 
X-ray repair 

cross-complementing 6 

Double strand 

break 

Non-homologous 

end joining 

Jaroudi et al. 

2009 

RAD51 
Sus scrofa RAD51 

homolog (S.cerevisiae) 

Double strand 

break 

Homologous 

recombination 

Wood et al. 

2001; Zheng et 

al. 2005; Jaroudi 

et al. 2009 

α TUB Alpha tubulin – Reference gene  
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Table 5. Repairable DNA damage type, proper functions, accession number and primer 

sequence of six investigated genes 

Gene symbol Genebank accession no. Primers 
Product 

Size (bp) 

MGMT 

Direct Reversal 
XM_003483574 

F/acttgcaggtccagaggaga 

R/tgcagcagcttccataacac 
168 

UDG 

Base excision repair 
XM_003132925 

F/cagctccgtcaagaagatcc 

R/gctgaggtgcttcttccaac 
175 

XPC 

Nucleotide excision 

repair 

AF041032 
F/atccgacgaagattctgagc 

R/tcttcttgcctcctttacgc 
179 

MSH2 

Mismatch repair 
NM_001195357 

F/tggtcccaatatgggaggta 

R/catttcagccatgaatgtgg 
184 

XRCC6 

Non-homologous 

end-joining 

NM_001190185 

XR_045703 

F/aacggaaggtgccctttact 

R/cttttagccattgcctcagc 
223 

RAD51 

Homologous 

recombination 

NM_001123181 
F/attctgaccgaggcagctaa 

R/atgggaagctggcatgttac 
224 

TUBAl* 

Cell cycle 
NM_001044544 

F/tggaccacaagtttgacctgatg 

R/gtcctcacgggcctcagaaa 
101 

*indicate endogenous reference gene 
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Table 6. Decondensation status of sperm head at 4 h postinjection (3 h after electric 

activation) 

Treatment 
No of examined 

oocytes 

Oocyte with 
decondensed sperm 

head (%) 

Oocyte with 
2PB+2PN (%) 

Fresh 108 62.49 ± 9.97 12.80 ± 5.29 

Tre 0 mM 123 71.53 ± 10.39 8.86 ± 5.21 

Tre 15 mM 130 67.23 ± 6.61 20.44 ± 6.10 

Data were presented as mean ± SEM of 5 replicates.  

PB; polar body, PN; pronucleus, Fresh; ejaculated fresh sperm, Tre 0 mM; sperm 

freeze-dried in basic freeze-drying medium without trehalose, Tre 15 mM; sperm 

freeze-dried in basic freeze-drying medium supplemented with 15 mM trehalose 
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Table 7. Nuclear status of oocytes assessed by staining at different maturational stages 

Time of 
IVM (h)  

No of 
oocyte 

examined 

Maturational stages 

No (%) GV No (%) GVL No (%) M I No (%) M-II 

0 120 
120 

(100 ± 0.0) 
– – – 

20 122 – 
122 

(100 ± 0.0) 
– – 

33 116 – 
5 

(4.3± 0.3) 
111 

(95.7 ± 0.3) 
# 

44 309 – – 
118 

(38.2 ± 0.9) 
191 

(61.8 ± 0.9) 

GV; germinal vesicle, GVL; late germinal vesicle, M-I; metaphase-I and M-II; metaphase-II 

stages. #: at 33 h of IVM, M-II oocytes were removed by observation (5.3%) before staining. 
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Fig. 6. Relative gene expression of 6 DNA repair genes in oocytes at 4 h 

after ICSI. Data were obtained from 3 biological samples with 

duplicate. 

  

0

1

2

3

4

5

6

7

8

R
el

at
iv

e 
ge

ne
 e

xp
re

ss
io

n
MII

Tre0

Tre15

Fresh



57 
 

  

 

 

Fig. 7. Decondensation status and PN formation of sperm at 4 h after ICSI. Intact sperm 

head and decondensed sperm head (arrows in A and B, respectively). Newly formed 

female (left) and male (right) pronuclei (arrows in C); the first (upper) and second (lower) 

polar bodies (arrowheads in C). Scale bar = 20 µm. 
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Fig. 8. Relative gene expression of DNA repair genes in oocytes at different stages 

of in vitro maturation. Data were obtained from 3 biological samples with 

duplicate. a, b Data with different superscripts in each gene show statistically 

significant differences, P<0.05. 
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Chapter IV 

Effect of sperm treatment with Triton X-100 to remove plasma membrane 

on fertilization of IVM porcine oocytes 

 

Introduction 

The successful decondensation of sperm nuclear after being injected into the oocytes is a 

prerequisite factor for the following events of ZGA. The pretreatment of frozen-thawed 

sperm with Triton X-100 (TX) for disrupting sperm membrane has been applied to improve 

the fertiation ablility of ICSI-oocytes with the certain findings. In mice, removal of both 

sperm membranes and acrosome before the injection procedure improved the success of 

ICSI (Morozumi & Yanagimachi 2005). Lee and Yang (2004) also found that an intact 

membrane and tail structure of boar sperm are not essential for embryo development by ICSI, 

even dead porcine sperm, at the early stage of necrosis caused by plasma membrane damage, 

support better embryo development compared with live non-damaged sperm. This result 

suggested that prior removal or damage of sperm membrane would increase the success rate 

of ICSI in species whose sperm have stable membranes. Membrane-damaged boar sperm are, 

thus, beneficial to sperm decondensation during ICSI.  

Sperm pretreatment might help to enhance sperm head decondensation, PN formation 

and subsequent development of sperm-injected oocytes. The chemicals such as calcium 

ionophore (Wei & Fukui 1999; Nakai et al. 2003), Triton X-100 (Nakai et al. 2006; 

Watanabe et al. 2010) and dithiothreitol (DDT) (Rho et al. 1998; Wei & Fukui 1999; Nakai 

et al. 2006; Watanabe & Fukui 2006; Watanabe et al. 2010) can be used to increase the 

plasma membrane permeability and sperm head decondensation. DTT is a disulfide 

reducing agent that induces the reduction of the protamine disulfide bonds in sperm nuclei 

and leads to the decondensation of the sperm heads. The targets of each treatment in each 

study were different; sperm plasma membrane for TX, and the disulfide bond in sperm 

nuclei for DTT. Therefore, it was inferred that DTT was the most severe treatment compared 

with the others (Watanabe et al. 2010). There is supporting evidence that prolonged DTT 

treatment (50–60 min; Yong et al. 2005, Watanabe & Fukui 2006) degraded the fertilization 

ability and developmental competence of porcine oocytes. Similarly, a combination of TX 

and DTT treatments (Nakai et al. 2006) did not increase the efficacy of embryo production in 

pigs. In addition, when examined at DNA and chromosomal levels, prolonged DDT 
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treatment also induced chromosome aberration with 83.0% in the group treated for 60 min 

(Watanabe et al. 2010). 

According to Kasai et al. (1999), TX treatment promoted oocyte activation and 

sperm decondensation of human sperm when they were injected into mouse oocytes. In 

contrast to this study, some other studies showed that sperm treatmens with TX (Szczygiel & 

Ward 2002; Tian et al. 2006) and with TX combined DDT (in mice, Szczygiel & Ward 2002; 

in pigs, Nakai et al. 2006) were not beneficial to the development of ICSI-derived embryos. 

In addition, Szczygiel & Ward (2002) indicated that simultaneous treatment of sperm with 

TX and DTT induces extensive chromosomal breakage and then suggested that such a 

treatment should not be attempted in human ICSI. Therefore, only TX for sperm treatment 

without DDT was used in the present experiment.  

Although effect of TX treatment on decondensation, male PN formation and 

subsequent development of frozen-thawed sperm were reported in different species by many 

research groups. Taking into consideration that response of freeze-dried sperm (with 

motionless status) to TX treatment may be different from frozen-thawed sperm (with motion 

status). Moreover; there has been no report about effect of TX treatment for freeze-dried 

sperm on fertilization of IVM porcine oocytes after ICSI. The objective of this Chapter was 

to assess effect of TX treatment on fertilization of IVM oocytes injected with freeze-dried 

sperm pretreated with different concentrations of TX (0, 0.5% and 1%).  

Materials and Methods 

In vitro  matured (IVM) oocyte preparation 

Oocyte collection and IVM were conducted as described (Kikuchi et al. 2002a). 

Briefly, ovaries were obtained from prepubertal crossbred gilts (Landrace - Large White - 

Duroc breeds) at a local slaughterhouse and transported to the laboratory at 35oC. 

Cumulus-oocyte complexes (COCs) were collected from follicles 2-6 mm in diameter in 

Medium 199 in air (with Hanks’ salts) supplemented with 10% (v/v) fetal bovine serum, 20 

mM Hepes, 100 IU/mL penicillin G potassium, and 0.1 mg/mL streptomycin sulfate. About 

40 to 50 COCs were cultured in 500 µL of maturation medium for 20-22 h in four-well 

dishes. The COCs were subsequently cultured for 24 h in maturation medium without 

dibutyl cAMP and hormones. IVM was carried out at 39oC under conditions in which CO2, 

O2, and N2 were adjusted to 5%, 5%, and 90%, respectively. After IVM, cumulus cells were 

removed from oocytes by repeated pipetting in Medium-199 in air supplemented with 150 
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IU/ mL hyaluronidase. Denuded oocytes with the first PB were harvested under a 

stereomicroscope and used as IVM oocytes. 

Sperm collection, FD and rehydration 

Sperm collection and FD were conducted as described previously (Men et al. 2013). 

Briefly, ejaculated semen was collected from a Landrace boar and transferred to the 

laboratory within 1 h. After determination of the sperm concentration, the semen was 

centrifuged for 10 min at 900 × g at 30oC and the seminal plasma was removed. The pellet 

was resuspended in FD medium containing trehalose prewarmed at 30oC, and the 

supernatant was removed after centrifugation. The final pellet was then resuspended in FD 

media containing 0 or 15 mM trehalose at a final concentration of 4x108 cells/ mL. One 

milliliter of sperm suspension was placed into an individual glass vial, then the vials were 

covered with aluminum foil and placed in a refrigerator at ‒80oC for at least 4 h. The 

aluminum foil was replaced by a rubber cap with small gaps between the cap and the vial, 

and then they were placed in a FD system. The FD program was as follows: specimens were 

dried primarily for 19 h at 0.13 hPa and secondarily for 3 h at 0.13 hPa. During the process of 

primary drying, the shelf temperature was controlled at ‒30oC and then increased to 30oC 

during the last 1 h 20 min (0.75oC/ min). After flushing with inactive N2 gas, the vials were 

sealed with rubber caps and further fastened with aluminum caps. The freeze-dried samples 

were transferred to a refrigerator and stored at 4oC under dark condition until usage. For 

rehydration, the same volume (1 mL) of deionization distilled water was added to vials 

immediately after opening the rubber and aluminum caps using a decapper. The sperm 

suspension was centrifuged for 2 min at 600 × g and the sperm were washed with PBS (‒) 

containing 5 mg/mL BSA, then resuspended in the same buffer. The sperm suspension was 

sonicated for several seconds to isolate sperm heads and kept at room temperature prior to ICSI. 

Pretreatment of freeze-dried sperm with Triton X-100 

Sperm freeze-dried in FD medium containing 0 and 15 mM trehalose were used in 

this experiment. After rehydration and centrifugation to remove FD medium, sperm were 

resuspended in PBS (‒) containing 0, 0.5 and 1 % TX for 10 min at room temperature. After 

exposure to TX, sperm were washed twice in PBS-BSA, sonicated several seconds to isolate 

the sperm head and maintained at room temperature prior to injection to IVM oocytes. 
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ICSI and oocyte stimulation 

ICSI was carried out as previously described (Nakai et al. 2006) with some 

modifications (Men et al. 2013). Briefly, sperm were kept in IVC-PyrLac -Hepes-PVP. 

About 30 IVM oocytes were transferred to a 20-µL drop of Medium 199 in air. A small 

volume (0.5 µL) of the sonicated sperm suspension was transferred to a 2-µL drop of 

IVC-PyrLac-Hepes-PVP. All drops were covered with paraffin oil. A single sperm head was 

aspirated into the injection pipette, and injected into the ooplasm using a piezo-actuated 

micromanipulator. ICSI was completed within 2 h after rehydration of freeze-dried sperm, 

and sperm-injected oocytes were recovered in IVC-PyrLac for 1 h before electrical 

activation. The end of injection was considered as 0 h postinjection. As a control group, 

mature oocytes were handled the same procedure without sperm (sham group). One hour 

postinjection, the oocytes were transferred to an activation solution consisting of 0.28 M 

d-mannitol, 0.05 mM CaCl2, 0.1 mM MgSO4, and 0.1 mg/mL BSA. Once the oocytes were 

sunk down the bottom of the drop, they were then stimulated with a direct current pulse of 

1.5 kV/cm for 20 µs under the same condition for each group using a somatic hybridizer, 

then washed three times and cultured in IVC PyrLac.  

Assessment of fertilization status 

For assessment of fertilization status, the oocytes injected with freeze-dried sperm 

from trehalose 0 and 15 mM groups that had pretreated with different concentrations of TX 

were fixed at 10 h postinjection (i.e. 9 h after electric activation) in fixative solution with a 

1:3 mixture of acetic acid:ethanol (v/v) under vaseline-supported coverslips for several days. 

They were stained with 1% (w/v) orcein in 45% (v/v) acetic acid for several minutes, and 

then their fertilization status was examined using phase-contrast microscopy. 

Statistical analysis 

Data were expressed as mean ± SEM. The percentage data were arcsine-transformed 

(Snedecor & Cochran 1989) then subjected to one way-ANOVA using R packages 3.0.1 (R 

Core Team 2013). As the difference is found in groups by ANOVA, further analysis is 

conducted by Tukey’s posthoc test using the R packages. Differences at P<0.05 were 

considered to be significant. 
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Results 

Fertilization status of oocytes injected with freeze-dried sperm after Triton X-100 

treatment 

The oocytes with 2 PB and 2 PN were considered as fertilized normally. Oocytes 

with more than 2 PB and/or 2 PN or without PN were considered as abnormally fertilized 

oocytes. Results are shown in Table 8. Normal fertilization rate in the 15 mM trehalose 

group treated with 0.5% TX was highest among groups but no significant difference was 

found. There were no significant differences in the rates of normal fertilization and abnormal 

fertilization of porcine oocytes at 10 h after ICSI between the 0 mM and 15 mM trehalose 

groups. Moreover, when freeze-dried sperm were incubated in different concentrations of 

TX for 10 min at room temperature, these parameters also did not differ among groups 

treated with 0, 0.5 and 1 % TX. The rate of oocytes with 2 PB and 2 PN in the sham group 

was significantly lower than those of other sperm injected groups (P<0.001). The rate of the 

oocytes with 2 PB and one female PN (considered as activated oocytes) in sham group was 

67.5% (data not shown in the tables or figures). 

Discussion 

The result of this experiment showed that freeze-dried boar sperm treated with TX at 

different concentrations did not improve normal fertilization. It is reported that the delay in 

oocyte activation and decondensation of sperm chromatin after sperm injection is caused by 

the existence of the sperm plasma membrane (Katayama et al. 2002b). Removal of plasma 

membrane by treatments with different surfactants have been attempted to promote sperm 

chromatin decondensation and oocyte activation. Previous studies suggest that removal of 

sperm plasma membrane by treatment with TX most likely facilitates the exposure of 

soluble sperm factors in the cytoplasm of the sperm to the ooplasm which is considered to be 

beneficial for nuclear decondensation and subsequent zygote activation. Kuretake et al. 

(1996) demonstrated that in mouse ICSI, sperm treated with TX could fertilize oocytes with 

the same efficiency as intact sperm heads, resulting in normal preimplantation and 

postimplantation development (i.e. live offsprings) and the result was comparable to that of 

the control group in their experiments (Kuretake et al. 1996; Kimura et al. 1998). Moreover, 

treating human sperm with TX before ICSI resulted in the fastest and most efficient oocyte 

activation and sperm head decondensation, suggesting that TX is considered to be beneficial 

rather than detrimental (Kasai et al. 1999). 
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However, the result obtained in this experiment suggested that the disruption of 

plasma membrane by FD process seems to have a similar effect as exposure with TX of 

membrane intact sperm. Therefore, further treatments to the membrane of freeze-dried 

sperm did not improve male PN formation as well as normal fertilization. Damages to sperm 

membrane resulting from dehydration can be attributed to the changes in the physical state 

of lipid membrane. However, different findings about effect of treatments for sperm were 

reported in different laboratories and seem to depend on species and sperm types. Because 

the physical and chemical properties of the sperm plasma membrane are varied from species 

to species (Kasai et al. 1999). It is well-documented that active sperm-borne 

oocyte-activating factors (SOAFs), important components of the male gamete, appear 

during transformation of the round spermatid into the spermatozoon (Kasai et al. 1999). 

SOAFs are partly localized in the perinuclear theca in the postacrosomal region (Kimura et 

al. 1998) and under the plasma membrane over the equatorial segment of the acrosome 

(Sutovsky et al. 2003). Interestingly, the action of SOAFs is not highly species-specific since 

mouse oocytes are activated by injection of sperm from foreign species, such as the hamster, 

rabbit, pig, human and even fish (Kimura et al. 1998). Then, Kim et al. (1999) also reported 

a same conclusion about no strictly species-specificity of SOAFs by the series of 

experiments of injection of sperm from mice, cattle or human into porcine oocytes and 

indicated that sperm of these species can activate porcine oocytes. In this study, male PN 

formation and pronuclear apposition were observed in porcine oocytes following injection 

of porcine, bovine, mouse or human sperm although none of the porcine oocytes form any 

mitotic metaphase nor developed to the two-cell stage. Among SOAFs, PLCζ is thought to 

be the strongest candidate as a sperm factor that trigers oocyte activation and following early 

embryonic development (Yoneda et al. 2006). The location or distribution of PLCζ differs 

among species, for examples, between rodents (almost present in sperm head; Kuretake et al. 

1996; Yamauchi et al. 2002) and domestic animals (not only present in sperm head, but also 

in tail; pigs: Nakai et al. 2011 and horses: Bedford-Guaus et al. 2011). For sperm types, fresh 

sperm, frozen-thawed sperm and freeze-dried sperm are supposed to contain different 

amount of SOAFs. This leads to different outcomes of fertilization and subsequent 

development when these sperm were used for injection.  

Nakai et al. (2011) demonstrated that treatments for frozen-thawed boar sperm leads 

to a reduced ability to induce oocyte activation and that this should be taken into 

consideration when preparing samples for ICSI. However, whether similar findings obtained 
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when using freeze-dried sperm have not been clarified. The findings in this experiment 

showed that TX treatment for freeze-dried boar sperm had no positive effect on normal 

fertilization and abnormal fertilization. 
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Table 8. Fertilization rate of oocytes injected with freeze-dried sperm head at 10 h after ICSI 

Treatment  Total  
No (%) normal 

Fertilization  

No (%) abnormal 

fertilization  

Tre 0mM + 1%TX  114  77 (67.54±2.3)  23 (20.18±3.0)  

Tre 0mM + 0.5%TX 122  77 (63.11±4.4)  26 (21.31±4.2)  

Tre 0mM + 0%TX 94  64 (68.09±5.0)  20 (21.28±5.6)  

Tre 15mM + 1%TX 93  66 (70.97±7.7)  17 (18.28±6.7)  

Tre 15mM + 0.5%TX 129  100 (77.52±4.6)  19 (14.73±2.7)  

Tre 15mM + 0 %TX 68  51 (75.00±9.7)  10 (14.71±4.1)  

Sham injection 80  
0 

(0.00*±0.0)  

8 

(10.00±7.0)  

Normal fertilization: oocytes with 2 PB and 2 PN visible;  

Abnormal fertilization: oocytes with more than 2 PB and/or 2 PN  or without PN.  

*shows significant difference within the column (ANOVA-Tukey posthoc test, P<0.001)  

At least 4 replicates were done in each group 

Tre 15 mM: 15 mM of trehalose included in sperm freeze-drying medium 

0, 0.5, 1% were concentrations of Triton X-100 (TX) used in experiments 

Sham: same handling for injection conducted without sperm  
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Chapter V 

Effect of oocyte treatment by centrifugation and electric activation on 

fertilization of IVM porcine oocytes 

 

Introduction 

Centrifugation to stratify cytoplasm facilitates the observation of PN in oocyte or sperm 

penetrated in ooplasm, especially useful for species such as pigs and cattle whose oocytes 

has dark ooplasm with rich lipid dorplets (Tatham et al. 1995; 1996; Rho et al. 1998). The 

centrifugation for polarization of lipid droplets in the cytoplasm before cryopreservation was 

reported to increase significantly the cleavage rate of oocytes that survived after 

freezing-thawing and also the development rates to blastocysts (Otoi et al. 1997). 

For some species such as mice (Kimura & Yanagimachi 1995; Kuretake et al. 1996), 

hamsters (Hoshi et al. 1992), human (Tesarik & Sousa 1995) and rabbits (Keefer 1989), ICSI 

alone is considered to be sufficient to activate oocytes for embryonic development. Even 

external activation stimulus(li) was not required for the development to the blastocyst stage 

after injection of freeze-dried sperm in rats (Kaneko et al. 2009) and mice (Wakayama & 

Yanagimachi 1998, Kawase et al. 2007). It seems that manipulations associated with ICSI 

may have provided sufficient stimulus for oocyte activation in these species. 

However, it is reported that external activation stimulus(li) (by sperm extract) is required 

for blastocyst development after ICSI with freeze-dried sperm in horses (Choi et al. 2011). 

In rabbits, chemical activation treatments such as calcium ionophore with cycloheximide 

and 6-DMAP, were essential for blastocyst production (Liu et al. 2004). In cattle, necessity 

for additional oocyte activation before or after the ICSI procedure was also confirmed 

(Suttner et al. 2000). In pigs, artificial oocyte activation after ICSI was reported to result in 

better fertilization and embryonic development (male PN formation and blastocyst 

development) compared with injection alone (Lee et al. 2003; Nakai et al. 2003). Catt and 

Rhodes (1995) also showed that boar sperm injected into oocytes after ICSI had arrested in 

early decondensation state without any stimulation. Protocols employing Ca2+ ionophore, 

Ca2+ ion containing solution and electrical stimulation have been developed for artificial 

induction of activation in porcine oocytes (Probst & Rath 2003). The result showed that, 

when sperm injected oocytes were treated with Ca2+ ion containing solution, activation and 

fertilization rates were significantly higher as compared with those without treatment. 
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However, a similar rate of activation and a decreased rate of fertilization were recorded in 

the Ca2+ ionophore treated group in relation to non-treated group. For electrical activation, 

both activation and fertilization rates were significantly increased. These findings explained 

the importance of artificial activation on preimplantation development of porcine ICSI 

oocytes. Among the methods of artificial activation, electrical stimulation is the most 

common especially for producing somatic cell nuclear transfer embryos (Lee & Yang 2004) 

and is very effective for embryo production after ICSI (Lee et al. 2003; Nakai et al. 2003; 

Kurebayashi et al. 2000; Lee & Yang 2004). Several factors are reported to influence an 

oocyte's response to electrical activation, including oocyte age, applied voltage/field 

strength, and the pulse number and its duration. In addition, there might be interactions 

between these factors (Zhu et al. 2002). 

Electrical stimulation to oocytes is consiered to be resulted in the formation of pores in the 

plasma membrane, which allows the uptake of extracellular calcium (Onodera & Tsunoda 

1989) leading to an increase in intracellular calcium concentration and finally oocyte 

activation. The Ca2+ oscillation in the ooplasm following sperm-oocyte interaction at 

fertilization is reported to be the essential regulator of oocyte activation and is responsible for 

postfertilization events including meiotic resumption and cortical granule exocytosis 

(Hoodbhoy & Talbot 1994).  

Failure of formation of a male PN was the major cause for fertilization failure in ICSI 

porcine embryos (Lee et al. 2003). Sperm nuclear decondensation is reported to be delayed 

in ICSI compared with IVF (Katayama et al. 2002a); electric stimulation is considered to 

promote the intracellular calcium influx and sperm decondensation process. In a study of 

effect of oocyte activation by electric stimulus on embryo development of ICSI-derived 

porcine oocytes, blastocyst formation rate of sperm injected oocytes was much higher in the 

group with electric stimulus in relation to those of without electric stimulus (27.1% vs. 4.1%, 

respectively, Nakai et al. 2006). However, the rate of normal fertilization, defined by 

formation of two (first and second) PBs and two (male and female) PNs was not examined in 

this study. It is important to assess sperm head decondensation and pronuclear formation in 

oocytes before focusing on the development to the blastocyst stage. Because, electric 

stimulation was applied for oocytes in all my experiments, it cannot be ruled out that 

blastocyst obtained after culture for 6 days might be parthenogenetic origin. The rate of 

oocytes with 2 PBs, a male PN and a female PN (referred to normal fertilization) has been 

used as a good parameter to evaluate the fertilizability of sperm and oocytes after ICSI 

(Heuwieser et al. 1992; Catt & Rhods 1995). 
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Concerning to strategies to improve in vitro embryonic development using 

freeze-dried sperm, the objective of this Chapter was to examine the effect of oocyte 

centrifugation and electric stimulation on fertilization by ICSI of IVM porcine oocytes.  

Materials and Methods 

Preparation of in vitro  matured (IVM) oocytes  

Oocyte collection and IVM were conducted as previously described (Kikuchi et al. 

2002a). Briefly, ovaries were obtained from prepubertal crossbred gilts (Landrace - Large 

White - Duroc breeds) at a local slaughterhouse and transported to the laboratory at 35oC. 

Cumulus-oocyte complexes (COCs) were collected from follicles 2‒6 mm in diameter in 

Medium 199 in air (with Hanks’ salts) supplemented with 10% (v/v) fetal bovine serum, 20 

mM Hepes, 100 IU/mL penicillin G potassium, and 0.1 mg/mL streptomycin sulfate. About 

40 to 50 COCs were cultured in 500 µL of maturation medium for 20‒22 h in four-well 

dishes. The COCs were subsequently cultured for 24 h in maturation medium without 

dibutyl cAMP and hormones. IVM was carried out at 39oC under conditions in which CO2, 

O2, and N2 were adjusted to 5%, 5%, and 90%, respectively. After IVM, cumulus cells were 

removed from oocytes by repeated pipetting in Medium 199 in air supplemented with 150 

IU/ mL hyaluronidase. Denuded oocytes with the first PB were harvested under a 

stereomicroscope and used as IVM oocytes. 

Sperm collection, FD and rehydration 

Sperm collection and FD were conducted as described previously (Men et al. 2013). 

Briefly, ejaculated semen was collected from a Landrace boar and transferred to the 

laboratory within 1 h. After determination of the sperm concentration, the semen was 

centrifuged for 10 min at 900 × g at 30oC and the seminal plasma was removed. The pellet 

was resuspended in FD medium containing trehalose prewarmed at 30oC, and the 

supernatant was removed after centrifugation. The final pellet was then resuspended in FD 

media containing 0 or 15 mM trehalose at a final concentration of 4 × 108 cells/ mL. One 

milliliter of sperm suspension was placed into an individual glass vial, then the vials were 

covered with aluminum foil and placed in a refrigerator at ‒80oC for at least 4 h. The 

aluminum foil was replaced by a rubber cap with small gaps between the cap and the vial, 

and then they were placed in a FD system. The FD program was as follows: specimens were 

dried primarily for 19 h at 0.13 hPa and secondarily for 3 h at 0.13 hPa. During the process of 

primary drying, the shelf temperature was controlled at ‒30oC and then increased to 30 oC 
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during the last 1 h 20 min (0.75 oC/ min). After flushing with inactive N2 gas, the vials were 

sealed with rubber caps and further fastened with aluminum caps. The freeze-dried samples 

were transferred to a refrigerator and stored at 4 oC under dark condition until usage. For 

rehydration, the same volume (1 mL) of deionization distilled water was added to vials 

immediately after opening the rubber and aluminum caps using a decapper. The sperm 

suspension was centrifuged for 2 min at 600 × g and the sperm were washed with PBS (‒) 

containing 5 mg/mL BSA, then resuspended in the same buffer. The sperm suspension was 

sonicated for several seconds to isolate sperm head and kept at room temperature prior to 

ICSI. 

Oocyte centrifugation to stratify cytoplasm before and after ICSI 

IVM oocytes with the first PB were subjected to centrifugation according to 

Fahrudin et al. (2007); Viet Linh et al. (2011) with some modifications. In brief, IVM 

oocytes were transferred to a 1.5-ml micro centrifugation tube (20‒30 oocytes in one tube) 

and then centrifuged at 10,000 × g for 20 min at 37oC in Medium 199 to stratify the 

cytoplasm (Experiment 1 and 2). For Experiment 3, sperm injected oocytes were centrifuged 

at 10,000 × g for 5 min at 37oC in Medium 199, followed by electrical activation and in vitro 

culture. In this experiment, cytochalasin was not used during centrifugation. 

ICSI and oocyte stimulation 

ICSI was carried out as previously described (Nakai et al. 2006) with some 

modifications (Men et al. 2013). Briefly, sperm were kept in IVC-PyrLac- Hepes-PVP. 

About 30 IVM oocytes were transferred to a 20-µL drop of Medium 199 in air. A small 

volume (0.5 µL) of the sonicated sperm suspension was transferred to a 2-µL drop of 

IVC-PyrLac-Hepes-PVP. All drops were covered with paraffin oil. A single sperm head was 

aspirated into the injection pipette, and injected into the ooplasm using a piezo-actuated 

micromanipulator. ICSI was completed within 2 h after rehydration of freeze-dried sperm, 

and sperm-injected oocytes were recovered in IVC-PyrLac for 1 h before electrical 

activation. The end of injection was considered as 0 h postinjection. One hour postinjection, 

the oocytes were transferred to an activation solution consisting of 0.28 M d-mannitol, 0.05 

mM CaCl2, 0.1 mM MgSO4, and 0.1 mg/mL BSA. Once the oocytes were sunk down the 

bottom of the drop, they were then stimulated with a direct current pulse of 1.5 kV/cm for 20 

µs under the same condition for each group using a somatic hybridizer then washed three 

times and cultured in IVC PyrLac.  
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Assessment of fertilization status 

For assessment of fertilization status, the oocytes were fixed at 10 h postinjection in 

fixative solution with a 1:3 mixture of acetic acid: ethanol (v/v) under vaseline-supported 

coverslips for several days. They were stained with 1% (w/v) orcein in 45% (v/v) acetic acid 

for several minutes, and then their fertilization status was examined using phase-contrast 

microscopy. 

Statistical analysis 

Data were expressed as mean ± SEM. The percentage data were arcsine-transformed 

(Snedecor & Cochran 1989) then subjected to one way-ANOVA using R packages 3.0.1 (R 

Core Team 2013). As the difference is found in groups by ANOVA, further analysis is 

conducted by Tukey’s posthoc test using the R packages. Differences at P<0.05 were 

considered to be significant. 

Results 

Relative distance of chromosome spindle complexes relative to PB before and after 

centrifugation 

Three types of location were classified (type A: chromosome spindle complexes 

(CSC) are closest to PB, type B: CSC are located at the same side with PB compared with 

equatorial line, type C: CSC are located at the other side with PB compared with equatorial 

line). The ratio of each type was shown in Fig. 9. Before centrifugation (Fig. 10A), most of 

oocytes show type A (76.3%; Fig. 10C) and the remaining oocytes show type B (23.7%; Fig. 

10D). No oocyte with type C was observed. However, after centrifugation, the ratio of 

oocytes with type B increased twice in relation to before centrifugation and a small portion 

of type C appears (1.8%). Centrifugation made the distance between CSC and PB become 

much farther. On the other hand, after centrifugation, three distinctive layers of cytoplasm 

were observed including ‘transparent’, mitochondria and lipid layer, as presented in 

Fig.10B).  

In this experiment, we also investigated the distribution of CSC in cytoplasm after 

centrifugation and staining with aceto-orcein. The result showed that the oocytes with CSC 

located in the ‘transparent’ layer occupied about 73.5% (Fig.11B) and the oocytes with CSC 

located in the mitochondria layer occupied about 18.2% (Fig.11A) and the remaining 

oocytes with CSC were located in the lipid layer (9.4%) (data not shown in tables or figures). 
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Effect of sperm injection into 3 different layers of centrifuged oocytes on fertilization of 

IVM porcine oocytes (effect of centrifugation before injection) 

As shown in Fig. 12, normal fertilization and abnormal fertilization rates were not 

significantly different among the control (non-centrifugation) and experimental groups. In 

term of normal fertilization, the lowest rate (61.6%) was recorded in the group that sperm 

injected into mitochondrial layer and the highest rate (68.9%) was recorded in the group that 

sperm injected into lipid layer. An example of an abnormally fertilized oocyte was shown in 

Fig. 13D.  

When sperm were injected into 3 layers of oocytes after centrifugation, sperm heads 

could be visible clearly in live cytoplasm when they were injected into the mitochondrial 

layer (Fig. 13A) and the transparent layer (Fig. 13C). However, in case of sperm injection 

into lipid layer, the sperm head is not visible (Fig. 13B). 

Effect of oocyte centrifugation after ICSI and of electric stimulation on fertilization of 

IVM porcine oocytes (effect of centrifugation after injection) 

The rates of normal fertilization, abnormal fertilization and metaphase-III (M-III) 

arrest were shown in Fig. 14. The rates of normal fertilization in control group was 

significantly higher (P<0.05) than those of remaining groups. The normal fertilization rate 

was significantly higher (P<0.05) in the groups with electric activation applied compared 

with no electric activation, irrespective of centrifugation (63.0% vs. 29.2% for centrifuged 

groups and 71.9% vs. 31.8% for non-centrifuged groups, respectively). However, the 

abnormal fertilization rate in the groups subjected to both centrifugation and electric 

activation was significantly higher (P<0.05) than those of the groups without electric 

activation, irrespective of centrifugation and was not different from the control group 

(non-centrifugation, with electric activation).  

The oocytes with the presence of metaphase-like chromosome plates (Fig. 15) at 10 h 

after injection are referred to as M-III arrested oocytes. The rates of the M-III arrested 

oocyets were significantly higher (P<0.001) in the groups without electric activation 

compared with those in the groups subjected to electric activation, irrespective of 

centrifugation (40.5% vs. 6.9% for centrifuged groups and 35.8% vs. 4.5% for 

un-centrifuged groups, respectively). 
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Discussion 

Centrifugation facilitates the visible of sperm release in ooplasm and therefore may 

reduce the amount of medium injected to oocytes. However, the findings in this experiment 

showed that there were no benefits of oocyte centrifugation before ICSI on normal 

fertilization (Fig. 12). In addition, centrifugation makes the distance between CSC and PB 

further, thus, may induce the higher risk of disruption of CSC by the injection procedure. 

And redistribution of cytoplasm after centrifugation did not promote decondensation and PN 

formation; in contrast, it delayed the oocyte activation and probably interrupted the normal 

decondensation process necessary for PN formation.  

Oocyte centrifugation after ICSI also was not beneficial on normal fertilization (Fig. 

14). Even when the oocytes were centrifuged, the abnormal fertilization rate was 

significantly higher in the group applied for electric activation than those of the groups 

received no electric activation. In the category of abnormal fertilization examined in this 

experiment, most of oocytes presented 3 PN with only one PB. Because only one sperm head 

was injected to one oocyte, it is suspected that the oocytes did not complete meiosis; as a 

consequence, no second PB was extruded. Such oocytes would have 2 female PNs, and one 

male PN. There are two possibilities to explain for the higher rate of the oocytes with 3 PN in 

the electric activated group. Normally, electric pulse induces intracellular cacium oscillation 

and promotes the sperm chromatin decondensation and female PN and also male PN 

formation if pserm has been in ooplasm. However, when electric stimulus was applied for 

oocyte activation after centrifugation, it is most likely that the normal resumption of meiosis, 

chromatin remodeling and PN formation are disrupted or inhibited. Centrifugation coupled 

with electric stimulation would disturb the extrusion of the second PB. Oocyte 

centrifugation more likely triggers the disruption of CSC into 2 or more pieces, resulting in 

the embryos with more than two PNs.  

The result in present study was in agreement with the findings of Yong et al. (2005) 

who reported that transformation from sperm head decondensation to male PN was delayed 

in centrifuged oocytes compared with non-centrifuged oocytes. The delay may be caused by 

slow or irreversible redistribution of internal organelles including lipid droplets of ooplasm 

after centrifugation. Because the homogeneous distribution of ooplasmic lipids plays an 

important role in the transformation of sperm head into male PN (Kikuchi et al. 2002b). In 

addition, centrifuged oocytes might also lose the opportunity of syngamy with sperm nuclei 

at appropriate time point (Yong et al. 2005). Interestingly, although a significantly lower rate 
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of male PN was observed in centrifuged oocytes, development to the blastocyst stage was 

not affected by centrifugation in that work. This is attributed to the parthenogenetic 

development in these oocytes. Therefore, we suggest that, before discovery of an appropriate 

method for distinguishing, the blastocysts derived from parthenogenetically activated 

oocytes or from sperm-injected oocytes, probably, examination of the presence of a male PN 

in oocytes after fertilization would be more significant. 

In cattle, Chung et al. (2001) suggested that centrifugation of oocytes matured in 

vitro has no detrimental effect on fertilization and subsequent early embryonic development. 

In addition, Wei & Fukui (1999) also reported that the proportions of bovine oocytes that 

were successfully injected, survived or showed two PNs were higher when centrifuged 

oocytes were used in conventional ICSI. Our results revealed that there were no differences 

in term of normal fertilization rate in porcine oocytes injected with freeze-dried sperm 

between centrifuged and non-centrifuged oocytes without electric stimulation. 

Normal fertilization rate was significantly improved in the groups with electric 

activation applied compared with no electric activation group, confirming the importance of 

artificial electric stimulation to porcine ICSI-oocytes. In contrast to the report of Yong et al. 

(2005) who revealed that there was no effect of electric activation on normal fertilization of 

porcine ICSI-oocytes, even detrimental effect on oocyte survival, the present result showed 

that electric stimulation increased significantly normal fertilization rate, irrespective of 

centrifugation. This difference can be explained by the fact that this research group 

performed modified ICSI ‒ with the injection of head membrane damaged sperm but not 

conventional ICSI.  

After centrifugation, the clear zone (referred to as transparent layer in our pevious 

study) could be the site of ICSI of mature oocytes in order to visualize the injected sperm 

(Fig. 10). This is impossible in non-centrifuged oocytes, which have vesicular elements and 

lipid droplets that make the ooplasm opaque, unlike in human and mouse oocytes (Tatham et 

al. 1996). Ooplasm stratification after centrifugation would make it possible to remove these 

lipid droplets (delipidization) prior to the freezing or vitrification of oocytes or embryos by 

either further centrifugation or micromanipulation (Nagashima et al. 1994; Pangestu et al, 

1995). Since the existence of lipid droplets in the oocytes or embryos subjecting to 

cryopreservation reduces their survival potential. Tatham et al. (1996) indicated that 

maturation spindles and cortical cytoskeleton were mostly intact and were firmly anchored 

to the oocyte cortex beneath the oolemma, even after centrifugation.  
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The percentage of oocytes enter to the M-III stage, characterized by metaphase-like 

chromosomes with an elongated metaphase spindle, was significantly higher in the groups 

without electric activation, suggesting that mechanical injection procedure is not sufficient 

to induce oocyte activation to proceed to the PN stage. It is reported that activity of 

maturation promoting factor (MPF) in non-activated oocytes gradually decreases during 

arrest at the M-II stage, but it is high enough to maintain the M-phase (Kikuchi et al. 1995). 

This high MPF activity makes the injected sperm nuclei either recondensed into a chromatin 

mass or changed into metaphase-like chromosomes in mice (Clarke & Masui 1987), pigs 

(Kikuchi et al. 1999a) and cattle (Abeydeera & Niwa 1992). In cattle, according to Liu et al. 

(1998), when oocytes were full activated (defined as pronuclear formation), MPF 

inactivation followed by MAPK (mitogen-activated protein kinase) inactivation occurred 

quickly; whereas the oocytes undergoing partial activation (defined as exit from the M-II 

arrest but no PN formation, so called the enter to the M-III stage), MPF was inactivated but 

MAPK activity remained high. They suggest that a decrease in MPF activity coincided with 

M-II exit and a decrease in MAPK activity coincided with PN formation (i.e. the inactivation 

of two these kinases is independent). 

However, a small portion of sperm injected oocytes also showed the entering to the 

M-III stage even after the oocytes had been electrically activated. This might be caused by 

inconsistent changes in activity of MPF and MAPK in some oocytes after sperm injection 

and oocyte stimulation. In some cases, electrical stimulation alone triggers a temporary 

decrease in MAPK activity, but the resumption of its activity was detected after stimulation 

(Collas et al. 1993; Ito et al. 2004; Nanassy et al. 2007). On the other hand, some porcine 

IVM oocytes may have reduced levels of sperm decondensing factor(s) because of 

precocious activation of the oocytes prior to and during ICSI, due to prolonged handling of 

oocytes and extended exposure to room temperature as demonstrated by Lee et al. (2003). 

Probably, amount of oocyte-activating factor(s) released by the injected sperm was only enough 

to partially initiate the physiological cascade of normal fertilization, (i.e. to release the oocyte from 

M-II arrest).  

In conclusion, oocyte centrifugation before ICSI did not improve normal fertilization rate. 

Oocyte centrifugation after ICSI showed a negative effect on normal fertilization in case of 

electric activation and no effect on normal fertilization in case of no electric activation applied. 

Moreover, the significantly higher percentage of the oocytes at the M-III stage in the groups 

without EA confirmed the importance of additional electric stimulation to activate the porcine 

ICSI oocytes. 
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Fig. 9. Location of CSC relative to PB in oocyte before and after CF at 

10,000 × g for 20 min. Data are collected from 6 replicates with 131 oocytes 

for before CF group and 7 replicates with 170 oocytes for after CF group. 
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Fig. 10. In vitro matured oocytes before (A) and after (B) centrifugation were observed 

by stereo-microscope (A and B) and stained with aceto-orcein (C and D). After 

centrifugation at 10,000 × g, for 20 min, at 37oC, three distinctive layers could be 

observed including lipid layer, mitochondria layer and transparent layer. Before 

centrifugation, most of oocytes showed with type A (CSC adjacent with PB; C) but 

after centrifugation, the rate of oocytes with type B increased (CSC migrated farther the 

way to PB; D). Scale bar: 20 µm. 
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Fig. 11. In vitro matured oocytes after centrifugation and stain with aceto-orcein. 

CSC was located in the mitochondria layer (A) and the transparent layer (B). Scale 

bar: 20 µm. 
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Fig.12. Effect of sperm injection into 3 different layers of centrifuged 

oocytes on fertilization of IVM porcine oocyte. Data were given as mean ± 

SEM of 5 replicates in each group. 
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Fig. 13. Sperm injection into 3 layers of oocytes after centrifugation. Sperm heads 

(arrowhead) could be visible clearly in cytoplasm when they were injected into the 

mitochondrial layer (A) and the transparent layer (C). In case of sperm injection into 

lipid layer, the sperm head is not visible (B). An abnormally fertilized embryo with two 

PB (invisible in this focus) and three PN (D). Scale bar: 20 µm. 
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Fig.14. Effect of centrifugation and electric stimulation on fertilization of IVM 

porcine oocytes. CF: centrifugation, EA: electric activation, +: with CF/EA, -: 

without CF/EA,  

Data were given as mean ± SEM of at least 7 replicates in each group 
a,b,c statistically significant differences exists among groups (P<0.05)  
a’, b’ statistically significant differences exists among groups (P<0.001). 
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Fig. 15. An oocyte arrested at M

Oocyte obtained in the group without electric activation

structures include one from 

male origin (B). Two focuses of one oocyte. 
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An oocyte arrested at M-III stage with 2 PB and 2 metaphase

in the group without electric activation. Two metaphase

one from female origin that is close to PB (A) and the other from 

Two focuses of one oocyte. Scale bar: 20 µm. 
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Chapter VI 

In vivo developmental ability of freeze-dried sperm injected oocytes after 

embryo transfer to recipients 

 

Introduction 

Because of the high fecundity of pigs, the needs for extra offspring per breeding 

female are less than in cattle breeding. Moreover, the procedures for embryo collection and 

transfer mainly require surgical operation, leading to embryo transfer technique in pigs 

being developed only to a limited extend (Brüssow et al. 2000). However, the increased 

needs for transfer of porcine genetic material around the world with minimal health risks and 

low costs, lead to a stronger motivation to use new reproduction technologies in breeding 

and production in pigs. In embryo transfer technology in pigs, three main techniques have 

been performed and developed with more improved tendency. Each technique has both 

advantages and drawbacks as described below. 

Surgical procedures for commercial applications have only been used to a limited 

extent. Gilts are often used as recipients because they are easy to handle and tolerate 

anesthesia and surgery better than sows. The embryos are transfered in the oviducts or tip of 

the uterine horns, depending on the developmental stage of the embryos. On average, the 

pregnancy rate is about 60%, and the litter size is 6.5 piglets, with a range from 17% with 2.4 

piglets to 100% with 10.8 piglets (reviewed by Hazeleger & Kemp 2001). 

Endoscopic procedures for embryo transfer have been developed also as done by 

surgical procedures. Nevertheless, the endoscopic procedures require anesthesia and other 

surgical precautions similar to those of the conventional surgical approaches, and are 

therefore less applicable for use on individual farms. 

Nonsurgical embryo transfer was firstly reported by Polge & Day (1968). However, 

the poor transcervical accessibility of the uterus of non-estrous sows was mentioned as a 

major problem for a long time.  

In vivo matured oocytes and uterus-flushing in vivo derived embryos is the best 

option for research in which the oocytes and embryos are used as materials. However, in 

vivo embryos collection offers the limited number of embryos and its cost for these 

procedures is very expensive. Therefore, the usage of them has no high applicability and 

practicality. Efforts to improve the developmental ability of IVM oocytes have been 

continued indefatigably. To have large numbers of embryos available, embryos may be 
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produced in vitro by IVM-IVF and IVM-ICSI of oocytes collected from ovaries of 

slaughtered pigs. Successful production of live piglets by those techniques has been reported 

(Mattioli et al. 1989; Nakai et al. 2003, respectively); however, overall success rates are still 

low. 

The classical methods to select healthy embryos under IVF and ICSI conditions are 

based on morphological criteria such as early embryonic cleavage, the number and size of 

blastomeres, fragmentation degree, and the presence of multi-nucleation at the 4- or 8-cell 

stages (Fenwick et al. 2002). However, most studies suggest that embryos with proper 

morphological appearance alone are not sufficient to predict a successful implantation. The 

application of transcriptomic, proteomic and metabolomic approaches have greatly 

broadened our understanding of early human embryo development. These hi-technologies 

may ultimately lead to non-invasive evaluations for oocyte or embryo quality revealing 

previously hidden information concerning developmental competences of both oocytes and 

embryos (Assou et al. 2011) in the procedures of embryo selection for the embryo transfer 

program.  

Previous studies suggest that co-transfer of parthenogenetically activated embryos 

(parthenotes) and embryos derived from in vitro fertilization to recipients helps to increase 

the chance of pregnancy and supports for full-term development (King et al. 2002). 

Parthenogenesis is the development of an embryo without paternal contribution (Kaufman & 

Sachs 1975). When they are transferred into the uterus of a surrogate mother, mammalian 

parthenogenetic embryo will develop to different stages depending on the species but never 

to term (Kono 2006). Parthenogenetic mouse blastocysts could develop only 11 days in vivo 

after the embryo transfer (Kaufman et al. 1977). The development of parthenogenetic 

embryos also ends at the 11 day of gestation in rabbits (Onodera & Tsunoda 1989) and at 25 

or 26 days of gestation in sheep (Loi et al. 1998). Pig parthenogenetic oocytes derived by 

various activation methods can develop to the morula or blastocyst stage. Kurebayashi et al. 

(2000) confirmed that parthenogenetic porcine diploid embryos have the ability to develop 

up to day 29 after transfer. Besides, parthenogenetic activation is used as a functional assay 

of cytoplasmic maturation of oocytes and also of early embryonic development. An 

increased incidence of parthenogenetic activation by aged oocytes was attributed in part to 

the gradual decrease of MPF activity in porcine oocytes during prolonged culture (Kikuchi 

et al. 2000). The aged oocytes cause the failure of male PN formation and decreased embryo 

viability after ICSI. 
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The objective of this Chapter was to evaluate the in vivo developmental ability of 

oocytes following ICSI with freeze-dried sperm heads. Embryo transfer has been carried out 

in the effort to generate at least one live piglet following ICSI using freeze-dried sperm and 

IVM oocytes.  

Materials and methods 

Preparation of in vitro  matured (IVM) oocytes  

Oocyte collection and IVM were conducted as previously described (Kikuchi et al. 

2002a). Briefly, ovaries were obtained from prepubertal crossbred gilts (Landrace - Large 

White - Duroc breeds) at a local slaughterhouse and transported to the laboratory at 35oC. 

Cumulus-oocyte complexes (COCs) were collected from follicles 2 - 6 mm in diameter in 

Medium 199 in air (with Hanks’ salts) supplemented with 10% (v/v) fetal bovine serum 20 

mM Hepes, 100 IU/mL penicillin G potassium, and 0.1 mg/mL streptomycin sulfate. About 

40 to 50 COCs were cultured in 500 µL of maturation medium for 20 - 22 h in four-well 

dishes. The COCs were subsequently cultured for 24 h in maturation medium without 

dibutyl cAMP and hormones. IVM was carried out at 39oC under conditions in which CO2, 

O2, and N2 were adjusted to 5%, 5%, and 90%, respectively. After IVM, cumulus cells were 

removed from oocytes by repeated pipetting in Medium-199 in air supplemented with 150 

IU/ mL hyaluronidase. Denuded oocytes with the first polar body (PB) were harvested under 

a stereomicroscope and used as IVM oocytes. 

Sperm collection, FD and rehydration 

Sperm collection and FD were conducted as described previously (Men et al. 2013). 

Briefly, ejaculated semen was collected from a Landrace boar and transferred to the 

laboratory within 1 h. After determination of the sperm concentration, the semen was 

centrifuged for 10 min at 900 × g at 30oC and the seminal plasma was removed. The pellet 

was resuspended in FD medium containing trehalose prewarmed at 30oC, and the 

supernatant was removed after centrifugation. The final pellet was then resuspended in FD 

media containing 0 or 15mM trehalose at a final concentration of 4x108 cells/ mL. One 

milliliter of sperm suspension was placed into an individual glass vial, then the vials were 

covered with aluminum foil and placed in a refrigerator at – 80oC for at least 4 h. The 

aluminum foil was replaced by a rubber cap with small gaps between the cap and the vial, 

and then they were placed in a FD system. The FD program was as follows: specimens were 

dried primarily for 19 h at 0.13 hPa and secondarily for 3 h at 0.13 hPa. During the process of 

primary drying, the shelf temperature was controlled at - 30oC and then increased to 30oC 
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during the last 1 h 20 min (0.75oC/ min). After flushing with inactive N2 gas, the vials were 

sealed with rubber caps and further fastened with aluminum caps. The freeze-dried samples 

were transferred to a refrigerator and stored at 4oC under dark condition until usage. For 

rehydration, the same volume (1 mL) of deionization distilled water was added to vials 

immediately after opening the rubber and aluminum caps using a decapper. The sperm 

suspension was centrifuged for 2 min at 600 × g and the sperm were washed with PBS (-) 

containing 5 mg/mL BSA, then resuspended in the same buffer. The sperm suspension was 

sonicated for several seconds to isolate sperm head and kept at room temperature prior to 

ICSI. 

ICSI and oocyte stimulation 

ICSI was carried out as previously described (Nakai et al. 2006) with some 

modifications (Men et al. 2013). Briefly, sperm were kept in IVC-PyrLac- Hepes-PVP. 

About 30 IVM oocytes were transferred to a 20-µL drop of Medium 199 in air. A small 

volume (0.5 µL) of the sonicated sperm suspension was transferred to a 2-µL drop of 

IVC-PyrLac-Hepes-PVP. All drops were covered with paraffin oil. A single sperm head was 

aspirated into the injection pipette, and injected into the ooplasm using a piezo-actuated 

micromanipulator. ICSI was completed within 2 hs after rehydration of freeze-dried sperm, 

and sperm-injected oocytes were recovered in IVC-PyrLac for 1 h before electrical 

activation. The end of injection was considered as 0 h postinjection. One hour postinjection, 

the oocytes were transferred to an activation solution consisting of 0.28 M d-mannitol, 0.05 

mM CaCl2, 0.1 mM MgSO4, and 0.1 mg/mL BSA. Once the oocytes were sunk down the 

bottom of the drop, they were then stimulated with a direct current pulse of 1.5 kV/cm for 20 

µs under the same condition for each group using a somatic hybridizer, then washed three 

times and cultured in IVC PyrLac until the pooling the putative zygotes for embryo transfer.  

Transfer of sperm injected oocytes to recipients 

Estrus synchronization of the recipient gilts was carried out basically as reported 

previously (Kikuchi et al. 1999b; Kashiwazaki et al. 2001; Nakai et al. 2003). In brief, an 

intramuscular injection of 1000 IU of eCG (Nihon Zenyaku Kogyo) and, 72 h later, an 

injection of 500 IU of hCG (Sankyo) were given to nonpregnant gilts (5–6 months old, 

100–110 kg). Ovulation was expected at 40–45 h after the hCG injection. The embryos after 

IVC were transferred to freshly prepared transfer medium, NCSU-37 solution supplemented 

with 4 mg/ml BSA and 20 mM Hepes, adjusted to 285 osm/kg. Sperm injected and 
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stimulated oocytes were transported to the farm at 37oC in IVC PyrLac-Hepes. At 3 h after 

stimulation, the oocytes were transferred to both oviducts of estrous-synchronized recipient 

gilts, in which ovulation was confirmed. We also co-transferred parthenogenetic oocytes 

with the sperm-injected oocytes to all recipients to increase the chance of pregnancy (King et 

al. 2002). Parthenogenetic embryos were generated by electro-stimulation with a direct current 

pulse of 2.2 kV/cm for 30 µsec and incubated in IVC-PyrLac-Hepes supplemented with 10 

µg/ml cytochalasin B at 37oC for 3 h. 

Results 

The data of trials of embryo transfer were shown in Table 9. Some recipients showed 

delayed estrus but returned their estrus on the second cycle (about day 56‒60 after embryo 

transfer). After 7 trials with the number of oocytes transferred from 96 to 120 per recipient, 

the ability of ICSI-oocytes using freeze-dried sperm to generate a live piglet has not been 

demonstrated in this experiment. 

Discussion 

The ability of ICSI-oocytes using freeze-dried sperm to generate a live piglet has not 

been achieved after embryo transfer in this study. IVM-IVF oocytes were cultured for 36–48 

h (Mattioli et al. 1989; Yoshida et al. 1993b; Funahashi et al. 1996; 1997) or 96 h (Day et al. 

1998) and then transferred to recipients (2- to 4-cell stage embryos or 8-cell to morula stage 

embryos, respectively) in previous studies. However, the rate of embryo development to 

piglets was very low. Later, viable piglets were also generated after transfer of IVP embryos 

at the blastocyst stage (Marchal et al. 2001; Kikuchi et al. 2002a). However, prolonged 

exposure of embryos in in vitro culture medium is reported to decrease the subsequent 

development of embryo, in other words; viability of porcine IVP embryos is decreased with 

increasing period of IVC (Kikuchi et al. 1999b). In their study, the developmental rate to 

fetuses for oocytes inseminated by IVF and transferred without any culture was significantly 

higher than for those transferred after culture for 24 and 48 h (Kikuchi et al. 1999b). This 

result is attributed to the sub-optimal in vitro culture system. Considering this aspect, we 

performed the embryo transfer soon after the completion of ICSI and oocyte activation.  

Probst & Rath (2003) succeeded in producing live piglets for the first time following 

ICSI using flowcytometrically sorted sperm with only in vivo matured oocytes but not IVM 

oocytes. The authors demonstrated that low developmental ability of these embryos might 

be related to insufficient IVM and IVC condition and not necessarily to ICSI itself. 
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Besides, oocyte quality, culture medium, embryo transportation process, number of 

the transferred embryos, response of ovaries with hormones, ovulation status of recipients, 

etc; all these factors influence the outcome of embryo transfer experiments. For instance, 

recipients with high plasma progesterone concentrations or with numerous follicular cysts 

were shown to have a reduced likelihood of remaining pregnant (Blum-Reckow & Holtz 

1991). For embryo transfer medium, the parameters such as pH, osmolality, temperature, 

sterility and toxicity of transfer medium are important; the tolerance range of these 

properties of embryos is often narrow. Besides, oscillation of pH can be detrimental on 

embryo and fetal development and the use of buffers for embryo transfer in procedures 

performed outside the laboratory incubator is obligation. Taken together, optimal 

improvements of not only IVP system but also embryo transfer procedures have a great 

importance on offspring successful production. Although desired outcome has not been 

gained, we will continue some additional attempts in the future. 

After several failed trials of embryo transfer, we considered that embryo quality may 

be one of factors affecting the survival of embryos after transfer; the experiments in Chapter 

VII were conducted to compare the blastocyst quality in term of cell numbers and DNA 

fragmentation index among groups using different types of sperm. 
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Table 9. Trials of transfer porcine oocytes after injection with freeze-dried sperm 

Trials 
Trehalose 

(mM) 

No of oocytes 

transferred a 

CB treated- 

Parthenotes 
Offspring 

1 15 106 (77) 29 ‒ 

2 0 103(78) 25 ‒ 

3 15 105(80) 25 ‒ 

4 15 100(84) 16 ‒ 

5 15 96(72) 24 ‒ 

6 0 108(80) 28 ‒ 

7 0 120(96) 24 ‒ 

aTotal number of oocytes transferred to one recipient. Number in parentheses is number of 

ICSI- oocytes. Basic freeze-drying medium contains EGTA 50 mM in all groups. Tre 0 mM, 

Tre 15 mM: basic freeze-drying medium supplemented 0 or 15 mM trehalose. Day of ET is 

day of ICSI.  
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Chapter VII 

Detection of DNA fragmentation in blastocyst obtained from IVM porcine 

oocytes injected with freeze-dried sperm 

 

Introduction 

Apoptosis occurs as a normal phenomenon during development and aging. It acts as 

a homeostatic mechanism to maintain cell populations in tissues and also act as a defense 

mechanism when cells are damaged by disease or toxic agents (Norbury & Hickson 2001). 

Using conventional histology, it is not always easy to distinguish apoptosis from necrosis, 

since they occur simultaneously depending on factors such as the intensity and duration of 

the stimulus, the extent of ATP depletion and the availability of caspases (Zeiss 2003). 

Necrosis is an uncontrolled and passive process that usually affects large fields of cells 

whereas apoptosis is controlled and energy-dependent and can affect individual or clusters 

of cells. Within the scope of this study, we only discuss some points about apoptosis that had 

been reviewed intensively in literature until now. 

In mice, DNA fragmentation in nuclei of blastocysts has been shown to be related to 

the method used for sperm lyophilization and the method of storage, and to be correlated 

with a lower ability of lyophilized sperm to yield blastocysts after ICSI (Kawase et al. 2009). 

Apoptosis even observed in rhesus blastocysts freshly flushed from the reproductive tracts 

(Ender et al. 1981). Therefore, physiological apoptosis is very important during various 

developmental processes. In cattle, the occurrence of apoptosis is dependent on the 

developmental stage of embryos. It was observed in the 8–16 cell, morula and blastocyst 

stage embryos but not in the stages from the zygote (two PN) before the 8 cell (Matwee et al. 

2000). It is believed that apoptosis has to be tightly regulated since apoptosis may lead to 

pathology or developmental defects (Elmore 2007). 

There are a large variety of assays available, but each assay has advantages and 

disadvantages which may make it acceptable to use for one application but inappropriate for 

another application (Watanabe et al. 2002). Assessment of embryonic cells with fragmented 

DNA using the terminal deoxynucleotidyl transferase (TdT) nick-end labeling (TUNEL) is a 

common method (Kressel & Groscurth 1994). It allows in situ assessment of DNA breaks in 

the nuclei (Farber 1994).  
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Interestingly, levels of cell death were similar for in vivo and in vitro cultured mouse 

blastocysts (Devreker & Hardy 1997). However, other studies in cattle and other 

mammalian species determined higher apoptotic indices in blastocysts produced in vitro 

compared to those developed in vivo (Fabian et al. 2005; Pomar et al. 2005), concluding that 

insufficient in vitro embryo production systems might increase apoptosis.  

It is known that total cell number of blastocyst after culture is related to the viability 

of the fetuses (Kikuchi et al. 1999b). Additionally, Hardy et al. (2003) reported a high 

apoptotic index in morphologically excellent human blastocysts produced in vitro and 

proposed that programmed cell death might play an important role in normal development. 

Cell numbers and apoptosis levels are proposed as useful indicators of developmental 

potential of embryo (Neuber et al. 2002; Elmore 2007). 

The objective of this Chapter was to compare the quality of the blastocysts in terms 

of cell number and DNA fragmentation (apoptosis) obtained by ICSI using different sources 

of sperm: fresh sperm, frozen-thawed sperm, freeze-dried sperm and in blastocyst obtained 

by conventional in vitro fertilization. 

Materials and methods 

Preparation of in vitro  matured (IVM) oocytes  

Oocyte collection and IVM were conducted as previously described (Kikuchi et al. 

2002a). Briefly, ovaries were obtained from prepubertal crossbred gilts (Landrace - Large 

White - Duroc breeds) at a local slaughterhouse and transported to the laboratory at 35oC. 

Cumulus-oocyte complexes (COCs) were collected from follicles 2-6 mm in diameter in 

Medium 199 in air (with Hanks’ salts) supplemented with 10% (v/v) FBS, 20 mM Hepes, 

100 IU/mL penicillin G potassium, and 0.1 mg/mL streptomycin sulfate. About 40 to 50 

COCs were cultured in 500 µL of maturation medium for 20–22 h in four-well dishes. The 

COCs were subsequently cultured for 24 h in maturation medium without dibutyl cAMP and 

hormones. IVM was carried out at 39oC under conditions in which CO2, O2, and N2 were 

adjusted to 5%, 5%, and 90%, respectively. After IVM, cumulus cells were removed from 

oocytes by repeated pipetting in Medium 199 in air supplemented with 150 IU/ mL 

hyaluronidase. Denuded oocytes with the first polar body (PB) were harvested under a 

stereomicroscope and used as IVM oocytes. 
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Sperm collection, FD and rehydration 

Sperm collection and FD were conducted as described previously (Men et al. 2013). 

Briefly, ejaculated semen was collected from a Landrace boar and transferred to the 

laboratory within 1 h. After determination of the sperm concentration, the semen was 

centrifuged for 10 min at 900 × g at 30oC and the seminal plasma was removed. The pellet 

was resuspended in FD medium containing trehalose prewarmed at 30oC, and the 

supernatant was removed after centrifugation. The final pellet was then resuspended in FD 

media containing 0 or 15mM trehalose at a final concentration of 4 × 108 cells/ mL. One 

milliliter of sperm suspension was placed into an individual glass vial, then the vials were 

covered with aluminum foil and placed in a refrigerator at –80oC for at least 4 h. The 

aluminum foil was replaced by a rubber cap with small gaps between the cap and the vial, 

and then they were placed in a FD system. The FD program was as follows: specimens were 

dried primarily for 19 h at 0.13 hPa and secondarily for 3 h at 0.13 hPa. During the process of 

primary drying, the shelf temperature was controlled at –30oC and then increased to 30oC 

during the last 1 h 20 min (0.75oC/ min). After flushing with inactive N2 gas, the vials were 

sealed with rubber caps and further fastened with aluminum caps. The freeze-dried samples 

were transferred to a refrigerator and stored at 4oC under dark condition until usage. For 

rehydration, the same volume (1 mL) of deionization distilled water was added to vials 

immediately after opening the rubber and aluminum caps using a decapper. The sperm 

suspension was centrifuged for 2 min at 600 × g and the sperm were washed with PBS (–) 

containing 5 mg/mL BSA, then resuspended in the same buffer. The sperm suspension was 

sonicated for several seconds to isolate sperm head and kept at room temperature prior to 

ICSI. 

ICSI and oocyte stimulation 

ICSI was carried out as previously described (Nakai et al. 2006) with some 

modifications (Men et al. 2013). Briefly, sperm were kept in IVC-PyrLac- Hepes-PVP. 

About 30 IVM oocytes were transferred to a 20-µL drop of Medium 199 in air. A small 

volume (0.5 µL) of the sonicated sperm suspension was transferred to a 2-µL drop of 

IVC-PyrLac-Hepes-PVP. All drops were covered with paraffin oil. A single sperm head was 

aspirated into the injection pipette, and injected into the ooplasm using a piezo-actuated 

micromanipulator. Ejaculated fresh sperm, frozen-thawed sperm and freeze-dried sperm 

were used for injection. ICSI was completed within 2 h after rehydration of freeze-dried 

sperm, and sperm-injected oocytes were recovered in IVC-PyrLac for 1 h before electrical 
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activation. The end of injection was considered as 0 h postinjection. One hour postinjection, 

the oocytes were transferred to an activation solution consisting of 0.28 M d-mannitol, 0.05 

mM CaCl2, 0.1 mM MgSO4, and 0.1 mg/mL BSA. Once the oocytes were sunk down the 

bottom of the drop, they were then stimulated with a direct current pulse of 1.5 kV/cm for 20 

µs under the same condition for each group using a somatic hybridizer, then washed three 

times and cultured in IVC PyrLac.  

In vitro  fertilization (IVF) and IVC of porcine oocytes 

IVF was conducted according to Kikuchi et al. (2002a). Epididymides from a boar of 

the Landrace breed were collected, and epididymal sperm were collected and frozen 

(Kikuchi et al. 1998). Sperm were thawed and preincubated for 1 h at 37oC in Medium 199 

adjusted to pH 7.8. The medium for IVF was a modified Pig- supplemented with 2 mM 

sodium pyruvate, 2 mM caffeine, and 5 mg/ml BSA. A portion (10 µL) of the preincubated 

sperm was introduced into 90 µL of fertilization medium containing about 20 COCs 

surrounded by expanded cumulus cells. The final sperm concentration was adjusted to 

1x105/mL. Co-incubation was carried out at 39oC under 5% O2. After co-incubation of the 

gametes for 3 h, the oocytes were freed from the cumulus cells and attached sperm and were 

transferred into IVC medium. The day of insemination was defined as Day 0. The basic IVC 

medium was NCSU-37 medium containing 4 mg/mL BSA and 50 mM βmercaptoethanol. 

IVC was performed in IVC-PyrLac for the first two days and in IVC-Glu until day 6 at 

38.5oC under 5% O2. 

TUNEL assay for detection of DNA fragmentation in porcine blastocyst 

DNA fragmentation of blastocyst was detected by using a combined technique for 

simultaneous nuclear staining and TUNEL assay according to the procedures as descried 

previously (Brison & Schultz 1997; Kajia et al. 2004). The embryos were washed four times 

in PBS containing 3 mg/mL polyvinylalcohol (PBS-PVA), and fixed overnight at 4°C in 

3.7% (w/v) paraformaldehyde diluted in PBS. After fixation, they were washed four times in 

PBS-PVA, permeabilized in PBS containing 0.1% (v/v) TritonX-100 for 60 min, and 

incubated in a blocking solution (PBS containing 10 mg/mL BSA) overnight at 4°C. They 

were washed four times in PBS-PVA and incubated in fluorescein-conjugated dUTP and 

TdT (TUNEL reagent; Roche Diagnostics, Tokyo) for 1 h at 38.5°C and 5% CO2 in air. As a 

positive control, some embryos per TUNEL analysis were incubated in 1000 IU/mL DNase 

I (deoxyribonuclease I; Roche Diagnostics) for 20 min at 38.5°C and 5% CO2, and washed 
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twice in PBS-PVA before TUNEL staining. As a negative control, some embryos were 

incubated in fluorescein-dUTP in the absence of TdT. After that, the embryos were washed 

three times in PBS-PVA and counterstained with 50 µg/mL propidium iodide to label all 

nuclei. They were then washed in the blocking solution, treated with an anti-bleaching 

solution (DABCO), and mounted on a glass slide and covered with coverslip. Labeled nuclei 

were examined under fluorescent microscope. Two standard filter sets were used for 

detection of fluorescein isothiocyanate (FITC) alone (emission wavelength: 525 nm), and 

for detection of propidium iodide alone (emission wavelength: 560 nm). The total number of 

cells was determined by counting the red-stained cell by propidium iodide. The numbers of 

apoptotic bodies were counted for each blastocyst. DNA fragmentation index of blastocyst 

was calculated by dividing the number of total apoptotic bodies by the total number of cells. 

Statistical analysis 

Data were expressed as mean ± SEM. The percentage data were arcsine-transformed 

(Snedecor & Cochran 1989) then subjected to one way ANOVA using R packages 3.0.1 (R 

Core Team 2013). As the difference is found in groups by ANOVA, further analysis is 

conducted by Tukey’s posthoc test using the R packages. Differences at P<0.05 were 

considered to be significant. 

Results 

The number of cells and the amount of apoptosis in the blastocyst are important 

parameters of preimplantation embryonic development and health. The data about these 

parameters were shown in Table 10. Total cell number of blastocyst obtained from the IVF 

group was significantly higher (P<0.05) than those from the ICSI groups using freeze-dried 

sperm or frozen-thawed sperm but did not differ from ICSI group using ejaculated fresh 

sperm. However, DNA fragmentation index of blastocyst in ICSI group using freeze-dried 

sperm was significantly lower (P<0.01) compared with remaining groups. Two 

morphologically distinct types of apoptosis were found during observation: the apoptotic 

bodies (i.e. green-stained dots) and apoptotic cells (i.e. green-stained cells) (Fig. 16 A’). 

Results of the control staining of ICSI-blastocyst were showed in Fig. 16. For positive 

control, all the cells expressed strongly TUNEL stained-signals while no signal of TUNEL 

staining was observed in negative control group. 
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Discussion 

DNA fragmentation in the blastocysts produced by ICSI or IVF using different types 

of sperm was examined by TUNEL staining to assess embryo quality. Our finding indicated 

that DNA fragmentation index in blastocyst was not different between ICSI and IVF using 

the same lot of frozen-thawed sperm. Nonetheless, when ICSI was used, the index in 

blastocysts in the group injected with freeze-dried sperm was significantly lower compared 

with the groups injected with fresh and frozen-thawed sperm. This is an unpredicted result 

and not easy to explain. Our previous study (Men et al. 2013) suggests that, although DNA 

fragmentation level in freeze-dried sperm was significantly higher than those in ejaculated 

fresh sperm, however; the result of fertilization was not different. For the subsequent 

development to the blastocyst stage, higher blastocyst formation rate was observed in fresh 

group. In order to explain for this result, we suggest that the quality of embryos, although 

considered as fertilized normally, might be different between these two groups. Probably, a 

higher proportion of normally fertilized oocytes in the fresh sperm group would be able to 

continue to development to the blastocyst stage while the oocytes in freeze-dried sperm 

group would mainly arrest, leading to significant difference in blastocyst formation rate. 

However, once blastocysts were successfully formed, DNA fragmentation originated from 

sperm would not be a factor affecting the blastocyst quality. This may be the most 

reasonable explanation for interesting finding that apoptosis index of freeze-dried sperm 

group was even lower than that of the fresh sperm group and other groups as well. Because 

programmed cell death, as evidenced by DNA fragmentation occurs spontaneously and 

frequently in in vitro produced system. Another evidence that cell number per blastocyst was 

not different between the fresh sperm and freeze-dried sperm groups following ICSI in this 

experiment, also supporting for this argument. 

One limitation of the TUNEL assay is that it only provides a static picture of the 

blastocysts at a specific time of development, meaning that how long dead cells persist or 

how fast they are cleared by phagocytosis is not known (Nerber et al. 2002). Apoptotic level 

was reported higher in the inner cell mass than in the trophectoderm, probably due to the 

regulation of the inner cell mass is more sensitive than regulation of the trophectoderm, 

since the inner cell mass will form the fetus (Neuber et al. 2002). In that article, the majority 

(93%) of IVP blastocysts contained one or more apoptotic cells.  

Total cell number of blastocyst obtained from IVF group was significantly higher 

than those from the ICSI groups using freeze-dried sperm or frozen-thawed sperm but did 



97 
 

not differ from ICSI group using ejaculated fresh sperm. When frozen-thawed sperm were 

used to fertilize IVM porcine oocytes, mean cell numbers per blastocyst obtained from IVF 

was significantly higher than those of ICSI using the same lot of sperm and same IVC 

medium. One possible reason for decreased blastocyst quality in ICSI group is that ICSI 

procedures used injection medium containing PVP, seemed to be more detrimental to 

embryo development compared with IVF group that did not use PVP. Another possibility is 

due to various sperm quality used for two these methods. In IVF group, the strongest sperm 

will have more opportunity to fertilize oocytes when co-incubated with oocytes. However, 

in ICSI group, the selection of one spermatozoon to inject into one oocyte does not ensure 

that the selected sperm are the best. We suppose this might also responsible for the different 

blasocyt quality between two groups.  

In conclusion, the results suggest that blastocyst quality in term of total cell number 

and nucleus DNA fragmentation of blastocyst might be not a reason for failure in embryo 

transfer in this research. Further investigations are nessessary to clarify the reason of failed 

embryo transfer and to increase the opportunity of live piglet production by FD preservation 

method. 
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Table 10. Total cell number and DNA fragmentation index of in vitro produced porcine 

blastocyst 

Group 

No of 

blastocyst 

examined 

Apoptotic bodies 

(TUNEL-positive 

cell) 

Total cell number 

(PI-positive cells) 

DF index 

(%) 

ICSI-Fresh 

sperm 
26 7.31 39.7ab ± 3.3 18.4B ± 4.1 

IVF-FT sperm 63 6.89 44.4b  ± 2.5 15.5B ± 2.3 

ICSI-FT sperm 43 8.21 35.9a ± 1.7 22.9B ± 3.0 

ICSI-FD sperm 57 3.47 37.6a ± 2.1 9.2A ± 1.6 

FT: frozen-thawed sperm, the same lot of sperm for IVF and ICSI was used 

FD: freeze-dried sperm, from 15 mM trehalose group used 

PI: propidium iodide 

DF index: DNA fragmentation index: the number of apoptotic bodies (TUNEL 

positive-cells or dots) was divided for the total cell number 

Two (fresh group) to five replicates were conducted in this experiment  

Mean ± S.E.M. are presented 
a,b Values with different superscript letters within the column are significantly different 

(P<0.05) 
A,B Values with different superscript letters within the column are significantly different (P< 

0.01) 

  



 

Fig. 16. DNA fragmentation in nuclei of 

sperm. One bastocyst obtained from IVM oocytes injected with freeze
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and C’: green staining by TUNEL. Scale bar: 20 µm 
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Chapter VIII 

General Discussion 

Mammalian sperm preservation by FD has been considered as a safe and inexpensive 

approach relative to cryopreservation in recent years. It has been developed with a major 

concern because if sperm could be stored in a freeze-dried state without the loss of 

fertilization ability, the cost for maintenance and shipping could be enormously reduced. 

The FD preservation ignored the motility of sperm. The resultant sperm from this 

technique are in the dry state, and able to store at room temperature or in ordinary 

refrigerator; however, ICSI must be used to introduce these sperm into the oocytes to start 

the fertilization process because they are motionless, membrane-damaged or “dead” in the 

conventional sense (Kusakabe et al. 2008). 

EGTA chelates calcium, thus prevents DNA damage induced by endonucleases. It 

has been used as an effective lyoprotectant (Kusakabe et al. 2001; Nakai et al. 2007). 

Besides, trehalose,  a non-reducing disaccharide, is found in a large amount in anhydrobiotic 

organisms. Inspired by these survival schemes in nature, many studies have been conducted 

on the protective effect of trehalose on different biomolecules, mainly proteins and 

membranes (Crowe & Crowe 2000; Crow et al. 2005). Therefore, we attempted to combine 

both EGTA and trehalose in FD medium to examine their synergistic effect on DNA of 

freeze-dried sperm.  

In this thesis, the experiments in Chapter II were carried out to investigate the effect 

of supplement of trehalose into basic FD medium on DNA integrity of freeze-dried boar 

sperm, fertilization and subsequent development of IVM porcine oocytes. Firstly, various 

concentrations of trehalose were included (from 0 to 90 mM trehalose) in order to find the 

optimal concentration for freeze-dried sperm DNA protection. The results showed that the 

groups supplemented with trehalose 7.5 and 15 mM significantly decreased DNA 

fragmentation in freeze-dried sperm compared with 0 mM trehalose group. Then, we used 

the concentrations for further investigations about fertilization at 10 h after sperm injection 

and the developmental competence to the blastocyst stage after 6 day in vitro culture. 

However, there were no significantly differences in term of normal fertilization and 

blastocyst formation among 0, 7.5 and 15 mM trehalose groups. As a result, supplement of 

trehalose at appropriate concentrations improved DNA integrity but not improve 

fertilization and preimplantation development. Our results were in aggrement with the result 

of one previous study, showing that sperm with damaged DNA did not affect fertilization by 



101 
 

ICSI (Zini et al. 2005). The difference in DNA damage level of freeze-dried sperm between 

0 mM and 15 mM trehalose group might be neutralized by DNA repair capacity of oocytes 

after fertilization as described in many previous studies (Brandriff & Pedersen 1981; 

Genesca et al. 1992; Ashwood-Smith & Edwards 1996; Iuso et al. 2013). Because all cells 

except viruses and mature sperm, possess a variety of enzymatic mechanisms for repair of 

damaged DNA. These complex DNA repair mechanisms are important for maintaining 

genomic integrity and limiting the introduction of mutations into the gene pool. The findings 

in Chapter II raised us the question that whether the different levels of DNA damage in 

freeze-dried sperm induce the different expression levels of DNA repair genes in oocytes 

injected with those sperm after fertilization. Previously, Harrouk et al. (2000) indicated that 

fertilization with sperm exposed to a DNA damaging agent alters the expression of DNA 

repair genes as early as the 1 cell stage in the rat preimplantation embryo. Our hypothesis 

was that higher level of DNA damage in sperm would lead to higher expression level of 

DNA repair genes in oocytes. Then, hypothesis testing about the relationship between DNA 

damage in freeze-dried sperm and the expression of DNA repair genes in oocytes was 

conducted in experiments in Chapter III. Four groups were designated including matured 

oocytes, matured oocytes injected with fresh sperm, and freeze-dried sperm from 0 mM 

trehalose and 15 mM treahalose group. Unexpectedly, the relative expression level of DNA 

repair genes in oocyted at 4 h postinjection did not differ among all groups.  

A study by Zheng et al. (2005) demonstrated that DNA repair ability of oocytes 

correlates to the amount of maternal repair mRNA in the cytoplasm which accumulated 

during the growth phase of oocytes and follicles, and required for completion of the meiotic 

cell cycle. Therefore, amount of repair mRNA in oocytes might be also various depending 

on stages of maturation. This argument leads to the next experiment about the effect of 

maturational stages on expression of DNA repair genes. Two (UDG and XPC) of six 

investigated genes showed a significantly higher level of DNA repair genes in the M-II stage 

in relation to the earlier stage (M-I, GVL and GV stage). Two genes (MSH2 and XRCC6) 

with the increased tendency in expression of these genes depending on maturational stages 

were detected. These findings in this Chapter have an oriented significance for future 

research. Because, within the scope of this work, the experiments to confirm whether 

increased expression levels of DNA repair genes in oocytes caused by suboptimal IVM 

conditions or their accumulation have not been conducted. If increased level of DNA repair 

genes is confirmed to be caused by IVM conditions, the efficient improvement of IVM 

system can be achieved based on the expression profile of DNA repair genes. Because one 
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previous study indicated that dysregulation of many genes occurs during IVM of human 

oocyte (Jones et al. 2008). One of ideas for future direction, to test the hypothesis, I think 

about the establishment an IVC system in which oocytes are subject to different stressful 

factors (O2 tension, CO2 tension, incubation temperature, detrimental agents, beneficial 

agents), then the expression of DNA repair genes would be detected to find any differences 

between the conditions. This idea also serves for the general objective; it is, to improve IVP 

system since the use of in vivo matured oocytes is expensive and often impractical. 

In parallel, a series of experiments in Chapters IV and V were performed to 

investigate the effect of some treatments for sperm and oocytes, also in order to improve the 

efficacy of embryo production following ICSI using freeze-dried sperm. Some 

improvements in embryonic development would be very important in increasing the 

opportunity of producing live piglets when freeze-dried sperm and IVM oocyte are used. In 

mice, removal of both sperm membranes and acrosome before the injection procedure 

improved the success of ICSI (Morozumi & Yanagimachi 2005). However, in pigs, our 

results suggest that freeze-dried sperm treated with TX to remove acrosomal and plasma 

membrane before ICSI did not increase the incidence of normal fertilization. This result was 

similar to the finding in a recent study, reporting that disrupting or removing the sperm 

membrane by TX pretreatment did not result in a significant improvement in male PN 

formation (Garcia-Mengual et al. 2015). 

For the oocyte treatment, although oocyte centrifugation before ICSI facilitated the 

visibility of sperm release in cytoplasm during ICSI procedures, it did not improve normal 

fertilization compared with no centrifugation group. In the experiments for evaluating the 

effect of combination of centrifugation and electric stimulation on fertilization by ICSI of 

IVM porcine oocytes, sperm injected oocytes that were subject to both centrifugation and 

electric activation showed a significantly lower rate of normal fertilization than the group 

without centrifugation. We concluded that oocyte centrifugation after ICSI have a negative 

effect on fertilization of IVM oocytes. This result was in agreement with the finding of Yong 

et al. (2005) who reported that transformation from a sperm head decondensation to a male 

PN was delayed in centrifuged porcine oocytes compared with non-centrifuged oocytes. In 

contrast, in cattle, Chung et al. (2001) reported that centrifugation of bovine IVM oocytes 

has no detrimental effect on fertilization and subsequent early embryonic development. In 

addition, Wei & Fukui (1999) also reported that the proportions of bovine oocytes with two 

PNs were higher when centrifuged oocytes were used in conventional ICSI. On the other 

hand, we also observed a significantly higher rate of normal fertilization and a significantly 
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lower rate of the oocytes entered to M-III stage in the groups with electric activation applied, 

irrespective of centrifugation. The result of this experiment confirmed that electric 

activation after ICSI in pigs is important for promoting the oocyte activation and male PN 

formation as demonstrated in the studies of Nakai et al (2003; 2006; 2007). 

IVM oocytes injected with freeze-dried sperm heads were reported capable of 

growing to the day 39 after oocyte transfer (Nakai et al. 2007). This is the highest 

achievement obtaining about in vivo developmental competence of IVM porcine oocytes 

injected with freeze-dried sperm until now. Accompany with above experiments, we have 

tried to produce live piglets from freeze-dried sperm by embryo transfer into recipients 

(Chapter VI). However, no full-term development of embryos was observed from the 

utilization of freeze-dried sperm and IVM oocytes. Beside the sperm factor, the imbalance 

between nuclear and cytoplasmic maturation of IVM oocytes is most likely the main cause 

for poor embryo quality and impaired postimplantation development compared with in vivo 

counterparts. Indeed, bovine IVP embryos showed reduced pregnancy rates upon transfer 

and increased incidence of abnormal offspring, as evidenced by high mortality rate and large 

calves (Garry et al. 1996). Therefore, the improvement about not only in the number of 

embryos reaching to the blastocyst stage but also in their quality in order to better support for 

fetal development upon transfer to recipients was recommended (Niemann & Rath 2001). 

Current research is oriented towards minimizing the negative effect of IVC conditions on 

quality of the resultant embryos. Suspecting that blastocyst quality may be one of factors 

affecting the survival of embryo after transfer; the next experiments was conducted to 

compare the blastocyst quality in term of cell numbers and DNA fragmentation index among 

groups using different types of sperm (Chapter VII). Apoptosis or programmed cell death is 

regulated tightly since it may lead to pathology or developmental defects (Elmore 2007). 

Cell numbers and apoptosis levels are proposed as useful indicators of developmental 

potential of embryos. Our result demonstrated that cell number of blastocyst obtained from 

the IVF group was significantly higher than those from the ICSI groups using freeze-dried 

sperm or frozen-thawed sperm but did not differ from ICSI group using ejaculated fresh 

sperm. Even DNA fragmentation index of the blastocysts in the ICSI group using 

freeze-dried sperm was significantly lower compared with remaining groups, suggesting 

that blastocyst quality is not much different between ICSI and IVF, between freeze-dried 

sperm and frozen-thawed sperm. These data support for our argument that culture condition 

rather than types of sperm or fertilization mode would affect apoptotic index. It is reported 

that programmed cell death, as evidenced by DNA fragmentation occurs spontaneously and 
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frequently in IVP system, resulting decreased viability of porcine embryo in culture (Long et 

al. 1998). Probably, other factors are responsible for the failed outcome of ET. These 

undefined factors will be the topics for continuing research in future.  

In summary, in this work, studies to improve DNA integrity of freeze-dried sperm 

and early embryonic development of IVM porcine oocytes were conducted. Supplement into 

FD medium with 50 mM EGTA and 15 mM trehalose results an optimal protection for 

sperm DNA after FD procedures. However, even sperm DNA integrity was maintained 

better, normal fertilization and subsequent development of resultant embryos following ICSI 

were not different between 0 and 15 mM trehalose groups. When the relationship between 

DNA damage in sperm and expression of DNA repair genes in oocytes is investigated, there 

was no significant difference in expression of DNA repair genes among groups injected with 

different types of sperm that showed the different levels of DNA damage (fresh or 

freeze-dried sperm). In general, treatments for sperm and oocyte in this study had no 

promoting effects on normal fertilization of IVM oocytes following ICSI. Freeze-dried boar 

sperm treated with TX at different concentrations did not improve normal fertilization of 

IVM oocytes. Any treatments to remove the sperm plasma membrane seem to be not 

necessary in case of freeze-dried sperm. Normal fertilization rates were significantly higher 

in the groups with electric activation than those of without electric activation, confirming the 

importance of artificial electric stimulation to porcine ICSI-oocytes. In addition, normal 

fertilization was significantly higher in the control group (sperm injected oocytes were 

electrically stimulated without centrifugation) compared with the remaining groups and 

centrifugation showed a negative effect on normal fertilization in case of electric activation 

and no effect on normal fertilization in case of no electric activation applied. Besides, there 

is still a problem in obtaining viable offsprings from freeze-dried boar sperm and IVM 

oocytes. In conclusion, the positive effect of trehalose on DNA integrity of freeze-dried 

sperm provide important information for the improvement of FD methods associated FD 

medium; expand basic knowledge of FD associated sperm DNA damage in pigs. This 

research also has contributions in practice since FD would greatly simplify the establishment 

and management of biobanking. It also helps to minimize the environmental costs arising 

from the production and use of LN and other activities for maintenance of facilities of 

cryopreservation system, especially in developing countries. 
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