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Abstract 

 

G protein-coupled receptors (GPCRs) with seven -helical transmembrane domains 

receive exogenous and endogenous stimuli on the cell surface in a receptor-specific 

manner and subsequently convert them into intracellular signaling. Exogenous stimuli 

such as light, odor, taste, and pheromones come from the external environment, while 

endogenous stimuli are generated by physiologically active substances such as hormones, 

neurotransmitters, autacoids, and chemokines, which are produced within organisms. A 

huge amount of knowledge has accumulated so as to reveal that homeostasis and disease 

onset are tightly involved in the active or inactive state of the relevant GPCRs or in the 

variation in the amount of the relevant endogenous ligands. In order to improve disease 

conditions, many antagonists or agonists targeting the disease-relevant GPCRs have been 

used to treat patients. In the late 1990s, many genes with structural features similar to 

known GPCRs were identified mainly in bioinformatics studies. The identified genes 

were called orphan GPCRs, since endogenous ligands for these receptors were 

unidentified. In this study, the author focused on orphan GPCR genes, SLC-1, GPR7, and 

GPR8, and attempted to identify and characterize the endogenous ligands for these 

receptors.  

SLC-1, an orphan GPCR, with homology to the somatostatin receptor and opioid 

receptor families is expressed predominantly in the brain. Its endogenous ligand has not 

been identified. In Chapter I, the author reports the identification of melanin-

concentrating hormone (MCH) as the endogenous ligand for SLC-1 and the 

characterization of SLC-1 as a functional MCH receptor. An agonist peptide for rat SLC-

1 was purified from the rat brain and was identified as rat MCH. Synthetic MCH peptide 
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activated Gi-coupled signaling in stable Chinese hamster ovary cell lines expressing 

human and rat SLC-1, which resulted in a decrease in intracellular cAMP levels with IC50 

values in the subnanomolar range. These findings indicate that the author identified SLC-

1 as a functional MCH receptor, which has been long sought since the first discovery of 

chum salmon MCH in 1983. The results enabled the studies of MCH as a regulator of the 

energy homeostasis, anxiety, and sleep from the viewpoint of its receptor, SLC-1. 

Moreover, the pairing of SLC-1 with MCH is expected to provide helpful information to 

create screening tools for the discovery of MCH receptor antagonists. 

The structurally related orphan GPCRs, GPR7 and GPR8, present homology to the 

somatostatin receptor and opioid receptor families and are expressed in the central 

nervous system. Their endogenous ligands have not been identified. In Chapter II, the 

author reports the discovery and the characterization of a novel brain-gut peptide, 

neuropeptide W (NPW). An agonist peptide for GPR8 was purified from the porcine 

hypothalamus using stable Chinese hamster ovary cell lines expressing human GPR8, and 

a cDNA encoding its precursor protein was cloned. The cDNA encodes two forms of the 

peptide ligand with 23 and 30 amino acid residues, respectively, as mature peptides. The 

author designated the two ligands neuropeptide W-23 (NPW23) and neuropeptide W-30 

(NPW30) due to the novelty of their amino acid sequences. The amino acid sequence of 

NPW23 is identical to that of the N-terminal 23 residues of NPW30. Synthetic NPW23 

and NPW30 activated and bound to both GPR7 and GPR8 at similar effective doses. The 

enzyme-linked immunosorbent assays for NPW23 and NPW30 revealed that both 

peptides were localized in the brain, pituitary, and stomach. Intracerebroventricular 

administration of NPW23 in rats increased food intake and stimulated prolactin release. 

These findings indicate that NPW is the endogenous ligand for both GPR7 and GPR8 and 
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acts as a mediator of the central control of feeding behavior and the neuroendocrine 

system. This is the first description that the NPW molecular signaling is functioning in 

the central nervous system. 
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Abbreviations 

 

BLAST: Basic Local Alignment Search Tool 

BLASTP: Protein-protein BLAST 

CHO: Chinese hamster ovary 

CNS: Central nervous system 

ELISAs: Enzyme-linked immunosorbent assays 

GPCRs: G protein-coupled receptors 

GTPS: Guanosine-5′-O-(3-thio)triphosphate 

HPLC: High performance liquid chromatography 

MCH: Melanin-concentrating hormone 

NPW: Neuropeptide W 

NPW23: Neuropeptide W-23 

NPW30: Neuropeptide W-30 

PBS: Phosphate-buffered saline 
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General Introduction 

 

G protein-coupled receptors (GPCRs) belong to the largest family of cell surface 

receptors with a unique structural feature of seven -helical transmembrane domains, 

which are associated with heterotrimeric G proteins (Rosenbaum et al., 2009). The 

number of human GPCRs is estimated to be about 800 to date (Isberg et al., 2015). GPCRs 

are stimulated by binding to extracellular signal transducing molecules such as hormones, 

neurotransmitters, autacoids, chemokines, tastes, and odors, and subsequently change 

their conformation to generate a signal via activation of the GPCR-interacted molecules 

inside the cells (Selbie and Hill, 1998). An approach to isolate the receptor genes for 

already-known bioactive molecules, also called endogenous ligands because they are 

synthetized within organisms, allowed the pairing of bioactive molecules with previously 

unknown receptors through the early 1990s (Masu et al., 1987; Arai et al., 1990; Honda 

et al., 1991; Hirata et al., 1991; Masu et al., 1991; Sasaki et al., 1991).  

GPCRs have various physiological roles in the human body. Homeostasis of the human 

body is controlled by the fine tuning of GPCRs, and state of the GPCRs is adjusted by 

adequate amounts of their respective endogenous ligands such as dopamine and orexin in 

the central nervous system (CNS), adrenaline and angiotensin II in the cardiovascular 

system, histamine and glucagon-like peptide 1 in the digestive system, and gonadotropin-

releasing hormone, follicle-stimulating hormone, and luteinizing hormone in the 

reproductive system. Thus, excess and lack of signaling via GPCRs cause diseases. In 

order to relieve the disease conditions by drug treatment, antagonists or agonists of 

disease-relevant GPCRs have been developed, and, historically, many drugs with better 

efficacy and safety have been used for the treatment of patients in almost all disease areas. 
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GPCRs have become a major drug target class so that about 30% of the drugs in the 

market act on GPCR molecules (Overington et al., 2006).  

In the late 1990s, many genes with structural features similar to known GPCRs were 

isolated with the assistance of bioinformatics studies of the whole genome sequence and 

a variety of cDNA sequence data sets in several organisms (Wilson et al., 1998). The 

isolated genes were called orphan GPCRs. Since the genes were defined only by their 

sequences with the characteristic features of seven -helical transmembrane domains and 

specific motifs of GPCRs (Wess, 1998; Fredriksson et al., 2003; Rovati et al., 2007), the 

presence of the endogenous ligands for the orphan GPCRs remained unknown. Besides, 

no one could predict which orphan GPCR gene was correctly translated as a GPCR 

protein and which orphan GPCR protein could be paired with unidentified endogenous 

ligands. 

The presence of orphan GPCR genes in mammalian genomes provided the 

opportunities to initiate a distinct field of GPCR research called reverse pharmacology. 

Studies proceed in the following order: selection of the prioritized genes from many 

orphan GPCR genes, identification of the endogenous ligand for the selected orphan 

GPCR, estimation of the pathophysiological significance of the identified endogenous 

ligand, screening and chemical optimization of compounds as antagonists or agonists 

acting on the deorphanized GPCR, assessment of the compound efficacy in vivo using 

animal models followed by safety tests, and clinical trials for evaluating efficacy and 

safety in humans (Libert et al., 1991; Kotarsky and Nilsson, 2004). According to the 

concept of reverse pharmacology, a limited number of research groups reported 

deorphanization of orphan GPCRs, discovery of novel endogenous peptide ligands, and 

pioneering work on the biological functions of the identified endogenous ligands and 
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deorphanized GPCRs (Meunier et al., 1995; Reinscheid et al., 1995; Hinuma et al., 1998; 

Sakurai et al., 1998). Reverse pharmacology has great potential to elucidate the 

mechanism of unknown biological phenomena, which can be explained by the pairing of 

newly identified endogenous ligands and their deorphanized GPCRs. Additionally, it 

provides opportunities to identify entirely new biological phenomena caused by the pairs. 

Besides, as far as pathophysiological meanings of the pairs are verified, drug discovery 

efforts are implemented to create antagonists or agonists acting on the deorphanized 

GPCR.  

The author decided to use the reverse pharmacology approach to identify endogenous 

ligands for the orphan GPCRs followed by molecular, cellular, and in vivo analysis of the 

biological functions of the identified endogenous ligands and the deorphanized GPCRs. 

The limited number of success noted above prompted us to refine each experimental step 

needed in the course of deorphanization. There were four imperative steps for 

deorphanization as follows: prioritization of orphan GPCRs applied to the assay, 

establishment of cell lines expressing the orphan GPCR gene in sufficient amounts, 

establishment of the assays dealing with any types of ligand-induced GPCR signaling, 

and composition of the ligand bank tested in the assay.  

In this study, the author aimed to obtain useful knowledge in the fields of basic science 

and drug discovery by deorphanization of orphan GPCRs, which was followed by 

characterization of the relevant molecules. In Chapter I, the author created experimental 

systems focused on deorphanization of the orphan GPCRs with unidentified endogenous 

peptide ligands and applied them to identify melanin-concentrating hormone (MCH) as 

the endogenous ligand for SLC-1. Characterization of SLC-1 as a functional MCH 

receptor was conducted. In Chapter II, the author discovered a novel brain-gut peptide, 
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neuropeptide W (NPW), as the endogenous ligand for GPR7 and GPR8. Studies on 

molecular biology, in vitro pharmacology, and tissue distribution of NPW were conducted. 

In addition, an exploratory study on the in vivo effects of NPW was conducted to estimate 

NPW biological role. 
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Chapter I: Discovery and Analysis of Melanin-

concentrating Hormone as the Specific Ligand for the 

Orphan GPCR, SLC-1 

 

1. Introduction 

A DNA clone of SLC-1 was originally isolated by Kolakowski et al. from a human 

genomic DNA library (Kolakowski et al., 1996) and was suggested to encode an orphan 

GPCR with higher amino acid sequence similarity to the seven transmembrane regions 

of the five subtypes of the somatostatin receptor and the three subtypes of the opioid 

receptor (about 40% amino acid identity). SLC-1 mRNA is expressed in the forebrain and 

hypothalamus in humans and in the brain, heart, kidney, and ovary in rats (Kolakowski et 

al., 1996). Two years later, a cDNA clone of the rat orthologue of SLC-1 was 

independently isolated by screening of a rat brain cDNA library with a hybridization 

probe whose nucleotide sequence was derived from PCR using a set of degenerate primers 

of each of the third and seventh transmembrane of known GPCRs (Lakaye et al., 1998). 

Comparison of the deduced amino acid sequences between the two revealed that the 

human SLC-1 DNA could not encode the full human SLC-1 protein due to the insertion 

of an intron sequence into the 5-region of the human SLC-1 DNA. 

In Chapter I, the author reports the purification and characterization of MCH. An 

agonist peptide for rat SLC-1 was purified from the rat brain and was identified as rat 

MCH peptide. The functional characterization of MCH for human and rat SLC-1 

indicated that MCH is the endogenous ligand for SLC-1. 
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2.  Materials and Methods 

2.1. Establishment of Chinese hamster ovary (CHO) cell lines expressing rat SLC-

1 

A cDNA encoding rat SLC-1 (Lakaye et al., 1998) was isolated by PCR from the reverse-

transcribed product of poly (A) RNA of the rat whole brain (CLONTECH). Two PCR 

primers were designed to clone a rat cDNA with a SalI cleavage site and a SpeI cleavage 

site that were located at the 5`- and 3`-ends, respectively. The two primer sequences were 

as follows: 5`-GTCGACATGGATCTGCAAACCTCGTTGCTGTG-3` (forward) and 5`-

ACTAGTTCAGGTGCCTTTGCTTTCTGTCCTCT-3` (reverse). The SalI- and SpeI-

digested fragment of the rat cDNA was ligated into a unique site of the pAKKO-111H 

expression vector (Hinuma et al., 1994), which equipped the SR promoter and dhfr gene 

as the selection marker. CHO dhfr− cells were transfected with the expression vector by 

calcium phosphate method using a CellPhect transfection kit (Amersham Pharmacia 

Biotech). CHO cell lines stably expressing the rat SLC-1 were selected under conditions 

wherein the growth medium lacked nucleotides. 

 

2.2. Cloning of human SLC-1 cDNA 

A cDNA encoding human SLC-1 was isolated from a cDNA library constructed from a 

human embryonic brain extract (Gibco BRL) using a gene-trapper method according to 

the supplier’s protocol (GeneTrapper cDNA Positive Selection System, Gibco BRL). The 

gene-trapper method employed two oligonucleotides whose sequences were identical to 

the nucleotide sequences found in a human genomic SLC-1 DNA clone (Kolakowski et 

al., 1996): 5`-CAACAGCTGCCTCAACCC-3` and 5`-CCTGGTGATCTGCCTCCT-3`. 

The former oligonucleotide was biotinylated and was employed for hybridization, and the 
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latter was used to synthesize double-stranded DNA. An isolated cDNA was sequenced by 

an ABI PRISM 377 DNA sequencer (PE Applied Biosystems) using a DyeDeoxy 

Terminator Cycle Sequence Kit (PE Applied Biosystems). 

 

2.3. Establishment of CHO cell lines expressing human SLC-1 

CHO cell lines expressing human SLC-1 were prepared by using two different expression 

vectors. A human SLC-1 nucleotide starting at the 1st ATG codon and ending at the stop 

codon in the cloned human SLC-1 cDNA was named human SLC-1 (L), while a human 

SLC-1 nucleotide starting at the 3rd ATG codon and ending at the stop codon in the cloned 

human SLC-1 cDNA was named human SLC-1 (S). The human SLC-1 (L) DNA with a 

SalI cleavage site at the 5`-end and a SpeI cleavage site at the 3`-ends was obtained by 

PCR from the cloned human SLC-1 cDNA as a template using two primers: 5`-

AGTCGACATGTCAGTGGGAGCCATGAAGAAGAAGGG-3` (forward) and 5`-

AACTAGTTCAGGTGCCTTTGCTTTCTGTCCTCT-3` (reverse). In the same way, the 

human SLC-1 (S) DNA with a SalI cleavage site at the 5`-end and a SpeI cleavage site at 

the 3`-ends was obtained by PCR from the cloned human SLC-1 cDNA as a template 

using two primers: 5`-GTCGACATGGACCTGGAAGCCTCGCTGCTGC-3` (forward) 

and 5`-ACTAGTTCAGGTGCCTTTGCTTTCTGTCCTC-3` (reverse). Each SalI- and 

SpeI-digested fragment obtained from the PCR-amplified human SLC-1 (L) DNA and 

human SLC-1 (S) DNA was ligated into a unique site of the pAKKO-111H expression 

vector. CHO dhfr− cells were transfected with the expression vector by calcium phosphate 

method using a CellPhect transfection kit (Amersham Pharmacia Biotech). CHO cell lines 

stably expressing the human SLC-1 (L) and the human SLC-1 (S) were selected under 

conditions wherein the growth medium lacked nucleotides. 
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2.4. Phylogenetic analysis of the GPCRs structurally similar to rat SLC-1 protein 

One algorithm in Basic Local Alignment Search Tool (BLAST) programs, a protein-

protein BLAST (BLASTP) search was conducted using the amino acid sequence of rat 

SLC-1 as a query against the database Non-redundant protein sequences (nr) of National 

Center for Biotechnology Information (NCBI). Amino acid sequences of human GPCRs 

were chosen from the search result in order of similarity to the rat SLC-1 by an index of 

Max score. Twelve GPCRs selected by the similarity were as follows: melanin-

concentrating hormone receptor 1 (NP_005288), somatostatin receptor type 1 

(NP_001040), somatostatin receptor type 2 (NP_001041), somatostatin receptor type 3 

(NP_001042), somatostatin receptor type 4 (NP_001043), somatostatin receptor type 5 

(NP_001044), mu-type opioid receptor isoform MOR-1 (NP_000905), delta-type opioid 

receptor (NP_000902), kappa-type opioid receptor isoform 1 (NP_000903), nociceptin 

receptor (NP_001186948), neuropeptides B/W receptor type 1 (NP_005276), and 

neuropeptides B/W receptor type 2 (NP_005277). When the author started the study in 

1998, three GPCRs, melanin-concentrating hormone receptor 1, neuropeptides B/W 

receptor type 1, and neuropeptides B/W receptor type 2 were orphan GPCRs with 

unknown endogenous ligands, and were called SLC-1, GPR7, and GPR8, respectively. A 

phylogenetic tree was constructed among the 12 GPCRs and the rat SLC-1 by using the 

neighbor-joining method. 

 

2.5. Northern blot analysis of SLC-1 in human tissues 

Northern blot experiment was conducted essentially as described (Ogi et al., 1990) with 

following minor modifications. The cloned human SLC-1 cDNA was used as a template 
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to synthesize DNA probes that were labeled with [-32P]dCTP (Dupont/NEN) by a multi 

prime DNA labeling kit (Amersham Pharmacia Biotech). Human Multiple Tissue 

Northern Blots membranes (CLONTECH) were hybridized with the radiolabeled probes 

in hybridization buffer (2  SSC, 0.1 % SDS, 10  Denhardt’s Solution, 50 % formamide) 

for an overnight incubation at 42°C. The Human Multiple Tissue Northern Blots were 

premade membranes: poly (A) RNA samples purified from a variety of human tissues 

were electrophoresed, and then these separated RNA molecules in the gel were transferred 

to nylon membranes. After the hybridization, the membrane filters were finally washed 

in 0.1 % SSC with 0.1 % SDS at 50°C. Signals of the radiolabeled probes that bound to 

human SLC-1 mRNA were detected by a Bioimageanalyzer-BAS2000 (Fuji Film). 

 

2.6. Assay for inhibition of forskolin-induced intracellular accumulation of cAMP 

Inhibitory activities of test samples for cAMP accumulation were measured. Cell lines of 

CHO expressing rat SLC-1 (CHO-rat SLC-1) were plated on 24-well plates at 5  104 

cells/well and were cultured for 2 days. The cells were washed three times with 0.5 ml of 

assay buffer (Hanks’ buffered salt solution supplemented with 0.2 mM 3-isobutyl-1-

methylxantine (Wako Pure Chemical), 0.05% bovine serum albumin, and 20 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)) and were cultured in the assay 

buffer for 30 min. After washing the cells three times with 0.5 ml of the assay buffer, a 

test sample in 0.5 ml of the assay buffer supplemented with 1 M forskolin (Wako Pure 

Chemical) was added to the cells in each well, and the cells were incubated at 37°C for 

24 min. cAMP synthesis in the cells was terminated by addition of 0.1 ml of 20% 

perchloric acid, and intracellular cAMP was extracted with 20% perchloric acid on ice 

for 1 h. The amount of extracted cAMP was measured using an enzyme-linked 
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immunoassay kit (Amersham Pharmacia Biotech). The same procedure was used for 

assessing the agonist activity of MCH on the cell lines of CHO expressing human SLC-

1 (L) (CHO-human SLC-1 (L)) and CHO expressing human SLC-1 (S) (CHO-human 

SLC-1 (S)). 

 

2.7. Purification of MCH as an endogenous ligand for SLC-1 from the rat brain 

The brain tissues of 70 male Wistar rats (8 weeks old) were dissected and were boiled in 

800 ml of pure water for 10 min, immediately after decapitation. After cooling with ice, 

acetic acid was added to make a 1.0 M solution, and the tissue was homogenized using a 

Polytron homogenizer. The homogenate was centrifuged, and a double volume of acetone 

was added to supernatant. The precipitates were re-extracted with 800 ml of 1.0 M acetic 

acid and were processed in a similar fashion. The acetone-treated extract was centrifuged 

to remove the pellets. The supernatant was concentrated to remove the acetone and was 

then extracted with diethyl ether to remove lipid. The solution was applied to an YMCgel 

ODS-AM 120-S50 column (30.0  240 mm; YMC), and the column was eluted with 60% 

acetonitrile (CH3CN) in 0.1% trifluoroacetic acid. The eluate was lyophilized, and the 

lyophilized powder dissolved in 1.0 M acetic acid was charged on a SP-Sephadex C-25 

column (25.0  80 mm; Amersham Pharmacia Biotech). The column was then eluted with 

1.0 M acetic acid, 2.0 M pyridine, and 2.0 M pyridine-acetic acid (pH 5), successively. 

The 2.0 M pyridine-acetic acid fraction was lyophilized. An agonist peptide for rat SLC-

1 was purified from the lyophilized materials by successive high performance liquid 

chromatography (HPLC) using a TSKgel ODS-80TS column (21.5  300 mm; 10–60% 

CH3CN gradient in 0.1% trifluoroacetic acid for 80 min at 5.0 ml/min; Tosoh), a CM-

2SW column (4.6  150 mm; 10–500 mM ammonium formate (HCOONH4) (pH 5.25) 
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gradient in 10% CH3CN for 60 min at 1.0 ml/min; Tosoh), a diphenyl column of Vydac 

219-TP54 (4.6  250 mm; 27.5–42.5% CH3CN gradient in 0.1% trifluoroacetic acid for 

90 min at 1.0 ml/min; Separation Group), and a Develosil ODS-UG-3 column (2.0  150 

mm; 27.5–42.5% CH3CN gradient in 0.1% trifluoroacetic acid for 120 min at 0.2 ml/min; 

Nomura Kagaku) combined with the assay for inhibition of forskolin-induced 

intracellular accumulation of cAMP in CHO-rat SLC-1 cells. The activity was recovered 

as a single peak at 36.8% of CH3CN in the final HPLC. 

 

2.8. Structural analysis of the purified peptide 

The N-terminal amino acid sequence of the purified peptide was determined using two 

protein sequencers, Beckman LF3400 (Beckman Instruments, Inc.) and Procise 491cLC 

(Applied Biosystems, Inc.). The sequencing reaction by the Beckman LF3400 converts 

Cys to dehydroalanine, and the resulting phenylthiohydantoin (PTH) derivative is 

detected as PTH-dehydroalanine. The Procise 491cLC analysis provides amino terminal 

amino acid sequence information based on a conventional method of the Edman 

degradation. The mass spectrum of the purified peptide was measured using a JEOL HX-

110 (Jeol Ltd., Tokyo, Japan) equipped with a Cs gun for the LSIMS mode. 

 

2.9. Peptide 

Human melanin-concentrating hormone, rat somatostatin-14, rat somatostatin-28, and rat 

cortistatin-29 were purchased from Peninsula Laboratories Ltd. 
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3.  Results 

3.1. Structural and gene expression features of SLC-1 

SLC-1 protein showed sequence similarity to other human GPCRs with known or 

unknown endogenous ligands. Twelve GPCRs selected by a BLASTP search against a 

non-redundant protein database in order of similarity to the rat SLC-1 were as follows: 

human orthologue of the rat SLC-1, five subtypes of the somatostatin receptor, three 

subtypes of the opioid receptor, one opioid-like receptor, and two structurally related 

orphan GPCRs, GPR7 and GPR8 (O'Dowd et al., 1995). The author attempted to clarify 

an evolutionary relationship among the selected twelve human GPCRs above and the rat 

SLC-1 by the neighbor-joining method. The phylogenetic tree demonstrated that SLC-1 

presented homology to the somatostatin receptor and opioid receptor families (Fig. 1-1).  

The gene expression pattern of SLC-1 in human tissues was examined by northern blot. 

Human SLC-1 was expressed predominantly in the brain and moderately in the ovary and 

spinal cord (Fig. 1-2). Gene expression of human SLC-1 was not detected in nearly all 

peripheral tissues, except the ovary. 

 

3.2. Technologies specializing in the identification of the endogenous peptide 

ligands for orphan GPCRs 

The author decided to focus on research of the orphan GPCRs with the likelihood of 

presenting bioactive peptides as their endogenous ligands. This strategy required a set of 

technologies that could be matched with an efficient detection of peptide agonist-induced 

activation of the orphan GPCRs in cell- or membrane-based assays. Expression levels of 

the transfected-orphan GPCR genes in the assay cell lines were some of the critical factors 

to ensure the robustness of the assay results. The cell lines were established by screening 



 

17 

 

based on the expression levels of the orphan GPCR gene, which were measured 

quantitatively (Fig. 1-3A). The next challenge was about the test samples to be examined 

in the assays. To increase the probability of detecting the agonist activities of peptide 

substances, the test samples were prepared from a wide variety of animal organs through 

a peptide-selective extraction and fractionation by reverse phase HPLC (Fig. 1-3B). The 

remaining challenge was what assay should be used in the experiments, since no one 

knew which subtype of  subunit of G protein was actually coupled with the orphan 

GPCR of my interests. Multiple assays were applied to detect a variety of intracellular 

signals that were generated in the assay cell lines: an assay for Gs-mediated intracellular 

cAMP synthesis, an assay for Gi-mediated inhibition of forskolin-induced intracellular 

accumulation of cAMP, and an assay for Gq-mediated arachidonic acid metabolite release. 

In addition to these assay systems, [35S] guanosine-5′-O-(3-thio)triphosphate  (GTPS) 

binding to an activated form of G protein subunit  in the membranes of the cell lines 

was determined (Fig. 1-3C). 

 

3.3. Isolation and identification of MCH as the endogenous ligand for rat SLC-1 

The author purified an agonist peptide for rat SLC-1 from the rat brain using CHO-rat 

SLC-1 cells and demonstrated that the structure of the agonist peptide was identical to 

that of rat MCH. In the assays of intracellular signaling evoked by peptide fractions 

prepared from a variety of tissue extracts, the fractions from the rat whole brain, porcine 

whole brain, and porcine hypothalamus stimulated the inhibition of forskolin-induced 

intracellular accumulation of cAMP in the CHO-rat SLC-1 cells. Their activities were 

sensitive to incubation with proteinase (data not shown). Since the rat whole brain fraction 

presented the highest agonist activity per tissue weight among all extracts, extracts of the 
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rat brain were subjected to purification of an agonist substance for rat SLC-1 by 

successive chromatography. Its activity was assessed using the cAMP accumulation 

inhibition assay (Fig.1-4 A and B). The purification process yielded approximately 950 

pmol of the purified agonist peptide for rat SLC-1 from 140 g of the rat brain (Fig. 1-5). 

The purified peptide was subjected to N-terminal amino acid sequence analysis using two 

protein sequencers, and the analysis afforded the following sequence, 

DFDMLRCMLGRVYRPC, corresponding to the 1st to 16th residues of rat MCH (Table 

1-1). The Cys residues at the 7th and 16th positions were identified as PTH-dehydroalanine. 

Mass spectrum analysis using LSIMS of the active substance provided the protonated 

molecular ion peak at m/z 2387.2 (Fig. 1-6), which represented the whole sequence of rat 

MCH with 19 amino acid residues. Consequently, the amino acid sequence of the purified 

agonist peptide was determined to be DFDMLRCMLGRVYRPCWQV, and the agonist 

peptide for rat SLC-1 was identified as rat MCH. 

 

3.4. Comparison of SLC-1 amino acid sequences among humans, rats, and mice 

The author compared SLC-1 amino acid sequences of humans, rats, and mice. The longest 

open reading frame of human (Fig. 1-7), rat, and mouse SLC-1 nucleotide sequences 

encode SLC-1 proteins composed of 422, 353, and 353 amino acid residues, respectively. 

The deduced amino acid sequences of human, rat, and mouse SLC-1 demonstrated 

structural features common to the rhodopsin family of GPCRs (Fig. 1-8). The respective 

three SLC-1 proteins possess seven membrane-spanning domains with potentially 

extracellular and cytoplasmic terminus, the E/DRY motif on TM3 (Rovati et al., 2007), 

and the NPXXY motif at the cytoplasmic end of TM7 (Fritze et al., 2003). The sequence 

alignment indicated that the 353-amino acid sequence of human SLC-1 starting with 
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Met70 and ending with Thr422 was nearly identical to the whole sequences of the rat and 

mouse SLC-1. The human SLC-1 protein of 353 amino acid residues was renamed human 

SLC-1 (S), while the human SLC-1 protein of 422 amino acid residues was renamed 

human SLC-1 (L). The human SLC-1 (S), the rat SLC-1, and the mouse SLC-1 shared 

95.8% amino acid identity. The difference in amino acid length between the human SLC-

1 (L) and the other SLC-1 results from its N-terminal region with an addition of 69 amino 

acids, which includes two Met residues, potential translation start sites, at positions 1 and 

6. 

 

3.5. Inhibition of intracellular cAMP accumulation by MCH in CHO cells 

expressing SLC-1 

The author examined the functional activities of MCH on three different CHO cells 

expressing the human SLC-1 (S), the human SLC-1 (L), and the rat SLC-1, respectively. 

Amino acid sequences of human MCH and rat MCH are entirely identical to each other, 

and, thus, the synthetic human MCH peptide was used to assess the inhibition of 

intracellular cAMP accumulation. The MCH peptide inhibited cAMP accumulation in a 

dose-dependent manner in cell lines of CHO expressing human SLC-1 (L) (CHO-human 

SLC-1 (L)), CHO expressing human SLC-1 (S) (CHO-human SLC-1 (S)), and CHO 

expressing rat SLC-1 (CHO-rat SLC-1), but not in the CHO-mock cells that were 

established by the transfection of the pAKKO-111H vector without any inserts (Fig. 1-

9A). MCH inhibited cAMP accumulation in both the CHO-human SLC-1 (S) and the 

CHO-rat SLC-1 cells with IC50 values of 0.08 nM and 0.1 nM, respectively. On the other 

hand, MCH only weakly inhibited the accumulation of cAMP in the CHO-human SLC-1 

(L) cells with an IC50 value of 5 nM.  
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The author then assessed the potential of agonist peptides for the somatostatin receptor 

family, which showed homology with the rat and human SLC-1 based on my search for 

GPCRs with known endogenous ligands to inhibit intracellular cAMP accumulation in 

cell lines expressing SLC-1. The peptides, somatostatin-14, somatostatin-28, and 

cortistatin-29, are endogenous ligands for the five subtypes of the somatostatin receptor. 

The three peptides at the concentration of 1 M did not inhibit cAMP accumulation in the 

CHO-rat SLC-1 cells (Fig. 1-9B). 
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4.  Discussion 

In this study, the author adopted a strategy to identify the endogenous ligands for orphan 

GPCRs with significant structural similarities to the GPCRs whose endogenous ligands 

had been known as peptides, but not as small molecular weight substances such as lipids, 

phospholipids, amines, nucleotides, amino-acid derivatives, prostanoids, or leukotrienes. 

In line with this strategy, experimental systems to detect agonist activities to GPCRs were 

developed so that subtle changes induced by the peptide-focused natural substances could 

be monitored accurately in the cell- or membrane-based GPCR-mediated signaling assays 

(Fig. 1-3C). These experimental systems were used to identify an endogenous peptide 

ligand for SLC-1, an orphan GPCR showing high amino acid sequence similarities to the 

somatostatin receptor and opioid receptor families (Fig. 1-1). The author purified rat 

MCH as the agonist peptide for SLC-1 from the rat brain using the CHO-rat SLC-1 cells 

(Fig. 1-5). This finding indicates the creation of an experimental platform for 

deorphanization of orphan GPCRs, which enabled the identification of MCH as the 

endogenous ligand for SLC-1. 

The author demonstrated that MCH specifically inhibited forskolin-induced 

intracellular cAMP accumulation in a dose-dependent manner in CHO cells expressing 

the human SLC-1 (S), the human SLC-1 (L), and the rat SLC-1, with IC50 values of 0.08 

nM, 5 nM, and 0.1 nM, respectively (Fig. 1-9A). MCH showed high agonist potency to 

the CHO cells expressing the human SLC-1 (S) and the rat SLC-1, but not to the CHO 

cells expressing the human SLC-1 (L). Human SLC-1 (L) is supposed to be a protein of 

422 amino acid residues, which is translated from the 1st AUG start codon of the human 

SLC-1 mRNA, while human SLC-1 (S) is supposed to be a protein of 353 amino acid 

residues, which is translated from the 3rd AUG start codon of the mRNA (Fig. 1-7). The 
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human SLC-1 (S) resembles the rat SLC-1 with 95.8 % amino acid identity (Fig. 1-8). 

The weak responsiveness of the putative human SLC-1 (L) to the MCH stimulation in the 

CHO cells can be explained that the extra N-terminal portion confers conformational 

changes of the human SLC-1 (L), which leads to a lower affinity for MCH or an inefficient 

G protein activation inside the cells. The difference in the responsiveness to the MCH 

stimulation between the human SLC-1 (L) and the human SLC-1 (S) does not necessarily 

mean that an authentic human SLC-1 protein is not produced from the human SLC-1 

mRNA in vivo, because the protein translation machinery might differ between an 

artificial protein expression system using CHO cells and in vivo. Based on the 

experimental results in this study, it is postulated that the authentic human SLC-1 protein 

with an efficient signal transduction can be successfully produced in the tissues such as 

the brain where the human SLC-1 mRNA is predominantly expressed in vivo (Fig. 1-2). 

The gene expression profile of human SLC-1 coincides with the experimental results 

about the tissue distribution of MCH peptide, which demonstrated that the 

immunoreactive MCH is mainly localized in the brain (Takahashi et al., 1995). These 

results support the idea that MCH primarily functions in the brain as a neurotransmitter 

via the activation of SLC-1. These findings indicate that SLC-1 gene encodes a functional 

MCH receptor that signals through inhibition of intracellular cAMP synthesis. 

The author identified SLC-1 as a MCH receptor in 1999 (Shimomura et al., 1999). The 

molecular nature of a functional MCH receptor had been unknown until 1999 when five 

research groups, including us, independently reported that MCH is the endogenous ligand 

for SLC-1 (Chambers et al., 1999; Saito et al., 1999; Shimomura et al., 1999; Bächner et 

al., 1999; Lembo et al., 1999). The following is the brief description of advancements in 

the research of MCH from the discovery to the studies of biological functions until 1998. 
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MCH was first discovered from piscine pituitaries as a fish skin-color regulating hormone, 

which stimulates the perinuclear aggregation of melanosomes within teleost melanocytes 

in 1983 (Kawauchi et al., 1983). Since the existence of the MCH-like immunoreactivity 

in the rat brain was reported in 1986 (Zamir et al., 1986; Naito et al., 1986), much attention 

has been paid on the studies of its molecular structure and biological functions in 

mammalian organisms. In addition to the structural analysis of rat MCH peptide isolated 

from the hypothalamus (Vaughan et al., 1989), molecular cloning of human, rat, and 

mouse MCH precursor genes revealed that each mature peptide is a 19-amino acid cyclic 

peptide with entirely identical amino acid sequences (Nahon et al., 1989; Presse et al., 

1990; Breton et al., 1994). In the rat brain, MCH-positive perikarya were found 

exclusively in the lateral hypothalamus area and zona incerta, which are involved in the 

regulation of feeding behavior. MCH fibers are widely distributed through the brain 

(Bittencourt et al., 1992), suggesting that MCH may act as a neurotransmitter involved in 

a wide range of physiological functions in the CNS. Qu et al. reported in 1996 that Pmch 

mRNA expression levels in the hypothalamus positively correlated with food intake in 

the ob/ob mice and fasting mice models compared to control mice, and that MCH 

injection into the lateral ventricles of rats resulted in increased food consumption (Qu et 

al., 1996). An experiment using genetically modified mice with null mutation of the Pmch 

gene that was reported in 1998 suggested a role of MCH as an orexigenic peptide acting 

in the hypothalamus, which was drawn by the facts that the mice showed phenotypes of 

leanness with hypophagia and an increased metabolic rate (Shimada et al., 1998). As a 

considerable number of useful knowledge about MCH biology had accumulated from the 

identification of MCH from chum salmon in 1983 through the year of 1998, discovery of 

a MCH receptor became an urgent challenge to deepen the understanding of the molecular 
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mechanism at the site of action of MCH. Thus, the discovery of SLC-1 as a MCH receptor 

impacted on the research of MCH biology together with the other four groups in 1999. 

Furthermore, the identification and understanding of SLC-1 advanced our knowledge 

on MCH. In 2001, the second MCH receptor presenting an amino acid identity of 36% 

with SLC-1 was reported by six groups, including us (Hill et al., 2001; Mori et al., 2001; 

Sailer et al., 2001; An et al., 2001; Wang et al., 2001; Rodriguez et al., 2001). The second 

MCH receptor exists in humans, monkeys, and dogs, but not in rodents. As a consequence 

of the full characterization of the endogenous ligand for SLC-1 and the second MCH 

receptor, the International Union of Basic and Clinical Pharmacology officially named 

SLC-1 and the second MCH receptor, melanin-concentrating hormone receptor 1 

(MCHR1) and melanin-concentrating hormone receptor 2 (MCHR2), respectively (Foord 

et al., 2005). Studies using the mice with null mutation of the Mchr1 that was formerly 

called Slc-1 clarified the role of MCH in energy homeostasis as the Mchr1 KO mice were 

resistant to diet-induced obesity with higher metabolic rates (Marsh et al., 2002; Chen et 

al., 2002). In vitro MCHR1 pharmacology was developed to carry out pharmacological 

evaluation of small molecule compounds as MCHR1 antagonists. In the recombinant cells 

expressing MCHR1, MCH stimulates Gi- and Gq-coupled signaling pathways (Hawes et 

al., 2000). Besides, MCH derivatives with high affinity binding to MCHR1 and less non-

specific binding were newly synthesized to establish reliable receptor binding assays 

(Audinot et al., 2001; Takekawa et al., 2002; Gao et al., 2004). A non-peptide MCHR1 

antagonist, T-226296, effective in a rat model of food intake was reported as a candidate 

compound for anti-obesity treatment by a group in our research laboratories in 2002 

(Takekawa et al., 2002). Since then, different companies published a number of studies 

and patents concerning the medicinal chemistry of MCHR1 antagonists (Johansson, 
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2011). Additionally, several compounds have entered clinical trials with the indication of 

obesity treatment (MacNeil, 2013). In addition to MCH biological role in energy 

homeostasis, the distribution pattern of MCH fibers throughout the brain triggered the 

studies on other physiological functions in the CNS such as anxiety (Smith et al., 2006), 

depression (Saito et al., 2001), and sleep (Verret et al., 2003). Small molecule MCHR1 

antagonists and genetically modified mice with mutations in the Mchr1 gene have been 

utilized to unravel the involvement of MCH in the regulation of anxiety (Borowsky et al., 

2002; Chaki et al., 2005), depression (Borowsky et al., 2002; Chaki et al., 2005), and 

sleep (Adamantidis et al., 2008; Willie et al., 2008).  

In conclusion, the author identified MCH as the endogenous ligand for SLC-1. The 

discovery of SLC-1 as a functional MCH receptor will provide new insights into the 

physiological roles of MCH and its receptor, SLC-1, and will enable the development of 

MCH receptor modulators for the treatment of CNS diseases. 
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5. Tables 

 

 

 

Table 1-1 

N-terminal amino acid sequence analysis of an agonist peptide for rat SLC-1 

The N-terminal amino acid sequence of the agonist peptide was determined by two 

independent experiments named Procise 491cLC analysis and LF 3400 analysis. The 

Procise 491cLC analysis provided N-terminal amino acid sequence information based on 

a conventional method of the Edman degradation. Cysteine residue in the peptide was 

detected as a stable derivative of PTH-dehydroalanine in the LF 3400 analysis. 

 

  

Cycle Procise 491cLC analysis LF 3400 analysis

1 Asp (1.95) Asp (20.7)

2 Phe (2.18) Phe (12.7)

3 Asp (2.05) Asp (17.2)

4 Met (2.16) Met (13.5)

5 Leu (1.92) Leu (10.6)

6 Arg (1.38) Arg (11.7)

7 not detected PTH-dehydroalanine

8 Met (1.67) Met (13.1)

9 Leu (1.55) Leu (9.0)

10 Gly (1.05) Gly (8.2)

11 Arg (1.09) Arg (4.9)

12 Val (1.34) Val (10.1)

13 Tyr (1.25) Tyr (8.9)

14 Arg (0.91) not detected

15 Pro (0.57) Pro (7.9)

16 not detected PTH-dehydroalanine

17 Trp (0.35) not detected

18 Gln (0.28) not detected

19 Val (0.05) not detected

Detected amino acid (pmol)
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6. Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1-1. A phylogenetic tree of GPCRs with high similarity to SLC-1 protein. 

Selected GPCRs presenting amino acid sequence similarity to rat SLC-1 were analyzed 

by the neighbor-joining method. Bootstrap values are placed on each node. Three GPCRs, 

GPR7, GPR8, and SLC-1, were recognized as orphan GPCRs, and the others were GPCRs 

with known endogenous peptide ligands when the study in Chapter I started. Sst1 receptor, 

somatostatin receptor 1; sst4 receptor, somatostatin receptor 4; sst2 receptor, somatostatin 

receptor 2; sst3 receptor, somatostatin receptor 3; sst5 receptor, somatostatin receptor 5; 

NOP receptor, nociceptin receptor;  receptor, kappa-type opioid receptor isoform 1;  

receptor, delta-type opioid receptor;  receptor, mu-type opioid receptor isoform MOR-

1. 
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Fig. 1-2. Gene expression profile of human SLC-1. SLC-1 mRNA expression levels in 

various human tissues were analyzed by northern blot. Premade membranes (Human 

Multiple Tissue Northern Blot, CLONTECH) ready to be hybridized were used. Upper 

lane indicates name of each tissue from which poly (A) RNA sample was purified for 

creation of the premade membranes. 
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Fig. 1-3. Essential steps to be refined for successful deorphanization. A, establishment 

of orphan GPCR gene-transfected cell lines. The cell lines expressing orphan GPCR gene 

at the highest level were selected by a quantitative measurement of its mRNA. B, peptide 

bank. Test samples focused on peptide substances were obtained from extracts of fresh 

animal tissues followed by reverse phase HPLC. C, assay package. Multiple assays were 

used to detect agonist activities of ligand (L) for the orphan GPCR gene-transfected cell 

lines. 

  

A 

B 
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Fig. 1-4. Isolation of an agonist peptide for rat SLC-1.  A, purification procedure of 

an agonist peptide for rat SLC-1. The purification procedure comprised two parts of 

process, extraction from the rat brain tissues (step 1 to 3) and a combination of HPLCs 

(step 4 to 9). Agonist activity for rat SLC-1 was monitored with an assay of intracellular 

cAMP accumulation inhibition. B, mechanistic basis of the assay. Forskolin activates a 

membrane protein, adenylate cyclases (AC), which catalyzes the changes of ATP to cAMP. 

Ligand (L) as an agonist for rat SLC-1, which is able to suppress the AC activity through 

Gi protein activation results in inhibition of cAMP accumulation in CHO cells expressing 

rat SLC-1. 

  

A 
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Fig. 1-5. HPLC profile of the final purification step using the Develosil ODS-UG-3 

column. Elution profile of the final purification step (upper panel) and agonist activities 

of the eluate (lower panel) are presented. The eluate was manually fractionated, and the 

agonist activity of the eluate was measured with an assay of intracellular cAMP 

accumulation inhibition in CHO-rat SLC-1 cells. The arrow marks the purified agonist 

peptide. 
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Fig. 1-6. Mass spectrometry of an agonist peptide for rat SLC-1. Mass spectrum of 

the agonist peptide was measured using a JEOL HX-110 Mass Spectrometer equipped 

with a cesium gun for the LSIMS mode. The arrow marks a peak of the protonated agonist 

peptide at the m/z value of 2387.2. 
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Fig. 1-7. Nucleotide sequence of human SLC-1 cDNA and its deduced amino acid 

sequence. A human SLC-1 cDNA was cloned from a cDNA library of the human 

embryonic brain. A deduced amino acid sequence of human SLC-1 was obtained from 

the nucleotide sequence with the longest open reading frame of the cDNA. Each sequence 

is placed with the nucleotide sequence above the amino acid sequence. Three Met 

residues as potential translation start site are boxed. Predicted transmembrane domains 

are underlined. The asterisk indicates a stop codon. 
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Fig. 1-8. Comparison of SLC-1 amino acid sequences among humans, rats, and mice. 

Deduced amino acid sequences of human and rat SLC-1 were obtained from the 

nucleotide sequences of the cloned human and rat SLC-1 cDNA, respectively, while 

amino acid sequence of mouse SLC-1 was obtained from the sequence data of 

NP_660114 registered in NCBI. Predicted transmembrane domains are underlined. The 

E/DRY motif is boxed in black. The NPXXY motif is boxed in blue. Three Met residues 

as potential translation start site are boxed in red.  
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Fig. 1-9. Inhibition of forskolin-induced cAMP accumulation by MCH in CHO cells 

expressing SLC-1. A, dose-dependent inhibition of cAMP accumulation in CHO-rat 

SLC-1 cells, in CHO-human SLC-1 (S) cells, in CHO-human SLC-1 (L) cells, and in 

CHO-mock cells. Various concentrations of MCH were added to all the cells, and an assay 

of cAMP accumulation inhibition was conducted in the presence of forskolin at 1 M. ■, 

CHO-rat SLC-1 cells; ▲, CHO-human SLC-1 (S) cells; △, CHO-human SLC-1 (L); ●, 

CHO-mock cells. B, selective activation of SLC-1 by MCH. Three natural ligands for the 

somatostatin receptor family, rat somatostatin-14, rat somatostatin-28, and rat cortistatin-

29 at 1 M, were added to the CHO-rat SLC-1 cells, and agonist activities of these ligands 

were measured with the assay of cAMP accumulation inhibition. Results shown are the 

means  S.E. (n = 3). 
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Chapter II: Discovery and Analysis of a Novel Brain-gut 

Peptide, Neuropeptide W as the Specific Ligand for the 

Orphan GPCRs, GPR7 and GPR8 

 

1. Introduction 

GPR7 and GPR8, for which the endogenous ligands have not been identified, are 

structurally related orphan GPCRs. The two genes encoding GPR7 and GPR8 were 

originally isolated from human genomic DNA by O’Dowd et al. (O’Dowd et al., 1995). 

Human GPR7 highly resembles human GPR8 with 64% amino acid identity. Among 

different families of GPCRs, GPR7 and GPR8 share high similarity to the opioid and 

somatostatin receptor families with known endogenous ligands. In the mammalian brain, 

GPR7 and GPR8 gene expression was detected by northern blot and in situ hybridization 

analyses (O’Dowd et al., 1995). Especially, in the rat brain, GPR7 mRNA was detected 

in regions of the cortex, hippocampus, and hypothalamus (Lee et al., 1999). Profiles of 

GPR7 and GPR8 expression mainly in the brain suggest that the endogenous ligands for 

the two receptors have several functions in the CNS. 

In Chapter II, the author attempted to purify the agonist peptide for GPR8 and report 

the purification, cloning, and characterization of neuropeptide W (NPW). The cDNA 

encoding the agonist peptide for GPR8 demonstrates the existence of neuropeptide W-23 

(NPW23) and neuropeptide W-30 (NPW30), which exhibit no meaningful similarity to 

any known peptides. The functional and binding characterization of NPW for GPR7 and 

GPR8 indicated that NPW is the endogenous ligand for both of these receptors. In order 

to ensure the existence of NPW at peptide levels, tissue distribution of NPW23 and 
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NPW30 was quantitatively examined using specific two-site enzyme-linked 

immunosorbent assays (ELISAs). In addition, the author describes the in vivo effects of 

NPW on feeding behavior and hormone release. 
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2. Materials and Methods 

2.1. Establishment of CHO cell lines expressing GPR7 and GPR8 

The coding region of human GPR7 was cloned from human genomic DNA and human 

brain cDNA, and that of human GPR8 was cloned from human brain cDNA by PCR 

(O’Dowd et al., 1995). An expression vector was constructed by ligation of the receptor 

gene to pAKKO-111H containing dhfr as a selection maker (Mori et al., 1999). CHO 

dhfr− cells were transfected with the expression vector. Stable cell lines of CHO 

expressing human GPR7 (CHO-GPR7) and CHO expressing human GPR8 (CHO-GPR8) 

were selected under conditions wherein the growth medium lacked nucleotides. 

 

2.2. Phylogenetic analysis of the GPCRs structurally similar to GPR7 and GPR8 

A phylogenetic analysis was conducted in the same way described in Chapter I. The 

description of SLC-1 was changed to melanin-concentrating hormone receptor 1 due to 

the successful deorphanization of SLC-1 as a MCH receptor, which was demonstrated in 

Chapter I. 

 

2.3. Gene expression profile of human GPR7 and GPR8 

Real-time PCR was used to measure copy numbers of GPR7, GPR8, and glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) cDNA molecules, which were synthesized from 

poly (A) RNA samples purified from various human tissues. Relative gene expression of 

GPR7 and GPR8 were defined as follows: the copy number of each GPR7 and GPR8 

divided by that of GAPDH as an internal control in each tissue sample. Human poly (A) 

RNA-derived cDNA samples of Multi Tissue cDNA Panels, and Marathon-Ready cDNA 

of each adipose and pituitary tissue were purchased from CLONTECH. Each solution of 
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the human cDNA samples was mixed with a TaqMan universal PCR master mix (PE 

Applied Biosystems) and each set of gene specific primers at final concentration of 0.2 

M and the gene specific probe at final concentration of 0.1 M in a 25 l of reaction 

mixture (Fujii et al., 2000). A calibration curve needed to convert a value of cycle 

threshold of the cDNA sample to a copy number of the target gene was created by adding 

known amounts of the GPR7, GPR8 or GAPDH DNA fragments instead of the test cDNA 

samples. The primers and probe synthesized for the real-time PCR were as follows: 

human GPR7, 5`-CATGAAGACCGTCACCAACCT-3` (forward primer), 5`-CCAGCG-

TGAAGAGCTCGTC-3` (reverse primer), and 5`-(FAM)-TTCATCCTCAACCTGGCC-

ATCGC-(TAMRA)-3` (probe). Each set of primers and probe to measure copy number 

of human GPR8 cDNA and human GAPDH cDNA was premixed with commercially 

available master mix solution (PE Applied Biosystems). The real-time PCR was carried 

out using an ABI PRISM 7700 Sequence Detector System (PE Applied Biosystems) 

under the following condition: 50°C for 2 min; 95°C for 10 min; 40 cycles of 95°C for 

15 sec, 60°C for 60 sec. 

 

2.4. Assay for inhibition of forskolin-induced intracellular accumulation of cAMP 

Inhibitory activities of test samples for cAMP accumulation was measured as described 

(Shimomura et al., 1999). CHO-GPR7 or CHO-GPR8 cells were plated on 24-well plates 

at 5  104 cells/well and were cultured for 2 days. The cells were washed three times with 

0.5 ml of assay buffer (Hanks’ buffered salt solution (pH 7.4), 0.2 mM 3-isobutyl-1-

methylxanthine (Wako Pure Chemical), 0.05% bovine serum albumin, and 20 mM 

HEPES) and were cultured in the assay buffer for 30 min. After washing the cells three 

times with 0.5 ml of the assay buffer, a test sample in 0.5 ml of the assay buffer 
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supplemented with 1 M forskolin (Wako Pure Chemical) was added to the cells, and the 

cells were incubated at 37°C for 30 min. cAMP synthesis in the cells was terminated by 

addition of 0.1 ml of 20% perchloric acid, and intracellular cAMP was extracted on ice 

for 1 h. The amount of extracted cAMP was measured using an enzyme-linked 

immunoassay kit (Amersham Biosciences). 

 

2.5. [35S]GTPS binding assay 

[35S]GTPS binding assay was performed essentially as described (Takekawa et al., 2002) 

with minor modifications. Membrane fractions of CHO-GPR8 cells suspended in 200 l 

of [35S]GTPS assay buffer (50 mM Tris-HCl (pH 7.4), 0.1% bovine serum albumin, 5 

mM MgCl2, 150 mM NaCl, and 1 M GDP) were mixed with a test sample, followed by 

addition of [35S]GTPS (PerkinElmer Life Sciences) at a final concentration of 0.5 nM. 

The mixture was incubated at 25°C for 60 min and was then filtered onto a Whatman 

GF/F glass filter. After washing three times with 1.5 ml of washing buffer (50 mM Tris-

HCl (pH 7.4), 0.1% bovine serum albumin, 5 mM MgCl2, and 1 mM EDTA), the glass 

filters were dried at 37°C for 60 min. The radioactivities retained on the glass filters were 

counted by a scintillation counter. 

 

2.6. Purification of NPW as an endogenous ligand for GPR8 from the porcine 

hypothalamus 

Approximately 500 g of fresh porcine hypothalamus was boiled for 10 min in pure water 

and was homogenized using a Polytron homogenizer in 2 liters of 1.0 M acetic acid. The 

homogenate was centrifuged, and then the supernatant was subjected to acetone 

precipitation at a final acetone concentration of 66%. After removal of the precipitates, 
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the supernatant was evaporated and was then extracted with diethyl ether. The resultant 

solution was applied to an YMCgel ODS-AM 120-S50 column (30.0 × 240 mm; YMC). 

The peptide fraction was eluted with 60% CH3CN in 0.1% trifluoroacetic acid, and the 

eluate was lyophilized. The agonist peptide for human GPR8 was purified from the 

lyophilized materials by successive HPLC using a TSKgel ODS-80TM column (21.5 × 

240 mm; 10–60% CH3CN gradient in 0.1% trifluoroacetic acid for 80 min at 5.0 ml/min; 

Tosoh), a TSKgel SP-5PW column (20 × 150 mm; 10–2000 mM HCOONH4 gradient in 

10% CH3CN for 40 min at 5.0 ml/min; Tosoh), a Develosil CN-UG-5 column (4.6 × 250 

mm; 21–26% CH3CN gradient in 0.1% trifluoroacetic acid for 20 min at 1.0 ml/min; 

Nomura Chemical), and a Wakosil-II 3C18HG column (2.0 × 150 mm; 22.5–32.5% 

CH3CN gradient in 0.1% trifluoroacetic acid for 40 min at 0.2 ml/min; Wako Bioproducts) 

combined with the [35S]GTPS binding assay. Finally, an active fraction with a single 

peak at both 220 and 280 nm was collected manually by HPLC using the Wakosil-II 

3C18HG column. The amino acid sequence of the purified peptide was analyzed with a 

protein sequencer, Procise 491cLC (Applied Biosystems, Inc.). 

 

2.7. Cloning of porcine, human, rat, and mouse NPW precursor protein cDNAs 

A BLAST search was performed using the amino acid sequence of the purified peptide as 

a query against the DDBJ/GenBankTM/EBI Data Bank. A human genomic DNA sequence 

(DDBJ/GenBankTM/EBI accession number AC0050606) contained a partial nucleotide 

sequence of which the translated amino acid sequence was similar to the purified peptide. 

On the basis of this DNA sequence, a cDNA encoding porcine NPW precursor protein 

was obtained from a porcine spinal cord cDNA library constructed with a Marathon 

cDNA amplification kit (CLONTECH) using 5`- and 3`-rapid amplification of cDNA 
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ends and PCR to clone full-length cDNA. Human NPW precursor protein cDNA, rat 

NPW precursor protein cDNA, and mouse NPW precursor protein cDNA were isolated 

from a human hypothalamus Marathon Ready cDNA library (CLONTECH), a rat brain 

Marathon Ready cDNA library (CLONTECH), and a mouse brain Marathon Ready 

cDNA library (CLONTECH), respectively, following the same strategies used to clone 

the porcine NPW precursor protein cDNA. The PCR primers for cloning the porcine, 

human, rat, and mouse full-length cDNAs were as follows: pig, 5`-

TTCCCGACACCCCTGCGCCCAGAC-3` (forward) and 5`-GGGCTGGCGAAGGCG-

GTTCCCTGC-3` (reverse); human, 5`-AGCGGTACTGAGGGGGCGGAACGA-3` 

(forward) and 5`-GGGTCTATGAGCGGCTCCTGGAAG-3’ (reverse); rat, 5'-GGGGC-

GGGGCCATTGAGAAGC-3' (forward) and 5`-TGACCAGACAACGAGACCTGA-3` 

(reverse); and mouse, 5`-AAAGGCTGTAGTCGCACCAAC-3` (forward) and 5`-

ACCAGAAACACGAGGCCTGAC-3` (reverse). The PCR conditions for cloning the 

porcine, human, rat, and mouse full-length cDNAs were as follows: pig, 96°C for 60 sec; 

4 cycles of 96°C for 30 sec, 72°C for 75 sec; 4 cycles of 96°C for 30 sec, 70°C for 75 sec; 

4 cycles of 96°C for 30 sec, 68°C for 75 sec; 5 cycles of 96°C for 30 sec, 64°C for 30 sec, 

72°C for 45 sec; 20 cycles of 96°C for 30 sec, 60°C for 30 sec, 72°C for 45 sec; 72°C for 

10 min; human, 96°C for 60 sec; 35 cycles of 96°C for 30 sec, 64°C for 30 sec, 72°C for 

120 sec; 72°C for 10 min; rat, 96°C for 60 sec; 35 cycles of 96°C for 30sec, 60°C for 30 

sec, 72°C for 60 sec; 72°C for 10 min; and mouse, 96°C for 120 sec; 40 cycles of 96°C 

for 30 sec, 64°C for 30 sec, 72°C for 120 sec; 72°C for 10 min. The porcine, human, rat, 

and mouse NPW precursor protein cDNA clones were sequenced on both strands using 

an ABI PRISM 377 DNA sequencer (PE Applied Biosystems). 
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2.8. Peptide synthesis of human, porcine, rat, and mouse NPW23 and NPW30 

Human, porcine, rat, and mouse NPW23 and NPW30 were chemically synthesized using 

an ABI 433A peptide synthesizer (Applied Biosystems, Inc.) following Fmoc (N-(9-

fluorenyl)methoxycarbonyl) strategy. After deblocking all the protecting groups by 

treatment with mixture of trifluoroacetic acid/thioanisole/m-cresol/triisopropylsilane/1, 

2-ethanedithiol (85:5:5:2.5:2.5), the peptides were purified by reverse phase HPLC. 

 

2.9. Comparison of the elution times of synthetic NPW with those of the 

[35S]GTPS binding activities of porcine hypothalamus fractions 

Extracts of the porcine hypothalamus were fractionated by HPLC using the TSKgel ODS-

80TM column (21.5 × 240 mm; 10–60% CH3CN gradient in 0.1% trifluoroacetic acid for 

80 min at 5.0 ml/min; Tosoh) as described above for the purification of NPW. Active 

fractions obtained by the HPLC were further fractionated by HPLC using a Develosil 

ODS-UG-5 column (4.6 × 250 mm; 25–40% CH3CN gradient in 0.1% trifluoroacetic acid 

for 30 min at 1.0 ml/min; Nomura Chemical), and the eluates were collected every 1 min. 

The agonist activity of each fraction for human GPR8 was measured by the [35S]GTPS 

binding assay. Synthetic porcine NPW23 and NPW30 were analyzed by HPLC using the 

Develosil ODS-UG-5 column (4.6 × 250 mm; 25–40% CH3CN gradient in 0.1% 

trifluoroacetic acid for 30 min at 1.0 ml/min). 

 

2.10. Expression and purification of human NPW in a transient expression system 

using COS-7 cells 

An expression vector was constructed by ligation of PCR-amplified human NPW 

precursor protein cDNA covering the DNA region from the 5` to 3` in-frame stop codons 
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to the mammalian expression vector pCR3.1 (Invitrogen). The PCR primers for cloning 

the human NPW precursor protein cDNA were 5`-AGCGGTACTGAGGGGGCGGA-

ACGA-3` (forward) and 5`-AACTAGTCGGCCACTCCTCCTGGGTCAG-3` (reverse). 

COS-7 cells were transfected with the expression vector and were cultured for 2 days. 

The conditioned medium was concentrated using a Sep-Pak Plus C18 cartridge (Waters). 

The agonist peptide for human GPR8 was purified from the concentrated medium by 

successive HPLC using a TSKgel CM-2SW column (4.6 × 250 mm; 10–2000 mM 

HCOONH4 gradient in 10% CH3CN for 60 min at 1.0 ml/min; Tosoh), a TSKgel ODS-

80TsQA column (4.6 × 250 mm; 25–45% CH3CN gradient in 0.1% trifluoroacetic acid 

for 60 min at 1.0 ml/min; Tosoh), and a SymmetryShield RP18 column (2.1 × 150 mm; 

15–35% CH3CN gradient in 0.1% trifluoroacetic acid for 60 min at 0.2 ml/min; Waters 

Associates) combined with the cAMP accumulation inhibition assay using CHO-GPR8 

cells. Finally, an active fraction with a single peak at 220 nm was collected manually by 

HPLC using the SymmetryShield RP18 column. The amino acid sequence of the purified 

peptide was analyzed with a Procise 491cLC protein sequencer (Applied Biosystems, 

Inc.). Electrospray ionization mass spectra of the purified peptide were recorded on an 

LCQ duo ion-trap mass spectrometer (ThermoFinnigan) equipped with a nanospray ion 

source (MDS Protana). 

 

2.11. Pertussis toxin treatment of CHO-GPR7 and CHO-GPR8 cells 

CHO-GPR7 and CHO-GPR8 cells were cultured in 24-well plates for 24 h and were then 

treated with or without pertussis toxin (List Biological Laboratories, Inc.) at a 

concentration of 100 ng/ml for 24 h. After washing these cells, the inhibitory effect of 

human NPW23 (1 nM) on cAMP accumulation induced by forskolin (1 M) was analyzed. 
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2.12. Receptor binding assay 

Human NPW23 was labeled by lactoperoxidase oxidation in the presence of Na125I 

(PerkinElmer Life Sciences), and the monoiodinated peptide labeled at Tyr10 was purified 

by reverse phase HPLC. Specific activity of the purified 125I-labeled human NPW23 was 

~9.5 × 1016 Bq/mol when a fresh batch of Na125I was used for labeling. Membrane 

preparation and receptor binding assay were performed essentially as described 

(Takekawa et al., 2002) with minor modifications. Membrane fractions of CHO-GPR7 

cells and CHO-GPR8 cells suspended in 200 l of receptor binding assay buffer (25 mM 

Tris-HCl (pH 7.4), 0.1% bovine serum albumin, 0.05% 3-((3-cholamidopropyl) 

dimethylammonio)-1-propanesulfonate (CHAPS), 5 mM EDTA, 0.5 mM 

phenylmethylsulfonyl fluoride, 0.1 g/ml pepstatin, 20 g /ml leupeptin, and 4 g /ml  

E-64) were mixed with 125I-labeled human NPW23. The mixture was incubated at 25°C 

for 75 min and was then filtered onto a Whatman GF/F glass filter. After washing three 

times with 1.5 ml of the binding buffer, the glass filters were dried at 37°C for 60 min. 

Nonspecific binding was determined by the binding assay in the presence of unlabeled 

human NPW23 at 1 M. The radioactivities retained on the glass filters were counted by 

a -counter. 

 

2.13. Generation of monoclonal antibodies to NPW23 and NPW30 

Three immunogens were prepared to obtain monoclonal antibodies recognizing the N-

terminal region of NPW23 and NPW30, the C-terminal region of NPW23, and the C-

terminal region of NPW30. Human [14Cys]NPW-[1–13] and human [1Cys]NPW-[11–23] 

were conjugated to porcine thyroglobulin, and rat [1Cys]NPW-[16–30] was conjugated to 



 

46 

 

keyhole limpet hemocyanin, by using sulfosuccinimidyl 4-(N-maleimidomethyl) 

cyclohexane-1 carboxylate (Pierce Chemical Co.). Female BALB/c mice (6–8 weeks old) 

were immunized with each immunogen, which was mixed with the Freund’s complete or 

incomplete adjuvant just before the immunization. The spleen cells isolated from the 

immunized mice 3 days after intravenous injection of the immunogens were fused with 

mouse myeloma cells, P3X63Ag8·653, as described previously (Suzuki et al., 1989). 

Three monoclonal antibodies, ANPW-N (IgG1, ) for the N-terminal region of NPW23 

and NPW30, ANPW23-C (IgG1, ) for the C-terminal region of NPW23, and ANPW30-

C (IgG2b, ) for the C-terminal region of NPW30, were screened, and IgG fractions of 

the three antibodies were purified from ascites fluids using an immobilized protein A 

column (SEIKAGAKU CORPORATION). 

 

2.14. Construction of two-site ELISAs to quantify immunoreactive NPW23 and 

NPW30 

The ANPW23-C and ANPW30-C were used as immobilized antibody for the two-site 

ELISAs of NPW23 and NPW30, respectively. The ANPW-N was conjugated to 

horseradish peroxidase (HRP) as described previously (Ichimori et al., 1987), and the 

HRP-labeled ANPW-N was used as the 2nd antibody to detect NPW23 and NPW30. The 

assay protocol of these two-site ELISAs was essentially the same as described by Ichimori 

et al. (Ichimori et al., 1987) with the following minor modifications. Immobilized 

antibody plates were prepared at 4°C by incubation with 20 μg/ml of the ANPW23-C for 

the NPW23 ELISA and with 20 μg/ml of the ANPW30-C for the NPW30 ELISA in 96-

well ELISA plates (50 mM sodium carbonate buffer (pH 9.6), 100 l/well) for an 

overnight followed by replacement of the antibody solution with 300 l/well of Block 
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Ace (Snow Brand Milk Products Co., Ltd.). After the incubation with the Block Ace at 

least for an overnight, known amounts of the standard peptides, synthetic NPW23 and 

NPW30, and test samples in 100 μl of buffer C (20 mM phosphate buffer (pH 7.0), 1% 

bovine serum albumin, 0.4 M NaCl, and 2 mM EDTA) were added to each well of the 

antibody immobilized plates, and the plates were incubated at 4°C for 16 h. After washing 

with phosphate-buffered saline (PBS), the plates were treated with 100 μl/well of the 

HRP-labeled ANPW-N at a 1000-fold dilution in buffer C at 4°C for an additional 16 h. 

After washing with PBS, bound enzyme activity was measured using a TMB microwell 

peroxidase system (Kirkegaard and Perry Laboratories). 

 

2.15. Preparation of peptide fractions from animal organs for the measurement of 

immunoreactive NPW23 and NPW30 

Fresh animal organs were used to prepare samples for the ELISAs of NPW23 and NPW30. 

Each porcine organ (the whole brain, spinal cord, hypothalamus, pituitary, adrenal gland, 

esophagus, stomach, duodenum, small intestine, atrium, spleen, pancreas, kidney, ovary, 

thymus, and lung) with its total weight around 500 g was boiled for 10 min in 2 liters of 

pure water and was subsequently homogenized by a Polytron homogenizer in the same 

volume of 1.0 M acetic acid. The homogenate was centrifuged, and subsequently the 

supernatant was subjected to acetone precipitation at a final acetone concentration of 66%. 

After removal of the precipitates, the supernatant was evaporated and was extracted with 

diethyl ether. The resultant solution was applied to an YMCgel ODS-AM 120-S50 

column (30.0 × 240 mm; YMC). Peptide fraction was eluted with 60% CH3CN in 0.1% 

trifluoroacetic acid, and the eluate was lyophilized. The lyophilized material dissolved in 

1.0 M acetic acid was purified by the following HPLC using a TSKgel ODS-80TM 
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column (21.5 × 240 mm; 10–60% CH3CN gradient in 0.1% trifluoroacetic acid for 80 

min at 5.0 ml/min; Tosoh). Each fraction obtained from the second HPLC was lyophilized, 

and the lyophilized materials in tubes were dissolved in DMSO as assay samples for the 

ELISAs. Rodent organs were dissected from male Wistar rats (6–8 weeks old) and male 

C57BL/6 mice (6–8 weeks old): rats, the whole brain, spinal cord, pituitary, stomach, 

duodenum, colon, heart, spleen, pancreas, liver, kidney, testis, and lung; and mice, the 

whole brain, pituitary, and stomach. Each rodent organ described above was boiled for 10 

min in pure water with its weight equivalent to at least 4 times weight of the organ and 

was subsequently homogenized by a Polytron homogenizer in the same volume of 1.0 M 

acetic acid. Supernatant of the initial extraction was obtained by centrifugation, and the 

residual tissue as a pellet was re-homogenized by the Polytron homogenizer in the same 

volume of 1.0 M acetic acid. Supernatant of the second extraction was obtained by the 

centrifugation and was mixed with that of the initial extraction followed by a semi-

purification using an octadecyl-bonded silica cartridge, Sep-Pak C18 Classic Cartridge 

(Waters). The mixture of the extract was absorbed onto the Sep-Pak C18 Classic Cartridge 

followed by washing with 1.0 M acetic acid, and peptide fraction was eluted with 60% 

CH3CN in 0.1% trifluoroacetic acid. The eluates were lyophilized, and the lyophilized 

materials were dissolved in the buffer C as assay samples for the ELISAs. Quantities of 

immunoreactive NPW23 and NPW30 in the assay samples were calculated as the average 

of duplicate assays. 

 

2.16. Feeding experiments 

Male Wistar rats (8–9 weeks old) were maintained under controlled temperature (25°C) 

and lighting (light on from 7:30 to 19:30). Food (standard chow pellets) and water were 
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available ad libitum. A stainless-steel guide cannula (AG-8, EICOM, Kyoto, Japan) was 

inserted into the lateral ventricle under sodium pentobarbital anesthesia. After the rats had 

been housed for 1 week in individual cages, 10 l of PBS with or without human NPW23 

was injected at a flow rate of 5 l/min into the lateral ventricle through a microinjection 

cannula that was inserted into the guide cannula. All injections started at 15:00, and food 

intake was measured at 30, 60, and 120 min. 

 

2.17. Hormone release experiments 

Male Wistar rats (8–9 weeks old) were maintained under controlled temperature (25°C) 

and lighting (light on from 7:30 to 19:30). Food (standard chow pellets) and water were 

available ad libitum. A stainless-steel guide cannula (AG-12, EICOM, Kyoto, Japan) was 

inserted into the third ventricle under sodium pentobarbital anesthesia. The cannula-

implanted rats were housed in individual cages and kept for 1 week. One day before the 

experiments, the cannula-implanted rats were fitted with a catheter in the right jugular 

vein. The following day, 10 l of PBS with or without human NPW23 was injected at a 

flow rate of 5 l/min into the third ventricle through a microinjection cannula that was 

inserted into the guide cannula. An intracerebroventricular injection was given between 

13:00 and 15:00. After the intracerebroventricular injection of the peptide, blood samples 

were collected from the catheter at 5, 10, 20, 30, and 60 min. The concentration of 

prolactin in the plasma samples was then determined using a radioimmunoassay kit 

(Amersham Biosciences). 
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3. Results 

3.1. Structural and gene expression features of GPR7 and GPR8 

GPR7 and GPR8 are structurally related orphan GPCRs with an amino acid identity of 

64% (O’Dowd et al., 1995). The two orphan GPCRs showed sequence similarity to other 

human GPCRs, human orthologue of the rat SLC-1, five subtypes of the somatostatin 

receptor, three subtypes of the opioid receptor, and one opioid-like receptor. A 

phylogenetic tree of the twelve above mentioned GPCRs and the rat SLC-1 was 

constructed by the neighbor-joining method. The two orphan GPCRs, GPR7 and GPR8, 

showed the highest homology to each other (Fig. 2-1). The closest group of GPCRs to the 

two orphan GPCRs was the subtypes of the opioid receptor with the opioid-like receptor.  

Gene expression patterns of GPR7 and GPR8 in human tissues were examined by real-

time PCR. Both GPR7 and GPR8 are moderately expressed in the brain, testis, and 

pituitary (Fig. 2-2). Other tissues in which either GPR7 or GPR8 are expressed to the 

same degree as that in the brain are the liver, small intestine, and spleen. 

 

3.2. Purification and cDNA cloning of the agonist peptide for human GPR8 

The author purified the agonist peptide for human GPR8 from the porcine hypothalamus 

using CHO-GPR8 cells, using the so-called “reverse pharmacology” technique (Libert et 

al., 1991; Kotarsky and Nilsson, 2004). While assessing intracellular signal changes in 

CHO-GPR8 cells induced by the test samples, including various tissue extracts and 

known bioactive substances, reverse phase HPLC fractions of the porcine hypothalamus 

extracts showed an inhibitory effect on cAMP accumulation induced by forskolin. 

Treatment of the reverse phase HPLC fractions with proteinases diminished the agonist 

activity (data not shown), suggesting that a peptide ligand for human GPR8 was present 
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in the porcine hypothalamus extracts. Because the same reverse phase HPLC fractions 

also stimulated [35S]GTPS binding to membranes of CHO-GPR8 cells, the porcine 

hypothalamus extracts were subjected to purification by successive chromatography to 

isolate an agonist peptide for human GPR8 (Fig. 2-3A). Its activity was assessed using 

the [35S]GTPS binding assay (Fig. 2-3B). The process yielded 3 pmol of the purified 

agonist peptide for human GPR8 from 500 g of the porcine hypothalamus (Fig. 2-4A and 

B). The N-terminal amino acid sequence of the purified peptide was determined to be 

WYKHTASPRYHTVGRAAXLL (X, not identified) using a protein sequencer. 

The author then attempted to isolate the cDNA encoding this peptide to reveal its whole 

amino acid sequence. A cDNA was cloned from a porcine spinal cord cDNA library by 

PCR using DNA sequence information obtained by both 5- and 3-rapid amplification of 

cDNA ends. Although two ATG codons present in the 5-end region of the isolated cDNA 

preceded an in-frame stop codon (DDBJ/GenBankTM/EBI accession number AB084277), 

the 2nd ATG codon conforms more to the rules of Kozak (Kozak, 1996). The open reading 

frame starting at the 1st ATG codon encodes a porcine polypeptide of 159 amino acid 

residues (Fig. 2-5). The PSORT II algorithm based on the method of von Heijne (von 

Heijne, 1986) demonstrated that a signal peptide cleavage site of this polypeptide exists 

between Ala39 and Trp40 (von Heijne, 1986; Nakai and Horton, 1999). Therefore, it is 

predicted that two mature peptides of 23 and 30 amino acid residues will be generated 

from the precursor protein by signal peptide cleavage and proteolytic processing at two 

pairs of basic amino acid residues, Arg63-Arg64 and Arg70-Arg71, respectively (Douglass 

et al., 1984). The mature peptide sequence of the 23-amino acid residue peptide starts at 

Trp40 and ends at Leu62, whereas that of the 30-amino acid residue peptide starts at Trp40 

and ends at Trp69. The amino acid sequence of the 23-amino acid residue peptide is 
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identical to that of the N-terminal 23 amino acid residues in the 30-amino acid residue 

peptide. Since both the first and last amino acids of the 30-amino acid residue peptide are 

tryptophan, the 30-amino acid residue peptide was designated as neuropeptide W-30 

(NPW30), and then the 23-amino acid residue peptide was designated as neuropeptide W-

23 (NPW23). 

 

3.3. Activation of human GPR8 by NPW23 and NPW30 in the porcine 

hypothalamus 

To clarify the molecular species showing agonist activities for human GPR8, the author 

measured the [35S]GTPS binding activities of the porcine hypothalamus peptide 

fractions for human GPR8 and compared the elution times of the fractions with 

[35S]GTPS binding activities with those of synthetic peptides of porcine NPW23 and 

NPW30 under the same HPLC conditions. The synthetic porcine NPW23 and NPW30 

were eluted at 24.5 min and at 26.5 min, respectively (Fig. 2-6A). The [35S]GTPS 

binding activities of the porcine hypothalamus peptide fractions for human GPR8 were 

recovered mainly in fractions 25 (24–25 min) and 27 (26–27 min) with almost the same 

activity (Fig. 2-6B), indicating that fractions 25 and 27 contained porcine NPW23 and 

NPW30, respectively. These results suggest that porcine NPW23 and NPW30 present in 

the porcine hypothalamus activate human GPR8. 

 

3.4. Structures of NPW precursor protein and mature NPW peptide 

The author isolated human NPW precursor protein cDNA (DDBJ/GenBankTM/EBI 

accession number AB084276) lacking an AUG start codon from a human hypothalamus 

cDNA library and examined whether human NPW with agonist activity for human GPR8 
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is generated from this cDNA. As shown in Fig. 2-7, an open reading frame of the cDNA 

represents the amino acid sequences of NPW23 and NPW30, which are flanked by a 

putative signal peptide cleavage site and a pair of basic amino acid residues and which 

show amino acid sequence similarity to porcine NPW23 and NPW30, respectively. 

Although an AUG start codon is not present near the 5-end of the cDNA, several potential 

non-AUG start codons lie within the region (Peabody, 1989; Mehdi et al., 1990). To 

ensure that the agonist peptide for human GPR8 is synthesized from this human cDNA, 

the author analyzed peptides secreted from COS-7 cells that were transfected with an 

expression vector containing this human cDNA. The supernatant of COS-7 cells 

transfected with this vector showed an inhibitory effect on forskolin-induced cAMP 

accumulation specifically in CHO-GPR8 cells. From 900 ml of the supernatant, 150 pmol 

of the agonist peptide for human GPR8 was purified to homogeneity (Fig. 2-8A and B). 

The structure of the purified peptide was WYKHVASPRYHTVGRAAGLLM (NPW21), 

lacking 2 amino acid residues at the C terminus compared with the predicted human 

NPW23 sequence. In this expression system, translation of the precursor protein and 

signal peptide cleavage proceeded as expected, but the proteolytic processing at a pair of 

basic amino acid residues failed to proceed accurately. These results indicate that the 

agonist peptide for human GPR8 is generated through intracellular processing of the 

precursor protein initiated from a non-AUG start codon in the transcript of the human 

NPW precursor protein cDNA. 

The author subsequently isolated cDNA clones encoding rat NPW precursor protein 

and mouse NPW precursor protein. A cDNA encoding rat NPW precursor protein 

(DDBJ/EMBL/Gen-BankTM accession number AB084278) demonstrated the existence of 

a precursor protein of 185 amino acid residues, which is translated from the longest open 
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reading frame in the cDNA nucleotide sequence (Fig. 2-9). The amino acid sequence of 

the rat NPW precursor protein includes a signal peptide cleavage site between Ala41 and 

Trp42, which was predicted by the PSORT II algorithm (Nakai and Horton, 1999) and two 

pairs of basic amino acid residues, Arg65-Arg66 and Arg72-Arg73. Two peptides of 23 and 

30 amino acid residues are predicted to be generated from the precursor protein as mature 

peptides via the signal peptide cleavage between Ala41 and Trp42 followed by proteolytic 

processing at the amino terminal ends of the Arg65-Arg66 and the Arg72-Arg73, respectively. 

The mature peptide sequences of rat NPW23 and rat NPW30 are suggested to be 

WYKHVASPRYHTVGRASGLLMGL and WYKHVASPRYHTVGRASGLLMGLRR-

SPYLW, respectively. As for the human NPW precursor nucleotide sequence, a cDNA of 

the mouse NPW precursor protein lacking an AUG start codon presented two peptide 

sequences of 23 and 30 amino acid residues, which are flanked by a putative signal 

peptide cleavage site and by two pairs of Arg-Arg basic amino acid residues (Fig. 2-10). 

The amino acid sequences of the 23- and 30-amino acid residue peptides in the mouse 

NPW precursor protein are quite similar to those of the human, porcine, and rat NPW23 

and NPW30 (Fig. 2-11). 

The author compared the amino acid sequences of NPW precursor protein and mature 

NPW peptide from the humans, pigs, rats, and mice. A deduced amino acid sequence of 

each porcine and rat NPW precursor protein was defined unambiguously as the translated 

protein from the open reading frame of the cloned cDNA with normal AUG start codons. 

Since each cDNA encoding human and mouse NPW precursor protein lacked the AUG 

start codon, the author assumed that a potential non-AUG start codon was either ACG, 

CUG, or GUG, which existed at 123-base to 96-base upstream of the tryptophan codon 

for the N-terminal amino acid of the mature NPW peptide sequences due to the fact that 
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the AUG start codon of the porcine and rat NPW precursor protein nucleotides was placed 

in the same region. As a result, the human NPW precursor protein, 165 amino acids, with 

translation initiated from the CUG codon at the nucleotide position 187–189 and the 

mouse NPW precursor protein, 176 amino acids, with translation initiated from the CUG 

codon at the nucleotide position 121–123 were aligned with the porcine and rat NPW 

precursor proteins using CLUSTAL W multiple sequence alignment (Fig. 2-12). The 

alignment pointed out the conserved amino acid sequences and motifs: a putative signal 

peptide sequence with hydrophobic amino acids, leucine or proline, mature NPW peptide 

sequences of NPW23 and NPW30, and two pairs of Arg-Arg basic amino acid residues. 

Especially, the amino acid sequences of the mature NPW peptide, NPW23 and NPW30 

showed quite higher sequence similarity among the four species, 91.3 and 90.0%, 

respectively. Both the N- and C-terminal amino acids of NPW are conserved such that the 

amino acid sequence of NPW23 starts at tryptophan and ends at leucine, and that of 

NPW30 starts at tryptophan and ends at tryptophan. 

Thus, the author identified novel bioactive peptides, NPW23 and NPW30 that are 

encoded by the NPW precursor gene. The database search was conducted with the BLAST 

and the FASTA programs using the amino acid sequences of NPW23 and NPW30 as 

queries against as diverse as protein and DNA sequence databases available. The amino 

acid sequences of NPW23 and NPW30 did not show significant similarity to any known 

proteins registered in those databases. The database search results demonstrated that 

NPW was first discovered by this study aiming at the deorphanization of GPR8. 

 

3.5. Functional activity and binding affinity of NPW for GPR7 and GPR8 

The author examined the functional activity and binding affinity of synthetic NPW for 
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human GPR7 and GPR8 because human GPR8 shows higher similarity to human GPR7 

than to other numerous GPCRs. Human NPW23 dose-dependently inhibited cAMP 

accumulation induced by forskolin in CHO-GPR7 and CHO-GPR8 cells, with IC50 values 

of 0.025 and 0.178 nM, respectively (Fig. 2-13A and B; and Table 2-1). Human NPW30 

also showed an inhibitory effect on forskolin-induced cAMP accumulation in CHO-GPR7 

and CHO-GPR8 cells, with IC50 values of 0.133 and 1.244 nM, respectively (Fig. 2-13 A 

and B; and Table 2-1). In CHO-GPR7 and CHO-GPR8 cells, no elevation of intracellular 

calcium induced by NPW23 and NPW30 was observed by measurement of [Ca2+]i 

response using a calcium fluorescent dye indicator, Fluo 3-AM (data not shown), and the 

inhibitory effect of NPW on forskolin-induced cAMP accumulation was abolished by 

preincubation with pertussis toxin (Fig. 2-13C and D), indicating that human GPR7 and 

GPR8 both are coupled with the Gi protein. Saturation binding analysis using 125I-labeled 

human NPW23 showed that membrane fractions of CHO-GPR7 and CHO-GPR8 cells 

displayed high affinity, saturable, and specific binding (human GPR7, Kd = 31.8  3.0 

pM and Bmax = 2.02  0.10 pmol/mg; human GPR8: Kd = 20.7  0.6 pM and Bmax = 

4.37  0.04 pmol/mg) (Fig. 2-13E and F). 125I-labeled human NPW23 bound both human 

GPR7 and GPR8 with nearly the same affinity. Competition binding analysis 

demonstrated high affinity binding of NPW23 and NPW30 to human GPR7 and GPR8 

(Table 2-1). NPW binds to and activates these receptors with high affinity and potency. 

These results indicate that NPW is the endogenous ligand for both GPR7 and GPR8. 

 

3.6. Tissue distribution of immunoreactive NPW23 and NPW30 

The author created two-site ELISAs to assess the tissue distribution of the mature NPW 

peptides, NPW23 and NPW30. The two-site ELISAs were essentially constructed with 
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three monoclonal antibodies, the ANPW-N, the ANPW23-C, and the ANPW30-C, which 

recognize the N-terminal sequence of both NPW23 and NPW30, the C-terminal sequence 

of NPW23, and the C-terminal sequence of NPW30, respectively. The ANPW23-C and 

ANPW30-C were used as immobilized antibodies to trap NPW23 and NPW30, 

respectively, by binding to individual C-terminal regions, and the ANPW-N labeled with 

HRP was used as the 2nd antibody to capture the free N-terminal regions of the NPW23 

and NPW30, which were already trapped by the immobilized antibodies in 96-well 

ELISA plates. The two ELISAs, NPW23 ELISA and NPW30 ELISA enabled the specific 

measurement of human, porcine, rat, and mouse NPW23 and NPW30 with a minimum 

detectable quantity of 0.3 fmol/well (Fig. 2-14). 

The author observed a preferential expression of NPW23 and NPW30 peptides in the 

brain, pituitary, and stomach in a variety of animal tissues. Porcine peptide fractions 

prepared from sixteen different organs (the brain, spinal cord, hypothalamus, pituitary, 

adrenal gland, esophagus, stomach, duodenum, small intestine, atrium, spleen, pancreas, 

kidney, ovary, thymus, and lung) were used for the measurement of NPW23 and NPW30 

by the two-site ELISAs. Significant levels of immunoreactive NPW23 (ir-NPW23) and 

immunoreactive NPW30 (ir-NPW30) were detected in the brain, spinal cord, 

hypothalamus, pituitary, adrenal gland, stomach, and duodenum (Table 2-2). Rat peptide 

fractions prepared from thirteen different organs (the brain, spinal cord, pituitary, stomach, 

duodenum, colon, heart, spleen, pancreas, liver, kidney, testis, and lung) were applied to 

the two-site ELISAs, and significant levels of ir-NPW23 and ir-NPW30 were detected in 

the brain, spinal cord, pituitary, and stomach. Mouse peptide fractions were prepared from 

a limited number of organs (the brain, pituitary, and stomach) where both porcine and rat 

NPW peptides were detected as mentioned above. Significant amounts of ir-NPW23 and 
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ir-NPW30 were detected in all the mouse peptide fractions. The two-site ELISAs for the 

extracts of porcine, rat, and mouse organs demonstrated that NPW23 and NPW30 are 

preferentially localized in the brain, pituitary, and stomach. 

 

3.7. In vivo effects of NPW on feeding behavior and hormone release 

The author investigated the central effects of NPW on feeding behavior and hormone 

release because rat GPR7 is expressed at relatively high levels in the brain (Lee et al., 

1999). First, human NPW23 was intracerebroventricularly administered to rats, and food 

intake was monitored (Fig. 2-15A). Injection of 10 nmol of NPW23 significantly 

increased food intake, and the magnitude of food consumption during a 2-h period was 

about 3-fold relative to vehicle controls. Second, human NPW23 was 

intracerebroventricularly administered to rats, and hormone concentrations in the blood 

were measured (Fig. 2-15B). Injection of 3 nmol of NPW23 significantly stimulated the 

release of prolactin, but not the release of other pituitary hormones such as growth 

hormone, adrenocorticotropic hormone, follicle-stimulating hormone, luteinizing 

hormone, and thyroid-stimulating hormone. The prolactin concentration increased to 

maximum levels 20 min after injection and decreased to control levels after 60 min. 
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4.  Discussion 

The author purified a novel bioactive peptide, NPW, as the agonist for GPR8 using CHO 

cells expressing human GPR8 from the porcine hypothalamus. The discovery of NPW 

resulted from the attempt of the deorphanization of GPR8. The purified peptide is 

encoded by the porcine NPW precursor gene, and the precursor protein sequence predicts 

the existence of two mature peptides composed of 23 and 30 amino acid residues. The 

author demonstrated the existence of the 23- and 30-amino acid residue NPW peptides as 

mature peptides in the porcine hypothalamus by HPLC analysis combined with the 

[35S]GTPS binding assay (Fig. 2-6A and B). The porcine hypothalamus contained nearly 

equal amounts of NPW23 and NPW30 because both fractions 25 and 27 showed nearly 

the same agonist activity, indicating that NPW23 and NPW30 would exhibit their own 

biological activities in the mammalian body. 

Uniqueness of the human NPW precursor protein cDNA sequence postulated that 

translation of human NPW precursor protein, unlike that of pigs and rats, is not initiated 

from a typical AUG start codon. The author demonstrated that NPW21 with agonist 

activity for human GPR8 was synthesized from the human NPW precursor protein cDNA 

lacking an AUG start codon in a transient expression system using COS-7 cells. In this 

expression system, translation of the human NPW precursor polypeptide was initiated 

from a non-AUG start codon, and the signal peptide cleavage subsequently occurred at 

an expected site, but the proteolytic processing of the polypeptide failed to create the 

expected C terminus of mature NPW, probably due to an incomplete set of processing 

enzymes in the COS-7 cells (Galanopoulou et al., 1993) or susceptibility to proteolysis of 

the C terminus of mature NPW in the culture medium. Natural non-AUG start codons are 

very rare in eukaryotes, but have been detected in c-Myc, fibroblast growth factor-2, 
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vascular epidermal growth factor, MHC, and TRPV6 (Hann et al., 1988; Prats et al., 1989; 

Meiron et al., 2001; Starck et al., 2012; Fecher-Trost et al., 2013). In almost all cases, 

alternate initiation takes place at upstream non-AUG codons in addition to the first in-

frame AUG codons. Non-AUG triplets functioning as start codons have been 

experimentally determined to be ACG, CUG, and GUG (Peabody, 1989; Mehdi et al., 

1990). If initiation of the human NPW precursor polypeptide translation takes place at a 

position that corresponds to the AUG start site in the porcine or rat NPW precursor 

mRNAs, a CUG triplet (nucleotides 187–189) is one of the candidates for the non-AUG 

start codon in human NPW precursor mRNA (Fig. 2-7). Although further research is 

required to determine the translation start site and the usage of the non-AUG start codon 

in the human NPW precursor mRNA, it is proposed that human NPW is encoded by the 

nucleotide sequence of the human NPW precursor protein cDNA with a unique translation 

from a non-AUG start codon and that the mature forms of human NPW are NPW23 

(WYKHVASPRYHTVGRAAGLLMGL) and NPW30 (WYKHVASPRYHTVGRAAG-

LLMGLRRSPYLW).  

The mouse NPW precursor protein cDNA sequence lacking an AUG-start codon 

suggested that translation of its precursor protein is initiated from a non-AUG codon as 

experimentally elucidated for the translation of human NPW precursor protein. A CUG 

triplet (nucleotides 121–123) was supposed to be a potential non-AUG start codon if the 

translation initiation takes place at the same position as that in porcine or rat NPW 

precursor mRNAs (Fig. 2-10). The author has not attempted to ensure whether agonist 

peptides for GPR8 are synthesized from mouse Npw precursor mRNA using an 

experimental system with COS-7 cells that are transfected with the mouse NPW precursor 

protein cDNA. However, mature peptide forms of mouse NPW precursor protein, NPW23 
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and NPW30, have been detected in the mouse brain, pituitary, and stomach by 

quantitative measurement using the NPW23- and NPW30-specific two-site ELISAs 

(Table 2-2). Thus, it is proposed that mouse NPW is encoded by the nucleotide sequence 

of the mouse NPW precursor protein cDNA with a unique translation from a non-AUG 

start codon and that the mature forms of mouse NPW are NPW23 (WYKHVASPRYHTV-

GRASGLLMGL) and NPW30 (WYKHVASPRYHTVGRASGLLMGLRRSPYQW). 

The amino acid sequence features of human, porcine, rat, and mouse NPW precursor 

proteins indicate a possible biosynthetic pathway mechanism for the mature NPW 

peptides. NPW23 and NPW30 are generated from their precursor proteins by a post-

translational modification, including the translocation of the NPW precursor proteins 

presenting signal peptide sequences across the ER membrane and processing at the two 

sites of the Arg-Arg basic amino acid residues in the regulated secretory vesicles. After 

initiation of protein translation, a signal recognition particle that binds to the signal 

peptide sequence in the NPW precursor protein conveys the translation complex with the 

ribosomes on the ER membrane in the cytosol (Nagai et al., 2003; Akopian et al., 2013). 

The polypeptide chain elongating inside the translocon, a transmembrane protein 

complex with channel activity, is then released into the ER lumen after completion of 

signal peptide cleavage and termination of the translation. The resulting proprotein of 

NPW undergoes proteolytic processing at the N-terminal Arg-Arg residue site by 

endoprotease in the regulated secretory vesicles (Seidah and Prat, 2012). As a 

consequence of the signal peptide cleavage and the processing at the two pairs of the basic 

amino acid residues, the NPW precursor proteins are converted to the mature peptide 

forms, NPW23 and NPW30. 

Human NPW23 and NPW30 inhibited forskolin-induced cAMP accumulation in both 
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CHO-GPR7 and CHO-GPR8 cells, with subnanomolar or nanomolar IC50 values. In 

competition binding studies, human NPW23 and NPW30 showed high binding affinity 

for both GPR7 and GPR8, with subnanomolar IC50 values. The high potency and affinity 

of NPW23 and NPW30 for both GPR7 and GPR8 indicate that NPW23 and NPW30 are 

the endogenous ligands for both GPR7 and GPR8. A slight difference between NPW23 

and NPW30 was observed that NPW23 showed a tendency to activate both GPR7 and 

GPR8 more efficiently compared with NPW30. In the cAMP accumulation inhibition 

assay, the IC50 values of NPW23 for GPR7 and GPR8 were 5.3- and 7.0-fold lower than 

those of NPW30 for the two receptors, respectively (Table 2-1). In contrast, NPW30 

showed a tendency to bind to both GPR7 and GPR8 with high affinity compared with 

NPW23. In the competition binding assay, the IC50 values of NPW30 for GPR7 and GPR8 

were 3.8- and 10.0-fold lower than those of NPW23 for the two receptors, respectively 

(Table 2-1). The C-terminal 7 amino acid residues in human NPW30 should result in 

relatively low potency and high affinity of NPW30 for its receptors compared with 

NPW23. Structure-activity relationship studies of NPW are required to reveal the roles of 

the C-terminal 7 amino acid residues in the activation of and binding to its receptors. 

Two-site ELISAs were developed to assess the tissue distribution of NPW23 and 

NPW30, which underlies predictions of where NPW exerts its biological functions in vivo. 

The two-site ELISAs constructed by using three different monoclonal antibodies enabled 

the specific and sensitive quantification of NPW23 and NPW30 in the tissue extracts from 

pigs, rats, and mice. The author measured the amounts of ir-NPW23 and ir-NPW30 in a 

variety of organs from pigs, rats, and mice and demonstrated that NPW23 and NPW30 

are commonly localized in the brain, pituitary, and stomach of these three animals (Table 

2-2). Although significant amounts of ir-NPW23 and ir-NPW30 were detected in the 
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spinal cord of pigs and rats, the existence of NPW in the mouse spinal cord could not be 

ensured due to technical difficulties in the resection of a sufficient amount of the mouse 

spinal cord tissues for the two-site ELISAs. Clarification of whether the mouse spinal 

cord produces NPW will help to obtain definitive information on the tissue distribution 

pattern of NPW. In spite of the detection of immunoreactive NPW (ir-NPW) in the porcine 

duodenum, it is believed that the duodenum cannot be an organ that produces NPW. The 

significant amounts of NPW in the extract from the porcine duodenum in those assays 

might result from contamination of the lower part of NPW-producing porcine stomach 

tissues adjacent to the duodenum tissues when the duodenum tissues used as assay 

samples were cut at a public slaughterhouse. Besides that, the author obviously showed 

that no ir-NPW was detected in the tissues of rat duodenum, which were carefully 

removed from the adjacent organs such as the stomach and small intestine in our animal 

research facilities. These results indicate that NPW23 and NPW30 are categorized into 

brain-gut peptides. 

The data on the tissue distribution of NPW peptides or the gene expression profile of 

its receptors, GPR7 and GPR8, allowed us to unravel unknown biological functions of 

NPW. The existence of NPW peptides as well as GPR7 and GPR8 gene expression in the 

brain naturally predicted that NPW acts as a neurotransmitter in the CNS. The localization 

of NPW peptides in the stomach and pituitary that have a function of endocrine activity 

raised the possibility that the NPW stored in these organs is being released into the 

bloodstream and subsequently reaches to the target tissues where the NPW activates 

GPR7 and GPR8. Further histological studies using techniques of immunohistochemistry 

and in situ hybridization for NPW and its receptors will enable us to obtain information 

on the cellular distribution of NPW and its receptors, which might narrow down focus 
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when attempting to elucidate the biological functions of NPW.  

An exploratory study on the in vivo effects of NPW was conducted to determine the 

physiological and pathophysiological roles of NPW. The author demonstrated that NPW 

was functioning as a neurotransmitter, modulating feeding behavior and neuroendocrine 

release. In rats, intracerebroventricular administration of NPW23 resulted in an acute 

increase in food intake. The orexigenic effect could be accounted for by activation of 

GPR7-expressing neurons localized in the hypothalamic areas, which are considered to 

regulate feeding behavior and energy homeostasis (Spiegelman and Flier, 2001). 

Stimulation of prolactin release was observed upon the intracerebroventricular 

administration of NPW23. Although GPR7 is expressed in the pituitary gland, where 

prolactin is secreted in response to physiological stimuli (Wynick et al., 1998; Yang et al., 

2000), further studies will be required to determine whether NPW activates the pituitary 

cells directly or indirectly by other mechanisms. To define the physiological importance 

of NPW in complex pathways of feeding behavior and prolactin release, development of 

selective antagonists for the receptors of NPW and genetically engineered mice with a 

deletion of NPW or its receptor genes will be useful. In addition to the effects of NPW on 

feeding behavior and prolactin release, the broad expression patterns of GPR7 and GPR8 

in the mammalian brain raise the possibility that NPW influences many physiological 

processes in the CNS. 

Some GPCRs have more than one endogenous ligand, which activates and binds to 

receptors of the same family (Inoue et al., 1989). These endogenous ligands share 

structural similarity or common motifs in their peptide sequences and are usually encoded 

by different genes. The structurally related GPCRs, GPR7 and GPR8, are functional 

receptors for NPW23 and NPW30, which are encoded by the NPW precursor gene. In the 
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search for an endogenous ligand for GPR7 or GPR8, it was not possible to identify other 

endogenous ligands with structures different from that of NPW. However, these results 

do not exclude the possibility that other endogenous ligands may exist for GPR7 or GPR8. 

Since the discovery and molecular characterization of NPW reported in 2002, much 

attention has been paid on the understanding of the biological functions of NPW and its 

receptors. The followings are summary of the advancements in the elucidation of the 

NPW’s biological functions. Regulation of feeding behavior and energy homeostasis by 

NPW was investigated with a high priority due to the initial finding that NPW acutely 

increased food intake in the light phase (Shimomura et al., 2002; Levine et al., 2005). 

Mondal et al. reported that the intracerebroventricular administration of NPW acutely 

decreased food intake in the dark phase, and the continuous intracerebroventricular 

infusion of NPW suppressed food intake and body weight gain in rats (Mondal et al., 

2003). In the single intracerebroventricular administration of NPW experiment, rise in 

body temperature and heat production were also observed. An experiment using 

genetically modified mice with null mutation of GPR7 confirmed NPW function as a 

regulator of feeding behavior and metabolism. Rodents present an orthologue of human 

GPR7, but not an orthologue of human GPR8. Ishii et al. demonstrated that male Gpr7-/- 

mice developed adult-onset obesity along with hyperphagia (Ishii et al., 2003). Studies 

on the molecular mechanism involved in NPW anorectic activity in the brain (Date et al., 

2010) and cellular level distribution of NPW-positive neurons (Dun et al., 2003; Takenoya 

et al., 2008; Takenoya et al., 2010; Motoike et al., 2015) have accumulated to reinforce 

the evidence for a role of NPW as an anorectic peptide. A function of NPW in 

neuroendocrine regulation has been intensively studied. In addition to the prolactin-

releasing activity, intracerebroventricular administration of NPW induced elevated 



 

66 

 

plasma corticosterone or ACTH levels, which were mediated by corticotrophin-releasing 

hormone (Baker et al., 2003; Taylor et al., 2005). These reports suggest that NPW acts as 

a mediator of stress via activation of the hypothalamus-pituitary-adrenal axis. NPW is 

also involved in pain regulation in the spinal cord so that spinally applied NPW produced 

anti-hyperalgesia action in a model of inflammatory pain in rats (Yamamoto et al., 2005). 

In the stomach, NPW is expressed in gastric antral G cells as observed by immunoelectron 

microscopy and is colocalized with a gastric hormone, gastrin (Mondal et al., 2006). 

Although the determination of NPW immunoreactivity within G cells strongly suggests 

that NPW in the stomach may function in an endocrine manner, biological roles of the 

gastric NPW remain to be clarified. Apparent expression of GPR7 and substantial 

projections of NPW fibers in the extended amygdala have drawn attention to the 

involvement of NPW and its receptor in the control of emotion. Phenotypic analyses of 

Gpr7-/- mice in terms of social behavior suggested the link between NPW and the 

regulation of fear and anxiety (Sakurai, 2013). 

Neuropeptide B (NPB), a structurally different peptide from NPW, was simultaneously 

reported as another endogenous ligand for GPR7 and GPR8 by a group in our research 

laboratories in 2002 (Fujii et al., 2002). One year later, two other groups independently 

reported the discovery and analyses of NPW and NPB (Brezillon et al., 2003; Tanaka et 

al., 2003). As a consequence of full deorphanization of both GPR7 and GPR8, the 

International Union of Basic and Clinical Pharmacology officially named GPR7 and 

GPR8, neuropeptides B/W receptor 1 (NPBWR1) and neuropeptides B/W receptor 2 

(NPBWR2), respectively (http://www.iuphar-db.org/nciupharPublications.jsp).  

In conclusion, the author identified NPW, a novel brain-gut peptide that is the 

endogenous ligand for both GPR7 and GPR8 and that affects the central control of feeding 
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behavior and the release of prolactin in rats. This study will provide new insights into the 

physiological roles of NPW and its receptors, GPR7 and GPR8.  
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5. Tables 

 

 

 

 

 

 

 

 

Table 2-1 

Functional activity and binding affinity of human NPW for GPR7 and GPR8 

Human GPR7 Human GPR8

cAMP Binding cAMP Binding

nM nM

NPW23 0.025  0.004 0.096  0.007 0.178  0.007 0.210  0.021

NPW30 0.133  0.034 0.025  0.005 1.244  0.131 0.021  0.002
 

IC50 values for functional activity (nM) were determined by the inhibition of cAMP 

accumulation assay in the presence of forskolin (1 M). IC50 values for binding affinity 

(nM) were determined by the competition binding assay using 125I-labeled human 

NPW23 (80 pM). Results shown are the means  S.E. (n = 3 or 5). 
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Table 2-2 

Quantification of NPW in animal tissues by NPW23- and NPW30-specific two-site 

ELISAs 

*ir-NPW in porcine tissues: each result is a total of the mean of duplicate assays for each 

fraction where the extract of one organ was separated into 40 fractions by reverse phase 

HPLC. 
†ir-NPW in rat tissues and ir-NPW in mouse tissues: each result is the mean of duplicate 

assays for the peptide fraction prepared using octadecyl-bonded silica cartliges.  

‡ND: not detectable. §NA: not available. 

Peptide fractions were obtained from extracts of animal tissues followed by reverse phase 

HPLC for porcine tissues, and by batch absorption and elution using octadecyl-bonded 

silica cartridges for rat and mouse tissues. The peptide fractions as assay samples were 

subjected to the ELISAs to measure immunoreactive NPW (ir-NPW) of 23 and 30 amino 

acid residues.  

 

NPW23 NPW30 NPW23 NPW30 NPW23 NPW30

Whole brain 91 111 13 44 52 2

Spinal cord 72 123 1 9 NA NA

Hypothalamus 282 230 NA NA NA NA

Pituitary 1230 423 32 676 6645 2

Adrenal gland 2 51 NA NA NA NA

Esophagus ND
‡ ND NA NA NA NA

Stomach 55 776 3 88 1 1

Duodenum 31 361 ND ND NA NA

Small intestine ND ND NA NA NA NA

Colon NA
§ NA 1 ND NA NA

Atrium ND ND NA NA NA NA

Heart NA NA ND ND NA NA

Spleen ND ND ND ND NA NA

Pancreas ND ND ND ND NA NA

Liver NA NA ND ND NA NA

Kidney ND ND ND ND NA NA

Ovary ND ND NA NA NA NA

Testis NA NA ND ND NA NA

Thymus ND ND NA NA NA NA

Lung 1 3 ND ND NA NA

ir-NPW in porcine tissues* ir-NPW in rat tissues
†

ir-NPW in mouse tissues
†

(fmole/ 1g wet tissue) (fmole/ 1g wet tissue) (fmole/ 1g wet tissue)
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6. Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-1. A phylogenetic tree of GPCRs with higher similarity to human GPR7 and 

GPR8. Selected GPCRs presenting amino acid sequence similarity to SLC-1 were 

analyzed by the neighbor-joining method. Bootstrap values are placed on each node. Two 

GPCRs, GPR7 and GPR8, were recognized as orphan GPCRs, and the others were 

GPCRs with known endogenous ligands when the study in Chapter II started. SLC-1, 

melanin-concentrating hormone receptor 1; sst1 receptor, somatostatin receptor 1; sst4 

receptor, somatostatin receptor 4; sst2 receptor, somatostatin receptor 2; sst3 receptor, 

somatostatin receptor 3; sst5, somatostatin receptor 5; NOP receptor, nociceptin receptor; 

 receptor, kappa-type opioid receptor isoform 1;  receptor, delta-type opioid receptor; 

 receptor, mu-type opioid receptor isoform MOR-1. 
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Fig. 2-2.  Gene expression profile of human GPR7 and GPR8. Copy numbers of 

GPR7 and GPR8 mRNA in human tissues were measured by real-time PCR. The gene 

expression in the respective tissues was represented as normalized copy number that was 

calculated as follows: each copy number of GPR7 and GPR8 mRNA was divided by copy 

number of GAPDH mRNA in the same tissue. 
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Fig. 2-3. Isolation of an agonist peptide for human GPR8. A, purification procedure of 

an agonist peptide for human GPR8. The purification procedure comprised two parts of 

process, extraction from the porcine hypothalamus (step 1 to 3) and a combination of 

HPLCs (step 4 to 8). Agonist activity for human GPR8 was monitored with an assay of 

[35S]GTPS binding. B, mechanistic basis of the assay. Once ligand (L) as an agonist for 

human GPR8 binds to the receptor, heterotrimeric G proteins associated with the receptor 

are activated via the changes from GDP- to GTP-bound form, which induces intracellular 

signaling by activating downstream molecules in cells expressing human GPR8. The 

activated state returns to inactivated state through hydrolysis of the GTP to GDP, which 

is catalyzed by  subunit of the G protein. A GTP analogue, [35S]GTPS with highly 

resistant to the GTPase activity of the α subunit remains to bind to the G protein for a 

longer period of time so that an agonist binding to human GPR8 can be detected as an 

increase in radioactivity of [35S]GTPS in the membrane fractions of the cells expressing 

human GPR8. 
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Fig. 2-4. Identification of an endogenous ligand for human GPR8 from the extracts 

of the porcine hypothalamus. A, HPLC profile of the final purification step using the 

Wakosil-II 3C18HG column. The arrow marks the purified material. B, detection of 

[35S]GTPS binding activity to membrane fractions of CHO-GPR8 cells. The eluate was 

manually collected, and the activity was recovered as a single peak with an elution time 

of 29.4 min. 
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Fig. 2-5. Porcine NPW precursor protein cDNA and mature peptide sequences. A 

cDNA clone encoding an agonist peptide for human GPR8 was isolated from a cDNA 

library of the porcine spinal cord. A deduced amino acid sequence of porcine NPW 

precursor protein was obtained from the longest open reading frame of the cDNA. Each 

sequence is placed with the nucleotide sequence above the amino acid sequence. Two Met 

codons as potential translation start site are indicated by boldface letters. The asterisk 

indicates a stop codon. The arrowhead indicates a putative signal peptide cleavage site. 

A pair of basic amino acid residues is boxed. Porcine NPW23 and NPW30 are underlined 

with a solid line and with a broken line, respectively. 
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Fig. 2-6. Activation of human GPR8 by porcine NPW23 and NPW30. A, HPLC 

profiles of synthetic porcine NPW peptides and extracts of the porcine hypothalamus. 

Two arrows mark the elution peaks of the synthetic porcine NPW23 and NPW30 (upper 

panel). The extracts of the porcine hypothalamus were fractionated under the same HPLC 

conditions (lower panel). B, detection of agonist activities in the fractionated extracts of 

the porcine hypothalamus for human GPR8. The agonist activity of each fraction prepared 

from extracts of the porcine hypothalamus was measured by [35S]GTPS binding assay. 
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Fig. 2-7. Human NPW precursor protein cDNA and mature peptide sequences. A 

cDNA clone encoding human NPW precursor protein was isolated from a cDNA library 

of the human hypothalamus. An amino acid sequence was obtained from an open reading 

frame of the cDNA. Each sequence is placed with the nucleotide sequence above the 

amino acid sequence. A putative non-AUG start codon is indicated by boldface letters. 

The asterisk indicates a stop codon. The arrowhead indicates a putative signal peptide 

cleavage site. A pair of basic amino acid residues is boxed. Human NPW23 and NPW30 

are underlined with a solid line and with a broken line, respectively. 
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Fig. 2-8. Expression of NPW peptide produced from human NPW precursor protein 

cDNA with non-AUG start codon. A, purification of an agonist peptide for human GPR8 

from the supernatant of COS-7 cells that were transfected with a human NPW precursor 

protein expression vector. Shown is the HPLC elution profile of the final purification step 

using the SymmetryShield RP18 column. B, detection of an inhibitory effect of the HPLC 

fractions on forskolin-induced cAMP accumulation in CHO-GPR8 cells. The eluate was 

manually collected, and the activity of each fraction was measured by the assay of cAMP 

accumulation inhibition using CHO-GPR8 cells in the presence of forskolin (1M). The 

activity was recovered as a single peak with an elution time of 105.5 min. 

  

A 

B 



 

78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-9. Rat NPW precursor protein cDNA and mature peptide sequences. A cDNA 

clone encoding rat NPW precursor protein was isolated from a cDNA library of the rat 

brain. A deduced amino acid sequence of rat NPW precursor protein was obtained from 

the longest open reading frame of the cDNA. Each sequence is placed with the nucleotide 

sequence above the amino acid sequence. One Met codon as potential translation start site 

is indicated by boldface letters. The asterisk indicates a stop codon. The arrowhead 

indicates a putative signal peptide cleavage site. A pair of basic amino acid residues is 

boxed. Rat NPW23 and NPW30 are underlined with a solid line and with a broken line, 

respectively. 
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Fig. 2-10. Mouse NPW precursor protein cDNA and mature peptide sequences. A 

cDNA clone encoding mouse NPW precursor protein was isolated from a cDNA library 

of the mouse brain. An amino acid sequence was obtained from an open reading frame of 

the cDNA. Each sequence is placed with the nucleotide sequence above the amino acid 

sequence. A putative non-AUG start codon is indicated by boldface letters. The asterisk 

indicates a stop codon. The arrowhead indicates a putative signal peptide cleavage site. 

A pair of basic amino acid residues is boxed. Mouse NPW23 and NPW30 are underlined 

with a solid line and with a broken line, respectively. 
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NPW23

Rat W Y K H V A S P R Y H T V G R A S G L L M G L

Mouse W Y K H V A S P R Y H T V G R A S G L L M G L

Human W Y K H V A S P R Y H T V G R A A G L L M G L

Pig W Y K H T A S P R Y H T V G R A A G L L M G L

NPW30

Rat W Y K H V A S P R Y H T V G R A S G L L M G L R R S P Y L W

Mouse W Y K H V A S P R Y H T V G R A S G L L M G L R R S P Y Q W

Human W Y K H V A S P R Y H T V G R A A G L L M G L R R S P Y L W

Pig W Y K H T A S P R Y H T V G R A A G L L M G L R R S P Y M W  

 

Fig. 2-11. Comparison of mature NPW23 and NPW30 amino acid sequences among 

humans, pigs, rats, and mice. Human, porcine, rat, and mouse NPW23 and NPW30 

sequences were aligned with each other. The amino acid residues identical among the four 

species are shaded in black. 
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Fig. 2-12. Comparison of NPW precursor proteins among humans, pigs, rats, and 

mice. Deduced NPW precursor proteins were aligned with each other using CLUSTAL 

W multiple sequence alignment. Human and mouse NPW precursor proteins were 

presumed to undergo translation from non-AUG start codons, while porcine and rat NPW 

precursor proteins were predicted to be translated from AUG start codons. Among them, 

the asterisk indicates an identical amino acid in the precursor proteins, and the amino acid 

residues are written in red or blue. A putative signal peptide sequence with hydrophobic 

amino acid cluster preceding the mature NPW peptides is boxed in blue. The NPW30 

sequence is boxed in black. Two pairs of basic amino acid residues, Arg-Arg, are written 

in blue.  
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Fig. 2-13. Functional and binding characterization of NPW. A and B, dose-dependent 

inhibition of cAMP accumulation by NPW in CHO-GPR7 and CHO-GPR8 cells, 

respectively. Various concentrations of NPW23 or NPW30 were added to CHO-GPR7 

and CHO-GPR8 cells, and cAMP accumulation inhibition assay was conducted in the 

presence of forskolin (1 M). ■, human NPW23; ▲, human NPW30. C and D, effect of 

pertussis toxin on the NPW activation of CHO-GPR7 and CHO-GPR8 cells, respectively. 

CHO-GPR7 or CHO-GPR8 cells were treated with or without pertussis toxin (PTX; 100 

ng/ml) for 24 h. After washing these cells, the inhibitory effect of human NPW23 (1 nM) 

on cAMP accumulation induced by forskolin (1 M) was analyzed. E and F, saturation 

binding between 125I-labeled human NPW23 and CHO-GPR7 cells and between 125I-

labeled human NPW23 and CHO-GPR8 cells, respectively. ●, total binding; ○, specific 

binding; ■, nonspecific binding. Insets, Scatchard analysis of the radioligand binding. 

Results shown are the means of triplicate experiments. 
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Fig. 2-14. Two different ELISAs for quantification of NPW23 and NPW30. A and B, 

standard curve of each NPW peptide in NPW23 ELISA and NPW30 ELISA, respectively. 

Various concentrations of synthetic NPW23 and NPW30 of human, porcine, rat, and 

mouse sequences were subjected to the ELISAs, and the NPW23 and NPW30 peptides 

captured on the ELISA assay plates were detected. ●, human NPW23; ▲, porcine 

NPW23; ■, rat NPW23; ⧫, mouse NPW23; ○, human NPW30; △, porcine NPW30; □, rat 

NPW30; ◊, mouse NPW30.  
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Fig. 2-15. In vivo effects of NPW in rats. A, increase of food intake by 

intracerebroventricular administration of human NPW23 in rats. After injection at 15:00, 

food intake was measured. Cumulative food consumption was plotted over a 2-h period. 

●, 10 nmol of NPW23; ▲, vehicle. Results shown are the means  S.E. (n = 10). 

Statistical comparisons were performed using Student’s t test. *, p  0.05; **, p  0.01. 

B, stimulation of prolactin release by intracerebroventricular administration of human 

NPW23 in rats. After injection at 13:00, blood samples were collected, and the 

concentration of prolactin in the plasma samples was determined. ●, 3 nmol of NPW23; 

▲, vehicle. Results shown are the means  S.E. (n = 9 or 10). Statistical comparisons 

were performed using Student’s t test. *, p  0.05. 
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General Conclusion 

 

The results obtained in this study were acquired by focusing on the analysis of the 

molecular nature of two pairs of deorphanized GPCRs and their endogenous ligands. The 

discovery of SLC-1 as a functional MCH receptor enables the understanding of a variety 

of MCH functions in the CNS as collective responses of the neural networks containing 

SLC-1 positive neurons. In addition, the pairing of SLC-1 with MCH is expected to 

accelerate research and development of the MCH receptor antagonists with better 

pharmacological profile for the treatment of obesity, anxiety, or sleep disorders. The 

discovery of NPW, a novel brain-gut peptide as the endogenous ligand for GPR7 and 

GPR8 paved the way for the field of NPW biology. The selective localization of NPW 

peptide and preferential gene expression of its receptors, GPR7 and GPR8, in the brain 

triggered studies on biological roles of NPW in the CNS. It is expected that the 

significance of the pathophysiological roles of NPW will be elucidated by taking 

advantage of the initial knowledge and basic technologies on NPW, which were provided 

by the efforts in this study.  
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