
SECURITY AND COMMUNICATION NETWORKS

Security Comm. Networks 0000; 00:1–10

DOI: 10.1002/sec

Special Issue

Character-based Symmetric Searchable Encryption

and Its Implementation and Experiment on Mobile Devices
Takanori Suga1,3, Takashi Nishide2∗, and Kouichi Sakurai1

1Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
2University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
3Currently working at NEC Corporation, Fuchu, Tokyo, Japan

ABSTRACT

Searchable encryption allows us to perform a keyword search over encrypted data. However, we cannot efficiently perform

some complex search (e.g., a wildcard search) with traditional searchable encryption schemes since they can deal with

only equality matches. Our symmetric searchable encryption can deal with partial matches. This allows us to efficiently

perform a wildcard search, a partial match search, and so on. We also examine the feasibility of our scheme by experiments

on a smartphone and tablet, and confirm our scheme can be used in these environments. Availability on portable devices

will offer high convenience. Copyrightc⃝ 0000 John Wiley & Sons, Ltd.

KEYWORDS

Bloom filter, partial-matching search, searchable encryption, symmetric encryption, wildcard search

∗Correspondence

University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan

Received . . .

1. INTRODUCTION

1.1. Background

The advance in computer and telecommunication technol-

ogy made cloud computing widespread. In cloud comput-

ing, we let the cloud providers store and process our data.

To protect our sensitive data even from cloud providers,

we can encrypt our sensitive data before sending them to

the server. However, encryption generally prevents us from

performing efficient searches.

In recent years, searchable encryption was proposed.

We can perform a keyword search over encrypted data

with searchable encryption. Like traditional encryption

schemes, there exist the symmetric ones and asymmetric

ones. We focus on symmetric searchable encryption in this

work.

We show an example of the process flow of symmetric

searchable encryption. In this example, Alice (called data

owner) outsources her data to the server, Bob (called data

searcher) performs a keyword search, and Alice and Bob

share a symmetric secret key in advance.

1. Alice specifies some keywords that represent the

contents of the document.

2. Alice encrypts the document.

3. Alice encrypts the keywords specified in Step 1. We

call these encrypted keywords “index” in this paper.

4. Alice sends the encrypted document and the index

to the server.

5. The server stores the index and the encrypted

document in the database.

6. Bob specifies a keyword to perform a keyword

search.

Copyright c⃝ 0000 John Wiley & Sons, Ltd. 1

Prepared using secauth.cls [Version: 2010/06/28 v2.00]

Character-based Searchable Encryption and Implementation T. Suga, T. Nishide, and K. Sakurai

7. Bob encrypts the keyword specified in Step 6. We

call this encrypted keyword “trapdoor” in this paper.

8. Bob sends the trapdoor to the server.

9. The server searches the database for documents

associated with the keyword by using the trapdoor.

10. The server sends the search results (documents) to

Bob.

1.2. Related Work

The first practical searchable encryption scheme was

proposed by Song et al. in 2000 [1]. After their proposal,

many symmetric schemes were proposed [2, 3, 4, 5, 6,

7]. The first asymmetric searchable encryption scheme

was proposed by Boneh et al. [8]. After their proposal,

many asymmetric schemes were proposed [9, 10]. Their

schemes only support an equality search. To enhance the

supported types of searches with existing schemes, we

must enumerate all possible keywords when we compute

a trapdoor. Suppose that as a keyword we specify the

creation date of the document like “2013/01/01” when

we compute an index, and we want to search documents

created in 2013. Then we must enumerate all dates in 2013

like “2013/01/01”, “2013/01/02”,. . ., “2013/12/31” if we

can use only eqaulity search.

In recent years, some schemes that aim to enhance

the supported types of searches were proposed. Li et al.

proposed the first symmetric searchable encryption scheme

that supports a fuzzy keyword search [11]. With a fuzzy

keyword search, we can find some similar keywords. For

example, we can find keyword “colour” with keyword

“color”. Sedghi et al. proposed the first asymmetric

searchable encryption scheme that supports a wildcard

search [12].

Goh proposed a symmetric searchable encryption

with Bloom filter [13] and Watanabe et al. proposed a

symmetric searchable encryption with Bloom filter for

relational database [14]. Goh’s scheme is more efficient

than our scheme when we have many keywords in a

document and we perform an equality search. However,

our scheme is more efficient than his scheme when we

perform some complex search like a wildcard search.

1.3. Our Contribution

In this work, we focus on how to create secure indexes for

encrypted documents as in most of the existing schemes.

Our scheme [15] has the following advantages:

• Our work is the first symmetric searchable

encryption that does not require us to enumerate

all possible keywords to perform a wildcard search.

That is, as we mentioned above, we need to

enumerate all possible similar keywords when

we want to perform a wildcard search with all

previous schemes except Sedghi et al.’s asymmetric

searchable encryption [12].

• Our work can decrease the index size of wildcard-

based fuzzy keyword search proposed by Li et

al. [11] from O(ℓd) to O(1) where a keyword

length ℓ and an edit distanced. In their scheme,

both the data owner and the data searcher must

enumerate possible similar keywords represented

by a wildcard keyword. However, in our scheme,

only the data searcher needs to enumerate possible

similar keywords represented by a wildcard

keyword.

• With our scheme, we can achieve a partial-matching

keyword search efficiently.

In general, symmetric searchable encryption schemes

can be performed more efficiently than asymmetric ones.

Furthermore, we show the efficiency of our scheme by

performing it on a tablet and even on a smartphone.

2. PRELIMINARIES

2.1. Notations

We use the following notations in this paper.

Symmetric difference. Given two setsA andB, A△B

denotes a symmetric differenceA△B = (A−
B) ∪ (B −A).

Random number. Given a setS, x
R←− S means thatx is

chosen at random from the setS.

The number of elements. Given a setS, |S| denotes the

number of elements inS.

String concatenation. Given two stringsa and b, a ∥ b
denotes a concatenation of the stringsa andb.

2 Security Comm. Networks 0000; 00:1–10 c⃝ 0000 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls

T. Suga, T. Nishide, and K. Sakurai Character-based Searchable Encryption and Implementation

Character. Given a string (or array)w and a positionn,

w[n] denotesn-th character in the stringw.

Logical operations. Given two logical valuesa and b,

a ∧ b denotes a logical AND betweena andb, and

a ∨ b denotes a logical OR betweena andb.

2.2. Pseudo-Random Functions

A pseudo-random function is a function computationally

indistinguishable from a random function. To be more

precise, given a bit lengthn of an input, a bit lengthλ

of a secret key and a bit lengthm of an output, we say

f : {0, 1}n × {0, 1}λ → {0, 1}m is a (t, ϵ, q)-pseudo-

random function if it satisfies the following properties:

• Given an inputx ∈ {0, 1}n and a secret keysk ∈
{0, 1}λ, f(x, sk) can be computed efficiently.

• No t time algorithmB with at most q adaptive

oracle queries can distinguish betweenf(·, sk) and

a random functionF : {0, 1}n → {0, 1}m with an

advantage more thanϵ.

That is, |Pr[Bf(·,sk) = 0|sk R←− {0, 1}λ]−
Pr[Bg = 0|g R←− {F : {0, 1}n → {0, 1}m}]| < ϵ.

In this paper, we use a keyed hash function like HMAC-

SHA256 [16, 17] as a pseudo-random function.

2.3. Symmetric Key Encryption

We use a symmetric key encryption scheme, denoted

as Π =
(
Setup(1λ),Enc(sk, ·),Dec(sk, ·)

)
. Given a

security parameterλ, Setup(1λ) outputs a secret key.

Given a secret keysk and an input, Enc(sk, ·) encrypts

the input and Dec(sk, ·) decrypts the input with the secret

keysk.

2.4. Bloom Filter

Bloom filter is a space-efficient probabilistic data structure

[18]. We can put some elements into this data structure and

can test if the Bloom filter contains some elements. Bloom

filter has a false-positive. That is, for example, the Bloom

filter that has two elements “foo” and “bar” might say it

has “baz”. However, Bloom filter does not have a false-

negative. That is, the Bloom filter that has two elements

“foo” and “bar” never says it does not have “foo”.

A Bloom filter is anm-bit array initialized with0’s.

To add an elementx, we computek hash functions

h1(x), ..., hk(x), and we makeh1(x)-th bit, ..., and

hk(x)-th bit be 1. To test if the Bloom filter has an element

x, we also computek hash functionsh1(x), ..., hk(x),

and check if all bits in the array with the positions

h1(x), ..., hk(x) are1’s. If all bits are1’s, the Bloom filter

probably has the element (though this can be an error).

Otherwise, the Bloom filter never has the element.

For each hash functionhi, we will use keyed hash

function with a secret key.

2.5. Security Model

The security model we use for a symmetric searchable

encryption is based on IND-CKA∗ [13]. We define a

security model named IND-CPSKA† because our scheme

generates indexes from one keyword while Z-IDX [13]

generates indexes from a collection of keywords.

This security model is defined by the following game

between a challengerC and an adversaryA as follows.

Setup.C picks a setS of q pairs of a position and a

character, and sendsS toA. A picks some subsets

S′, that is, keywords picked fromS, and sendsS′ to

C. After C receivesS′, C executes KeyGen to obtain

a secret keysk and executes BuildIndex to obtain

indexes for all subsets inS′. Finally, C sends all

indexes toA. We note that the information about

which keyword (a subset) corresponds to which

index is not given toA.

Query. A is allowed to query trapdoors for some

keywords (or search expressions) toC. For each

trapdoorTx for a keyword (or a search expression)

x, A can execute SearchIndex to check if an index

I matches the trapdoorTx. Here we can assume

a search expressionx does not include∨ (i.e., a

logical OR) becauseA can obtain trapdoors for

x1 ∨ x2 by obtaining a trapdoor forx1 and a

trapdoorx2 separately.

Challenge.A picks nonempty two subsetsV0 and V1

from S′ such that|V0 − V1| ̸= 0, |V1 − V0| ̸= 0

and |V0| = |V1|. Also V0, V1 must satisfy that no

trapdoor for a setK of pairs of a position and a

character was already queried byA where |K ∩
(V0△V1)| > 0 ‡. Also V0, V1 must satisfy that

∗IND-CKA denotes Indistinguishability against Chosen Keyword Attack.
†IND-CPSKA denotes Indistinguishability against Chosen Position-Specific
Keyword Attack.
‡This is the generalized restriction compared with IND-CKA [13].

Security Comm. Networks 0000; 00:1–10 c⃝ 0000 John Wiley & Sons, Ltd. 3
DOI: 10.1002/sec

Prepared using secauth.cls

Character-based Searchable Encryption and Implementation T. Suga, T. Nishide, and K. Sakurai

no index for a setK is given toA where |K ∩
(V0△V1)| > 0 §.

A sendsV0 and V1 to C. C picks b ∈ {0, 1} at

random and sends an index forVb
¶ to A. After

A receives the index forVb, A cannot query

the trapdoors that do not follow the restriction

mentioned above.

Response.A outputsb′ to guessb. The advantage ofA
is defined asAdvA = |Pr[b = b′]− 1/2|. This is

an advantage over the probability thatA guesses by

tossing a coin.

We say that an adversaryA (t, ϵ, q)-breaks the

symmetric searchable encryption scheme if the advantage

of A AdvA is at leastϵ after A takes at mostt time

and queries trapdoors to the challengerC at mostq times.

The symmetric searchable encryption schemeI is (t, ϵ, q)-

IND-CPSKA secure if no adversary can(t, ϵ, q)-breakI.

3. PROPOSED SCHEME

In our scheme, we use a Bloom filter per keyword to

generate an index or a trapdoor. We also use pseudo-

random functions to add elements to Bloom filters. The

documents can be encrypted with any encryption scheme

(out of scope of this paper).

We assume that there is an upper boundu of the

keyword length. We note that each keyword is terminated

with null, which is an end of the keyword string.

null allows us to specify an explicit keyword length in

performing a search.

We express a keyword search as a DNF logical

formula p = (p(1,1) ∧ ... ∧ p(1,m1)) ∨ ... ∨ (p(n,1) ∧
... ∧ p(n,mn)). For example, we express an equality search

for (“dog” OR “cat”) as p = ((w[1] = ‘d’) ∧ (w[2] =

‘o’) ∧ (w[3] = ‘g’) ∧ (w[4] = null)) ∨ ((w[1] =

‘c’) ∧ (w[2] = ‘a’) ∧ (w[3] = ‘t’) ∧ (w[4] = null)).

For this search expression (“dog” OR “cat”), we will

generate two Bloom filters and as the search results we

§We need this restriction because an index and a trapdoor have the similar data
structure in our scheme.
¶The index forVb will be similar to one of the indexes given in the Setup phase,
but we note that the information about which keyword (a subset) corresponds to
which index is not given toA as mentioned before.

can obtain encrypted documents associated with keywords

“dog” or “cat”.

We show four algorithms of our scheme.

KeyGen(1λ) This algorithm is a key generator. Given

a security parameterλ, this outputs a secret key

sk
R←− {0, 1}λ.

BuildIndex(sk,FID, w) This algorithm is used to

generate an index. Given a secret keysk, a file

identifierFID and a keywordw, generate an index

as follows:

1. Initialize a Bloom filterII, that is, initialize a

bit array with0’s.

2. For each i ∈ {1, |w|}, add an element

i ∥ w[i] (i.e., a pair of a position and

a character∥) to the Bloom filter II by

using keyed hash functions withsk.

That is, if the keyword w is “dog”

for example, w is viewed as a search

expression p = ((w[1] = ‘d’) ∧ (w[2] =

‘o’) ∧ (w[3] = ‘g’) ∧ (w[4] = null)).

3. Given an upper boundu of keyword lengths,

add(u− |w|) random elements to the Bloom

filter II to conceal the keyword length. Given

a bit lengthm of Bloom filter and the number

of pseudo-random functionsk of the Bloom

filter, we can set(u− |w|) · k random bits

to 1 in the Bloom filterII instead of adding

(u− |w|) random elements.

4. Encrypt a concatenated stringFID ∥ w as

III = Encsk(FID ∥ w).

5. Output the indexI = (FID, II, III).

Trapdoor(sk, p) This algorithm is used to gener-

ate a trapdoor. Given a secret keysk and

a search expressionp = (p(1,1) ∧ ... ∧ p(1,m1)) ∨
... ∨ (p(n,1) ∧ ... ∧ p(n,mn)), this outputs a trap-

door T = {T1, ..., Tn}. We computeTi for each

i ∈ [1, n] as follows:

1. Initialize a Bloom filterTi, that is, initialize a

bit array with0’s.

2. For each termp(i,j) (j ∈ [1,mi]), add a

concatenated stringx ∥ c (i.e., a pair of a

∥We assume that anull is a special character.

4 Security Comm. Networks 0000; 00:1–10 c⃝ 0000 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls

T. Suga, T. Nishide, and K. Sakurai Character-based Searchable Encryption and Implementation

position and a character∗∗) to the Bloom filter

Ti wherep(i,j) is a termw[x] = c.

SearchIndex(T, Idx) This algorithm is used by the server

to search for encrypted documents with matching

indexes. Given a trapdoorT = {T1, ..., Tn} and a

collection of indexesIdx in the database, the server

searches for matching indexes as follows. Now let

Ti ∈ T andI ∈ Idx. For each pair of(Ti, I), we

do the following:

1. Let I = (FID, II, III).
2. Let J be the set of positions such that if

Ti[j] = 1, j ∈ J .

3. For eachj ∈ J , check if II[j] = 1. If all

the bits corresponding toJ are1’s in II ††,

the server returns, to the data searcher, the

encrypted document corresponding toFID

andIII.

We note that the data searcher can useIII to

know the exact keywordw even if a false-positive

happens because of the Bloom filter’s property.

Search Examples

If we do the wildcard search such as “2013/??/??”, we

can use a search expressionp = ((w[1] = ‘2’) ∧ (w[2] =

‘0’) ∧ (w[3] = ‘1’) ∧ (w[4] = ‘3’) ∧ (w[5] =

‘/’) ∧ (w[8] = ‘/’) ∧ (w[11] = null)) and generate a

trapdoor corresponding to this search expression.

If we want to find a keyword that has a prefix “pre”, we

can use a search expressionp = ((w[1] = ‘p’) ∧ (w[2] =

‘r’) ∧ (w[3] = ‘e’)) without specifying anull.

If we use a DNF search expression such as (“dog” OR

“cat”), we generate two Bloom filters corresponding to

“dog” and “cat” respectively as shown in the description

of Trapdoor(sk, p), and send the two Bloom filters to

the server. The server executes SearchIndex() by using

the two Bloom filters respectively to find the documents

associated with “dog” or “cat” as shown in the description

of SearchIndex(T, Idx).

For example, if Document1 is associated with keyword

“dog” and Document2 is associated with “cat”, we will

∗∗We assume that anull is a special character.
†† i.e., if the set of1’s included in the Bloom filterTi is a subset of the set of1’s
included in the Bloom filterII, we have the keyword match.

1st bit is 0 1st bit is 1

2nd bit is 1

3rd bit is 0

This leaf is 010

Figure 1. Example of a binary tree of indexes

obtain both Document1 and Document2 as the search

results of the search expression (“dog” OR “cat”).

Index Management on Server Side for Efficient

Search

The indexes created by a data owner are sent to the server

and the server uses the indexes to search for the encrypted

documents with trapdoors. The index management on the

server side for executing SearchIndex of our scheme can

be implemented with a binary tree search method as well

as a linear search method as follows.

Linear search. The first approach is a naive but simple

approach, that is, a linear search. Given a Bloom

filter Ti in the trapdoorT , the server checks all

the indexes exhaustively and the server chooses the

matching indexes.

Binary tree search. The second approach is an optimized

search, that is, a binary tree search. In this search,

we construct a binary tree such that each edge

represents a bit (e.g., the left node corresponds

to 0 and the right node corresponds to1) from

the Bloom filterII in the indexI. We show an

example of a binary tree for four Bloom filters

{010, 011, 101, 110} in Figure 1. Each leaf node

hasFID andIII.

When we search this binary tree with a trapdoor

101, we can ignore left nodes of the root node

because the first bit must be1 but their first bits are

0’s, thus avoiding the exhaustive search. We need to

follow both left and right child nodes when a bit of

a trapdoor is0 (e.g., second bit of101).

Security Comm. Networks 0000; 00:1–10 c⃝ 0000 John Wiley & Sons, Ltd. 5
DOI: 10.1002/sec

Prepared using secauth.cls

Character-based Searchable Encryption and Implementation T. Suga, T. Nishide, and K. Sakurai

4. SECURITY ANALYSIS

4.1. Security Proof

We give the security proof of our scheme based on the

security model in Section 2.5.

Theorem 1

Let k be the number of pseudo-random functions for

a Bloom filter. Our scheme is(t, ϵ, q/k)-IND-CPSKA

secure if a pseudo-random functionf for the Bloom filter

is a(t, ϵ, q)-pseudo-random function.

Proof

We prove this theorem by basically following the proof for

Z-IDX [13] with necessary adaptations.

We prove this theorem with its contrapositive, that is, we

assume our scheme is not(t, ϵ, q/k)-IND-CPSKA secure.

Then we show that we can construct the algorithmB that

can distinguish between a pseudo-random function and a

random function by usingA as a subroutine.

Given an inputx, B can use an oracleO which outputs

f(x, sk) or g(x) to evaluatef or g whenever necessary.

Setup.B picks a setS of q/k pairs of a position and

a character from{0, 1}n at random, and sends

the set S to A. A returns a collectionS′ of

polynomially many subsets. For each subsetD‡‡ ∈
S′, B executes BuildIndex withD and a file

identifier FIDD picked at random.B sends all

indexes forS′ toA.

Query.B executes Trapdoor for a keyword (or a search

expression)x if A queries a trapdoor and outputs

a trapdoorTx for the keyword (or the search

expression)x. Here we can assume a search

expressionx does not include∨ (i.e., a logical

OR) becauseA can obtain trapdoors forx1 ∨ x2

by obtaining a trapdoor forx1 and a trapdoorx2

separately.

Challenge.A picks nonempty subsetsV0 andV1 fromS′

such that|V0 − V1| ̸= 0, |V1 − V0| ̸= 0 and|V0| =
|V1|. Also V0, V1 must satisfy that no trapdoor for

a setK of pairs of a position and a character was

already queried byA where|K ∩ (V0△V1)| > 0.

‡‡Usually this corresponds to one keyword.

AlsoV0, V1 must satisfy that no index for a setK is

given toA where|K ∩ (V0△V1)| > 0.

A sendsV0 andV1 to B. B picks b ∈ {0, 1} and a

file identifierFIDb at random, executes BuildIndex,

and sends the index toA. AfterA receives the index

for Vb, A cannot query the trapdoors that do not

follow the restriction mentioned above.

Response.A outputsb′ to guessb. B outputs 0 ifb =

b′. This meansf is a pseudo-random function.

Otherwise,B outputs 1. This meansf is a random

function.

B takes at mostt time becauseA takes at mostt time.B
sends at mostq queries toO because there exist onlyq/k

pairs of a position and a characters inS, A sends at most

q/k queries, andB sendsk queries perA’s single query.

The following lemmas show thatB has an advantage

greater thanϵ to determine if the oracleO corresponds to

a pseudo-random functionf or a random functiong.

However, this contradicts the definition of pseudo-

random function.

Therefore, the theorem is proven.

Lemma 1

|Pr[Bf(·,sk) = 0|sk R←− {0, 1}λ]− 1
2
| is non-negligible if

f is a pseudo-random function.

Proof

B simulatesC in an IND-CPSKA game perfectly and we

assume thatA can break our scheme (i.e., our scheme is

not (t, ϵ, q/k)-IND-CPSKA secure). Therefore, the proof

of this lemma is immediate.

Lemma 2

Pr[Bg = 0|g R←− {F : {0, 1}n → {0, 1}m}] = 1
2

if g is a

random function.

Proof

All we have to consider are Challenge subsetsV0 andV1

since other subsets inS′ do not leak any information about

the Challenge subsets.

Without loss of generality, assume thatV0△V1 has two

pairsx, y of a position and a character such thatx ∈ V0

andy ∈ V1, andA guessesb with an advantageσ. That is,

given an outputg(z), A distinguishesz = x from z = y.

If g is a random function chosen at random,σ must be0.

Therefore, we proved this lemma.

6 Security Comm. Networks 0000; 00:1–10 c⃝ 0000 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls

T. Suga, T. Nishide, and K. Sakurai Character-based Searchable Encryption and Implementation

4.2. Limitation

Our scheme has a limitation as the existing schemes.

Our scheme divides a trapdoor into clauses. For

example, when we perform a search with a search

expression (“dog” OR “cat”) by using a DNF formula,

the server obtains two trapdoors from the data searcher.

Though the sever cannot obtain the plaintexts of the

keywords “dog” and “cat” from the trapdoors, the server

can know the distinct search results for “dog” and “cat”

respectively.

Not only our scheme but also many of the existing

schemes have this limitation (e.g., Goh’s scheme [13], Li

et al.’s scheme [11]).

5. PERFORMANCE EVALUATION

Given a bit lengthm of a Bloom filter, an index consists of

FID, anm-bit Bloom filter (II) andIII (which depends

on the symmetric encryption scheme). Assume that the

search expression can be divided by disjunctions intonℓ

terms. The size of the trapdoor isnℓm bits because the

trapdoor consists ofnℓ (m-bit) Bloom filters. Given the

total number of characters in all keywordsℓm and the

number of pseudo-random functions for the Bloom filerk,

the execution time of BuildIndex isO(ℓm) since we must

computeℓm · k (k is constant) pseudo-random functions.

5.1. Implementation as a Native Application

One approach to implement a searchable encryption

scheme is to implement it as a native application. We

implement our scheme with an equality search on an

Intel Core i7 2600K CPU. We used a 256-bit Bloom

filter and symmetric key encryption AES [19] and keyed

hash function HMAC-SHA256 [16, 17] as pseudo-random

functions. Given a secret keysk and an inputx, let HMAC-

SHA256 bef(sk, x). We can use HMAC-SHA256 as

distinct pseudo-random functionsfi(sk, x) = f(sk, i ∥
x).

We show the result of this experiment in Figures 2 and

3.

Usually the keyword length will be relatively small

(we assume it will be about10 bytes here for example).

The run times of BuildIndex and Trapdoor are less than

1 millisecond for10-byte keywords. Even if we have a

100 102 104

100

102

Keyword length [bytes]

T
im

e
[m

se
c]

Figure 2. Run time of BuildIndex as a native application.

100 102 104

100

102

Keyword length [bytes]

T
im

e
[m

se
c]

Figure 3. Run time of Trapdoor as a native application.

1000-byte keyword, we need only about10 milliseconds.

Therefore, we believe our scheme is practical in this

environment.

5.2. Implementation as a Web Application.

Another approach is to implement it as a web application.

We also implemented BuildIndex and Trapdoor with

JavaScript, and had an experiment in a browser Google

Chrome.

We show the result of this experiment in Figures 4 and

5 on the same environment as in Section 5.1.

In these figures, we see these run times are relatively

slower than the results for a native application. However,

when we have10-byte keyword, we need only about2

milliseconds.

We also show the result of this experiment on a tablet

(Google Nexus 7: 1.3 GHz NVIDIA Tegra 3 quad core

Security Comm. Networks 0000; 00:1–10 c⃝ 0000 John Wiley & Sons, Ltd. 7
DOI: 10.1002/sec

Prepared using secauth.cls

Character-based Searchable Encryption and Implementation T. Suga, T. Nishide, and K. Sakurai

100 101 102 103

100

101

102

Keyword length [bytes]

T
im

e
[m

se
c]

Figure 4. Run time of BuildIndex as a web application.

100 101 102 103

100

101

102

Keyword length [bytes]

T
im

e
[m

se
c]

Figure 5. Run time of Trapdoor as a web application.

CPU) in Figures 6 and 7, and on a smartphone (SHARP

AQUOS PHONE ZETA: 1.5 GHz Qualcomm Snapdragon

S4 MSM8960 dual core CPU) in Figures 8 and 9.

We see these run times are further slower than the results

for a web application with a PC. However, when we have

10-byte keyword, we need only about20 milliseconds with

a tablet and about30 milliseconds with a smartphone.

Therefore, we believe our scheme can be deployed on a

tablet and even a smartphone.

6. CONCLUSION

In this work, we presented a searchable symmetric

encryption scheme. Our scheme supports not only an

equality search but also other types of searches like a

wildcard search based on comparisons per character. We

100 101 102 103

101

102

103

T
im

e
[m

se
c]

Keyword length [bytes]

Figure 6. Run time of BuildIndex on a tablet.

100 101 102 103

101

102

103

T
im

e
[m

se
c]

Keyword length [bytes]

Figure 7. Run time of Trapdoor on a tablet.

100 101 102 103

101

102

103

T
im

e
[m

se
c]

Keyword length [bytes]

Figure 8. Run time of BuildIndex on a smartphone.

implemented our scheme as a native application and as

a web application. We confirmed our scheme can be

deployed not only as a native application but also as a web

8 Security Comm. Networks 0000; 00:1–10 c⃝ 0000 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls

T. Suga, T. Nishide, and K. Sakurai Character-based Searchable Encryption and Implementation

100 101 102 103

101

102

103

T
im

e
[m

se
c]

Keyword length [bytes]

Figure 9. Run time of Trapdoor on a smartphone.

application. Furthermore, we confirmed our scheme can be

used even on a tablet and a smartphone.

In our experiment as a web application, we assumed the

server does not alter the script file to avoid the encryption.

However, the script file might be altered by the malicious

cloud provider or an intruder. Therefore, we need some

mechanisms to make sure that the script file is not altered

and our data will be encrypted. To implement our scheme

as a browser add-on might be a countermeasure against

this attack. Designing and implementing this mechanism

are our future work.

ACKNOWLEDGEMENTS

This work is partially supported by Grant-in-Aid for Young

Scientists (B) (23700021), Japan Society for the Promotion

of Science (JSPS). This work is also partially supported by

Kurata Grant from The Kurata Memorial Hitachi Science

and Technology Foundation.

REFERENCES

1. Song DX, Wagner D, Perrig A. Practical techniques

for searches on encrypted data.IEEE Symposium

on Security and Privacy 2000, 2000; 44–55, doi:

10.1109/SECPRI.2000.848445.

2. Bao F, Deng RH, Ding X, Yang Y. Private query

on encrypted data in multi-user settings.Proceed-

ings of the 4th international conference on Infor-

mation security practice and experience, ISPEC’08,

Springer-Verlag: Berlin, Heidelberg, 2008; 71–85,

doi:10.1007/978-3-540-79104-16.

3. Chang YC, Mitzenmacher M. Privacy preserving

keyword searches on remote encrypted data.Applied

Cryptography and Network Security, Lecture Notes

in Computer Science, vol. 3531, Ioannidis J,

Keromytis A, Yung M (eds.). Springer-Verlag: Berlin,

Heidelberg, 2005; 391–421.

4. Curtmola R, Garay J, Kamara S, Ostrovsky R.

Searchable symmetric encryption: improved defini-

tions and efficient constructions.Proceedings of the

13th ACM conference on Computer and communica-

tions security, CCS ’06, ACM: New York, NY, USA,

2006; 79–88, doi:10.1145/1180405.1180417.

5. Waters B, Balfanz D, Durfee G, Smetters DK.

Building an encrypted and searchable audit log.In

The 11th Annual Network and Distributed System

Security Symposium, 2004.

6. Kamara S, Papamanthou C, Roeder T. Dynamic

searchable symmetric encryption.Proceedings of the

2012 ACM conference on Computer and communica-

tions security, CCS ’12, ACM: New York, NY, USA,

2012; 965–976, doi:10.1145/2382196.2382298.

7. Kurosawa K, Ohtaki Y. UC-secure searchable

symmetric encryption.Financial Cryptography and

Data Security, Lecture Notes in Computer Science,

vol. 7397. Springer: Berlin, Heidelberg, 2012; 285–

298, doi:10.1007/978-3-642-32946-321.

8. Boneh D, Di Crescenzo G, Ostrovsky R, Persiano

G. Public key encryption with keyword search.

Advances in Cryptology - EUROCRYPT 2004,

Lecture Notes in Computer Science, vol. 3027,

Cachin C, Camenisch J (eds.). Springer: Berlin,

Heidelberg, 2004; 506–522, doi:10.1007/978-3-540-

24676-330.

9. Abdalla M, Bellare M, Catalano D, Kiltz E,

Kohno T, Lange T, Malone-Lee J, Neven G,

Paillier P, Shi H. Searchable encryption revisited:

Consistency properties, relation to anonymous IBE,

and extensions.Journal of Cryptology2008;21:350–

391, doi:10.1007/1153521813.

Security Comm. Networks 0000; 00:1–10 c⃝ 0000 John Wiley & Sons, Ltd. 9
DOI: 10.1002/sec

Prepared using secauth.cls

Character-based Searchable Encryption and Implementation T. Suga, T. Nishide, and K. Sakurai

10. Boneh D, Waters B. Conjunctive, subset, and range

queries on encrypted data.Theory of Cryptography,

Lecture Notes in Computer Science, vol. 4392,

Vadhan S (ed.). Springer Berlin / Heidelberg, 2007;

535–554.

11. Li J, Wang Q, Wang C, Cao N, Ren K, Lou W.

Fuzzy keyword search over encrypted data in cloud

computing. INFOCOM, 2010 Proceedings IEEE,

2010; 1 –5, doi:10.1109/INFCOM.2010.5462196.

12. Sedghi S, van Liesdonk P, Nikova S, Hartel P, Jonker

W. Searching keywords with wildcards on encrypted

data. Security and Cryptography for Networks,

Lecture Notes in Computer Science, vol. 6280, Garay

J, De Prisco R (eds.). Springer: Berlin, Heidelberg,

2010; 138–153, doi:10.1007/978-3-642-15317-410.

13. Goh EJ. Secure indexes. Cryptology

ePrint Archive, Report 2003/216 2003.

http://eprint.iacr.org/2003/216/ .

14. Watanabe C, Arai Y. Privacy-preserving queries for

a DAS model using encrypted bloom filter.Database

Systems for Advanced Applications, Springer, 2009;

491–495, doi:10.1007/978-3-642-00887-043.

15. Suga T, Nishide T, Sakurai K. Secure keyword search

using bloom filter with specified character positions.

Provable Security, Lecture Notes in Computer

Science, vol. 7496, Takagi T, Wang G, Qin Z, Jiang

S, Yu Y (eds.). Springer: Berlin, Heidelberg, 2012;

235–252, doi:10.1007/978-3-642-33272-215.

16. Krawczyk H, Bellare M, Canetti R. HMAC: Keyed-

Hashing for Message Authentication. RFC 2104

(Informational) February 1997.

17. NIST. Announcing the secure hash standard. Federal

Information Processing Standards Publication 180-2

2002.

18. Bloom BH. Space/time trade-offs in hash coding with

allowable errors.Commun. ACMJuly 1970;13:422–

426, doi:362686.362692.

19. NIST. Announcing the advanced encryption stan-

dards (AES). Federal Information Processing Stan-

dards Publication 197 2001.

10 Security Comm. Networks 0000; 00:1–10 c⃝ 0000 John Wiley & Sons, Ltd.

DOI: 10.1002/sec

Prepared using secauth.cls

