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Summary 

Business-to-Business (B to B) manufacturer web sites have changed in role and 

responsibility since use of the Internet has become widespread even among engineers. 

Visitors to B to B web sites have a variety of goals and web site requirement has different 

characteristics from B to C like more over-session accesses. In my study, I have two 

following premises for values of web analytics for manufacturer companies. (1) 

Improve and optimize the site in user behavior and (2) Use in marketing activities like 

as knowing user requirements. Considering the B to B dedicated characteristics, I tried 

analyzing user typical behavior and created methodology for B to B web site web 

analytics. 

I have developed web analytic framework including path analysis, participation to 

conversion, user registration analysis for carrying out site optimization for usability and 

making use of data for marketing. I have confirmed that especially user registration is 

important. I tried to use page dwell time as additional Key Performance Indicator (KPI) 

metric as well as typical KPI metrics. In addition, confirmed that page dwell time is 

effective to measure user stickiness to web sites. I created analytic segmentation model 

and examined web access effectiveness using some segments like information, user 

environment, user behavior, and business. I have pointed a case from a manufacturer 

and investigated initial situation where the firm had non-negligible exit rate due to the 

demanding on-line user registration form. I have tracked the manufacturer's on-line 

registration forms and their resulting figures such as number of visitors and relevant 

conversion rates. Then, I have analyzed the context and content of the manufacturer's 

web registration forms using those web registration form related metrics as a key. From 

the context perspectives, I demonstrated that number of registration steps, number of 

input fields and number of required fields, could be a factor of the conversion differences. 

Furthermore, I found type of information being asked, embedded external links and 

registration form usability are critical factors from content viewpoint. Since there was 

little study for B to B web analytic for it, basic methodology is provided with actual data 

in this study. 
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1. Introduction  

 

Business-to-Business (B to B) manufacturer web sites have changed in role and 

responsibility since use of the Internet has become widespread even among engineers. 

The purpose of visiting a web site has changed from searching for technical documents 

into searching for solutions or products without any face-to-face contact. In B to B 

manufacturer industry, traditionally sales related activity or even marketing related 

activity was tied to face-to-face salespersons’ activity. In this period, the web site’s role 

was for searching and for providing technical documents or technical software resources.  

With the growth of e-commerce, users are getting hesitant to meet salespeople and at 

the same time the manufacturer wants to track user behavior on the web and utilize 

analytic data for marketing and improving sales revenue. The web site is becoming more 

important than before even from a business point of view even though it was used only 

for information delivery in the past. In web analytic area, we cannot find any clear B to 

B dedicated web analytics study. 

i. I have two following premises for values of web analytics for B to B 
manufacturer companies. Improve and optimize the site in user behavior  

ii. Use in marketing activities like as knowing user requirements. 

Compared to B to C web analytics, B to B web analytics have different characteristics. 

Considering the B to B dedicated characteristics, I tried analyzing user typical behavior 

and create methodology for B to B web site web analytics. 

With those premises, B to B web analytics framework and Key Performance Indicator 

(KPI) sets are discussed in this study. The framework includes required analytic items 

and steps. Also defined basic KPIs and try mixing an additional indicator (Page dwell 

time) with them for better analytic approach. In addition, I studied the effectiveness of 

user behavior by segmentation and to define what is suitable for segmentation in B to B 

manufacturer site. In fact, I tried some case studies and tried to confirm analytic 

methodology by segmentation. 
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In another aspect, web registration form on B to B site often works as a gate for 

privileged on-line and off-line services. In fact, we see that B to B form asks visitors’ 

information for granting access to: whitepaper and technical documentation downloads, 

customer support such as inquiry and on-line chat, as well as off-line tradeshows and 

business seminars. Those visitors who have registered in web form are sometimes 

considered more valuable to manufacturing firm than non-registered visitors because they 

had taken extra time to fill in registration form and subscribed to the firm’s service as well 

as the firm could initiate marketing action such as sending promotional e-mail based on 

the registered information. Then, noting the importance of the form, manufacturing firm 

has been trying to improve usability of the web registration form such that it could 

increase number of user registration through the form, in other words increase in the form 

conversion rates. Conversion means to transform “visitor” to “purpose achieved user. I 

try to analyze web registration data and conversion rates with different versions of web 

registration form. I try to illustrate and explain two types of manufacturer web registration 

forms created as a result of improvement. In addition, I analyze exit rate of the web 

registration forms in detail. 

I want to note business background more. The manufacturer business has traditionally 

focused on large companies as customers. However, the market of large customers has 

become saturated (especially in Japan), and support for small and medium-sized 

companies, including the long tail market, must be considered for further business 

expansion. 

However, the strategy of assigning sales staff and performing targeted marketing, which 

worked for large companies, cannot realistically be used for small and medium-sized 

companies due to support costs. Therefore, it is critical that in addition to using a website 

as a medium for providing information to small and medium-sized companies, it should 

also be used for marketing activities such as collecting user information and getting a 

handle on the needs of the market.  

In addition, web site is getting more self-service way than before. It used to be just user 

helping tools because most of business are with face-to-face type in b to B but currently 

more web self-service driven site is important especially for middle and small size 

customers. Furthermore, the volume of product information is increasing depending on 
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the increasing functionality of products. Moreover, due to increasing numbers of 

customized products, the number of webpages and database records is ever increasing. 

Therefore, access analytics need to be used to optimize user paths through a website and 

so on. Moreover, there is a need to use analytics data for business (especially marketing 

and sales activities). 

Statistical access data set for the global electronic industry company web site from April 

2010 to March 2015 is used in this study. We used analytical data consisting of about 

20,000 HTML pages, 7000 PDF files, and a 40,000 record product database (for 

displaying product specifications as parameters). All data in each figure or table without 

any notation is averaged 6-month data for the manufacturer Japanese site. 

 

2. B to B Web Analytics Issues 

 

2.1. Overview of Web Analytics 

Web analytics techniques come in the following types. 

i. Server log type 
ii. Packet capture type (Sniffing Packet type) 

iii. Web beacon type 

Server log type was seen in initial internet period because most of the web server 

application has analytic functions by nature. However when the web site has several 

distributed servers, it is hard to tack total access counts and user behaviors with several 

server locations. Packet capture type is good even for distributed server configuration. 

Most of the packet capture type solutions can sniffer network packets and track access 

logs. However recently most of the global web service providers or global company web 

sites use CDN (Content Delivery Network) which allows them to have cache of pages in 

many locations in many countries. Biggest CDN Company - Akamai Technologies have 

about 200 k-cached servers and in other words, the same page can be distributed to 200 

K cached servers. Therefore, this type of analytic solution cannot track user access easily 

when user accesses cached sites. Web beacon type is the most used type now for capturing 
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the user path while considering cache. We used this technology through all studies. To 

compare with other methodology the user behavior can be tracked more precisely 

especially distributed server configuration.  

The basic process of web beacon is the following. As condition of web beacon activation, 

targeted pages need to embed tracking JavaScript or need to have links to tacking 

JavaScript.    

i. Web client (In most cases it is a browser) requests web server to get page 
data. 

ii. Once web server gets request from web clients, it sends page data to web 
clients. 

iii. When page is displayed in web clients, embedded or linked JavaScript 
operate and send access related information to analytic servers. 

iv. Analytic server typically has data displaying or reporting function and then 
we can user access data. 

Figure 1 shows web beacon basic image. 

 

Figure 1. Web Beacon Basic Image 
Figure 2 shows Web analytic technology overview. This figure shows generation of 

technology and functions by each category. 
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Figure 2. Web Analytic Technology Overview 
 

2.2. Web Analytics Trends and Previous Studies on User Behavior 

I refer to past studies related to my study and I pick up some major studies in the 

following. All related studies are shown in Reference chapter. 

There were general studies about web analytics. Reference [89] showed study on web 

mining techniques. Reference [75] proved information visualization techniques were 

useful for web analytics. Reference [68] presented a framework for understanding web 

usage patterns from web log files. Another study about web analytic showed a way to 

utilize web analytic tool to conduct behavioral analysis in [121] and to analyze web user 

behavior by collecting all web access data for a particular user in [94]. Reference [30] 

showed investigation on web analytics from security perspectives.  

In another study, ethical consideration of collecting web user data as well as its guideline 

was discussed in [50]. Reference [77] demonstrated usefulness of web analytics using 
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business to consumer (B to C) case. There was also a research about ecommerce site in 

[123] showing that there is a way to analyze web access logs and classify users in 

precision.  

There was study about log file analysis for ecommerce site in [1]. Reference [39] 

identified factors affecting continuous usage of web site through web log data. In [122] 

web access was used to analyze sequential access pattern mining for web personalization. 

They showed Analysis of access logs (analytics) is important for building a website which 

is user-friendly for visitors and which can provide many marketing data to the site owner. 

The background and reasons for the importance of access log analysis in web marketing, 

and a case example of removing services that analysis found to be unpopular from a 

website is summarized in [28]. 

There were also web metrics study in B to B domain. In reference [113], they conducted 

a study about B to B web site from branding perspectives. Furthermore, they used 

clickstream data to analyze B to B web site performance and concluded that web analytics 

can be applied in a B to B domain in [118]. In addition, there are studies about design, 

usability of web sites. In one study, cognitive phenomenon was used to analyze user 

attention in [33].  

The study in [65] investigated web form evaluation approach by utilizing user 

questionnaire, electroencephalogram and eye tracking for more user-friendly web form. 

In a different study, process improvement approach was taken to improve design and 

usability of web form in [108].  

However, there was no study done for in-depth B to B web analytics methodology for 

such a critical web conversion metric and also web form registration and factors of web 

user registration. 

 

2.3. Characteristics to be Considered in B to B Web Analytics 

B to B can be defined as commerce transactions between businesses, such as between a 

manufacturer and another manufacturer, between a manufacturer and a wholesaler, or 

between a wholesaler and a retailer. It has a variety patterns for it. Compared to B to C 
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web analytics, B to B web analytics have the following three characteristics: 

i. In many cases, the buyer is not the same person as the web user. Therefore, it 
is important to analyze all the users from the same company or organization 
as a single unit. That can be stated as B to B to C web analytics, not simply B 
to B. 

ii. The goal of visitors to the web site is often not only to make a purchase. Main 
conversions can be downloading a file, making an e-mail subscription or 
inquiring online. Therefore, relationship between providers and customers are 
more important than in B to C. 

iii. It is rare for a user to complete their goal within a single session. In most 
cases, users require multiple sessions spread out over a long period to 
complete their goal. 

iv. In B to B more logical process and value-oriented decision can be used than 
in B to C situation in which there could be more emotional. 

Considering the above characteristic, I study on web analytics just for B to B industry. 

 

2.4. Chapter Summary 

This chapter firstly summarizes web analytic technology with three generation as server 

log type, packet capture type, and web beacon type. Next, I sorted out web analytics trends 

and past studies. Also confirmed we do not have many studies on B to B related web 

analytics compared with B to C or e-commerce related. I listed B to B features to be 

considered for analytics like that the buyer is not the same person as the web user, that 

the goal of visitors to the web site is often not only to make a purchase or, that it rare for 

a user to complete their goal within a single session. These three sections are basic 

premises in this report and all findings and proposed methodologies are given based on 

these premises. 

 

3. B to B Web Analytics Framework 
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3.1. Path Analysis 

Paths analysis is said as web behavioral analysis in another word. We can see user 

process flow in web site and we can utilize analysis to optimize web usability and to know 

user requirements. When path analysis is performed for a B to B site, two types of paths 

are found in our survey. Figure 3 shows the page transition models. 

One type is “roving” model, which is typically seen for example on product information 

pages. The user visits several different product information pages while absorbing 

information. Furthermore, for roving type it is necessary to identify core pages, for 

example by looking at which pages have low exit rates, or which pages are entry pages 

for the site, in order to analyze the characteristics of the roving behavior. 

Figure 4 shows exit rate and number of entrance analysis. You can find core page in 

roving type of pages with this method. As normal behavior model, one of core page 

features is to have more entry of visitors and exit rate is lower because it is highly 

prioritized page in search and many touch points and it can navigate visitors to sub-pages. 

Figure 5 shows an example of roving model analysis.  

This example shows that the product family page is the core page. Users navigate in a 

roving path centered around this page, so we know we need to improve its indexability 

and improve links out to pages that we want users to visit. In addition, the user behavior 

is different between user segments.  

No referrer access is normally from e-mail or bookmarks. As an example, we can see 

Environmental info page over e-mails can be an entry more easily and less an exit than 

through search engine (like Google). For roving type, indicators such as time spent on 

page and average number of page views per page need to be measured. 

The other type is “straight-line”, where the user goes towards a goal, such as making a 

download or purchase, in a straight line. We can consider that straight-line model is 

connected to final user achievement, which is described as conversion in later sections. 

In addition, it can be assumed that it is especially easy for users to exit a straight-line path 

when they encounter an error message or other trouble during the registration process.  

Figure 6 shows straight-line behavior type example. We need to check each step analysis 

for straight-line behavior type. This straight-line behavior type related analysis 
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methodology is given in Chapter 5 of this report.  

Also as common analysis we need to see overall picture of user behavior as a site or 

particular page set like an A product family related pages. In this case, Path thickness 

evaluation is effective because we can find user’s favorite route with this approach.  

Figure 7 shows path thickness analysis. In this diagram, you can see how many users 

navigate as site aimed and how many users exit from expected route. With this approach, 

you can see site bottleneck in user behavior. 

 

  

Figure 3. Page Transition Model  
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Figure 4. Exit Rate and Number of Entrance 
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Figure 5. Roving Model Analysis 
 

   

Figure 6. Typical Straight-line Behavior Type Example 
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Figure 7. Graphical Path Thickness Analysis 

 

3.2. Analysis on Participation to User Conversion 

In web analytics area, “Conversion” is one of important keywords. Conversion means 

to convert web site visitors into purpose-achieved users. Figure 8 shows a conversion 

funnel to on-line purchase. Web user process for B to B web site is usually defined and 

described as a funnel or a pipeline. Like a real funnel, the process involve sifting through 

a large amount of visitors in the beginning, identify which of intermediate process are 

keys to users, then turning these visitors into customers at the end of the funnel. In this 

example how many users reaches on-line purchase as final achievement. Conversion 

concept can allow us to examine which page has value to user success in sales funnel and 

see what needs to be done to increase conversion percentage or rate. Figure 9. Shows fall-

out analysis. "Fallout analysis is a subset of path analysis, looks at "black holes" on the 

site, or paths that lead to a dead end most frequently, paths or features that confuse or lose 

potential customers. In this example, you can see all step’s lost percentage and pages or 
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processes you need to improve. Fallout is a reverse of conversion analysis and we can 

find issues in user navigation.  

 

Figure 8. Conversion Funnel to Purchase 

 



 

14 
 

Figure 9. Fall-out Analysis 
 

In addition, Conversion rate is a key metrics on how much rate the page can produce 

conversion. “Conversion rate” is calculated as the following. 

 

Conversion rate = Number of achievements/visitors 

 Otherwise, 

Conversion rate =Number of achievements/page views 

 

In this report, the second formula is used essentially without any special statement. 

Taking a Buy action as a conversion (user goal), I propose a way to analyze which 

function contributed the most to the conversion (participation analysis).  

Sometimes it might be to download brochures and other times it might be to buy 

products on web site. 

In participation analysis, measurements were only performed over the same session for 

a B-to-C site and we easily find studies. However, this is not a very effective way of 

analyzing a B-to-B site. Figure 10 shows an example of a B-to-C conversion. 

 

 

Figure 10. Typical Conversion on B to C site 
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Figure 11. Over Session Conversion 
 

On the other hand, it is rare for a conversion to be completed in a single visit to a B to 

B site. There are many examples of conversions completing over the course of multiple 

visits over several weeks or in some cases several months. Figure 11 shows over session 

conversion image. 

In the manufacturer industry, the so-called Lead (How to reach site), Find (search for a 

product or solution), Try (prototype using a product), and Buy (purchase) model is typical, 

and in many cases this process is completed over the course of several visits. There are 

also many cases where the website is used as a supplement up to a certain point, and then 

the actual purchase is made via a sales agent in an offline channel. Thus, I would like to 

recommend measuring participation over the long term. This will allow us to know what 

the user did during a long time span before the actual purchase. It is possible to measure 

it using cookie. 

The example in figure 12 example of participation analysis. It shows which pages a 

user who pushed the Buy button on the website used over multiple sessions, or in other 

words participation analysis. We analyzed the participation of user characteristics (How 

did the user come to the site?) and user behavior on the site (What pages did the user view? 

What site functions were used?). In this example, we can see that conversions can be 

strongly attributed to the search engine, and behavior analysis shows that conversions can 
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be strongly attributed to parametric search. Therefore, participation rate needs to be 

carefully examined by user purposes. 

 

Figure 12. Example of Participation Analysis  
 

If conversion occurs at during the second visit, we cannot see participation on pages 

with “In a session approach”. Visitor participation attributed across multiple sessions can 

be effective for B to B sites. As shown in figure 11, conversion can occur at during the 

second and more visit in B to B web site due to its business model. Differently from B to 

C industry, we need to use participation metrics over sessions should be used using cookie 

technology. Table 1 shows the difference of two models of participation. In this table, you 

can see difference between participation-with-over-sessions-concept model and 

participation-with-single-session-concept model. In this example for only participation 

with single session concept can make page C and D participation. I recommend 

participation-with-single-session-concept model for B to B if we need to consider long-

term customer relationship. 

 

Table 1. Participation Concept Models 
Viewed 
page 

At session Participation 
with over 
sessions 
concept 

Participation with single 
session concept 
1st 

Session 
2nd 

Session 
A 1st session Yes No No 
B 1st session Yes No No 
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Viewed 
page 

At session Participation 
with over 
sessions 
concept 

Participation with single 
session concept 

1st 
Session 

2nd 
Session 

C 2nd session Yes No Yes 
D 

(Conversion 
happened) 

2nd session Yes No Yes 

 

In addition, as “lead” activity which means to navigate people to web site there are many 

aspects like advertisement, bookmark, external links and e-mails. As most popular “lead” 

activity, e-Mail related studies are described here. Please refer to figure 13 tracking recode 

method  

 

 
Figure 13. Tracking Recode Method  

All channel for lead activity should be identified with this method and entire site 

tracking by lead channel is possible. The following is an explanation of each item. 

 

i. Channel type: Distinguishes from which channel the visitor came from. For 
example, e-mail was shown as EMM, listing as PPC, and banner as BNM 
with abbreviation.  

ii. Ad type: Distinguishes the type of advertisement in relation to the channel. 
For example, if it was the e-mail sent on September 10, 201５, it will be 
shown as 20150910, and listing on Google as GGLE. 

iii. Link ID: Distinguishes the link contents of each Ad type.  For example, if it 
was an announcement e-mail of a campaign, it will be shown as CAMP, and if 
it was a keyword of the listing, the recognizable abbreviation of the keyword 
will be shown.  
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Figure 14. Email Path Analysis Method 

 
Please refer to figure 14. This is proposed tracking number as e-mail path analysis 

method. 

i. Number of distribution: How many mail letters are distributed? Who are the 
recipients?  

ii. Number of opened mails: How many mails were actually opened?  
iii. Number of clicks: How many recipients clicked on the links in the mail 

letter? 
iv. Conversion number: How many visitors from the mail letters reached to the 

conversion? 

 

3.3. A/B testing and multivariate testing 

Although web analytics can be used to improve usability, normally it is difficult to 

compare two user interfaces at the same time. For example, when comparing data before 

and after a change is made, analysis may be difficult due to seasonal or other factors for 

the two periods. It is effective to use JavaScript to divide users into two equal groups for 

measuring conversions (inquiry, etc.).  
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We carried out A/B testing. In this A/B testing, the same test experience will be 

displayed as long as visitors do not delete the cookies of the web browser and the test 

experience to be displayed randomly and equality for first time visitors. Using this we 

can compare two interfaces over the same time period, collect data until the t-test is 

satisfied, and determine which interface was more effective. By using more than two (A/B) 

patterns, multivariate testing can be carried out for many variations and combinations. 

Rather than a simple page comparison, an accurate conversion comparison can be 

performed (for example, testing the effectiveness of different combinations of banner and 

position). This is extremely useful for site optimization.  

Furthermore, I found that testing of users from specific regions can be performed by 

expanding these A/B testing and multivariate testing techniques, and then, after effective 

designs and combinations are identified, the techniques can be used to use to display only 

the effective design for access from specific regions, in what is called targeting. Figure 

15 shows an example of A/B testing, and figure 16 shows conversion results with A/B 

test. In this case, I tried to show same product roadmap in meaning with A pattern (recipe) 

and B pattern (recipe) and see the conversion rate. In this case, A pattern produced more 

conversion.  

 

Figure 15. An Example of A/B Testing 
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Figure 16. Conversion Results with A/B Test 
 

3.4. Customer Journey and User Registration  

When we consider customer journey for B to B manufacturer customer we need to think 

of both on-line activity and off-line activity because they do not care about distinguish 

and need both. For example, they need to attend events and seminars if necessary and 

they may need to get information and required resources in web site. In on-line activities, 

I created the following model majorly with web site. 

i. Find: User finds solutions/product information 
ii. Explorer: User checks product 

features/functions/characteristics/availability/price and learns about 
company/products/trends/backgrounds.  

iii. Try: User evaluate or try to use products and product environment 
iv. Buy: User purchase products or their related goods 

However we need to note it is not always on-line but also off-line is more 
popular in B to B. On-line buy happens especially for small quantity purchase 
or getting product samples. 



 

21 
 

v. Maintain: User maintains their service or products after purchase 

 

For B to B web sites, information which requires user authentication to access is more 

meaningful to analytics than information which can be freely viewed by anyone. The 

reason is that user profiles and company (organization) profiles can be logged. Although 

most of the information on a web site can be freely viewed by anyone, key important 

information requires user authentication to view. More advanced analysis (especially of 

small and medium-sized companies) can be carried out by analyzing access logs of each 

authenticated user utilizing cookie technology. Therefore, the hooking contents for user 

registration are important for users and manufacturers. Figure 17 shows user registration 

in B to B web site customer journey. 

 

 

Figure 17. User Registration in B to B Site Customer Journey 
 

Figure 18 shows actual data mapping example to customer journey model. When we 

define the process for key action for each journey element, we can see how many visitors 
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access this touch point and you can see data in consequent way. 

 
Figure 18 Customer Journey Mapping to Access Data 

 

3.5. B to B Web Analytics Framework Model 

As I mentioned chapter 1 I have two following premises for values of web analytics for 

B to B manufacturer companies. (1) Improve and optimize the site in user behavior and 

(2) Use in marketing activities like as knowing user requirements. Considering web 

analytic framework with two premises structured approach is required. As top down 

approach, breakdown steps are required from these two premised analytic purpose. I came 

up with the framework model from two premised purposes into next level business 

requirement, then into next requirement like site/page requirement, and finally into five 

methods i.e. path analysis, conversion analysis, segmentation (Targeting), and user 

registration analysis. Also in B to B web site, we should run PDCA (Plan, Do, Check, 

Action) cycle with this methodology. That overall structure is shown in Figure 19. Path 

Analysis, conversion and participation analysis, A/B test/multivariable test, segmentation 

and user registration analysis is key to concrete analytics.  
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Figure 19. Web Analytic Framework for B to B 
 

Figure 20 shows actual break-downed web analytic requirement and implementation 

steps. In this example based on two purposes analytic requirement and implementation 

are made. Firstly, we should clarify B to B manufacturer goal of on-line activity, and next 

define business requirement, and next drill down actual web site requirement or particular 

page requirement. Finally based on this structured break-down web analytic requirement 

should be created. 
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Figure 20. Actual Breakdown Web Analytic Requirement and Implementation 
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Figure 21 shows business requirement mapping to KPI. Based on business requirement 

web analytic methodology should be decided. Finally, KPIs that we should track is 

decided accordingly. In this example, six business requirements decide methodology as 

fall-out, page flow, external campaign, segment, product, and entry path. Figure 22 shows 

four phases of analytics. 

Actually, we need some steps to do all methodology. I recommend using 4 phases 

considering maturity. Phase 1 is about understanding of users and touch points. Phase 2 

is to optimize and to make marketing. Phase 3 is automation and creating dashboards. 

Phase 4 to realize customer relationship management. 

 

 

 
Figure 21. Business Requirement Mapping to KPI. 
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Figure 22. Four Phases of Analytics. 

 
Figure 23 shows Web analytics dashboard example for KPIs. This allows audience or 
web people concerned to understand status of web site or business itself. 
 

 
Figure 23. Dashboard Example 

 
In addition, dashboards can be broke down showing more specified insights. Table 2 

shows KPI dashboard by product category. You can see the product itself performance 

and popularity on web site by products. It helps for markers, company executives, and 

web operation understand them. Table 3 shows dashboard by visit times and it can help 
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us know customer loyalty for web site. 

 
Table 2.  Dashboard by Product Category  

Pr
odu
cts 

Revenue Order 
Number Page view 

Order
/Page 
view 

Exit 
Rate 

A 113,100,00 18.85% 23 15.12% 1,571  15.17% 1.52% 2.38% 
B 99,420,000 15.57% 21 18.85% 4,231  18.51% 0.50% 9.33% 
C 94,740,000 15.79% 42 9.52% 3,221  9.94% 0.51% 0.51% 
D 77,280,000 12.88% 55 12.96% 1,879  13.51% 0.30% 0.30% 
E 48,360,000 8.06% 32 6.76% 639  6.39% 0.36% 0.36% 

Top 5 product families web performance by product /month (2011/Sep.) 
 
 

Table 3.  Dashboard by Visit Times  
 

Visit 
times Visitors Product section 

page view Downloads Purchase 

1st visit 984000 82.00% 1684200 80.20% 50 4.20% 1 0.08% 
2nd visit 132000 11% 270900 12.90% 78 6.50% 1 0.12% 
3rd visit 84000 7% 198450 9.45% 172 14.30% 8 1.20% 
4th visit 165840 13.82% 266070 12.67% 340 28.30% 14 2.20% 
5th visit 97080 8.09% 140700 6.70% 527 43.89% 52 8.21% 

 

 

Segmentation analytics is discussed in chapter 4. User registration process is also 

described in Chapter 5. Once we get user information with registration process web 

analytic, makes it possible to track user behavior like in table 4 and it helps manufacturers 

understand each potential customer business needs and nurture them to purchasers or 

customers. 
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Table 4. Personal Tracking with User Registrations 

 

3.6. Basic KPI and Trials of Page Dwell Time Approach 

In this section, I pick up key metrics and discuss an additional metric called “Page dwell 

time” Metrics means indicators which manufacturer company should tracks. In this 

section, I call it KPI (Key Performance Indicators). 

Typically, the following metrics are often used for KPI.  

 Page view 

 Unique users 

 Visits per user 

 Conversion rate 

Page view is the most often used but it is hard to see true user flow with a single metric. 

One example is when we have many pages reaching a final target page that is called the 

conversion page (conversion from “visitor” to “purpose achieved”); total page view count 

is high, but most pages could be unnecessary for users. 

In this case, we need to look at page dwell time as well as the page view metric. Page 

dwell time is the time length that users stay per page. Note that it is different from site 

dwell time. 

Similar metric “Site dwell time” is the length of time that elapses from the first moment 

a web user enters a particular website until the time that user leaves that website. 
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Presumably, a combination of page view and page dwell time can be an important metric 

set for measuring user visit behavior. On top of that, page dwell time is sometimes 

discussed in web analytic academic studies, but there are very few studies on the 

combinations and also few on B to B related studies.  

The following items are expected to use page dwell time with. 

i. Combination of page view and page dwell time can allow more detailed 
analytics of page role and the gap between designed user behavior and actual 
results. 

ii. It helps categorize the page type, like index page or article page, which users 
actually read through. 

iii. Possible to evaluate page value related to user conversion with dwell time, 
and score pages for each conversion. 

Firstly, I had a look at relationship between dwell time and page view in the sub-section 

1) and then I spent some time in studying relationship between dwell time and conversion 

participation in two ways in the sub-section 2). 

1) Consideration on relationship between dwell time and page view 

In B to B manufacturer site, assumed page categories are the followings. 

 Index type page: It is a kind of table of contents for child pages. 

 Product catalog type page: It has lots of information with standardized 
format and often used. 

 Article type page: It is article type page and page length has many 
variations. 

 Transit type page: It is one of steps in procedure like user registrations.  

 Conversion page: It is final destination page and it can be different in site 
purpose. Sometimes it can be purchase page and other times it can be 
download page. 

Let us see the page dwell time by content type. 

a) Product catalog page analysis. 

Especially product catalog page among the above listing has much volume typically in 

manufacturer web site. In product family site, I picked up 200 pages and each page has 

information, which can be volume of one page in printed A4 size. Firstly, we need to 
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review the overview of the dwell time data. The figure 24 shows the relationship between 

page view and page dwell time. We see most of users take about one minute to stay a 

page. The page access over 2 minutes is not often and even if we have it is with very a 

few page views. 

 

Figure 24. Typical Relationship between Page View and Dwell Time 

Min. 
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Figure 25. Dwell Time on Index Type Page and Article Type Page 
 

 
Figure 26. Dwell Time on FAQ Page 

 

Min. 
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Table 5. Page Dwell Time and Other Metrics Correlation 

 

 

a) Trends on article type page and index type 

The following is the results of metrics on pages that are designed for reading like FAQ 

(Frequent Asked Question). FAQ page has two types of pages. One is index type that 

consists of lists of FAQs with short description of each FAQ and another type is article 

that is an actual FAQ page. Typically, the information volume of actual FAQ page is two 

or three pages long in A4 paper.  

In fact, actual FAQ page is longer than FAQ index page in dwell time. Index type is 0.9 

min average and article type average is 2.5 min. Please refer to the Figure 25. Page dwell 

time is dependent on page type. Figure 26 shows general trends on all FAQ related pages. 

 

2) Relationship between dwell time and conversion participation 

In this sub-section, I will talk about two aspects of relationship between page dwell time 

and conversion. One is on dwell time of participation pages to conversions and another is 

dwell time of just previous pages to conversions. 

a) Dwell time of participation pages to conversions  

As a reminder conversion means user’s final goal in web activity. In typical B to B 

market area, conversion target of web site does not necessarily mean purchase. Objects 

download like program source, document download, and sales inquiry can be conversions 

sometimes. Especially user registration for the web site is one of the most common 

Pageview
Total

Pageview
with Mobile

User Home
page

Referer
instance

Reload
number

Entrance
page Exit page

Page Dwell
time

Visit
number Page depth

Site dwell
time Seach

Direct
exit

Pageview Total 1

Pageview with Mobile 0.5272038 1

User Home page 0.750041 0.4696294 1

Referer instance 0.7811711 0.5025217 0.9456842 1

Reload number 0.7193369 0.1996858 0.2278476 0.2475605 1

Entrance page 0.7927243 0.5231201 0.9549046 0.9933446 0.2497228 1

Exit page 0.8705033 0.4979453 0.6635086 0.6455429 0.640713 0.6614431 1

Page Dwell time 0.9280234 0.463587 0.6934811 0.6762167 0.7285878 0.6898824 0.962755 1

Visit number 1 0.5272038 0.750041 0.7811711 0.7193369 0.7927243 0.8705033 0.9280234 1

Page depth -0.050759 -0.182886 -0.062372 -0.065274 0.0518002 -0.078237 -0.098956 -0.059182 -0.050759 1

Site dwell time -0.025101 -0.037602 -0.010677 -0.010528 0.0870223 -0.015531 0.1039972 0.103323 -0.025101 -0.202961 1

Seach number 0.7737555 0.5074825 0.9420431 0.9922438 0.2166049 0.9970024 0.6363458 0.6613573 0.7737555 -0.079327 -0.017539 1

Direct exit 0.7031807 0.4815703 0.76514 0.8194475 0.2931913 0.8254412 0.6824724 0.6787416 0.7031807 -0.158412 0.1268658 0.82134 1
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conversion. 

 Considering the relationship between conversion and page dwell time, I checked dwell 

time of pages passed through by users to destination page, which brings conversion. We 

call these pages “Conversion related pages” I had originally expected conversion related 

page have longer dwell time because these pages are related to user decision. However, 

seeing the statistics we can say conversion related pages dwell time is not longer than all 

pages average. 

It seems users go fast across pages into final conversion generally. Especially even user 

registrations which mostly commonly used by B to B customers does not have longer 

time. Please refer to the Figure 27.  

Most contributed page (product/mpumcu/index.html) has 0.42 min. as average dwell 

time. It is much shorter time than general average. It shows that users pass through pages 

with short time taken and finally reaches goal page. 
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Figure 27. Dwell Time on Conversion Related Pages (Top 20 by Registration 
Conversion) 
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Figure 28. Dwell Time and other metrics on Conversion Related Pages  

Figure 28 shows dwell time and other metrics combination we can utilize. 
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Please refer to table 2. “Buy through distributors” is one of the B-to-B market 

conversions. I expected the pages related to “buy” conversions to have longer dwell time 

than the total average (around 1 min.) because this conversion could take some decision-

making. However, this average time for this conversion is 0.84 min., which is shorter than 

the total average. This is one of the characteristics seen with B-to-B sites.  

I assume users had already decided to buy product due to a previous or earlier visit to 

the website so when they purchase they go straight to the purchase without examining 

product specifications. I checked the pages that were used the most for conversions. Table 

6 shows page dwell time average only in page conversion related like purchase urging 

page (Buy page). In Table 6, No. 3 and No. 4 were the common important conversions 

for this manufacturer. For the purpose of user registration conversion in No3, software 

download pages are highly ranked. They make up 34 pages among the top 100 pages and 

the next most numerous are sample code/document download pages. This is 

understandable for a B-to-B manufacturer’s website. Also for No. 4 “Buy” conversion, 

the most common conversion related pages are product spec pages. They make up 20 

pages among the top 100 pages.  

As a result, we can assume users examine the product specifications even if only for a 

short time. In manufacturer web site, typically, product information has the most of pages 

and this area is the highest in access because most of users need manufacturer product 

related information at manufacturer site.  

 
Table 6. Overall Statistics of Dwell Time on Conversion Related Page  

Unit: minutes 

No. Conversion related 
page 

Average 
time 

Maximum 
time 

Minimum 
time 

1 Product lineup list 
page 

1.01 2.29 0.35 

2 Parametric search 
results 

0.99 2.38 0.09 

3 User registration 1.01 2.51 0.09 
4 Buy 0.84 2.24 0.08 
5 All pages related to 

conversion 
0.95 3.02 0.03 

 



 

37 
 

 

b) Dwell time of just previous pages to conversions  

I made analysis for all of conversion related pages in the previous sub-section and next 

we focus on the only previous page of conversions. In the previous sub-section generally 

we can say dwell time of all conversion related pages are not so long compared with 

general average but we need to check the time of just previous pages 

As we stated earlier in this report one of important conversion is user registrations. 

When we see the dwell time data of previous pages mostly used, it is 1.79 min. average 

and longer than general average. We assume many users select the proper downloaded 

files carefully before user registrations. In addition, one note is that the secondly mostly 

viewed page is the explanation page of user registration and disclaimer. It is 0.38 min. 

and relatively low. We see most of users pass through this page but they do not take longer 

time with it. It is another one of key findings. 

The average dwell time of previous pages of conversions is 1.13 min. Our original 

expectation was longer than normal dwell time average. However, it is almost same as 

other pages even if it is soon before conversions.  

Figure 29 shows dwell time of previous page of user registration conversions. 
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Figure 29. Dwell Time of Previous Page of User Registration Conversions 
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Figure 30. Dwell Time of Previous Page of Purchase Conversions 
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Figure 31. Another Reference Data for Previous Page Dwell Time  
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Please refer to Figure 30. Even if purchase is important and bigger decision for users 

the average dwell time is 0.97 min. and it is not long. This is the same trend as conversion 

related page time that I stated in previous sub-section. Figure 31 shows another reference 

data which supports figure 30 and we have similar trends. 

3) The relationship between text volume and dwell time 

One of potential factor related dwell time is page volume. Pages have different size of 

information and dwell time of users can depend on page size. 

Page volume can be measured by text size in HTML (Hyper Text Markup Language). 

Refer to the Figure 32. Text size is not much related to dwell time. This can be the feature 

of B to B type web site. Probably dwell time can be more related to page type or 

conversions. I need to study more on page type relationship with dwell time in details in 

further studies.  

 

 

Figure 32. Relationship with Dwell Time 
 

c) Technical issues on page dwell time tracking 
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The following items are open issues and I need to consider when I analyze data. 

 The last page when users exit cannot be tracked at all due to web beacon 
and http protocol characteristic. 

 When new tab in browser is used for clicking the captured data can be 
wrong because user may keep it alone in this tab and browse pages in different 
tabs. 

 As general aspect, some users keep opening pages for a while. Therefore, 
we need to remove some abnormal length data. 

We need to take care of these items when we check data. 

We had originally expected a conversion related page to have longer dwell time because 

these pages are related to user decision. However, looking at the statistics we can say that 

the dwell time of conversion related pages is not longer than the average for all pages.  

It seems that users generally go quickly across pages into final conversion. In particular, 

even user registration pages, which are mostly commonly used by B-to-B customers, do 

not have longer dwell times.  

Also “buy through distributors” is one of the B-to-B market conversions. We expected 

the pages related to “buy through distributors” conversions to have longer dwell time than 

the total average (around 1.1 min.) because this conversion could take some decision-

making. However, this average time for this conversion is 0.84 min., which is shorter than 

the total average.  

3.7. Chapter Summary 

I tried to clarify B to B web site framework Analytics especially for manufacturer 

company in this chapter. I have made some test and findings. At first, I came up with two 

path-analysis model. One type is “roving” model and another is “straight-line” model. I 

showed actual analysis example and confirmed it is working. In addition, I showed 

conversion and participation is important and showed differences of points between B to 

C and B to B web site analytics. As other aspects A/B test and user registration analysis 

based on customer journey should be included in the framework. I showed the overall 

picture of web analysis framework and implementation way. I proposed that analytic 

implementation should be determined with structured way from purpose to dashboard 
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through major five methods like path Analysis, conversion and participation analysis, 

A/B test/multivariable test, segmentation, and user registration analysis.  

In addition, I examined the web access analytics adding page dwell time on page view 

as typical key factor in B to B manufacturer site. Although we have technical issues, we 

can see it is effective and it deserves for further study. Especially page dwell time is much 

related to various types of conversion in B to B site. Also when we think about website 

structure improvement, seeing page dwell time can be one of good metrics. We can test 

usability or expected page flow with the results of dwell time as well as page views. 

As one of possibility the page length can be related to dwell time but at a first general 

study we can’t see the relationship between page length and dwell time compared with 

other factors like page type or conversion contribution.  

Typically, the following metrics are often used for KPI.  

i. Page view 

ii. Unique users 
iii. Visits per user 
iv. Conversion rate 

In addition, I confirmed effectiveness of page dwell time utilization and combination 

with other metrics. 

 

4.  Analytics with User Segmentation 

 

4.1. User Segmentation Model 

When we think of usability study in more detail with web analytics method, we need to 

assume user segments because user behavior can differ by user segmentation. Using some 

of our surveys, we came up with the user segmentation model shown in Table 7. Generally, 

it was classified by types as information driven, user environment driven, business 

relationship driven. Information driven type mostly includes content segmentation. most 

manufacturer sites, the following are typical content categories and we assume user 
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behavior can be different due to difference in purpose of visit. 

 Products 

 Solutions 

 Support (FAQ or Contacts) 

 Download or resources 

 Purchase 

 Press or news 

 Seminar/Training  

 User registration/Login 

“User environment driven” has two elements as “By time and place” and “By Device 

type”. “User behavior driven” is comprised of “By user referrer”,” By visit frequency”, 

and “By user commitment level”. “Business relationship driven” has two elements as “By 

company profiles” and “By industry”. I tried each related studies and you can see them 

in related sections in this report. Unfortunately, I have many “Business relationship driven” 

related studies but cannot put these studies in this report due to business privacy reasons. 

Table 7. User Segmentation Model  
Segmentation category Major segment from web analytics 

point of view 
Related 

sections 
in this 
report 

Type Segmentation 

Information 
driven 

By content 
category  

Viewers of  product information 
versus viewers of  investment 
relations (IR)/company information  

Section 4.2 

User seeking to download software 
versus e-commerce users 

User 
environment 

driven 

By time and 
place 

Weekday users versus weekend 
users 

Section 4.5 

Midnight users versus business hour 
users 

By country/state 
By Device type User navigation model can be differed 

by devices. 
Section 4.5 

User 
behavior 

driven  

By user 
referrer 

Users arriving through search engine, 
by e-mail clicks, or by bookmark/URL 
typing  

Section 3.2 
and 4.3 
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Segmentation category Major segment from web analytics 
point of view 

Related 
sections 
in this 
report 

Type Segmentation 

By visit 
frequency 

First time versus second and more 
frequent users 

Section 3.2 

By user 
commitment 
level  

Registered users versus unregistered 
users 

Section 4.4 

Business 
relationship  

driven 

By company 
profiles 

Focus customer versus unfocused This part is 
not 
included in 
this report 
due to 
privacy 
issues. 

Large customers versus small 
customers 

By industry 
User behavior by industry 

 

In my studies, we saw key contents, which are sometimes called hook contents, which 

require authentication and user registration to view. Once users register their profiles, they 

are regarded as committed potential or existing customers and then the manufacturer can 

contact them within the limits of the privacy policy. In addition, we can say registered 

users are more interested in manufacturer information than unregistered. In typical cases, 

an unregistered visitor can be just a visitor and they probably came to the site by chance 

through a search engine like Google. Registered customers sometimes want to get updates 

from the manufacturer.  We defined processes as Find, Explorer, Try, Buy, and Maintain. 

In a B to B site, we need to consider offline activity linked with on-line activity because 

face-to-face sales activity is key to success of business. That is why user registration is 

the most important and manufacturers urge visitors to register profiles. 

4.2. Segment by Content 

We observed page dwell time statistics using a frequency distribution chart in this site 

total access as shown in Figure 33.  There is a long-tail type trend and the most frequent 

page dwell time is from 1 to 17 seconds. We also have many cases with longer dwell time. 

As a site overall this is the typical trend also seen in past studies. 



 

46 
 

 

Figure 33. Frequency Distribution Chart 
However, if we pick out key landing pages that are mostly important content for both 

users and the manufacturer, the statistics differ from the general trend.  Please refer to 

Figure 34 and Figure 35. In most cases with key landing pages, it seems the most frequent 

page dwell time is different from overall site statistics, i.e. long tail. There are two types 

of content on web sites. One is index type and the other is key landing page content. The 

overall site statistics include many index pages. Therefore, once we just take key landings 

we can see the average time and most frequent time easily. We can design web sites or 

improve page flow using these statistic data. Figure 36 shows product spec page’s 

distribution chart. Figure 37shows press release page’s distribution chart. You can see 

distribution shape is different by content category. 
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Figure 34. Seminar Page: Frequency Distribution Chart 
 

 

   Figure 35. Web Magazine: Frequency Distribution Chart 
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Figure 36. Product Spec: Page Distribution Chart 

 

Figure 37. Press Release: Page Distribution Chart 
 
 

4.3. Tracking participation for conversion 
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“Conversion” means the achievement of a user’s final goal in web activity. In typical B 

to B markets, the conversion target of a website is not necessarily a purchase, unlike in 

Business to Consumer markets. Objects download for program source, document 

download, and sales inquiry can be conversions sometimes. User registration especially 

is the most common conversion for websites. We did many surveys on which metric is 

more related to conversion participation and we did not find a strong relationship between 

page dwell time and conversion participation, as shown in Figure 38. 

However, we see there is most likely a direct proportion between page views and 

participation.  

 

Figure 38. Typical Page Dwell Time 
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Figure 39. Product Spec Participation Dwell Time 

 

4.4. Segment by Registered and Unregistered Users 

As we stated earlier in this report user registration is one of the key conversions in a B 

to B web site and manufacturers can consider the following concerning user registration. 

Manufacturers need to urge visitors to register with several promotions. Once they are 

registered, the manufacturer can get contact information and a highly qualified customer 

list. Web behavior can differ completely between registered and unregistered users. Need 

to define the differences and use the results to create a web usability strategy optimizing 

each segment. 

Table 8 shows the differences in bounce rate. “Bounce rate” means the rate of visits in 

which a user comes to a page but exits the site immediately. In this table, the bounce rate 

of generally unregistered users is relatively higher than that of registered. In particular, 

the homepage is normally a frequent entry page but the bounce rate is high for 

unregistered users. Registered customers continue seeking information more often than 
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unregistered users. 

 
 
 
 
 
 

Table 8. Bounce Rate by Registered Users and Unregistered Users  
 

Pages Registered  users Unregistered users Unr
egist
ered-
Regi
stere

d 
boun

ce 
rate 

differ
ence 

Visit  
(%) 

Visit 
(%) 

Bounce 
rate (%) 

Visit  
(%) 

Visit 
(%) 

Bounce 
rate(%) 

Total 16,823 100 20.09 104,720 100 48.69 -29 
Home 6,718 39.93 12.23 27,201 25.97 25.63 -13 
PartNo

Search:S
earchRes
ults 

2,799 16.64 13.83 9,041 8.63 19.63 -6 

Login-
Case1 

2,082 12.38 0.00 2,988 2.85 0.00 0 

Keywor
dSearch:
SearchR
esults 

1,264 7.51 16.67 2,638 2.52 17.50 -1 

Disclai
mer 

1,088 6.47 33.33 882 0.84 31.91 1 

Login-
Case2 

949 5.64 0.00 83 0.08 0.00 0 

A 
Product 

928 5.52 8.22 2,032 1.94 20.63 -12 

B  
Product  

921 5.47 12.50 1,697 1.62 26.20 -14 

Supporti
ng tool 
category 

863 5.13 10.81 1,400 1.34 28.23 -17 

Product 
category 

709 4.21 4.42 2,929 2.80 13.50 -9 

C 
Product 

664 3.95 12.86 3,024 2.89 21.71 -9 
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Pages Registered  users Unregistered users Unr
egist
ered-
Regi
stere

d 
boun

ce 
rate 

differ
ence 

Visit  
(%) 

Visit 
(%) 

Bounce 
rate (%) 

Visit  
(%) 

Visit 
(%) 

Bounce 
rate(%) 

Supporti
ng tool A 

581 3.45 16.08 995 0.95 31.91 -16 

C  
Product 

560 3.33 18.18 770 0.74 27.87 -10 

Press 
releaseー 

454 2.70 47.83 7,999 7.64 78.12 -30 

Supporti
ng tool B 

429 2.55 8.70 634 0.61 29.09 -20 

D  
Product 

406 2.41 10.00 992 0.95 23.00 -13 

E   
Product 

400 2.38 13.64 1,582 1.51 27.24 -14 

Supporti
ng tool C 

396 2.35 11.35 1,070 1.02 33.71 -22 

F 
Product 

394 2.34 16.67 430 0.41 30.00 -13 

 

Table 9 shows how users reach the site. Using referrer logs in the http protocol we can 

see what percentage are coming from search engines, e-mail blast, and so on. As we 

expected, more unregistered users come to the site via a search engine than registered 

users. 
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Table 9. Data on How Users Reach the Site 
Referre
r type 

Registered users Unregistered users Unregistere
d - 

Registered 
reach 

through rate 
difference 

How 
do 

users 
reach 

the 
site? 

(Reach 
through 
number

) 

How do 
users 

reach the 
site? 

(Reach 
through %

) 

How do 
users 

reach the 
site? 

(Reach 
through 
number) 

How do 
users 

reach the 
site? 

(Reach 
through %

) 

Total 20,711 100.00% 137,960 100.00% 100.00% 
Search 

Engines 
9,518 45.96% 91,783 66.53% 70.16% 

e-mail 6,124 29.57% 26,382 19.12% 17.28% 
Other 

Web sites 
4,996 24.12% 19,004 13.78% 11.95% 

Social 
Networks 

73 0.35% 791 0.57% 0.61% 

 

Table 10 shows which pages are exit pages and exit times/total visit times. In this case 

registered users stay on the site (“stick”) longer and for example the homepage isn’t a 

frequent exit page even though unregistered users have a high rate of exiting from the 

homepage. 

 

Table 10. Exit Frequency in Pages (Top 10) 
Item Registered  users Unregistered  users Re

gist
ere
d - 
Unr
egis
tere

d 
diff
ere
nce 
(%) 

Exit 
times 
from 
this 
page 

Visit 
times 

Exit 
times/
Visit 
times 
(%) 

Exit 
times 
from 
this 
page 

Visit 
times 

Exit 
times/
Visit 
times 
(%) 

Total 16,673 16,806 99.21 101,509 103,088 98.47 1% 

Home 1,230 6,715 18.32 9,691 27,077 35.79 -17% 

Disclaimer 671 1,088 61.67 612 880 69.55 -8% 
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Item Registered  users Unregistered  users Re
gist
ere
d - 
Unr
egis
tere

d 
diff
ere
nce 
(%) 

Exit 
times 
from 
this 
page 

Visit 
times 

Exit 
times/
Visit 
times 
(%) 

Exit 
times 
from 
this 
page 

Visit 
times 

Exit 
times/
Visit 
times 
(%) 

PartNoSearc
h:SearchResul

ts 

638 2,798 22.80 2,545 9,027 28.19 -5% 

Login type 1 596 949 62.80 52 82 63.41 -1% 

Login type 2 567 2,082 27.23 1,014 2,985 33.97 -7% 

KeywordSear
ch:SearchRes

ults 

244 1,264 19.30 511 2,611 19.57 0% 

Press center 185 454 40.75 5,836 7,977 73.16 -32% 

Gadget 157 263 59.70 793 1,083 73.22 -14% 

Supporting 
tools 

105 580 18.10 260 994 26.16 -8% 

 

 

Table 11 shows duration of site visits by registration segment; In this case, also we can 

see registered users’ “stickiness” to the site. Half of registered users come to the site every 

day. That is the reason why manufacturers make much effort to urge visitors to register 

their profiles and keep them updated.   

Table 11. Duration of Visits 
Duration of 

visits 
Registered 
user visits 

% Unregistered 
user visits 

% 

Total 16,823 100.00 104,720 100.00 
Less than 1 day 8,520 50.64 18,753 17.91 
Less than 7 days 4,411 26.22 13,809 13.19 

More than 7 
days 

1,905 11.32 13,384 12.78 

First Visit 738 4.39 38,720 36.97 
More than 30 

days 
303 1.80 12,069 11.53 

Cookies Not 
Supported 

18 0.11 943 0.90 
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4.5. Segment by User Environment 

As a quick reference, for a B to B web site there is much difference in traffic between 

weekdays and weekends. However, the trends of traffic by time of day show almost the 

same peaks across all days. I try to see analytics by user environment. Figure 40 shows 

general trend in web visit number by hours. 

 

 

Figure 40. General trend in web visit number by hours 
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Figure 41. Visit number trend by hours 
 

1) General Trend in Web Visit Number by Hours 

According to the statistics provided by the Japan Institute for Labor Policy and Training 

shown in [107], "hours of work per week, manufacturing" is 42.2 per week. In addition, 

“9:00 AM to 7:00 PM” are typical working hours in Japan. We defined three times as “1. 

Home and commuting”, “2. Work”, and “3. Commuting and home”. Firstly, we tracked 

user accesses by time with consideration to company size. Normally small-sized 

companies or individual engineers tend to use normal internet providers and middle or 
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large- scale companies use their own domains. We tracked them by time of day 

distinguishing the users who came through normal domains and users who came through 

internet providers (called “Providers”). Figure 41 shows a visit numbers trend. 

2) Visit Numbers and Page Dwell Time by Time of Day Through Providers and 
Company Domain 

As a result, the total coefficient of correlation of company and provider users is 0.59 

and middle level of correlation (Similar trends) but if we omit the times from 1:00 AM to 

9:00 AM, there is a strong correlation of 0.78. This means trends are similar throughout 

the day except for one period. Only the period between 1:00 AM and 9:00 AM shows 

some difference in numbers between “via providers” and “via company domain”. To 

illustrate this in more detail, Figure 42 shows visit numbers between 1:00 AM and 9:00 

AM by hour. From late night to morning, we assume some engineers work at home or 

work at small companies that use connections through providers.  

This kind of data is useful for deciding which content should be shown or targeted to 

customers accessing the web site at each time of day. In addition, it can be assumed that 

provider users are made up of not just customers but also a general audience who are 

looking for IR information, company information or even some news through the sites. 

In fact, during this period numbers for these contents are relatively higher than during 

business hours. The proportion of IR/press release visits are 33% higher compared to 

normal working hours. 

Next, we looked at the page dwell time. The total coefficient of correlation is 0.68 for 

access via providers and via company domains. However if we calculate the correlation 

for outside working hours i.e. 7:00 PM to 1:00 AM, the correlation is 0.94. 
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Figure 42.  Visit Numbers from 1:00 AM to 9:00 AM  
 

Next, we looked at the page dwell time. Please refer to Figure 43. This is average of 

page dwell time by each hour for providers and company domain. The total coefficient of 

correlation is 0.68 for access via providers and via company domains. However, if we 

calculate the correlation for outside working hours, i.e. 7:00 PM to 1:00 AM, the 

correlation is 0.94. We can see some difference between the connection types for these 

hours. This shows the possibility of differences in usage between provider users and 

company users. The types of pages that are actually viewed are different. Generally, 

company users view purchasing information more and provider users view more press 

releases or IR information.  We will investigate which information is accessed more in 

our next study.  
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Figure 43. Page Dwell Time by Time of Day through Providers and Company 
Domain 

 
Please refer to Figure 44 for page dwell time by time of day by connection type. Page 

dwell time for small-sized customers who use providers peak at 10:00 PM and they 

probably work from home or on trains while commuting in Japan. This can be related to 

the fact that trains are the most common way of commuting in Japan. In addition, for 

company domain users this could indicate engineers working on development overnight.  
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Figure 44. Page Dwell Time by Time of Day through Providers and Company 
Domain from 7:00 PM to 1:00 AM 
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Figure 45. Correlation of visits from 19:00 to 1:00 
 

Page dwell time by time of day through providers and company domain from 7:00 PM 

to 1:00 AM 

Figure 45 shows correlation of visits from 19:00 to 1:00. Visit number is correlated 

between them and not so much difference. 

3) Analysis by Directory  

 We surveyed the correlation between provider users and company users in terms of 

several segments. Firstly, we looked at correlation by content category (directory). There 

is a strong correlation for dwell time between providers and companies shown in table 12. 

Table 13 shows correlation coefficient in page dwell time for each hour and connection 

type. However, there is some different correlation just for some directories. Referring to 

TABLE III, the search function is one area of differentiation, especially in the 1:00 to 9:00 

zone. Correlation here is lower than other periods. The number of searches performed by 

provider users is lower than by company users. It is assumed that normally mobile access 

is through providers and these users are viewing websites during their train commute and 
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do not search for any solutions or products but do view press releases or events during 

this time.  

Table 12. Dwell Time Correlation Totally  

 

 

Actually, the company in this study tries to provide a different user interface to different 

customers depending on the period. For 19:00 to 1:00, some navigation elements are 

changed with A/B testing, and the conversion rate for downloads is 125 times higher for 

time targeting. This type of analysis can be used for marketing purposes. For this purpose, 

we will keep studying for further details. 

 

Directory
Dwell Time Providers Companies Providers Companies Providers Companies

Providers 1.00

Company 0.84 1.00

Providers 0.98 0.83 1.00

Company 0.88 0.92 0.88 1.00

Providers 0.92 0.80 0.91 0.87 1.00

Company 0.91 0.84 0.90 0.86 0.91 1.00

1:00 to 9:00

9:00-19:00

19:00to24:00

1:00 to 9:00 9:00-19:00 19:00to24:00
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Table 13. Correlation by Content Directory 

 

 
 
 

 

Directory Providers
Compan

y
Providers

Compan
y

Providers
Compan

y
products 106,475 78,981 556,082 595,534 128,806 76,145
Search 21,377 30,217 167,138 193,837 35,397 22,751
support 26,514 19,350 120,251 127,775 32,221 15,962
press 20,321 11,382 89,733 77,086 34,035 9,186
comp 18,817 9,361 89,042 74,004 29,369 8,441
gur 16,049 16,175 84,245 115,158 14,808 11,761
edge_ol 15,972 6,116 64,111 52,709 27,620 7,830
applications 9,994 6,134 48,677 52,147 16,080 7,286
career 7,877 2,579 31,870 20,476 14,428 3,193
ir 6,894 3,747 25,322 21,894 9,203 2,854
disclaimers 4,852 3,736 17,557 17,190 4,247 2,021
company_info 4,164 1,663 18,134 14,629 8,118 2,064
event 4,131 3,638 18,706 22,214 4,125 1,997
partner 3,777 2,322 22,313 19,933 6,018 2,426
contact 2,238 1,821 12,022 11,829 2,163 1,257
public 1,602 1,758 9,243 12,234 1,627 960
buy 1,601 957 6,625 5,950 1,737 757
myrenesas 1,060 990 4,766 6,171 1,209 562
cmn 1,009 632 3,907 3,514 1,175 408
purposes 952 548 3,241 2,672 1,058 326
secret 906 908 6,164 7,962 973 587
videoclip 776 437 3,253 2,966 1,036 387
redirect 750 376 3,515 3,436 1,359 528
chat 640 439 3,580 3,678 613 338
Inquiry 557 495 3,023 3,145 436 371
search 459 564 2,396 3,644 406 433
user 436 133 1,981 829 833 133
edge 424 321 2,022 2,730 812 458
_print_this_page_ 389 403 1,669 2,022 310 251
smart 311 171 1,399 1,485 453 173
devcon_jpn_2014 238 204 1,362 1,455 357 147
prod 147 135 959 1,192 196 167
ecology 131 69 461 613 198 103
media 128 182 681 1,413 153 271
facebook 103 41 548 277 187 46
sitemap 93 50 380 339 87 29
legal 88 75 383 461 104 46
tech 84 52 324 401 172 76
guidance 75 84 338 404 53 31
csr 63 20 231 157 115 25
privacy 44 95 212 270 57 18
campaign 34 24 151 137 55 14
lib 33 30 180 192 30 19
registration 32 25 116 139 18 15
rss 29 20 134 176 43 15
tool 29 23 116 220 24 22
C: 18 5 106 50 16 4
supp 15 8 40 86 30 8
r_video 13 9 80 102 30 6
manga 8 1 10 2 10 2

19:00 to 1:009:00 to 18:001:00 to 9:00
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Table 14. Correlation by OS Type 

 
 

4) Analysis by Device 

We also looked at the relationship by device. We cannot see the actual device that a user 

owns but we can see information on OS (Operating System). There is much less 

correlation between providers and company trends in the periods “1:00 AM to 9:00 AM” 

and “7:00 PM to 1:00 PM”. Most likely the mobile device usage rate is higher in non-

working hours than working hours as shown in table 14 and table 15. Both table show 

correlation coefficient in page dwell time for each hour and connection type. 

Currently, unlike B to C sites the layout of most B to B sites is not mobile device 

compliant. However, B to B sites need to think about mobile device compliance especially 

for users who access through providers. 

 

OS Type
Dwell Time Providers Companies Providers Companies Providers Companies

Providers 1.00
Company 0.28 1.00
Providers 0.97 0.27 1.00
Company 0.40 0.89 0.31 1.00
Providers 0.91 0.33 0.91 0.39 1.00
Company -0.03 -0.08 0.09 -0.15 -0.18 1.00

19:00to1:00

1:00 to 9:00 9:00-19:00 19:00to1:00

1:00 to 9:00

9:00-19:00
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Table 15. Correlation by OS Type in Details  

 
 

Other examples of no correlation are “viewed page numbers” and search usage time 

shown in table 16 and table 17.  

 

Table 16. Viewed Page Number Correlation 

 
 
 
 
 
 
 
 
 
 
 

Item Provider % Company % Provider % Company % ISP % Company %
GNU/Linux 1,662 0.78% 632 0.43% 5,257 0.48% 4,152 0.35% 2,689 0.89% 1,121 0.77%
Microsoft Windows 162,070 75.83% 139,460 95.45% 947,855 85.98% 1,145,688 97.66% 211,999 69.86% 134,006 92.22%
Others 208 0.10% 19 0.01% 358 0.03% 91 0.01% 340 0.11% 46 0.03%
UNIX 38 0.02% 7 0.00% 104 0.01% 76 0.01% 47 0.02% 14 0.01%
Apple Macintosh 5,937 2.78% 1,710 1.17% 20,218 1.83% 9,893 0.84% 12,009 3.96% 3,028 2.08%
Unspecified 63 0.03% 16 0.01% 269 0.02% 96 0.01% 177 0.06% 34 0.02%
Google Android 19,312 9.04% 2,156 1.48% 55,271 5.01% 6,543 0.56% 33,457 11.03% 3,550 2.44%
Apple iOS 24,395 11.41% 2,091 1.43% 72,954 6.62% 6,504 0.55% 42,705 14.07% 3,493 2.40%
Microsoft Windows 24 0.01% 8 0.01% 52 0.00% 32 0.00% 18 0.01% 7 0.00%
Blackberry 7 0.00% 7 0.00% 20 0.00% 12 0.00% 14 0.00% 4 0.00%
Symbian 9 0.00% 3 0.00% 7 0.00% 0 0.00% 4 0.00% 1 0.00%
WebOS 0 0.00% 0 0.00% 1 0.00% 0 0.00% 0 0.00% 0 0.00%
Adobe 0 0.00% 0 0.00% 1 0.00% 1 0.00% 1 0.00% 0 0.00%

9:00 to 19:00 19:00 to1:001:00 to9:00

Viewed page numbers
Dwell Time Providers Companies Providers Companies Providers Companies

Providers 1.00
Company -0.23 1.00
Providers 0.78 -0.33 1.00
Company -0.30 0.48 -0.37 1.00
Providers 0.68 -0.22 0.68 -0.30 1.00
Company -0.17 0.34 -0.24 0.35 -0.14 1.00

9:00-19:00

19:00to1:00

1:00 to 9:00 9:00-19:00 19:00to1:00

1:00 to 9:00
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Table 17. Correlation with Search Usage Time 
 

 
 

There is much difference between time and connection type and there is possibility 

navigation can be further optimized according to time of day or connection type. 

5) Summary of Findings 

We found the user behavior tracking like visit numbers or page dwell time categorized 

by user segmentation is effective. Especially the accesses like time and place (or 

connection type) have different trend by each segments. For example, the period between 

1:00 AM and 9:00 AM shows some level of difference in numbers between “via providers” 

and “via company domain”. In addition, for page dwell time 7:00 PM to 1:00 AM period 

has differentiations between providers and companies. In addition, depending on content 

type we found some difference. For example, in the 1:00 to 9:00 zone, user behavior is 

different and the number of searches performed by provider users is lower than by 

company users. It is assumed that normally mobile access is through providers and these 

users are viewing websites during their train commute and do not search for any solutions 

or products but do view press releases or events during this time. We also looked at the 

relationship by device. I found that mobile device usage rate is higher in non-working 

hours than working hours and viewed pages are different between them. 

 

 

req (trend daily)

Visit Providers
Compani

es
Providers

Compani
es

Providers
Compani

es
Providers 1.00
Company 0.91 1.00
Providers 0.70 0.87 1.00
Company 0.65 0.88 0.96 1.00
Providers 0.44 0.52 0.76 0.61 1.00
Company 0.54 0.79 0.92 0.94 0.70 1.00

1:00 to 9:00 9:00-19:00 19:00to1:00

1:00 to 9:00

9:00-19:00

19:00to24:00
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4.6. Chapter Summary 

I proposed segmentation model for B to B analytics, like information driven, user 

environment driven, user behavior driven, and business relationship driven.  

“User environment driven” has two elements as “By time and place” and “By Device 

type”. “User behavior driven” is comprised of “By user referrer”,” By visit frequency”, 

and “By user commitment level”. “Business relationship driven” has two elements as “By 

company profiles” and “By industry”. I tried each related studies and you can see them 

in related sections in this report. I confirmed segment by content and segment by user 

environment especially in this chapter. 

For B to B sites, we have several personas (use case by segment) and web analytics 

need to be done by segment. We defined some of the segment models and examined web 

access using some segments. One of the most important segmentations is registered users 

versus unregistered users. User behavior is very different with each use case. Bounce rate, 

referrer (how they reach the site), and exit page analysis especially are beneficial and we 

can see that registered customers’ stickiness to the site/company is much stronger than 

that of unregistered users. This can be measured by some metrics by segment, like 

duration of visit. 

I surveyed correlation of access by user environment. There are correlations between 

time of day or correlation between connection types such as connecting through a 

provider or through a company network. I used some key web metrics such as visits and 

page dwell time for our correlation survey. I noticed user environment segments with a 

correlation approach can be used for web analytics for user navigation studies or even 

marketing use. 

 

5. Effective User Registration Procedure and Improvement Method 

 

5.1. Background and Purpose of This Chapter 

On B to B manufacturer web site, web user registration form is used to register web 
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visitors’ information. It acts as a critical user entry point for B to B manufacturing firm 

that places more emphasis on on-line marketing.  For instance, B to B web registration 

form could ask web visitors’ personal information such as first name, family name, e-mail 

address and occupational information including company name, department name and so 

on. It also asks visitors’ interest about services including topic preference for e-mail 

newsletter subscription. 

Web registration form on B to B site often works as a gate for privileged on-line and 

off-line services. In fact, we see that B to B form asks visitors’ information for granting 

access to: whitepaper and technical documentation downloads, customer support such as 

inquiry and on-line chat, as well as off-line tradeshows and business seminars. Those 

visitors who have registered in web form are sometimes considered more valuable to 

manufacturing firm than non-registered visitors because they had taken extra time to fill 

in registration form and subscribed to the firm’s service as well as the firm could initiate 

marketing action such as sending promotional e-mail based on the registered information. 

Then, noting the importance of the form, manufacturing firm has been trying to improve 

usability of the web registration form such that it could increase number of user 

registration through the form, in other words increase in the form conversion rates.  

In this section, I analyzed three sets of web registration data and conversion rates. Those 

sets of data are relevant to three different versions of web registration form. Each set of 

data contains two and half months’ term of web access data from one manufacturer web 

site. In addition, I introduce relevant and underlying works. I analyzed a situation for 

manufacturer web registration form and argue that its exit rate poses a space for 

improvement. I illustrated and explained two types of manufacturer web registration 

forms created as a result of improvement. Finally, I analyzed exit rate of the web 

registration forms in detail.  

5.2. Initial Situation and Analysis of Web Form 

In this section, I introduce web registration form of a manufacturer site and analyze 

situation. In our previous studies, I came up with a web analytics scheme for B to B 

websites and defined B to B site conversion type and importance of user registration on 

web site in the reference [4]. In another study, I found that there was behavioral difference 
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between registered and unregistered users. Registered users tended to stay on 

manufacturer web site longer and visit more frequently than non-registered users. Thus, I 

concluded that this type of registered users’ “stickiness” to the manufacturer web site 

made registered users’ segment more appealing to manufacturer for marketing actions in 

the reference [3].  

Web registration form is typically used on B to B manufacturer web site to collect 

information of registered users. In figure 46, it shows web registration form for a 

manufacturer site. It asks users for personal information such as first name and family 

name, e-mail address. It also asks for occupational information including company name, 

department name, mailing addresses. The form allows users for setting up ID and 

password for login.  

I have gathered web form registration data for the manufacturer in two and half months’ 

term in 2009. Results are shown in figure 47 There were about 37% of users successfully 

registered or converted on the form while rest of the users were either exiting the form 

page without filling in any field or exiting the page after filling in at least one field on the 

page. In other words, the manufacturer had 63% of exit rate. Former type of users was 

amounted for 42% and latter type of users was 21% of total users on the form. These 

results told us that most of the users were exiting the registration form page without filling 

in any field on the form.  

Following the overall analysis of the form, I have studied exit rate as well as error rate 

of each field on the registration form in detail. Results are shown in figure 48. From the 

total number of users who have filled in at least one field on the form, I observed that 

23.9% of exit was happening at the name of sales distributor field, 13.1% of exit was at 

the first name field and 11.3% of exit was at the family name field. In addition, there were 

53.9% error rate at the password field. Although there are many ways to cause error on 

the registration form, for instance, a user could forget to fill in a required field, more than 

half of error was happening at the password field. 

Given these figures, we could say that lots of user were having difficulty in completing 

the registration form and resulting in the above 63% of exit rate as a whole. 

Initially, there was no special consideration about improving the web registration at the 
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manufacturer because B to B users are thought to be more purpose driven than B to C 

users who are emotional. Following their business purpose such as obtaining technical 

documentation from the manufacturer site, B to B users are more willing to fill in 

registration form. However, given the fact that many users are exiting and not even filling 

in any field on the form, the firm started to think about the cause of the exit rate result.  

One possible case was that the registration form asked too much to the users. The form 

had 22 input fields of which 12 fields are required to fill in. This number of input fields 

could be acceptable for certain users, namely existing customer of the manufacturer who 

was looking for technical support documentation working on product. However, this 

might not be the case for prospective customers who were just taking a look at the firm’s 

product or comparing firm’s offering to competitors. If this case held true, the firm was 

losing prospective customers on its web registration form. Then, the firm came to 

conclude that it needs classification for users.  

To be more precise, the firm classified users into two types. One type is “loyal customer” 

who is actively and positively looking for the firm’s offering in detail. Second type is 

“prospective customer” who is skimming through firm’s offerings. Based on these 

classifications, the firm introduced stepwise registration procedure that allows 

prospective customer to input minimal information such as email address at first. Then, 

the customer is being asked for more information including name of sales distributors. 

This stepwise registration procedure avoids asking too much information in front and 

helps prospective customers gradually introduced to the firm’s offering while they are 

being asked for more information without intimidation. 
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Figure 46. First Version Web Form 



 

72 
 

 

Figure 47. Conversion Proportions 
 

  

Figure 48. Exit and Error Rates by Fields 
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5.3. Assessment and Analysis of Modified Web Form  

In this section, I investigate change in user registration after the manufacturer introduced 

different types of web registration form. Given the analysis of the previous section, the 

manufacturing firm has created multiple stepping user registration forms.  

I have studied the manufacturer’s web registration process starting from the entry of e-

mail address to the point of completion where registered user is able to log in his/her 

account and tried to see difference in web page visitors and relevant conversion rates. 

Conversion rates are given by number of web page visitors on a subsequent page divided 

by number of web page visitors on a previous page in the manufacturer’s web registration 

process.  Then, the difference in visitors and conversion rates are analyzed from its 

context and content perspectives. From the context viewpoint, total number of registration 

steps, number of input fields, number of required input fields and timing of which those 

input fields are presented are analyzed. Type of information being asked at a given process 

step is analyzed as a difference in content. 

In figure 49, I illustrate three different types of user registration process that the 

manufacturing firm has had on its web site for past 5 years. Given the analysis of previous 

section, the manufacturer successively introduced different registration processes and 

web forms. 
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Figure 49. Types of Registration Process 
 

First type is named “Full registration at once”. This Type 1 registration process is what 

we have seen in the previous section as the manufacturer’s initial situation in 2009. There 

were 3 steps in the registration process. In its first step, a single registration form asks 

information including e-mail address, password, first name, family name, company name 

and preferred application. Then, the process shows confirmation page as a second step 

where web form visitor confirms information entered in the first step. At last, the visitor 

sees registration completion page where it tells visitor that he/she has successfully 

registered. 

Second type is “Stepwise full registration” form that was introduced in 2013. This type 

of form features in its stepwise process. As an initial step, the form asks visitor for his/her 

e-mail address. As I have mentioned earlier, e-mail address is considered an important 

information for the manufacturer because it allows for further communication to the 

visitor. After entering an email address on a form, visitor is told that temporal registration 

has been completed on next web page. Then, the page asks visitor to check his/her email 

account corresponding to the email address entered in the previous form page. 
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 When the visitor opens email account, he/she finds an email from the manufacturer. 

Furthermore, the visitor is asked to click an URL to come back to manufacturer site in 

order to complete registration procedure. This procedure for sending email to entered 

email address and reconfirming visitor’s intention for registration is called double opt-in. 

In this figure, I take these procedures from the temporal registration completion to the 

URL click as a single “Confirmation” step in order to simplify our argument. When visitor 

is returning to the manufacturer site, as a third step, another form asks visitor for setting 

password, providing name, company name etc., as it was the case for the Type 1 

registration process. At its fourth step, visitor is asked to confirm entered information in 

the previous step. Then, the visitor proceeds to service preference registration form page 

as next step. This form asks visitor to specify product type such as microcomputer, analog 

device, and system-on-chip. The form also asks visitor if he/she prefers to receive 

information from the manufacturer including email newsletter and seminar information. 

Finally, the visitor reaches to registration completion page similar to Type 1 above. 

Last type of the manufacturer’s registration form is named “Step wise simple 

registration”. This type represents the latest registration form on the manufacturer’s web 

site that was launched in 2014. Type 3 registration form features not only in stepwise 

process but also in simplified and prioritized questions of the form. Purpose of Type 3 

registration process is to gather minimal amount of information from visitors such as 

email address and service preference. Then, through its marketing communication, the 

firm collects rest of visitors’ information such as company name. First couple of steps is 

similar to what we have seen in Type 2 above. The registration form asks visitor’s e-mail 

address. Then, through its double opt-in registration procedure, visitor is asked to confirm 

his/her intention for registration. Once, visitor comes back to the manufacturer’s web site 

by clicking URL embedded in an e-mail, he/she is asked to set password. This is where 

we see difference in registration process between the Type 2 above and Type 3. As I recall 

Type 2, the form asked visitor to entre more information. After setting password, the 

visitor is directed to another form where he/she is asked for service preference. Then, the 

visitor is introduced to registration completion page similar to the other types. Comparing 

to Type 2 registration process, confirmation page after the password entry page has been 

omitted due to less amount of information being entered in Type 3. In other words, the 
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manufacturer made decision not to have the confirmation page in Type 3 registration 

process since there were only password entry and password confirmation field already 

built-in the previous page. Given these types of registration forms, I would like to 

investigate further their difference in number of visitors and conversion rates below. 

In table 18, we have comparison of the registration forms. Each type of registration 

forms is depicted by step description, visitor, total conversion, step conversion, input 

fields and required fields. Step description column gives overview of each registration 

steps in terms of the type of information. Visitor column counts number of web page loads 

as a figure for web page visitors. Total conversion column shows proportion of visitors 

who get to certain step of registration process. This is given by number of visitors at a 

registration step divided by number of visitors at an initial registration step. Step 

conversion column shows proportion of visitors who get to certain step of registration 

process from immediately preceding step. This conversion rate is calculated by number 

of visitors at a registration step divided by number of visitors at an immediately preceding 

step. Input fields show number of items on web registration form. Required fields count 

for number of fields that causes error without visitors’ fill-in. I have studied about 25,000 

web site visitors’ record in three different periods along with the manufacturer’s 

registration form change. Data acquisition periods are the followings: August to 

November (2009), November to January (2013) and November to January (2015). Detail 

of data acquisition is described in table 19. From these data, I would like to give overall 

observation and analysis of the forms. 
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Table 18. Number of Visitors and Conversions Fields 
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Table 19. Data Description 
 

 
 

In table 18, we have comparison of Type 1 and Type 2 of the manufacturer’s registration 

form. At the last registration step, total conversion rate of Type 1 form and Type 2 is 19.6% 

and 30.3% respectively. The manufacturer modified its registration form based on what I 

have found in the previous section. As it turns out, the modification improved registration 

conversion rate. I believe that contextual difference has made Type 2 form convert more 

visitors than Type 1 form. Type of information being asked on Type 2 form is similar to 

Type 1 form. Both forms ask visitors’ e-mail, password, personal information as well as 

occupational information. However, timing of asking such information is different. As I 

recall, Type 1 asked all information on the first step while Type 2 asked password, 

personal information and occupational information on the third step. I observed that this 

stepwise registration process that separates registration process and gathers visitors’ 

information gradually is more effective. At their fourth step of the process, Type 2 has 

50.7% of total conversion rate while Type 1 has 37.5%.  

In table 18, we have comparison of Type 2 and Type 3 of the manufacturer’s registration 

form. If we take a look at sixth step, Type 2 and Type 3 have 30.3% and 49.7% of total 

conversion rate respectively. It seems more visitors are willing to register on the firm’s 

Type 3 registration form than Type 2. An increase in total conversion rate from Type 2 to 

Type 3 can be explained by the followings: total number of registration steps, total number 

of input fields, and type of information being asked.  Total number of registration steps 

is decreased from Type 2 six steps to Type 3 five steps. Total number of input fields is 

decreased from Type 2 thirty four fields to Type 3 nine fields. In terms of required fields, 

total number is also decreased from Type 2 nineteen fields to Type 3 nine fields. The 

Type 1. Full registration at
once (2009)

Type 2. Step wise full
registration (2013)

Type 3. Step wise simple
registration(2014)

Period
2009/8/1 -2009/11/11 2013/11/1-2014/1/15 2014/11/1-2015/1/15

Number
of Visitor
Records
Studied 2,237 11,833 10,950



 

79 
 

decreased total number of registration steps, input fields and required fields would mean 

less time for visitors to complete the manufacturer’s registration procedure. In other 

words, shortened time to register produced less chance for visitors getting disturbed while 

they are working on registration process. Therefore, Type 3 brought more visitors at the 

end. Moreover, Type of information being asked is different. In Type 2 registration 

procedure, it asked personal and occupational information at the third step of registration. 

Some visitors could compare importance of their personal and occupational information 

against the manufacturer’s expected service for registered users. Then, they could exit the 

Type 2 registration procedure because their information weighted more than the expected 

firm’s service offering. Therefore, I believe that decreased total numbers of registration 

steps, input fields as well as type of information are helping visitors to sign up more in 

Type 3 than in Type 2 registration process.  

We have taken a look at service difference by registration process. When we look at the 

Type 3 process from the service provisioning perspective, we notice that the Type 3 has 

two distinctive processes; e-mail registration process that ranges from the first to third 

step as well as full registration process that is the last two steps of the Type 3 registration. 

E-mail registration gives user an access to the manufacturer’s newsletter that carries 

promotional and support information about the manufacturer’s product. In addition, the 

full registration gives user an access to document download service as well as a 

personalized newsletter that delivers promotional and support information tailored to 

user’s preference.  

When there are such two steps as e-mail registration and full registration, there are users 

who registered only for e-mail. Within the only e-mail registered users, there may be users 

who are satisfied with the services such that stop proceeding to full registration.  

In addition, there may be users who are tired of registering further information so that 

stop proceeding to full registration. When we assume the former type of satisfied users 

are visiting the manufacturers web site at least twice with their “only e-mail registration” 

account, there are 24 visitors (less than 1% of initial Type 3 visitor of 3,351). Further, 

when we assume the latter type of tired users are visiting the manufacturer’s full 

registration page with their “only e-mail registration” account without full registration, 

there are 64 visitors (about 2% of initial Type 3 visitor of 3,351). In next paragraphs, I 
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would like to investigate Type 3 further. It is the latest registration forms and its process 

in detail. 

In table 18, Type 3 registration has 3,351 visitors for its initial e-mail registration step 

and 2,320 for temporary completion, which give 69.2% of conversion rates (i.e. for total 

and step conversion rates since initial rates are same for both metrics). Although it has 

similar steps, Type 2 has 82.1% conversion rates from its 3,256 visitors for e-mail 

registration and 2,673 visitors for temporary registration.  

On the e-mail registration page, Type 3 has five input fields all of which are required 

fields. On the other hand, Type 2 has four input fields, which are also required fields. 

Thus, as it was the case for entire registration process, having another field on the e-mail 

registration page could cause lower conversion rate for Type 3.  

Taking closer look at the e-mail registration, we have side-by-side comparison of Type 

3 and Type 2 registration step in figure 50. I notice that there are two major differences in 

between the Type 3 and Type 2 e-mail registration form. First, I note that there is an 

additional input field, namely a privacy and website policy agreement field, on the Type 

3 e-mail registration form. This field asks visitor to accept the manufacturer’s policy by 

filling in a check box field. I tend to think this field hinders visitors from moving to next 

page. 

There is rise in privacy concern in Japan due to large companies’ misconduct or 

mismanagement of personal information shown in reference [53]. Although it is 

legitimate to place a policy field for asking visitors’ consent, this additional field may 

remind them of personal information mistreatment. In addition, the policy field has two 

web page links. One is a link to external website policy page and the other is another 

external link to privacy policy of the manufacturer. These external links are supposed to 

let visitors confirm policy in detail. However, these links open different web pages with 

policy statements taking visitors time to read through. If there is more time for completing 

a registration step, then there is also chance for visitors to get distracted and to walk away. 

In other words, those external links could take visitors away from the registration step. In 

sum, an additional privacy and website policy field with external links caused lower 

conversion rate for Type 3. 
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Figure 50. E-mail Registration Step 
 

Moving to the next step of Type 3 registration where we see a gap from Type 2, in table 

18, Type 3 registration has 2,320 visitors for its second temporary completion step and 

1,860 for password registration that give 80.2% of step conversion rate. Comparing with 

its counterpart, Type 2 has 2,673 visitors for the second step and 1,808 visitors for 

password and other information registration step with 67.6% of step conversion rate. As 

we recall, this registration step is where we see double opt-in procedure. Visitors are 

directed to their email account to open and click upon an e-mail from the manufacturer. 

Therefore, I tend to look at the temporary completion web page as well as e-mail content 

in figure 51 in order to fully investigate possible causation of the conversion rate gap. In 
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figure 51, though “Close” button in Type 3 is coloured in grey while the Type 2 button is 

coloured in red, temporary completion pages do not show much difference in such a way 

that Type 3 has higher step conversion rate than Type 2.  

I note differences when we have closer look at e-mails in Type 2 and Type 3 in figure 

52. First, we see that number of embedded hyperlinks is decreased from Type 2 four to 

Type 3 three. As we have seen in the above, external links could drag visitors away from 

registration steps. Furthermore, the links in Type 3 e-mail are link to next registration step, 

link to privacy policy, link for inquiry about the email (i.e. the manufacturer’s web site). 

In Type 2 email, there was another link to cancel registration or delete user profile. Hence, 

this additional link to stop registration could also explain lower step conversion rate in 

Type 2. 

 

Figure 51. Temporary Completion Step 
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Figure 52. Temporary Completion Step 
 

Lastly, I identify a step conversion rate gap in the last couple of steps in table 18. Type 

3 registration process has 94.8% step conversion rate from 1,755 service registration page 

visitors and 1,664 completion page visitors. On the other hand, benchmarking Type 2 has 

1,509 visitors and 987 visitors that give 65.4% respectively. One possible causation for 

the higher step conversion rate of Type 3 process is that it has less input fields. In fact, 

Type 2 has six input fields, none of which is required. Type 3 has two input fields, all of 

which are required fields. Nonetheless, I believe that having less input fields does not 

concretely explain higher conversion rate for Type 3 because visitors are required to select 

at least couple of services in the Type 3 step. When an input field is optional on 

registration form, then visitors are able to proceed even if they forget to select or enter 

one. However, when it is a required field, if visitors forget to select or enter a field, then 

they see error. In such a circumstance, not all visitors are taking time to fix error but rather 

exit. In short, having additional required fields on registration form could bring 

conversion rate down. Aside from the number of input and required field, we argue that 

the higher step conversion rate is resulting from clarity and usability of the registration 

form.  
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In Figure 53, I illustrate service preference registration form at the fifth steps. Type 3 

form asks visitors two kinds of questions. One is about product selection for which 

visitors would like to receive communication. Visitors see general product categories such 

as “Micro-Processing Unit (MPU)” and “Software and Tools” with expandable nodes. 

Once a node is clicked, the node expands selected product category and shows 

manufacturer’s specific product categories in order to narrow down product selection. 

The other question is about application for which visitors are interested in. Visitors are to 

choose type of usage from checkboxes. At the bottom of the page, it has two buttons. One 

is to undo selection. The other is to proceed to next step highlighted in green. On the other 

hand, Type 2 form has a single question with sentences of instruction. It asks visitors to 

register for preferred services. 

There is a structured pull-down set of fields at the top. These fields are labelled with 

mixture of general and manufacturer’s specific product categorization. At the middle of 

the page, there is a table to store selected product categories with a link to reset product 

selection. Furthermore, Type 2 form has an area for selecting application and customer 

support services including newsletter below the table. At the bottom of the page, it ends 

with three buttons. One is to cancel registration. Another is to go back to previous step. 

The other is to proceed to next step. These buttons are all coloured in red.  
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Figure 53. Service Information Registration Step 
 

Given the above user interface and orientation of registration forms, I believe that Type 

2 form was relatively more complex and confusing than Type 3 form such that Type 3 has 

higher conversion rate. For instance, the Type 2 page asks visitors to select product from 

the pull-down fields and to store selected product in the table even for those visitors who 

are unfamiliar with the manufacturer’s product offerings. In addition, an interaction of 

pull-down fields and the table repository may not be obvious for first time visitor without 

reading through the instruction.  

In addition, the manufacturer’s product terminologies applied to pull-down fields’ name 

makes production selection difficult for unfamiliar visitors. Moreover, the three buttons 

located at the bottom of the form are not differentiated because they are coloured same. 

Therefore, I supposes usability of Type 2 form was a causation for lower step conversion 
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rate. Additionally, those buttons even offer cancelation of registration as well as revert to 

previous page that contextually bring step conversion down. I believe that website design 

norm “If you confuse them, you lose them” is true. This saying highlights an important 

website or service design perspective. In other words, designer has to pay special attention 

to customer’s usability by understanding customer’s language as opposed to that of 

business when they design website or service (Price, 2008).  

In table 20, I have conducted follow-up research and analyzed different set of data for 

Type 3 form. It shows visitors’ registration tendency by timeframe. There are about two 

thirds of visitors who have registered to the manufacturer’s service on same day or less 

than one day of first visit. In addition, their conversion rates are approximately 67%.   

Although, I have traced registration for another week and even for a month and more, 

conversion rates are greater than 67%. Possible reasoning behind this registration 

tendency is that visitors who have entered the registration process are eager to finish 

registration process. In other words, visitors are urged to use the manufacturer’s online 

services such as technical document download. 

 

Table 20. Visitor Conversions by Timeframe 

 
 

 

5.4. Chapter Summary 

As we have seen above, on-line user registration form is a critical marketing entry point 

for B to B manufacturer because it allows not only to filter registered website visitors 

Registration Timeframe Visit Register
Conversion
Rate

Day of Visit 861 582 67.60%
Less than 1 day 624 418 66.99%
Less than 7 days 311 212 68.17%
Less than 30 days 230 157 68.26%
More than 30 days 256 174 67.97%

Total 2,282 1,543 67.62%
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from non-registered but also to communicate to them. 

 In this study, I have pointed a case from manufacturer and investigated initial situation 

where the firm had non-negligible exit rate due to the demanding on-line user registration 

form. I have historically tracked the manufacturer's on-line registration forms and their 

resulting figures such as number of visitors and relevant conversion rates. Then, I have 

analyzed the context and content of the manufacturer's web registration forms using those 

web registration form metrics as key. From the context perspectives, I demonstrated that 

number of registration steps, number of input fields and number of required fields, could 

be a factor of the conversion differences.  

Furthermore, we found type of information being asked, embedded external links and 

registration form usability are critical factors from content viewpoint. Henceforth, given 

this result of registration form conversion study, I intend to look into other web conversion 

factors including document downloads, seminar registration, and sales inquiries and so 

on. In addition, I tend to study for relationship between registration timeframe and 

customer business momentum. For instance, if customers are urged to use manufacturer’s 

web service, then the customers are at later stage of their project than other customers are. 

Then, I aim for studying and publicly communicating those practical B to B marketing 

topics. 

 

6. Conclusion 

 

I have tried to clarify methodology on web analytics for B to B web site. I have two 

following premises for values of web analytics for B to B manufacturer companies. (1) 

Improve and optimize the site in user behavior and (2) Use in marketing activities like as 

knowing user requirements.  

Visitors to B to B web sites have a variety of goals and web site requirement has different 

characteristics from B to C like more over-session accesses. 

Firstly, I developed web analytic framework including path analysis, participation to 

conversion, user registration analysis for carrying out site optimization for usability and 
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making use of data for marketing. I confirmed that especially user registration is 

important.  

Next, I tried to use page dwell time as additional KPI metric as well as typical KPI 

metrics. Also confirmed page dwell time is effective to measure user stickiness to web 

sites. In particular, page dwell time is much related to various types of conversion in a B-

to-B site. In addition, when we think about website structure improvement, looking at 

page dwell time can be one good metric. We can test usability or expected page flow with 

the results of dwell time as well as page views.  

In addition, I developed analytic segmentation model and examined web access 

effectiveness using some segments like information, user environment, user behavior, and 

business.  

One of the most important segmentations is registered users versus unregistered users. 

User behaviour is very different with each use case. Bounce rate, referrer (how they reach 

the site), and exit page analysis especially are beneficial and we can see that registered 

customers’ stickiness to the site/company is much stronger than that of unregistered users. 

This can be measured by some metrics by segment, like duration of visit. 

I surveyed correlation of access by user environment. There are correlations between 

time of day or correlation between connection types such as connecting through a 

provider or through a company network. I used some key web metrics such as visits and 

page dwell time for our correlation survey. I noticed user environment segments with a 

correlation approach can be used for web analytics for user navigation studies or even 

marketing use. 

Finally, I have pointed a case from manufacturer and investigated initial situation where 

the firm had non-negligible exit rate due to the demanding on-line user registration form, 

which is important user behaviors for manufacturer site. I have tracked the manufacturer's 

on-line registration forms and their resulting figures such as number of visitors and 

relevant conversion rates. Then, I have analyzed the context and content of the 

manufacturer's web registration forms using those web registration form metrics as key. 

From the context perspectives, I demonstrated that number of registration steps, number 

of input fields and number of required fields, could be a factor of the conversion 
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differences. Furthermore, I found type of information being asked, embedded external 

links and registration form usability are critical factors from content viewpoint. Since 

there was little study for B to B web analytic and basic methodology for it is. 

Methodology is provided with actual data in this study. 
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