
Essays on Competitive Equilibria in Markets with 

Indivisibilities: Theory and Applications 

 

 

 

 

 

 

March ２０１６ 

 

Seiken Sai 



Essays on Competitive Equilibria in Markets with 

Indivisibilities: Theory and Applications 

 

 

 

Graduate School of Systems and Information Engineering 

University of Tsukuba 

 

March ２０１６ 

 

Seiken Sai 
 



ACKNOWLEDGEMENTS

I am deeply grateful to Ryuichiro Ishikawa for his excellent support and guidance through-

out the doctoral program. I am also grateful to Yoshitsugu Yamamoto, Eizo Akiyama, Naoki

Watanabe and Morimitsu Kurino for their valuable comments and suggestions on an earlier

version of this dissertation; Kyota Eguchi for accepting to be my advisor.

I am also deeply grateful to my undergraduate and master�s programs supervisor Mamoru

Kaneko. Without his support and guidance, I could not publish Chapter 2. I am also grateful

to Atsushi Kajii for valuable comments on Chapter 2. I would like to thank Zsombor Méder

for proofreading Chapter 2; Yoichiro Fujii, Michiko Ogaku, Shuige Liu, Keizaburo Enmei and

Hirofumi Kamiakutsu for giving me the opportunity to study economics and mathematics

together.

Finally, I would like to thank my father, mother, grandfather and grandmother for their

�nancial and moral supports.

1



ABSTRACT

This dissertation consists of three essays on markets with indivisibilities where each buyer

wants at most one indivisible good and each seller provides more than one unit. Unlike the

standard literature of markets with indivisibilities, quasi-linearity is not assumed for utility

functions of buyers.

The �rst essay (Chapter 2) studies the structure of competitive equilibria. The main

result shows that for each type (say t) of indivisible goods, if there are multiple competitive

equilibrium prices for type t, then the competitive equilibrium quantity for type t is unique;

in the same manner, if there are multiple competitive equilibrium quantities for type t, then

the competitive equilibrium price for type t is unique. As a corollary of the main result, the

set of competitive price vectors shrinks to a unique point when a market has a large number

of sellers. It is also argued that the main result cannot be extended to a market model where

each buyer may demand more than one unit of indivisible goods.

The second essay (Chapter 3) evaluates the di¤erence between the upper and lower bounds

of the set of competitive price vectors. The upper and lower bounds are calculated by

certain systems of equations, respectively. The main result shows that the di¤erence between

the upper and lower bounds of competitive price vectors is bounded by the di¤erence of

incomes of two speci�c households. The main result implies that the di¤erence tends to zero

when the number of households is large and their incomes are distributed in a relatively

continuous manner. and thus, the calculated upper (lower) bound is a good approximation

for a competitive price vector.

The third essay (Chapter 4) studies the relation between income distribution and housing

rents based on the market model with indivisibilities (housing is classi�ed into �nite cate-

gories by quality). In particular, it is examined that how rising income inequality a¤ects

a competitive rent vector. The main result shows that there are three cases when income

inequality increased: (1) competitive rents rise in every housing category, (2) rents rise in

upper-categories but fall in lower-categories, or (3) rents fall in every category. The second

result shows that case (1) is a special case. It is also argued with numerical examples that

it tends to show case (3) as the diminishing rate of marginal utility for housing quality gets

larger; equivalently, the diminishing rate of marginal utility for composite goods gets smaller.
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Mathematical Notations

Throughout the dissertation, vectors are written by small letters a; b; x; y; etc., while sets

are written by capital letters A;B;X; Y; etc. The t-th component of vector x is written by

xt. Other symbols and notations are listed below (In the list, vectors are T -dimension).

Symbol Meaning

x � y xt � yt for all t = 1; :::; T:

jxtj The absolute value of xt.

ax The inner product of a and x (
PT
t=1 atxt).

X � Y The set Y weakly includes X (x 2 X implies x 2 Y ).

XnY The set fx : x 2 X and x =2 Y g:

jXj The cardinality of the set X.
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Chapter 1

Introduction

1.1 Markets with indivisibilities

In the traditional Arrow�Debreu�s general equilibrium model, commodities are assumed to

be perfectly divisible. The perfect divisibility enables us to apply calculus depending on

continuity of utility functions to the model. The assumption of perfect divisibility is suitable

for economies where the amount of consumption/production is large for every economic agent

and also the amount can be freely chosen. On the other hand, markets with indivisibilities

are common in the real world (e.g., housing, labor or license markets). These markets are

not suitable for general equilibrium model, because in such markets, small (discrete) number

of units are demanded/supplied by consumers and/or producers. Unlike general equilibrium

model, in markets with indivisibilities for which the di¤erential method is not applicable, it

can not be said that an analytical method is well established. In this dissertation, we aim

to develop methods for studying markets with indivisibilities. In particular, we focus on the

market model where each consumer wants at most one indivisible commodity.

The seminal study of markets with indivisibilities is found in Böhm-Bawerk (1891). The

author considered the horse market where the economic agents are divided into sellers and

buyers, each seller owns one horse for sale under his reservation price, and a buyer wants to

buy exactly one horse under his valuation price. The horses to be traded are assumed to be

homogeneous, i.e., all the horses are non-di¤erentiated and exchanged in the same market

price. In such a model, the author studied how one (or both) side competition a¤ects the

market price formation.

Shapley and Shubik (1972) also studied two-sided market where each buyer (seller) de-
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mands (supplies) at most one unit (their model is called the assignment game). The authors

apply the framework of cooperative game theory. Unlike Böhm-Bawerk, the authors allow

commodity di¤erentiation for indivisible goods. In this sense, Böhm-Bawerk�s market game

is a special case of the assignment game. This generalization allows us to study such sit-

uations that each buyer wants (chooses) exactly one unit from several types but the same

kind of indivisible units.1 The authors proved the non-emptiness of the core by using linear

programming problem. The assumption of quasi-linearity (QL) for players�utility function is

then crucial for the application of linear programming (nevertheless, QL is not necessary for

the existence of the core).2 The authors also proved that the core always coincides with the

set of competitive allocations. This equivalence theorem shows a di¤erence between the mar-

ket with and without indivisibilities, because in general equilibrium model the equivalence

between the core and competitive allocation is obtained only under a large replica economy.

Another result by the authors is that the core contains two speci�c imputations: buyer-

optimal imputation and seller-optimal imputation. Buyer-optimal imputation corresponds

to the minimum competitive price vector, and seller-optimal corresponds to the maximum

competitive price vector.

As with the assignment game by Shapley and Shubik, most literature of market with

indivisibilities assumed QL on a utility function. QL requires linearity for utility of money,

which ignores income e¤ects on buyer�s demand on indivisible commodities. Therefore, QL

is inappropriate to markets where objects of trade are large relative to the expenditure such

as housings. Kaneko (1982) generalized the assignment game to the model where QL is not

required for buyers�utility functions and each seller may provides more than one indivisible

good of the same type. This market model is called a generalized assignment market (GAM).

While Shapley and Shubik applied linear programming for the proof of the existence of the

core, Kaneko used the main theorem of Scarf (1967) for the existence of that.3 The author

also proved the equivalence between the core and competitive equilibria under some condition.

1For instance, a typical household wants one dwelling in a lifetime, but his preference for housing types may
di¤erent from each other (e.g., sizes, locations, etc.). The assignment game can describes such a situation.

2Formally, the assignment game is de�ned as follows. Let M = f1; :::;mg be the set of buyers and N =
f1; :::; ng is the set of sellers. Let vij � 0 be the buyer i 2 M�s valuation price for indivisible object of seller
j 2 N , and rj � 0 be the reservation price of seller j. By the assumption of quasi-linear utility function, the
assignment game can be simply described by matrix form A = (aij)(i;j)2M�N where aij = maxfvij � rj ; 0g
and its characteristic function is de�ned by v(S) = max[ai1j1 + ai2j2 + � � � + aikjk ] where i1; :::; ik 2 S \M
and j1; :::; jk 2 S \N .

3The main theorem (Theorem 1) of Scarf (1967) states that the core of a balanced game is non-empty.
Kaneko (1982) proved a generalized assignment game is balanced game [the proof relies on the main theorem
of Shapley and Scarf (1974)].
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This dissertation follows the GAM model by Kaneko. As stated earlier, the existence of

competitive equilibrium is guaranteed by the study of Kaneko. On the other hand, there may

exist multiple equilibria, and the structure of equilibria is not clear. This makes applications

of GAM in comparative statics di¢ cult. Therefore, the main purpose of our study is to

clarify the structure of competitive equilibria in the GAM model. To be precise, we study

characteristics of the set of competitive equilibria. Furthermore, as an application for the

GAM model and our obtained results, we study comparative statics analyses in housing

markets.

1.2 Brief review of other related literature

Here, we brie�y summarize other researches related to our study.

In this dissertation, we also investigate the existency of competitive equilibrium in markets

without QL where each buyer may demand �more than one unit�of an indivisible good. Un-

der the assumption QL, some researchers study an existence condition of the core/competitive

equilibria in such markets. Kelso and Crawford (1982) showed that the gross substitute (GS)

condition is su¢ cient for the existence of the core/competitive equilibria.4 Gul and Stacchetti

(1999) also showed GS is a necessary condition for the existence of equilibria. However, it

is an open question whether their results can be extended to market models �without�QL.

For an answer, we give an example where GS holds but no competitive equilibria without QL

(Section 2.4 of Chapter 2).

We also state Pareto e¢ ciency and incentive compatibility of the GAM model (Section

2.2 and Appendix A of Chapter 2). These properties are studied in a �eld of auction theory.5

We show that every competitive equilibrium in GAM satis�es Pareto e¢ ciency (Appendix

A of Chapter 2). Furthermore, we discuss incentive compatibility in GAM (Section 2.2 of

Chapter 2). Incentive compatibility is considered as an important property to design the

trading mechanism, since in such a one-shot trade, agents have incentives to disguise with

their own preferences to in�uence the �nal outcome. The most related study is Demange and

Gale (1985). The authors proved that in Shapley and Shubik�s assignment game without QL,

4GS is a condition about a buyer�s individual demand correspondence. In words, a demand satis�es GS i¤
rise in price for some goods causes the demands for the other goods remain the same or increase.

5 In auction theory, trades are considered to be held one-shot. On the other hand, the GAM model supposes
an application for housing markets, and a competitive equilibrium is considered as market equilibrium after
long time trading rather than one-shot trading.
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an allocation rule to select a minimum competitive equilibrium satis�es strategy-proofness

for buyers.6 Recent research by Serizawa and Morimoto (2015) proved that in Demange and

Gale�s model without sellers, an allocation rule to select a minimum competitive equilibrium

is the only rule to satisfy strategy-proofness. Since the assumption for buyers in GAM is

same as Demange and Gale�s model, we can directly extend their results, i.e., in the GAM

model, an allocation rule to select a minimum competitive equilibrium is the only rule to

satisfy strategy-proofness for buyers.

We also investigate fairness of competitive equilibrium allocation in GAM (Appendix C

of Chapter 4). Svensson (1983), Alkan, Demange and Gale (1991) and Sakai (2007) studied

the theory of fairness to markets with indivisibilities.7 ;8 The main problem is how to �fairly�

allocate indivisibles by monetary translation: the indivisibles represents not only private

goods but also bads with public nature (e.g., a society tries to determine the place of garbage-

disposal facilities). It is shown by Svensson (and also Alkan et al.) that there exists a equitable

allocation; every equitable allocation is Pareto e¢ cient (thus every equitable allocation is fair)

and; the set of equitable allocation coincides with the set of competitive allocation with equal

income. In Appendix C of Chapter 4, we brie�y mention fairness of competitive equilibrium

in our market model. It is a result that a competitive allocation is fair if and only if every

household has the same income.

1.3 Chapter overviews

The dissertation consists of three essays (Chapter 2, 3 and 4). Chapter 2 investigates math-

ematical structures of the set of competitive equilibria under basic assumptions. Chapter

3 investigates the di¤erence between the upper and lower bounds of the set of competitive

price vectors under some additional assumptions. The market model of Chapter 3 aims an

application for housing markets. Chapter 4 gives comparative statics analyses in the market

model of Chapter 3. Details are described below.

Chapter 2 examines characteristics of the set of competitive equilibria in GAM. As men-

6We give de�nitions. An allocation (or auction) rule is a function from the set of agents�preference pro�les
to the allocation. An allocation rule is strategy-proof i¤ it is a dominant strategy for each agent to announce
his true preferences.

7Their model also assumed that each buyer demands at most one unit of an indivisible good.
8The original de�nition of fairness is �rst given by Foley (1967). According to him, an allocation is called

fair i¤ (1) an allocation is Pareto e¢ cient and (2) every agent is utility maximized with his consumption
compared to any other agent�s consumption.
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tioned earlier, there exists a competitive equilibrium in GAM (Kaneko, 1982). On the as-

sumption of the existence of a competitive equilibrium, we show the structure of the set of

competitive equilibria. Let T (� 1) be the number of types for indivisible goods and �x ar-

bitrarily a type t (1 � t � T ). The main result shows that the set of competitive equilibria

has the non-simultaneous multiplicity structure for each type of indivisible goods: if there

are multiple competitive equilibrium prices for type t, then competitive equilibrium quantity

of type t is unique; equivalently, if there are multiple competitive quantities for type t, com-

petitive price of type t is unique. This structure is well-known in the case of no commodity

di¤erentiation (Böhm-Bawerk�s market game). The main result implies that even if we allow

commodity di¤erentiation, this non-simultaneous multiplicity holds separately for each type

of goods. Based on the main result, we give the second result on the evaluation of the sizes

of the sets of competitive prices and quantities. As an application of these two results, we

give a shrinkage theorem on the set of competitive price vectors. We also study whether our

results can be extended to a market model where each buyer may demand more than one

unit of an indivisible good: we argue that our results can not be extended even if demand

corresponding of each buyer satis�es GS condition.

Chapter 3 evaluates the di¤erence between the upper and lower bounds of the set of

competitive price vectors in the application model of GAM. In the analysis, the following

assumptions are added: identical utility function and normality of indivisible goods. This

market model assumes the rental housing market and is introduced by Kaneko (1983) and

Kaneko, Ito and Osawa (2006). Under additional assumptions, the upper and lower bounds

of the competitive price set are calculated by certain systems of equations, respectively. The

upper (lower) bound coincides with the maximum (minimum) competitive price vector under

some condition. The main result shows that the di¤erence between the upper and lower

bounds of competitive price vectors is bounded by the di¤erence of incomes of speci�c two

households. Since this two households are adjacent to each other with respect to income, the

main result implies that the di¤erence tends to zero when the number of households is large

and their incomes are thickly distributed. Therefore, the calculated upper (lower) bound is a

good approximation for a competitive price vector. Throughout Chapter 3, the main result

of Chapter 2 is applied and used for the analysis.

Chapter 4 studies the relation between income distribution and housing rents based on the

rental housing market model by Kaneko, Ito and Osawa (2006), where housing is classi�ed into

12



�nite categories by quality. In particular, we investigate how rising income inequality a¤ects

a competitive rent vector. The main comparative statics result shows that when household

income inequality increases, either (1) increased rent for every housing category; (2) increased

rent for housing of upper-quality category but decreased rent for that of lower-quality cat-

egory; (3) decreased rent for every housing category. (1) and (3) seem as counterintuitive

because it is natural that rising income inequality causes a decline in rent for lower categories

and a rise in rent for upper categories. Indeed, the second result shows that case (1) is a

special case, while (3) may not be a special. We also argue with numerical examples that

it tends to show case (3) as the diminishing rate of marginal utility for housing quality gets

larger or the diminishing rate of marginal utility for composite goods gets smaller. Since the

diminishing rate of marginal utility is related to the marginal rate of substitution, this obser-

vation implies that there is a certain tendency between the marginal rate of substitution and

rent changes. Note that analyses of Chapter 4 rely on evaluation result on the competitive

rent vector, which is shown in Chapter 3.
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Chapter 2

Characteristics of Competitive

Equilibria in Assignment Markets

2.1 Introduction

In this chapter, we study the structure of the set of competitive equilibria in an assignment

market. This market consists of two types of economic agents; sellers and buyers. The objects

of trade are several types of indivisible goods and a perfectly divisible good (money). Each

seller may provide multiple units of an indivisible good, but each buyer demands at most

one unit of an indivisible good. We adopt the model of the generalized assignment market

(abbreviate it as GAM) from Kaneko (1982).

The GAM model is a generalization of Shapley and Shubik�s (1972) assignment market

model in that each seller may provide multiple units of an indivisible good and the quasi-

linearity (QL) assumption on utility functions of buyers is removed. Kaneko (1982) proved

the existence of a competitive equilibrium in the GAM model, while Kaneko (1983) applied

the GAM model to housing markets.

The GAM/assignment model targets economic problems of indivisible objects such as

houses, cars, and labor. There is a salient di¤erence from the standard general equilibrium

model with perfectly divisible goods (cf., Mas-Colell, Whinston and Green, 1995). One exam-

ple is that the core of the assignment model coincides with the set of competitive allocations

(Kaneko, 1982; Quinzii, 1984), while in the general equilibrium model, this coincidence can be

obtained in a large replica economy (Debreu and Scarf, 1963). The structure of competitive

equilibria in the GAM model also di¤ers considerably from those in the general equilibrium

14



Figure 2.1: The possibilities for the structure of c.e. without commodity di¤erentiation.

model. In this paper, we give three theorems for the structure of competitive equilibria, from

which we can observe clear di¤erences between the structures of competitive equilibria for

the general equilibrium and GAM models.

The main theorem of this paper is Theorem 2.3.1 in Section 2.3. We provide another

theorem, Theorem 2.3.2, on the evaluation of competitive prices/quantities. From those

theorems, we obtain the shrinkage result, Theorem 2.5.2, which states that as the market

size increases, the set of competitive prices shrinks to a unique price. In this introduction,

we describe Theorem 2.3.1, and brie�y mention the other theorems.

Let T (� 1) be the number of types of indivisible goods, and let t be an integer with

1 � t � T .

Theorem 2.3.1. If there are multiple competitive prices for good t, then the equilibrium

quantity of t is unique; if there are multiple equilibrium quantity for good t, then the com-

petitive price of t is unique.

Thus, Theorem 2.3.1 shows that it is not possible that the market has multiple competitive

prices and equilibrium quantities for some indivisible good t.

Theorem 2.3.1 is better understood in the case where all indivisible goods are homoge-

neous, i.e., T = 1. This special case is known as the Böhm-Bawerk horse market (Böhm-

Bawerk, 1891). When T = 1, the demand and supply schedules are expressed on two-

dimensional surface, as illustrated in Fig. 2.1. Their intersection constitutes the set of

competitive equilibria. As in Fig. 2.1, there are three possibilities for the structure of com-

petitive equilibria. In Case 1, there are multiple equilibrium prices and a unique equilibrium

quantity, in Case 2, there are multiple quantities and a unique price, and in Case 3, both are
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uniquely determined.1 Theorem 2.3.1 shows that even if we allow commodity di¤erentiation

(T > 1), this structure holds separately for each type of an indivisible good.

In the literature, some extended model is also considered where each buyer may demand

more than one unit of an indivisible good. It is known that the extended model has a com-

petitive equilibrium under the gross substitutes (GS) assumption on the individual demand

correspondence and under the QL assumption for the buyers (see Kelso and Crawford, 1982,

Gul and Stacchetti, 1999). It may be wondered if Theorem 2.3.1 can be extended to such a

model. We show that under the GS and QL assumptions, Theorem 2.3.1 can be extended to

such an extended model.

However, since our model targets an economic situation where each unit of an indivisible

good is non-negligible relative to a buyer�s income, we would like to remove the QL assumption

from our study. We provide an example, with the GS but without the QL assumption, where

Theorem 2.3.1 fails. Thus, the theorem cannot be extended only under the GS assumption.

In fact, we give another example satisfying GS but having no competitive equilibria.

Theorem 2.3.2 characterizes the size of the set of competitive prices for good t (equilibrium

quantities, respectively) in terms of marginal costs for sellers.

Based on Theorems 2.3.1 and 2.3.2, we obtain a shrinkage result, Theorem 2.5.2 on the

set of competitive prices for a large GAM. Shapley and Shubik (1972) observed, for the

homogeneous case (T = 1), that the set of competitive prices shrinks to a unique price when

a market becomes large and dense. They expected that this would also hold in the general

case (T > 1), but also stated a di¢ culty caused by the increase of the dimensionality of the

set of equilibria. In fact, we directly obtain their expected result from Theorems 2.3.1 and

2.3.2, while avoiding the di¢ culty indicated by them. Since Theorems 2.3.1 and 2.3.2 hold

for each type t, we meet no di¢ culty in the dimensionality of the set of equilibria; a shrinkage

result can be obtained separately for each type of an indivisible good.

For notational simplicity, except for Section 2.5, we assume that for each t = 1; :::; T , all

the indivisible goods of type t are provided by only one seller. However, this assumption

can be made without loss of generality when considering a competitive equilibrium. This

aggregation result will be discussed in Section 2.5.1.

This paper is organized as follows. Section 2.2 presents the GAM model. Section 2.3

1Let mc(y) (y 2 Z+) be the seller�s marginal cost of additional one unit at supply y. In Case 3, it holds
that mc(y�) = mc(y� + 1) for supply y�, and the competitive equilibrium is uniquely determined with the
price mc(y�) and supply y� + 1.
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presents two theorems about the structure of competitive equilibria. Section 2.4 is concerned

with the extendibility of our main theorem to an extended market model. Section 2.5 shows

the aggregation result of the sellers, and shows the shrinkage theorem on the competitive

prices in a large GAM. Conclusions and closing remarks are presented in Section 2.6.

2.2 Generalized assignment markets

We denote the generalized assignment market model by (M;N), where M = f10; : : : ;m0g

denotes the set of buyers and N = f1; : : : ; ng denotes the set of sellers. There are T -types

of indivisible goods to be traded for a perfectly divisible good, called money.

The consumption set for a buyer is given as X := fe0; e1; : : :; eT g � R+; where for t 6= 0;

et is the T -dimensional unit vector with t-th component 1 and e0 = 0, and R+ is the set of

non-negative real numbers. A consumption vector (et; d) 2 X with t > 0 means that a buyer

consumes one unit of indivisible good of type-t and d amount of (perfectly divisible) money.

For t = 0; no indivisible goods are consumed. The initial endowment of each buyer i 2M is

given as (e0; Ii) with Ii > 0, that is, buyer i 2M initially has an income Ii and no indivisible

goods. Each buyer wants to buy at most one unit of an indivisible good by paying part of Ii.

We de�ne buyer i�s utility function as ui : X ! R: We assume the following for ui:

Assumption A1 (Continuity and Monotonicity). For each xi 2 fe0; e1; : : :; eT g; ui(xi; d)

is a continuous and strictly monotone increasing function with respect to d.

Assumption A2 (Boundary condition). ui(e0; Ii) > ui(et; 0) for all t = 1; :::; T:

A1 needs no explanation. A2 means that a buyer prefers to keep his initial endowment

to consuming any indivisible good by paying all his income Ii.

Each seller j 2 N provides indivisible goods of exactly one type, but each may provide

more than one unit. We divide the set N into N1; : : : ; NT ; where Nt is the set of all sellers

who provide indivisible good t. Let t = 1; :::; T . We de�ne the cost function of seller j 2 Nt

as cj : Z+ ! R+; where Z+ is the set of non-negative integers, and cj(yj) represents the cost

(in terms of money) of producing yj units of indivisible goods t. For each j 2 Nt; we de�ne

the marginal cost mcj(yj) := cj(yj +1)� cj(yj) for yj 2 Z+:We assume the following for cj :

Assumption B1 (No �xed cost). cj(0) = 0 and cj(0) < cj(1):

Assumption B2 (Convexity). mcj(yj) � mcj(yj + 1) for all yj 2 Z+:
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The �rst assumption means that no �xed costs are required, but that a positive cost is

required for production. Assumption B2 is a discrete version of convexity, meaning that a

marginal cost increases by one additional unit. Note that this cost function is one-dimensional

case of M\-convex function (Murota, 2003).

The model given in Shapley and Shubik (1972) can be regarded as a special case of the

above GAM model. They assumed that each buyer i 2M wants to buy at most one unit of

indivisible good with a quasi-linear (QL) utility function, i.e., ui(et; d) = ui(et; 0) + d for all

(et; d) 2 X; and each seller j 2 N has one unit of an indivisible good for sale with reservation

price rj > 0: In A1 and A2, we do not assume quasi-linearity and allow income e¤ects in

buyers�behavior. A seller in Shapley and Shubik�s model is expressed in our model as a seller

having the cost function cj(yj) with cj(1) = rj and cj(yj) =�large�for yj � 2.

For notational simplicity, we assume that the set Nt of sellers of type t consists of one

seller, i.e.,

Nt = ftg for all t = 1; :::; T: (1.1)

This means that the sellers of type t can be represented by one aggregated seller. This

assumption can be made without loss of generality, as far as the competitive equilibrium is

concerned. This will be shown in Section 2.5.1.

In the GAM model, we consider the concept of a competitive equilibrium. Let (p; x; y) =

((p1; : : : ; pT ); (x10 ; : : : ; xm0); (y1; : : : ; yT )) be a triple of p 2 RT+; x 2 fe0; e1; : : : ; eT gm
0
and

y 2 ZT+:

De�nition 2.2.1 (Competitive Equilibrium). We say that (p; x; y) is a competitive equilibrium

i¤:

(1) Utility Maximization under the Budget Constraint: for all i 2M;

(i): Ii � pxi, where pxi =
PT
t=1 ptxit;

(ii): ui (xi; Ii � pxi) � ui (x0i; Ii � px0i) for all x0i 2 fe0; e1; : : :; eT g with Ii � px0i:

(2) Pro�t Maximization: for all t 2 N;

ptyt � ct(yt) � pty0t � ct(y0t) for all y0t 2 Z+:

(3) Balance of the Total Demand and Supply:
X

i2M
xi =

XT

t=1
yte

t:

Note that since each xi is a T -dimensional vector and each yt is a scalar, we need to

multiply yt by et: Note also that by assumption B2, condition (2) can be rewritten asmct(yt�
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1) � pt � mct(yt) for all t 2 N .2 We abbreviate competitive equilibrium as c.e.

Kaneko (1982) and Kaneko and Yamamoto (1986) prove the existence of a c.e. in (M;N).

Theorem 2.2.2 (Existence). There exists a c.e. (p; x; y) in (M;N):

We denote the set of all c.e. in (M;N) by C. We say that a pair (x; y) is a competitive

allocation i¤ (p; x; y) 2 C for some p 2 RT+: Let AC be the set of all competitive allocations

in (M;N). We say that p is a competitive price vector i¤ (p; x; y) 2 C for some (x; y) 2 AC :

Let PC be the set of all competitive price vectors in (M;N). Note that every competitive

equilibrium is Pareto e¢ cient in (M;N) (see Appendix A).

Various authors have studied the structure of the set of c.e./core in assignment mar-

kets with/without quasi-linearity (QL) for utility functions. In Shapley-Shubik�s assignment

model without the assumption QL, the core coincides with the set of competitive allocations,

while in GAM model, the latter is included in the core. The converse does not necessarily

hold. Kaneko (1982) gave a su¢ cient condition for the equivalence between the core and the

set of c.e., namely that for each seller j 2 Nt; there is another seller j0 who is of the same

type as j (Theorem 10, p. 227). It is also known that, in the assignment model with QL, the

set of competitive price vectors has a lattice structure, which guarantees the existence of the

maximum and minimum competitive price vectors (cf. Shapley and Shubik, 1972; Mishra

and Talman,2010). GAM model also satis�es that the set PC is lattice (cf. Miyake, 1994).

We conclude this section by stating incentive compatibility of our market model. Incentive

compatibility is studied in a �eld of auction theory.3 The most related study is Demange and

Gale (1985). The authors proved that in Shapley and Shubik�s assignment game without QL,

an allocation rule to select a minimum competitive equilibrium satis�es strategy-proofness

for buyers.4 Recent research by Serizawa and Morimoto (2015) proved that in Demange and

Gale�s model without sellers, an allocation rule to select a minimum competitive equilibrium

is the only rule to satisfy strategy-proofness. Since the assumption for buyers in GAM is

same as Demange and Gale�s model, we can directly extend their results, i.e., in the GAM

model, an allocation rule to select a minimum competitive equilibrium is the only rule to

satisfy strategy-proofness for buyers.
2We stipulate mct(�1) = 0:
3 In auction theory, trades are considered to be held one-shot. In such a one-shot trade, agents have

incentives to disguise with their own preferences to in�uence the �nal outcome. Therefore, it is an important
problem to study what rule which determine an allocation is compatible with such incentives.

4We give de�nitions. An allocation (or auction) rule is a function from the set of agents�preference pro�les
to the allocation. An allocation rule is strategy-proof i¤ it is a dominant strategy for each agent to announce
his true preferences.
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2.3 Characteristics of competitive equilibria

We present two theorems in Section 2.3.1. The �rst theorem states that for each indivisible

good t, it separately holds that the multiplicity of competitive prices for good t implies a

unique equilibrium quantity for t. The second theorem is about the sizes of the sets of

competitive prices and allocations. We can separately evaluate the c.e. for each type of good

using both theorems. The proofs of these theorems will be given in Section 2.3.2.

2.3.1 The structure and size of competitive equilibria

For each t = 1; :::; T , we denote the sizes of the sets of competitive prices and competitive

allocations for indivisible good t by

�t(PC) := maxf
��pt � p0t�� : p; p0 2 PCg;

�t(AC) := maxf
��yt � y0t�� : (x; y); (x0; y0) 2 ACg:

Since PC and AC are compact sets under our assumptions, we can take the maximum value

for the above de�nition. When �t(PC) > 0; there are at least two di¤erent competitive prices

for good t; and when �t(PC) = 0; there is a unique competitive price. The other cases are

interpreted in a similar manner.

The �rst theorem is about possible cases of �t(PC) and �t(AC). The proof will be given

in Section 2.3.2.

Theorem 2.3.1 (Non-simultaneous Multiplicity for Competitive Equilibria). Let t = 1; :::; T .

Then either (1), (2) or (3) holds:

(1) �t(PC) > 0 and �t(AC) = 0:

(2) �t(PC) = 0 and �t(AC) > 0:

(3) �t(PC) = 0 and �t(AC) = 0:

The theorem is equivalent to the statement that �t(PC) > 0 implies �t(AC) = 0 (and

�t(AC) > 0 implies �t(PC) = 0). Theorem 2.3.1.(1)-(3) correspond to Cases 1-3 in Fig.

2.1. As in Fig. 2.1, Theorem 2.3.1 is clear in the GAM without commodity di¤erentiation

(T = 1). Theorem 2.3.1 states that even if we allow commodity di¤erentiation (T > 1),

non-simultaneous multiplicity of competitive prices and quantities holds separately for each

good. Note that assertion (3) has two subcases: Fig. 2.1, Case 3 depicts one subcase of (3),
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where the supply schedule has a �at part. In the other subcase, the demand schedule has a

�at part.

Theorem 2.3.1 is related to Mishra and Talman (2010), Theorem 6, p.14.5 They studied

the structure of the set of c.e. in an assignment market with the QL assumption and the no-

seller assumption meaning that indivisible goods are assumed to be already supplied. Their

theorem states that PC has an interior point if and only if there exists a unique e¢ cient

allocation. The no-seller assumption is essential for the if part: it may not hold in the presence

of sellers. Fig. 2.1, Case 3 is a counterexample for this, where the price and allocation are

uniquely determined. The only-if part can directly be compared to our Theorem 2.3.1. It

follows from Theorem 2.3.1 that if �t(PC) > 0 for any t = 1; :::; T; then the competitive

allocation is uniquely determined.

Using Theorem 2.3.1, we evaluate the sizes of the sets PC and AC for good t. For this

evaluation, when the equilibrium quantity for good t is unique, i.e., �t(AC) = 0, we denote it

by y�t :When �t(PC) = 0, we denote the price by p�t : As stated in Theorem 2.3.1, the su¢ cient

condition for �t(AC) = 0 (�t(PC) = 0, respectively) is �t(PC) > 0 (�t(AC) > 0). The proof of

Theorem 2.3.2 is given in Section 2.3.2.

Theorem 2.3.2 (The Size of the Set of Competitive Equilibria). Let t = 1; :::; T . Then,

(1) �t(PC) > 0 implies mct(y�t � 1) � pt � mct(y�t ) for all p 2 PC :

(2) �t(AC) > 0 implies �t(AC) � jfyt 2 Z+ : p�t = mct(yt)gj and p�t = mct(byt), wherebyt := minfyt 2 Z+ : (x; y) 2 ACg:6
Assertion (1) states that if there are multiple competitive prices for good t; then all the

competitive prices of good t are bounded by the marginal costs mct(y�t � 1) and mct(y�t ): (2)

states that if there are multiple equilibrium quantities for good t; then �t(AC) is restricted by

the condition of seller t�s marginal costs. Although (2) allows multiple equilibrium quantities

for good t, the magnitude of multiplicity is expected to be rather small. For example, if the

cost function ct is strictly convex, then (2) implies �t(AC) � 1: The additional p�t = mct(byt)
means that the competitive price of good t is the marginal cost mct(byt). In sum, even if there
are multiple competitive prices or quantities, they are not distantly located.

5Theorem 6 of Mishra and Talman (2010) is based on Theorem 5 of them. Theorem 5 is more speci�c; it
states that p 2 PC is an interior point if and only if each good is demanded by a unique buyer and every buyer
demands exactly one good. Since our model eliminates the QL assumption and takes sellers explicitly, their
proof of Theorem 5 cannot be directly applied to our model. Nevertheless, we conjecture that this theorem
can be extended to our model.

6 jXj is the cardinality of the set X.
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2.3.2 Proofs of Theorems 2.3.1 and 2.3.2

We give proofs of Theorems 2.3.1 and 2.3.2. First we start with the following lemmas.

Lemma 2.3.3. Let (p; x; y); (p0; x0; y0) 2 C and t = 1; :::; T: Then pt < p0t implies yt � y0t:

Proof. We have ptyt�ct(yt) � pty0t�ct(y0t) and p0ty0t�ct(y0t) � p0tyt�ct(yt) by seller t�s pro�t

maximization condition. By these inequalities, we have ptyt + p0ty
0
t � pty0t + p0tyt: Hence, we

obtain yt(pt � p0t) � y0t(pt � p0t): This inequality, together with pt < p0t implies yt � y0t:

Lemma 2.3.4. Let (p; x; y); (p0; x0; y0) 2 C, t 6= t0 and suppose pt � p0t and pt0 < p0t0 : Then

there is no i 2M such that xi = et and x0i = e
t0 :

Proof. Let pt � p0t:We suppose that xi = et and x0i = et
0
for some i 2M: It su¢ ces to show

that pt0 � p0t0 : By utility maximization for i; we have

ui(e
t; Ii � pt) � ui(et

0
; Ii � pt0) and ui(et

0
; Ii � p0t0) � ui(et; Ii � p0t): (1.2)

Since pt � p0t; we have, by Assumption A1, ui(e
t; Ii � p0t) � ui(e

t; Ii � pt): This, together

with the the �rst inequality of (1.2), implies ui(et; Ii � p0t) � ui(et
0
; Ii � pt0): Also the second

inequality implies that ui(et
0
; Ii�p0t0) � ui(et

0
; Ii�pt0): By Assumption A1, we have pt0 � p0t0 :

We get the following lemma from Lemmas 2.3.1 and 2.3.2.

Lemma 2.3.5. Let (p; x; y); (p0; x0; y0) 2 C and t = 1; :::; T: Then pt 6= p0t implies yt = y0t:

Proof. Suppose pt < p0t: We show yt = y
0
t: Let

K = fk : 1 � k � T; pk < p0kg and L = f1; :::; TgnK:

It follows from Lemma 2.3.3 that yk � y0k for all k 2 K: Hence,
P
k2K yk �

P
k2K y

0
k: If the

converse of this inequality holds, then yk = y0k should be the case for all k 2 K: Hence, it

su¢ ces to show that
P
k2K yk �

P
k2K y

0
k:

Now, let

M(K) = fi 2M : xi = e
k for some k 2 Kg;

M(L) = fi 2M : xi = e
l for some l 2 Lg;

M 0(K) = fi 2M : x0i = e
k for some k 2 Kg:

Then fM(K);M(L); fi 2 M : xi = e0gg is a partition of M . Now let us show M(K) �

M 0(K): By Lemma 2.3.4, for any l 2 L and k 2 K; there is no i 2 M such that xi = el
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and x0i = e
k; i.e., M(L) \M 0(K) = ;: Furthermore, by Assumption A1 and pk < p0k for any

k 2 K; there is no i 2M such that xi = e0 and x0i = e
k; i.e., fi 2M : xi = e

0g\M 0(K) = ;:

Since M(K)[M(L)[ fi 2M : xi = e
0g =M is a partition of M; we have M(K) �M 0(K).

By the condition of the balance of total demand and supply, we have jM(K)j =
P
k2K yk

and jM 0(K)j =
P
k2K y

0
k: By the above inclusion result, we have

P
k2K yk = jM(K)j �

jM 0(K)j =
P
k2K y

0
k:

We now prove Theorems 2.3.1 and 2.3.2.

Proof of Theorem 2.3.1. We prove the following equivalent assertion: �t(PC) > 0 implies

�t(AC) = 0: Suppose �t(PC) > 0, i.e., there exist (p1; x1; y1); (p2; x2; y2) 2 C such that

p1t > p2t . By Lemma 2.3.5, we have y
1
t = y2t : Let (p; x; y) 2 C. Again, by Lemma 2.3.5,

yt = y
2
t if pt = p

1
t ; yt = y

1
t if pt 6= p1t . Thus, the equilibrium quantity of good t is unique, i.e.,

�t(AC) = 0:

Proof of Theorem 2.3.2.(1). �t(PC) > 0 implies �t(AC) = 0 by Theorem 2.3.1. Let y�t be

the unique equilibrium quantity for good t: Let p 2 PC . Then we have mct(y�t � 1) � pt �

mct(y
�
t ) by seller t�s pro�t maximization condition.

Proof of (2). �t(AC) > 0 implies �t(PC) = 0 by Theorem 2.3.1. Let p�t be the unique

competitive price for good t. Suppose, on the contrary, �t(AC) > jfyt 2 Z+ : mct(yt) = p�t gj:

Let n = jfyt 2 Z+ : mct(yt) = p�t gj: Let (x; y); (x0; y0) 2 AC with y0t+n+1 � yt: Then we have

mct(yt� 1) � p�t � mct(y0t) by seller t�s pro�t maximization condition: This and Assumption

B2 imply that p�t = mct(y
0
t) = � � � = mct(y0t+n): Thus, we obtain jfyt 2 Z+ : mct(yt) = p�t gj �

n+ 1; which contradicts the de�nition of n.

We now prove p�t = mct(byt). Let byt = minfyt 2 Z+ : (x; y) 2 ACg: Then we have p�t �

mct(byt) by the seller t�s pro�t maximization condition. On the other hand, let (x1; y1) 2 AC
with y1t � byt + 1: Similarly, we have mct(y1t � 1) � p�t : This and Assumption B2 imply

mct(byt) � p�t :
2.4 Di¢ culties in extending Theorem 2.3.1

In Section 2.3, we presented two theorems on the structure of the set of c.e. in GAM model.

The main theorem is Theorem 2.3.1, and the other is obtained based on this theorem. The

key assumption is that each buyer wants at most one unit of an indivisible good. Here, we
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consider whether Theorem 2.3.1 could be preserved in markets where each buyer may demand

more than one unit of an indivisible good.

In the literature on markets with indivisible goods, the following conditions are typi-

cally used: Quasi-linearity (QL) and gross substitutability (GS). Under those conditions,

it is known (cf., Kelso and Crawford, 1982; Gul and Stacchetti, 1999) that a market with

indivisibilities has a c.e. In fact, we see that Theorem 2.3.1 can be extended under the QL

condition. Without the QL condition, but with the GS condition, we give a counterexample

for the extension of Theorem 2.3.1. We also give another example having no c.e. under the

GS condition.

We consider a market model (M;N) that is the same as a GAM model, but with the

assumption that each buyer may demand more than one unit of an indivisible good. Each

buyer i 2 M has a utility function ui de�ned on A � R+, where A � ZT+. We de�ne the

individual demand correspondence Di : RT+ � A as:

Di(p) := fx : x 2 Bi(p) and ui (x; Ii � px) � ui
�
x0; Ii � px0

�
for all x0 2 Bi(p)g;

where Bi(p) := fx : x 2 A and Ii � pxg:Then the GS and QL conditions are de�ned by the

following manner.

Condition QL (Quasi-linearity). The utility function is expressed as ui(x; d) = vi(x) + d

for all (x; d) 2 A� R+ for some vi : A! R.

Condition GS (Gross substitutability). For any p; p0 2 RT+ with p � p0 and for any x 2 Di(p),

there exists x0 2 Di(p0) such that xt � x0t for all t with pt = p0t.

In QL, the function vi(�) is interpreted as the valuation price for consumption of indivisible

goods. GS states that when the prices for some goods increase from p, the demands for the

other goods remain the same or increase.

Under Condition QL, Theorem 2.3.1 can be directly extended:

Proposition 2.4.1. Let (M;N) be an extended GAM model satisfying condition QL, and

let t = 1; :::; T , (p; x; y); (p0; x0; y0) 2 C: Then pt 6= p0t implies yt = y0t:

Proof. Since (p; x; y) is a c.e., it holds that for each i 2M , vi(xi)+(Ii�pxi) � vi(x0i)+(Ii�

px0i): Thus,
P
i2M (vi(xi)�pxi) �

P
i2M (vi(x

0
i)�px0i): Also, it holds that

P
i2M (vi(x

0
i)�p0x0i)

�
P
i2M vi((xi)�p0xi): By adding each side of the latter two inequalities, we have p[

P
i2M x

0
i
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�
P
i2M xi] � p0[

P
i2M x

0
i �

P
i2M xi]: Since the market is balanced (De�nition 2.2.1.(3)),

this inequality is equivalent to

p(y0 � y) � p0(y0 � y) (1.3)

Since the seller side is the same as a GAM model in Section 3, we can apply Lemma 2.3.3.

By this, we have yt � y0t for all t with pt < p0t: This and Eq. (1.3) imply yt = y0t for all t with

pt 6= p0t:

Proposition 2.4.1 is the same claim as Lemma 2.3.5 of Section 2.3, which implies The-

orem 2.3.1. Thus, Theorem 2.3.1 holds under Condition QL, independent of the existence

of a competitive equilibrium. Under QL, Condition GS is known as a su¢ cient condition

for the existence of a c.e. Under QL, but without GS, Kelso and Crawford (1982) gave a

counterexample for the existence of a c.e.

For our study of markets with indivisible goods, it would be more appropriate to eliminate

Condition QL since we aim to apply our study to markets including housing and car markets;

each indivisible unit is large relative to the expenditure of a household. In such markets,

income e¤ects are non-negligible, but QL ignores these (cf. Kaneko and Wooders, 2004 for

further explanations on QL).

Now, we focus on the extendibility of Theorem 2.3.1 without assuming Condition QL.

Here, we give a counterexample where Theorem 2.3.1 fails without QL, even in the case of

one indivisible good. At the same time, this example satis�es Condition GS in the trivial

sense.

Example 2.4.2 (Failure of Theorem 2.3.1 ). Consider a market with one buyer 10 and one

seller 1. Buyer 10 has an initial income I10 = 5; and may demand at most two units of the

indivisible good. His utility function u10 : f0; 1; 2g � R+ ! R is given by

u10(x; d) =

8><>: 2x+ d if x � 1; d � 4;

2 + 2x+
1

2
d if x � 1; d > 4:

u10(2; d) =

8><>: 3:5 + d if d � 2;

4:5 +
1

2
d if d > 2:

For each x, the function u10(x; d) is continuous with respect to d: for each x = 0; 1 (or 2),

u10(x; d) kinks at d = 4 (d = 2). The marginal utility from d decreases at the kink. Thus,

this function is concave with respect to d. In fact, it is also concave with respect to x for

each d; for example, when d = 2; u10(1; 2) � u10(0; 2) = 2 > 1:5 = u10(2; 2) � u10(1; 2): For

each x = 0; 1; 2; function u10 is depicted in Fig. 2.2.
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Figure 2.2: Buyer�s utility function in Ex. 2.4.2.

Figure 2.3: Demand and supply schedules in Ex. 2.4.2.

The seller�s cost function is given by c1(0) = 0; c1(1) = 0:9, c1(2) = 2:3; c1(3) = �large.�

In this example, the supply schedule is expressed as a step function, shown by the gray curve

in Fig. 2.3, in the same way as in Fig. 2.1: the price for the second step is 2:3 � 0:9 = 1:4,

which is a competitive price. However, the demand schedule is not a simple step function:

for each price p with 1 � p � 1:5, the demand schedule takes two values, that is, it forms the

rectangle with 1 � p � 1:5 and x = 1; 2; as depicted in Fig. 2.3. We see that the set of c.e.

is given by

f(p; 1; 1) : 1 � p � 1:4g [ f(p; 2; 2) : 1:4 � p � 1:5g:

Thus, we have multiple competitive prices and multiple competitive quantities. This implies

that Theorem 2.3.1 fails, since D10(p) = f1; 2g for 1 � p � 1:5. Indeed, for p with 1 � p � 1:5,

u10(1; 5� p) = u10(2; 5� 2p) = 7� p > 4:5 = u10(0; 5).
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Without Condition QL, but with GS, the existence of a c.e. is not necessarily guaranteed;

we show this with an example of one indivisible good that also satis�es GS in the trivial

sense.

Example 2.4.3 (Non-existence of competitive equilibria). Consider a market with one buyer

10 and one seller 1. Buyer 10 has an initial income I10 = 4; and may demand at most two

units of the indivisible good. His utility function u10 : f0; 1; 2g � R+ ! R is given by

u10(0; d) =

8><>: d if d � 4;
8

3
+
1

3
d if d > 4:

u10(1; d) =

8>>>><>>>>:
1:9 + d if d � 2;

2:9 +
1

2
d if 2 < d � 4;

107

30
+
1

3
d if d > 4:

u10(2; d) =

8><>: 3:8 + d if d � 1;
67

15
+
1

3
d if d > 1:

For each �xed x, the function u10(x; d) is continuous in d, and since the marginal utility from

d decreases at the kink, the function is concave in d. For a �xed d, u10(x; d) is concave with

respect to x. For each x = 0; 1; 2; Fig. 2.4 depicts function u10 .

Figure 2.4: Buyer�s utility function in Ex. 2.4.3.

The seller�s cost function is given by c1(0) = 0; c1(1) = 1:5 and c1(2) =�large.� Fig.

2.5 shows the demand and supply schedules, which both are step functions. The quantity

supplied is always 1 at price p > 1:5. Since D10(p) = f0g for p > 1:9 and D10(p) = f2g

for p < 1:9; the candidate equilibrium price must be p = 1:9, but 1 =2 D10(1:9). Indeed, for

p = 1:9; u10(2; 4�2p) = u10(0; 4) = 4 > 3:95 = u10(1; 4�p); meaning that 0 or 2 to 1 is strictly

preferred. The demand schedule has a hole at (p; y) = (1:9; 1). Thus, the above example has

no c.e.
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Figure 2.5: Demand and supply schedules in Ex. 2.4.3.

Let us see how the demand schedule has a hole at (p; y) = (1:9; 1):

Figure 2.6: Buyer�s indi¤erence set and budget line at p = 1:9 in Ex. 2.4.3.

Fig. 2.6 depicts the buyer�s indi¤erence curve, f(x; d) 2 f0; 1; 2g � R+ : u10(x; d) =

4g = f(0; 4); (1; 2:2); (2; 0:2)g, and the budget line at p = 1:9. This indi¤erence curve is non-

convex, while function satis�es the convexity for each x and d: Bundles (0; 4) and (2; 0:2)

are on the budget line, however, (1; 2:2) is an exterior of the budget line. Thus, the demand

correspondence has a hole at (p; y) = (1:9; 1):

2.5 Aggregation of sellers and shrinkage of competitive prices

In the previous discussion, we assumed Eq. (1.1): Nt = ftg for all t = 1; :::; T , i.e., only one

seller provides indivisible goods of type t. In this section, we present that the assumption of

(1.1) does not loose any generality in the consideration of c.e. This result allows us to consider

markets with many sellers while preserving Theorems 2.3.1 and 2.3.2. As an application of

our Theorems 2.3.1 and 2.3.2, we also show the shrinkage result on competitive prices where

the market gets dense with sellers.
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2.5.1 Aggregation of sellers

Here, we show how the set Nt is aggregated into one seller ftg.

Let (M;N) be the original assignment market without (1.1), i.e., jNtj � 1 for all t =

1; :::; T , where each landlord j 2 Nt provides indivisible goods of type-t with the cost function

cj : Z+ ! R+ satisfying Assumptions B1 and B2. Now, let No = f1; :::; Tg be the set of

aggregated sellers. Our problem is to de�ne the cost function ect of each aggregated seller
t 2 No preserving the structure of c.e. in (M;N):

The following theorem explains the equivalence of c.e. between (M;N) and (M;No):

Theorem 2.5.1 (Aggregation of Sellers). Let (M;N) be an assignment market without re-

quiring (1.1). There exist cost functions ect : Z+ ! R+ satisfying Assumption B1 and B2 for

t 2 No such that,

(1) if (p; x; y) is a c.e. in (M;N); then there is a ey 2 ZT+ such that (p; x; ey) is a c.e. in
(M;No):

(2) if (p; x; ey) is a c.e. in (M;No); then there is a y 2 Zn+ such that (p; x; y) is a c.e. in

(M;N):

The set Nt for type t is aggregated into ftg : the essential part is to de�ne the aggregated

cost function ect satisfying Assumptions B1 and B2. Once this ect is appropriately de�ned, (1)
the supplies fyjgj2Nt are aggregated into eyt =Pj2Nt yj and this aggregation makes a c.e. in

(M;No); (2) the aggregated eyt is divided into fyjgj2Nt and this makes a c.e. in (M;N).
We now construct the aggregated cost function. Let us �x an arbitrary t 2 No. For each

j 2 Nt, de�ne the sequence fmcj(y) : y 2 Z+g:7 By Assumption B2, this is an increasing

sequence. We then generate the new increasing sequence ffmct(y) : y 2 Z+g by reordering all
the components of the set of sequences ffmcj(y) : y 2 Z+g : j 2 Ntg in the ascending order:

in the start, we choose the smallest one from fmcj(0) : j 2 Ntg. If we choose mcj0(0) here,

we next choose the smallest one from ffmcj(0) : yj 2 Z+g : j 2 Ntnfj0gg [ fmcj0(1)g. The

following shows an example of the construction of fmct with jNtj = 3.
mc1(0) � mc2(0) � mc1(1) � mc3(0) � mc2(1) � mc2(2) � � �

# # # # # #

fmct(0) fmct(1) fmct(2) fmct(3) fmct(4) fmct(5) � � �

7mcj(yj) = cj(yj + 1)� cj(yj):
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By using ffmct(y) : y 2 Z+g, we de�ne the cost function of aggregated seller t, ect : Z+ !
R+ by ect(0) = 0 and ect(y) =Pk�y�1 fmct(k) for y 2 Z+nf0g. This ect satis�es Assumptions B1
and B2. We can then show Theorem 2.5.1. In the proof, we stipulatemcj(�1) = fmct(�1) = 0.
Proof of (1). Let (p; x; y) be a c.e. in (M;N) and t 2 No. By the pro�t maximization

condition, mcj(yj � 1) � pt � mcj(yj) for every j 2 Nt.

Let eyt =Pj2Nt yj . By the de�nition of ffmct(y) : y 2 Z+g, it holds that
fmct(eyt � 1) = maxj2Nt [mcj(yj � 1)]; (1.4)

fmct(eyt) = minj2Nt [mcj(yj)]:

Eqs. (1.4) and the above pro�t maximization condition imply fmct(eyt�1) � pt � fmct(eyt), that
is, the aggregated seller t maximizes his pro�t with production unit eyt. Since t is arbitrarily
chosen, a triple (p; x; (ey1; :::; eyT )) is a c.e. in (M;No).

Proof of (2). Let (p; x; ey) be a c.e. in (M;No) and t 2 No. By the pro�t maximization

condition, fmct(eyt � 1) � pt � fmct(eyt).
By the de�nition of ffmct(y) : y 2 Z+g, there exist fyjgj2Nt such that

yj 2 arg min
y2Z+

[mcj(y) : fmct(eyt) � mcj(y)] for j 2 Nt;P
j2Nt yj = eyt.

For eyt and fyjgj2Nt , the same equalities as Eqs. (1.4) holds. Eqs. (1.4) and the above
pro�t maximization condition imply mcj(yj � 1) � pt � mcj(yj) for all j 2 Nt, that is, each

seller j maximizes his pro�t with production unit yj . Since t is arbitrarily chosen, a triple

(p; x; ffyjgj2Ntgt2No) is a c.e. in (M;N).

2.5.2 Shrinkage of competitive prices

The following passage is from Shapley and Shubik (1972) (pp. 127-128):

�If the number of traders is increased on both sides of the market, in such a way

that their valuations for the products brought to market become more and more

diverse (but remain bounded in a suitable sense), then the core will tend to shrink

in size.�
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In the context of this paper, the set of competitive price vectors corresponds to the core. The

paper asserts that this shrinkage is easily obtained for the case of homogeneous goods. It

continues:

�In the more general model, however, the increasing dimensionality of the solution

and the space in which it is de�ned make a precise discussion of the shrinkage

phenomenon more di¢ cult.�

Here, we analyze their observation. For this, we eliminate assumption (1.1), that is, we have

multiple sellers for type t. This allows us to consider the situation where the number of traders

is increased. Nevertheless, we still use the aggregated cost function ect to apply Theorems 2.3.1
and 2.3.2.

We consider a sequence of assignment markets f(M� ; N�)g+1�=1. Let t = 1; :::; T . We

express the idea of Shapley and Shubik (1972) quoted above in terms of f(M� ; N�)g+1�=1 as

follows:

Condition Dt (Denseness of Marginal Costs). There are some constants �t and �t (0 <

�t < �t) such that for any �; (M
� ; N�) satis�es

(1) jN�
t j ! 1 as � !1;

(2) �t � fmc�t (yt) � �t for all yt � jM� j;

(3) max
1�yt�jM� j

[fmc�t (yt)� fmc�t (yt � 1)] � (�t � �t)= jN�
t j :

Condition Dt.(2) states that the aggregated marginal costs, fmc�t (yt), are in the same
interval (bounded) for the relevant domains, though the size of (M� ; N�) becomes large. (3)

states that the marginal costs are densely distributed for large �. However, (1) requires only

the number of sellers of type t, jN�
t j, to become large: the number of buyers, jM� j, may be

bounded, but it would be natural to require it to become large proportionally to jN�
t j.

The graphical illustration of Condition Dt is given by Fig. 2.7. The marginal costs

are distributed in the same interval: when the market is small (� = 1), the distribution of

marginal costs is sparse; and when the market is large (large �), the distribution becomes

dense.

Let P�C be the set of all competitive price vectors in (M� ; N�) for � � 1.

Theorem 2.5.2 (Shrinkage of Competitive Prices). Let f(M� ; N�)g+1�=1 be a sequence of

GAM satisfying Condition D t: Then �t(P�C)! 0 as � !1:
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Figure 2.7: An illustration of Condition Dt.

Although the theorem claims that the size of the set of competitive prices shrinks to

zero, it does not imply that the set P�C converges to a price vector, i.e., P�C may �uctuate

and have multiple limit points. In this paper, we do not have a limit model of the sequence

f(M� ; N�)g+1�=1. If one wants to have such a model, a candidate for it is the assignment

market model with a continuum of buyers and sellers given by Gretsky, Ostroy and Zame

(1999), or the f -core model by Kaneko and Wooders (1996). However, it is the point of

Theorem 2.5.2 that for a large and dense market, the competitive prices are almost uniquely

determined.

To prove this theorem, we restate Theorem 2.3.2.(1). Let pmaxt := maxfpt : p 2 PCg and

pmint := minfpt : p 2 PCg:8 By de�nition; we have �t(PC) = pmaxt � pmint : Then, we restate

Theorem 2.3.2.(1) as follows:

If �t(PC) > 0; then �t(PC) = pmaxt � pmint � mct(y�t )�mct(y�t � 1): (1.5)

Using (1.5), we can prove the above theorem.

Proof. Let � be an arbitrary natural number, and let �t(P�C) > 0 and y��t be the unique

equilibrium quantity for good t in (M� ; N�): By (1.5) and y��t � jM� j, we have �t(P�C) �fmc�t (y��t )�fmc�t (y��t �1) � max1�yt�jM� j[fmc�t (yt)�fmc�t (yt�1)]: This inequality, together with
Condition Dt imply that �t(P�C) � (�t � �t)= jN�

t j, and the right hand side of the inequality

tends to zero as � !1.
8Since the set of competitive price vectors PC is a compact set, these maximum and minimum are well

de�ned.
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Theorem 2.5.2 states the shrinkage result for a �xed type t:When Condition Dt holds for

all t = 1; :::; T; we get the shrinkage result for the competitive price vector set P�C . Although

they indicated a possible di¢ culty caused from higher dimensionality for the heterogeneous

goods case, our Theorems 2.3.1 and 2.3.2 guarantee that it is su¢ cient to treat each indivisible

good separately.

As mentioned in Section 2.2, Kaneko (1982) provided a su¢ cient condition for the core

to coincide with the set of c.e. This su¢ cient condition holds naturally for a large and dense

market. Thus, we obtain the shrinkage result for the core.

As stated above, Gretsky et al. (1999) gave an assignment market model with a continuum

of buyers and sellers with Condition QL. They show the generic uniqueness of an equilibrium

price vector. Theorem 2.5.2 may be regarded as a �nite version of their theorem, without

QL. Thus, we conjecture their result for the continuum assignment market without QL.

2.6 Conclusions

We have studied the structure of the set of competitive equilibria in the GAM model. The

main result (Theorem 2.3.1) states that if there are multiple competitive prices for indivisible

good t, the equilibrium quantity for t is uniquely determined; and that if there are multiple

equilibrium quantities for t, the competitive price for t is uniquely determined. This result

enables us to study the relationship between competitive prices and quantities for each indi-

visible good t. From this result, we obtained Theorem 2.3.2 evaluating the sizes of competitive

price and quantity sets for each good t.

In Section 2.4, we discussed di¢ culties in extending Theorem 2.3.1 to a market model

where each buyer may demand more than one unit of an indivisible good. We showed that

under the quasi-linear utility assumption for buyers, Theorem 2.3.1 can be extended. Without

quasi-linearity, however, we gave an example satisfying gross substitutability where Theorem

2.3.1 fails. Furthermore, we gave an example satisfying gross substitutability, but having no

competitive equilibria.

In Section 2.5.1, we showed the aggregation result of the sellers, i.e., it is su¢ cient to

consider models where, for each type t, a single seller provides units of indivisible good t. This

aggregation can be made as far as competitive equilibria are concerned. We also presented

in Section 2.5.2, the shrinkage theorem of competitive prices when the market becomes large

33



and dense with sellers.

We may apply the GAM model to rental housing markets and/or second-hand automobile

markets. Those markets are typically dense in the sense that the numbers of sellers and buyers

are large and there are many similar sellers and buyers. Kaneko (1983) and Kaneko, Ito and

Osawa (2006) adopted the GAM model for the analysis of rental housing markets, making

some assumptions speci�c to their studies. By Theorems 2.3.2 and 2.5.2, the competitive

prices are restrictive and hence their studies could be done under more general assumptions.
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Chapter 3

Evaluation of Competitive Price

Vectors in Markets with

Indivisibilities

3.1 Introduction

In this chapter, we evaluate competitive price vectors in housing markets with indivisibilities.

This market is an application model of the generalized assignment market (GAM) by Kaneko

(1982). In the market, the agents are divided into buyers and sellers, the objects to be traded

(houses) are treated as indivisible goods and classi�ed into �nite categories, and each buyer

demands at most one unit of an indivisible good. It is known that there exists a competitive

equilibrium while it may not be uniquely determined. In particular, there exist the maximum

and minimum competitive price vectors.

As with the general equilibrium model, this non-uniqueness brings a problem to applica-

tions of this model in comparative statics. Fig. 3.1 depicts a supply and demand schedules in

the market without commodity di¤erentiation. The intersection of two schedules constitutes

the set of competitive equilibria. Since any p 2
�
pmin; pmax

�
is a candidate for an equilibrium

price, a comparative statics result may di¤er depending on price p. This problem is inherited

to the market with commodity di¤erentiation.

To clear this problem, we evaluate the di¤erence between the maximum and minimum

competitive price vectors. Here, we introduce a summary of one of our evaluation results,

Theorem 3.3.4 in Section 3.3.2. Theorem 3.3.4 states that the di¤erence between the max-
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Figure 3.1: A supply and demand schedules without commodity di¤erentiation.

imum and minimum competitive price vectors is bounded by the income di¤erence of two

speci�c income-neighboring buyers. This implies that the price di¤erence is considered to

be small, and this tendency is remarkable when the number of buyers is large and its in-

come distribution gets dense. Thus, as far as a quasi large market is concerned, we can see

that comparative statics results are approximately the same whether we use any equilibrium

price vectors. To con�rm our results, in Section 3.4, we give three numerical examples and

shrinkage result on di¤erential price vectors.

In our analyses, the maximum (minimum, respectively) competitive price (rent) vector

is calculated as the solution of the speci�c system of equations. This system of equations

is constructed from buyers� indi¤erence conditions. The important assumptions for this

approach are �homogeneous utility function� and �normality of the quality of indivisible

objects.�

Our evaluation results are related to Sai (2014) studying the structure of the set of com-

petitive equilibria under weaker conditions. One of his result is that the di¤erence between the

maximum and minimum competitive price vectors is characterized by the di¤erence in sellers�

marginal costs. On the other hand, we characterize the di¤erence by household incomes.

This paper is organized as follows. Section 3.2 formulates our market model and gives our

de�nition of competitive equilibrium. Section 3.3 �rst introduces two systems of equations

from which we can derive two representative solutions for the maximum and minimum com-

petitive price vectors. This section then outlines the main results of our study. Section 3.4

provides some numerical examples and an application of our theorems. Section 3.5 presents

concluding remarks.
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3.2 The market model

This section introduces the rental housing market model of Kaneko et al. (2006). In Section

3.2.1, we give our basic assumptions and the de�nition of competitive equilibrium. In Section

3.2.2, we introduce additional assumptions that facilitate our study.

3.2.1 General formulation

The rental housing market is denoted by (M;N), where M = f1; : : : ;mg denotes the set of

households, and N = f10; : : : ; n0g denotes the set of landlords. The apartments are classi�ed

into �nite categories 1; 2; :::; T .

Each household i 2M initially has an income Ii > 0 but no dwelling. The household wants

to rent at most one apartment unit paying rent from his income. Without loss of generality,

we can assume that the households are ordered in their incomes as I1 � I2 � � � � � Im. The

consumption set is written by X := fe0; e1; : : : ; eT g�R+; where ek is the T -dimensional unit

vector with ekk = 1 (e
0 = 0), and R+ is the set of nonnegative real numbers. A consumption

vector (ek; c) 2 X with k 6= 0 means that household i rents one unit of the k-th category

of an apartment and enjoys the consumption c = Ii � pk, where pk is the rent of the k-th

apartment. For k = 0, no apartment is consumed. An initial endowment of i 2 M is given

as (e0; Ii) with Ii > 0.

A utility function of household i is given by ui : X ! R: We make the following assump-

tion.

Assumption A. For each i 2 M and x 2 fe0; e1; : : : ; eT g; ui(xi; c) is a continuous and

strictly monotone function of c, and ui(e0; Ii) > ui(ek; 0) for all k = 1; :::; T:

The �rst part of Assumption A allows a utility function to have an income e¤ect. An

inequality in the last part means the indispensability of money.

Each landlord j 2 N provides apartments of exactly one category (say k), but may provide

more than one unit. The landlord has a cost function Cj(yj) : Z+ ! R+; where Z+ is the set

of nonnegative integers. For each yj 2 Z+, Cj(yj) represents the cost (in terms of money) of

supplying yj units of the k-th category. We make the following assumption for Cj(�).

Assumption B. For each j 2 N; Cj(0) = 0 and Cj(yj+1)�Cj(yj) � Cj(yj+2)�Cj(yj+1)

for all yj 2 Z+:
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The �rst part of Assumption B means that no �xed cost is required for no production.

The last part is a discrete version of the standard convexity assumption on a cost function,

meaning that the marginal cost is increasing.

For notational simplicity, we assume that only one landlord k provides apartments in the

k-th category. Thus, the set N becomes f1; : : : ; Tg; and landlord k 2 N is the only landlord

providing the k-th apartments. As far as the competitive equilibrium is concerned, this can

be assumed without loss of generality.1

Let (p; x; y) = ((p1; : : : ; pT ); (x1; : : : ; xm); (y1; : : : ; yT )) be a triple of p 2 RT+; x 2 fe0; e1;

: : : ; eT gm and y 2 ZT+: The competitive equilibrium is de�ned by the following.

De�nition 3.2.1. We say that a triple (p; x; y) is a competitive equilibrium i¤

(UM): for all i 2M;

(i) Ii � pxi � 0;

(ii) ui(xi; Ii � pxi) � ui(x0i; Ii � px0i) for all x0i 2 fe0; e1; : : : ; eT g with Ii � px0i � 0:

(PM): for all k = 1; :::; T; pkyk � Ck(yk) � pky0k � Ck(y0k) for all y0k 2 Z+:

(BDS):
P
i2M xi =

PT
k=1 yke

k:

Condition UM is utility maximization condition under the budget constraint of a house-

hold. PM is the pro�t maximization condition of a landlord. BDS means a balance of demand

and supply. Under Assumptions A and B, we have a competitive equilibrium in (M;N):

Theorem 3.2.2 (Kaneko, 1982; Kaneko and Yamamoto, 1986). There exists a competitive

equilibrium (p; x; y) in a rental housing market (M;N).

We say that p = (p1; : : : ; pT ) is a competitive rent vector i¤ (p; x; y) is a competitive

equilibrium for some x 2 f0; e1; : : : ; eT gm and y 2 ZT+: Note that in there exists multiple

competitive equilibria. In particular, the maximum and minimum competitive rent vectors

exist (denote them by pmax and pmin), which play an important role in our analysis.2

Theorem 3.2.3. There exist the maximum and minimum competitive rent vectors in (M;N).

The result close to Theorem 3.2.3 is found in Miyake (1994) or Demange and Gale (1985).

The complete proof of this theorem will be shown in Appendix B. We say that (p; x; y)

1Under this simpli�cation, each seller is interpreted as the aggregated landlord. A detailed discussion is
given by Chapter 2, Section 2.5.1 [or Sai (2014), Section 5.1].

2A competitive rent vector p is the maximum (minimum) i¤ p � p0 (p � p0) for every competitive rent
vector p0.
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is a maximum (minimum) competitive equilibrium i¤ p is the maximum (minimum). By

de�nition, the maximum (minimum) competitive rent vector is uniquely determined, while

multiple maximum (minimum) competitive equilibria may exist. Kaneko et al. (2006) and

their subsequent papers (e.g. Ito (2007)) focused on a maximum competitive equilibrium and

used it for comparative statics analyses.

3.2.2 Speci�c assumptions for (M;N)

In addition to Assumptions A and B, we assume that every household has an identical utility

function:

Assumption C. ui(�; �) = uj(�; �) for all i; j 2M .

From now on, we simplify the utility function ui as u. In an urban economics context,

Assumption C implies that the housing market (M;N) represents a mono-centric city, and

all the households commute to an identical business district. Thus, under C, each household

is characterized only by his initial income. One may think Assumption C implies an identical

apartment preference for each household. However, this concern will be eliminated by the

next assumption.

Assumption D. If u(xi; c) = u(x0i; c
0); and c < c0; then u(xi; c + �) > u(x0i; c

0 + �) for any

� > 0:

Assumption D is the normality assumption on the quality of apartments. In D, apartment

xi is better than x0i because a household living in xi with a smaller consumption c is indi¤erent

to living in x0i with a larger consumption c
0. This implies that, for each household, the demand

shifts to a better apartment or remains the same if their income increases.

We also put another assumptions.

Assumption E. If u(xi; c) > u(x0i; c
0); then u(xi; c) = u(x0i; c

0 + �) for some � > 0:

Assumption F. u(e1; 0) > u(e2; 0) > � � � > u(eT ; 0):3

Assumption E means that housing quality of any apartment is substitutable for money.

Assumption F is regarding the quality of apartments. By Assumption F, the apartments are

numbered according to their quality level. The �rst category is the best one and the T -th

category is the worst one.

3Assumption F together with A, D and E imply u(e1; c) > u(e2; c) > � � � > u(eT ; c) for all c 2 R+.
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3.3 Rent equations and the evaluation of competitive rent vec-

tors

In Section 3.3.1, we introduce two systems of equations: the upper and lower rent equations.

The solution of the upper (lower) rent equation is called the upper (lower) di¤erential rent

vector, corresponding to the maximum (minimum) competitive rent vector, under some con-

ditions. Using both di¤erential rent vectors, we present two theorems on the evaluation of

the di¤erence between the lower and upper di¤erential rent vectors in Section 3.3.2. Section

3.3.3 gives proofs of two theorems.

3.3.1 Rent equations and di¤erential rent vectors

Here, we give some lemmas and more detailed assumptions. The following lemma has an

important role in the derivation of the rent equation.

Lemma 3.3.1 (Kaneko et al., 2006). Let (p; x; y) be a competitive equilibrium. Then,

(1): If k0 < k and xi = ek for some i, then pk < pk0 :

(2): If xi = ek; xj = ek
0
and Ii > Ij for some i; j, then k � k0:

This lemma states that, in equilibrium, (1) the price of a better apartment is higher, and

(2) a household with a higher income rents a better apartment. Note that in (1), it may be

possible that no one rents an apartment in the k0-th category, while the k-th apartment is

rented by someone. To eliminate such a case, we assume that there is a category f dividing

the apartments into active categories and inactive categories:

Assumption G. Let (p; x; y) be a competitive equilibrium. There exists some category

f � T such that yk > 0 for k = 1; :::; f and yk = 0 for k = f; :::; T .

We call this f the marginal category.

Recall that all the set of households M = f1; :::;mg is ordered by their incomes as I1 �

I2 � � � � � Im. We next de�ne the household with the lowest income in each active category.

Let (p; x; y) be a competitive equilibrium. For each k = 1; :::; f , let

G(k) :=
kP
t=1
yt:

By Lemma 3.3.1.(2), G(k) is the household having the lowest income in the k-th category.
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We call G(k) the boundary household and IG(k) the boundary income of the k-th category.

Note that G(k) may also di¤er for di¤erent competitive equilibria.

We now introduce two systems of equations with unknowns (r1; :::; rf ):

De�nition 3.3.2. (1) (Kaneko et al., 2006): We call the following system of equations the

upper rent equation:

u(ef�1; IG(f�1) � rf�1) = u(ef ; IG(f�1) � rf );

u(ef�2; IG(f�2) � rf�2) = u(ef�1; IG(f�2) � rf�1);
...

u(e1; IG(1) � r1) = u(e2; IG(1) � r2):

9>>>>>>>=>>>>>>>;
(2.1)

(2): We call the following system of equations the lower rent equation:

u(ef�1; IG(f�1)+1 � rf�1) = u(ef ; IG(f�1)+1 � rf );

u(ef�2; IG(f�2)+1 � rf�2) = u(ef�1; IG(f�2)+1 � rf�1);
...

u(e1; IG(1)+1 � r1) = u(e2; IG(1)+1 � r2):

9>>>>>>>=>>>>>>>;
(2.2)

De�nition 3.3.2.(1) was introduced by Kaneko, et al. (2006). Each system of equations

has f unknowns, while this is constituted by f � 1 equations. Eq. (2.1) states that boundary

household G(k) is indi¤erent between renting the k+1-th apartment at rent rk+1 and renting

the k-th apartment at rent rk. The di¤erence between Eqs. (2.1) and (2.2) is the replacement

of the boundary income IG(k) by IG(k)+1. In Eq. (2.1) (Eq. (2.2), respectively), if rf is given,

then the unknown rf�1 is uniquely determined by the �rst equation. In the same manner,

the remaining unknowns rf�2; :::; r1 are recursively determined. We say that a solution of Eq.

(2.1) is an upper di¤erential rent vector and denote it by (r1; :::; rf ); a solution of Eq. (2.2)

is a lower di¤erential rent vector and denote it by (r1; :::; rf ). In particular, if rf is given

with u(e1; 0) < u(ef ; IG(f�1) � rf ) an upper di¤erential rent vector is uniquely determined

and satis�es r1 > � � � > rf�1 > rf .4

We then have the following relations for a di¤erential rent vector and a competitive rent

vector.
4A lower di¤erential rent vector is also uniequely determined under a similar condition. See Kaneko et al.

(2006), Lemma 2.5.
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Figure 3.2: An illustration of Theorem 3.3.3.

Theorem 3.3.3.(1) Let (p; x; y) be a maximum competitive equilibrium and (r1; :::; rf ) be the

upper di¤erential rent vector determined by rf = pf . Then rk � pk for all k = 1; :::; f � 1:

(2) Let (p; x; y) be a minimum competitive equilibrium and (r1; :::; rf ) be the lower di¤erential

rent vector determined by rf = pf . Then rk � pk for all k = 1; :::; f � 1:

Proof is in Appendix B. Theorem 3.3.3 states that the upper and lower di¤erential rent

vectors correspond to an upper and lower bounds of the set of competitive rent vectors,

respectively. An illustration of Theorem 3.3.3 is given by Fig. 3.2: in Fig. 3.2, the vertical

axis (price) is continuous, while the horizontal axis (category) is discrete.

Kaneko et al. (2006) provided two su¢ cient conditions for an upper di¤erential rent

vector to coincide with the maximum competitive rent vector. We can also expect a similar

condition for a lower competitive rent vector to coincide with the minimum competitive rent

vector.

Theorem 3.3.4.(1) (Kaneko et al., 2006). Let (p; x; y) be a maximum competitive equilib-

rium. If at least one of the following holds:

(i) IG(k) = IG(k)+1 for each k = 1; :::; f � 1;

(ii) pk < Ck (yk + 1)� Ck (yk) for each k = 1; :::; f � 1;

then the upper di¤erential rent vector (r1; :::; rf ) determined by rf = pf coincides with

(p1; :::; pf ).

(2) Let (p; x; y) be a minimum competitive equilibrium. If at least one of the following holds:

(i) IG(k) = IG(k)+1 for each k = 1; :::; f � 1;
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(ii) pk > Ck (yk)� Ck (yk � 1) for each k = 1; :::; f � 1;

then the lower di¤erential rent vector (r1; :::; rf ) determined by rf = pf coincides with

(p1; :::; pf ).

The proof of (1) is found in Kaneko et al. (2006) and (2) is proved in the dual manner

(Appendix B). Condition (i) of each theorem is the same, stating that the boundary income

of the k-th category coincides with the income of the �rst household in the k+1-th category.

Each (ii) has a dual structure: both state that a pro�t maximization condition strictly holds

for the k-th category (i.e., a competitive price pk does not coincide with a marginal cost for

the k-th category). In sum, (i) implies that when the number of households is large and the

income distribution is more or less dense (Condition (i) holds approximately), then the upper

and lower di¤erential rent vectors can be regarded as approximations of the maximum and

minimum competitive rent vectors, respectively.

3.3.2 The di¤erence between the upper and lower di¤erential rent vectors

In the previous section, we showed that the upper (lower) di¤erential rent vector is an upper

(lower) bound of a relevant part of the competitive rent set, and under a some condition, the

upper (lower) rent vector coincides with the maximum (minimum) competitive rent vector.

This section evaluates the di¤erence between the upper and lower di¤erential rent vectors.

By this, the di¤erence between the maximum and minimum competitive rent vectors is also

evaluated.

Here, we assume the case that pmink < pmaxk for all k = 1; :::; T . This and Theorem 3.1 by

Sai (2014) imply that for any competitive equilibria (p; x; y) and (p0; x0; y0),

yk = y
0
k for all k = 1; :::; T . (2.3)

By this assumption, a marginal category f and the boundary households G(k) (1 � k � f)

are uniquely determined in the market (M;N).

The following theorem concerns the relationship between the income di¤erence and the

rent di¤erence. The proof is found in Section 3.3.3.

Theorem 3.3.5. Let (r1; :::; rf ) and (r1; :::; rf ) be the upper and lower di¤erential rent

vectors determined by u(e1; 0) < u(ef ; IG(f�1) � rf ), u(e1; 0) < u(ef ; IG(f�1)+1 � rf ) and
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Figure 3.3: Shapes of rent di¤erences (three cases).

rf � rf , and k = 1; :::; f . Then,

rk � rk � IG(k�1) � IG(k�1)+1 if and only if rk � rk � rk�1 � rk�1. (2.4)

Note that � of Eq. (2.4) can be replaced by �, >, < or =.

The form of Theorem 3.3.5 is similar to the Basic comparative statics theorem of Kaneko

(1983) and Kaneko et al. (2006). Nevertheless, the meaning is di¤erent. Theorem 3.3.5

states that the rent di¤erence of the k-th category is smaller than the income di¤erence of

two neighboring households numbered G(k � 1) and G(k � 1) + 1 if and only if the rent

di¤erence of k � 1 is greater than the rent di¤erence of k. This implies that we can reduce

the comparison of the di¤erences rk�rk and rk�1�rk�1 to the comparison of the di¤erences

rk � rk and IG(k�1) � IG(k�1)+1.

Fig. 3.3 depicts three examples of a shape of rent di¤erences rk � rk. Fig.3.3.(1) explains

the case of the statement (2.4) holds for each k. In this case, the di¤erence rk � rk gradually

increases as k reaches 1. Fig.3.3.(2) explains the case where the opposite inequality of (2.4)

holds for each k. In this case, the di¤erence rk � rk gradually decreases as k reaches 1. The

remaining Fig.3.3.(3) explains the case where there is some category l = 1; :::; f such that an

inequality of (2.4) switches at l: the di¤erence rk � rk gradually increases for k = l; :::; f and

decreases for k = 1; :::; l � 1. Numerical examples are given in Section 3.4.1.

The next theorem evaluates the rent di¤erence by the income di¤erence.

Theorem 3.3.6. Let (r1; :::; rf ) and (r1; :::; rf ) be the upper and lower di¤erential rent

vectors determined by u(e1; 0) < u(ef ; IG(f�1) � rf ), u(e1; 0) < u(ef ; IG(f�1)+1 � rf ) and
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rf � rf . Suppose that rf � rf � IG(f�1) � IG(f�1)+1. Then,

0 � rk � rk � max
k�l�f�1

fIG(l) � IG(l)+1g for all k = 1; :::; f � 1:

Theorem 3.3.6 states that if the rent di¤erence rf � rf of the marginal category f is less

than the income di¤erence IG(f�1) � IG(f�1)+1 of two neighboring households, then the rent

di¤erence of the k-th (k � f�1) category is bounded by at most the largest income di¤erence

IG(l) � IG(l)+1 (k � l � f � 1).

In our study, the rent of the marginal category f is considered to be uniquely determined.5

Then, the upper and lower di¤erential rent vectors are determined by the same marginal rent

pf = rf = rf : thus, the supposition of Theorem 3.3.6 holds. Under this situation, the theorem

implies that the rent di¤erences rk � rk for each k are rather small. In particular, when we

target a considerably large housing market with a dense household income distribution (i.e.,

the equality IG(k) = IG(k)+1 approximately holds), the di¤erence can be approximated by

zero. Consequently, the comparative statics results are not very di¤erent, whether or not we

use the upper or lower di¤erential rent vectors.

Recall pmax (pmin) is the maximum (minimum) competitive rent vector in the market

(M;N). Theorem 3.3.6 and Theorem 3.3.3 imply the following assertion:

pmaxk � pmink � maxk�l�f�1fIG(l) � IG(l)+1g for all k = 1; :::; f � 1 (2.5)

if rf � pminf � pmaxf � rf ,

that is, the di¤erence of the maximum and minimum competitive rents of k-th category is

also bounded by the largest income di¤erence IG(l)� IG(l)+1 with k � l � f � 1. This implies

the shrinkage result on the competitive rent vector set, which will be presented in Section

3.4.2.

3.3.3 Proofs of Theorems 3.3.5 and 3.3.6

Proof of Theorem 3.3.5. (Only if ) By Eq. (2.2), we have u(ek�1; IG(k�1)+1 � rk�1) =

u(ek; IG(k�1)+1 � rk): Let � = IG(k�1) � rk �(IG(k�1)+1 � rk) � 0. By Assumption D,

5For instance, Kaneko et al. (2006) adopted the estimated rent epf from the real rent data as the di¤erential
rent rf , and Ito (2007) adopted the (constant) marginal cost of the marginal category af as rf .
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u(ek�1; IG(k�1)+1 � rk�1 + �) � u(ek; IG(k�1)+1 � rk + �), that is,

u
�
ek�1; IG(k�1) � rk�1 � rk + rk

�
� u(ek; IG(k�1) � rk)

= u(ek�1; IG(k�1) � rk�1) by Eq. (2:1):

This inequality together with Assumption A imply IG(k�1)� rk�1� rk+ rk � IG(k�1)� rk�1;

that is, rk � rk � rk�1 � rk�1:

(If ) We prove the contraposition of the claim. Suppose that rk � rk > IG(k�1) � IG(k�1)+1.

By Eq. (2.1), we have u(ek�1; IG(k�1) � rk�1) = u(ek; IG(k�1) � rk): Let � = IG(k�1)+1 � rk
�(IG(k�1)� rk) � 0. By Assumption D, u(ek�1; IG(k�1)� rk�1+ �) > u(ek; IG(k�1)� rk+ �),

that is,

u(ek�1; IG(k�1)+1 � rk�1 � rk + rk) > u
�
ek; IG(k�1)+1 � rk

�
= u(ek�1; IG(k�1)+1 � rk�1) by Eq. (2:2):

This inequality together with Assumption A imply IG(k�1)+1� rk�1� rk + rk > IG(k�1)+1�

rk�1; that is, rk � rk > rk�1 � rk�1:

Proof of Theorem 3.3.6. We proof this by mathematical induction over k = f � 1; f � 2

; :::; 1. Let k = f � 1: By the hypothesis and Assumption A, we have u(ef ; IG(f�1)+1 � pf )

� u(ef ; IG(f�1) � pf ): The left hand side is equal to u(ef�1; IG(f�1)+1 � rf�1) by Eq. (2.2),

and the right hand side is equal to u(ef�1; IG(f�1) � rf�1) by Eq. (2.1). Hence, we have

u(ef�1; IG(f�1)+1 � rf�1) � u(ef�1; IG(f�1) � rf�1): This and Assumption A imply

rf�1 � rf�1 � IG(f�1) � IG(f�1)+1: (2.6)

Let � = IG(f�1) � IG(f�1)+1 � 0. Since u(ef�1; IG(f�1) � rf�1) = u(ef ; IG(f�1) � rf ) by Eq.

(2.1), we have, by Assumption D, u(ef�1; IG(f�1) � rf�1 � �) � u(ef ; IG(f�1) � rf � �): This

inequality is restated as

u(ef�1; IG(f�1)+1 � rf�1) � u
�
ef ; IG(f�1)+1 � rf

�
� u

�
ef ; IG(f�1)+1 � rf

�
= u(ef�1; IG(f�1)+1 � rf�1) by Eq. (2:2):
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This and Assumption A imply IG(f�1)+1� rf�1 � IG(f�1)+1� rf�1; that is, rf�1 � rf�1: By

this and Eq. (2.6), we have the relation 0 � rf�1 � rf�1 � IG(f�1) � IG(f�1)+1:

Suppose that for k = j with 1 < j � f � 1;

0 � rj � rj � maxj�l�f�1fIG(l) � IG(l)+1g: (2.7)

Then, for k = j � 1;

(i) Suppose rj � rj � IG(j�1) � IG(j�1)+1. Then, u(ej ; IG(j�1)+1 � rj) � u(ej ; IG(j�1) � rj):

The left hand side is equal to u(ej�1; IG(j�1)+1 � rj�1) by Eq. (2.2), and the right hand

side is equal to u(ej�1; IG(j�1) � rj�1) by Eq. (2.1). Hence, u(ej�1; IG(j�1)+1 � rj�1) �

u(ej�1; IG(j�1)�rj�1): This and Assumption A imply IG(j�1)+1�rj�1 � IG(j�1)�rj�1, that

is,

rj�1 � rj�1 � IG(j�1) � IG(j�1)+1: (2.8)

Let � = IG(j�1) � IG(j�1)+1 � 0. Since u(ej�1; IG(j�1) � rj�1) = u(ej ; IG(j�1) � rj) by Eq.

(2.1), we have, by Assumption D, u(ej�1; IG(j�1) � rj�1 � �) � u(ej ; IG(j�1) � rj � �): This

inequality is restated as

u(ej�1; IG(j�1)+1 � rj�1) � u(ej ; IG(j�1)+1 � rj)

� u(ej ; IG(j�1)+1 � rj) by Eq. (2.7)

= u(ej�1; IG(j�1)+1 � rj�1) by Eq. (2.2).

This and Assumption A imply IG(j�1)+1 � rj�1 � IG(j�1)+1 � rj�1, that is, rj�1 � rj�1: By

this and Eq. (2.8), we get

0 � rj�1 � rj�1 � IG(j�1) � IG(j�1)+1: (2.9)

(ii) Suppose rj�rj > IG(j�1)�IG(j�1)+1. Then, u(ej ; IG(j�1)+1�rj) > u(ej ; IG(j�1)�rj): This

together with Eq. (2.1) and Eq. (2.2) we have u(ej�1; IG(j�1)+1 � rj�1) > u(ej�1; IG(j�1) �

rj�1): This and Assumption A imply IG(j�1)+1 � rj�1 > IG(j�1) � rj�1, that is,

rj�1 � rj�1 > IG(j�1) � IG(j�1)+1: (2.10)

Let � = rj�1�rj�1�(IG(j�1)�IG(j�1)+1) � 0. Since u(ej�1; IG(j�1)�rj�1) = u(ej ; IG(j�1)�
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rj) by Eq. (2.1), we have, by Assumption D, u(ej ; IG(j�1)�rj+�) � u(ej�1; IG(j�1)�rj�1+�):

This is restated as

u(ej ; IG(j�1)+1 � rj + rj�1 � rj�1) � (ej�1; IG(j�1)+1 � rj�1)

= u(ej ; IG(j�1)+1 � rj) by Eq. (2:2):

This and Assumption A imply IG(j�1)+1 � rj + rj�1 � rj�1 < IG(j�1)+1 � rj , that is, rj�1 �

rj�1 < rj � rj : By this and Eq. (2.10), we get IG(j�1) � IG(j�1)+1 < rj�1 � rj�1 < rj � rj :

This together with Eq. (2.7) implies

0 � IG(j�1) � IG(j�1)+1 < rj�1 � rj�1 � maxj�l�f�1fIG(l) � IG(l)+1g:

This inequality together with Eq. (2.9), we have

0 � rj�1 � rj�1 � maxj�1�k�f�1fIG(k) � IG(k)+1g:

Hence, for all k = 1; :::; f � 1, we have 0 � rk � rk � maxk�l�f�1fIG(l) � IG(l)+1g.

3.4 Examples and the application

3.4.1 Numerical examples

Here, we will show three examples. The settings for the �rst and second examples are the

same except for the number of apartment units wk and households m. These examples show

the rent di¤erence in a large market is smaller than the rent di¤erence in a sparse market.

The third example is the case where the hypothesis of Theorem 3.3.6 fails.

Assume that there are six categories of apartments (T = 6). Let wk (k = 1; :::; 6) be the

number of apartment units for rent in the k-th category.6 We assume that the same number

of households come into the market, and that all the apartments are ultimately rented. That

is, the marginal category is f = 6 and the number of households m =
P6
k=1wk. Assume that

6Then, a cost function for landlord k can be expressed as Ck =
�

akyk if yk � wk
�large� if yk > wk

; where ak is a

constant and �large� is greater than I1.
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k 1 2 3 4 5 6

rk 225:7 162:5 100:1 70:3 43:4 20
rk 220:4 158:3 97:2 68:2 42:3 20

rk � rk 5:3 4:2 2:8 2:1 1:2 0

Table 3.1: Di¤erential rent vectors in Ex. 3.4.1

k 1 2 3 4 5 6

rk 223:4 161 99:4 69:9 43:3 20
rk 222:1 160 98:7 69:4 43 20

rk � rk 1:3 1:0 0:7 0:5 0:3 0

Table 3.2: Di¤erential rent vectors in Ex. 3.4.2

each household has the following utility function:

u(ek; c) = hk +
p
c for k = 0; 1; :::; 6;

where h1 = 9; h2 = 7; h3 = 5; h4 = 4; h5 = 3; h6 = 2 and h0 = 0. This utility function

satis�es Assumption A, C,D, E and F. Also, we assume the income of each household is

uniformly distributed over the interval [100; 500].

Example 3.4.1. Let wk = 5 for each k = 1; :::; 6. Then, m = 5 � 6 = 30 and we have

IG(k) � IG(k)+1 ' 13:8 for each k. Let r6 = r6 = 20. Under these settings, we can calculate

the upper and lower di¤erential rent vectors by the rent Eqs. (2.1) and (2.2). Table 3.1 shows

the calculation results of rk, rk and the di¤erence rk � rk.

By Table 3.1, an inequality rk�rk � maxk�j�f�1fIG(j)�IG(j)+1g of Theorem 3.3.6 holds

for each k. We also observe rk�rk < rk�1�rk�1 for each k. This is consistent with Theorem

3.3.5 because rk � rk < IG(k�1) � IG(k�1)+1 for each k (which corresponds to Fig. 3.3.(1) in

Section 3.3.2). To sum up, the di¤erence rk � rk is smaller than IG(k) � IG(k)+1 for each k;

however, the di¤erence tends to larger as a category gets better.

Example 3.4.2. Let wk = 20 for each k = 1; :::; 6. Then, m = 20 � 6 = 120 and we have

IG(k) � IG(k)+1 ' 3:4 for each k. Let r6 = r6 = 20. Table 3.2 shows the calculation results of

rk, rk and rk � rk.

As with Example 3.4.1, the di¤erence rk � rk is smaller than IG(k) � IG(k)+1 for each k;

however, it tends to larger as a category gets better. Compared to Table 3.1, the di¤erence

rk � rk is signi�cantly smaller for each k.

We next give another example where the hypothesis of Theorem 3.3.6 fails. This example

shows that whereas the rent di¤erence rk � rk exceeds the income di¤erence IG(k) � IG(k)+1,
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k 1 2 3 4 5 6

rk 223:4 161 99:4 69:9 43:3 20
rk 219 156:5 94:7 65:1 38:4 15

rk � rk 4:4 4:5 4:7 4:8 4:9 5

Table 3.3: Di¤erential rent vectors in Ex. 3.4.3

the rent di¤erence tends to decrease as k goes to 1.

Example 3.4.3. Let wk = 20 for each k (IG(k) � IG(k)+1 ' 3:4). Let r6 = 20 and r6 = 15.

Then, we have r6 � r6 = 5 > 3:4 ' IG(5) � IG(5)+1; that is, the hypothesis of Theorem 3.3.6

fails. Table 3.3 shows the calculation results of rk, rk and, rk � rk.

From Table 3.3, we have rk � rk > maxk�j�f�1fIG(j) � IG(j)+1g for each k (Theorem

3.3.6 fails). On the other hand, the di¤erence rk � rk tends to decrease as k reaches 1. This

is consistent with Theorem 3.3.5 because rk � rk > IG(k�1) � IG(k�1)+1 for each k (which

corresponds to Fig. 3.3.(2) in Section 3.3.2). Note that this example does not explain the

necessity of the condition rf �rf � IG(f�1)�IG(f�1)+1 for Theorem 3.3.6. It may be possible

that Theorem 3.3.6 holds but rf � rf > IG(f�1) � IG(f�1)+1.

3.4.2 Shrinkage of di¤erential/competitive rent vectors with many house-

holds

As a consequence of our results in Section 3.3, we show a shrinkage result on a di¤erential (or

competitive) rent vector. In Chapter 2, Section 2.5.2, we showed the set of competitive price

vectors shrinks to a unique point as the number of sellers become large. According to our

Theorem 3.3.3 and 3.3.6, we will also obtain a similar result for markets with large number

of households.

Let f(M� ; N�)g1�=0 be a sequence of rental housing markets. We assume for each �, a

market (M� ; N�) satis�es Assumptions A-G. We consider the situation where for a large �,

the market has many households and their income distribution gets dense. This is formalized

by the following condition.

Condition 3.4.4. There is some constant � > 0 such that for any �, f(M� ; N�)g1�=0 satis�es

(1) jM� j ! 1 as � !1;

(2) I�i � � for all i 2M� ;

(3) maxi2M�nf1g[I
�
i�1 � I�i ] � �= jM� j.

Condition 3.4.4.(1) and (2) imply that, although the number of households becomes large,
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the income of each household is bounded; while (1) and (3) imply that an interval of two

adjacent incomes tends to be small as the number of households becomes large. In sum,

Condition 3.4.4 means that the income distribution of (M� ; N�) becomes denser as � gets

larger.

For the market (M� ; N�) (� � 0), let pmax � (pmin �) be the maximum (minimum) com-

petitive rent vector, f� be a marginal category and (r�1 ; :::; r
�
f� ), (r

�
1 ; :::; r

�
f� ) be the upper and

lower di¤erential rent vectors determined by r�f� = p
max �
f� and r�f� = p

min �
f� . Then, we have

the following theorem.

Theorem 3.4.5. Suppose that f(M� ; N�)g1�=0 satis�es Condition 3.4.4 and for each � � 1,

0 � rf� � rf� � I�G(f��1) � I
�
G(f��1)+1. Then,

Pf�

k=1 rk � rk ! 0 as � !1.

Proof. By Theorem 3.3.6, we have 0 �
Pf��1
k=1 rk�rk �

Pf��1
k=1 maxk�l�f��1[I

�
G(l)�I

�
G(l)+1]:

The right hand side of the inequality is not greater than �= jM� j by Condition 3.4.3, which

tends to zero as � !1.

Theorem 3.4.5 together with Eq. (2.5) in Section 3.3.2 imply that a competitive rent

vector (p�1 ; :::; p
�
f� ) of a relevant part also shrinks to a unique point:

Pf�

k=1 p
max �
k � pmin �k ! 0

as � !1.7

3.5 Conclusions

We have evaluated the di¤erence between the upper and lower di¤erential rent vectors in a

rental housing market model by Kaneko et al. (2006), where the identical utility function

and the normality of the quality of housing are assumed. The upper (lower) di¤erential rent

vector is the solution of system of equations. In general, the upper (lower) di¤erential rent

vector is an upper (lower) bound of the set of competitive rent vectors. It coincides with the

maximum (minimum) competitive rent vectors under some condition.

Our main result (Theorem 3.3.6) is that the rent di¤erence of k-th category is smaller

than the largest income di¤erence between speci�c neighboring households numbered G(l)

and G(l)+1 (k � l � f�1). This implies that the rent di¤erence can be regarded as small and

consequently, the di¤erence between the maximum and minimum competitive rent vectors is

also small. Furthermore, the di¤erence shrinks to zero as the market becomes larger and the

7 Indeed, the remaining categories f +1; :::; T are inessential in our market model since no units in the k-th
category (f < k � T ) are traded (nevertheless, a competitive rent pk (k > f) is determined with pk � Ck(1)).
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household income distribution becomes denser (Theorem 3.4.5). Another result (Theorem

3.3.5) indicates that we can reduce the comparison of two rent di¤erences of the k-th and

k � 1-th categories into a comparison of the rent di¤erences of the k-th category and the

income di¤erences of neighboring households numbered G(k � 1) and G(k � 1) + 1. Our

results argue that a di¤erential rent vector is a good approximation for a competitive rent

vector; and furthermore, when we study a considerably large market, comparative statics

results are similar whether we use an upper or lower di¤erential rent vectors.
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Chapter 4

Comparative Statics in Housing

Markets with Indivisibilities: How

Rising Income Inequality A¤ects on

Housing Rents?

4.1 Introduction

In this chapter, we present the impact of rising household income inequality on housing rents.

The market model that we adopt is the rental housing market model by Kaneko, Ito and

Osawa (2006), which is an application of the assignment model (Shapley and Shubik, 1972;

Kaneko, 1982) where the agents are divided into buyers and sellers, each buyer (household)

demands at most one apartment unit, and each seller (landlord) provides some apartment

units. The apartments as indivisible commodities are classi�ed into �nite categories 1; :::; T

based on their qualities. The goods other than apartments are aggregated and consumed as

composite good (money). A household utility function is assumed to be homogeneous, and

allows income e¤ect on housing qualities.

It is known that this market model guarantees the existence of a competitive equilibrium

(Kaneko, 1982; Kaneko and Yamamoto, 1986). Furthermore, a competitive rent vector can be

calculated by a solution for a certain system of equations (the solution is called the di¤erential

rent vector). In our analysis, we directly consider the di¤erential rent vector rather than the
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competitive rent vector.

Here, we brie�y introduce our comparative statics results. The �rst result is that the

impact of an increase in income inequality can be divided by three cases: (1) rise in com-

petitive rent at every category, (2) rise at higher categories and decline at lower categories

or (3) decline at every category. The second result characterized (1)-(3) by the location of

household who divides the households into the income-increased group and the decreased

group. From this characterization, we show (1) is an extreme case, while (2) and also (3) of

a counterintuitive results are possible.

We also show some tendency found between the rent change and diminishing rate of

marginal utility by numerical example: the rent change tends to show (3) as a diminishing

rate of marginal utility for housing gets larger ; the rent change tends to show the case (2)

a diminishing rate of marginal utility for composite goods gets larger. These observations

implies that there is a certain low between marginal rate of substitution and a rent change.

Here, we introduce related literature. Kaneko et al. (2006) studied e¤ects of changes in

incomes of boundary households on a competitive rent vector. The boundary household is

de�ned for each category of apartments. This household plays a crucial role in the model.

The authors showed that when the boundary income di¤erence is larger (smaller) for a better

category of apartments, the rent di¤erence forms convex (concave) shape.

Ito (2007) presented the e¤ects of a rise in only the boundary household income of category

k on competitive rents, under a more restricted assumption on a utility function. The author

showed that rents are unchanged at k + 1; :::; T , increase at 1; :::; k and a rent di¤erence of

each category 1; :::; k � 2 is smaller for a better category of apartments.

Määttänen and Terviö (2014) studied the e¤ect of rising income inequality on house

prices in the one-sided assignment model. One-sided means that the agents are potentially

seller and buyer. The authors assume a continuum of agents and housing types (thus, an

analytical method is calculus), and the homogeneity and normality on the utility functions.

The authors presented a similar result to our main result. Braid (1981) also studied the

e¤ects of parameter changes on rent distributions under the two-sided version of Määttänen

and Terviö�s framework.

This paper is organized as follows. Section 4.2 formulates the market model and explains

some notions for the study. Section 4.3 examines the impact of rising income inequality on

a competitive rent distribution. Section 4.4 gives additional studies on the relation between
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an income distribution and a rent distribution by numerical examples. Section 4.5 presents

conclusions and some remarks.

4.2 The market model

The rental housing market model (Kaneko et al., 2006) is denoted by (M;N), where the

symbol M = f1; : : : ;mg denotes the set of households, and N = f1; : : : ; Tg denotes the set of

landlords. The objects of trade are apartments (indivisible) and money (perfectly divisible).

The apartments are classi�ed into a �nite number of T categories by their housing attributes

(e.g., housing size and commuting time). Each landlord k 2 N supplies of apartment units

of the k-th category (thus k is the only landlord providing the k-th apartments).1

Each household i 2 M initially has an income Ii > 0 but no dwelling. The household

wants to live in some apartment and use income to pay rent. Without loss of generality, we

can assume that the households are ordered in their incomes as I1 � I2 � � � � � Im. The

consumption set is written by X := fe0; e1; : : : ; eT g�R+; where ek is the T -dimensional unit

vector with k-th component is 1 (e0 = 0), and R+ is the set of nonnegative real numbers.

A consumption bundle (ek; c) 2 X with k 6= 0 means that household i rents one apartment

unit of category k and enjoys the consumption c = Ii � pk paying rent pk of category k. For

k = 0, no apartment is consumed. An initial endowment of i 2 M is given as (e0; Ii) with

Ii > 0. Each household has an identical utility function u : X ! R satisfying the following

assumption:

Assumption A. For each x 2 fe0; e1; : : : ; eT g; u(x; c) is a continuous and strictly monotone

function of c, and u(e0; Ii) > u(ek; 0) for all k = 1; :::; T:

The identical utility function implies that a housing market (M;N) represents a mono-

centric city, and every household commutes to the same business district. In Assumption A,

continuity and monotonicity of money are standard; the latter inequality means the indis-

pensability of money. We also assume the following B-D on u(�; �).

Assumption B. If u(xi; c) = u(x0i; c
0); and c < c0; then u(xi; c + �) > u(x0i; c

0 + �) for any

� > 0:

1The original model of Kaneko et al (2006) assume that jN j � T and there are more than one seller
providing apartments of type k (= 1; :::; T ). As far as competitive equilibrium is concerned, we can assume
without of generality that only one seller provides apartments of type k(= 1; :::; T ) (thus the set N becomes
N = f1; :::; Tg). See Section 5 of Sai (2014).
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Assumption C. If u(xi; c) > u(x0i; c
0); then u(xi; c) = u(x0i; c

0 + �) for some � > 0:

Assumption D. u(e1; 0) > u(e2; 0) > � � � > u(eT ; 0):

Assumption B is the normality assumption on the quality of apartments in the following

sense. In B, the k-th apartment has a better quality than k0, since living in k with smaller

consumption c is indi¤erent to living in k0 with larger c0. When an income is increased

by the same magnitude � > 0, the household strictly demands a better apartment. The

normality implies that even if we assume an identical utility function, households having

di¤erent incomes demand di¤erent qualities of apartments. Assumption C means that the

housing quality of an apartment is substitutable for money. Assumption D means that the

apartment qualities are strictly ordered numerically.2

We next de�ne the seller side. Each landlord k 2 N = f1; :::; Tg provides apartments of

k-th category. The landlord has a cost function Ck(yk) : Z+ ! R+; where Z+ is the set of

nonnegative integers. For each yk 2 Z+, Ck(yk) represents the cost (in terms of money) of

supplying yk units of apartments of k-th category. In this study, we employ the following

simple form of Ck(�).

Assumption E. For each k 2 N; Ck(yk) is expressed as

Ck(yk) =

8><>: akyk if yk � wk,

�large�if yk � wk + 1;

In Assumption E, the constant ak > 0 is the marginal cost of providing an additional

unit, and �large�is a su¢ ciently large number. The remaining constant wk is the number of

all apartment units owned by landlord k. This cost function means that landlord k supplies

units up to wk with the constant marginal cost ak, while never supplying more than wk units,

since the cost to build a new one is very large relative to market size.

We de�ne a competitive equilibrium in (M;N). Let p 2 RT+ be the price vector, x 2

fe0; e1; : : : ; eT gm be the demand vector and y 2 ZT+ be the supply vector. A triple (p; x; y)

is a competitive equilibrium i¤

(UM): for all i 2M; (i) Ii � pxi � 0, where pxi =
PT
k=1 pkxik;

(ii) u(xi; Ii � pxi) � u(x0i; Ii � px0i) for all x0i 2 fe0; e1; : : : ; eT g with Ii � pxi � 0.
2Assumption D together with Assumptions A, B and C imply that u(e1; c) > u(e2; c) > � � � > u(eT ; c) for

all c 2 R+.
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(PM): for all k 2 N; pkyk � Ck(yk) � pky0k � Ck(y0k) for all y0k 2 Z+:

(BDS):
P
i2M xi =

PT
k=1 yke

k.

There exists a competitive equilibrium (p; x; y) in (M;N) (Kaneko and Yamamoto, 1986),

the maximum and minimum competitive rent vectors (Kaneko et al., 2006; Sai, 2015).3,4 In

our analysis, we focus on the maximum competitive rent vector. This rent vector is calculated

by the solution of a certain system of equations called the rent equation.5 The following

proposition is necessary to de�ne the rent equation.

Proposition 4.2.1 (Kaneko et al., 2006). Let (p; x; y) be a competitive equilibrium. Then,

(1) If k < k0 and xi = ek
0
for some i, then pk > pk0 :

(2) If xi = ek; xj = ek
0
and Ii > Ij for some i; j, then k � k0:

This states that in any competitive equilibrium, (1) the price of a better apartment is

higher than that of a worse one, and (2) a household with a higher income rents a better

apartment. Note that Proposition 4.2.1. (1) does not exclude the case of yk = 0. The

following assumption eliminates such a case.

Assumption F. Let (p; x; y) be a competitive equilibrium. There exists some category f

such that yk > 0 for k = 1; :::; f and yk = 0 for k = f + 1; :::; T .

We call this f the marginal category. By Proposition 4.2.1. (1) and Assumption F, we

have p1 > p2 > � � � > pf .

Recall that the households 1; :::;m are ordered by their incomes as I1 � I2 � � � � � Im.

We de�ne the household with the lowest income in each active category. Let (p; x; y) be a

maximum competitive equilibrium. For each category k � f , we de�ne the household G(k)

with the lowest income in the k-th category as

G(k) :=
kP
t=1
yt:

For each k, we call G(k) the boundary household of the k-th category.

The rent equation (Kaneko et al., 2006) is de�ned as the system of equations with un-

3A vector p 2 RT+ is a competitive price vector i¤ (p; x; y) is a competitive equilibrium, and p is the maximum
(minimum) competitive price vector i¤ p � p0 (p � p0) for any competitive price vector p0.

4 Indeed, these existence theorems are guaranteed only under Assumptions A and E.
5 Instead of the maximum one, we may focus on the minimum competitive rent vector. It follows from Sai

(2014) and/or Sai (2015) that the di¤erence between pmax and pmin is rather small when a market is thick
with landlords and/or households.
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knowns r1; :::; rf :

u(ef�1; IG(f�1) � rf�1) = u(ef ; IG(f�1) � rf );

u(ef�2; IG(f�2) � rf�2) = u(ef�1; IG(f�2) � rf�1);
...

u(e1; IG(1) � r1) = u(e2; IG(1) � r2):

9>>>>>>>=>>>>>>>;
(3.1)

Note that the rent equation (3.1) has f unknowns constituted as f � 1 equations. Eq. (3.1)

states that a household G(k) is indi¤erent between renting the k+1-th apartment at rent rk+1

and renting the k-th category at rk. In Eq. (3.1), if the rent of marginal category rf is given,

the �rst equation of Eq. (3.1) determines rf�1. In the same manner, the remaining rents

rf�2; :::; r1 are recursively determined. We call a solution (r1; :::; rf ) of Eq. (3.1) a di¤erential

rent vector. Under our assumptions, if rf is given with u(e1; 0) < u(ef ; IG(f�1) � rf ), then a

di¤erential rent vector is uniquely determined and satis�es r1 > � � � > rf�1 > rf .

We conclude this section by noting the relation between a di¤erential rent vector and a

competitive rent vector. Let p = (p1; :::; pT ) be the maximum competitive rent vector and

(r1; :::; rf ) is a di¤erential rent vector given by rf � pf . Then, it holds that rk � pk for all

k = 1; :::; f (Theorem 3.1 by Sai, 2015). In particular, if rf = pf and some condition holds,

then rk = pk for all k = 1; :::; f .6 Hereafter, we use a di¤erential rent vector for comparative

statics.

4.3 The impact of rising income inequalities on competitive

rents

4.3.1 Comparative statics

In this section, we study the relation between household income distributions and competitive

equilibria. The main purpose is to explain how rising income inequality a¤ects a competitive

rent vector. Recall that the set of households M = f1; :::;mg is ordered by their income

levels as I1 � � � � � Im. Here we consider a new market where only the structure of household

incomes change. To be precise, fI1; � � � ; Img changes to fbI1; � � � ; bImg, but the remainingM;N;
6These are two conditions by Kaneko et al. (2006), Theorem 2.6: (1) IG(k) = IG(k)+1 for each k =

1; :::; f � 1; (2) pk < Ck (yk + 1)� Ck (yk) for each k = 1; :::; f � 1.
Even when neither condition holds, a di¤erential rent vector can be an approximation of the maximum

competitive rent vector. See Sai (2015), Section 3.1.
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u(�; �); ck(�), f and rf are unchanged.7 By assumption E, the supply amount is also unchanged

for each category 1; :::; f , and consequently, the boundary household G(k) =
Pk
t=1wt (k =

1; :::; f) remains the same. We consider the following condition on household incomes.

Condition InE (Increase in Income Inequality). There exists a household i� < m such that

Ii < bIi for i 2 f1; � � � ; i�g and Ii > bIi for i 2 fi� + 1; � � � ;mg, and Pi2M (Ii � bIi) = 0:
This condition states that in the new market, income increases for the upper households

greater than i� + 1 and declines for the lower households less than i�, preserving the level of

gross income.

Let (r1; � � � ; rf�1; rf ) and (br1; � � � ; brf�1; rf ) be di¤erential rent vectors in the original and
new markets determined by rf with u(e1; 0) < u(ef ; bIG(f�1) � rf ). In the next theorem, we
examine how the new rent vector (br1; � � � ; brf�1) changes under Condition InE (the proof will
be given in Section 4.3.2).

Theorem 4.3.1 (The Possible Cases of Rent Change). Under Condition InE, either (1), (2)

or (3) holds:

(1) rk < brk for k = 1; :::; f � 1:
(2) There exist a category k�(� f � 2) such that

8>>>><>>>>:
rk < brk for k = 1; :::; k� � 1;
rk� � brk� ;
rk > brk for k = k� + 1; :::; f � 1:

(3) rk > brk for k = 1; :::; f � 1.
This theorem shows three possibilities of rent change when income inequality increases.

Theorems 4.3.1. (1) and (3) are straightforward: (1) [(3), respectively] states that rent rises

(falls) for every category 1; :::; f � 1 in the new market, and (2) states that rents rise for

upper categories 1; :::; k� and fall for lower categories k� + 1; :::; f � 1. The illustration of (2)

is depicted in Fig. 4.1.

One may think Theorems 4.3.1. (1) and (3) are counterintuitive. It is natural that rising

income inequality causes a decline in rent for lower categories and a rise in rent for upper

categories [case (2)]. Indeed, in the next theorem we show that (1) is an extreme case; on

the other hand, we also show that (3) is a common result.

Theorem 4.3.2 (Location of Household i� and Rent Change). Under Condition InE, the

following holds:

7We also assume that fbI1; � � � ; bImg satis�es bI1 � � � � � bIm
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Figure 4.1: An illustration of Theorem 4.3.1. (2).

(1) G(f � 1) � i� implies Theorem 4.3.1.(1).

(2) G(1) � i� < G(f � 1) implies Theorem 4.3.1.(2) or (3).

(3) i� < G(1) implies Theorem 4.3.1. (3).

This theorem characterizes three cases of Theorem 4.3.1 by the location of household i� of

Condition InE. The �rst inequality G(f � 1) � i� means that the boundary income of every

category rises, i.e., IG(k) < bIG(k) for every k = 1; :::; f � 1. Similarly, the third inequality

G(f � 1) � i� means that IG(k) > bIG(k) for every k = 1; :::; f � 1. Both are extreme cases in
that the number of �income declined (increased)� households is extremely small compared

with the number of �increased (declined)� households: in the former case, every income

declined household is assigned to the marginal category f , and the income declined segment

fbIi�+1; :::; bImg is irrelevant to the determination of rents br1; :::; brf�1, and in the latter case,
every income increased household is assigned to the 1-st category.

Theorem 4.3.2 implies that when we exclude the two extreme cases above, two possibilities

remain, Theorem 4.3.1. (2) or (3), as the result of a rent change (i.e., a counterintuitive result

still occurs). Then what factors determine the establishment of either Theorem 4.3.1. (2) or

(3)? We discuss this in the next section.

Notice that we assumed that the apartment stock is �xed (Assumption E). In this sense,

our study is a short-run equilibrium analysis. One possible example of such a short-term

change in household income distribution is that of a government�s change in its policy of

redistribution. In our result, Theorems 3.1 and 2 imply that strengthening of income redis-

tribution causes either a rise in rent for every category of housing, or a decrease in rent for

a few upper categories and a rise in rent for other categories (that is, the supplier share of
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excess economic rent increases).

We conclude this section by comparing our results with other related studies. Kaneko et

al. (2006) studied e¤ects of changes in boundary incomes on a di¤erential rent vector. In

particular, they considered the case bIG(f�1)�IG(f�1) � bIG(f�2)�IG(f�2) � � � � � bIG(1)�IG(1),
i.e., the boundary income increment is larger for a better category of apartments.8 ;9 Then,

according to their Theorem 5.2. (1) and Corollary 6.2. (1) (Kaneko et al., p.160 and p.162),

the rent di¤erences form a convex shape.10

Määttänen and Terviö (2014) also studied the e¤ect of rising income inequality on housing

prices by using the one-sided continuum assignment model. In their model, each agent initially

has a house and money, and they exchange them. They assumed that a continuum of agents

and housing types, and the homogeneity and normality of utility functions. Their main result

(Proposition 4, p.391) is essentially the same as our Theorem 4.3.1 with the exclusion of the

case (1).11 Nevertheless, their analytical method is di¤erent from ours because they use

calculus for analyses, whereas our model is based on �niteness.

4.3.2 Proofs of Theorem 4.3.1 and Theorem 4.3.2

It su¢ ces to prove Theorem 4.3.2.

Proof of Theorem 4.3.2.(1). Suppose G(f � 1) � i�, i.e., IG(k) < bIG(k) for every k =
1; :::; f � 1. We prove this by mathematical induction over f � 1; :::; 1. Let � = bIG(f�1) �
IG(f�1) > 0. the rent equation (3.1) and the normality assumption (Assumption B) imply

u(ef�1; IG(f�1) � rf�1 + �) > u(ef ; IG(f�1) � rf + �);
8They also considered the opposite case: bIG(f�1) � IG(f�1) � bIG(f�2) � IG(f�2) � � � � � bIG(1) � IG(1).
9Our Condition InE can be applied to their condition asbIG(f�1) � IG(f�1) � � � � � bIG(k) � IG(k) < 0 < bIG(k�1) � IG(k�1) � � � � � bIG(1) � IG(1)

for some k 2 f2; :::; f � 1g:

This is understood as the income inequality signi�cantly increases.
10To be precise, the rent di¤erence holds

0 > brf�1 � rf�1 > � � � > brk1 � rk1 = � � � = brk2 � rk2 < � � � < br1 � r1;
where k � k2 � k1 � f � 1,

that is, the decrement of brk to rk gets larger for category f � 1; f � 2; � � � ; k1, becoming maximal for k1; � � � ;
k2 and smaller for k2; :::; 1:
11Their condition of an increase in income equality excludes antecedents of Theorem 4.3.2. (1) and (3).
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that is,

u(ef�1; bIG(f�1) � rf�1) > u(ef ; bIG(f�1) � rf )
= u(ef�1; bIG(f�1) � brf�1) by Eq. (3.1).

This inequality and the monotonicity (Assumption A) imply bIG(f�1)�rf�1 > bIG(f�1)�brf�1,
that is, rf�1 < brf�1.

Suppose rk < brk for k with 1 < k � f�1. Then we show this relation also holds for k�1.
Let � = bIG(k�1) � brk � (IG(k�1) � rk) and suppose � > 0. Then, Eq. (3.1) and Assumption B
imply

u(ek�1; IG(k�1) � rk�1 + �) > u(ek; IG(k�1) � rk + �);

that is,

u(ek�1; bIG(k�1) � rk�1 � brk + rk) > u(ek; bIG(k�1) � brk)
= u(ek�1; bIG(k�1) � brk�1) by Eq. (3.1).

This inequality and Assumption A imply bIG(k�1) � rk�1 � brk + rk > bIG(k�1) � brk�1, that is,brk�1 � rk�1 > brk � rk > 0.
Suppose the other case � � 0. Then, Assumption A imply u(ek; IG(k�1)�rk) � u(ek; bIG(k�1)�brk). Since the left hand side equals u(ek�1; IG(k�1) � rk�1) and the right hand side equals

u(ek�1; bIG(k�1)�brk�1) by Eq. (3.1), we have u(ek�1; IG(k�1)�rk�1) � u(ek�1; bIG(k�1)�brk�1).
Again, by Assumption A, we have IG(k�1) � rk�1 � bIG(k�1) � brk�1, that is, brk�1 � rk�1 �bIG(k�1) � IG(k�1) > 0. Hence we obtain rk�1 < brk�1:
Proof of (2). Suppose G(1) � i� < G(f � 1) and let k� = min[k : i� < G(k)]. We �rst

prove the inequality rk > brk holds for k = k�; :::; f � 1 by mathematical induction. Let

� = IG(f�1) � bIG(f�1) > 0. The rent equation (3.1) and Assumption B imply
u(ef�1; bIG(f�1) � brf�1 + �) > u(ef ; bIG(f�1) � rf + �);
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that is,

u(ef�1; IG(f�1) � brf�1) > u(ef ; IG(f�1) � rf )

= u(ef�1; IG(f�1) � rf�1) by Eq. (3.1).

This inequality and Assumption A imply IG(f�1)�brf�1 > IG(f�1)�rf�1, that is, rf�1 > brf�1.
Suppose the inequality rk > brk holds for k with k� < k � f � 1. We show this also holds

for k�1. Let � = IG(k�1)� rk� (bIG(k�1)�brk) and suppose � > 0. Eq. (3.1) and Assumption
B imply

u(ek�1; bIG(k�1) � brk�1 + �) > u(ek; bIG(k�1) � brk + �);
that is,

u(ek�1; IG(k�1) � brk�1 � rk + brk) > u(ek; IG(k�1) � rk)

= u(ek�1; IG(k�1) � rk�1) by Eqs. (3.1).

This inequality and Assumption A imply IG(k�1) � brk�1 � rk + brk > IG(k�1) � rk�1, that is,
rk�1 � brk�1 > rk � brk > 0. Hence we obtain rk�1 > brk�1:

Suppose the other case � � 0. Then, Assumption A imply u(ek; bIG(k�1)�brk) � u(ek; IG(k�1)�
rk). Since the left hand side equals u(ek�1; bIG(k�1) � brk�1) and the right hand side equals
u(ek�1; IG(k�1)�rk�1) by Eq. (3.1), we have u(ek�1; bIG(k�1)�brk�1) � u(ek�1; IG(k�1)�rk�1).
Again, by Assumption A, we have bIG(k�1) � brk�1 � IG(k�1) � rk�1, that is, rk�1 � brk�1 �
IG(k�1) � bIG(k�1) > 0. Hence we obtain rk�1 > brk�1:

From the above discussion, we have rk > brk holds for k = k�; :::; f � 1. We next show

either rk > brk or rk � brk holds for k = 1; :::; k� � 1. Furthermore, we show that once rk � brk
appears for some k� � k� � 1, then it holds that rk < brk for k = 1; :::; k� � 1:

Let � = bIG(k��1) � brk� � (IG(k��1) � rk�). By condition InE, we have
bIG(k��1) � brk� � (IG(k��1) � rk�) > 0: (3.2)

Eq. (3.1) and Assumption B imply

u(ek
��1; IG(k��1) � rk��1 + �) > u(ek

�
; IG(k��1) � rk� + �);
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that is,

u(ek
��1; bIG(k��1) � rk��1 � brk� + rk�) > u(ek

�
; bIG(k��1) � brk�)

= u(ek
��1; bIG(k��1) � brk��1) by Eq. (3.1).

This inequality and Assumption A imply bIG(k��1)� rk��1�brk�+ rk� > bIG(k��1)�brk��1, that
is,

rk� � brk� > rk��1 � brk��1: (3.3)

On the other hand, Eq. (3.2) and Assumption A imply u(ek
�
; bIG(k��1) � brk�) > u(ek

�
;

IG(k��1) �rk�). Since the left hand side equals u(ek
��1; bIG(k��1) � brk��1) and the right hand

side equals u(ek
��1; IG(k��1) � rk��1) by Eq. (3.1), we have u(ek

��1; bIG(k��1) � brk��1) >
u(ek

��1; IG(k��1) � rk��1). Again, by assumption A, we have bIG(k��1) � brk��1 > IG(k��1) �
rk��1, that is, rk��1 � brk��1 > IG(k��1) � bIG(k��1). By this and Eq. (3.3), we have

rk� � brk� > rk��1 � brk��1 > IG(k��1) � bIG(k��1).
Since rk� > brk� and IG(k��1) < bIG(k��1), there are two cases: rk��1 > brk��1 or rk��1 � brk��1.
If the latter case, the category k� of Theorem 4.3.1.(2) is k� = k� � 1.

Let k with 1 < k � k� � 1.

(Case rk > brk): By Condition InE, bIG(k�1) > IG(k�1). Thus, we have bIG(k�1)�brk�(IG(k�1)�
rk) > 0. In the same manner with the above discussion, we have

rk � brk > rk�1 � brk�1 > IG(k�1) � bIG(k�1);
and there may be two cases rk�1 > brk�1 or rk�1 � brk�1. If the latter case, the category k�
of Theorem 4.3.1.(2) is k� = k � 1.

(Case rk � brk): Suppose that � = bIG(k�1)�brk�(IG(k�1)�rk) > 0. Eq. (3.1) and Assumption
B imply

u(ek�1; IG(k�1) � rk�1 + �) > u(ek; IG(k�1) � rk + �);
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that is,

u(ek�1; bIG(k�1) � rk�1 � brk + rk) > u(ek; bIG(k�1) � brk)
= u(ek�1; bIG(k�1) � brk�1) by Eq. (3.1).

This inequality and Assumption A imply bIG(k�1) � rk�1 � brk + rk > bIG(k�1) � brk�1, that is,
rk�1 < brk�1.

Suppose the other case bIG(k�1)�brk�(IG(k�1)�rk) � 0. This inequality and Assumption A
imply u(ek; bIG(k�1)�brk) � u(ek; IG(k�1)�rk). Since the left hand side equals u(ek�1; bIG(k�1)�brk�1) and the right hand side equals u(ek�1; IG(k�1)�rk�1) we have u(ek�1; bIG(k�1)�brk�1) �
u(ek�1; IG(k�1) � rk�1). Again, by Assumption A, bIG(k�1) � brk�1 � IG(k�1) � rk�1. SincebIG(k�1) > IG(k�1), we obtain rk�1 < brk�1.
Proof of (3). The proof is the same as the early part of the proof of (2).

4.4 Numerical examples

In the previous section, we gave Theorems 4.3.1 and 4.3.2 for the relation between the dis-

tribution of income and housing rents. Theorem 4.3.1 stated that an increase in income

inequality causes either (1) a rise in rent for every category, (2) a rise for higher categories

and a fall for lower categories, or (3) a fall for every category [also we showed (1) is a special

case]. Here, we provide additional observations using two numerical examples.

The �rst example shows that there is a certain tendency with rent changes depending on

the diminishing rate of marginal utility. To be precise, the rent change tends to show case

(3) of Theorem 4.3.1 as the diminishing rate of marginal utility for housing gets larger ; and

the rent change tends to show case (2) of Theorem 4.3.1 as the diminishing rate of marginal

utility for composite goods gets larger. These observations imply that if the diminishing rate

of marginal rate of substitution of housing for composite good is large (that is, the degree of

convexity of the indi¤erence curve is large), then the rent change tends to show case (3) of

Theorem 4.3.1.

The second example con�rms our Theorem 4.3.2. (2). It shows that an increase in income

inequality possibly causes case (2) or (3) of Theorem 4.3.1, under the condition that the other

parameters remain the same.
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Figure 4.2: Rent distributions when income distribution changes (1).

4.4.1 Diminishing rate of marginal utility and rent change

Suppose that there are T = 40 categories of apartments (also suppose f = T ), an apartment

of each category is possibly supplied at most one unit (wk = 1 for all k = 1; :::; 40) and the

number of households m = 40. Then G(k) =
Pk
t=1 1 for k = 1; :::; 40. Each household has

the following separable utility function:

u(ek; c) = hk + 5c
a (k = 0; :::; 40 and 0 < a < 1):

Let h0 = 0; h40 = 1 and �hk = hk � hk+1 (�h40 = h40 � h0). We consider the following

di¤erent diminishing rates for �hk.

(1) Diminishing rates of marginal utility for hk:

(i) �hk�1 = �hk (0% diminishing rate);

(ii) �hk�1 = 0:99�hk (1% diminishing rate);

(iii) �hk�1 = 0:97�hk (3% diminishing rate):

A parameter a of u(�) is �xed as a = 0:5. We assume that the distribution of household

(monthly) income is uniform and its interval changes from [300; 500] to [100; 700]. Let the mar-

ginal rent r40 = 50. We then calculate di¤erential rent vectors (r1; :::; r40) and (br1; :::; br39; r40).
The rent distributions are shown in Fig. 4.2.

In Fig. 4.2, black lines depict di¤erential rents before the income change, and gray
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lines depict rents after the income change; solid lines correspond to (1)-(i), �ne dotted lines

correspond to (1)-(ii), and coarse dotted lines correspond to (1)-(iii). As shown in Fig. 4.2,

the decrement of rent when inequality increases gets larger as the diminishing rate for �hk

increases.

The reason for this tendency could be explained as follows. Let k be a category of apart-

ment. When the marginal utility of dwellings diminishes, for each household the willingness

to pay for the net marginal utility received by moving from unit k-th apartment to k � 1

is smaller than it is in moving from k + 1 to k. By this reason, in comparison with lower

households, an upper household prefers to spend its income on things other than dwellings.

As a consequence, if the diminishing marginal rate is large to some extent, the price for a

higher category of housing hardly rises enough to supplement the rent decrements in lower

categories.

We also consider the following di¤erent diminishing rates of marginal utility for composite

goods.

(2) Diminishing rates of marginal utility for ca.

(i) a = 0:55;

(ii) a = 0:5;

(iii) a = 0:45:

A diminishing rate for hk is �xed as �hk�1 = �hk. We assume the same changes for income

distribution as (1). The rent distributions with r40 = 50 are given in Fig. 4.3.

As seen from Fig. 4.3, an increase in the diminishing rate for composite good brings

an e¤ect opposite to (1) for higher categories. It is also found that the magnitude of rent

di¤erence becomes larger as the diminishing rate becomes smaller.

We can also explain the reason for such a tendency in a manner similar to (1). If the

diminishing rate for composite good becomes large, an upper household wants to spend its

income on dwellings rather than on composite good. As a consequence, if a diminishing rate

is large to some extent, the price for the higher category rises enough to supplement rent

decrements in lower categories.

4.4.2 Con�rmation of Theorem 4.3.2. (2)

Suppose T = f = 6; w1 = w2 = 200, w3 = w4 = 300; w5 = w6 = 500 and m =
Pk
t=1wt

(then, G(k) =
Pk
t=1wt for k = 1; :::; 6). The utility function is given by u(e

k; c) = hk +
p
c
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Figure 4.3: Rent distributions when income distribution changes (2).

(k = 0; :::; 6); where h1 = 5:1; h2 = 4:4; h3 = 3:7; h4 = 3; h5 = 2; h6 = 1 and h0 = 0.

We assume that household income is lognormally distributed.12 We adopt the following

three lognormal distributions: the mean of lognormal distribution is �xed as E = 330, and

variances are V1 = 1000, V2 = 20000 and V3 = 80000. Fig. 4.4 depicts the probability density

distributions for them.

In Fig. 4.4, the highest graph corresponds to (E; V1) (the initial distribution), the sec-

ond highest corresponds to (E; V2) (denoted hats), and the remaining is (E; V3) = 80000

(denoted it by double hats). We generate three sets of 2000 random numbers following each

distribution. Table 4.1 gives boundary incomes and Gini coe¢ cients for each income set.

Table 4.1 shows that income inequality increases as the variance increases, and the mag-

nitude of income di¤erence is monotone. The locations of household i� in Condition InE are

G(3) � bi� < G(4) and G(2) � bbi� < G(3) (both hold for (2) of Theorem 4.3.2).

Let rf = r6 = 50. Calculated di¤erential rent vectors are (r1; :::; r6), (br1; :::; br5; r6),
(bbr1; :::;bbr5; r6) and are illustrated in Table 4.2 and Fig. 4.5.
12We say that a (positive) random variable X is lognormally distributed with parameters � and �2 i¤

Y = lnX is normally distributed with mean � and variance �2. The lognormal distribution is denoted by
�(�; �2). The probability density function of X � �(�; �2) is given by

f(x) =
1p
2��x

exp

�
� (lnx� �)

2

2�2

�
(x > 0):

The mean E, variance V , median M and mode D of �(�; �2) are given by E = exp(� + 1
2
�2); V =

exp(2� + �2)
�
exp(�2)� 1

�
; M = exp(�) and D = exp(� � �2). By them, we have D < M < E, and thus,

�(�; �2) has a long-tail form. These di�nitions and properties are due to Crow and Shimizu (1988). The
lognormal distribution is aften used as an approximation of an income distribution.
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Figure 4.4: Probability density distributions of lognormal distributions.

Boundary incomes Di¤erences in IG(k)

k G(k) IG(k) bIG(k) bbIG(k) bIG(k) � IG(k) bbIG(k) � bIG(k)
1 200 371:6 514:7 660:5 143:1 145:8
2 400 356:7 433:8 470:1 77:1 36:3
3 700 341:8 356:1 346:0 14:3 �10:1
4 1000 329:3 305:2 264:3 �24:1 �40:9
5 1500 310:1 231:4 167:5 �78:6 �63:9
Gini 0:05 0:22 0:36

Table 4.1: Changes in boundary incomes

Changes in rk Di¤erences in rk
k rk brk bbrk brk � rk bbrk � brk
1 173:2 177:2 176:1 4:0 �1:0
2 153:0 150:9 114:8 �2:0 �6:1
3 132:5 126:9 119:1 �5:6 �7:8
4 111:8 105:2 97:5 �6:5 �7:7
5 81:3 75:9 70:7 �5:3 �5:3
6 50 50 50 0 0

Table 4.2: Changes in di¤erential rent vectors
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Figure 4.5: Rent distributions when income distribution changes (3).

As seen from Table 4.2 and Fig. 4.5, the �rst change (from fIigi2M to fbIigi2M ) causes
a rise only for the �rst category [Theorem 4.3.1. (2) occurs]. On the other hand, the second

change causes a decline in rents for every category [Theorem 4.3.1. (3) occurs]. These results

are consistent with Theorem 4.3.2. Thus, both Theorem 4.3.1. (2) and (3) may occur when

income inequality increases but the other parameters do not change.

4.5 Conclusions

We have studied the comparative statics analysis based on the assignment market model. In

particular, we present how rising income inequality a¤ects a competitive rent distribution.

The key assumptions of the model are identical utility function and normality for housing

quality. A competitive rent vector can be then calculated by a system of equations.

Our main comparative statics result is Theorem 4.3.1, stating that an increase in income

inequality a¤ects three cases of the competitive rent vector: (1) rent rises for every category,

(2) a rent rises for upper categories and falls for lower categories or (3) rent falls for every

category. Further Theorem 4.3.2 implies that (1) is an extreme case, while either (2) or (3)

is possible when an inequality increases. We also show the relation between a diminishing

rate of marginal utility and a rent change when income inequality increases, using numerical

examples.

We conclude this chapter with two remarks about future subjects. In Section 4.4.1, we

showed by numerical examples that there is a relation between marginal rate of substitution
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and e¤ects of increased income inequality for equilibrium rents. One future subject is to

show this relation by a proposition. The other subject is about a relaxation of our market

model. In Section 4.3.1, we mentioned that since we assumed that the apartment stock is

�xed (Assumption E), our study is a short-run equilibrium analysis. On the other hand,

a change in income structure is often considered a mid- or long-term structural change. A

subject is to relax the �xed apartment stock assumption and compare our result with the

result under such a relaxed model.
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Appendix A

Additional Results for Chapter 2

A.1 Pareto e¢ ciency of competitive equilibria

In this appendix, we show the Pareto e¢ ciency of competitive equilibria in the GAM model.

To show this, we �rst transform the seller�s cost function into the utility function. Let

t = 1; :::; T and Nt be the set of all sellers providing indivisible goods t. For each j 2 Nt, Let

(wj ; Ij) 2 Z+�R+ be the initial endowment of seller j (the value wj is seller j�s the maximum

possible supply of indivisible goods t). We transform cj : Z+ ! R into uj : Z+ �R+ ! R as

uj(k; d) =

8><>: d� cj(wj � k) if k < wj ;

d� cj(0) if k � wj :

The pro�t maximization condition for seller (De�nition 2.2.1.(2)) is transformed by the

(equivalent) utility maximization condition: for each t = 1; :::; T and j 2 Nt, uj(wj � yj ; Ij +

ptyj) � uj(wj � k; Ij + ptk) for every k � wj :

Now, let

M = f(�10 ; :::; �m0 ; �1; :::; �n) 2 Rm
0+n :

P
i2M[N �i =

P
i2M[N Iig;

I = f(x10 ; :::; xm0 ; k1; :::; kn) 2 fe0; :::; eT gm
0 �

Q
j2Nf0; :::; wjg :P

i2M xi +
PT
t=1

P
j2Nt kje

t =
PT
t=1

P
j2Nt wje

tg:

This M is the set of all money allocations and I is the set of all indivisibles allocations in the

market.

We then obtain the following assertion.
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Theorem A. For any competitive equilibrium (p; x; y) 2 C, its allocation (xi; wj � yj ; Ii �

pxi; Ij +ptyj)i2M;j2N 2 I�M is Pareto e¢ cient.1

Proof. Let (x0i; k
0
j ; �i; �j)i2M;j2N 2 I�M be an allocation satisfying

ui(x
0
i; �i) � ui(xi; Ii � pxi) for every i 2M , (A.1)

uj(k
0
j ; �j) � uj(wj � yj ; Ij + ptyj) for every j 2 Nt and t = 1; :::; T: (A.2)

We show these inequalities hold with equalities.

Let M1 = fi 2 M : Ii � px0ig and M2 = fi 2 M : Ii < px0ig. For buyer i 2 M1, the

relation

ui(x
0
i; �i) � ui(xi; Ii � pxi) � ui(x0i; Ii � px0i)

holds by Eq. (A.1) and utility maximization condition. This and Assumption A1 imply

�i � Ii � px0i for every i 2M1; (A.3)

hence, P
i2M1

�i �
P
i2M1

[Ii � px0i]: (A.4)

For buyer i 2M2, the relation �i � 0 > Ii � px0i holds by Eq. (A.1) and Assumption A2.

Hence, P
i2M1

�i >
P
i2M1

[Ii � px0i]: (A.5)

For t = 1; :::; T and seller j 2 Nt, the relation

uj(k
0
j ; �j) � uj(wj � yj ; Ij + ptyj) � uj(k0j ; Ij + pt(wj � k0j))

holds by Eq. (A.2) and utility maximization condition. This implies

�j � cj(wj � k0j) � Ij + pt(wj � k0j)� cj(wj � k0j) for every j 2 Nt (t = 1; :::; T );

that is,

�j � Ij + pt(wj � k0j) for every j 2 Nt (t = 1; :::; T ); (A.6)

1 In the allocation, t satis�es j 2 Nt.
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hence, P
j2N �j �

P
j2N [Ij + pt(wj � k

0
j)]: (A.7)

On the other hand, by money balance condition (the de�nition of M), it holds that

P
i2M[N �i =

P
i2M[N Ii. (A.8)

Furthermore, since
P
i2M px

0
i =

PT
t=1

P
j2Nt pt(wj � k

0
j), we have

P
i2M[N Ii =

P
i2M1

(Ii � px0i) +
P
i2M2

(Ii � px0i) +
PT
t=1

P
j2Nt [Ij + pt(wj � k

0
j)]. (A.9)

Eqs. A.4, 5, 7, 8 and 9 imply M2 = ;. Hence, Eq. A.9 can be rewritten by

P
i2M[N �i =

P
i2M (Ii � px

0
i) +

PT
t=1

P
j2Nt [Ij + pt(wj � k

0
j)].

This and Eqs. A3, 6 imply

�i = Ii � px0i for every i 2M; (A.10)

�j = Ij + pt(wj � k0j) for every j 2 Nt (t = 1; :::; T ): (A.11)

Eqs. A.10 and 11 together with utility maximization condition imply that Eqs. A.1 and 2

hold with equalities.

We can easily show that a maximum (minimum) competitive allocation is seller-optimal

(buyer-optimal) Pareto e¢ cient.
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Appendix B

Proofs for Chapter 3

B.1 Proof of Theorem 3.2.3

To prove Theorem 3.2.3, we need the following lemma.

Lemma B.1.1. Let (p; x; y) and (p0; x0; y0) be any competitive equilibria and suppose that

there is i 2M such that xi = ek and x0i = e
l, k 6= l. Then, pk Q p0k if and only if pl Q p0l.

The proof of Lemma B.1.1 needs the following lemma by Sai (2014), p. 45.

Lemma B.1.2 (Sai (2014)). Let (p; x; y) and (p0; x0; y0) be any competitive equilibria and

let k be an integer with 1 � k � T . Then, pk < p0k implies yk = y0k:

Proof of Lemma B.1.1. (If part of �<�) Suppose pl < p0l. It follows from the supposition

and UM of De�nition 3.2.1.(1), ui(ek; Ii�pk) � ui(el; Ii�pl) > ui(el; Ii�p0l) � ui(ek; Ii�p0k).

Thus we have ui(ek; Ii � pk) > ui(ek; Ii � p0k), which implies pk < p0k.

(Only if of �<�) Suppose pk < p0k. Suppose, on the contrary, pl � p0l. By lemma B.1.2, it

holds that yk = y0k. On the other hand, in equilibrium (p0; x0; y0), one household i switches

his housing choice from k to l. This implies that at least one household j(6= i) switches his

housing choice fromm(6= k) to k. By the supposition and UM, uj(em; Ij�pm)� uj(ek; Ij�pk)

> uj(e
k; Ij � p0k) � uj(em; Ij � p0m). This inequality derives pm < p0m, which implies m 6= l.

In the same manner with the above discussion, pm < p0m implies ym = y
0
m, and in equilibrium

(p0; x0; y0), at least one household switches his choice from n(6= m) to m. This also derives

pn < p0n, n 6= l and yn = y0n, so this process continues. Since M is �nite, this process does

not �nish even with all the possible household switched. This implies the hypothesis pl � p0l
is false. Thus, we obtain pl < p0l.
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(If of �=�) Suppose pl = p0l. By only if part of �<�, it is enough to show that pk � p0k. It follows

from the supposition and UM, ui(ek; Ii�pk) � ui(el; Ii�pl) = ui(el; Ii�p0l) � ui(ek; Ii�p0k).

Thus we have ui(ek; Ii � pk) � ui(ek; Ii � p0k), which implies pk � p0k.

(Only if of �=�): Suppose pk = p0k. By if part of �<�, it is enough to show that pl � p0l.

Suppose, on the contrary, pl > p0l. By lemma B.1.2, it holds that yl = y0l. On the other

hand, in equilibrium (p0; x0; y0), one household i switches his housing choice from k to l. This

implies that at least one household j(6= i) switches his housing choice from l to m(6= l). By

the supposition and UM,uj(em; Ij � p0m) � uj(el; Ij � p0l) > uj(el; Ij � pl) � uj(em; Ij � pm).

This inequality derives pm > p0m, which implies m 6= k. In the same manner with the above

discussion, pm > p0m implies ym = y0m, and in equilibrium (p0; x0; y0), at least one household

switches his choice from m to n(6= m). This also derives pn > p0n, n 6= k and yn = y0n, so this

process continues. Since M is �nite, the process does not �nish even with all the possible

household switched. This implies the hypothesis pl > p0l is false Thus, we obtain pl � p0l.

(If and only if of �>�): It is immediately derived from �pk � p0k if and only if pl � p0l.

Proof of Theorem 3.2.3. Let (p; x; y) and (p0; x0; y0) be any competitive equilibria and

suppose that p0k < pk and p
0
l > pl for some k; l. Then we construct a tuple (p; x; y) such that

(m-1): p
k
= minfpk; p0kg for k with 1 � k � T ;

(m-2): for each i 2M; xi =

8>>>>>><>>>>>>:

xi if xi = ek and pk � p0k for some k with 1 � k � T;

x0i if x
0
i = e

k and pk > p0k for some k with 1 � k � T;

0 otherwise;

(m-3): for k = 1; � � � ; T; y
k
= yk:

Note that the above x is well de�ned: indeed, by Lemma B.1.1, each i 2M chooses at most

one category k in x. In the following, we show that a tuple (p; x; y) satis�es competitive

equilibrium conditions (UM, PM and BDS).

UM: Let i 2M . There are the following three cases.

(Case 1): xi = xi = ek: By (m-1), we have the equality p
k
= pk. It is straightforward

that ui(ek; Ii � pk) � ui(e
m; Ii � pm) for all m with p

m
= pm. Let l be the category which

household i chooses in (p0; x0; y0). By Lemma B.1.1, we have pl � p0l: This inequality together

with UM imply ui(ek; Ii � pk) � ui(e
l; Ii � pl) � ui(e

l; Ii � p0l) � ui(e
m; Ii � pm) for all m

with p
m
= p0m. Thus (p; x) satis�es UM.
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(Case 2): xi = x0i = ek: By (m-1), we have the equality pk = p0k: It is straightforward that

ui(e
k; Ii � pk) � ui(e

m; Ii � pm) for all m with p
m
= p0m. Let l be the category which

household i chooses in (p; x; y). By Lemma B.1.1, we have pl > p0l: This inequality together

with UM imply ui(ek; Ii � p0k) � ui(e
l; Ii � p0l) > ui(e

l; Ii � pl) � ui(e
m; Ii � pm) for all m

with p
m
= pm. Thus (p; x) satis�es UM.

(Case 3): xi = 0: by (m-2), we have xi = x
0
i = 0: Thus (p; x) satis�es UM.

PM and BDS: Let k 2 Z+ with 1 � k � T: If p
k
= pk, landlord k maximizes his pro�t

with production y
k
= yk. By (m-2), xi = xi = e

k for all i 2 Mk. This implies
P
i2Mk

xi =P
i2Mk

xi = yke
k = y

k
ek, that is, BDS holds for category k. Otherwise (p

k
= p0k), the

landlord k maximizes his pro�t with production y
k
= yk = y0k (by Lemma B.1.2). The

balance of total demand and supply is inherited from the equilibrium (p0; x0; y0):

The vector p satis�es p � p and p � p0: Since the set of competitive rent vectors is a

compact set, there is the minimum competitive rent vector in the market (M;N). In the

dual manner, we can also prove the existence of the maximum competitive rent vector.

B.2 Proof of Theorem 3.3.3

Proof of (1). We proof this by mathematical induction over k = f � 1; f � 2 ; :::; 1.

Let k = f � 1: By utility maximization condition and the upper rent equation (2.1), we have

u(ef�1; IG(f�1)�pf�1) � u(ef ; IG(f�1)�pf ) and u(ef�1; IG(f�1)�rf�1) = u(ef ; IG(f�1)�rf ):

Thus, by the condition rf = pf , we have u(ef�1; IG(f�1) � pf�1) � u(ef�1; IG(f�1) � rf�1):

This imply IG(f�1) � pf�1 � IG(f�1) � rf�1, that is, rf�1 � pf�1: Suppose that for k = l

with 1 < l � f � 1; the inequality rl � pl holds. Let k = l � 1. By utility maximiza-

tion condition and Eq. (2.1), we have u(el�1; IG(l�1) � pl�1) � u(el; IG(l�1) � pl) and

u(el�1; IG(l�1) � rl�1) = u(el; IG(l�1) � rl): On the other hand, rl � pl and Assumption

A imply u(el; IG(l�1) � pl) � u(el; IG(l�1) � rl): This inequality together with previous in-

equalities imply u(el�1; IG(l�1)�pl�1) � u(el�1; IG(l�1)�rl�1): This and Assumption A imply

IG(l�1) � pl�1 � IG(l�1) � rl�1, that is, rl�1 � pl�1: Therefore we have rk � pk for all k with

1 � k � f � 1:

Proof of (2). It is proved by the dual manner with (1). Let k = f � 1: By utility maxi-

mization condition and the lower rent equation (2.2), we have u(ef�1; IG(f�1)+1 � pf�1) �

u(ef ; IG(f�1)+1 � pf ) and u(ef�1; IG(f�1)+1 � rf�1) = u(ef ; IG(f�1)+1 � rf ): These together
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with rf = pf imply u(ef�1; IG(f�1)+1 � pf�1) � u(ef�1; IG(f�1)+1 � rf�1): Thus, we have

rf�1 � pf�1: Suppose that for k = l; 1 < l � f � 1; rl � pl and let k = l � 1. By utility

maximization condition and (2.2), we have u(el�1; IG(l�1)+1 � pl�1) � u(el; IG(l�1)+1 � pl)

and u(el�1; IG(l�1)+1 � rl�1) = u(el; IG(l�1)+1 � rl): On the other hand, rl � pl and As-

sumption A imply u(el; IG(l�1)+1 � pl) � u(el; IG(l�1)+1 � rl): This inequality together with

previous inequalities imply u(el�1; IG(l�1)+1�pl�1) � u(el�1; IG(l�1)+1�rl�1): Thus, we have

rl�1 � pl�1: Therefore we have rk � pk for all k with 1 � k � f � 1:

B.3 Proof of Theorem 3.3.4.(2)

We �rst show the following lemma.

Lemma B.3.1 Let (p; x; y) be a maximal competitive equilibrium. For each category k =

1; :::; f � 1, there exist households i; j 2 M such that xi = ek, Ii = IG(k) and xj = ek+1,

Ij = IG(k+1).

Proof. This is immediately proved from Lemma 3.3.1.(2).

Proof of Theorem 3.3.4.(2). By Lemma B.3.1, there exist households i; j such that

xi = e
k, Ii = IG(k) and xj = ek+1, Ij = IG(k+1). utility maximization condition for households

i = G(k) and j = G(k + 1), it holds that

u(ek; IG(k) � pk) � u(ek+1; IG(k) � pk+1) and

u(ek+1; IG(k)+1 � pk+1) � u(ek; IG(k)+1 � pk):

Suppose that condition (i) of Theorem 3.3.4.(2) holds. Then, by the above inequalities, we

have

u(ek; IG(k)+1 � pk) = u(ek+1; IG(k)+1 � pk+1),

that is, the lower rent equation holds.

Suppose that condition (ii) of Theorem 3.3.4.(2) holds. We prove by contradiction. Suppose

that there is a category t with 1 � t � f � 1 such that
u(ek; IG(k)+1 � pk) = u(ek+1; IG(k)+1 � pk+1) for k = 1; :::; t� 1;

u(et; IG(t)+1 � pt) < u(et+1; IG(t)+1 � pt+1).
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Then, we can decrease pt and pt�1, ..., p1 slightly into p0t and p
0
t�1, ..., p

0
1 such that

u(et; IG(t)+1 � p0t) < u(et+1; IG(t)+1 � pt+1);

p0t > Ct(yt)� Ct(yt � 1):
(B.1)

u(ek; IG(k)+1 � p0k) = u(ek+1; IG(k)+1 � p0k+1) and

p0k > Ck(yk)� Ck(yk � 1) for k =; 1; :::; t� 1.
(B.2)

We now let the new rent vector p� as

p�k =

8><>: pk for k � t+ 1;

p0k for k � t:

In the following, we show a tuple (p�; x; y) is also a competitive rent vector: this is a contra-

dictory claim since p is the minimum competitive rent vector. Since (x; y) is a competitive

allocation, the balance of total supply and demand condition is satis�ed. Furthermore, by the

bottoms of Eqs. (B.1) and (B.2), each landlord�s pro�t maximization condition holds with

(p�; y). Utility maximization condition of households is checked by as follows. Let i 2 M

with xi = ek. We easily �nd u(ek; Ii � p�k) � u(ek
0
; Ii � p�k0) for price unchanged categories

k0 = t+ 1; :::; T . The remaining part is shown by the following case analysis:

(i) The case of k � t + 1: By the de�nition of G(k), we have Ii � IG(t)+1. This together

with the top of Eq. (B.1) and Assumption D imply u(ek; Ii � p�k) > u(et; Ii � p�t ). Fur-

thermore, this inequality together with the top of Eq. (B.2) and Assumption D imply

u(ek; Ii � p�k) > u(et; Ii � p�t ) � u(et�1; Ii � p�t�1) � � � � � u(e1; Ii � p�1).

(ii) The case of k < t + 1: Let k0 with k < k0 < t + 1. By the de�nition of G(k),

we have Ii � IG(k) � IG(k)+1. This together with Eq. (B.2) and Assumption D imply

u(ek; Ii � p�k) � u(ek
0
; Ii � p�k0). Furthermore let k00 with 1 < k00 < k. By the de�nition

of G(k), we have Ii � IG(k�1)+1. This together with Eq. (B.2) and Assumption D imply

u(ek; Ii � p�k) � u(ek
00
; Ii � p�k00). Combining them, we have u(ek; Ii � p�k) � u(el; Ii � p�l ) for

all l = 1; :::; t.
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Appendix C

Additional Results for Chapter 4

C.1 Income inequality and equitability of competitive alloca-

tions for households

In this appendix, we brie�y mention equitability of competitive allocations in our rental

housing market model. As stated in Chapter 1, Svensson (1983), Alkan, Demange and Gale

(1991) and Sakai (2007) studied equitability properties in the market with indivisibilities.

Their model is di¤erent to ours in that they assumed only buyers, the same number of buyers

and indivisible units, no initial endowments, and without homogeneous utility function.

We give some notations (de�nitions are due to Foley, 1967; Varian, 1974). Recall that

the consumption set of households are given by X = fe0; e1; : : : ; eT g � R+. Let an m-tuple

a = (a1; :::; am) 2 Xm be a consumption allocation. We say that i envies j at a 2 Xm i¤

u(aj) > u(ai). We say that a 2 Xm is the equitable (envy-free) allocation i¤ u(ai) � u(aj) for

every i; j 2M . Note that in our framework, this condition can be translated by u(ai) = u(aj)

for every i; j 2M .

The following proposition holds in our model.

Proposition C.1. Let (p; x; y) be a competitive equilibrium and let i; j 2 M: Then, Ii � Ij

if and only if u(xi; Ii � pxi) � u(xj ; Ij � pxj) (note that � is replaced by �; >;<; or =).

Proof. (Only If ) By the antecedent Ii > Ij and utility maximization condition, we have

u(xi; Ii�pxi) � u(xj ; Ii�pxj) > u(xj ; Ij�pxj). (If ) Suppose, on the contrary, Ii � Ij . Then,

we obtain the contradictory inequality by utility maximization condition: u(xj ; Ij � pxj) �

u(xi; Ij � pxi) � u(xi; Ii � pxi).
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This proposition means that if there exist two households having di¤erent incomes, then

the lower-income household envies the higher-income household in any competitive alloca-

tions; conversely, if some household envies the other in a competitive allocation, then the

income of the envied household is higher. Furthermore, if incomes of some two households

are the same, then their utility levels also the same in any competitive allocations; conversely,

if utility levels of some two households are the same in a competitive allocation, then their

incomes also the same.

The following corollary follows from the proposition.

Corollary C.2. Let (p; x; y) be a competitive equilibrium. Then every household has the

same income if and only if an m-tuple ((x1; I1 � px1); :::; (xm; Im � pxm)) is an equitable

allocation.

Thus, when the household income distribution has even a little inequality, any compet-

itive allocation does not satis�es equitability (conversely, if a competitive allocation does

not satis�es equitability, then the income distribution has an inequality). Theorems 4.3.1,2

and Corollary C.2 imply that rising income inequality tends to cause both dampening the

equitability on household allocations and a decline in landlord revenues. Note that since any

competitive equilibrium is Pareto e¢ cient, an equitable competitive allocation is a fair alloca-

tion.1 Note also that the only-if part of the corollary holds without identical utility function

assumption, whereas the if part does not holds without this assumption. The next example

shows a case that income inequality exists but a competitive allocation satis�es equitability.

Example C.3 (Equitable competitive equilibrium with income inequality exists). Suppose

that there are two households 1 and 2 with incomes I1 = 150 and I2 = 100, two di¤erent

apartments 1 and 2 (with reservation prices 50 and 36). Suppose that their utility functions

are given as

u1(e
k; c) =

8>>>><>>>>:
0 +

p
c for k = 0;

4 +
p
c for k = 1;

1 +
p
c for k = 2;

u2(e
k; c) =

8>>>><>>>>:
0 +

p
c for k = 0;

1 +
p
c for k = 1;

4 +
p
c for k = 2:

1Svensson (1983) and Sakai (2007) gave a result related to Corollary ??.2. According to them, a con-
sumption allocation ((x1; c1); :::; (xm; cm)) 2 Xm is a Walrasian allocation from equal income i¤ there exist
p 2 RT+ and I 2 R+ such that ci = I � pxi for all i 2 M and every household maximizes his utility, where I
is the implicit imcome. They showed that the set of equitable allocations coincides with the set of Walrasian
allocations from equal income.
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This setting explains, for example, the following situation: the apartment 1 is a relatively

large one located in a suburban area and the apartment 2 is a small one located in a central

city. Household 1 with higher income prefers the apartment 1 to 2, while the household 2

prefers the apartment 2 to 1.

Let p = (p1; p2) = (50; 36). Then, u1(e1; I1 � p1) = 14 > u1(e0; I1) > u1(e2; I1 � p2) and

u2(e
2; I2 � p2) = 12 > u2(e

0; I1) > u2(e
1; I1 � p1). Hence, a triple (p; (e1; e2); (1; 1)) is a

competitive equilibrium. On the other hand, u1(e1; I1 � p1) = 14 > u1(e2; I2 � p2) = 9 and

u2(e
2; I2 � p2) = 12 > u2(e1; I1 � p1) = 11. Hence, this equilibrium satis�es equitability but

income inequality exists.
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