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Abstract

The hallmark discovery of the quantum Hall effect (QHE) in two-dimensional (2D) electron gases

opened a new chapter in condensed matter physics [1]. The underlying mechanism for exact quantiza-

tion of Hall conductance σxy was explained from perspectives of gauge invariance and edge currents in

a finite sample [2, 3]. A relationship between σxy and nontrivial bulk topology of Bloch wave functions

σxy = ne2/h was later revealed [4], where integer n is the Chern number evaluated by using Bloch wave

functions. A one-to-one correspondence between the two theories was clarified by Hatsugai, known

as bulk-edge correspondence [5]. One necessary condition for achieving the ordinary QHE is strong

external magnetic fields. It has been shown by Haldane that the condition can be exempted in a 2D

honeycomb lattice with complex next-nearest-neighbor (NNN) hopping integrals taken into consider-

ation [6], and a quantum anomalous Hall effect (QAHE) is then realized. Due to broken time-reversal

(TR) symmetry, both QHE and QAHE are classified as Chern insulators, which can support chiral

edge states. A breakthrough took place in 2005 when Kane and Mele demonstrated that the intrinsic

spin-orbit coupling (SOC) in monolayer graphene can generate the complex NNN hopping integrals

[7–9] and drives the system into a quantum spin Hall effect (QSHE) preserving TR symmetry. The

QSHE is characterized by a Z2 topological invariant and can support helical edge states. Experimental

observations of QSHE in graphene are almost impossible due to the extremely small SOC. A larger gap

2D topological insulator CdTe/HgTe/CdTe quantum well was later theoretically studied and experi-

mentally confirmed [10, 11].

In the thesis, we focus on studying topological states in photonics, semiconductors and supercon-

ductors including both theories and material designs. We start from topological photonics. Photonic

crystals are analogues of conventional crystals with atomic lattice replaced by a medium of periodic

electric permittivity and/or magnetic permeability. Due to the periodicity, both Bloch and topological

band theory [9] apply to photonic crystals as well. A honeycomb lattice of 2D cylindrical dielectric

rods can support Dirac cones at the K(K ′) points, which are the corner of the Brillouin zone for hon-

eycomb lattice. Breaking the TR symmetry by introducing the magneto-optic effect into honeycomb

lattice, the system is driven into a topological phase under strong external magnetic field [12]. The re-

sultant topological state can be regarded as an optical analogue of the ordinary QHE. Without requiring

any external field, we derive a 2D Z2 topological photonic state purely based on conventional dielectric

materials [13]. Starting with a honeycomb lattice of cylinders, we group them into a triangular lattice

of cylinder hexagons [see figure 1(a)], which can support double Dirac cones at the Γ point [14, 15].

Detuning the lattice constant of the triangular lattice, we realize a Z2 topological photonic state with

bulk band gap opened at the Γ point. The photonic topology is associated with a pseudo-TR symmetry

constituted by the TR symmetry respected in general by Maxwell equations and the C6 crystal sym-

metry upon design, rendering the Kramers doubling in the present photonic system. We prove for the

transverse magnetic mode that the role of pseudospin is played by the angular momentum of the wave

function of the out-of-plane electric field. We solve Maxwell equations and demonstrate the new pho-

tonic topology by revealing pseudospin-resolved Berry curvatures of photonic bands and helical edge

states characterized by Poynting vectors. With simple design backed up by the symmetry considera-

tion, the present topological photonic crystal can be fabricated easily, and is expected to leave impacts

on topological photonics and related materials science.

The size of the photonic band gap can be tuned by varying lattice constants [13], making it possible

for realizing a topological state with large band gap. We generalize the idea of achieving topological



Figure 1: (a) Schematic plot of a triangular photonic crystal of “artificial atoms” composed by six cylin-

ders of dielectric material. Red dashed rhombus and hexagon are primitive cells of honeycomb and tri-

angular lattices. ~a1 and ~a2 are unit vectors with length a0 as the lattice constant. (b) Honeycomb lattice

with enhanced inter-hexagon hopping energies (thick red bonds) compared to intra-hexagon hopping

energies (thin green bonds). Gray balls are CO molecules that modulate electron gases on Cu [111]

surface.

photonics to topological insulators [16]. Starting with a honeycomb lattice and viewing it as a triangu-

lar lattice of hexagons, we propose a Z2 topological state by simply enhancing inter-hexagon hopping

energies over intra-hexagon ones [see figure 1(b)]. We reveal that this manipulation opens a gap in the

energy dispersion at the Γ point and drives the system into a Z2 topological state. The size of the topo-

logical gap is proportional to the difference of the inter-hexagon and the inter-hexagon hopping energies,

which can be larger than typical SOCs by orders of magnitude and potentially renders topological elec-

tronic transports available at high temperatures. For experimental implementations, we discuss that,

along with many other possibilities, the molecular graphene with carbon monoxides (CO) placed peri-

odically on Cu [111] surface is a very promising platform to realize the present idea, where the hopping

texture can be controlled by adding extra CO molecules, as shown in figure 1(b). The present work

offers a new possibility for achieving topological properties and related novel quantum properties and

functionalities at high temperatures.

By breaking TR and inversion symmetries, we propose a novel QAHE characterized by simulta-

neous charge and spin Chern numbers [17–19], which can support non-dissipative spin-polarized edge

currents in a finite sample [see figure 2(a)]. We have shown that a possible system which can host the

novel QAHE is a buckled honeycomb lattice with anti-ferromagnetic (AFM) exchange field M at two

sublattice sites, intrinsic SOC λ and tunable electric field E [17]. When magnitudes of M, λ and E form

a triangular relation, the novel QAHE is achieved. By performing first-principles calculations, we have

shown that a G-type AFM Mott insulator LaCrO3 grown along the [111] direction with one layer of Cr

atom replaced by Au or Ag can support the novel QAHE. Nevertheless, it turns out that synthesizing

the system along the [111] direction is not an easy task. We further propose a sandwiched structure

composed of the LaCrO3 grown along the [001] direction with one atomic layer replaced by an inverse

perovskite material Sr3PbO [19], as shown in figure 2(b). Based on first-principles calculations, we con-

firm that the system is in the novel QAHE by demonstrating nonzero charge and spin Chern numbers

as well as spin-polarized edge states. Since both LaCrO3 and Sr3PbO are stable in bulk and match each



Figure 2: (a) Spin-polarized edge states at a sample edge. (b) Schematics for host perovskite material

LaCrO3 in the [001] direction (blue slabs) with one atomic layer of inverse perovskite material Sr3PbO

(gray layer) inserted. Gray, red and blue balls stand for Pb, O and Cr atoms respectively.

other with small lattice distortions, the composite material is expected easy to synthesize. This novel

QAHE with non-dissipative spin-polarized edge currents is robust to both non-magnetic and magnetic

defects, and is thus ideal for spintronics applications with spin polarizations controlled by a gate voltage.

An important and promising application of topological states is fault-tolerance topological quantum

computing. Majorana fermion (MF), a zero-energy quasi-particle that is its own anti-particle, is the key

to realize novel quantum functionalities. We study topological superconductivities in a heterostructure

composed of a ferromagnetic insulator, a semiconductor with strong Rashba SOC and an s -wave su-

perconductor with vortices [20, 21], as shown figure 3(a). Non-Abelian statistics can be achieved by

exchanging two vortices hosting MFs [22]. However, in experiments it is difficult to manipulate vor-

tices. In order to circumvent this difficulty, we propose a new way to interchange MFs without moving

vortices. The only operation required is to turn on and off local gate voltages [23], which liberates a

MF from its original host vortex and transports it along prepared tracks, as shown in figure 3(b). We

solve the time-dependent Bogoliubov-de Gennes equation numerically, and confirm that the MFs are

protected provided the switching of gate voltages for exchanging MFs are adiabatic, which takes only

several nano seconds given reasonable material parameters. By monitoring the time evolution of MF

wave functions, we show that non-Abelian statistics is achieved. The present scheme provides a feasible

way manipulating MFs and is expected to be useful in topological quantum computing.

This thesis

This thesis includes discussions of achieving novel topologically nontrivial states in photonic crys-

tals, semiconductors as well as superconductors. In chapter 1, a brief review on developments of topo-

logical theories is given, which includes topological invariants for characterizing nontrival states, topo-

logical models as well as materials. In chapter 2, we propose a novel topological photonic crystal purely

made of conventional dielectric materials, such as silicon. The topological properties are demonstrated

via an effective low-energy model, helical edge states and Z2 topological invariants. In chapter 3, we

extent the theory of achieving topological photonic states to electronic systems with honeycomb lat-

3



Figure 3: (a) A heterostructure of s -wave superconductor with a vortex, spin-orbit coupling semicon-

ductor and ferromagnetic insulator. (b) Schematic device setup for braiding MFs at vortex cores (blue

cylinder). There are four holes in semiconductor layer (yellow platform) with one superconducting vor-

tex pinned right beneath each of them. The electrodes at high-voltage states (pink rectangular prisms)

prohibit electron hoppings in the regions below them, and thus connect effectively the holes; the blue

rectangular prism denotes an electrode at zero-voltage state.

tice simply by detuning lattice constants to form a Kekulé hopping texture. A topological band gap

pure of electronic origins can be orders of magnitude larger than that opened by spin-orbit couplings

due to relativistic effects. In chapter 4, we derive a novel quantum anomalous Hall effect characterized

by simultaneous charge and spin Chern numbers by first-principles calculations. We confirm that a

G-type Mott insulator LaCrO3 grown along the [001] direction with one atomic layer replaced by a

inverse-perovskite material Sr3PbO can support the novel quantum anomalous Hall effect. In chapter

5, we study topological superconductivities of a heterostructure composed of an s -wave superconductor

with vortices, a semiconductor with strong Rashba-type spin-orbit coupling and a ferromagnetic insu-

lator. A new scheme that only requires tuning of local gate voltages is proposed for braiding Majorana

fermions hosted by vortices to achieve non-Abelian statistics. Conclusion and outlook are given in the

last chapter.
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Chapter 1

Background: Topological Invariants,

Materials and Models

1.1 Introduction

The first topological invariant (the Chern number) was studied by Thouless, Kohmoto, Nightingale

and Nijs in 1982 [4], which signals the topological properties of quantum Hall effect (QHE) by having

a nonzero Chern number and explains the quantizations of Hall conductance discovered by von Klitz-

ing [1]. A generalization of the QHE was suggested by Haldane by breaking time-reversal symmetry

with complex next-nearest-neighbor hopping integrals in honeycomb lattice instead of using external

magnetic fields [6], which is known as quantum anomalous Hall effect (QAHE). Because all symme-

tries are broken, both QHE and QAHE belong to the topological class A [24, 25], characterized by Z

invariants in two-dimensional (2D) systems. Kane and Mele revealed that the spin-orbit coupling (SOC)

in monolayer graphene can effectively generate the complex next-nearest-neighbor hopping integrals in

honeycomb lattice and drive the system into a quantum spin Hall effect (QSHE) [7–9], which belongs

to the topological class AII characterized by Z2 invariants due to the preservation of time-reversal sym-

metry [24, 25]. QSHE was also studied in a 2D CdTe/HgTe/CdTe quantum well both theoretically

and experimentally [10, 11, 26].

Investigations on topological photonics have been undergoing parallelly with developments of topo-

logical insulators. The first topological photonic state was studied theoretically in a metamaterial with

the magneto-optical effect (or the Faraday effect) [12]. The authors considered a hexagonal array of 2D

metamaterial cylinders, which supports Dirac cones at the K and K ′ points at the corner of the Bril-

louin zone when both inversion and time-reversal symmetries are preserved. Breaking the time-reversal

symmetry with a strong external magnetic field, the system is driven into a topological nontrivial state

characterized by the Chern number, which can support a chiral edge state in a finite sample. This

topological state in photonics is also known as optical QHE. Experimental realizations of the one-way

topological edge states in photonic crystals were demonstrated successfully in a square lattice of 2D

metamaterials [27, 28]. Instead of requiring actual external magnetic fields to achieve the optical QHE,

several studies suggested to realize optical QHE by effective magnetic fields via modulating couplings

between lattice sites periodic in time [29] or fabricating a helical structure [30]. To realize a topological

state preserving the time-reversal symmetry, an analogue of the QSHE in electronic systems [7, 8, 10],

9



Chapter 1. Background: Topological Invariants, Materials and Models

one has to construct Kramers doublets. It has been shown that the role of pseudospins can be played by

clockwise/anticlockwise circulations of light in a coupled resonator optical waveguide [31, 32] as well

as the bonding/antibonding of electric and magnetic fields in bi-anisotropic metamaterials [33].

1.2 Topological invariants

1.2.1 Berry curvatures and Chern numbers

A topologically nontrivial state is signaled by nonzero invariants, which is evaluated by using Bloch

wave functions of bulk systems [4]. The eigenfunction Ψk of a Hamiltonian H (k) satisfies

HkΨk(r) = E(k)Ψk(r), (1.1)

where E(k) is the eigenenergy at the k point, the Bloch wavefunction is Ψk(r) = uk(r)exp(ik · r) with

uk(r) a spatially periodic function. The Chern number is

C =
1

2πi

∑

j∈occupied

∫

k2

d 2k ·
�

~∇k×〈u j | ~∇k|u j 〉
�

=
1

2πi

∑

j∈occupied

∫

k2

d 2k · ~∇k×
�

u∗j
∂ u j

∂ kx

k̂x + u∗j
∂ u j

∂ ky

k̂y

�

=
1

2πi

∑

j∈occupied

∫

k2

d 2k · ~∇k× ~A j ,k

=
1

2πi

∑

j∈occupied

∫

k2

d 2k · ~Ω j ,k, (1.2)

where u j is the uk(r) for the band j , k̂x/y is the unit vector along the ~kx/y direction, ~A j ,k = 〈u j | ~∇k|u j 〉
and ~Ω j ,k =

~∇k × ~A j ,k are the Berry connection and Berry curvature of the band j at the point k

respectively, and the Chern number is a summation of Berry curvatures over all occupied bands. Because

that the spatial function uk remains a solution for Eq. (1.1) when multiplied by an arbitrary gauge

exp[iχ (k)], the Berry connection ~A is thus gauge-dependent:

|uk〉 → exp[iχ (k)]|uk〉, ~A → ~A + i∂kχ (k). (1.3)

Therefore, an explicit gauge fixing is necessary to obtain a well defined Chern number generally [34, 35],

However, the gauge fixing can be difficult to implement numerically. In the current work, we adopt an

efficient method for evaluating Chern numbers without specifying gauge-fixing conditions as proposed

by Fukui, Hatsugai and Suzuki [36]. The above integral in Eq. (1.2) over the whole Brillouin zone can

10



1.2. Topological invariants

kx

ky

i− 1 i i+ 1

j − 1

j

j + 1

Figure 1.1: Contour integrations for evaluating Berry curvatures in the Brillouin zone. i and j are the

indices of mesh grid of the Brillouin zone. Contour integration is performed along the direction of red

curves.

be decomposed into contour integrations over discritized patches [36, 37] (see figure 1.1)

∫

S

d 2k · ~Ωk =

∮

∂ S

dk · ~Ak =

∫ ki+1, j

ki , j

dk · ~Ak+

∫ ki+1, j+1

ki+1, j

dk · ~Ak

+

∫ ki , j+1

ki+1, j+1

dk · ~Ak+

∫ ki , j

ki , j+1

dk · ~Ak

=
¬

uki , j
|uki+1, j

¶

+
¬

uki+1, j
|uki+1, j+1

¶

−
¬

uki+1, j+1
|uki , j+1

¶

−
¬

uki , j+1
|uki , j

¶

(1.4)

where S and ∂ S are the shaded region and its boundary respectively as shown in figure 1.1, ki , j is the

position of the grid point (i , j ) in the Brillouin zone. The total Chern number is then

C =
1

2πi

∑

S

∫

S

d 2k · ~Ωk. (1.5)

In this way the Chern number in Eq. (1.4) can be evaluated efficiently.

1.2.2 Symmetries and Berry curvatures

For an electronic system preserving the time-reversal symmetry Te = iσyK with T 2
e =−1, it can

be proven easily that the Chern number vanishes. Assuming that uα
k

is an eigensolution of the system,

11



Chapter 1. Background: Topological Invariants, Materials and Models

we immediately obtain the wavefunction of its time-reversal partner u
β
−k
= Te uα

k
. The Berry curvature

for the u
β
k

is

~Ωβ−k
=

®

∂ Te uα
k

∂ kx

�

�

�

�

�

∂ Te uα
k

∂ ky

¸

−
®

∂ Te uα
k

∂ ky

�

�

�

�

�

∂ Te uα
k

∂ kx

¸

=

®

∂ uα
k

∂ kx

�

�

�

�

�

∂ uα
k

∂ ky

¸

−
®

∂ uα
k

∂ ky

�

�

�

�

�

∂ uα
k

∂ kx

¸

=

®

∂ uα
k

∂ ky

�

�

�

�

�

∂ uα
k

∂ kx

¸

−
®

∂ uα
k

∂ kx

�

�

�

�

�

∂ uα
k

∂ ky

¸

=−~Ωα
k
, (1.6)

which indicates that the Berry curvature is an odd function under the time-reversal operation, where 〈·|·〉
is the complex conjugate of the complex number 〈·|·〉. From the first line to the second one in Eq. (1.6),

we apply the rule 〈U x|U y〉 = 〈x|y〉 = 〈y|x〉, according to the definition of anti-unitary operator U .

Therefore, for a time-reversal symmetric system the Chern number is always zero, and hence it can not

be used to differentiate topological phases from trivial ones in this case.

Similarly, it is straightforward to show that the Berry curvature is an even function under the spatial

inversion symmetry P for any eigensolution uα
k

. The Berry curvature evaluated by the eigenstate

u
β
−k
=P uα

k
is

~Ωβ−k
=

®

∂ P uα
k

∂ kx

�

�

�

�

�

∂ P uα
k

∂ ky

¸

−
®

∂ P uα
k

∂ ky

�

�

�

�

�

∂ P uα
k

∂ kx

¸

=

®

∂ uα
k

∂ kx

�

�

�

�

�

∂ uα
k

∂ ky

¸

−
®

∂ uα
k

∂ ky

�

�

�

�

�

∂ uα
k

∂ kx

¸

= ~Ωα
k
, (1.7)

since the inversion operatorP is a unitary one.

1.2.3 Berry curvatures for a 2× 2 Dirac Hamiltonian

We now derive Berry curvatures for a generic Dirac Hamiltonian

HDirac =
∑

i=x,y,z

di ·σi (1.8)

with σi the Pauli matrices and the vector ~d = (dx , dy , dz ). Parameterizing the vector ~d into the spherical

coordinate by letting ~ds = | ~d |(sinθ cosφ, sinθ sinφ, cosθ)with | ~d | the length of | ~d |, we can easily obtain

two eigenvalues ±| ~d | with corresponding eigenfunctions

u+ =

�

cos(θ/2)exp(−iφ)
sin(θ/2)

�

, u− =
�

sin(θ/2)exp(−iφ)
−cos(θ/2)

�

. (1.9)
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1.2. Topological invariants

Figure 1.2: A sphere wrapped by the unit ~d/| ~d | vector, θ andφ are polar and azimuth angles of the unit

vector.

The Berry curvature for the lower energy state u− in the spherical coordinate is

~Ωspherical = (∂θAφ− ∂φAθ)
~d

| ~d |
= i

sinθ

2

~d

| ~d |
, (1.10)

whereAθ =



u+|∂θ|u+
�

= 0 andAφ =
¬

u+|∂φ|u+
¶

=−i sin2(θ/2). Transforming the Berry curvature

~Ωs back into the rectangular coordinate, we have

~Ωrect =
1

sinθ| ~d |2
~Ωspherical =

i

2
·
~d

| ~d |3
. (1.11)

The distribution of above ~Ωrect is similar to the one generated by a magnetic monopole located at the

origin. It is then always said that there is a magnetic monopole in the Brillouin zone of the Chern

insulators.

The range of φ is [0,2π] since the vector ~d can cover the whole unit sphere as k changes (see fig-

ure 1.2). The θ takes

θ ∈
�

(0,π/2) if dz > 0,

(π/2,π) otherwise.

Let us consider a simple Dirac Hamiltonian

HDirac(k) =

�

C kx + i ky

kx − i ky −C

�

, (1.12)
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Chapter 1. Background: Topological Invariants, Materials and Models

with C > 0. It is easy to see that in this case the φ ranges from 0 to 2π and θ ∈ (0,π/2). Integrating the

Berry curvature over the half sphere with unit radius, the Chern number is

C =
1

2πi

∫

θ,φ
dθdφ

i sinθ

2
=

1

2π

∫ 2π

0

dφ
∫ π/2

0

dθ
sinθ

2
=

1

2
, (1.13)

indicating every Dirac fermion contributes 1/2 to the Chern number, half of a magnetic monopole.

1.3 Topological materials and models

1.3.1 Chern numbers and quantum anomalous Hall effect

The time-reversal symmetry of the QHE discovered by von Klitzing [1] is broken by external mag-

netic field. It was first noticed by Haldane that the time-reversal symmetry can be broken by introduc-

ing complex next-nearest-neighbor hopping integrals in honeycomb lattice [6], which drive the system

into a quantum anomalous Hall effect (QAHE) characterized by the Chern numbers. The Haldane

model paves a new way for realizing Chern insulators without requiring any external magnetic field.

As displayed in figure 1.3, one considers a honeycomb lattice with the nearest-neighbor hopping inte-

grals t and the next-nearest-neighbor hopping integrals t ′. The effective low-energy Hamiltonian for

the system around the K(K ′) points up to the lowest order of k is (see detailed derivations in Appendix

A.1)

H (k) =−3t1 cosφσ0+

�

3
p

3ν t1 sinφ −
p

3at (kx − iνky )/2

−
p

3at (kx + iνky )/2 −3
p

3ν t1 sinφ

�

(1.14)

on the sublattice basis [A,B], where where t ′ = t1 exp(iφ) with t1 = |t ′| the real number and φ the

phase of hopping integral t ′, ν = ±1 at the K and K ′ points respectively, kx and ky are measured from

the K(K ′) points, σ0 is a 2× 2 identity matrix. Since the first term in the above equation simply shifts

all energy levels without affecting topology, it can be dropped for discussions of topology.

For φ ∈ (0,π), the sign of dz = 3
p

3ν t1 sinφ is positive (negative), which gives us −1/2 at both the

K and K ′ points and results in a QAHE with Chern number −1. Similar analyses can be carried for

φ ∈ (π, 2π), where the system is in a QAHE with the Chern number 1 [6].

1.3.2 Z2 invariants and quantum spin Hall effect

We have shown in Section 1.2.2 that the Chern number is always zero in a system preserving the

time-reversal symmetry, it thus can not be used to differentiate a QSHE from a trivial state. Another

type of topological invariants is necessary to characterize QSHE. It has been suggested that theZ2 topo-

logical invariants are capable of separating a QSHE from a trivial state [7, 8, 24, 25]. By dividing total

eigensolution spaces of occupied bands into two subspaces that are linked by the (pseudo-)time-reversal

symmetry, one then can define the Chern numbers within each subspace. For each subspaces, the Chern

number is guaranteed to be nonzero due to the absences of the (pseudo-)time-reversal symmetry. In this

spirit, theZ2 topological invariants can be simply understood as the difference between the Chern num-

bers of the two subspaces. In conventional electronic systems with the time-reversal symmetry, one can

14



1.3. Topological materials and models

Figure 1.3: Schematic honeycomb lattice with sublattice A and B marked by red and blue balls re-

spectively. Black solid and green dashed arrays represent nearest-neighbor and next-nearest-neighbor

hoppings respectively.

divide the total eigenspaces by the spins of electrons, the Z2 topological invariant is then

ζ =
1

2
(C↑−C↓) (1.15)

with C↑/↓ the Chern number for spin-up/-down channel.

The first example of a system characterized by a nonzero Z2 topological invariant was studied by

Kane and Mele [7, 8]. The authors considered a spinful monolayer graphene with intrinsic spin-orbit

coupling (SOC). It was pointed out that the intrinsic SOC can generate the complex next-nearest-

neighbor hopping integrals with φ = π/2 in Eq. (1.14). For one spin channel, it is equivalent to the

QAHE studied by Haldane [6]. As for the other spin channel, the Chern number must take an oppo-

site value due to the oddness of Berry curvatures under the time-reversal operator [see Eq. (1.6)]. As a

result, the monolayer graphene with the intrinsic SOC has a zero total Chern number but a nonzero

Z2 topological invariant, which is known as QSHE.

Another typical example of Z2 topological systems is the CdTe/HgTe/CdTe quantum well, which

is described by the Bernevig-Hughes-Zhang (BHZ) model [10]

Heff(k) =

�

H (k) 0

0 H ∗(−k)

�

with H (k) = ǫ(k)+
∑

i=x,y,z

di (k) · ~σi (1.16)

on the basis
�

|s↑〉, |p↑+〉, |s↓〉, |p
↓
−〉
�

with p± =
�

px ± i py

�

/
p

2, where ~σi are the Pauli matrices, |s〉 and

|p±〉 orbitals closing to the Fermi level are contributed by the Hg and the Te atoms respectively, and
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Chapter 1. Background: Topological Invariants, Materials and Models

Figure 1.4: Dirac cones at the corners of Brillouin zone K and K ′ when φ = 0. Inset: merons with a

topological charge ± 1
2 at the K and K ′ points. ν =±1 are for the K and K ′ points respectively.

Figure 1.5: Energy dispersions of the Hamiltonian (1.16) with (a) α = 0 and (b) α 6= 0 around the Γ

point. Two green dots in (a) are Dirac points. Red and blue curves denote spin-up and -down channels

respectively, and solid and dashed curves represent |s〉 and |p〉 orbitals respectively. Right panel shows

a Skyrmion structure for the valance band of either spin, where up(down) arrow is for |s〉(|p〉).

ǫ(k) = E − 2F (2− cos kx − cos ky ),

dx + i dy =A(sin kx + i sin ky ),

dz =−2B[2− (M/2B)− cos kx − cos ky].

The ǫ(k) term in the Hamiltonian (1.16) simply shifts whole dispersion relations by constants without

contributing anything to the topology, and thus can be dropped in the following discussions of topology.

For A= 0, the dispersion relation of the |s〉 and |p〉 in H (k) are parabolic curves and can cross each other

without opening a gap. By the Taylor’s expansions, one can easily conclude that the dispersion relations

are dominated by the first order of k where the |s〉 and the |p〉meet, i.e., we have Dirac cones there [see

green dots in figure 1.5(a)]. The two Dirac cones are linked by the spatial inversion symmetry within

the same spin channel. When the coupling term A 6= 0, a global band gap is opened at the two Dirac

points. For spin-up channel, each of them contributes 1/2 to the Chern number and totally we have

C↑ = 1. Because of the time-reversal symmetry, the spin-down channel must have a Chern number with
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1.3. Topological materials and models

Figure 1.6: Schematic distributions of parity eigenvalues for (a) a trivial insulator with Z2 index ζ = 0

and (b) a topological insulator withZ2 index ζ = 1. ⊙ and⊗ symbols are for eigenvalues±1 of inversion

operatorP , respectively.

opposite sign C↓ =−1, which gives a spin Chern number

Cs = (C↑−C↓)/2= 1, (1.17)

equivalent to a nonzero Z2 topological invariant ζ = 1.

There is a simple way of identifying the nontrivialZ2 topology in a system with inversion symmetry

[38]. For a Hamiltonian that commutes with spatial inversion operatorP , we have

(−1)ζ =
∏

i

δi (1.18)

where ζ is the Z2 invariant, δi =
∏N

n=1 ξ2n(Γi ) with ξ2n(Γi ) = ±1 the eigenvalues of the operator P
for all 2n occupied bands at the time reversal invariant k points Γi which satisfies T k = k, such as

Γ = (0,0),X = (π, 0),Y = (0,π), M = (π,π) in a square lattice with unit lattice constants. As shown

in figure 1.6(a), in the case that all eigenvalues of the inversion operator P are −1 at the four time-

reversal invariant points: Γ , X , Y and M , the system has a Z2 invariant ζ = 0, corresponding to a trivial

state. The trivial topology can also be observed in figure 1.6(a), the distribution of eigenvalues of P
exhibits a trivial “ferromagnetic” order. When a band inversion between |s〉 and |p〉 orbitals happens

at the Γ point in the BHZ model, the eigenvalue of P at the Γ point becomes +1 since the topmost

valance band is now occupied by the s orbital [see figure 1.5(b)]. It can be easily seen that the “anti-

ferromagnetic” distribution of eigenvalues of P is in contrast with the trivial “ferromagnetic” order

displayed in figure 1.6(a). This theory can be easily generalized into 3D systems with the only difference
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Chapter 1. Background: Topological Invariants, Materials and Models

Figure 1.7: An interface at x = 0 with opposite Dirac mass terms C at two sides.

that there are eight time-reversal invariant points: four for kz = 0 and another four for kz = π [38].

Many 3D topological insulators with inversion symmetry, such as Bi1−xSbx and its family members

[39, 40], can be classified by using Eq. (1.18).

1.4 Edge states at a phase transition point

Let us consider the 2×2 Dirac Hamiltonian Eq. (1.12) and reduce it into one-dimensional by taking

ky = 0, which gives

H =
�

C (x) kx

kx −C (x)

�

(1.19)

with C (x)> 0 for x < 0 and C (x)< 0 for x > 0, as shown in figure 1.7.

For an interface with opposite mass terms at two sides of x = 0 (see figure 1.7), we solve the

above Hamiltonian by letting kx = −i ħh∂x . For simplicity, we only search for eigenstates ψ(x) =
[ψ1(x),ψ2(x)]

T at zero energy. The above Hamiltonian then can be written as

∂xψ(x) =−
C (x)

ħh
σyψ(x). (1.20)

By rotating wavefunctions ψ̃(x) = Uψ for simplicity of later calculations with

U =
1p
2

�

i −i

1 1

�

,

we arrive at a new ordinary differential equation

∂xψ̃(x) =
C (x)

ħh
σzψ̃(x), (1.21)

18



1.4. Edge states at a phase transition point

which can be solved easily

ψ̃±(x) = exp

�

±ħh
∫ x

x=0

d tC (t )

��

1

−1

�

. (1.22)

It is easy to see that
∫ x

0
d tC (t ) < 0 when x > 0, the ψ̃−(x) must be the solution for the system since

it is normalizable while ψ̃+(x) cannot. Similarly, ψ̃+ is the solution when x < 0. Due to nature of

exponential decaying for both ψ̃±, we have a localized edge state at the interface x = 0 [41], which is the

reason for the appearance of topological edge states at the interface of topological and trivial materials.
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Chapter 2

A Z2 Topological Phase in an All-Dielectric

Photonic Crystal

2.1 Maxwell equations

Dynamics of electromagnetic (EM) field in sourceless systems are governed by the following Maxwell

equations [42]

~∇ ·H(r, t ) = 0, (2.1a)

~∇ · [ǫ(r)E(r, t )] = 0, (2.1b)

~∇×E(r, t )+µ0

∂ H(r, t )

∂ t
= 0, (2.1c)

~∇×H(r, t )− ǫ0ǫ(r)
∂ E(r, t )

∂ t
= 0, (2.1d)

where H(r, t ) and E(r, t ) are magnetizing and electric fields that depend on space r and time t , ǫ(r)
and µ(r) are position-dependent relative permittivity and permeability in the units of ǫ0 and µ0 for the

vacuum respectively, and B(r, t ) = µ0µ(r)H(r, t ). Assuming periodicities of the H(r, t ) and E(r, t ) in

time, we expand the two fields by the plane waves

H(r, t ) =
∑

ω

H(r)e−iωt , E(r, t ) =
∑

ω

E(r)e−iωt , (2.2)

whereω is the frequency of the plane wave. Substituting Eqs. (2.2) into Eqs. (2.1c) and (2.1d), we obtain

~∇×E(r)− iωµ0H(r) = 0, (2.3a)

~∇×H(r)+ iωǫ0ǫ(r)E(r) = 0, (2.3b)

or in the matrix form

i

�

0 ~∇×
− ~∇× 0

�
�

E(r)

H(r)

�

=ω

�

ǫ(r)ǫ0 0

0 µ0

��

E(r)

H(r)

�

, (2.4)
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Chapter 2. A Z2 Topological Phase in an All-Dielectric Photonic Crystal

which is a generalized eigenvalue problem.

Taking ~∇ at both sides of Eq. (2.3a) and summing the two Eqs. (2.3a) and (2.3b) together, we arrive

at the master equation for a harmonic electric field

~∇× ~∇×E(r) =
�ω

c

�2
ǫ(r)E(r) (2.5)

with 1/c2 = ǫ0µ0, which is the core equation we will solve in this chapter.

For a photonic crystal with discrete translational symmetry, the eigen-functions of Eq. (2.5) satisfies

the Bloch’s theorem and can be decomposed into a productor of a free-space plane wave and a spatially

periodic function, i.e.

E(r) = exp(ik · r)uk(r), (2.6)

where uk(r) is a periodic function in space, modulating the plane wave exp(ik · r) in a free space. Sub-

stituting Eq. (2.6) into Eq. (2.5), we arrive at

~∇× ~∇× exp(ik · r)uk(r) =
�ω

c

�2
ǫ(r)exp(ik · r)uk(r),

~∇× exp(ik · r)
�

(ik+ ~∇)× uk(r)
�

=
�ω

c

�2
ǫ(r)exp(ik · r)uk(r),

(ik+ ~∇)× (ik+ ~∇)× uk(r) =
�ω

c

�2
ǫ(r)uk(r). (2.7)

By taking complex conjugate of both sides of Eq. (2.7), we have

�

i (−k)+ ~∇
�

×
�

i (−k)+ ~∇
�

× u∗
k
(r) =

�ω

c

�2
ǫ(r)u∗

k
(r). (2.8)

Comparing the two Eqs. (2.7) and (2.8), it is easy to see that

u−k(r) = u∗
k
(r) (2.9)

with a same eigenfrequency ω. In fact, this is a consequence of the time-reversal symmetry obeyed by

the conventional Maxwell equations [42].

2.2 Dirac cones and topology in photonic crystals

Dirac electron is a massless relativistic particle that was considered to only exist in high-energy

physics. It was first theoretically studied that honeycomb lattice can be a natural platform for supporting

Dirac electrons [43]. The first hallmark material for realizing the massless fermion is the the monolayer

graphene with massless π electrons [44–46].

It has been revealed that Dirac cones can also be in the Brillouin zone center due to accidental

degeneracy [47, 48]. A rule for searching Dirac cones in a system preserving inversion symmetry P
is checking whether there is a band crossing between two optical bands of opposite spatial parities.

At the crossing points, Dirac cones generally exist. To prove this, we simply consider the first order

perturbation term in a 2D system

H ′
k
= k ·P, (2.10)
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2.2. Dirac cones and topology in photonic crystals

Figure 2.1: Materials with magneto-optic effects under a perpendicular external magnetic field Hz . The

polarization direction of the in-plane electric wave is rotated to out-of-plane by the Faraday effect, break-

ing the time-reversal symmetry.

where P is the momentum operator. For simplicity, we assume that u1 and u2 are two eigenstates of the

full Hamiltonian with even spatial parity at the inversion-invariant points: P u1(2) = u1(2). Since the

system respecting inversion symmetryP ,H ′
k

must be invariant underP , which gives

〈u1|P|u2〉=



u1|P †P PP †P |u2

�

=−



u1|P †PP |u2

�

=−〈u1|P|u2〉 (2.11)

indicating 〈u1|P|u2〉 = 0, i.e., the linear order term of H ′
k

vanishes. Similarly, we can prove that the

first-order coupling term between u1 and u2 of odd parity also vanishes. It is easy to conclude that a

nonzero first-order term of k only appears when the u1 and u2 of opposite parities touch each other in

energy/frequency. Systematic studies of Dirac cones in the Brillouin center for systems with various

crystal symmetries are given by Sakoda [14, 15, 49, 50].

Developments of topological theories in photonic crystals were initiated by Haldane [12], where the

author started from a hexagonal lattice of 2D nanorods and demonstrated the existence of optical Dirac

cones at the K(K ′) points the corner of the Brillouin zone. The appearance of Dirac cones is guaranteed

by the threefold rotation symmetry. It has been proven by the author that a topological band gap is

opened at the Dirac points by introducing the Faraday effect, also known as the magneto-optic effect,

which manifests itself with an imaginary off-diagonal magnetic permeability

µ=







µx x iµxy 0

−iµxy µyy 0

0 0 µz z





 . (2.12)

The nonzero µxy is responsible for rotating polarization axis in the plane perpendicular to the propa-

gation direction, as shown in figure 2.1.
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Chapter 2. A Z2 Topological Phase in an All-Dielectric Photonic Crystal

Similar to the QAHE in an electronic system discussed in Section 1.3.1, time-reversal symmetry

needs to be broken to realize a Chern insulator. In the photonic system with magneto-optic effect, the

time-reversal symmetry is naturally broken by the nonzeroµxy in Eq. (2.12) in the sense that the chiral-

ity of the polarization axis rotation is predetermined by the sign ofµxy . The photonic band gap opened

at the Dirac point by breaking the time-reversal symmetry is topologically nontrivial characterized by

Chern numbers [6, 12]. This topological state is also known as optical QHE. Later, experimental con-

firmations of the one-way edge state were clearly demonstrated [28].

As in the solid state physics, the Kramers doublet is essential for realizing quantum spin Hall ef-

fect [9, 11], which is missing in a conventional photonic system with T 2 = 1, where T = K is the

time-reversal symmetry respected by Maxwell equations. Several proposals for creating pseudo-Kramers

doublets were suggested, such as the clockwise and anti-clockwise circulations of light in a coupled res-

onator optical waveguides [31, 32] and the bonding/antibonding electric and magnetic fields in a hexag-

onal lattice of metamaterials [33, 51].

2.3 Topological photonics characterized by Z2 invariant

2.3.1 Two-dimensional photonic crystals

In this section, we focus on two-dimensional (2D) photonic crystals by assuming they are infinitely

long along the z axis, as shown in figure 2.2. Since

σz Hx,y =−Hx,y , σz Ez =−Ez ,

σz Ex,y = Ex,y , σz Hz = Hz

with σz the mirror operator against x-y plane, we divide EM wavefunctions by eigenvalues into the

transverse magnetic (TM) mode with nonzero {Hx , Hy , Ez} and the transverse electric (TE) mode with

nonzero {Ex , Ey , Hz}, where Ei/Hi (i = x, y, z) are components of electric/magnetizing field along i

axis.

Let us consider the TM mode, for which equation (2.5) is reduced to

~∇2Ez (r)ẑ =
�ω

c

�2
ǫ(r)Ez (r)ẑ (2.13)

with operator ~∇2 = −∂ 2
x − ∂ 2

y = k2
x + k2

y = k2, where kx(y) = −i∂x(y). For homogeneous materials

[ǫ(r) is constant], it is easy to see that the eigenfrequency is a linear function of k (ω∝ k), indicating

appearance of Dirac dispersion relation [52]. In the case of non-homogeneous materials with position-

dependent ǫ(r), Dirac dispersions are removed by photonic band gaps due to Bragg scatterings of Bloch

waves [49, 53], resembling electronic band gap in semiconductors or insulators [54]. However, Dirac

cones can emerge again whenever two bands of opposite spatial parities touch at high-symmetric k

points under various crystal symmetries [14, 15, 47–49].

24



2.3. Topological photonics characterized by Z2 invariant

Figure 2.2: Two-dimensional photonic crystal consists of dielectric rods infinite long along the z axis.

2.3.2 Time-reversal symmetry of Maxwell equations

The Laplacian operator ~∇2 is real symmetric, which is invariant under a complex conjugate operator

K . We have

[ ~∇2Ez (r)ẑ]
∗ =

�ω

c

�2
ǫ(r)E∗z (r)ẑ,

~∇2E∗z (r)ẑ =
�ω

c

�2
ǫ(r)E∗z (r)ẑ (2.14)

for a photonic crystal with real ǫ(r). The above eigen-problem indicates that E∗z (r) = K Ez (r) is also

an eigensolution of Maxwell equation if Ez (r) satisfies Eq. (2.13), i.e., the conventional time-reversal

operator for Maxwell equations is Tp =K .

As we have shown in Eq. (2.9), the eigenfrequency for Ez (r) and E∗z (r) are ω(k) = ω(−k) respec-

tively. Theω(k) andω(−k) around time-reversal-invariant points is

ω(k) =ω0+kω′+
k2

2
ω′′+ · · · , (2.15)

ω(−k) =ω0−kω′+
k2

2
ω′′+ · · · , (2.16)

resulting in ω′ = 0. Therefore, the dispersion for a single band around time-reversal-invariant points

must be parabolic withω(k) =ω0+
k2

2 ω
′′+ · · · .
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Figure 2.3: Schematic plot of a triangular photonic crystal of “artificial atoms” composed by six cylin-

ders of dielectric material. Red dashed rhombus and hexagon are primitive cells of honeycomb and

triangular lattices. Solid black hexagon labels an artificial atom, while dashed black one marks the in-

terstitial region among artificial atoms. ~a1 and ~a2 are unit vectors with length a0 as the lattice constant.

Right panel: enlarged view of hexagonal cluster with R the length of hexagon edge and d the diameter

of cylinders. ǫd and ǫA are dielectric constants of cylinders and surrounding environment.

2.3.3 Pseudo-time-reversal symmetry

Haldane demonstrated that photonic crystals can also support Dirac cones in a 2D honeycomb

lattice when the time-reversal symmetry is preserved [12]. Introducing magneto-optic effect (Faraday

effect) that breaks the time-reversal symmetry, the system is driven into a topological state characterized

by Chern numbers [4].

Let us consider harmonic TM modes of EM wave, namely those of finite out-of-plane Ez and in-plane

Hx and Hy components with others being zero in a dielectric medium (see figure 2.3). For simplicity, the

real electric permittivities of both cylinders (ǫd ) and environment (ǫA) are taken frequency independent

in the regime under consideration. The master equation for a harmonic mode of frequency ω is then

derived from the Maxwell equations [42]

�

1

ǫ(r)
~∇× ~∇×

�

Ez (r)ẑ =
ω2

c2
Ez (r)ẑ, (2.17)

with ǫ(r) the position-dependent permittivity and c the speed of light. The magnetic field are given

by the Faraday relation H = [−i/(µ0ω)] ~∇× E, where the magnetic permeability µ0 is presumed as

that of vacuum. The Bloch theorem applies for the present system when ǫ(r) is periodic as shown

in figure 2.3. It is reminded however that the master equation (2.17) describes the EM waves instead

of electrons carrying on the spin degree of freedom, with the most prominent difference lying at the

response upon time-reversal operation. For simplicity, we consider first a system infinite in z direction

which reduces the problem to 2D.

We start from a honeycomb lattice of dielectric cylinders, and deform it in the way keeping hexago-

nal clusters composed by six neighboring cylinders and the C6 symmetry. Now the alignment of dielec-

tric cylinders is more convenient to be considered a triangular lattice of hexagonal “artificial atoms”.
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2.3. Topological photonics characterized by Z2 invariant

There are two irreducible representations in the C6 symmetry group associated with the triangular lat-

tice: E ′ and E ′′ with basis functions x/y and xy/(x2−y2), corresponding to odd and even spatial parities

respectively [55]. As can be seen in figure 2.4(a) for Ez field at Γ point, artificial atoms carry px/py and

dxy/dx2−y2 orbitals, with the same symmetry as those of electronic orbitals of conventional atoms in

solids.

We now examine matrix representations ofπ/3 rotation and its combinations for the basis functions

of px/py and dxy/dx2−y2 . Since px/py behave in the same way as x/y, it is easy to see

DE ′(C6)

�

px

py

�

=

 

1
2 −

p
3

2p
3

2
1
2

!
�

px

py

�

. (2.18)

It is noticed that U = [DE ′(C6) + DE ′(C
2
6 )]/
p

3 = −iσy with DE ′(C
2
6 ) ≡ D2

E ′(C6) is associated with

the π/2 rotation of px/py (σy being the Pauli matrix). Therefore,U 2(px , py)
T =−(px , py)

T, which is

consistent with the odd parity of px/py with respect to spatial inversion. Similarly, one has

DE ′′(C6)

�

dx2−y2

dxy

�

=

 

− 1
2 −

p
3

2p
3

2 − 1
2

!
�

dx2−y2

dxy

�

, (2.19)

which is same as DE ′(C
2
6 ) because the basis functions are now bilinear of x/y. It is then straightforward

to check that [DE ′′(C6)− DE ′′(C
2
6 )]/
p

3 = U is associated with a π/4 rotation of dxy/dx2−y2 , which

yieldsU 2(dx2−y2 , dxy )
T =−(dx2−y2 , dxy )

T.

We compose the anti-unitary operator T = UK where K is the complex conjugate operator

associated with the TR operation respected by Maxwell systems in general. SinceT 2 =−1 is guaranteed

by U 2 = −1, T can be taken as a pseudo-TR operator which provides Kramers doubling in the same

way as the TR symmetry in electronic systems. It is clear that the crystal symmetry plays an important

role in this pseudo-TR symmetry [56].

In order to derive the pseudo TR operator T ′ = U ′K on basis [p+, p−] with p± = (px ± i py )/
p

2,

we need to transform theU operator to

U ′ =V †UV =

�

i 0

0 −i

�

, (2.20)

with

V =

�

1/
p

2 1/
p

2

−i/
p

2 i/
p

2

�

the transformation matrix between the basis wave functions. It is straightforward to see

T ′ p± = U ′K p± =U ′ p∓ =∓i p∓,

T ′2 p± = T ′(∓i p∓) =±iU ′ p± =−p±, (2.21)

which gives T ′2 = −1 in the irreducible representation E ′. Similarly, one can show T ′2 = −1 in

irreducible representation E ′′. From Eq. (2.21), it is clear that the wave functions for Ez field of positive

and negative angular momenta are two pseudo spins of our photonic system since T ′ transforms the

pseudo spin-up state to the spin-down state, and vice versa.
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Chapter 2. A Z2 Topological Phase in an All-Dielectric Photonic Crystal

Figure 2.4: (a) Electric fields Ez of the px/py and dxy/dx2−y2 photonic orbitals hosted by the artificial

atom at Γ point. (b) Magnetic fields associated with Ez fields with wave functions of positive and negative

angular momenta p± = (px ± i py )/
p

2 and d± = (dx2−y2± i dxy )/
p

2. The angular momentum of wave

function of Ez field constitutes the pseudo spin in the present photonic crystal.
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2.4. Topological phase transitions

Figure 2.5: Berry curvatures around Γ point for pseudo spin-up and -down channels when the band

inversion of p and d orbitals happens at Γ point.

2.3.4 Pseudospins: orbital angular momentum of electric fields

For the harmonic transverse magnetic (TM) mode, the in-plane magnetic fields associated with the

Ez fields px (r) and py (r) are given by the Faraday relation

H1 =
−i

µ0ω
~∇× (px ẑ), H2 =

−i

µ0ω
~∇× (py ẑ), (2.22)

where Hi = hi x x̂ + hi y ŷ (i = 1,2) with x̂ and ŷ the in-plane unit vectors. Distributions of real parts of

magnetic fields associated with p± are shown in figure 2.4(b). Since the wave functions of Ez field px (r)

and py(r) are linked to each other by π/2 rotation, one has at origin

�

h2x

h2y

�

=

�

h1y

−h1x

�

. (2.23)

It is then easy to see that the wave functions of Ez field with positive and negative angular momenta

generate the magnetic fields

− i

µ0ω
~∇× [(px ± i py )ẑ] = (h1x ± i h1y )(x̂ ∓ i ŷ). (2.24)

Because the harmonic mode evolves with time according to exp(iωt ), the term ∓i in front of ŷ in

Eq. (2.24) corresponds to a∓π/2 phase shift in x and y components of magnetic field, which is nothing

but the circular polarization of magnetic field. Therefore, the circular polarization of in-plane mag-

netic field corresponds to the angular momentum of the wave function of out-of-plane electric field

in the present photonic crystal, a property useful for stimulating electromagnetic waves with specific

pseudospin (see figure 2.5).

2.4 Topological phase transitions

Now we calculate the photonic band dispersions described by the master equation (2.5) imposing

periodic boundary conditions along unit vectors ~a1 and ~a2 given in figure 2.3. As shown in figure 2.6,

double degeneracy in the band dispersions appears at Γ point, which can be identified as p± and d±
states, consistent with the symmetry consideration. For large lattice constant a0, the photonic band

29



Chapter 2. A Z2 Topological Phase in an All-Dielectric Photonic Crystal

Figure 2.6: Dispersion relations of TM mode for the 2D photonic crystals with ǫd = 11.7, ǫA = 1

and d = 2R/3 for (a) a0/R = 3.125 (Inset: Brillouin zone of triangular lattice), (b) a0/R = 3 and (c)

a0/R= 2.9. Blue and red are for d± and p± bands respectively, and rainbow for hybridization between

them. The case of a0/R= 3 corresponds exactly to the honeycomb lattice of individual cylinders.

below (above) the gap is occupied by p± (d±) states (see figure 2.6(a) for a0/R= 3.125 with R the length

of hexagon edge).

Reducing the lattice constant to a0/R= 3, the p and d states become degenerate at Γ point, and two

Dirac cones appear as shown in figure 2.6(b). This is because that at this lattice constant the system is

equivalent to honeycomb lattice of individual cylinders [see figure 2.7(a)]. It has been shown that the

honeycomb lattice can support Dirac cones at the K and K ′ points [57]. By folding the Brillouin zone

of honeycomb lattice of individual cylinders, we observe that the K and K ′ points in the Brillouin zone

of honeycomb lattice are equivalent to the Γ point of the triangular lattice of hexagons, as shown in

figure 2.7. Therefore, the doubly degenerate Dirac cones at the Γ point are nothing but those at the K

and K′ point in the Brillouin zone of honeycomb lattice based on the primitive rhombic unit cell of

two sites.

When the lattice constant is further reduced, a global photonic band gap is reopened near the Dirac

point as shown in figure 2.6(c) for a0/R= 2.9. Now the Ez field at low-(high-)frequency side of the band

gap exhibits d±( p±) characters around the Γ point, opposite to the order away from the Γ point. Namely

a band inversion takes place upon reducing the lattice constant in the present system. Quantitatively,

the band gap is∆ω = 5.47 THz atω = 138.77 THz with a0 = 1µm, with all the quantities scaling with

the lattice constant.

2.5 k ·P model for topological photonic crystals

In this section we evaluate the Z2 invariant of the present photonic crystal based on k ·P perturba-

tion theory. We consider the photonic crystal with C6 point group symmetry. We denote the eigenstates

at Γ point as Γ1 = px ≡ |x〉, Γ2 = py ≡ |y〉, Γ3 = dx2−y2 ≡ |x2− y2〉 and Γ4 = dxy ≡ |2xy〉. The effective
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2.5. k ·P model for topological photonic crystals

Figure 2.7: (a) Triangular lattice of hexagons with a0/R= 3, which is equivalent to honeycomb lattice

of individual dielectric rods. (b) K and K ′ points in the folded Brillouin zone for honeycomb lattice of

individual cylinders overlap with the Γ point for triangular lattice of hexagons (shadowed by blue). Blue

dots are dielectric rods. Red hexagons and black rhomb are for unit cells of triangular and honeycomb

lattices respectively.

k ·P Hamiltonian is

H (k) =H0+H ′, (2.25)

where

H0 =











ε0
p

ε0
p

ε0
d

ε0
d











(2.26)

is the Hamiltonian at Γ point on the basis [Γ1,Γ2,Γ3,Γ4], with ε0
p and ε0

d
eigenvalues ofH (k = 0), and

H ′ is the perturbation term. Away from Γ point, the diagonal entries become εα(k) = ε
0
α+Dαk2 with

α= d , p.

The HamiltonianH ′ on the same basis in general is

H ′ =
� Hp p Hpd

H †

pd
Hd d

�

. (2.27)

Matrix elements ofHp p are given by [55]

H i j
p p =Mi j +

∑

α=3,4

MiαMα j

Ei − Eα
, (2.28)

with Mαβ =
¬

Γα|k ·P|Γβ
¶

(α,β = 1, . . . , 4), where the integration is taken over real space. Since Γ1 and

Γ2 have the same parity, Mi j in equation (2.28) does not include linear order term of k. When i = j , the
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second term of equation (2.28) is

H 11
p p =

∑

α=3,4

¬

Γ1|kx Px + ky Py |Γα
¶¬

Γα|kx Px + ky Py |Γ1
¶

E1− Eα

= Gk2
x + F k2

y , (2.29)

where F =
�

�

�

¬

x|Py |2xy
¶
�

�

�

2
/(E1 − E4), G =

�

�




x|Px |x2− y2
��

�

2 /(E1 − E3), Px = ∂ /∂ x and Py = ∂ /∂ y.

Similarly, we have

H 22
p p = F k2

x +Gk2
y (2.30)

and

H 12
p p =H 21

p p =N kx ky (2.31)

with N = F +G. Therefore, the HamiltonianHp p is summarized as

Hp p =

�

Gk2
x + F k2

y N kx ky

N kx ky F k2
x +Gk2

y

�

. (2.32)

In the same way, we obtain

Hd d =

�

−Gk2
x − F k2

y −N kx ky

−N kx ky −F k2
x −Gk2

y

�

. (2.33)

We now evaluate the off-diagonal term ofH ′:

H 13
pd =

¬

Γ1|kx Px + ky Py |Γ3
¶

=



x|Px |x2− y2
�

kx =Akx , (2.34)

H 14
pd =

¬

x|Py |2xy
¶

ky =Aky , (2.35)

H 23
pd =

¬

y|Py |x2− y2
¶

ky =−Aky , (2.36)

and

H 24
pd = 〈y|Px |2xy〉kx =Akx . (2.37)

Therefore, the effective HamiltonianH (k) is

H (k) =











εp +Gk2
x + F k2

y N kx ky Akx Aky

N kx ky εp + F k2
x +Gk2

y −Aky Akx

A∗kx −A∗ky εd −Gk2
x − F k2

y −N kx ky

A∗ky A∗kx −N kx ky εd − F k2
x −Gk2

y











. (2.38)

This is consistent with that obtained by tight-binding approximations [15]. Rewriting H (k) on the

basis [p+, d+, p−, d−], we have

H ′(k) =
�

H+ H+−
H †
+− H−

�

(2.39)
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with

H+ =

�

εp +
F+G

2 (k
2
x + k2

y ) Ak+
A∗k− εd − F+G

2 (k
2
x + k2

y )

�

,

H+− =

�G−F
2 (k

2
x − k2

y )− iN kx ky 0

0 F−G
2 (k

2
x − k2

y )+ iN kx ky

�

,

H− =

�

εp +
F+G

2 (k
2
x + k2

y ) Ak−
A∗k+ εd − F+G

2 (k
2
x + k2

y )

�

,

where k± = kx ± i ky and d± = (dx2−y2 ± i dxy )/
p

2.

With additional TR symmetry T respected by Maxwell equations (T =K withK the complex

conjugate operator), we find

〈p+|Ak+|d+〉 = 〈p+|K †K (Ak+)K †K |d+〉
= −〈p−|A∗k−|d−〉, (2.40)

indicating that A is purely imaginary.

Dropping the second order off-diagonal terms ±iN kx ky and ±G−F
2 (k

2
x − k2

y ), which contribute as

high-order perturbations, Hamiltonian (2.39) is in a block diagonal form. Putting the “Fermi level” in

the middle of ε0
d

and ε0
p and taking Dd =−Dp = D , we have the simplified Hamiltonian

H ′(k) =
� H+ 0

0 H−

�

(2.41)

with

H± =
�

M +Bk2 Ak±
A∗k∓ −M −Bk2

�

, (2.42)

where M = (ε0
p − ε0

d
)/2 and B = (F +G)/2+D .

Since the effective HamiltonianH ′(k) in Eq. (2.41) is in a similar form as Bernevig-Hughes-Zhang

(BHZ) model for CdTe/HgTe/CdTe quantum well [10], the system then can support an optical quan-

tum “spin” Hall effect due to the band inversion mechanism. However, we should emphasize that the

underlying physics between our photonic crystal and HgTe quantum well are different since we are

focusing on a system governed by Maxwell equations instead of Schördinger equation.

2.6 Topological edge states in photonic crystals

2.6.1 Edge state in 2D systems

We consider a ribbon of photonic crystal after band inversion by cladding its two edges in terms

of two photonic crystals with trivial band gap (namely before band inversion) at the same frequency

window, which prevents possible edge states from leaking into free space. It should be kept in mind

that, since the cluster of six cylinders is the basic block of the present design, we keep them intact for

discussions of main physics. As displayed in figure 2.8(a), there appear additional states as indicated by

the double degenerate red curves within the bulk gap. Checking the real-space distribution of Ez field
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Chapter 2. A Z2 Topological Phase in an All-Dielectric Photonic Crystal

at typical momenta around Γ point (A and B in the enlarged vision of figure 2.8(a) with kx =±0.04 2π
a0

),

we find that the in-gap states locate at the ribbon edges and decay exponentially into bulk as displayed in

figure 2.8(b) (two other states are localized at the other ribbon edge and not shown explicitly). As shown

in the right insets of figure 2.8(b), the Poynting vectors exhibit a nonzero downward/upward EM energy

flow for the pseudo spin-down/-up state even averaged over time. This indicates unambiguously counter

propagations of EM energy at the sample edge associated with the two pseudo spin states, the hallmark

of a quantum spin Hall effect (QSHE) state [9, 11] It is noticed that the Poynting vector describes energy

flows in systems governed by Maxwell equations, and therefore the distributions shown in figure 2.8(b)

can be observed in experiments. The photonic QSHE in the present system can also be confirmed by

evaluating the Z2 invariant based on a k · p model around Γ point.

Since the pseudo TR symmetry and the pseudo spin rely on the C6 point symmetry, deformations

in the system which break the crystalline order and thus the pseudo TR symmetry would mix the two

pseudo-spin channels as in other Z2 topological photonic systems [31, 33]. Actually there is a tiny

gap at Γ point in figure 2.8(a) (unnoticeable in the present scale) due to the reduction of C6 crystalline

symmetry at the ribbon edge.

2.6.2 Energy propagations via topological edge states

Now we study propagation of electromagnetic (EM) wave excited by a source via the topological

edge states in a finite sample. The time-dependent Maxwell equations are [58]

∂ H

∂ t
=− 1

µ0

�

~∇×E+ SH

�

, (2.43)

∂ E

∂ t
=

1

ǫ(r)

�

~∇×H− SE

�

, (2.44)

where H= (Hx , Hy , 0) and E= (0,0, Ez ) for the TM mode, µ0 is the magnetic permeability of vacuum,

and SE/H is the external electric/magnetic current density provided by sources. Equations (2.44) are

solved numerically by using the finite-difference time domain method [58].

First we consider a 2D rectangle sample of topological photonic crystal of size 40~a1 × 20(~a1 + ~a2)

embedded in a larger trivial photonic crystal (~a1 and ~a2 are lattice vectors shown in figure 2.3). Pa-

rameters for trivial/topological region are the same as those in figure 2.8. We place a harmonic source

SE = E0e iωt ẑ to inject an EM wave of Ez field at the interface between topological and trivial regions,

with frequency ω = 0.45c/a0 inside the topological energy gap for the given parameters. We find that

the EM energy uEz
(r) = ǫ(r)|Ez (r)|2/2 is distributed along the interface (see figure 2.9(a)), indicating

clearly the existence of topological edge state of the system.

In order to manifest the pseudo spin specified edge states of the present Z2 topological photonic

crystal, we further consider an infinite system with the lower/upper half region occupied by topologi-

cal/trivial photonic crystal. When an EM wave of pseudo spin-up channel is injected from a source S+,

we find that the excited EM wave propagates unidirectionally to the left along the interface, as shown in

figure 2.9(b). Similarly, when we inject an EM wave of pseudo spin-down state by a source S−, we find

that the excited state propagates only to the right, as displayed in figure 2.9(c). These two chiral edge

states specific to the pseudo spin-up and -down states manifests theZ2 invariant of the present system. In

real experiments, one prepares source S+/S− in terms H0e iωt (x̂∓ i ŷ) at the center of a hexagon, which

generates EM wave with in-plane magnetic field of anticlockwisely/clockwisely circular polarization,
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2.6. Topological edge states in photonic crystals

Figure 2.8: (a) Dispersion relation of a ribbon-shaped 2D topological photonic crystal, which is infinite

in one direction and of 45 and 6 artificial atoms for the topological and trivial regions respectively in the

other direction. Right panel: enlarged view of (a) around the band gap. Red curves are for topological

edge states. (b) Real-space distributions of Ez fields at points A and B indicated in the right panel of (a).

Right panels: time-averaged Poynting vectors ~S over a period.
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Chapter 2. A Z2 Topological Phase in an All-Dielectric Photonic Crystal

Figure 2.9: (a) Topological edge states excited by a harmonic source with linear polarization. (b) and (c)

Unidirectional energy propagations excited by sources generating EM waves characterized by Ez fields

with wave functions of positive and negative angular momenta. (d) and (e) Propagations of excited

helical edge state along interfaces with sharp turning angles and disorders (deformed hexagons inside

green dashed box). White dot lines are interfaces between topological and trivial regions, and stars are

sources. Parameters are taken the same as those in Figs. 5(a) and (b) in the main text.

and thus out-of-plane electric field with wave function of positive/negative angular momentum.

An important property of topological edge states is that they are immune to various defects. In

order to check robustness of the topological photonic state realized in the present scheme, one can in-

troduce intentionally defects into the system [33]. As the first example of possible defects, we consider a

sharply bent interface where the topological photonic crystal is replaced by the trivial one in a region of

3~a1×3~a2 (see figure 2.9(d)). A source S+ is placed at the interface to stimulate pseudo spin-up EM wave

with frequency ω = 0.45c/a0 inside topological band gap. Solving Eq. (2.44), it is found that, as dis-

played in figure 2.9(d), the EM wave can go ground this rhombic defect and maintain the unidirectional

propagation, which confirms the robustness of topological edge states against sharply bent interfaces.

As the second example of defects, we introduce deformed artificial atoms at the interface. As shown

in figure 2.9(e), inside the region indicated by the green dashed box diameters of green cylinders d and

ratios a0/R of artificial atoms are chosen from [0.2a0, 0.28a0] and [2.78,3.33] respectively in a random
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2.6. Topological edge states in photonic crystals

Figure 2.10: (a) 3D photonic crystal of height h with two horizontal gold plates placed at two ends sym-

metrically. (b) Distribution of energy-density of Ez field uEz
(r) = ǫ(r)|Ez (r)|2/2 in the 3D topological

photonic crystal in (a) stimulated by a linearly polarized source. (c)/(d) Leftward/rightward unidirec-

tional energy propagation stimulated by source S+/S− which injects Ez field with wave function of

positive/negative angular momentum in the region denoted by green solid frame in (b). The lattice

constant and diameter of cylinder are kept same in the whole space a0 = 1µm and d = 0.24µm, while

the edge length of hexagon is R = 0.345a0 (a0/R = 2.9) and R = 0.32a0 (a0/R = 3.125) in topological

and trivial regions, and the frequency of all sources is ω = 135.6THz within the topological band gap.

In the 3D system the height of cylinder is h = 1µm. Other parameters are same as those in figure 2.6.

way, and positions of some cylinders are shifted randomly by distances chosen from [−0.03a0, 0.03a0].

As displayed in figure 2.9(e), the excited edge state passes through the disordered region without notice-

able backscattering, indicating that the topological state remains stable against these moderate disorders

[59, 60]. The topology will be destroyed by strong disorders when the dispersions of edge states are

pushed into bulk bands. A systematic analysis, such as those carried out in previous works [61, 62], on

possible influences of disorders to the present topological photonics would become an issue of future

work.

2.6.3 Experimental realizations

For experimental implementation of the present topological state, the finite height of cylinders

along z direction has to be taken into account. We consider a square sample of topological photonic

crystal sandwiched by two horizontal gold plates (see figure 2.10(a)) with separation h chosen to pre-

vent photonic bands with nonzero kz from falling into the topological band gap. Damping of EM

wave in gold plates are taken into account by adopting complex reflective index for gold. The size of

topological sample is 40~a1 × 20(~a1 + ~a2) with all four edges cladded by a trivial photonic crystal. A

harmonic line source E = E0e iωt ẑ is placed parallel to dielectric cylinders to inject EM wave at the

interface with the frequency in the topological band gap. We simulate the 3D system by solving time-

dependent Maxwell equations using finite difference time-domain method [58]. Since any harmonic
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source preserves TR symmetry respected by Maxwell equations, the system exhibits helical topological

edge states as shown in figure 2.10(b). When an EM wave characterized by Ez field with wave function

of positive/negative angular momentum is injected by line source S+/S−, leftward/rightward unidirec-

tional energy propagation takes place (see Figs. 2.10(c) and (d)), as expected from the bulk topology. In

real experiments, one prepares source S+/S− in terms H0e iωt (x̂ ∓ i ŷ) with H0 an arbitrary amplitude,

ω a frequency and x̂(ŷ) the unit vector along x(y) direction, which generates in-plane magnetic field

with anticlockwisely/clockwisely circular polarization, and thus the out-of-plane Ez field with wave

function of positive/negative angular momentum.

2.7 Conclusion

We derive a two-dimensional photonic crystal with nontrivial topology purely based on conven-

tional dielectric material, simply by deforming honeycomb lattice of cylinders. A pseudo time-reversal

symmetry is constructed in terms of the time-reversal symmetry respected by Maxwell equations in

general and the C6 crystal symmetry upon design, which enables the Kramers doubling with the role

of pseudo spin played by the angular momentum of wave function of the out-of-plane electric field of

transverse magnetic modes. The present topological photonic crystal with simple design backed up by

the symmetry consideration can be fabricated relatively easy as compared with other proposals, and is

expected to leave impacts to the topological physics and related materials science.
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Chapter 3

Honeycomb Lattice with Kekulé

Distortions

3.1 Honeycomb lattice

3.1.1 Tight-binding model

Honeycomb lattice is a natural platform for realizing Dirac linear dispersion [43]. Intensive interests

in questing for systems with honeycomb lattice structure flourished since the discovery of graphene: a

monolayer of carbon atoms [44, 63]. A minimal tight-binding Hamiltonian describing the dispersion

relation of π electrons in graphene is [46]

H0 =−t
∑

〈i , j 〉,σ

�

a†
i ,σ b j ,σ +H .c .

�

, (3.1)

where ai ,σ (bi ,σ ) annihilates a π electron at site i of sublattice A (B) and spin σ , 〈i , j 〉 runs over two

nearest neighbors with hopping energy t (see figure 1.3). Transforming Hamiltonian (3.1) into the

momentum space, we arrive at the Hamiltonian close to the K and K ′ points, which are the corners of

the Brillouin zone (see detailed derivations in Appendix A.1)

H N N
σ =−v f

�

0 kx − iνky

kx + iνky 0

�

=−v f

�

σx kx +τzσy ky

�

(3.2)

on the basis [aσ , bσ], where ν =±1 at the K and K ′ respectively, the Fermi velocity v f =
p

3a0 t/2 with

a0 the lattice constant, σx,y,z are the Pauli matrices for sublattice degree of freedom, and τx,y,z are those

for valley degree of freedom. Eigenenergies of Eq. (3.2) are E =±v f |k|, forming a Dirac cone at the K

and K ′ points, as shown in figure 1.4.

3.1.2 Topological phases in honeycomb lattice

It has been well studied that a band gap can be opened at the Dirac point by a staggered electric

potential µ for two sublattices [64, 65]

HV =µσz , (3.3)
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Chapter 3. Honeycomb Lattice with Kekulé Distortions

which induces a same massµ at the two K points, and thus the total Chern number C =CK+CK ′ is zero

according to Eq. (1.13) [see figure 3.1(a)]. Another way of generating mass terms at Dirac points was

introduced by Haldane [6]. The author revealed that a QAHE can be realized when complex hopping

integrals t ′ among next-nearest-neighboring sites of honeycomb lattice are taken into account (see figure

1.3). The effective low-energy Hamiltonian describing the complex hopping textures is

HHaldane =−3|t ′|cosφσ0+ 3
p

3|t ′| sinφτzσz , (3.4)

where t ′ = |t ′|exp(iφ) (see details in Appendix A.1). The first term above simply shifts the Fermi level

without affecting topology of the system and thus can be dropped. The mass function 3
p

3|t ′| sinφτz

in the second term above is opposite at the two valleys and thus results in a total Chern number 1, i.e.

a QAHE is realized. Later, it was revealed that the intrinsic spin-orbit coupling (SOC) in honeycomb

lattice can provide this complex hopping integrals with φ= π/2 [7, 8]. The effective Hamiltonian for

the SOC at the two valleys (the K and K ′ points) is

Hsoc = λτzσz sz (3.5)

with sz the Pauli matrix for spin degree of freedom, and λ the strength of spin-orbit coupling (see de-

tailed derivations in Appendix A.1). The non-vanishing SOC in Eq. (3.5) opens a bulk band gap at the

K(K ′) points, which drives spinful electrons into a topological state with the time-reversal symmetry

preserved, known as QSHE [7–11].

Possible topological phases can be identified by evaluating Berry curvatures at the two valleys, where

we have a minimal band gap. The topological charges carried by Dirac fermions are given in Eq. (1.13)

for a simple Dirac Hamiltonian. As shown in figure 3.1(a), for the pristine graphene, CK and CK ′ take

opposite signs at the K and K ′ points since they are linked by the time-reversal symmetry. With the

SOC in Eq. (3.5) turned on, the intrinsic SOC introduces opposite mass terms λσz sz and −λσz sz at

the K and K ′ points respectively. On the other hand, the chiralities at the two valleys are opposite.

The topological charges thus are the same with an absolute value 1/2 in the same spin and the same

sublattice channels according to Eq. (1.13). As displayed in figure 3.1(b) for the QSHE with topological

gap opened by the intrinsic SOC, the Chern number in the spin-up channel is 1, and −1 in the spin-

down channel because of the time-reversal symmetry. Similarly, we can exhaust other possible ways

of alternating CK(K ′). For example, CK can be flipped in both spin channels by introducing an anti-

ferromagnetic exchange field at two sublattice sites or applying a circularly polarized light [37, 66, 67]

(see figure 3.1(c)). The configuration of Berry curvatures in figure 3.1(d) can be realized by the Haldane

model [6]. Further, one can reach a topological state only in one spin channel and realize a novel QAHE

[see figure 3.1(e)], which will be discussed in details in the next chapter.

For most proposals of realizing topological states in honeycomb lattice, SOC is indispensable. How-

ever, it turns out that SOC for graphene is too small to open a significant topological band gap for ex-

perimental observations. Attentions then are paid to the two-dimensional (2D) group IV honeycomb

lattice with stronger SOC, including Silicene [65] and fluorinated stanene [68]. The requirement for

strong SOC limits number of possible platforms for realizing QSHE. In this chapter, we propose a novel

way of opening topological band gap simply by detuning hopping energies among nearest-neighbor sites

to form a Kekulé texture. Since the gap is purely of electric origin, it can be in the order of ∼ 0.1t0,

where t0 is the hopping energy between two nearest-neighbor sites.
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3.2. Topological properties induced by Kekulé hopping textures

Figure 3.1: Berry curvatures at two valleys for (a) pristine graphene, (b) quantum spin Hall effect (c)

trivial states with broken time-reversal symmetry (d) quantum anomalous Hall effect and (e) topological

state only in one of the two spin channels. Upper insets in (b), (d) and (e) are edge currents. Red and

blue curves are for spin-up and spin-down channels respectively. C↑ and C↓ are Chern numbers of spin-

up and spin-down electrons respectively, Cc = C↑ +C↓ and Cs = C↑ −C↓ are charge and spin Chern

numbers respectively (see figure also in Ref. [17]).

3.2 Topological properties induced by Kekulé hopping textures

3.2.1 Tight-binding model and emergent orbitals

We start from a spinless tight-binding Hamiltonian on honeycomb lattice

H = ǫ0

∑

i

c†
i

ci + t0

∑

〈i , j 〉
c†

i
c j + t1

∑

〈i ′, j ′〉
c†

i ′ c j ′ , (3.6)

where ci is the annihilation operator of electron at atomic site i with on-site energy ǫ0 satisfying the anti-

commutation relation, 〈i , j 〉 and 〈i ′, j ′〉 run over nearest-neighbor sites inside and between hexagonal

unit cells with hopping energies t0 and t1 respectively [see Fig. 3.2(a)]. The orbitals are considered to be

the simplest one without any internal structure, such as theπ electron of graphene. Below we are going

to detune the hopping energy t1 while keeping t0 constant, and elucidate possible changes in electronic
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Chapter 3. Honeycomb Lattice with Kekulé Distortions

Figure 3.2: (a) Honeycomb lattice with hopping energies between nearest-neighbor sites: t0 inside

hexagons as denoted by the green bonds and t1 between hexagons by red ones. The Red dashed hexagon

is the primitive cell of triangular lattice with lattice vectors ~a1, ~a2 and lattice constant a0 = |~a1| = |~a1|.
Numbers 1, . . . , 6 in circle index atomic sites within a hexagon. (b) Emergent orbitals in the hexagonal

artificial atom.
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3.2. Topological properties induced by Kekulé hopping textures

states. In this case, the pristine honeycomb lattice of individual atomic sites is better to be considered

as a triangular lattice of hexagons, with the latter characterized by C6 symmetry.

Let us start with the Hamiltonian within a single hexagonal unit cell

H0 = t0Ψ
†





















0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0





















Ψ, (3.7)

where Ψ = [c1, c2, c3, c4, c5, c6]T [see Fig. 3.2(a)]. The eigenstates of Hamiltonian H0 are given by

|s〉= [1,1,1,1,1,1]T ;

|px〉= [1,1,0,−1,−1,0]T ;

|py〉= [1,−1,−2,−1,1,2]T ;

|dx2−y2〉= [1,1,−2,1,1,−2]T ;

|dxy〉= [1,−1,0,1,−1,0]T ;

| fy(3x2−y2)〉= [1,−1,1,−1,1,−1]T (3.8)

with eigenenergies 2t0, t0, t0,−t0,−t0 and −2t0 respectively, up to normalization factors. As shown

in Fig. 3.2(b), the emergent orbitals accommodated on the hexagonal “artificial atom” take the shapes

similar to the conventional s , p, d and f atomic orbitals.

3.2.2 Pseudo-time-reversal symmetry and pseudospin

Similar to the discussion in Section 2.3.3, a pseudo-TR symmetry operator can be composed in the

present system with C6 symmetry: T =UK withK the complex conjugate operator andU =−iσy ,

whereσy is the Pauli matrix. It can be checked straightforwardly thatU corresponds toπ/2 rotation for

p orbitals and π/4 rotation for d orbitals given in Eq. (3.8), which yieldsU 2 =−1 in the space formed

by the p and d orbitals [13]. Therefore, the pseudo-TR symmetry satisfies the relationT 2 =−1, same as

that for fermionic particles even though the spin degree of freedom of electron has not been considered

explicitly. This indicates that electrons acquire a new pseudospin degree of freedom in the present system

as far as the low-energy physics is concerned. It is noticed that although the high-energy states |s〉 and

| f 〉 are not eigenvectors of T , they do not affect topological properties of the present system.

Explicitly the wave functions carrying pseudospins are given by the emergent orbitals with eigen

angular momentum

|p±〉=
1p
2

�

|px〉± i |py〉
�

; |d±〉=
1p
2

�

|dx2−y2〉± i |dxy〉
�

. (3.9)

Distinguished from the intrinsic spin, the pseudospin is directly related to the chiral current density on

the hexagon. For a lattice model, the current density between two sites is given by I j k = (i/ħh)[t0c†
j
ck−

t ∗0 c†

k
c j ]. The current distributions evaluated using wave functions in Eq. (3.9) for the pseudospin-up and
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Chapter 3. Honeycomb Lattice with Kekulé Distortions

Figure 3.3: (a) and (b) Current densities in the pseudospin-up channel ( p+ or d+) and pseudospin-down

channel ( p− or d−) respectively.

-down states are shown in Figs. 3.3(a) and (b) with anticlockwisely and clockwisely circulating currents.

By considering the hexagonal artificial atoms composed by six sites in honeycomb lattice, one harvests

states with angular momenta merely from simple orbitals, such asπ electrons in graphene. The pseudo-

TR symmetry is supported by the C6 crystal symmetry, sharing the same underlying physics with the

topological crystalline insulator [56]. However, for crystal-symmetry-protected topological insulators

addressed so far, strong SOCs are required to achieve band inversions [69–71], which is different from

the present approach as revealed below.

3.3 Low-energy model for Z2 topological states

We calculate the energy dispersion of Eq. (3.6) for several typical values of t1 (hereafter the on-

site energy is put as ǫ0 = 0 without losing generality). As shown in Fig. 3.4, there are two two-fold

degeneracies at the Γ point corresponding to the two irreducible representations of the C6 point group.

Projecting the wave functions for t1 = 0.9t0 onto the orbitals given in Fig. 3.2(b), it is found that the

topmost two valance bands show the character of d orbitals whereas the lowest two conduction bands

behave like p orbitals [see Fig. 3.4(a)], with the order in energy same as those listed in Eq. (3.8). For t1 =

t0, the d and p bands become degenerate at the Γ point and double Dirac cones appear [see Fig. 3.4(b)],

which are equivalent to the ones at K and K ′ points in the unfolded Brillouin zone of honeycomb lattice

with the rhombic unit cell of two sites. When t1 increases further from t0, a band gap reopens at the

Γ point. As shown in Fig. 3.4(c) for t1 = 1.1t0, the valence (conduction) bands are now occupied by

p (d ) orbitals around the Γ point, opposite to the order away from the Γ point and to that before gap

closing. Therefore, a band inversion between p and d orbitals takes place at the Γ point when the inter-

hexagon hopping energy is increased across the topological transition point t1 = t0, namely the pristine

honeycomb lattice.

We can characterize the topological property of the gap-opening transition shown in Fig. 3.4 by a

low-energy effective Hamiltonian around the Γ point. Since the bands near the Fermi level are predom-

inated by p and d orbitals, it is sufficient to downfold the six-dimensional Hamiltonian H (k) associated

with the tight-binding model (3.6) into the four-dimensional subspace [p+, d+, p−, d−]. The second
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3.3. Low-energy model for Z2 topological states

term in Eq. (3.6) is then simply given by

h ′0 =











t0 0 0 0

0 −t0 0 0

0 0 t0 0

0 0 0 −t0











. (3.10)

Contributions from the third term in Eq. (3.6) to the effective Hamiltonian should be evaluated per-

turbatively. First, we list the inter-hexagon hoppings in terms of 6×6 matrices h1, h2, h3, h†
1 , h†

2 and h†
3

with

h1 =





















0 0 0 t1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





















, h2 =





















0 0 0 0 0 0

0 0 0 0 t1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





















,

h3 =





















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 t1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





















on the basis of [c1, c2, c3, c4, c5, c6]. Following the standard procedures, they can be projected to the

subspace spanned by [p+, d+, p−, d−]

h ′1 =
t1

12











−2
p

3− i −1−
p

3i 2i

−
p

3− i 2 −2i −1+
p

3i

−1+
p

3i −2i −2
p

3+ i

2i −1−
p

3i −
p

3+ i 2











,

h ′2 = h ′∗1 , h ′3 =
t1

6











−1 i 1 i

i 1 −i 1

1 −i −1 −i

i 1 −i 1











. (3.11)

With Fourier transformations of matrices in Eqs. (3.10) and (3.11), one obtains the effective low-

energy Hamiltonian H ′(k) on the basis [p+, d+, p−, d−] in the momentum space. Expanding H ′(k)
around the Γ point up to the lowest-orders of k, one arrives at

H ′(k→ Γ ) =
�

H+(k) 0

0 H−(k)

�

(3.12)

with

H±(k) =

�

−δ t + 1
2 a2

0 t1k2 i
2 a0 t1k±

− i
2 a0 t1k∓ δ t − 1

2 a2
0 t1k2

�

, (3.13)
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Figure 3.4: Band dispersions for the system given in Fig. 3.2: (a) t1 = 0.9t0 (Inset: Brillouin zone of

the triangular lattice), (b) t1 = t0 and (c) t1 = 1.1t0. Blue and yellow are for |p±〉 and |d±〉 orbitals

respectively, and rainbow for hybridization between them. The on-site energy is taken ǫ0 = 0.

where δ t = t1− t0, k= (kx , ky ), k± = kx ± i ky , 0 is a 2×2 zero matrix, and a0 is the lattice constant of

the triangular lattice. For δ t = 0, the Hamiltonians H+(k) and H−(k) in Eq. (3.13) are the same as the

well-known one for honeycomb lattice around the K and K ′ points [46], where the quadratic terms of

momentum in the diagonal parts can be neglected.

3.4 Topological phase transitions

For δ t > 0, however, the quadratic terms are crucially important since they induce a band inver-

sion [10], resulting in the orbital hybridization in the band structures shown in Fig. 3.4(c). Associated

with a skyrmion in the momentum space for the orbital distributions in the individual pseudospin

channels, a topological state appears characterized by the Z2 topological invariant [7, 8, 13, 38]. It is

clear that for δ t < 0 there is no band inversion taking place and thus the band gap is trivial as shown in

Fig. 3.4(a).

It is worthy noticing that, comparing with the Kane-Mele model for the honeycomb lattice [7, 8],

the mass term δ t (> 0) in Eq. (3.13) can be considered as an effective SOC associated with the pseu-

dospin, namely λeSOC = δ t . For δ t = 0.1t0, a moderate texture in hopping energies, the effective SOC

is approximately 3000 times larger than the real SOC in magnitude in graphene where λSOC ≃ 0.1meV

and t0 = 2.7eV. The huge effective SOC is due to its pure electronic character as compared with the

intrinsic SOC originated from the relativistic effect. This is one of the fantastic aspects of the present

approach, which renders a topological gap corresponding to temperature of thousands of Kelvin.
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3.5. Topological edge states and associated conductances

Figure 3.5: (a) Band dispersion of a ribbon system of 36 hexagons with t1 = 1.1t0 cladded from both

sides by 10 hexagons with t1 = 0.9t0. (b) Real-space distribution of the in-gap states associated with the

red solid dispersion curves in (a). (c) and (d) Real-space distributions of current densities in pseudospin

up and down channels at the momenta indicated by the red and green dots 1 and 2 in (a) within the

rhombic area sketched by dashed line in (b); the excess currents in pseudospin up and down channels

are indicated by red and green arrows in (b).

3.5 Topological edge states and associated conductances

3.5.1 Helical edge states

We consider a ribbon of hexagonal unit cells of t1 = 1.1t0 with its two edges cladded by hexagonal

unit cells of t1 = 0.9t0. As can be seen in Fig. 3.5(a), additional states appear in the bulk gap as indicated

by the red solid curves carrying double degeneracy. Plotting the spatial distribution of the correspond-

ing wave functions, we find that the in-gap states are localized at the two interfaces between topological

and trivial regions [see Fig. 3.5(b)]. As displayed in Fig. 3.5(c) [(d)], there is an excess upward (down-

ward) edge current in the pseudospin-up (-down) channel associated with the state indicated by the red

(green) dot in Fig. 3.5(a).

3.5.2 Six-terminal Hall and longitudinal conductances

At the interface between topological and trivial regimes, the crystal symmetry is reduced from C6

to C2, which breaks the pseudo-TR symmetry in contrast to the real TR symmetry. As the result, a

mini gap of ∼ 0.01t0 [unnoticeable in the scale of Fig. 3.5(a)] opens in the edge states at the Γ point due

to the coupling between two pseudospin channels. In order to quantitatively check possible backscat-

terings caused by this mini gap, we perform calculations on the longitudinal and Hall conductances
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Figure 3.6: (a) Schematic configuration of a six-terminal Hall bar where a topological sample (light

blue region) with t1 = 1.1t0 is embedded in a trivial environment (gray region) with t1 = 0.9t0. The

size of topological scattering region is 240a0 × 120a0, and the width of each semi-infinite lead is 40a0.

The injected current flows along the edges of topological sample as indicated by the red parts between

electrodes. (b) Longitudinal and Hall conductances of the Hall bar as a function of energy of incident

electrons. The on-site energy is taken ǫ0 = 0. A rhombic topological sample is taken for ease of calcu-

lation.
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3.5. Topological edge states and associated conductances

Figure 3.7: Longitudinal conductance Gx x of the topological sample given in Fig. 3.6 (a) as a function

of the energy of injected electrons: (a) for several typical values of inter-hexagon hopping integrals

[1.05t0, 0.95t0], [1.1t0, 0.9t0] and [1.2t0, 0.8t0], where the first (second) inside bracket is for the topolog-

ical (trivial) region; (b) with several typical system sizes 2L~a1× L~a2, where the width of the electrodes

is fixed at 40a0 and the inter-hexagon hopping integral is fixed at t1 = 1.1t0 and t1 = 0.9t0 for the topo-

logical and trivial regions respectively.

based on a Hall bar system as sketched in Fig. 3.6(a). It is clear that the current I injected from the

left electrode divides itself into two branches according to the pseudospin states, namely pseudospin up

(down) electrons can flow only in the upper (lower) edge of the Hall bar. By matching wave functions

at the interfaces between the six semi-infinite electrodes and the topological scattering region [72, 73],

one can evaluate the transmissions of plane waves scattered among all the six leads, and then the longi-

tudinal and Hall conductances, Gx x = ρx x/(ρ
2
x x +ρ

2
xy ) and Gxy = ρxy/(ρ

2
x x +ρ

2
xy ) respectively, by the

Landauer-Büttiker formalism [74], where ρx x and ρxy are the longitudinal and transverse resistances,

respectively. Similar to the case of QSHE with magnetic impurities [75], the values of conductivity in

the present system deviate from the quantized ones when the Fermi level falls in the mini gap of∼ 0.01t0

as shown in Fig. 3.6(b). It is noticed, however, that both Gx x and Gxy heal quickly after several periods

of oscillations that come from interferences between the two pseudospin channels. It is emphasized that

almost perfectly quantized conductances Gx x = 2e2/h and Gxy = 0 [10, 26] are achieved for the Fermi

level beyond 0.04t0 up to the bulk gap edge at 0.1t0, where the edge states with almost perfect linear

dispersions hardly feel the existence of the mini gap and essentially no appreciable backscattering exists.

On the other hand, if the inter-hexagon hopping energy is put far away from the intra-hexagon one in

topological and/or trivial regimes, edge states may hardly be noticed [76].

Now we discuss the hopping-energy dependence of the longitudinal conductance. The size of scat-

tering region is same as in Fig. 3.6(a) and fixed for all cases. As displayed in Fig. 3.7(a), Gx x saturates to

the quantized value 2e2/h as expected for a Z2 topological state for all the cases with t1 = 1.05t0, 1.1t0

and 1.2t0 in the topological region (whereas 0.95t0, 0.9t0 and 0.8t0 in the trivial region correspondingly)

when the Fermi level is set away from the mini gaps, accompanied by oscillations due to interferences

between the two pseudospin channels.

We then discuss the sample-size dependence of the longitudinal conductance. We fix inter-hexagon

hopping integrals at 1.1t0 and 0.9t0 in the topological and trivial regions respectively. As displayed in

Fig. 3.7(b), Gx x saturates in all cases to the quantized value 2e2/h when the Fermi level is shifted away

from the mini gap. The topological edge transports remain unchanged when the size of the topological
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Figure 3.8: (a) Dispersion relations and (b) longitudinal conductances of the topological system same as

that given in Fig. 3.6(a) except that finite SOC is included.

region becomes large.

3.6 Real spin, spin-orbit coupling and QSHE

3.6.1 Low-energy model with SOC

In addition to the pseudospin, the real spin degree of freedom also contributes to transport prop-

erties. In absence of the real SOC, the results presented in Fig. 3.6 remain exactly the same, with an

additional double degeneracy due to the two spin channels and thus Gx x = 4e2/h.

An intrinsic SOC is induced when next-nearest-neighbor hoppings in honeycomb lattice are taken
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into account [7, 8]. The tight-binding model for the SOC is

HSOC =
λ

3
p

3

∑

〈〈i , j 〉〉,σσ ′
νi j

�

a†
iσ s z

σσ ′a jσ ′ + b †
iσ s z

σσ ′b jσ ′
�

, (3.14)

where λ is the strength of SOC, aiσ and biσ annihilate electrons at the lattice site i with spin σ for

sublattice A and B respectively, νi j = ±1 for clockwise (anti-clockwise) hopping [see figure 1.3], s z is

the Pauli matrix, 〈〈·, ·〉〉 represent next-nearest-neighbor hopping integrals. By simple Fourier transfor-

mation, the low-energy Hamiltonian around the Γ point up to the lowest order of k in Eq. (3.12) is then

modified to

H̃ (k) =

�

H̃+(k) 0

0 H̃−(k)

�

(3.15)

with

H̃±(k) =

�

−δ t ∓ νλ+ 1
2 a2

0 t1k2 i
2 a0 t1k±

− i
2 a0 t1k∓ δ t ± νλ− 1

2 a2
0 t1k2

�

,

where ν = 1 and −1 stand for spin-up and -down states respectively. Therefore, in the spin-up channel

SOC enhances (suppresses) the topological gap in the pseudospin-up (-down) channel presuming λ > 0

[see the left and central panels of Fig. 3.8(a)]. As far as λ < δ t , the system remains the Z2 topological

state associated with the pseudospin, where electrons with up pseudospin and down pseudospin counter

propagate at edges, both carrying on up and down spins. The longitudinal conductance Gx x saturates

to 4e2/h as displayed in Fig. 3.8(b).

When SOC is increased to λ= δ t , the pseudospin-down (-up) channel with up (down) spin is driven

into a semi-metallic state with zero band gap and the Dirac dispersion appears at the Γ point. When

SOC goes beyond δ t , this Dirac dispersion opens a gap accompanied by a topological phase transition.

The system now takes a QSHE state where at edges electrons with up spin and pseudospin propagate

oppositely to electrons with down spin and pseudospin. Evaluating the longitudinal conductance, one

finds that Gx x is quantized exactly to 2e2/h [see Fig. 3.8(b)], and as shown in the right panel of Fig. 3.8(a)

there is no mini gap in the edge states, as protected by real TR symmetry [7, 8].

3.7 Possible experimental realizations

Much effort has been devoted towards realizing the Dirac-like energy dispersion in artificial hon-

eycomb lattices [77], ranging from optical lattices [78, 79] to 2D electron gases modulated by periodic

potentials [80–82]. All these systems provide promising platforms for realizing topological properties

by detuning effective hopping energy among nearest-neighbor sites either by modulating muffin-tin

potentials or bond lengths periodically. To be specific, here we focus on how to achieve a topological

state on the Cu [111] surface modulated by triangular gates of carbon monoxide (CO) molecules [80].

When extra CO molecules are placed at specific positions over the pristine molecular graphene, the

bonds of the hexagons surrounding them are elongated since the CO clusters enhance local repulsive

potentials and push electrons away from them, which reduces the corresponding electron hopping en-

ergies [82]. It is extremely interesting from the present point of view that Kekulé hopping textures

have already been achieved in experiments [80]. We propose to place extra CO atoms in the pattern

displayed in Fig. 3.9(a), where the intra-hexagon hopping energy t0 (green thin bonds) surrounding the
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Chapter 3. Honeycomb Lattice with Kekulé Distortions

Figure 3.9: Molecular graphene realized by decorating the Cu [111] surface with a triangular lattice of

CO molecules: (a) t1 > t0 generating topological state, (b) t1 < t0 for trivial state. Gray balls are CO

molecules decorated by STM techniques, and red thick bonds are shorter than green thin ones which

generates the Kekulé hopping textures.

CO clusters is reduced and the inter-hexagon hopping energy t1 (red thick bonds) is enhanced relatively.

According to the above discussions, the system displayed in Fig. 3.9(a) with t1 > t0 should take a topo-

logical state. The Kekulé hopping texture in Fig. 3.9(b), dual to that shown in Fig. 3.9(a), was realized in

experiments [80], where the system takes a topologically trivial state because t1 < t0. Recently, it is pre-

dicted by first-principle calculations that In2Te2/Graphene bilayers can also support Kekulé hopping

textures [83], which can be another promising platform for realizing the topological state addressed in

the present work.

The underlying idea of the present scheme for achieving theZ2 topological state is to create artificial

orbitals carrying on opposite orbital angular momenta and parities with respect to spatial inversion

symmetry, and to induce a band inversion between them by introducing a Kekulé hopping texture on

honeycomb lattice. In the sense that it does not require SOC, the present state may be understood as a

quantum orbital Hall effect. The topological properties can also be extended to photonic crystals [13],

cold atoms, and even phonon systems where sound waves form band due to periodic configurations

elastic materials.

Kekulé textures of hopping integrals in honeycomb lattice were discussed in a previous work where

states with fractionalized charges can be realized [84]. In order to introduce vortices in honeycomb

lattice, the inter-hexagon hopping integrals were put complex involving nontrivial phase factors and

position dependent generally, whereas they are real constant in the present work.

3.8 Conclusion

In this chapter, we explore possible topological properties in honeycomb lattice by introducing a

texture in hopping energy between nearest-neighboring sites. We take a hexagonal primitive unit cell

and view the honeycomb lattice as a triangle lattice of hexagons [see the dashed red line in Fig. 3.2(a)].

When the real-valued inter-hexagon hopping t1 is tuned to be larger than the intra-hexagon one t0, a

topological gap is opened at the Γ point accompanied by a band inversion between orbitals with opposite
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spatial parities accommodated on hexagons [see Fig. 3.2(b)]. A pseudo-TR symmetry associated with

a pseudospin degree of freedom and Kramers doubling in the emergent orbitals are revealed based on

the C6 point group symmetry, which generates the Z2 topology. For experimental implementations,

we discuss that, along with many other possibilities, the molecular graphene realized by placing carbon

monoxides (CO) periodically on Cu [111] surface is a very promising platform to realize the present

idea, where the hopping texture can be controlled by adding extra CO molecules.
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Chapter 4

Novel Quantum Anomalous Hall Effect in

Perovskites Materials

4.1 Introduction of quantum anomalous Hall effect

Breaking the time-reversal symmetry can drive topological insulators into the quantum anomalous

Hall effect (QAHE) [6]. There are two categories of QAHE classified by the spin Chern number [59,

60], which equals Cs = C↑ − C↓ with C↑/↓ the Chern numbers for the spin-up/spin-down channel

respectively. One subclass of QAHE is characterized by a vanishing spin Chern number. The Cr-doped

Bi2Se3 thin film [18, 85, 86] and heavy atom decorated graphene [65, 87] belong to this class, where the

topological band gap is opened by the hybridizations between the spin-up and -down channels. In the

former case, a 3D topological insulator thin film Bi2Se3 [39, 40]was considered, where there is a strong

interaction between the top and bottom surfaces. A ferromagnetic order is induced by the doped Cr

atoms. The Hamiltonian is [85]

HQAHE =HTI+HZeeman =











M v f k− mk 0

v f k+ −M 0 mk

mk 0 M −v f k−
0 mk −v f k+ −M











(4.1)

on the basis [|t ↑〉, |t ↓〉, |b ↑〉, |b ↓〉], where t (b ) is the top (bottom) surface, mk = m0 + Bk2 is the

interaction between the top and bottom surfaces, v f is the Fermi velocity, M is the Zeeman field, and

k± = kx ± i ky . An unitary matrix transforms

U = 1p
2











1 0 0 −1

0 1 1 0

1 0 0 1

0 −1 1 0











(4.2)
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Figure 4.1: Schematic distributions of topological edge states for (a) conventional QAHE with Cc = 1

and Cs = 0; (b) QSHE with Cc = 0 and Cs = 2 and (c) novel QAHE with Cc = 1 and Cs = 1. Arrows

are directions of edge current. Red and blue curves are for spin-up and -down channels respectively, M

and E are ferromagnetic exchange field and electric field respectively.

the Eq. (4.1) into a block-diagonal form

H̃QAHE =

�H1 0

0 H2

�

(4.3)

with

H1 =

�

m0+M +Bk2 v f k−
v f k+ −m0−M −Bk2

�

,

H2 =

�

m0−M +Bk2 v f k+
v f k− −m0+M −Bk2

�

(4.4)

on the basis
� |t↑〉+|b↑〉p

2
,
|t↓〉−|b↓〉p

2
,
|t↓〉+|b↓〉p

2
,
|t↑〉−|b↑〉p

2

�

. By tuning the Zeeman field M to satisfy

�

(m0+M )B < 0

(m0−M )B > 0
,

the two parabolic bands in the upper diagonal partH1 can meet at two finite k points if v f = 0, forming

two Dirac points, as shown in figure 1.5. For a nonzero v f , the hybridizations between the first two

modes open a global band gap, which generates a topological charge C = 1 [see figure 1.5(b)]. This is

known as band inversion mechanism [10]. Since there is no band inversion in the H2 due to (m0 −
M )B > 0, the lower diagonal part is topologically trivial. Similarly, one can also let (m0+M )B > 0 and

(m0 −M )B < 0 in order to realize a QAHE only in the lower diagonal partH2. It should be noticed

that topological gaps in both the upper-diagonal or lower-diagonal parts are opened by hybridizations

of the spin-up and -down channels, which eliminates the spin information of topological edge states

(see figure 4.1).

The other subclass of QAHE has a nonzero spin Chern number. One representative material is

the Mn-doped HgTe [88], where s -type electrons of Hg and p-type holes of Te experience opposite
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g -factors when they couples with d electrons of Mn. The opposite exchange fields felt by the s and p

orbitals enlarge the energy gap in one spin channel, close and then reopen the energy gap in the other

spin channel, which induces the nontrivial topology in the latter spin channel due to the band inversion

mechanism [10, 88], for a large enough g -factor. However, its experimental realization turns out to

be difficult due to the paramagnetic state of Mn spins. Two other materials are proposed to realize the

QAHE with nonzero spin Chern numbers in honeycomb lattice, a silicene sheet sandwiched by two

ferromagnets with magnetization directions aligned anti-parallelly [89], and the perovskite material

LaCrO3 grown along the [111] direction with Cr atoms replaced by Ag or Au in one atomic layer [17].

In both systems, in addition to the anti-ferromagnetic (AFM) exchange field and spin-orbit coupling

(SOC), a strong electric field is required to break the inversion symmetry in order to realize the QAHE,

as displayed in figure 4.1(c). For the former one, the weak SOC of silicon limits the novel QAHE to

low temperatures, while for the latter one, growth of the perovskite material along the [111] direction

seems to be difficult.

In the this chapter, we propose a new material to realize the second subclass of QAHE without

any extrinsic operation and easy to synthesize. It is based on LaCrO3 grown along the [001] direction,

where we insert one atomic layer of an inverse-perovskite material Sr3PbO [90, 91]. With first-principles

calculations, we reveal that there is a band inversion at the Γ point between the d orbital of Cr and the p

orbital of Pb in the spin-up channel induced by SOC, whereas the spin-down bands are pushed far away

from the Fermi level by the AFM exchange field. Constructing the low-energy effective Hamiltonian,

we explicitly show that the system is characterized by simultaneous nonzero charge and spin Chern

numbers. Projecting the bands near the Fermi level onto the subspace composed of the spin-up d and

p orbitals by maximally localized Wannier functions [92], we confirm that a spin-polarized and non-

dissipative current flows on the edge of a finite sample. Since these two materials are stable in bulk

and match each other with only small lattice distortions, the composite material is expected easy to

synthesize.

4.2 Novel QAHE in square lattice

4.2.1 First-principles calculations

The parent material LaCrO3 exhibits the perovskite structure with formula ABO3, where oxygen

atoms form an octahedron surrounding the B atom. It is a well-known Mott insulator with a large

energy gap ∼3 eV, carrying a G-type AFM order, where the spin moment of any Cr aligns opposite

to all its neighbors. On the other hand, the material Sr3PbO shows the inverse-perovskite structure

with formula A3BO, where the A atoms form an octahedron surrounding oxygen. It was revealed

recently that there is a topological band gap in bulk Sr3PbO [93, 94]. We notice that the ~a-~b plane lattice

constant is 3.88Å for LaCrO3, and 5.15Å for Sr3PbO, different from each other by a factor close to
p

2.

Therefore, with a π/4 rotation around the common ~c axis, these two materials match each other quite

well [see Figs. 4.2(a) and (b)]. At the interface the oxygen of Sr3PbO completes the CrO6 octahedron

of the perovskite structure [see Fig. 4.2(b)], which minimizes the distortion to the two materials when

grown together. As shown in Fig. 4.2(b) zoom-in at the interface, there are two types of Cr atom in each

CrO2 unit cell, where Cr1 sits at the corners of the square and above the Pb atom in the ~c axis, whereas

Cr2 sits at the center of square and above the oxygen.

We have performed first-principles calculations by using density functional theory (DFT) imple-
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Figure 4.2: (a) Crystal structure of bulk LaCrO3 grown along the [001] direction with one atomic layer

replaced by Sr3PbO. (b) Enlarged interface between LaCrO3 and Sr3PbO with grey and blue arrows

representing spin moments on Pb and Cr sites, respectively. ~a, ~b and ~c are lattice vectors.

mented in Vienna Ab-initio Simulation Package (VASP) [95], which uses projected augmented wave

(PAW) method [96, 97]. The exchange correlation potential is described by the generalized gradient

approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) type [98]. The cut-off energy of the plane

waves is chosen to be 500 eV. The Brillouin zone is meshed into 10× 10× 1 grids using Monkhorst-

Pack method. The Hubbard-U term is included for Cr-3d electrons with U = 5.0 eV and J = 0.5 eV

[99] by using Dudarev’s method. For the lattice structure, we take a = b = 5.48Å (=
p

2× 3.88Å) and

cLaCrO = 3.88Å. The height of the inserted Sr3PbO layer is determined by a relaxation process to achieve

the minimal energy: cSrPbO = 5.46Å, the distance from the Pb atom to the Cr atom just above it (that

to the Cr atom below it is cLaCrO). Afterwards, the positions of atoms are determined by a second relax-

ation process with all lattice constants fixed. In both processes, the criterion on forces between atoms

is set to below 0.01 eV/Å.

We calculate the band structure of the hybrid material with zero SOC and find a band gap 0.18 eV.

As shown in Fig. 4.3(a), the topmost valence band is occupied by the spin-up p±(= px± i py ) orbitals of

Pb, and the lowest conduction band is contributed by the spin-up dz2 of Cr1. The reason for this band
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4.2. Novel QAHE in square lattice

Figure 4.3: Band structure of the supercell shown in Fig. 4.2 without (a) and with (b) SOC. Green, red

and blue curves are for Cr1-d
↑
z2 , Pb- p

↑
± and Pb- p

↓
± orbitals, respectively. Other colors indicate their

hybridizations. (c) Schematic band evolution of Pb- px,y and Cr-dz2 at the Γ point caused by SOC.

arrangement is that the Cr1 atom does not live in a closed octahedron due to the absence of an oxygen in

the corner of Sr2O layer as shown in Fig. 4.2(b), which weakens the crystal field splitting and lowers the

energy of the unoccupied Cr1-dz2 band, whereas the Cr2 shares one oxygen with Sr3PbO, thus is closed

by a complete oxygen octahedron, which keeps its dz2 far away from the Fermi level. Therefore, only

the spin-up Cr1-dz2 band appears just above the Fermi level, in contrast to the original Mott insulator.

Meanwhile, the Pb acquires a magnetic moment 0.19µB polarized downwards [see Fig. 4.2(b)], which

matches the overall AFM G-type order of LaCrO3 and splits the spin-up and spin-down p orbitals of

Pb [see Fig. 4.3(a)]. The AFM exchange field is essential for inducing the novel QAHE. As shown in

figure 4.4(a), the spin-up channel is pushed towards the Fermi level while the spin-down one is driven

far away from the Fermi level by the AFM exchange field. When the AFM field is strong enough,

a band inversion happens at the Γ , which can possibly induce a QAHE in the spin-up channel [see

figure 4.4(b)]. Similarly, the novel QAHE can also be generated from a QSHE by including strong

AFM exchange field to push one spin-channel away from the Fermi level, as shown in figure 4.4(c). The

total magnetic moment in the present system is compensated to zero, distinct from the Cr-doped Bi2Se3

[18, 85].

The band structure of the material is then calculated with SOC turned on, which lifts the degeneracy

between the p+ and p− bands in both spin channels. Remarkably, the strong SOC of the heavy element
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Figure 4.4: Schematic plot for realizing novel QAHE with AFM exchange field from (a) a trivial state

and (c) a QSHE. (b) Novel QAHE with simultaneous charge and spin Chern numbers: only one spin

channel is topological. Dashed and solid curves are for orbitals with odd and even spatial parities re-

spectively. Red and blue curves are for spin-up and spin-down channels respectively.

Pb pushes the p+ orbital with up spin even above the Fermi energy EF around the Γ point as displayed

in Figs. 4.3(b) and (c). The Cr1-dz2 orbital with up spin then has to sink across the Fermi level partially

in order to maintain the charge neutrality of the system, which causes a band inversion between the

p and d orbitals around the Γ point, as shown in Fig. 4.3(b). An energy gap of 59 meV is observed

according to the first-principles calculations.

4.2.2 Effective low-energy model

We now derive an effective low-energy k ·p Hamiltonian which describes the the topological prop-

erty of the system. Noticing that the topological band gap is opened by hybridizations between the

spin-up p+ orbital of Pb and the spin-up dz2 orbital of Cr1, it is reasonable to take these two bands

as a basis to construct a 2×2 Hamiltonian. For simplicity, we denote the two orbitals as Γ1 = d
↑
z2 and

Γ2 = p
↑
+. The effective k ·p Hamiltonian around the Γ point is

H (k) =H0+H ′ (4.5)

on the basis [Γ1,Γ2], where

H0 =

�

ε1+ γ1k2 0

0 ε2+ γ2k2

�

(4.6)

and H ′ = k · p =
�

k−P++ k+P−
�

/2 is the perturbation term with k± = kx ± i ky and P± = Px ± i Py

(Px/y is the momentum operator in the x/y direction). Since the crystal is symmetric under the C4

rotation around the ~c axis, H ′ must be invariant under the C4 = e−i 2π
4 Jz transformation, where Jz the

is the z-component of the total angular momentum. The symmetry constraint allows us to determine

nonzero entries of H ′. It is easy to check that C4Γ1 = e−i π4 Γ1 and C4Γ2 = e−i 3π
4 Γ2 because Jz = 1/2 and
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Figure 4.5: Energy dispersion around the Γ point fitted by the 2×2 k · p Hamiltonian (4.8) on the

basis [d
↑
z2 , p
↑
+]. The fitted curves collapse with the DFT results within the region |kx | ≤ 0.08 2π

a and

|ky | ≤ 0.08 2π
b

, where a and b are lattice constants given in text.

3/2 for Γ1 and Γ2 respectively. Since




Γ1|P+|Γ2
�

= 〈Γ1|C †
4 C4P+C †

4 C4|Γ2〉
= 〈Γ1|e i π4 e−i π2 P+e−i 3π

4 |Γ2〉
= −




Γ1|P+|Γ2
�

, (4.7)




Γ1|k−P+|Γ2
�

must vanish. Performing similar calculations for all other terms, we arrive at the Hamil-

tonian respecting the crystal symmetry

H (k) =
�

ε0+ γ0k2
�

I2×2+

�

ε+ γk2 αk+
α∗k− −ε− γk2

�

(4.8)

up to the lowest orders of k, with ε0 = (ε1+ε2)/2, ε= (ε1−ε2)/2, γ0 = (γ1+γ2)/2 and γ = (γ1−γ2)/2. By

fitting the energy dispersion of the effective Hamiltonian H (k) in Eq. (4.8) against the first-principles

results given in Fig. 4.3(b), we obtain the parameters as follows: ε0 = −0.007 eV, γ0 = −7.8 eVÅ2,
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Figure 4.6: Band structure for a slab of the system shown in Fig. 4.2 based on Wannierized wavefunc-

tions downfolded from the results of the first-principles calculations in Fig. 4.3(b). Red curves are for

topological edge states in the spin-up channel, and grey ones are for bulk states.

ε = −0.031 eV, γ = 9.0 eVÅ2 and α = 1.45 eVÅ (see Fig. 4.5). Since ε and γ take opposite signs,

the electronic wavefunction of the spin-up channel becomes topologically nontrivial due to the band

inversion mechanism with Chern number C↑ = 1. Since spin-down electronic bands are kept far away

from the Fermi level [see Figs. 4.3(b) and (c)], one clearly has C↓ = 0. It is therefore confirmed that

the system is characterized by simultaneous charge and spin Chern numbers: Cc = C↑ +C↓ = 1 and

Cs =C↑−C↓ = 1.

Liu [100] proposed a 3D spinless model for a layered square lattice with A-type AFM (intra-plane

ferromagnetic and inter-plane AFM orderings). At each lattice site, there are three orbitals: s , px and

py . Each layer can be driven into a QAHE in a same way as that for the Mn-doped HgTe [88]. Since

every two adjacent layers have opposite magnetic moments, their chiral edge states propagate counter to

each other. Therefore, the system can be viewed as a stack of quantum spin Hall insulators (see also Ref.

[101]), where the combination of the time-reversal and the primitive-lattice translational symmetries is

preserved. In contrast, all symmetries are broken in our system, giving rise to a Chern insulator.
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4.3. Novel QAHE in honeycomb lattice

4.2.3 Topological edge states

The nontrivial topology gives rise to gapless edge states in a finite sample. To illustrate this feature,

we calculate the dispersion relation for a slab of the topological material with 100a along the ~a axis and

infinite along the ~b axis (see Fig. 4.2). Since the bands close to the Fermi level are mainly contributed by

the Pb- px , Pb- py and Cr1-dz2 orbitals, it is reasonable to downfold the wavefunctions obtained by the

first-principles calculations in Fig. 4.3(b) onto these three orbitals. Employing the maximally-localized

Wannier functions [92], we obtain the hopping integrals within the six-dimensional subspace including

the spin degree of freedom. It is then straightforward to calculate the band structure of the slab system.

As shown in Fig. 4.6, a gapless edge state with up spin appears inside the bulk gap, manifesting the

nontrivial topology of the present system.

4.3 Novel QAHE in honeycomb lattice

4.3.1 Tight-binding model

It has been demonstrated that intrinsic spin-orbit couplings can drive the system into a topolog-

ically nontrivial state, characterized by the Z2 invariants [7, 8], known as quantum spin Hall effect

(QSHE). We have shown that the QSHE can be driven into a novel quantum anomalous Hall effect

(QAHE), characterized by simultaneous charge and spin Chern numbers, by considering an antiferro-

magnetic exchange field, intrinsic spin-orbit coupling and a uniform electric field perpendicular to the

two-dimensional (2D) plane [17, 18]. The tight-binding Hamiltonian describing the system is

H = t0

∑

〈i , j 〉,σ

�

a†
iσ b jσ + b †

jσaiσ

�

+
λ

3
p

3

∑

〈〈i , j 〉〉,σσ ′
νi j

�

a†
iσ s z

σσ ′a jσ ′ + b †
iσ s z

σσ ′b jσ ′
�

+V
∑

iσ

�

a†
iσaiσ − b †

iσ biσ

�

+M
∑

iσσ ′

�

a†
iσ s z

σσ ′aiσ − b †
iσ s z

σσ ′biσ

�

, (4.9)

where t0 is the nearest-neighbor hopping energy, aiσ and biσ annihilate electrons at the lattice site i

with spin σ for sublattice A and B respectively, νi j = ±1 for clockwise (anti-clockwise) hopping, s z

is the Pauli matrix. λ,V and M are magnitudes of intrinsic spin-orbit coupling, staggered potential at

two sublattices induced by external electric fields and AFM exchange fields. The first is for the nearest-

neighbor hopping in a pristine graphene (see detailed derivations in Appendix A.1; the second term

describes the intrinsic SOC with a positive coupling coefficient λ > 0 by definition [see figure 4.7(a)],

which can be large for heavy elements; the third term is induced by a uniform electric potential on the

buckled structure [see figure 4.7(b)], and the last term is the AFM exchange field [see figure 4.7(c)]. The

chemical potential is set to zero, and all energies are measured in units of the nearest-neighbor hopping

integral t0.
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Figure 4.7: (a) Intrinsic spin-orbit coupling in honeycomb lattice. (b) Staggered potential at two sublat-

tices induced by external electric fields perpendicular to the 2D thin film. (c) AFM exchange fields at

two sublattice sites.

4.3.2 Topological phases

By straightforward Fourier transformations, we obtain the Hamiltonian (4.9) around the K(K ′)
points in the momentum space

H (k) =
�

H↑ 0

0 H↓

�

(4.10)

with

H↑ =
�

νλ+V +M −v f (kx − iνky )

−v f (kx + iνky ) −νλ−V −M

�

, (4.11a)

H↓ =
�

−νλ+V −M −v f (kx − iνky )

−v f (kx + iνky ) νλ−V +M

�

(4.11b)

on the basis [a↑, b↑,a↓, b↓] up to the lowest order of k, where ν =±1 for the K and K ′ respectively, k± =

kx ± i ky , v f =
p

3a0 t0/2 with the lattice constant a0 = |~a1| shown in figure 1.3. We first check theH↑.
As we have shown in the chapter 1, the topological charges the K and K ′ points are− 1

2 sign(λ+V +M )

and 1
2 sign(−λ+V +M ) respectively. Similarly, the topological charges for the spin-down channel at the

K and K ′ points are − 1
2 sign(−λ+V −M ) and 1

2 sign(λ+V −M ) respectively, as summarized in Table

4.1. Without lossing generality, we assume V and M are both positive. It is easy to see that when λ, V

and M form a triangular relation, the Chern number for the spin-up and -down channels are

C↑ =−
1

2
+

1

2
= 0, C↓ =

1

2
+

1

2
= 1,

indicating that we have a nonzero charge Chern number Cc = C↑+C↓ = 1 and a nonzero spin Chern

number Cs = C↑ −C↓ = −1, which can support a spin-polarized and non-dissipative edge current in

a finite sample. Based on the above analysis a full phase diagram for arbitrary V and M is displayed

in figure 4.8. One interesting notice from the phase diagram is that the spin polarization of the novel

QAHE can be controlled by reversing the direction of external field.
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4.3. Novel QAHE in honeycomb lattice

Figure 4.8: Phase diagram against staggered potential V and AFM exchange field M with a positive

spin-orbit coupling λ (see figure also in Ref. [17]).

4.3.3 Spin-polarized edge state

To demonstrate the topological properties of the QAHE discussed above, we consider a Zigzag

ribbon of the buckled honeycomb lattice. With a vanishing staggered electric potential V = 0, the

spin-up and -down channels are degenerated even when a nonzero AFM is included. The reason for

this degeneracy is that the net magnetic moment within a unit cell is zero. By increasing the staggered

electric potential V from 0, we observe that the energy gap at the spin-up (spin-down) channel decreases

(increases) at the K point, as shown in figures 4.9(a) and (b). When V +M = λ, i.e. the three fields just

form a triangular relation, the band gap at the spin-up channel is completely closed [see figure 4.9(b)].

spin up spin down

CK −1

2
sign(λ+V +M ) −1

2
sign(−λ+V −M )

CK ′
1

2
sign(−λ+V +M )

1

2
sign(λ+V −M )

Table 4.1: Topological charges C at the K and K ′ points for the spin-up and -down channels.
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Figure 4.9: Dispersion relations for the honeycomb lattice with λ = 0.1t0, M = 0.05t0 and (a) V = 0,

(b) V = 0.05t0 and (c) V = 0.1t0.

Further increasing the V field, the spin-up channel is driven into a trivial state, however, the spin-down

channel remains topologically nontrivial, manifesting the novel QAHE we propose. In a finite sample,

we have a non-dissipative and spin-polarized edge current.

One possible platform to host the novel QAHE is the G-type AFM Mott insulator LaCrO3 grown

along the [111] direction, which forms a buckled honeycomb lattice [17, 102], as displayed in fig-

ure 4.10(a). By replacing one layer of Cr atoms with heavy Au atoms which feel the AFM exchange field

established in the parent material [see figure 4.10(b)], a strong intrinsic SOC is then included. With ex-

ternal electric field perpendicular to the Au layer, the system can be driven into the novel QAHE with

suitable staggered potential V given in Table 4.1.

4.3.4 Robustness of the novel QAHE against Rashba-type SOC

The spin ŝz conservation in QSHE can be destroyed by the Rashba-type SOC, which is inevitably

arouse by inversion symmetry broken terms: interaction, disorder, asymmetric quantum confinements

in experiments. It is thus meaningful to understand the effect of Rashba-type SOC on the stability

topological states, which can be identified by topological invariants of systems. Kane et al. [7] and Fu

et al. [38] stated that Z2 invariants can well characterize the QSH system with Rashba-type SOC, while

spin-Chern number relating with quantized spin-Hall conductivity loses its meaning due to the non-

conservation of spin quantum number ŝz . It has been suggested that one can divide the valence states

into two spin subspaces s̃± by using the operator s̃± = P † ŝz P with P the projection operator defined in

the valence space, and the spin-Chern number is then the difference between the Chern numbers of the

two newly defined spin subspaces s̃± [59, 60].

We start with the tight-binding Hamiltonian for a buckled honeycomb lattice with an AFM ex-
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4.3. Novel QAHE in honeycomb lattice

Figure 4.10: (a) Perovskite LaCrO3 grown along the [111] direction with Cr atoms forming a buckled

honeycomb lattice. (b) Schematic plot for replacing one atomic layer of Cr atoms by Au atoms. Gold

balls are Au atoms. Two blue slabs are the LaCrO3 grown along the [111] direction.

change field and a staggered electric potential (see figure 4.7)

H̃ =


H + iλR

∑

〈i , j 〉αβ
a†

iαẑ ·
�

~sαβ× d̂i j

�

b jβ



+H .c . (4.12)

where the first term in the bracket is given in Eq. (4.9); and the second term is for the Rashba-type spin-

orbit coupling with λR the strength of Rash-type SOC [65], ẑ is the unit vector along the z direction,

~sαβ are the Pauli matrices in the real spin space with α and β representing the spin degree of freedom,

d̂i j is a unit vector pointing from the site i to the site j .

The valence bands cannot be decomposed into two subspaces simply by their spins due to the off

diagonal Rashba-type SOC term that mixes two spin channels. An alternative way of separating the

valance space into two closed subspaces is needed. It has been suggested that one can project the electron

spin operator

sz = diag(1,−1)⊗ diag(1,1)

onto the subspace spanned by the eigenstates of occupied bands Ψ1 and Ψ2. Diagonalizing of the newly

defined s̃z matrix gives us two separated spin space [59]. The matrix form of s̃z is

s̃z (k) =

�〈Ψ1(k)| ŝz |Ψ1(k)〉 〈Ψ1(k)| ŝz |Ψ2(k)〉
〈Ψ2(k)| ŝz |Ψ1(k)〉 〈Ψ2(k)| ŝz |Ψ2(k)〉

�

. (4.13)

By diagonaling Eq. (4.13), we have two eigenvalues of s± with corresponding eigensolutions ψ± =
(ψ1
±,ψ2
±), which can be used to redefine new spin-up and -down states through linear combination:

the tilted spin-up and spin-down channel are

Φ± =ψ
1
±Ψ1(k)+ψ

2
±Ψ2(k).

In this way, one can split the valance space into two well closed subspaces. The separation of the two
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Figure 4.11: (a) Energy dispersions for a buckled honeycomb lattice with V = 0, M = 0,λ = 0.2t0 and

λR = 0.1t0 and corresponding (c) Berry curvatures. (b) Energy dispersions for a buckled honeycomb

lattice with V = t0, M = 1.1t0, λ= 0.2t0 and λR = 0.3t0.

subspaces is guaranteed as long as there is a well defined gap between dispersions of s+(k) and s−(k).
One then can define the Chern numbers C± for each subspace with eigenfunctions Φ±.

To reveal the stability of the QSHE against Rashba-type SOC, we first turn off the staggered po-

tential and the AFM exchange field by letting V = 0 and M = 0. The four eigenenergies near the

K ′ = (0, −4π
3a0
) point are

E(k) =±
√

√

√

v2
f
k2+

�

λ+
3λR

2

�2

+
3λR

2
,

±
√

√

√

v2
f
k2−

�

λ+
3λR

2

�2

− 3λR

2
, (4.14)

where k is measured from the K ′ point, v f is the Fermi velocity. Similarly, the energy dispersion near
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4.3. Novel QAHE in honeycomb lattice

Figure 4.12: (a) and (b) Topological edge states for a 100-unit-cell-width Zigzag nanoribbon of honey-

comb lattice with same parameters as figure 4.11(a) and figure 4.11(b) respectively.

the K = (0, 4π
3a0
) is found exactly the same as that given in Eq. (4.14). The energy gap at the K ′ point is

∆K ′ = 2λ− 3λR, (4.15)

indicating that the QAHE can be destroyed by the Rashba-type SOC when it is larger than the critical

value λc1
R = 2λ/3 [7, 8, 60].

We now examine the robustness of QSHE by evaluating the newly defined Chern number C±. The

bulk dispersion for QSHE with λs o = 0.2t0 and λR = 0.1t0 (V = M = 0) is displayed in figure 4.11(a),

where there is a finite energy gap at the K′ and K from left to right. The corresponding Berry curvatures
~Ω± for the two newly defined spin subspaces Φ± are displayed in 4.11(c) [the upper (lower) part is for
~Ω+ (~Ω−)]. The spin-Chern number is then Cs = [1− (−1)]/2= 1, manifesting a nontrivial QSHE with

weak Rashba-type SOC.

The band structure for a 100-unit-cell-wide Zigzag ribbon of honeycomb lattice with same param-

eters as figure 4.11(a) is calculated. As shown in figure 4.12(a), with nonzero Rashba-type SOC, the

QSHE still supports two degenerated gapless edge states with opposite spins.

It is well known that the gapless edge states of QSHE are fragile against the time-reversal symmetry

breaking, i.e., a weak magnetic impurity can destroy the QSHE. However, for a QSHE with large

topological band gap, it is easy to imagine that an extremely weak magnetic impurity must not be able

to close bulk gaps, which means that the Hamiltonian in this case can still be continuously deform

into the one preserving time-reversal symmetry, i.e., the two system are topologically equivalent. A

conventionalZ2 index [7, 8] is not defined for the time-reversal symmetry broken case, we then employ

the Chern numbers C± defined above. The bulk energy gap is an indirect one between the K ′ and K

points with magnitude

∆= 2λ+V −
q

V 2+ 9λ2
R

, (4.16)

indicating a critical Rashba-type SOC λc2
R = 2

p

λ(λ+V ) for closing the topological band gap, which

can be much larger than λc1
R = 2λ/3 for a large staggered potential V . A typical energy dispersion of
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the novel QAHE is shown in figure 4.11(b) with λ = 0.2t0,λR = 0.3t0,V = t0 and M = 1.1t0. The

Chern numbers for the two spin subspaces are C+ = 0,C− =−1 with the Berry curvatures displayed in

figure 4.11(d). The edge state with same parameters is displayed in figure 4.12(b). The novel QAHE is

then concluded to be robust against the Rashba-type SOC compared to the QSHE.

4.4 Conclusion

We propose a novel topological material composed of LaCrO3 of perovskite structure grown along

the [001] direction with one atomic layer replaced by the inverse-perovskite material Sr3PbO. Based on

first-principles calculations and low-energy effective Hamiltonian, we demonstrate that the topological

state is characterized by simultaneous nonzero charge and spin Chern numbers, which can support spin-

polarized dissipationless edge current in a finite sample. Supported by the anti-ferromagnetic exchange

field and spin-orbit coupling inherent in the compounds, no extrinsic operation is required for achieving

the topological state. Importantly, these two materials are stable in bulk and match each other with only

small lattice distortions, which makes the composite material easy to synthesize.
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Chapter 5

Majorana Fermions in Topological

Superconductors

5.1 Introduction

5.1.1 Majorana states

Majorana fermions (MFs) are particles equivalent to their own anti-particles [103]. It has been re-

vealed that MFs can be hosted in solid state materials, such as chiral p-wave superconductor [22, 104]

and one-dimensional Kitaev chain [105]. It is well known that quasipartical excitations in superconduc-

tors are superpositions of electrons and holes [106], which makes superconductors a natural platform

for realizing MFs [103]. In a spinless superconductor, the wavefunction of quasipartical excitations is

γ = uc†+ νc with c the annihilation (creation) operator for an electron (hole) and |u|2+ |ν |2 = 1. The

corresponding wavefunction for the charge conjugated excitations is γ † = ν∗c†+u∗c . For MFs, we must

have γ = γ †, indicating |u|2 = |ν |2 = 1/2. Distinct from fermions that obey {c , c}= 0, {c†, c†}= 0 and

{c†, c}= 1, MFs satisfy

γ 2 = γ †γ = (ν∗c†+ u∗c)(uc†+ νc) = |u|2c†c + |ν |2c c† =
1

2
, (5.1a)

{γi ,γ j }= δi j , (5.1b)

where δi j is the delta function that equals 1 when i = j and 0 otherwise.

It should be noted that any complex fermion can be decomposed into real and imaginary parts, each

part is a MF

f =
1p
2
(γ1+ iγ2) , f † =

1p
2
(γ1− iγ2) . (5.2)

The particle number n is then

n = f † f =
1

2

�

γ 2
1 + γ

2
2 + iγ2γ1− iγ1γ2

�

= 1+ iγ2γ1. (5.3)
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Chapter 5. Majorana Fermions in Topological Superconductors

Reorganizing above equation and multiplying both sides by ǫ, we have

iǫγ2γ1 = ǫ(n− 1). (5.4)

By Pauli exclusion principle, n can only be 0 or 1, indicating that coupling between two MFs ǫ results

in a two-level system: empty state with energy −ǫ and occupied state with energy 0. For ǫ → 0, we

have degenerated empty and occupied states, which is useful for non-Abelian statistics, as we will show.

5.1.2 Realizations of Majorana fermions

Great research effort has been devoted to searching for MFs in condensed matter systems in the last

decade since the particles can be used for constructing topological qubits and robust quantum compu-

tation [107–109]. Systems that can realize MFs include Pfaffian ν = 5/2 fractional quantum Hall state

[110], chiral p-wave superconductors (SCs) [104], one-dimensional (1D) spinless SCs [105] and superflu-

idity of cold atoms [111, 112]. Recently, two heterostructure systems are suggested as possible MF hosts,

one is the Z2 topological insulator in proximity to s -wave SC and ferromagnetic insulator (FMI), the

other is the spin-orbit coupled semiconductor (SM) sandwiched by s -wave SC and FMI (SC/SM/FMI)

[9, 11, 20, 113–116]. Both systems are effective two-dimensional (2D) p+ i p topological superconduc-

tors, characterized by nonzero Chern numbers [4, 117]. 1D semiconductor nanowires with spin-orbit

coupling in proximity to s -wave SC under magnetic field has also been investigated both theoretically

and experimentally for realizing MFs [118–125]. Lately, a promising signal of MFs has been captured

in the device of InSb nanowire/s -wave SC [125]. In these heterostructure systems, the rare p-wave pair-

ing are superseded by the interplay between proximity-induced s -wave superconductivity and strong

spin-orbit coupling.

It was revealed that MFs appear inside vortex cores in topological p-wave SCs [104], and that non-

Abelian statistics can be achieved by exchanging positions of vortices hosting MFs [22]. However, it is

difficult to manipulate vortices in experiments, which may hinder the realization of this genius idea. To

circumvent this problem, MFs at sample edges of topological SCs have been considered [21]. Making use

of their topological properties, edge MFs can be braided with desired non-Abelian statistics by tuning

point-like gate voltages on links among topological SC samples. In order to make the edge MFs stable,

one needs to embed the device into a good insulator. The size of topological SCs should also be chosen

carefully since the wave-functions of edge MFs become too dilute for large samples, which makes edge

MFs fragile due to excited states with small energy gap.

In this chapter we concentrate on MFs grabbed at vortex cores. We demonstrate that the core

MFs can be liberated from vortex cores, transported and braided by applications of local gate voltages.

The scheme takes fully advantages of SC/SM/FMI heterostructure [see figure 3(a)] in the way shown

schematically in figure 5.1: four holes are punched in the SM layer, and three electrodes are placed above

the small regions between holes; gate voltages can be applied via the electrodes, and the ones at a high

voltage state (pink rectangular prisms in figure 5.1) connect holes by killing electron hoppings locally;

one vortex is induced and pinned right beneath each hole in the common superconductor substrate.

The key observation is that the geometric topology of the SM layer can be controlled by local gate volt-

ages, and that when even number of holes are connected, core MFs fuse into quasi-particle states with

finite energies, while one core MF exists when odd number of holes are connected. Core MFs can then

be liberated from and transported among vortices with a sequence of turning on and off gate voltages

at the electrodes. By solving the time-dependent Bogoliubov-de Gennes (TDBdG) equation upon adi-

72



5.1. Introduction

Figure 5.1: Schematic device setup for braiding MFs at vortex cores. There are four holes in SM layer

(yellow platform) with one superconducting vortex (blue cylinder) pinned right beneath each of them.

The electrodes at high-voltage states (pink rectangular prisms) prohibit electron hoppings in the regions

below them, and thus connect effectively the holes; the blue rectangular prism denotes an electrode at

zero-voltage state.
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abatic tunings of gate voltages, we simulate the time evolution of MF wave-functions and confirm that

the braiding of core MFs obeys non-Abelian statistics. Finally, we compare briefly our scheme of ma-

nipulating MFs with other proposals in both topological 2D p+ i p superconductors and 1D nanowire

networks and show advantages of our scheme.

5.2 Topological superconductivity

We start from a tight-binding Hamiltonian on square lattice for a semiconductor with Rashba-type

spin-orbit coupling in proximity to a ferromagnetic insulator [21, 122, 126, 127]

H0 =−
∑

i , j ,σ

ti j ĉ
†
iσ ĉ jσ −µ

∑

i ,σ

ĉ†
iσ ĉiσ +

∑

i

Vz

�

ĉ†
i↑ ĉi↑− ĉ†

i↓ ĉi↓
�

+
∑

i ,σ ,σ ′

n

i tαi

h

ĉ†
(i+x̂)σ

ŝ
σσ ′
y ĉiσ ′ − ĉ†

(i+ŷ)σ
ŝ
σσ ′
x ĉiσ ′

i

+ h.c .
o

, (5.5)

where ti j and tαi are the nearest-neighbor hopping rates of electrons with reserved and flipped spin

directions respectively; µ and Vz are chemical potential and strength of Zeeman field respectively; c†
iσ

creates one electron with spin σ at lattice site i ; ~s = ( ŝx , ŝy , ŝz ) are the Pauli matrices for spin.

The proximity-induced superconductivity in SM is described by

Hsc =
∑

i

�

∆i ĉ†
i↑ ĉ

†
i↓+ h.c .

�

, (5.6)

where ∆i is the pairing potential at site i . The Bogoliubov-de Gennes (BdG) equation of total Hamil-

tonian H =H0+Hsc is given by

�

H0 ∆

∆
† −σ̂y H ∗0 σ̂y

�

Ψ(~r ) = EΨ(~r ) (5.7)

where Ψ(~r ) =
�

u↑(~r ), u↓(~r ), v↓(~r ),−v↑(~r )
�T

is the Nambu spinor, and the quasi-particle operator is

γ † =
∫

d ~r
∑

σ uσ (~r )ĉ
†
σ (~r )+ vσ (~r )ĉσ (~r ). For a typical square sample with 200× 200 sites, the Hamilto-

nian matrix in (5.7) has a dimension of 105× 105.

5.2.1 Hamiltonian in momentum space and Chern number

Before solving the BdG equation in a finite sample, we reveal the condition for achieving topological

superconducting state in an infinite system. We transform Hamiltonian (5.5) into momentum space by

expanding the annihilation operator as

ĉiσ =
1p
N

∑

k

ckσ e ik·i , (5.8)
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5.2. Topological superconductivity

Figure 5.2: (a) Dispersions of two bands close to Fermi level. (b) Berry curvature ∇×A of occupied

bands in the first Brillouin zone.

where N is the total number of lattice sites, k is the crystal momentum. We then obtain the momentum

space Hamiltonian on the basis
h

ck↑, ck↓, c†

−k↑, c†

−k↓

iT

H (k) =

�

ǫ(k)+Vz σ̂z +
~R(k) ·~s i∆(k)σ̂y

−i∆∗(k)σ̂y −ǫ(k)−Vz σ̂z +
~R(k) ·~s∗

�

, (5.9)

where ǫ(k) =−2t0(cos kx + cos ky )−µ and ~R(k) = (−2tα sin ky , 2tα sin kx ).

Diagonalising Hamiltonian (5.9), we obtain the energy dispersion (see figure 5.2(a))

E(k) =±
Ç

ǫ2+ |R|2+V 2
z + |∆|2± 2

Æ

V 2
z |∆|2+ ǫ2(V 2

z + |R|2), (5.10)

with gap closed at

ǫ2+ |R|2+V 2
z + |∆|2 = 2

q

V 2
z |∆|2+ ǫ2

�

V 2
z + |R|2

�

. (5.11)

By squaring both sides of (5.11), we find that the conditions to close the bulk energy gap are

|∆| · |R|= 0, (5.12a)

ǫ2+ |∆|2 =V 2
z + |R|2. (5.12b)

Equation (5.12a) can be fulfilled only when |R| = 0 (since |∆| > 0). The k-points with |R| = 0 are

(kx , ky ) = (0,0), (0,−π), (−π, 0) or (−π,−π) in the first Brillouin zone T 2 = [−π,π)⊗ [−π,π). Com-

bining the two conditions in Eq. (5.12a), we arrive at the critical Vz to close the bulk energy gap at

k-points where |R(k)|= 0

V 2
z =

�

2t0(cos kx + cos ky )+µ
�2
+ |∆|2. (5.13)

To investigate whether the system is topologically nontrivial when the bulk gap closes and reopens
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while tuning the Zeeman field Vz , we evaluate the Chern number [4, 117]

c =
1

2πi

∫

T 2

d 2k ·
�

~∇× ~A
�

(5.14)

with Berry connection defined asAµ =
∑

n;En (k)<0

¬

Φn(k)|∂kµ
Φn(k)

¶

(µ = x, y), where summation is

taken for all occupied bands En(k) < 0, and Φn(k) is the wave-function of band n at momentum k.

Integrating the Berry curvature ~∇× ~A shown in figure 5.2(b) over the Brillouin zone [36], we find

that c = 1 for
p

(µ+ 4t0)
2+∆2 < Vz <

p

µ2+∆2 with µ ≤ −2t0. The nonzero Chern number is

attributed to the topologically nontrivial energy gap at Γ point (kx , ky ) = (0,0) while those at (0,−π),
(−π, 0) and (−π,−π) remain trivial [112, 118, 128]. The nonzero Chern number indicates that the

system is topological and thus may support MFs.

5.3 Manipulations of core Majorana fermions

5.3.1 Core Majorana fermions

Now we study a finite sample with two separated holes in the SM and two vortices of positive

vorticity pinned right beneath them [see top panel of figure 5.3(a)]. The typical size of a sample is

600× 300 nm2, which is divided into 400× 200 square grids, corresponding to Hamiltonian matrix of

dimension 105×105 in Eq. (5.7). By solving the BdG equation for this case, we obtain the energy spectra

of excitations and eigen-functions. Two zero-energy states are found at the holes, whereas no such state

at the edge, as shown in figure 5.3(b). We examine the four spinor components of the zero-energy states,

and find u↑ = v∗↑ and u↓ = v∗↓ [displayed explicitly in figure 5.3(c) for the right hole], which results in

γ † = γ , indicating that the two zero-energy states are Majorana states.

It should be noticed that the excitation energy gap at vortices is about four times larger than that at

the edge [see inset of figure 5.3(b)], which makes the core MFs more stable than edge MFs [21]. On the

other hand, because the minigap associated with Andreev bound states at superconducting vortex core

proximity-induced in SM is roughly ∆2/
p

∆2+µ2 ∼ ∆ with a small Fermi energy µ ∼ ∆ [126], the

influence from Andreev bound states to the core MFs can be neglected. It is in contrast to the case of

SC exposed to vacuum where µ≫∆ and thus the minigap is small in order of∆2/µ.

Next, we impose a point-like gate voltage on the region between the two holes to prohibit direct

hopping of electrons by lifting the on-site energy there as in the bottom panel of figure 5.3(a) (see also

figure 5.1). This merges effectively the two isolated holes into a unified one. Solving the BdG equation

for this case, there is no zero-energy quasi-particle, since the combined hole includes two vortices [111].

5.3.2 Transportation of Majorana fermions

Based on the above result that two MFs can fuse into finite energy excitations by connecting two

holes, we can design a way of liberating and transporting a MF from one vortex to another. Initially,

the top and middle holes are connected together while the leftmost one is isolated and hosts a MF (see

figure 5.4(a) with t = 0). We then combine these three holes by applying gate voltages on the region

between the left and middle ones, which causes the MF to spread itself over the unified hole including

three vortices (see figure 5.4(a) with t = T ). Finally, the MF is moved totally to the top by disconnecting
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5.3. Manipulations of core Majorana fermions

Figure 5.3: (a) System of two holes and two vortices of positive vorticity with holes isolated (top panel)

and connected (bottom panel). (b) Energy spectrum of several low-energy excitations at vortex cores

when the holes are isolated with n the serial number of eigenstates with energies close to zero. Upper

inset: energy spectrum of excitations at the sample edge. Lower inset: distributions of zero-energy quasi-

particles. Results are for ∆ = 0.5t0, Vz = 0.8t0, µ = −4t0 and tα = 0.9t0 with a sample of 400× 200

sites. (c) Four spinor components of zero-energy states at the right hole, with the length and azimuth

angle of vectors denoting the amplitude and phase of spinor fields respectively.
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Figure 5.4: (a) Schematic diagram for braiding the two MFs at the left and right holes, colored by red

and green respectively. (b) Distributions of the wave-functions of MFs obtained by solving TDBdG.

the top hole from others (see figure 5.4(a) with t = 2T ). It is noticed that the collapsing of MF wave-

function on the top hole is a topological property, and is impossible for electrons and photons. The

energy gap remains finite during the whole processes, which guarantees topological protections on the

MF state.

5.3.3 Braiding of Majorana fermions

Being able to transport one MF from one hole to another, we extend the scheme to interchange po-

sitions of two core MFs in the system shown in figures 5.1 and 5.4. Following the above transportation

procedures, we further move the green MF from the right hole to the left one during t = 2T ∼ 4T in

the same way as above. At last, the red MF stored temporarily at the top hole is transported to the right

one in the period t = 4T ∼ 6T . After the sequence of switching processes, the system comes back to

the original state with the red and green MFs exchanged.

In order to keep the topological protection, we need to manipulate the gate voltage in an adiabatic

way. The reason is that the MF states have certain probabilities to be excited to higher energy states for

non-adiabatic processes, which results in the collapsing of the whole braiding scheme. Given reasonable

material parameters, the typical time for a single round of braiding is estimated to be within several nano

seconds, which is sufficiently short time for practical applications.

5.3.4 Time-dependent Bogoliubov-de Gennes equation

In order to investigate the impact of position exchanging to MF states, we monitor the time evolu-

tion of MF wave-function |Ψ(t )〉 by solving the TDBdG equation numerically

i ħh
d

d t
|Ψ(t )〉=H (t ) |Ψ(t )〉 , (5.15)

where H (t ) is given in (5.7) and depends on time via the hopping rates ti j and tαi at the regions between

holes, which are tuned adiabatically by the local gate voltages [21].

Even with the powerful computation resources available in these days, it is still hopeless to tackle this

problem by directly diagonalising the Hamiltonian H (t ) of dimension 106× 106 for each time instant.

Fortunately, it has been revealed that when the exponential operator is expanded by the Chebyshev

polynomial

exp[−i H (t )δ t/ħh] =
∑

n

cn(δ t )Tn(H ), (5.16)
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Figure 5.5: Projections of the MF wave-function |Ψ(t )〉 obtained by TDBdG onto the initial states

OL = 〈ΨL(0)|Ψ(t )〉 and OR = 〈ΨR(0)|Ψ(t )〉.

the coefficient cn(δ t ) decreases with n exponentially fast for small δ t [129]. Therefore, only sev-

eral leading terms cn are necessary for a sufficiently accurate estimate of the time-evolution operator

exp[−i H (t )δ t/ħh]. Moreover, the Chebyshev polynomials can be constructed based on the recursive

relation Tn(H ) = 2H Tn−1(H )− Tn−2(H ), which reduces the computation cost further. In this way,

the time-dependent wave-function of the MFs can be obtained efficiently with sufficient accuracy in an

iterative fashion |Ψ(t +δ t )〉 ≃ exp[−i H (t )δ t/ħh] |Ψ(t )〉.
The wave function at time t = 0 is defined as |Ψ(t = 0)〉 = |ΨL(0)〉 + |ΨR(0)〉 with |ΨL(0)〉 and

|ΨR(0)〉 the zero-energy states at left and right holes, respectively, as shown in figure 5.4(a) and (b).

We evaluate the projections of |Ψ(t )〉 onto the initial states OL = 〈ΨL(0)|Ψ(t )〉 and OR = 〈ΨR(0)|Ψ(t )〉
during adiabatic braiding processes and display them in figure 5.5 for 0 ≤ t ≤ 6T . Since four spinor

components of MF satisfy u↑ = v∗↑ and u↓ = v∗↓ (see figure 5.3(c)), MF state is simplified to Ψ(~r ) =

[u↑(~r ), u↓(~r ), u∗↓ (~r ),−u∗↑ (~r )]
T . The projections OL and OR then must be real numbers. The two MFs

pick up opposite signs after exchanging their positions, which can be summarized by

γL→ γR, γR→−γL. (5.17)

(5.17) can be written as γL/R→ U−1γL/RU with the unitary matrix U = exp(πγRγL/4). This indicates

that the braiding of MFs satisfies non-Abelian statistics [21, 122, 123, 128, 130, 131], as will be shown
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explicitly below.

5.4 Comparisons with other proposals for braiding Majorana fermions

5.4.1 Braiding Majorana fermions in two-dimensional p-wave superconductors

We begin by reviewing Ivanov’s model for realizing non-Abelian statistics, which describes low-

energy excitations bound to vortices in spinless p-wave superconductors [22]. The Hamiltonian is

[22, 132, 133]

H =

∫

d 2r

�

c†

�

−∇
2

2m
− ǫF

�

c + c†
�

e iθ|∆(r)|(kx + i ky )
�

c†+H .c .

�

, (5.18)

where the first term describes kinetic energy and chemical potential −ǫF , c† is electron creation opera-

tor, and the second term gives pairing function∆(r) with superconducting phase θ, kx and ky are elec-

tron momenta along x- and y-axis respectively. The Bogoliubov quasi-particle operator is γ † = uc†+νc ,

which satisfies BdG equation

[H ,γ †] = Eγ † (5.19)

with E the eigenenergy of quasi-particle. By taking Hermitian conjugation † at both sides of (5.19), we

have

[H ,γ ] =−Eγ , (5.20)

indicating the particle-hole symmetry of BdG equation, i.e. γ †(E) = γ (−E). Thus, the zero energy

states must be double-degenerate, satisfying self-adjoint condition γ †(E = 0) = γ (E = 0), which are

MFs.

We first consider how MFs evolve under U (1) gauge transformation by shifting superconducting

phase θ to θ+δθ. Since θ can be absorbed into fermionic creation and annihilation operators: c̃† =

e iθ/2c† and c̃ = e−iθ/2c , the new Bogoliubov quasi-particle operator is

γ̃ † = ue iθ/2c†+ νe−iθ/2c , (5.21)

which can diagonalize the gauge-invariant Hamiltonian

H̃ =

∫

d 2r
�

c̃†
�

−∇2/2m− ǫF

�

c̃ + c̃†
�

|∆(r)|(kx + i ky )
�

c̃†+H .c .
�

.

In the case of 2π phase changing θ→ θ+ 2π, we have γ̃ † =−γ †, which is an important result that can

be employed to achieve non-Abelian statistics.

In a 2D spinless p + i p superconductor with many vortices, superconducting phase θ around each

vortex can be single-valued apart from a cut (dashed black line in figure 5.6), where θ jumps by 2π. It

is then easy to see that Majorana wave-function bound to a vortex core picks up a sign γ → −γ after

crossing the cut. By interchanging positions of vortices i and i + 1 (see red arrows in figure 5.6), one

observes that MF γi passes through the cut of vortex i+1 and picks up 2π phase (see figure 5.6), which

gives

γi →−γi+1. (5.22)
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Figure 5.6: Braiding of vortex i and vortex i + 1 in a 2D spinless p-wave superconductor. Dashed

black lines connecting to bottom boundary are cuts for superconducting vortices [22]. Red arrows are

braiding loops.

The other Majorana state at vortex i + 1 does not cross the cut of vortex i , thus there is no sign change

of MF wave-function

γi+1→ γi . (5.23)

Therefore, we obtain the following rules for MFs evolution after exchanging positions of vortices host-

ing them

Ti :

�

γi →−γi+1,

γi+1→ γi

(5.24)

with Ti the braiding operation, consistent with our results of braiding MFs (5.17).

The unitary operator τ(Ti ) obeying Tiγi = τ(Ti )
−1γiτ(Ti )with Ti defined in (5.24) is given by [22]

τ(Ti ) =
1p
2

�

1+ γi+1γi

�

, (5.25)

implying non-Abelian statistics. To demonstrate this, we consider four vortices hosting four MFs

γ1,γ2,γ3 and γ4, which combine into two complex fermions Ψ1 = (γ1+ iγ2)/2 and Ψ2 = (γ3+ iγ4)/2.

The unitary operators describing two ways of braiding MFs on basis
�

|0〉 ,Ψ†
1 |0〉 ,Ψ

†
2 |0〉 ,Ψ

†
1Ψ

†
2 |0〉

�

(|0〉
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Figure 5.7: (a) Trivial phase with MFs bounded in pair at the same site covered by gray ellipse. (b)

Topological phase with dominated couplings between nearest-neighbors, resulting in two isolated MFs

γ1 and γ2 at the two ends of the Kitaev chain [105].

is the empty state) are [22]

τ(T1) =
1p
2
(1+ γ2γ1) =

1p
2

�

1+ i (Ψ†
1 −Ψ1)(Ψ

†
1 +Ψ1)

�

= e−iπ/4











1 0 0 0

0 i 0 0

0 0 1 0

0 0 0 i











, (5.26)

τ(T2) =
1p
2
(1+ γ3γ2) =

1p
2

�

1+ i (Ψ†
2 +Ψ2)(Ψ

†
1 −Ψ1)

�

=
1p
2











1 0 0 −i

0 1 −i 0

0 −i 1 0

−i 0 0 1











. (5.27)

The non-Abelian statistics is then verified by the noncommutative relation of unitary operatorsτ(T1)τ(T2) 6=
τ(T2)τ(T1) [108].

Direct manipulations of vortices might be done by using a STM tip, but suffer great difficulties. This

is not only because that large effective masses of vortices make transportations of themselves hard and

time-consuming, but also it is almost impossible to return vortices to exact positions in order to form a

closed braiding loop, which would cause systematic errors in topological quantum computations. On

the contrary, in our scheme of braiding MFs, vortices stay pinned at their original positions and thus

no motion of vortices is necessary. What we do is tuning gate voltages at small regions connecting holes

during braiding processes (see figure 5.3(a) and figure 5.4). It is guaranteed that MFs exchange their

positions exactly after braiding.
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5.4.2 Braiding Majorana fermions in nanowire networks

A toy model for realizing MFs in a N -site one-dimensional (1D) spinless p-wave superconductor

was proposed by Kitaev [105]

HKitaev =−µ
N
∑

i=1

c†
i

ci −
N−1
∑

i=1

�

t c†
i

ci+1+ |∆|e iθci ci+1+H .c .
�

, (5.28)

with µ the chemical potential, t nearest neighbor hopping rate, ∆ superconducting gap function with

phase θ. The system is in a topologically nontrivial state when |µ| < 2t characterized by winding

number ν = 1, otherwise it is topologically trivial (see detailed derivations in Appendix B), as shown in

figure 5.7.

In the special case µ= 0 and t = |∆|, Hamiltonian (5.28) reduces to [105]

H =−i t
N−1
∑

i=1

γB ,iγA,i+1 (5.29)

with

γA,i =−i e−iθ/2c†
i
+ i e iθ/2ci , γB ,i = e−iθ/2c†

i
+ e iθ/2ci , (5.30)

which are Majorana operators satisfying self-adjoint condition γ †
α,i
= γα,i , i = 1, · · · ,N is lattice site

index of the 1D system. Observing that the two terms γA,1 and γB ,N do not appear in the Hamiltonian

(5.29), it can be concluded that the system can support two zero-energy quasi-particle states localized at

two ends of the 1D superconductor (site 1 and N ), while quasi-particles at other sites bind into complex

fermions with finite energies. The two end states are just MFs, which appear in the topological phase

for |µ|< 2t and disappear in the non-topological phase with |µ|> 2t [105, 115].

In 2D spinless p+i p superconductors, MFs bound to vortex cores catch nonzero Berry phases while

moving around other vortices, which give rise to non-Abelian statistics by exchanging vortices [22]. At

the first glance, it seemed impossible to realize non-Abelian statistics by exchanging Majorana states in

1D systems since vortices are absent, and two MFs collide with each other and fuse into finite energy

states while exchanging them. Alicea et al. proposed to interchange MFs in a T-junction nanowire

network (see figure 5.8) and proved that the exchanging of MFs follows non-Abelian statistics [128].

They realize Kitaev’s toy model by putting a semiconductor nanowire with strong spin-orbit coupling

on top of an s -wave superconductor [115, 118, 119, 125]. For simplicity, we adopt the Kitaev model to

demonstrate braiding processes in the following.

The authors consider two segments of 1D nanowires forming a T-junction [128], as shown in fig-

ure 5.8. Nanowire in the topological phase (green line) can be tuned into non-topological (light green

line) region by adjusting local chemical potential µ using local gate voltage. To exchange positions of

MFs in the T junction (see figure 5.8), the authors first initialize the horizontal nanowire into topo-

logical state [128], hosting MFs γA,1 and γB ,N at the two ends (see figure 5.8(a)). The vertical nanowire

is in the non-topological phase. By driving left part of horizontal nanowire into non-topological state

and then vertical one into topological state, γA,1 is transported to the bottom of vertical nanowire (see

figure 5.8(b)). Next, γB ,N at right end is moved to left end of horizontal nanowire (see figure 5.8(c)). Fi-

nally, γA,1 is moved to right end of horizontal nanowire (see figure 5.8(d)), which finishes interchanging

of MFs. To track how γA,1 and γB ,N evolve after braiding, one can evaluate Berry phases acquired by
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Figure 5.8: Schematic diagram for braiding MFs γA,1 and γB ,N in a T-junction nanowire network [115].

Green lines are nanowires in the topological phase and can support MFs (red balls). Light green lines are

in the non-topological phase. Rightward/upward blue arrows indicate superconducting phase θ = 0,

whereas leftward/downward arrows stand for θ=π.

groundstate wave-function in principle. Here we adopt an alternative way to understand the statistics

followed by interchanging MFs.

The topological energy gap of the 1D system remains nonzero while manipulating two MFs, which

gives us the freedom to perform unitary transformations for Hamiltonian (5.28). For simplicity, we

put Hamiltonian (5.28) to purely real while manipulating γA,1 and γB ,N , which is only possible when

superconducting phase θ is either 0 or π. The phase of pairing function depends on the direction of

site index i assignment since |∆|e iθci ci+1 = |∆|e i (θ+π)ci+1ci . We denote θ = 0 by rightward/upward

arrows, θ=πmust be represented by leftward/downward arrows (see figure 5.8). After exchanging two

MFs, we end up with reversed arrows along the topological nanowire θ → θ+π, indicating the sign

flipping of uniform superconducting pairing ∆. To restore Hamiltonian back to its original form, we

multiply a phase factor e iπ/2 to fermionic creation operator f † = (γA,1− iγB ,N )/2 where θ is absorbed

into

f † = (γA,1− iγB ,N )/2→ e iπ/2 f † = (γB ,N + iγA,1)/2. (5.31)

The above transformation gives

γA,1→ γB ,N , γB ,N →−γA,1, (5.32)

which generates the non-Abelian statistics same as braiding of vortices in 2D spinless p + i p supercon-

ductors as discussed above [22].

There are other possible schemes for realizing non-Abelian statistics in 1D nanowire system [122,
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Figure 5.9: Schematic diagram for braiding MFs γ1 and γ2 (red balls) at positions A2 and B1 respectively

[122]. Light blue arrows indicate finite couplings between MFs. Dashed blue lines are topological trivial

segments.

124, 130, 131]. Sau et al. [122] proposed to transport MFs by tuning couplings between MFs, instead

of driving MFs all the way along the T junction by tuning chemical potential largely [128]. The Hamil-

tonian describes couplings between two MFs is

Hc = iεγ1γ2, (5.33)

which can form a complex fermion f † = (γ1 − iγ2)/2 with finite energy. The number operator of

fermion n = f † f has double-degenerated groundstates |0〉 and |1〉 for ε→ 0. An energy gap ε is created

between eigenstates |0〉 and |1〉 for finite ε. In order to exchange MFs, three nanowires are put close

to each other, and MFs at positions C1 and C2 are allowed to couple together, forming a complex

fermion with finite energy (see figure 5.9(a)). To transport MF γ2, the authors adiabatically reduce the

coupling between MFs at C1 and C2, and then increase that between B1 and C1. At zero coupling

between C1 and C2, γ2 is moved to position C2 (see figure 5.9(b)). Next, γ1 at A2 is transported to

B1 (see figure 5.9(c)). Finally, γ2 is moved to position A2 to complete the interchanging of MFs (see

figure 5.9(d)). The trajectories followed by γ1 and γ2 are

γ1 : A2→C1→ B1,

γ2 : B1→C1→C2→C1→A2. (5.34)

It is proven that interchanging of γ1 and γ2 in this way follows non-Abelian statistics since either γ1 or
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γ2 acquires a minus sign after exchanging positions [122].

In order to realize the above two braiding methods in nanowire networks [122, 128], some difficul-

ties need to be overcome. In the proposal by Alicea et al. [128], manipulations of MFs by using gate

voltages become quite difficult in 1D system since one has to adjust a number of local gate voltages pre-

cisely in the whole network. Failing to exert correct gate voltage at a single lattice site may break down

the whole braiding process. Besides, transportations of MFs through T-junctions depend on details of

the junction, which may be difficult to control [122, 134]. As for the scheme by Sau et al., the coupling

ε between MFs is oscillatory in space in topological superconductors as well as upon changing chemical

potentials [135], which is not easy to be controlled accurately in any macroscopic way, meaning that

transportations of MFs can hardly be carried out in designed ways. On the contrary, our proposal for

manipulating MFs only requires tuning of local gate voltages at very small regions connecting two holes

(see figure 5.3) and does not involve microscopic control on the couplings between MFs, which makes

our scheme of braiding MFs robust.

5.5 Conclusion

We show that the Majorana fermions hosted by vortex cores in topological superconductors can

be liberated from pinned vortices, transported and braided over the prepared tracks, taking advantages

of the heterostructure of s -wave superconductor and spin-orbit coupled semiconductor. By solving

the time-dependent Bogoliubov-de Gennes equation numerically, we monitor the time evolutions of

Majorana fermion wave-functions and demonstrate the non-Abelian statistics of adiabatic braidings of

Majorana fermions. The present scheme only requires local applications of gate voltages, and minimizes

possible disturbances to the Majorana fermions, which might be a challenging issue in other proposals

based on end Majorana fermions in one-dimensional superconductors where gate voltages are necessary

along the whole system. Instead of exchanging positions of vortices hosting Majorana fermions, our

scheme of braiding operation is much easier and faster for experimental realizations of non-Abelian

statistics. As compared with the edge Majorana fermions in two-dimensional topological superconduc-

tors, the core Majorana fermions are protected by a larger energy gap, which relaxes the limitation on

operating temperatures. Therefore, the present scheme provides a more feasible way for manipulating

Majorana fermions.
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We propose a two-dimensional photonic crystal made of pure dielectric materials to realize a topo-

logically nontrivial state characterized by the Z2 invariants in chapter 2. Each unit cell of the system

consists of six infinitely long cylinders along the z axis. By detuning the lattice constants of the system,

we demonstrate that the system is driven into a topological state protected by a pseudo-time-reversal

symmetry, which is composed of the six-fold rotation symmetry C6 and the conventional time-reversal

symmetry respected by the Maxwell equations. The corresponding pseudospins are the angular mo-

mentum of wave function of the out-of-plane electric field of transverse magnetic modes. We confirm

the nontrivial topology by demonstrating the helical edge states with opposite Poynting vector rotations

and pseudospin-resolved Chern numbers. The present topological photonics with simple design backed

up by the symmetry consideration can be fabricated relatively easy as compared with other proposals,

and expected to leave impacts in the optics field.

The above idea of realizing topological photonic crystals by symmetry considerations can be ex-

tended to two-dimensional electronic systems. In chapter 3, we derive a pseudo-time-reversal-symmetry-

protected topological state in honeycomb lattice. By taking a hexagonal unit cell that consists of six

atomic sites, we arrive at the Z2 topological state simply by detuning the inter-hexagonal hopping in-

tegrals over the intra-hexagonal ones. A topological gap is opened at the Γ point accompanied by a

band inversion between orbitals of opposite spatial parities. Similar to the case of photonic crystals,

a pseudo-time-reversal symmetry associated with a pseudospin degree of freedom and Kramers dou-

bling in the emergent orbitals are revealed based on the C6 point group symmetry, which generates the

Z2 topology. The nontriviality of the system is confirmed by the presences of topological edge states.

For experimental implementations, we discuss that, along with many other possibilities, the molecular

graphene realized by placing carbon monoxides (CO) periodically on Cu [111] surface is a promising

platform to realize the present idea, where the hopping texture can be controlled by adding extra CO

molecules. The size of topological gap is proportional to the difference between the inter and intra

hopping energies, which can be larger than typical spin-orbit couplings by orders of magnitudes and

potentially renders topological electronic transports available at high temperatures.

By breaking the time-reversal and inversion symmetries, we discuss a novel quantum anomalous

Hall effect characterized by simultaneous charge and spin Chern numbers in chapter 4. We study a

Mott insulator LaCrO3 of perovskite strucuture with an inherent G-type antiferromagnetic ordering

grown along the [001] direction. Inserting an atomic layer of inverse-perovskite material Sr3PbO, the
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Pb experiences the antiferromagnetic exchange field established by Cr atoms in the parent material.

Based on first-principles calculations we confirm that the system reaches the novel topological state

when the spin-orbit coupling of Pb is taken into considerations. We demonstrate that the novel quan-

tum anomalous Hall effect by the spin-polarized edge current in a finite sample as well as an effective

low-energy model. Supported by the antiferromagnetic exchange field and spin-orbit coupling in the

compounds, no extrinsic operation is required for achieving the topological state as compared to our

previous study for the electrically tunable one [17]. Importantly, both LaCrO3 and Sr3PbO are stable

in bulk and match each other with only small lattice distortions, which makes the composite material

easy to synthesize and promising for future applications in spintronics.

In the last chapter, we study topological superconductivities in a heterostructure composed of an s -

wave superconductor with vortices, a ferromagnetic insulator and a semiconductor with strong Rashba-

type spin-orbit coupling. We show that the Majorana fermions hosted by pinned vortex cores in the sys-

tem can be liberated, transported and braided over the prepared tracks. By solving the time-dependent

Bogoliubov-de Gennes equation numerically, we monitor the time evolutions of Majorana fermion

wavefunctions and demonstrate the non-Abelian statistics of adiabatic braidings of Majorana fermions.

The present scheme only requires local applications of gate voltages, and minimizes possible distur-

bances to the Majorana fermions, which might be a challenging issue in other proposals based on end

Majorana fermions in one-dimensional superconductors where gate voltages are necessary along the

whole system. Instead of exchanging positions of vortices hosting Majorana fermions, our scheme

of braiding operation is much easier and faster for experimental realizations of non-Abelian statistics.

As compared with the edge Majorana fermions in two-dimensional topological superconductors, the

core Majorana fermions are protected by a larger energy gap, which relaxes the limitation on operating

temperatures. Therefore, the present scheme provides a more feasible way for manipulating Majorana

fermions, the first step for realizing topological quantum computing.
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Appendix A

Low-Energy Model for Honeycomb Lattice

A.1 Honeycomb lattice and Dirac cones

Honeycomb lattice can host electrons with Dirac-like linear dispersion [43]. A minimal tight-

binding Hamiltonian describing dispersion relation of π electron in graphene is [46]

H0 =−t
∑

〈i , j 〉,σ

�

a†
i ,σ b j ,σ +H .c .

�

, (A.1)

where ai ,σ (bi ,σ ) annihilates a π electron at site i of sublattice A (B) and spin σ , 〈i , j 〉 runs over two

nearest neighbors (NNs) with hopping energy t (see figure 1.3). An effective 2×2 Dirac Hamiltonian at

the K and K ′ points can be obtained by a straightforward Fourier transformation a j ,σ =
∑

k ak,σ e ik·r j

and b j ,σ =
∑

k bk,σ e ik·r j with r j the position of site j [46, 136]. However, we provide a slightly different

view of the Dirac physics in honeycomb lattice. The hopping matrix on the basis [aσ , bσ ]with in a unit

cell is

h0 =−t

�

0 1

1 0

�

(A.2)

with eigenvalues ∓t and corresponding eigenvectors

Ψ+ =
1p
2

�

1

1

�

,Ψ− =
1p
2

�−1

1

�

, (A.3)

which are nothing but bonding and antibonding states of pz electrons at two sublattice site. It is inter-

esting to know that Ψ± are of opposite spatial parities under the inversion operator I with inversion

center at the bond linking two sublattice sites

IΨ± =±Ψ±. (A.4)

The hopping matrix along the lattice vector ~a1, ~a2 and ~a3 = ~a2− ~a1 on the basis [aσ , bσ ] are

h1 = 0, h2 = h3 =−t

�

0 0

1 0

�

, (A.5)
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Figure A.1: Brillouin zone for honeycomb lattice.

Projecting above hopping matrix onto the basis [Ψ+,Ψ−], we have

h̃1 = 0, h̃2 = h̃3 =−
t

2

�

1 1

−1 −1

�

. (A.6)

Grouping sublattices A and B into a unit cell, the honeycomb lattice can be conveniently viewed as a

triangular lattice with lattice vectors ~a1 and ~a2, as shown in figure 1.3.

A Fourier transformationΨr,± =
∑

kΨk,± exp(ik·r) immediately gives the momentum-space Hamil-

tonian

H0(k) =−t

�

1+ω(k) γ (k)
γ ∗(k) −1−ω(k)

�

(A.7)

on the basis Ψk = [Ψ+,Ψ−], whereω(k) = cos[k · ~a2]+cos[k · (~a2− ~a1)] and γ (k) = i sin[k · ~a2]+ i sin[k ·
(~a2− ~a1)]. In a simple case with kx = 0, the Hamiltonian in Eq. (A.7) along the ky axis reduces to

Hy (ky ) =−t

�

1+ cos(kya0/2)+ cos(kya0) i sin(kya0/2)+ i sin(kya0)

−i sin(kya0/2)− i sin(kya0) −1− cos(kya0/2)− cos(kya0)

�

(A.8)

with a0 = |~a1| the lattice constant and ky ∈ [− 4π
3a0

, 4π
3a0
]. At the corner of the Brillouin zone of hon-

eycomb lattice K = (0,− 4π
3a0
) and the K ′ = (0, 4π

3a0
) points (see figure A.1), there are two Dirac cones,

as shown in figure A.2. The degeneracy is protected by the equivalence of two sublattices, known as

sublattice symmetry [136].
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A.1. Honeycomb lattice and Dirac cones

Figure A.2: Dispersion relation for honeycomb lattice (a) without and (b) with complex next-nearest-

neighboring hopping included.

It was shown first that a quantum anomalous Hall effect (QAHE) can be realized when complex

hopping integrals t ′ = t1 exp(iφ) among next-nearest-neighboring (NNN) sites of honeycomb lattice are

taken into account [6] (see figure 1.3), where t1 = |t ′| is the magnitude of t ′. The hopping matrices

projected onto the basis [Ψ+,Ψ−] are

h̃ ′1 = h̃ ′3 = h̃
′†
2 = t1

�

cosφ i sinφ
i sinφ cosφ

�

(A.9)

along the ~a1, ~a2 − ~a1 and ~a2 directions respectively. Transforming the Hamiltonian describing NNN

hoppings into momentum space, we have

HNNN = 2t1

�

cosφ
∑

i=1,3 cos(k · ~ai ) −γ ′(k) sinφ
−γ ′(k) sinφ cosφ

∑

i=1,3 cos(k · ~ai )

�

=

�

2t1 cosφ
∑

i=1,3

cos(k · ~ai )

�

σ0−
�

2t1γ
′(k) sinφ

�

σx (A.10)

with γ ′(k) = sin(k·~a1)−sin(k·~a2)+sin(k·~a3), which specifies hybridizations of bonding and antibonding

states. It is easy to see that the first term in Eq. (A.10) simply shifts the location of the Fermi levels, and

cannot affect topology of the system. The second term in Eq. (A.10) is ±3
p

3t1 sinφ at the K ′ and K

points respectively. The effective low-energy Hamiltonian near the two valleys is

H [k→ K(K ′)] =

�

v f kx 3
p

3ν t1 sinφ− i v f νky

3
p

3ν t1 sinφ+ i v f νky −v f kx

�

(A.11)

on the basis [Ψ+,Ψ−], where v f =
p

3a0 t/2. Similar to Section 1.2.3, the Berry curvatures at the two

valleys can be evaluated easily and they are both 1/2 or −1/2 depending on value of φ [6], which gives

a QAHE characterized by the Chern number ±1.
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A.2 Hamiltonian on basis of sublattice

Expanding Eqs. (A.7) and (A.10) around the K point up to the lowest order of k on the basis [ak, bk],

we arrive at

H (k) =

�

3
p

3ν t1 sinφ− 3t1 cosφ −v f (kx − iνky )

−v f (kx + iνky ) −3
p

3ν t1 sinφ− 3t1 cosφ

�

(A.12)

where ν = ±1 at the K and K ′ points respectively, k = (kx , ky ) is measured from the K and K ′ points.

The couplings between the bonding and antibonding states do not equal to zero even at the K(K ′) points

for allφ 6= nπ (n ∈Z), i.e. a band gap opened at the K(K ′) points are of opposite signs. With the broken

time-reversal symmetry, the gap opened here is expected topologically nontrivial.

It has been revealed that the intrinsic spin-orbit coupling (SOC) in honeycomb lattice can provide

this complex hopping integrals with |φ|=π/2 [7, 8]. For the spin-up channel with φ=π/2, the SOC

term in the diagonal part of Hamiltonian (A.12) reduces to

H↑(k) =
�

3
p

3ν t1 0

0 −3
p

3ν t1

�

. (A.13)

Due to the time-reversal symmetry, φ must be −π/2 to ensure a zero total net flux passing the system

H↓(k) =
�−3
p

3ν t1 0

0 3
p

3ν t1

�

. (A.14)

Summarizing Eqs. (A.13) and (A.14), the effective Hamiltonian of SOC at the two valleys K and K ′ is

Hsoc = λτzσz sz (A.15)

with sz the Pauli matrix for spin degree of freedom, τz for the valley and σz for the sublattice, λ= 3
p

3t1

the strength of spin-orbit coupling. The non-vanishing SOC in Eq. (3.5) opens a bulk band gap at

the K(K ′) points, which drives spinful electrons into a topological state with preserved time-reversal

symmetry, known as quantum spin Hall effect (QSHE) [9, 11].
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Appendix B

Winding Number and One-Dimensional

Kitaev Model

A toy model describing an one-dimensional (1D) spinless p-wave superconductor was given in Eq. (5.28).

By transforming the Hamiltonian (5.28) into the momentum space with the lattice constant taken as 1,

we have

HKitaev(k) = τx∆ sin k +τz (2t cos k −µ) = dxτx + dzτz , (B.1)

on the basis [c , c†] with τx and τz the Pauli matrices and ∆ = |∆|e iθ. Without losing generality, we

assume φ= 0. A straightforward unitary transformation gives

H (k) = U †HKitaev(k)U =−dxτy + dzτx (B.2)

with

U =
1p
2

�

1 1

−i i

�

, (B.3)

for the convenience of analytical calculations in later part. The eigenenergies of Eq. (B.2) are

E± =±
Æ

d 2
x + d 2

z =±
Æ

|∆|2 sin2 k +(2t cos k −µ)2 (B.4)

with corresponding eigenvectors

Ψ± =
1p
2





i dx+dzp
d 2

x+d 2
z

±1



 .

The accumulated Berry (Zak) phase for the occupied bands is

Φ=

∫ 2π

0

d k



Ψ−|i∂k |Ψ−
�

=
1

2

∫ 2π

0

dx∂k dz − dz∂k dx

d 2
x + d 2

z

, (B.5)

which has a singularity when d 2
x + d 2

z = 0. By denoting z = dx + i dz , we have

d z

z
=
∂k dx + i∂k dz

dx + i dz

=
dx∂k dx + dz∂k dz

d 2
x + d 2

z

+ i
dx∂k dz − dz∂k dx

d 2
x + d 2

z

, (B.6)
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indicating that Eq. (B.5) can be rewritten as an imaginary part of the contour integration of d z/z

Φ=
1

2i
Im

∮

C

d z

z
(B.7)

In the case that the singular point |z |= 0 is inside the contour C , the Berry phase is Φ= 2πi/(2i ) = π
mod 2π by the Cauchy integral formula, resulting in a winding number ν = 1. The modulus 2π comes

from the gauge variance feature of the Berry phase. When the singular point is outside of the contour

C , the system is topologically trivial with a winding number 0 mod 2π.

Let us return back to the Kitaev model with dx = ∆ sin k and dz = 2t cos k −µ. The contour C

parameterized by k ∈ [0,2π] is an ellipse. When |µ| > 2t , the system is in a trivial state since the

contour C does not include the original point |z |= 0. For |µ|< 2t , the original point locates inside the

C , which results in a topological state.
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