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Energetics and Electronic Structure 
of h-BN Nanoflakes
Ayaka Yamanaka & Susumu Okada

We studied the energetics and electronic structure of hexagonal boron nitride (h-BN) nanoribbons with 
hydrogenated and clean edges with respect to the detailed edge shapes using density functional theory. 
Our calculations showed that the stability of h-BN edges strongly depends on the edge termination. 
In the case of hydrogenated edges, the formation energy is constant for all edge angles ranging from 
armchair to zigzag, indicating that h-BN may exhibit rich variation in their edge atomic arrangements 
under static conditions. The hydrogenated h-BN nanoribbons are insulators with an energy gap of 4 
eV irrespective of edge shape, in which the lowest branch of the conduction band exhibits nearly free 
electron states nature distributed in the vacuum region outside the ribbons. In contrast, the formation 
energy of h-BN nanoribbons with clean edges monotonically increases as the edge angle is changed 
from armchair to zigzag. Our analysis reveals that the increase of density of states at the Fermi level 
arising from dangling bond states leads to this monotonic increase of edge formation energy in h-BN 
nanoribbons with clean edges.

Hexagonal boron nitride (h-BN) is known to be a prototypical layered material in which each layer is composed 
of B and N atoms arranged in a hexagonal network like the C atoms of graphite1–3. Along the direction normal 
to each layer, in sharp contrast to graphite, each layer is weakly bound in an AA′ arrangement, in which N atoms 
are situated just above/below B atoms in adjacent layers, and vice versa, due to the interlayer Coulomb interaction 
between B and N atoms4. The chemical difference between B and N atoms makes h-BN an insulator with a large 
energy gap of 5 eV between the valence-band top (VBT) and conduction-band bottom (CBB) at a K point local-
ized on N and B atoms, respectively5,6. Due to its atomically flat network, h-BN has been used as the supporting 
materials for graphene devices that exhibit remarkable carrier mobility7–10. On the other hand, h-BN itself is 
attracting attention because of its structural similarity to graphene11–14. By the analogy with the graphene, h-BN 
can form various derivatives applicable to wide-ranging areas of modern technology: Nanoscale tubes and flakes 
of h-BN have been synthesized by rolling or cutting h-BN sheets with appropriate boundary conditions15–25. 
For many of the applications of nanoscale h-BN derivatives, it is critical to precisely control their geometric and 
electronic structures. In particular, the energetics of the nanoflakes yields fundamental insights into the practical 
procedures to control the structures of nanoscale h-BN derivatives.

Ribbons with nanometer width are a relevant structural model to investigate the energetics and electronic 
structures of h-BN nanoflakes. Several studies have demonstrated the stability and electronic structures of h-BN 
nanoribbons with armchair and zigzag edges26–31. However, the stability and electronic structure of h-BN with 
chiral edges are still unknown because these h-BN nanoflakes may possess edges with arbitrary shapes. In the 
case of graphene nanoribbons, energetics and electronic structure strongly correlate with their detailed edge 
structure and edge termination32. Because of the structural similarity between h-BN and graphene, an analogous 
correlation between the edge geometries and physical properties of h-BN nanoribbons with arbitrary edge shapes 
to that of graphene is expected.

In this paper, we aim to elucidate the correlation between the edge shape and physical properties of hydro-
genated and clean h-BN nanoribbons with various edge shapes, including armchair, zigzag, and chiral edges, 
using first-principles total-energy calculations based on density functional theory. Our calculations show that 
the energetics and electronic structure of h-BN nanoribbons strongly depend on the edge termination. In the 
case of hydrogenated edges, we found that the formation energy is constant for all edge angles between armchair 
and zigzag. We also found that all ribbons are insulators with an energy gap of 4 eV. The VBT is primarily dis-
tributed on N atoms extended throughout the ribbon. The CBB exhibits nearly free electron (NFE) state nature, 
which is distributed in the vacuum region alongside the N-rich edges of the nanoribbons, except for those with 
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near-armchair edges. For ribbons with near-armchair edges, the CBB is distributed in the vacuum region above 
and below the atomic layer. In contrast, the formation energy of h-BN nanoribbons with clean edges monoton-
ically increases as the edge angle changes from armchair to zigzag. Our analysis reveals that the increase of the 
density of states (DOS) at the Fermi level EF arising from dangling bond states leads to the monotonic increase of 
edge formation energy of the h-BN nanoribbons with clean edges.

Results
We considered several edge structures between armchair and zigzag of h-BN to investigate their energetics and 
electronic structures. To simulate h-BN edges with various edge shapes, we considered nanoribbons with hydro-
genated and clean edges with edge angles of 0 (armchair), 5, 8, 14, 16, 22, 23, and 30° (zigzag) (Fig. 1). To allow 
quantitative discussion of the energetics of the nanoribbons with various edge shapes, the ribbons possessed 
similar widths and unit lengths of about 1.8–2.2 and 1.5–2.0 nm, respectively. The geometric structures of h-BN 
nanoribbons were optimized until the force acting on atoms was less than 0.005 Ry/Å under the fixed lattice 
parameter along the ribbons, which was determined by the bulk bond length of 1.45 Å.

Hydrogenated edges. Figure 1 shows the optimized structures of h-BN nanoribbons with various edge 
angles. In all cases, the bond lengths of the nanoribbons are not equivalent. Bonds associated with hydrogenated 
N atoms are shorter than the other bonds. The bond lengths around hydrogenated N atoms are 1.44 Å or shorter 
due to the inward structural reconstruction increasing the π nature of edge N atoms to accommodate excess 
electrons provided by H atoms. For a ribbon with armchair edges, there is a symmetric bond alternation along the 
ribbon direction. In contrast, for other ribbons, bond alternation is asymmetric because of the asymmetric atomic 
arrangement at edges. In particular, significant asymmetric structural reconstruction occurs in the ribbons with 
zigzag edges. In this case, the bond length retains its bulk value near the N edge while substantial bond alternation 
occurs near the B edge.

Figure 1. Geometric structure of h-BN nanoribbons. Optimized geometries of h-BN nanoribbons with (a) an 
armchair edge (θ =  0°), chiral edges with (b) θ =  5°, (c) θ =  8°, (d) θ =  14°, (e) θ =  16°, (f) θ =  22°, (g) θ =  23°, and 
(h) a zigzag edge (θ =  30°). In each figure, left and right panels denote the h-BN nanoribbons with hydrogenated 
and clean edges, respectively. Black, gray, and white circles denote nitrogen, boron, and hydrogen atoms, 
respectively. Black, gray, and white bonds indicate short (− 1.44 Å), medium (1.44–1.45 Å), and long (1.45 Å–) 
bonds, respectively. White bonds situated at the edge of the nanoribbons correspond to B–H and N–H bonds.
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Before investigating the energetics of h-BN ribbons with hydrogenated edges with arbitrary edge shapes, we 
investigated the edge formation energy of h-BN nanoribbons with armchair and zigzag edges with respect to 
ribbon width, because the edge formation energy of graphene nanoribbons strongly depends on their width33. 
Figure 2(a) shows the edge formation energy of hydrogenated h-BN nanoribbons as a function of ribbon width. 
The edge formation energy Eedge was evaluated using the following formula:

µ µ= − −E E N N L( )/ (1)edge total BN BN H H edge

where Etotal, NBN, NH, μBN, μH, and Ledge denote the total energy of ribbons, the number of pairs of B and N atoms, 
the number of H atoms, the energy potential of h-BN per BN pair, the chemical potential of H atoms, and the 
edge length of a unit cell, respectively. μH is evaluated by the total energy per atom of H2 molecules. As shown in 
Fig. 2(a), edge formation energy of the hydrogenated h-BN nanoribbons is almost constant up to a width of 22 Å 
for both zigzag and armchair ribbons. Thus, the edge formation energy of the H-terminated h-BN nanoribbons is 
nearly independent of the ribbon width and edge shape. Note that the edge formation energy contains a numerical  
error of 5 meV, which arises from the total energies of ribbons with different numbers of BN pairs depending on 
their unit cell size.

Although the edge energy of the hydrogenated h-BN nanoribbon with zigzag edges is almost the same as that 
with armchair edges, it is worth investigating the detailed edge angle dependence of the edge formation energy. 
Figure 3(a) shows the edge formation energy and the energy gap between VBT and CBB of hydrogenated h-BN 
nanoribbons as a function of the edge angle. As shown in Fig. 3(a), the edge formation energy retains a constant 
value for all edge angles. Thus, based on the energetics, i.e. the constant edge formation energy, h-BN flakes are 
unlikely to possess preferential edge shape under static conditions. This result implies that the h-BN flakes inher-
ently possess edge roughness. The h-BN nanoribbons are insulators with an energy gap of about 4 eV, irrespective 
of the edge angle θ. In the case of graphene nanoribbons with hydrogenated edges, the edge formation energy 
retains constant up to the angle θ =  16°, where the ribbons possess semiconducting electronic structure with a 
finite energy gap. Thus, the constant edge formation energy of the h-BN nanoribbons is ascribed to their insulat-
ing electronic structure.

Figure 4 shows the electronic energy bands and DOS of hydrogenated h-BN nanoribbons with various edge 
angles. All ribbons are insulators with an energy gap of about 4 eV. This energy gap is considerably narrower 
than that of bulk h-BN, indicating that the detailed electronic properties of h-BN ribbons around the gap are 

Figure 2. Width dependence of edge formation energy of h-BN nanoribbons. Edge formation energy of 
h-BN nanoribbons with (a) hydrogenated and (b) clean edges as a function of ribbon width. Red squares and 
blue triangles denote the edge formation energy of nanoribbons with armchair and zigzag edges, respectively.

Figure 3. Edge angle dependence of edge formation energy of h-BN nanoribbons. Edge formation energy 
and energy gap of h-BN nanoribbons with (a) hydrogenated and (b) clean edges as a function of edge angle θ.
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different from those of bulk h-BN. As shown in Fig. 4, the CBB retains a constant value up to the angle of 8°, and 
then gradually shifts downward with increasing the edge angle θ, resulting in a decrease of the energy gap. The 
dependence of the electronic structure on edge angle implies that the polarization of h-BN around its edges plays 
an important role in determining the positions of the lower branches of the conduction band. For the ribbons 
with θ =  14° or larger, the lowest branch of the conduction band is separated from the bulk states, leading to an 
additional structure in the DOS of unoccupied states. It is worth investigating how the electronic structures of 
h-BN nanoribbons depend on the structural corrugation or rippling formed at elevated temperature. To check the 
DOS of the ribbons at elevated temperature, we performed ab initio molecular dynamics calculations at 1000 K. 
After a simulation time of 100 fs, all h-BN nanoribbons possess structural corrugation of up to 2 Å. The structural 
corrugation due to the finite temperature decreases the band gap of the nanoribbons, but does not affect the 
qualitative shape of the DOS.

To unravel the physical origin of the detailed electronic structure modulation in the lower branches of the 
conduction band with respect to the edge angle, we investigated the wave function distribution of VBT and CBB 
states at the Γ  point. Figure 5 presents the contour plots of squared wave functions of the VBT and CBB states 
of h-BN with various edge angles at the Γ  point. For the h-BN ribbons with all edge angles, the VBT state is  
distributed on N atoms and extended throughout the ribbon. The distribution is qualitatively the same as that of 
the VBT of bulk h-BN. On the other hand, the distribution exhibits different characteristics to that of graphene 
nanoribbons. In the case of graphene nanoribbons, except for those with armchair edges, the VBT state is local-
ized at the edge atomic sites with zigzag structure because of its edge state nature32. However, as shown in Fig. 5, 
the VBT state of the h-BN nanoribbon does not exhibit an edge-localized nature even though the ribbon has 
perfect zigzag edges.

In contrast to the VBT state, the CBB state exhibits an unusual nature, which is totally different from those 
of bulk h-BN and graphene nanoribbons. The CBB state of all h-BN ribbons is not distributed on the atomic 
sites but in the vacuum region where atoms are absent, exhibiting the NFE state nature which is inherent in the 
layered materials, such as graphene34–38, h-BN5,6, and transition metal dichalcogenides39. For the ribbons with 
edge angles up to 8°, CBB states are distributed in the vacuum region above and below the ribbons, similar to 
the conventional NFE states of h-BN sheets and graphene. For ribbons with zigzag and near-zigzag edges, the 
maxima of the CBB states are distributed alongside the rightmost edges of the ribbons with about 3 Å vacuum 
region. The states are primarily distributed in the vacuum region separated from the rightmost edge atomic site 
and are also slightly distributed at the atomic site near the edge. Furthermore, the states are extended along the 
direction parallel to the ribbon with small undulations in the vacuum region that reflect the edge atomic arrange-
ment. The characteristic distribution of these states as well as the quadratic dispersion band indicate that the CBB 
states of ribbons with near-zigzag and zigzag edges are the NFE states at the edge of the atomic networks, as in 
the case of graphene nanoribbons under a lateral electric field37,38. Calculating the effective electron mass from 
the energy band revealed that the effective masses of nanoribbons are ranging from 0.9 to 1.1 me, where me is the 
bare electron mass. Thus, the lowest branch of the conduction band of h-BN nanoribbons still possesses NFE 

Figure 4. Electronic structure of hydrogenated h-BN nanoribbons. Electronic structure and density of states 
(DOS) of hydrogenated h-BN nanoribbons with edge angles θ of (a) 0°, (b) 5°, (c) 8°, (d) 14°, (e) 16°, (f) 22°, (g) 
23°, and (h) 30°. Red and blue lines indicate the VBT and CBB states, respectively. Gray lines denote the DOS at 
the temperature of 1000 K. Energies are measured from the VBT.
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nature. Furthermore, because the NFE nature is sensitive to the electrostatic potential, the CBB state with edge 
NFE nature shifts downward with increasing edge angle, corresponding to an increase in the number of N atoms 
that deepen the electrostatic potential outside the ribbon.

Clean edges. As shown in Fig. 1, substantial structural reconstruction occurs at edge atoms to reduce electron  
energy arising from the dangling bonds with increasing lattice energies in all nanoribbons except the edge angle 
of 30° (zigzag). In particular, atoms situated at the armchair portion are remarkably deformed from the ideal 
sp2 bond angles by the reconstruction. N atoms protrude from the edges to increase their 2s nature to accom-
modate excess electrons. According to the protruding nature of N atoms, B atoms shift inward to form a linear 
sp-hybridized chain with neighboring N atoms supplying their valence electrons to N atoms. In addition to the 
substantial structural reconstruction, the ribbon with near-zigzag edges exhibits bond alternation both along 
and normal to the ribbon. For the ribbon with zigzag edges, the bond alternation normal to the ribbon occurs 
around the N edge. On the other hand, around the B edge, long-range bond modulation occurs along the ribbon 
direction.

Because of the dangling/unsaturated bonds at the edge atomic sites, it is thought that the clean edges are less 
stable than the hydrogenated edges. Figure 2(b) shows the edge formation energy of h-BN nanoribbons with clean 
edges as a function of ribbon width. The edge formation energy Eedge was evaluated using the following formula:

µ= −E E N L( )/ (2)edge total BN BN edge

where the terms have the same meanings as above. As shown in Fig. 2(b), the formation energy of clean edges is 
six to ten times larger than that of hydrogenated edges. In contrast to the nanoribbons with hydrogenated edges, 
edge formation energy of armchair edges is smaller than that of zigzag edges for the h-BN nanoribbons with clean 

Figure 5. Wave functions of hydrogenated h-BN nanoribbons. Top (x =  0) and side (y =  0) views of contour 
plots of wave functions at the Γ  point near the Fermi level EF of hydrogenated h-BN nanoribbons with edge 
angles θ of (a) 0°, (b) 5°, (c) 8°, (d) 14°, (e) 16°, (f) 22°, (g) 23°, and (h) 30°. In each figure, upper and lower 
panels denote VBT and CBB states, respectively. Black, white, and gray circles denote the atomic positions of 
nitrogen, boron, and hydrogen atoms, respectively.
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edges. This indicates that in the case of h-BN nanoribbons with clean edges, the armchair edges are more stable 
than the zigzag edges because the large structural reconstruction decreases the electron energy arising from the 
unsaturated B/N bonds. On the other hand, the edge formation energy remains constant in the ribbons with a 
width of 7 Å or wider as in the case of hydrogenated edges.

Figure 3(b) shows the edge formation energy and the energy gap of h-BN nanoribbons with clean edges as 
a function of the edge angle. In contrast to nanoribbons with hydrogenated edges, the edge formation energy 
monotonically increases with increasing the edge angle without any plateaus. By analogy with the relationship 
between edge formation energies and electronic structure in graphene nanoribbons32, the monotonic increase of 
the edge formation energy implies that nanoribbons with clean edges are metals with a number of electron states 
at EF.

We also found that the ribbons with armchair edges and an edge angle of θ =  5° are semiconductors while the 
other ribbons are metals, in contrast to nanoribbons with hydrogenated edges. The ribbons with an edge angle of 
0 and 5° have fundamental gaps of 4 and 0.1 eV, respectively. The semiconducting nature of the armchair ribbons 
makes the armchair edge the most energetically stable among the eight edge angles. The semiconducting elec-
tronic structure of the ribbon with armchair edges is ascribed to the substantial atomic reconstruction at its edges. 
Because of this reconstruction, B atoms at the armchair edge possess an sp nature with empty π states, while N 
atoms possess decomposed s and p states that are fully filled by electrons. In accordance with the reconstruction, 
this nanoribbon does not possess unsaturated bonds even though it is not terminated by H atoms. By focusing 
on the detailed edge atomic arrangement of the ribbons with respect to the edge angle, we find that substantial 
structural reconstruction occurs around the armchair regions of the edges. Thus, the monotonic increase in the 
edge formation energy is ascribed to the decrease of armchair portions. As shown if Fig. 3(b), as in the case of 
hydrogenated edges, there is a correlation between edge formation energy and energy gap. Semiconducting arm-
chair nanoribbons have small edge formation energies while metallic nanoribbons have edge formation energies 
larger than that of the armchair nanoribbon.

Figure 6 shows the electronic energy band structure and DOS of nanoribbons with clean edges. Compared 
with the electronic structures of nanoribbons with hydrogenated edges, nanoribbons with clean edges have extra 
states around EF with less dispersion, arising from the dangling/unsaturated bonds of B and N atoms situated at 
the edges. Because of the localized nature of the dangling bond states, these states cause the flat dispersion band 
at EF. Because of the substantial atomic reconstruction, the dangling bonds are absent at the atomic sites at the 
armchair edges. Thus, the number of states at EF increases with increasing proportion of zigzag edges. Indeed, the 
DOS at EF monotonically increases with increasing edge angle θ from 5 to 30°. This large number of states at EF 
causes instability in the energy of the edges with these angles, similar to the case of graphene nanoribbons. As in 
the case of nanoribbons with hydrogenated edges, the electronic structure of nanoribbons with clean edges is less 
sensitive to the structural corrugations under the finite temperature.

Figure 6. Electronic structure of h-BN nanoribbons with clean edges. Electronic structures and density of 
states (DOS) of h-BN nanoribbons with clean edges of which edge angles are (a) 0°, (b) 5°, (c) 8°, (d) 14°, (e) 
16°, (f) 22°, (g) 23°, and (h) 30°. Red and blue lines indicate VBT and CBB states, respectively. Gray lines denote 
the DOS of the nanoribbons at the temperature of 1000 K. Energies are measured from EF and VBT for metallic 
and semiconducting nanoribbons, respectively.



www.nature.com/scientificreports/

7Scientific RepoRts | 6:30653 | DOI: 10.1038/srep30653

It is worth investigating the detailed properties of the electronic states at or near EF. To unravel the origin of 
these states, we depict the squared wave function of the electron states of nanoribbons with edge angles of 0, 5, 8, 
14, 16, 22, 23, and 30° at or near EF in Fig. 7 at the Γ  point. For the nanoribbon with armchair edges, its VBT state 
is distributed on N atoms with π nature and extends throughout the ribbons. The CBB state has an NFE nature, 
which is distributed in the vacuum region above and below the ribbon, as in the case of the nanoribbons with 
hydrogenated edges. For the remaining ribbons, the state at EF is primarily localized on N atoms situated near 
the N-rich edges with π and σ natures. By focusing on the wave function of the ribbon with zigzag edges, we find 
that VBT and CBB states are localized at the N atoms at the N-rich edge with σ and π natures, respectively. Thus, 
the states with σ nature are classified as dangling bond states arising from the unsaturated bond of N atoms at the 
edges with zigzag shapes. It should be noted that such states are absent at the atomic sites of edges with armchair 
shapes. In this case, the edge reconstruction at the armchair region leads to substantial upward and downward 
shifts of states induced by a considerable change of orbital hybridization. In contrast to the ribbons with hydro-
genated edges, no delocalized states with NFE nature emerge at or near EF for the ribbons with finite edge angles.

Discussion
We studied the geometric and electronic structures of h-BN nanoribbons with edge angles ranging from armchair 
to zigzag using density functional theory. Our calculations show that the edge stability and electronic structure 
of h-BN nanoribbons strongly depend on the edge termination. In the case of hydrogenated edges, the edge for-
mation energy retains a constant value for all nanoribbons. This indicates that hydrogenated h-BN nanoribbons 
and nanoflakes inherently possess edge roughnesses under static conditions. On the other hand, for ribbons with 
clean edges, the edge formation energy monotonically increases with the proportion of zigzag edge. Furthermore, 
the edge stability strongly correlates with the electronic structure of h-BN nanoribbons. Nanoribbons with small 
edge formation energy are semiconductors with a finite energy gap, while ribbons with large formation energy 

Figure 7. Wave functions of h-BN nanoribbons with clean edges. Top (x =  0) and side (y =  0) views of 
contour plots of wave functions at the Γ  point near the Fermi level EF of h-BN nanoribbons with clean edges of 
which edge angles θ of (a) 0°, (b) 5°, (c) 8°, (d) 14°, (e) 16°, (f) 22°, (g) 23°, and (h) 30°. In each figure, upper and 
lower panels denote VBT and CBB states, respectively. Black and white circles denote the atomic positions of 
nitrogen and boron atoms, respectively.
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are metals with a large DOS at EF. By analyzing the wave functions near EF, we found that the dangling bond 
states appeared around EF for nanoribbons with clean edges, except for that with armchair edges. Based on these 
findings, the increase in the DOS near EF arising from the dangling bond states is the origin of the increase in 
formation energy for clean edges. The present results indicate that the shape of the h-BN nanoflakes is tunable by 
controlling the edge termination by atoms and molecules. Furthermore, the energetics provides guiding princi-
ples to design heterogeneous layered materials consisting of h-BN and graphene that possess unusual electronic 
structures40,41.

Methods
The geometric and electronic structures of h-BN nanoribbons with various edge shapes were studied using density  
functional theory42,43 implemented into the Simulation Tool for Atom Technology (STATE)44. We used the gener-
alized gradient approximation with the Perdew-Burke-Ernzerhof functional form45,46. Ultrasoft pseudopotentials 
generated by the Vanderbilt scheme were used to describe electron-ion interactions47. Valence wave functions and 
charge densities were expanded in terms of the plane wave basis set with cutoff energies of 25 and 225 Ry, respec-
tively. Brillouin zone integration was carried out using equidistance 1 k-point along the ribbon direction, which 
corresponds to the eight k-points sampling in the conventional cell of h-BN, resulting in sufficient convergence in 
the total energy of the electronic structure of the ribbons.

The effective screening medium (ESM) method was adopted to avoid unphysical dipole interactions with the 
periodic images arising from their polar edges in the framework of the conventional DFT calculations48. This 
is because h-BN nanoribbons with arbitrary edge shapes intrinsically possess lateral polarization arising from 
the chemical difference between B and N atoms. In this case, to simulate the open boundary condition in lateral 
inter-ribbon directions, we put ESM with a relative permittivity of 1, which simulates vacuum conditions in this 
region (ε0 =  8.854 ×  10−12 Fm−1), at the cell boundaries with vacuum spacing of 8 Å to the rightmost and leftmost 
atoms of the nanoribbons.
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