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Abstract
Biological membranes have been proposed to contain microdomains of a specific lipid com-

position, in which distinct groups of proteins are clustered. Flotillin-like proteins are con-

served between pro—and eukaryotes, play an important function in several eukaryotic and

bacterial cells, and define in vertebrates a type of so-called detergent-resistant microdo-

mains. Using STEDmicroscopy, we show that two bacterial flotillins, FloA and FloT, form

defined assemblies with an average diameter of 85 to 110 nm in the model bacterium Bacil-
lus subtilis. Interestingly, flotillin microdomains are of similar size in eukaryotic cells. The

soluble domains of FloA form higher order oligomers of up to several hundred kDa in vitro,
showing that like eukaryotic flotillins, bacterial assemblies are based in part on their ability

to self-oligomerize. However, B. subtilis paralogs show significantly different diffusion rates,

and consequently do not colocalize into a common microdomain. Dual colour time lapse

experiments of flotillins together with other detergent-resistant proteins in bacteria show

that proteins colocalize for no longer than a few hundred milliseconds, and do not move

together. Our data reveal that the bacterial membrane contains defined-sized protein

domains rather than functional microdomains dependent on flotillins. Based on their distinct

dynamics, FloA and FloT confer spatially distinguishable activities, but do not serve as

molecular scaffolds.
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Author Summary

Many membrane proteins are not uniformly distributed within biological membranes,
and may prefer specific lipid environments to function optimally. Using super resolution
fluorescence microscopy, we show that several Bacillus subtilismembrane proteins indeed
cluster into structures of 60 to 110 nm, verifying the existence of defined-size protein
microdomains. Biochemical co-isolation of specific membrane proteins and flotillins, a
family of proteins highly conserved between eukaryotic and bacterial cells, suggested that
common “functional”microdomains exist, containing so-called “detergent-resistant”
membrane proteins, that are centered by flotillins. Through high speed tracking of Bacillus
subtilis FloA and FloT we show that both proteins are not present in the same microdo-
main, but move through the membrane with different velocities. Dual colour time lapse
microscopy showed that contrarily to vertebrate flotillins, bacterial flotillins do not move
together with detergent-resistant proteins, ruling out the existence of coclusters. The lack
of both flotillins, but not of a single one, leads to striking defects in cell shape and in cell
growth, indicating important overlapping functions of flotillin paralogs. Our data show
that FloA and FloT perform spatially distinct functions, possibly in the insertion of mem-
brane proteins that require a specific lipid environment, based on a close connection
between FloA and FloT with the Sec membrane insertion machinery, but do not act as
scaffolds for detergent resistant proteins. Our tracking analyses provide an important basis
for the understanding of interactions between membrane proteins in living cells.

Introduction
In spite of many decades of research on membrane proteins, the true arrangement of proteins
and their dynamics within the lipid bilayer are still poorly defined. Many membrane proteins
show non-uniform localization patterns [1, 2], and the existence of microdomains having dif-
ferent lipid compositions can be inferred from several lines of experiments [3]. So-called deter-
gent resistant microdomains (DRMs) or lipid rafts have been studied biochemically and
cytologically, because they contain a characteristic set of proteins that are involved in a variety
of processes [4–8]. However, how lipid domains are set up and are maintained, and how fast
they move within the cell membrane remains unclear.

Flotillin/reggie proteins (reggies/flotillins, prohibitins, podocins, stomatins) are an evolu-
tionarily conserved class of proteins found across all organisms [9]. They are considered as reg-
ulators of membrane protein trafficking [10] and as common constituents of DRMs in
eukaryotic cells. The hallmark of flotillin-like proteins is the SPFH domain (stomatin, prohibi-
tin, flotillin homology) of unknown function, and in general, a single membrane span (with the
N-terminus of the protein being on the outside of the cell) in bacterial cells, or no membrane
helix but a palmitoyl and myristoyl anchor in eukaryotic cells [11]. In addition to the SPFH
domain, flotillin subfamilies contain the so-called flotillin (tail) domain, which is characterized
by extended coiled coil motifs and is involved in multimerization [2], but has no known enzy-
matic function. In eukaryotic cells, flotillins are involved in membrane-trafficking, in signal
transduction, and cytoskeletal rearrangement [3, 10]. They are also discussed as scaffolding
proteins and as couplers of membrane-proteins with the actin cytoskeleton [12, 13]. During
axon growth in neuronal cells, flotillins are suggested to induce membrane microdomain for-
mation at the growth cone [14, 15] and to recruit specific proteins to the elongating axon [16].
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Furthermore, flotillins appear to be involved in Alzheimer’s and Parkinson’s disease, and other
phenomena [7, 17]. Defects in flotillin proteins are particularly evident in neurons which fail to
extend axons and at the recycling compartment of HeLa and A431 cells which fail to properly
recycle the transferrin receptor and E-cadherin [10, 18].

In fungi, flotillin proteins are not conserved in budding and fission yeast but are present in
ascomycetous filamentous fungi. In the model filamentous fungus Aspergillus nidulans, dele-
tion of the flotillin gene, floA, impaired a special membrane domain at hyphal tips, which
resulted in defects of polarized growth of hyphae, suggesting a conserved function of flotillins
in the fungus and in neurons [19, 20].

Bacterial flotillins have so far been characterized in Escherichia coli, where a genetic link to a
membrane-associated protease was found [21], and in Bacillus subtilis, which has two paralogs,
FloT and FloA. The absence of one of the flotillins has only minor effects (e.g. a delay in the dif-
ferentiation process of sporulation [22]), but the absence of both proteins has very severe
effects: loss of proper cell shape, a defect in cell division [23], altered membrane fluidity [24,
25], and a defect in signaling events during the transition from planktonic to biofilm growth
style [26]. The severity of the defects (including reduced growth rate) highlights the important
function of flotillins in bacterial cells.

Using special detergents, B. subtilis flotillins can be co-isolated with NfeD proteins of
unknown function, with the signaling receptor KinC [26], cell wall synthesis enzyme Pbp5,
secretory protein SecY, membrane transporters like FhuD, as well as energy metabolism pro-
tein AtpDG [27]. Therefore, flotillins have been suggested to set up microdomains within the
membrane, by recruiting other proteins and possibly specific lipids into the special structures.
It has recently been shown that the overproduction of flotillins increases the stability of a prote-
ase, FtsH, within the membrane, which in turn affects cell division and other membrane-asso-
ciated processes [28]. Indeed, the deletion of both, the gene encoding flotillin T protein in B.
subtilis and of dynA (coding for B. subtilis dynamin) results in cell filamentation [29] and a
defect in motility [30]. A flotillin double mutant (floT and floA) in B. subtilis also shows a cell
filamentation defect [23]. Overproduction of flotillin T results in the considerable shortening
of cells [25], supporting the idea that flotillins are directly involved in the division process.
Moreover, the absence of flotillin or their overproduction has been shown to affect membrane
fluidity [24, 27], and flotillin T has been co-isolated with negatively charged phospholipids, e.g.
with phosphatidylglycerol and cardiolipin [22]. The latter is known to facilitate membrane
bending, so it is well conceivable that flotillin’s association with this lipid such as cardiolipin
facilitates membrane bending, or membrane fusion, possibly performed by dynamin; both pro-
cesses are crucial steps during bacterial cell division.

Based on conventional fluorescence microscopy, these domains could have a size of 250 nm
and more, which are substantial fractions of the surface of a 2 to 4 micrometer large cell. Elec-
tron microscopic imaging has shown that flotillin structures are equal or smaller than 100 nm
in human cell lines [8, 31]. However, in most cases, flotillins have been visualized by conven-
tional light microscopy, which cannot resolve objects smaller than 250 nm in diameter. Such
structures could be interpreted as large raft-like membrane domains. Thus, a description of flo-
tillin assemblies in live organisms is still lacking.

We wished to obtain a better picture of the size and structure of flotillin assemblies, in bacte-
ria as well as in eukaryotic cells, and to study their dynamics in live bacterial cells. We devel-
oped a tracking procedure that can accurately determine diffusion constants of proteins
moving along a curved membrane, and provide data on the time scale in which flotillin assem-
blies can meet in the membrane, or in which flotillin structures can cover the entire surface of a
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cell with regard to their size and diffusion rates. By comparing the movement of flotillins and
other proteins proposed to be a part of DRMs, we show that in spite of the formation of con-
served-sized individual protein domains, these do not track together, indicating that many bac-
terial proteins are self-organized into defined assemblies, but that mixed protein
compartments only exist transiently.

Results

Flotilin A and T localize in the membrane as defined assemblies with an
average size of 80 to 90 nm
To gain insight into the nature of bacterial flotillin assemblies, which have been speculated to
constitute lipid microdomains, we employed stimulated emission depletion (STED) superreso-
lution fluorescence microscopy. Using G-STED, we have achieved a resolution of 42 nm for
MreB filaments in live B. subtilis cells [32]. We visualized two flotillin-YFP fusions, FloA-YFP
and FloT-YFP, in live, exponentially growing or stationary phase B. subtilis cells. Both fusions
were shown to functionally replace the wild type proteins, when expressed from the native
gene locus, or from an ectopic site on the chromosome, in previous work [22, 23, 26]. For
example, cells carrying deletions of both, floA and floT genes, grow much slower than wild type
cells, are twisted and bent and highly elongated, while single floT or floAmutant cells do not
show any of these strong phenotypes. Likewise, cells lacking floA and expressing FloT-YFP (or
FloT-mVenus), or vice versa, grow like wild type cells. Thus, the fluorescent protein fusions are
able to fulfill the functions of the wild type proteins.

For both fusions, we rarely observed structures of 50 nm in diameter (Fig 1A), but usually
larger sized foci, determined using the Leica software (see below), showing that the assemblies
are above the resolution of STED microscopy. FloT has been shown to move within the mem-
brane in a time frame of a few seconds, with some static and some motile assemblies [23],
potentially causing a drift during acquisition time. Round objects that move during confocal
acquisition have a characteristic comet-like structure. We used a scan speed of 400 Hz, which
is fast enough to localize flotillin-YFP foci with high efficiency, because we observed few foci
with a comet-tail (indicated in Fig 1C); such cases were rare (4%, n = 250 foci analysed). It
should be noted that many flotillin foci were oval or irregularly shaped (Fig 1C), suggesting
that not all assemblies are uniformly round. Therefore, our experiments adequately reflect the
size of flotillin-YFP assemblies in live cells.

Interestingly, a majority of FloT-YFP signals had a size of more than 50 nm. We measured
225 foci from 125 cells and determined an average size for FloT-YFP assemblies of 85.3
nm ± 12.5 nm (SD) (Fig 1A), and a maximal size of 97.0 nm. The size of fluorescent foci was
very similar between FloT-YFP expressed from the original gene locus, or expressed ectopically
from the amylase locus (Fig 1B). Thus, FloT assemblies have a relatively uniform size in live
cells. We also imaged a monomeric variant of YFP, mVenus, fused to FloT (Fig 1C), which
yielded a size distribution that closely resembled that of FloT-YFP, ruling out an artifact from
FP-induced multimerization. The diameter of FloT-YFP foci did not change considerably
between exponential growth and stationary phase (Fig 1D), but the number of foci increased
during the transition to stationary growth, as was reported earlier [23]. We performed the
same experiments for the second flotillin-like protein in B. subtilis, FloA. Like the FloT-YFP
fusion, a FloA-YFP fusion can functionally replace the original protein [23, 26]. Interestingly,
FloA-YFP foci had an average size of 80.4 nm ± 10.9 nm (SD) (Fig 1E), and thus displayed a
similar size distribution like FloT-YFP. These experiments reveal that bacterial flotillin-like
proteins have a preferred size for their assemblies, and suggest that flotillins form defined
assemblies, however with a considerable size-variation.
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Fig 1. Localization ofBacillus subtilis proteins in live cells by STEDmicroscopy. A) localization of
FloT-YFP in exponentially growing cells (PY79), lower left panel overlay of Nomarski DIC and fluorescence,
green bar indicates focus whose diameter is measured; lower right panel fluorescence intensity plot showing
the emission of the measured focus, width of 50% fluorescence intensity (which contains more than 90% of
the chromophores) is shown by the white lines, Dx denotes measurement of width in nm. B) STED image of
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The size of FloA and FloT assemblies varies between different B. subtilis
strains but is robust in different lipid mutant backgrounds
Under standard (exponential) growth conditions, bacteria have a preferred composition of the
membrane in terms of ratios of different lipids. We wished to gain insight into the question
whether flotillin assemblies may be influenced in number and/or size in cells lacking different
lipids. We used four strains that have been generated for B. subtilis by the Helmann group,
namely carrying a deletion of the major cardiolipin synthetase (clsA) [33], a deletion in the
phosphatidyl-ethanolamine pathway (pssA), a deletion in the lysylphosphatidyl-glycerol path-
way (mprF), or having a lack of glycolipids (ugtP) [34]. We used B. subtilis strain W168 as
background, rather than PY79. Interestingly, we found that flotillin assemblies are larger in
strain 168 than in strain PY79: FloA-YFP foci were 109 ± 9.7 nm (S1A Fig), while FloT-YFP
foci were of a size of 106.7 ± 12.7 nm (Fig 1I, n = 38). These results show that strain back-
grounds can have an effect on the size of flotillin clusters. Next, we introduced FloA-YFP and
FloT-YFP fusions into the different mutant backgrounds and analysed their localization. Gly-
colipid mutant cells displayed reduced and abnormal cell size/shape (S1B and S1H Fig), all
other mutant cells had wild type-like appearance. There was no visible difference in the appar-
ent size of the clusters (S1B to S1H Fig), which was confirmed by STED measurements: flotillin
focus sizes varied between 105 and 115 nm (Table 1), revealing that the assembly of flotillin
domains is not influenced by the lack of the different lipids tested. However, the experiments
do not rule out other, more specific lipid requirements for the regulation of flotillin
oligomerization.

The soluble domains of flotillin A form large multimeric structures in vitro
Flotillin/reggie proteins are notoriously difficult to purify for biochemical experiments. We
were successful in purifying the soluble part of FloA (Fig 2A) via Ni-NTA chromatography.
CD analysis showed that the soluble part has a defined fold, with mostly alpha helical

FloT-YFP expressed from the amylase locus in a merodiploid strain. C) localization of FloT-mVenus in
exponentially growing cells; white triangle indicates a focus that moves during acquisition, having a
characteristic comet tail, green triangle indicates a signal that is ovoid, indicating a non-round assembly. D)
localization of FloT-YFP in stationary phase cells, labeling analogous to panel A). E) Localization of
FloA-YFP in exponentially growing cells, F) KinC-YFP in exponentially growing cells, G) NfeD2-YFP in
exponentially growing cells. H) Strain 168, carrying a deletion in the major cardiolipin synthetase (clsA)
expressing FloT-YFP, I) Strain 168, expressing FloT-YFP. White lines indicate ends of cells, scale bars 2 μm.

doi:10.1371/journal.pgen.1006116.g001

Table 1. Size of flotillin clusters in B. subtilisW168 wild type and lipid mutant cells.

strain Size of assemblies (nm) SD (nm) n

floA-yfp (wild type) 109.3 9.7 38

floT-yfp (wild type) 106.7 12.7 36

ΔclsA floA-yfp 114.6 10.1 35

ΔclsA floT-yfp 106.2 12.1 35

ΔmprF floA-yfp 108.5 11.0 35

ΔmprF floT-yfp 105.8 9.8 35

ΔpssA floA-yfp 106.2 9.9 35

ΔpssA floT-yfp 106.7 10.5 35

ΔugtP floA-yfp 115.5 13.0 35

ΔugtP floT-yfp 113 10.6 35

doi:10.1371/journal.pgen.1006116.t001
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Fig 2. The soluble part of FloA (FloAsp) formsmultimers. A) SDS-PAGE showing purification by Ni-NTA
chromatography of FloAsp carrying a 6xHis tag at the N-terminus, lane 1 flow through, lane 2 wash step, lane
3 peak elution. B) Circular dichroism analysis of FloAsp (25 μM). C) Size-exclusion chromatography (SEC) of
FloAsp; elution of marker proteins and of the void peak are indicated by arrows, numbered letters indicate
fractions, which are shown in D) SDS PAGE showing corresponding fractions from SEC. E-F) SDS PAGE of
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arrangement (60.8%), and few beta-sheet elements (prediction 7.1%, using the GOR IV sec-
ondary structure prediction program (https://npsa-prabi.ibcp.fr) (Fig 2B). This is in agreement
with the predicted and solved structures of the SPFH domain, which contains a β-sheet, and
otherwise a large number of α–helices [35, 36], and with the prediction from coiled-coil analy-
sis software that the flotillin domain contains a high degree of heptad-rich repeats [23]. To
investigate if the assembly of flotillins into the defined structures is mediated through self-
interaction, we performed analytical gel filtration (GF) and sucrose gradient centrifugation.
The protein eluted from gel filtration just behind the void volume, in a peak above 670 kDa,
besides a smaller low molecular weight (LMW) fraction (Fig 2C and 2D), whose size corre-
sponds to a FloA dimer (60 kDa). These data suggest that the soluble part of FloA forms pre-
dominantly multimeric structures. To rule out artefacts caused by the use of a hexa-histidine
affinity tag, we also purified FloA using a strep-tag, which yielded a similar preference for the
formation of high molecular weight (HMW) polymeric structures eluting over a wide range of
sizes, and a much smaller LMW part eluting around 120 kDa (S2A Fig), which would corre-
spond to a tetramer of FloA as smallest unit. It is possible that the histidine-tag weakens tetra-
mer formation. We used the high or low molecular weight fractions from GF columns for
sucrose gradient experiments. Interestingly, when the LMW fraction of FloA was analyzed for
its distribution in sucrose gradients, most of the protein sedimented as dimers or tetramers,
and some degree of multimerization was observed (Fig 2E) Likewise, when the multimeric frac-
tion was separated on a sucrose gradient, only a small amount of LMW protein arose, and a
majority of molecules remained in the multimeric state, with a peak above 670 kDa (Fig 2F).
To obtain more insight into the exchange between multimeric assemblies and smallest FloA
units, different concentrations of HMW or of LMW fractions of FloA-Strep were subjected to
GF analysis. S2B Fig shows that 3 fold and 5 fold dilution of the HMW fraction leads to a con-
comitant decrease in HMW and in LMW formation. We measured the peak area of both frac-
tions, which showed that in undiluted or 3-fold diluted conditions, about 90% of the proteins
are in the HMW fraction, and in the 5-fold diluted condition, 82% are in the HMW fraction
and 12% in the LMW peak. A 2 fold concentration of the LMW fraction leads to an increase in
formation of multimers relative to the LMW fraction, albeit only of multimers up to 670 kDa
(S2C Fig). These experiments show that there is an equilibrium between the smallest unit and
multimeric fractions; the tetramers readily form multimers when the concentration is
increased, and the equilibrium is far on the multimer side, showing that these are rather stable
structures. If only peak fractions from both methods are taken into account for native molecu-
lar mass calculation (750 kDa from GF, 750 kDa from sucrose gradients), the formation of
25mer structures can be deduced, but the size variation is very large, such that 12mer up to
50mer assemblies can be observed in vitro. The large variation of subunit number was also
observed using electron microscopy (EM), after uranyl acetate negative staining of purified
FloA multimers. When the LMW fraction was used for EM, homogeneous small structures
were observed (Fig 2G), whereas a wide range of different sizes of multimeric particles exists
when the HMW fraction was imaged (Fig 2H and S3 Fig), the largest of which had a size of
70 nm.

These experiments show that the flotillin structures observed in vivo are in part mediated
through flotillin self-interaction, as shown for flotillin and prohibitin in vertebrate cells [2, 37].

fractions from 5 to 20% (w/v) sucrose gradient centrifugation, position of marker proteins is indicated by
arrows, size of denatured proteins is indicated by the marker lane. E) Loading of fraction B5 (dimeric FloAsp)
from SEC, F) loading of fraction A5 (multimeric FloAsp); the last lane of the SDS PAGE shows the 35 and 25
kDa proteins from the marker lane. G) Electron microscopy (EM, uranyl acetate negative stain) of the LMW
fraction of Strep-FloAsp, H) EM of the HMW fraction of Strep-FloAsp, scale bars 100 nm.

doi:10.1371/journal.pgen.1006116.g002
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Flotillin protein domains contain dynamically exchanging multimers
To investigate if flotillin foci are indeed composed of a considerable number of monomers, we
performed single molecule microscopy, in which cells are exposed to a focused laser illumina-
tion. Bleaching of fluorescent spots is monitored in stream acquisitions using a fast EM-CCD
camera, such that single bleaching steps can be monitored [38, 39] (S1 Movie). Gradual bleach-
ing of molecules within a fluorescent focus leaves single fluorescent-protein spots that bleach
in a single step, revealing the intensity of a single chromophore. Initial intensity of spots can
then be used to determine the number of fluorescently-labeled subunits. Fig 3A and 3B show
representative images from an experiment, in which initial fluorescence in two foci is reduced
to a single spot that finally bleaches in one step. In Fig 3C to 3E, examples for bleaching kinetics
of two FloT-YFP spots are shown, in which the intensity of a single YFP molecule can be seen
towards the end of the acquisition, and total intensity of the spot in the first frames. FloT-YFP
expressed as sole source in the cell showed an average of 12 bleaching steps in 30 spots ana-
lysed, revealing that at least 12 molecules are present within the 75 nm structures. The true
number of molecules is somewhat higher, because a subset of fluorophores will not have
matured, or may have been bleached at an earlier time point in the acquisition (i.e. before the
first frame that is used in the analysis). FloA-YFP foci had a fluorescence intensity that was
very close to that of FloT-YFP, and therefore, also FloA assemblies will contain a number of

Fig 3. Determination of subunit stoichiometry using single molecule microscopy. A) and B) 20 consecutive images of a
streams acquisition of one cell expressing FloT-YFP, 20 ms time intervals. The triangles indicate a relatively stationary focus that
bleaches during the stream acquisition. White bar 2 μm. C to E) Graphs showing bleaching events. One individual bleaching step
is indicated in panel C), an event of addition of a molecule (positive increase in fluorescence) in panel D), panel E) shows all clear
bleaching steps in an acquisition.

doi:10.1371/journal.pgen.1006116.g003
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monomers, in agreement with the formation of multimers in vitro. Interestingly, fluorescent
foci frequently showed regain of fluorescence (S1 Movie and Fig 3D and 3E), revealing that
non-bleached molecules can be recruited into the assemblies, which occurred in 50% of the
analysed spots. Bleaching occurred over 100 to 150 frames, i.e. within 2 to 3 s, showing that flo-
tillin assemblies have subunit exchange within the frame of few seconds.

Flotillin microdomains in eukaryotic cells are of similar size as their
bacterial counterparts
Flotillin microdomains have been visualized and measured by various microscopic methods.
The most accurate method used so far, electron microscopy, revealed assemblies of down to
100 nm in human cell lines. Because STED is highly suitable to determine the size of flotillin
assemblies in live cells, we analysed FloA-GFP in the model filamentous fungus, Aspergillus
nidulans [19], and reggie-1 (flotillin-2)-GFP labeled human cells.

In the hyphae of A. nidulans, FloA-GFP was detected as defined foci along the hyphal cortex
but was excluded from the hyphal tip [19]. In young fungal hyphae, flotillin foci were present
as defined foci, with an average diameter of 68.7 nm ± 8.1 nm (SD) (Fig 4A and 4C). Older
hyphae were visually distinct from younger ones in that they contained large vacuoles, and
contained more flotillin signals (Fig 4A), which could reach sizes of 150 nm. The reason for
this increase in size dependent on hyphal age is unknown. Possibly, due to the visual increase
in number, closely adjacent assemblies can appear as a large double-sized structure. In any
event, in cells having fewer and well-spaced foci, flotillin assemblies have a size that is very sim-
ilar to that of bacterial flotillin.

In HeLa cells, flotillin is found at the cytoplasmic face of the plasma membrane, but also at
various internal membrane structures [10] (Fig 4B). For simplicity, we focused our measure-
ments on flotillin assemblies at the cell membrane, which was ensured through making a Z-
stack using conventional confocal images, and a G-STED image at the cell periphery (Fig 4B).
Flotillin-2-GFP signals also had an average size of 94.1 nm ±7.4 nm (SD), and were thus also of
relatively well defined size. In MCF-7 cells, flotillin signals measured only 81.5 ± 5.0 nm (SD)
(Fig 4D and 4C), even more closely resembling bacterial flotillin assemblies (Fig 4C). There-
fore, the average size of flotillin structures in eukaryotic cells is quite conserved and comparable
to those in bacterial cells.

Flotillin paralogs move at different velocities through the membrane
Movement of flotillin proteins has been described as “dynamic”, however, given exposures
with 3 s or 2 min intervals [22, 23], almost every membrane protein is expected to be dynamic,
i.e. to move between time points of image acquisition. We therefore performed fast time lapse
experiments using 1 s intervals (and 0.3 s exposures), or 0.3 s stream acquisitions. Interest-
ingly, dynamics of FloT and of FloA were clearly distinguishable, in that most FloT-YFP sig-
nals moved visibly slower than FloA-YFP signals (compare S2 and S3 Movies), and that more
static FloT-YFP foci than for FloA-YFP were present in cells. In order to quantify the differ-
ences in movement, we automatically tracked and analyzed flotillin foci using Trackmate
(ImageJ plugin) software. Fig 5A shows an example of 9 FloA-YFP tracks, overlaid with the
first frame of the acquisition, in a single cell, and Fig 5B shows the velocity of the 9 trajectories
over time. We used this strategy with a total of 3152 FloA Tracks and 1024 for FloT. Fig 5C
shows 2 cells with about 50 trajectories, whose mean squared displacements (MSDs) are plot-
ted in Fig 5D, revealing that most FloA tracks were dynamic, and only a minority was static. A
comparison of velocities between FloA (Fig 5D) and FloT (Fig 5E) clearly shows that more
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static FloT-YFP foci are present in cells, and that FloA-YFP foci in general showed a higher
degree of movement.

To gain more insight into the nature of flotillin movement, we determined their diffusion
rates. This was done by applying a weighted linear fit to the ensemble mean of all tracked MSD
curves of FloA and FloT (Fig 5F). Weights were chosen to take the number of measurement

Fig 4. Localization of eukaryotic flotillins, imaged by STEDmicroscopy. A) FloA-GFP expressed in Aspergillus
nidulans, B) reggie-1 (flotillin-2)-GFP in HeLa cells, C) Sizes of flotillin assemblies in various organisms, standard
deviation is indicated by bars, n = 50 or more per protein, D) reggie-1 (flotillin-2)-GFP in MCF-7 cells.

doi:10.1371/journal.pgen.1006116.g004
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Fig 5. Dynamics ofBacillus flotillin structures. A) overlay of a bright field image of a single Bacillus cells with the
first frame of fluorescence (green signals) and of 9 trajectories, each having a different colour, of YFP tagged
protein FloA, displayed over a time course of 8 seconds. B) individual mean squared displacement curves of the 9
particles observed (in corresponding colours) C) Example of about 50 tracks in 2 Bacillus cells, which are analysed
in D) MSD curves for FloA; E) MSD curves of FloT for an experiment analogous to that shown in A) and C). F)
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points for each delay time. It is evident that the diffusion of FloA is faster than that of FloT: a
fit to the curves revealed a mean diffusion rate of 0.0056 μm2/s for FloA-YFP, and 0.0018 μm2/
s for FloT-YFP. These data show that FloA is about three times as fast as FloT, while both pro-
teins are factor 3 or 9 slower than the large (500 kDa) Tar receptor of chemotaxis, and factor
3.5 to 5 fold (11 to 16 fold for FloT) slower than two other 190 kDa membrane proteins [40].
These data strongly support the idea that flotillins form large assemblies within and at the
membrane, which move at considerably different speeds.

As a complication in the tracking of membrane proteins, we considered that the speed of
movement of molecules along the circumference of a rod-shaped cell (called “x-axis”) is under-
estimated because of the projection on the observation plane. Molecules moving along the
length of the cell (“y-axis”) move in absolute correlation with the tracks detected by the camera,
while molecules moving in “x”-direction move along a curved surface, and thus travel a longer
distance per time than detected by the observer (camera). In order to quantify the difference in
movement of “X” versus”Y”, we determined MSDs for molecules solely moving in “x” or “y”
direction for several frames. A plot of MSD over time shows that apparent velocities along the
x-axis are considerably smaller than those along the y-axis, for both proteins (Fig 5G and S4B
Fig). Average projected MSD values for FloA-YFP for x-axial movement was 0.0044 μm2/s,
while that for movement in y-direction was 0.0076 μm2/s, and thus about 1.7 fold slower. For
FloT, movement in x was 0.0014 μm2/s, and 0.0024 μm2/s in y, so likewise 1.7 fold lower for x
than for y.

To use a different approach for the quantification of diffusion rates, we scored the distances
travelled between two time points for foci, which yields a plot for the instantaneous velocity
(one time lapse displacement) distribution. Fig 5I shows a much more narrow distribution of
FloT-YFP movement compared with that of FloA-YFP (Fig 5H). For FloA, the tails of the dis-
tribution are visibly broader than for FloT, indicating a higher variance and therefore a higher
diffusion constant of FloA. Diffusion constants can be determined using an unbiased estimator
based on the covariance of single time step displacements [var(v) = 2�D/dt]. We can calculate a
diffusion constant of 0.0069 μm2/s for FloA, and 0.0041 μm2/s for FloT; here, FloA is less than
2 fold faster than FloT. For each analysis, the distribution of instantaneous velocities of FloA
and FloT was also determined along the minor (vx) and major (vy) cell axis. In both plots (Fig
5H and 5I), it is apparent that molecules moving along the x-axis move slower (centre more
around slower movement), while “y”-tracks can reach much higher speeds. For FloA-YFP, this
yields Dx = 0.0057 μm2/s, and Dy = 0.0092 μm2/s. Values for FloT are about two fold lower: Dx

= 0.0028 μm2/s, Dy = 0.0051 μm2/s. Thus, MSDs are 1.6 fold to 1.8 fold higher for the y-axis
than for x-axis, and again two fold higher for FloA than for FloT, in good agreement with the
MSD values determined through the weighted fit of the MSD curves. Given that molecules
travelling in a random fashion along the membrane of a cylinder will travel a mixture of 50%
in x and 50% in y direction, our analysis can be used to correct tracks of membrane proteins
along a tubular bacterium by multiplying all tracks by factor 1.35, as half of the tracks are
underestimated by factor 1.7.

weighted mean over all tracked MSD curves of FloA (3152 tracks, red curve) and of FloT (N = 1024, black curve).
Error bars indicate the confidence of the mean values, (given by the weighted standard deviation, divided by the
number of degrees of freedom). Dotted lines show the fits to the diffusion constants. G) Plot like in panel F), but
differentiated into movement in the y-direction or in the x-direction for FloA-YFP; H) distribution of instantaneous
velocities of FloA and along the perpendicular (vx, blue bars) and longitudinal (vy, red bars) cell axis, No = number.
I) same as H) for FloT. For FloA, the tails of the distribution are visibly broader than for FloT, indicating a higher
variance and therefore a higher diffusion constant of FloA.

doi:10.1371/journal.pgen.1006116.g005

Organisation of the Bacterial Membrane into Distinct Microdomains

PLOS Genetics | DOI:10.1371/journal.pgen.1006116 June 30, 2016 13 / 29



Our experiments rule out the existence of a common structure formed by the flotillin para-
logs. The considerably different diffusion rates are not compatible with an interaction of flotil-
lins for more than few milliseconds.

Flotillin structures can meet and cover the Bacillus surface with their
movement in a time frame of 1 to 1.5 minutes
With the size of flotillin assemblies at hand and their determined diffusion rate, we can quan-
tify the likelihood of an encounter of the flotillin assemblies within the membrane, which may
then exchange interaction partners. Alternatively, if flotillin assemblies are platforms for the
organization of membrane proteins that have been inserted and are then released to diffuse by
themselves (e.g. KinC), we can estimate the time it takes for assemblies to cover the membrane
surface via random movement. Towards this end, we quantified the number of FloT-YFP and
of FloA-YFP assemblies in 50 cells, using deconvoluted G-STED images. During exponential
growth, cells contained 8.6 ± 2.2 (SD, n = 50) foci of FloT on one side of the cell, and 12.3 ± 4.1
(SD, n = 50) of FloA. Thus, in total, cells have 17 FloT and 25 FloA assemblies on their mem-
brane surface.

The surface of Bacillus is about 9 μm2, given that cells are on average 3 μm long (2 to 4 μm)
and 1 μm thick (leaving out the polar regions). If the surface is divided by the number of pro-
teins, each FloA assembly will have an area of 0.36 μm2 for itself, or a square with a side length
of 0.6 μm. Given a diffusion constant of (average of the covariance method and the MSD fit
times 1.35) 0.0084 μm2/s, the protein will need about 43 s on average, in order to meet another
FloA assembly. The size of 80 nm for FloA assemblies means that their size is of minor impor-
tance, because on average, there are 600 nm of space between FloA assemblies that need to be
bridged via random diffusion for a much smaller sized object. This would change considerably
if flotillin assemblies had a larger size, e.g. closer to the diffraction limit of conventional light
microscopy (250 nm); such large assemblies would “meet”much more often. In other words, it
will take about three quarters of a minute for all FloA assemblies to largely cover the surface of
a Bacillus based on their diffusion. For FloT (average corrected diffusion rate 0.004 μm2/s), the
average time to “meet” is accordingly 90 s. A static membrane-associated protein would thus
be picked up by a flotillin T assembly in one and a half minutes on average.

FloT forms a common protein domain with NfeD2, but not with FloA or
with other DRM-associated proteins
KinC plays an important role in signal transduction during cell differentiation and biofilm for-
mation, and has been shown to colocalize with FloT and with FloA [26]. A C-terminal fusion
to KinC has been shown to support all known functions of the protein [26]. When imaged in
G-STED, KinC-YFP formed foci with an average diameter of 68.7 nm ± 6.6 nm (SD) (Fig 1F).
Based on the finding that KinC-YFP foci disappear after the loss of FloA and of FloT, and were
proposed to colocalize with flotillins [26], these data suggest that KinC is part of the 70 nm
FloT and/or FloA structures. However, when we imaged KinC-YFP together with FloA-CFP or
with FloT-CFP (expressed at low level from an ectopic site on the chromosome, such that the
average number of foci did not increase), even using conventional confocal microscopy and
deconvolution (for the removal of background fluorescence), we found only a minor degree of
colocalization. We took advantage of the “between lines” acquisition mode during confocal
microscopy, in which each line is first scanned with one laser line and then with the second,
before moving to the next line, thereby avoiding a drift of signals between the acquisition of the
two channels. Lines are scanned with 400 Hz, i.e. the interval between channel acquisition is
2.5 ms. Our experiments clearly establish that KinC rarely colocalized with FloA: only 3% of
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the signals showed an overlap (Fig 6A, S5 Fig, 220 cells analysed). Colocalization with FloT was
4% (Fig 6C, S5 Fig, 200 cells analysed), indicating that more than 90% of KinC signals do not
colocalize with any flotillin, given that FloT and FloA do not colocalize [23], which can be seen
in Fig 6B (less than 2% colocalization). Therefore, flotillins have a similar size as KinC assem-
blies, but cannot be the architectural basis of the latter. Our data clearly rule out that flotillins
and KinC are part of the same “microdomain” structures, and show that flotillins do not have
an appreciable spatial overlap, as has been proposed before [27, 28].

We analysed a second protein, NfeD2, that has been described to colocalize with flotillins
(FloT), and whose localization into discrete foci depends on FloT [23]. NfeD2 is cotranscribed
with floT (yuaG), which is a common feature of NfeD encoding genes. NfeD2-YFP also formed
defined foci, however, with an average size of 94.9 nm ± 10.1 nm (SD) (Fig 1G), which are con-
siderably larger than the structures of its associated partner, FloT. In the absence of FloT, no
defined NfeD2-YFP assemblies were visible, but only delocalized fluorescence throughout the
membrane was detectable [23]. On the other hand, more than 96% of FloT-YFP and NfeD2-
CFP colocalized (Fig 6D, S5 Fig), and consequently, NfeD2 must be part of the (85 nm sized)
assemblies of FloT. Given the larger size of NfeD2 assemblies, it appears that the protein forms
an outer “rim” around the FloT structure. We also tested the effect of a deletion of nfed2 on the
localization of FloT-YFP. Although the visual impression of FloT-YFP foci in epifluorescence
was that of more foci with less intensity [23], FloT-YFP foci still had an average size of 85 nm
(S5C Fig). Thus, the absence of NfeD2 has no visible effect on the structure of FloT assemblies.
We wondered if NfeD2 provides an important function for the activity of FloT assemblies. An
nfeD2 deletion has no discernable phenotype [23]. To test if the lack of NfeD2 has a cryptic
effect, we generated a floA nfeD2 double mutant strain, because the absence of FloA and FloT
leads to a strong phenotype, in contrast to single floA, floT or nfeD2 deletions [23]. However,
floA nfeD2 double mutant cells did not reveal any discernable defect in growth or in cell mor-
phology (S5E Fig), revealing that NfeD2 is not essential for the known functions of FloT (i.e. it
does not impair the functions that lead to the synthetic phenotype with FloA). In any event,
NfeD2 is a clear example of a protein that colocalizes with a flotillin, showing that the rare flo-
tillin/KinC co-localization is not a technical artifact.

Based on the different dynamics of flotillin paralogs, we investigated the putative interaction
partners NfeD2-YFP and KinC-YFP using time lapse microscopy. While NfeD2-YFP showed
similarly slower movement like FloT (S5 Movie), KinC-YFP signals moved much faster than
FloT assemblies (S4 Movie). Thus, NfeD2 will track with FloT, because of the major degree of
colocalization of the two, while KinC will not track with FloT, because of the different dynam-
ics, reinforcing the non-significant colocalization between the proteins.

The lack of colocalization between flotillins and KinC prompted us to perform dual colour
imaging with further proteins that have been described to be co-isolated with FloT and/or
FloA, and to co-localize with flotillins based on epifluorescence microscopy [27, 28]. We chose
FtsH and SecA, because both proteins perform vital functions for the physiology of the cell,
and because both proteins have been described to belong to the DRM fraction. Interestingly,
the absence of both, FloT and FloA has been shown to lead to a depletion of FtsH from the cell
membrane [28]. We used FP fusions that have been shown to functionally replace the wild type
proteins [27, 28, 41], and which also in our hands do not show a discernable phenotype when
expressed as sole copy from the original gene locus. S6A Fig shows that there is some degree of
colocalization between FloT-CFP and FtsH-YFP (5% of foci), and between FloA-CFP and
FtsH-YFP (Fig 6F, S6C Fig, 6% colocalization). Flotillins and FtsH were frequently found to be
present at sites of cell division (S6A and S6B Fig), in agreement with the findings that both
types of proteins play an important role in cell division [23, 42]. These experiments suggest
that the vast majority of flotillin assemblies do not form a common structural assembly with
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Fig 6. Localization of flotillins and associated protein in exponentially growingB. subtilis cells expressing two
protein fusions. A) FloA-CFP and KinC-YFP, Nomarski-DIC, overlay of Nomarski-DIC, FloA-CFP (green) and KinC-YFP. B)
FloT-CFP, FloA-YFP, overlay of Nomarski-DIC and FloT-CFP (red) and FloA-YFP (green). C) KinC-YFP, FloT-CFP, overlay
of Nomarski-DIC and KinC-YFP (red) and FloT-CFP (green). D) NfeD2-YFP and FloT-CFP, overlay of Nomarski-DIC and
NfeD2-YFP (red) and FloT-CFP (green). E) SecA-YFP and FloT-CFP, overlay of Nomarski-DIC and SecA-YFP (red) and
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FtsH. As a control, we analysed if FloT would colocalize with itself, using two FloT alleles that
are fused to CFP or to YFP, respectively. S6F Fig shows that both populations mixed, to yield
more than 90% colocalization. We tested three further proteins that were reported to interact
with flotillins: histidine kinases PhoR and ResE, and oligopeptide permease OppA [43]. S7 Fig
shows representative images of dual colour experiments. 4.5% of OppA-YFP foci colocalized
with FloT-CFP (S7A Fig, 118 cells analysed), 6% of RecE (S7B Fig, 90 cells analysed) and 7% of
PhoR-YFP (S7D Fig, 78 cells analysed each). 12% of PhoR-YFP signals colocalized with
FloA-CFP (S7C Fig, 43 cells analysed). These data show that flotillins colocalize with other
membrane proteins in few cases, and the majority of flotillin domains do not contain any visi-
ble numbers of membrane proteins we have tested.

DRM proteins move through the membrane along different paths
To further support the finding that flotillins and other DRM proteins form distinct microdo-
mains, and to investigate if transient interactions exist between DRM proteins, we performed
two colour time lapse experiments. Joint formation of protein microdomains would mean co-
migration of signals, while absence of joint movement would agree with the existence of gener-
ally separate entities. Fig 6F shows two intervals of such an experiment, where a colocalization
event between FloA and FtsH (upper panel) no longer exists after 200 ms (lower panel), while
in the second interval, a colocalization can be seen at a different place in the cell. S6 Movie
shows that the overwhelming majority of signals do not move together, in agreement with the
low degree of colocalization seen in the snap shot images. Similarly, FloT-CFP and FtsH-YFP
did not move together in a detectable manner (S7 Movie), and in agreement with a lack of colo-
calization, FloT and KinC did not show movement of common domains between 200 ms
acquisitions (S8 Movie).

The highest degree of colocalization was seen for FloT-CFP and SecA-YFP (22% of the foci,
Fig 6E), and between FloA-CFP and SecA-YFP (15%, S6D Fig). However, also in this case, a
majority of foci did not colocalize, showing that flotillin T and SecA do not generally form
mixed protein structures. We also performed dual colour time lapse microscopy, revealing that
the majority of FloT-CFP and SecA-YFP foci moved independently from each other (S9
Movie). A significant number of foci coincided during image acquisition, but we never detected
co-migration for more than 2 frames. Thus, FloT and SecA interactions also take place in the
sub-second range. It should be noted that colocalization does not necessarily mean interaction,
because the protein domains may be within a range of 250 nm (resolution of conventional light
microscopy) but not completely coincide based on their size of less than 100 nm. As such, the
numbers determined in our analysis are an overestimate of possible interactions. Contrarily,
FloT-CFP signals invariably moved together with NfeD2-YFP signals (S10 Movie), while FloT
and FloA did not track together as expected (S11 Movie).

DRM proteins move through the membrane with different velocities
We automatically tracked FloA-YFP, FloT-YFP, FtsH-YFP and SecA-YFP, and compared their
dynamics using cumulative probability distributions of diffusion coefficients. Fig 7 shows that
FloA, FloT and FtsH had clearly distinguishable dynamics, resulting in different diffusion con-
stants as indicated by the vertical lines. Note that the small number of negative diffusion coeffi-
cients occur due to the statistical nature of the covariance based estimator (CVE). SecA interacts

FloT-CFP (green), F) overlay of FtsH-YFP (green) and FloA-CFP (red), images of the two panels were taken with an interval
of 200 ms. White triangles indicate cases of colocalization, white bars 2 μm.

doi:10.1371/journal.pgen.1006116.g006
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with the SecYEG translocon, and shows very similar dynamics as FloT. However, based on the
colocalization experiments, this cannot be taken as an argument that the proteins move together
in a common microdomain. In agreement with the basal level of colocalization of FloA, FloT
and of FtsH, and between FloA and SecA, the different diffusion kinetics show that each pro-
teins moves with a different characteristic speed through the membrane.

These experiments validate our findings that flotillins do not form joint microdomains with
proteins that have been co-isolated by special detergent conditions (KinC, FtsH, SecA, ResE,
PhoR or OppA) for more than few milliseconds, supporting the idea that FloT forms a com-
mon structure with NfeD2 (many flotillin genes lie adjacent to genes coding for NfeD pro-
teins), and suggest a close connection between flotillins and the Sec system compared with
other tested proteins.

Discussion
Membranes in eukaryotic cells have been shown to contain asymmetries in lipid composition,
and to contain nanoscale, cholesterol-assisted, dynamic and selective protein assemblies, which

Fig 7. Cumulative probability distributions of diffusion coefficients for different proteins. The diffusion coefficient for each observed track is
calculated using a covariance based estimator (CVE) as proposed in [48] and the empirical cumulative probability distribution of the resulting coefficients
is calculated. The distribution of FloT shows a steep rise at small diffusion coefficients, indicating slower dynamics compared to FloA. Vertical lines mark
the mean value of each distribution.

doi:10.1371/journal.pgen.1006116.g007
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can coalesce into larger and more permanent “raft” structures [44]. Such mixed protein
domains have been shown to play important roles in TCR signalling, HIV assembly, endoplas-
mic reticulum (ER)-to-Golgi and post- Golgi trafficking to the cell surface, and glycosphingoli-
pid mediated endocytosis. In bacteria, a variety of membrane proteins has been reported to
form visible clusters in the cell membrane, and the existence of raft structures or functional
microdomains has been deduced from the finding that a fraction of Triton-insoluble proteins
exists (so called detergent resistant microdomains, DRMs), which can be co-isolated with flotil-
lins [27, 28]. The latter protein family is conserved between bacteria and eukaryotes, is found
in the DRM fraction in both cell types, and is associated with raft structures in eukaryotic cells,
where it is involved in the clustering of membrane proteins and in various aspects of mem-
brane trafficking [8, 45]. Our study was performed to determine the actual size of flotillin and
DRM protein clusters in living cells, to investigate the dynamics of clusters within the mem-
brane, and to investigate if the two flotillin proteins in B. subtilis, FloA and FloT form joint
clusters with other DRM proteins.

A major conclusion from our in vivo analyses is the finding that protein clusters formed by
flotillins in bacteria, in a fungus and in human cells have a relatively defined size of 85 to 110
nm, and that likewise, DRM protein KinC forms structures of a similar diameter. However,
FloT and FloA do not colocalize with each other, and colocalize only with a minority of FtsH,
SecA or KinC assemblies. These findings are substantiated by the determination of the move-
ment of bacterial flotillins, whose dynamics are different by a factor of 2, revealing that the pro-
teins do not track together. Time lapse experiments show that FloT or FloA assemblies do not
co-migrate with any of the other investigated proteins, the exception being the co-migration of
FloT and NfeD2, which shows a tight connection for these two proteins, in agreement with a
conserved connection of the genes in many organisms [9]. Therefore, our study reveals the
existence of protein domains in the sub-100 nm range, which show independent movement,
and rule out the generation of large multiprotein clusters generated by flotillins, at least in case
of the investigated proteins. Co-localization events between flotillins and other membrane pro-
teins are observed for 200 ms intervals, showing that putative interactions between the domains
are highly dynamic and transient; it must be noted that the domains may not even physically
interact but merely move past each other. Therefore, integral membrane proteins that are co-
isolated based on insolubility to cold Triton extraction do not necessarily form joint microdo-
mains, but assemble into largely distinct multiprotein clusters of a characteristic size. It should
be noted, that our confocal and epifluorescence microscopy experiments visualize bulk protein,
not individual molecules. It is therefore possible, that flotillin microdomains contain few mole-
cules of other proteins. In other words, our analyses do not rule out that a fraction of a given
protein can be found within different microdomains, and that proteins may partition into dif-
ferent membrane domains based on diverse affinities.

Interestingly, the size of flotillin clusters was relatively robust against changes in specific
lipid environment of the proteins. Under conditions of low levels of cardiolipin, lack of phos-
phatidyl-ethanolamine, of lysylphosphatidyl-glycerol or of glycolipids, we still observed the
generation of 100 nm flotillin domains, suggesting that protein/protein interactions play a
major role in the formation of these structures. This is corroborated by our in vitro studies in
which purified soluble FloA forms up to 70 nm large structures visualized by electron micros-
copy, indicating that the assembly of flotillin structures is largely driven by protein/protein
interactions. The apparent robustness of microdomain formation against lipid perturbations
notwithstanding, it is possible that flotillins themselves organize a specific lipid microenviron-
ment that is important for their as yet unknown function. It will be important to determine in
how far lipids affect the formation of assemblies of other membrane proteins.
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Flotillin/reggie proteins are involved in several membrane-dynamics in eukaryotic cells, and
play an important role in the physiology of bacteria. Absence of both flotillins from B. subtilis
leads to compromised growth, loss of proper cell shape and a defect in cell division, besides
reduction in motility [23, 30]. None of these severe phenotypes are observed in the absence of a
single flotillin, which has been used to support the idea that the two proteins form joint raft
structures and recruit e.g. signaling molecules to the microdomains. Our results clearly show
that the important function(s) of flotillins is mediated by two independently localizing and
moving fractions, and that therefore, the two paralogs are functionally distinguishable.

FloT recruits NfeD2 into a joint assembly, suggesting that the two proteins cooperate in
these assemblies, however, we show that the presence of NfeD2 does not have a strong influ-
ence on the function of FloT, based on the lack of any phenotype in the absence of FloA and of
NfeD2. Multimerization is inherent to flotillins, based on the assembly of the soluble part of
FloA into large oligomers in vitro, which are rather stable. Although there is a dynamic
exchange of flotillin multimers and the smallest subunits formed (most likely tetramers), the
equilibrium lies far on the side of polymer formation. Determination of subunit stoichiometry
of FloT-YFP in living cells showed that the assemblies consist of at least 12 monomers, whose
exchange occurs in a range of seconds. The diffusion of flotillins, especially of FloT, is very
slow compared with other bacterial membrane proteins, in agreement with the large number
of flotillin monomers within the assemblies. Based on our calculation it takes flotillins between
45 to 90 seconds to “scan” the entire surface of a rod shaped bacterium. Therefore, it is likely
that flotillins respond rapidly to their substrates or binding partners, for example assuming
that flotillins aid in the insertion of proteins such as FtsH into the membrane [28].

We show that the movement of molecules on the curved surface of a rod-shaped organism
differs dependent on the direction of movement, which is underestimated by a factor of 1.7 in
case of B. subtilis (diameter of 1 μm) when molecules move perpendicular to the long cell axis
(“x”) compared to the longitudinal movement (“y”). As on average, molecules move 50% in x
and 50% in y direction in case of random diffusion (which is the case for flotillins and for all
DRM proteins), a factor of 1.35 can be used to correct for the curvature-caused underestima-
tion of diffusion. This calculation can be used for all cells having a similar diameter as B. subti-
lis, and can be adapted to other cell diameters for accurate calculations of protein dynamics.
Our calculation that flotillin microdomains meet in the range of seconds is an important tool
to determine interaction kinetics of protein microdomains within the cell membrane in bacte-
ria. An analogous function concerning the activity of eukaryotic flotillins, i.e. the targeted deliv-
ery of bulk membrane and specific membrane proteins from internal vesicle pools to
strategically important sites has been suggested [8].

If bacterial flotillins do not act as a molecular scaffold within the membrane, what may be
their function? In the absence of flotillins, cells suffer from many defects, such as membrane
abnormalities, loss of proper cell shape, defects in cell division and in motility, and a delay in
sporulation [22, 23, 30]. We propose a model in which bacterial flotillins act as membrane
insertion-helpers for membrane proteins that require a special lipid environment. We suggest
that flotillins transiently interact with the secretion machinery during the insertion of e.g. KinC
and FtsH. This is supported by our finding that FloT shows the strongest degree of colocaliza-
tion with SecA, the central component of the secretion machinery. Also, the depletion of FloT
and of FloA has been shown to lead to a strong reduction of the amount of FtsH within the
membrane [28], which is most easily explained through a defect in insertion, unless FtsH
becomes more prone to degradation in the absence of flotillins. Since there is a large number of
FtsH assemblies that does not colocalize or co-migrate with flotillins, the latter scenario seems
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rather unlikely. With regard to their different diffusion rates, FloT would be engaged in mem-
brane insertion for longer periods of time, while FloA would be quicker and more abundant to
meet with insertion islands.

Tracking of flotillins, of FtsH and of SecA demonstrated distinct diffusion kinetics for each
protein. Therefore, our data reveal the existence of protein domains consisting of clusters of
the same protein, which in case of flotillins, KinC, SecA and FtsH do not overlap, and are only
transiently in close proximity enabling an interaction, which can take place in the range of few
hundred milliseconds. Our findings have a profound impact on our view of the mode of move-
ment and interaction of membrane proteins and of the organization of DRM proteins. It will
be important to investigate the overall movement of many membrane proteins to obtain a clear
view on the two dimensional organization and dynamics of membrane proteins.

Materials and Methods

Construction of strains
For expression of soluble 6xHis-FloA, the coding sequence lacking the first 10 codons was
amplified by PCR using chromosomal DNA from the B. subtilis wild type strain PY79. The
fragment was further integrated in the expression vector pET24d (Novagen) by NcoI and
BamHI restriction ligation and brought into the expression host E. coli BL 21 (DE3) giving rise
to the strain FD380. For expression of soluble Strep-FloA, the coding sequence (minus the first
10 codons) was amplified by PCR (the upstream primer contains the Strep tag sequence) using
chromosomal DNA from B. subtilis PY79. The fragment was inserted into pET24d by NcoI
and BamHI restriction ligation and the resulting plasmid was introduced into the expression
strain E. coli BL21 (DE3), yielding strain AHV11.

KinC was visualized as a KinC-YFP fusion protein expressed at the original locus. The last
500 bp coding for kinC were integrated into the vector pSG1164-YFP, using ApaI and EcoRI
restriction sites, and PY79 cells were transformed with this construct, selecting for cm resis-
tance (leading to strain FD326). For colocalization studies, floA-cfp was integrated at amyE
locus (by the use of the plasmid pSG1192 [46] and expression was controlled by xylose addi-
tion. The resulting strain (AS34, floA-cfp::amyEspecR) was transformed with chromosomal
DNA of strain FD326 leading to a strain AS38 expressing KinC-YFP and FloA-CFP. To investi-
gate colocalization of KinC and FloT, floT-cfp was integrated at the amyE locus under the con-
trol of the Pxyl promoter in the strain FD326, giving rise to AS49. For SecA and FtsH,
analogous strategies were used. 500 bp of the 3’ end of each gene were integrated into
pSG1164, using ApaI and EcoRI sites, and the resulting strains were transformed with chromo-
somal DNA from strains AS34 (floA-cfp::amyEspecR) or from AS49 (kinC-yfpcatR floT-cfp::
amyEspecR), selecting for spec resistance. Similarly, for the colocalization of OppA, of ResE or
PhoR with FloT or with FloA, chromosomal integrants were generated expressing OppA-YFP,
ResE-YFP or PhoR-YFP, and were transformed with DNA from the strains expressing
FloA-CFP or FloT-CFP from the amylase locus.

For the generation of lipid mutant strains expressing FloA-YFP or FloT-YFP, strain 168
containing either deletions in clsA, or in pssA, or in ugtP, or inmprF, were transformed with
chromosomal DNA from strain AS34 (floA-cfp::amyEspecR) or from strain AS49 (kinC-yfpcatR

floT-cfp::amyEspecR), selecting for spectinomycin resistance. As control strain, B. subtilis 168
was transformed with chromosomal DNA from strains FD191 (floA-yfpcatR) or from FD295
(floT-yfpcatR), giving rise to FloA-YFP or FloT-YFP expressing 168 wild type strains. All strains
are listed in Table 2.
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Table 2.

Strain Genotype Reference

PY79 Wild type

DH5α fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 gyrA96 recA1
relA1 endA1 thi-1 hsdR1

NEB

BL21 fhuA2 [lon] ompT gal (λ DE3) [dcm] ΔhsdS New England Biolabs
(NEB)

FD380 BL21 pET24d 6his-floAsol This study

AHV11 BL21 pET24d strep-floAsol This study

FD326 kinC-yfpcatR This study

FD191 floA-yfpcatR [29]

FD295 floT-yfpcatR [29]

FD350 floT-cfpcatR yuaF-yfpcatR::tetR [29]

FD124 nfeD2-yfpcatrR [29]

SNT122 floA-gfp [19]

AS34 amyE::psg1192 floA-cfpspecR This study

AS49 kinC-yfpcatR floT-cfpspecR This study

AS38 kinC-yfpcatR floA-cfpspecR This study

FD175 floT-yfpcatR yuaF::SpC [29]

AS66 floT-cfpcatR secA-yfpcatR::tetR This study

AS61 secA-yfp This study

AS51 ftsH-YFP This study

AS53 floT-cfpcatR ftsH-yfpcatR::tetR This study

AS52 floA-cfpcatR ftsH-yfpcatR::tetR This study

AS56 floA-cfpcatR floT-yfpspecR This study

FD506 floT-yfpcatR, floT-cfpspecR This study

FD344 floT-cfpcatR floA-yfpcatR::tetR [29]

168 trpC2 Laboratory strain

HB5346 ugtP::MLS [34]

HB5347 clsA/ymnE::tet [34]

HB5361 pssA::spec [34]

HB5337 mprF::kan [34]

CR1 ugtP::MLS floA-yfpcatR This study

CR2 ugtP::MLS floT-yfpcatR This study

CR3 pssA::spec floA-yfpcatR This study

CR4 pssA::spec floT-yfpcatR This study

CR5 mprF::kan floA-yfpcatR This study

CR6 mprF::kan floT-yfpcatR This study

CR7 floA-yfpcatR This study

CR8 floT-yfpcatR This study

CR9 clsA/ymnE::tet floA-yfpcatR This study

CR10 clsA/ymnE::tet floT-yfpcatR This study

AHV17 floT-cfpspecR, resE-mVyfpcatR This study,

AHV18 floT-cfpspecR, oppA-mVyfpcatR This study

AHV19 floA-cfpspecR, phoR-mVyfpcatR This study

AHV20 floT-cfpspecR, phoR-mVyfpcatR This study

doi:10.1371/journal.pgen.1006116.t002
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Cell growth and microscopy
Cells were grown to late exponential or stationary phase in LB rich medium containing the
appropriate antibiotics at 37°C and under aeration. Xylose was supplemented to induce expres-
sion of proteins downstream of the fusion protein at original locus (0.5% (w/v)) or the fusion
protein itself at amyE locus (0.01% (w/v)). For microscopy, 2.5 μl of the culture were spotted
on a coverslip and immobilized by an agarose pad (1% agarose (w/v) in S750 glucose minimal
medium). STED microscopy was performed at a Leica SP8 LSM confocal microscope equipped
with a 100X objective (NA 1.4) and a 592 nm depletion laser. Fluorophores were excited with a
pulsed white light laser source at 514 or 488 nm respectively. Photon emission was detected
with gated hybrid detectors at the appropriate wavelength. Images were processed with the
Leika LAS AF software and where stated deconvolution was performed using the Huygens-
algorithm (SVI). For colocalization studies, images were acquired simultaneously, by scanning
each line first in the YFP (514 nm) than in the CFP (457 nm) channel. Epifluorescence micros-
copy was done using a Zeiss Axio Imager A1 equipped with an EVOLVE EMCCD camera
(Photometrics) and a TIRF objective with an aperture of 1.45, acquiring images with VisiView
(2.1.2, Visitron, Munich) software and using a 515 nm laser for YFP detection and a 445 nm
laser for CFP detection. For the determination of subunit numbers, a 514 nm diode laser was
directly incorporated into the microscope and was focused on the back focal plane, such that a
roughly 5 x 5 μm2 illumination spot is generated in the focal plane. Images were acquired by
frame transfer stream acquisition, with exposure times of 20 ms, by a Hamamatsu Image EM2
EM-CCD camera.

The A. nidulans strain, SNT122, expresses FloA tagged with GFP at the C-terminus under
the native promoter [19]. Spores of the strain were inoculated in minimal medium + 2% glu-
cose (w/v) and were incubated at 30°C overnight.

MCF-7 and HeLa cells were cultured at 37°C and 5% CO2 in MEM and DMEM respectively,
supplemented with 10% FCS, L-glutamine and penicillin/streptomycin. Transfection was car-
ried out using the lipofectamine 2000 transfection reagent (Life Technologies) following the
manufacturer’s instructions and cultured for 48 h on poly-L-lysine coated coverslips. Cells
were fixed with 4% PFA and prepared for microscopy using Mowiol (Sigma Aldrich). The
Reggie-1-EGFP (flotillin-2) vector was described previously [2].

Protein tracking and estimation of diffusion coefficients
Protein movement was recorded using time lapse microscopy with a frame rate of 1 frame per
second and a faster rate of 3 frames per second. The protein positions were tracked using
Trackmate, a plugin of the image analysis software ImageJ. The resulting tracks were corrected
for drift, to account for movement of the whole cell during acquisition.

To distinguish between movement along (y—direction) and normal (x—directions) to the
cell axis, the position and orientation of each observed cell was recorded and corresponding
protein tracks were transformed into the coordinate system of the cell.

Diffusion coefficients were obtained using a weighted linear fit of the ensemble mean square
displacement curve. Since data points in the MSD curve are highly correlated [47], only the
first three points were used in the fit. A second method based on the analysis of the distribution
of one time lapse displacements [48] was applied to confirm the results obtained by MSD
analysis.

Protein purification
The soluble part of FloA (amino acids 56–331 complemented with a C-terminal Trp residue
for better visibility at 280 nm) was first C-terminally fused to a 6xHis tag in the pET24d vector

Organisation of the Bacterial Membrane into Distinct Microdomains

PLOS Genetics | DOI:10.1371/journal.pgen.1006116 June 30, 2016 23 / 29



(Novagen) and purified by Ni-NTA affinity chromatography. The protein was heterologously
expressed in E. coli BL21 (DE3) cells overnight at 30°C by addition of lactose (1.75% (w/v)),
cells were collected by centrifugation and the pellet was resuspended in 30 ml of buffer A (20
mMHEPES, 250 mMNaCl, 20 mMMgCl2, 20 mM KCl, 40 mM imidazole, pH 8). Then the
cells were broken in a Microfluidizer (Microfluidics) and the soluble and insoluble fractions
were separated by centrifugation (30 min at 30000 g at 4°C). The supernatant was loaded onto
a His-Trap column (GE Healthcare), washed with buffer A and the protein eluted with buffer
B (buffer A with 500 mM imidazole).

For the analysis without His-tag, the soluble part of FloA was C-terminally fused to a Strep-
tag (substituting the His-tag sequence by the Strep-tag sequence in pET24d) and purified by
Strep-Tactin affinity chromatography. An E. coli BL21 (DE3) strain harboring the pET24d-
floAstrep plasmid was grown in LB media at 37°C until mid-exponential phase. Then the over-
expression of FloAstrep was induced by the addition of 1 mM IPTG to the culture and incu-
bated for 2 h at 37°C. Cells were collected by centrifugation, the pellet was resuspended in 40
ml of TE-based buffer (100 mM Tris-Cl, 1 mM EDTA, 150 mMNaCl, pH 8) and the cells were
broken by passage through a French Press. The soluble fraction was obtained by centrifugation
(30 min at 16000 rpm and 4°C) and loaded onto a Strep-Tactin column (Thermo, IBA). The
column was washed with TE buffer with 150 mM, 300 mM and 500 mMNaCl and the protein
eluted with elution buffer (100 mM Tris-Cl, 1 mM EDTA, 150 mMNaCl, 2.5 M D-Desthiobio-
tin, pH 8).

For further purification and analysis of oligomerization, both FloA6His and FloAstrep were
subjected to size exclusion chromatography. The FloA6His protein was loaded in a HiLoad 26/
600 Superdex 200 pg column and run at 1.5 ml/min in an HEPES-based buffer (20 mM
HEPES, 200 mMNaCl, 20 mMMgCl2, 20 mM KCl, pH 7.5), while the FloAstrep protein was
loaded in a Superose 6 10/300 GL column and run at 0.5 ml/min in Tris buffer (100 mM Tris-
Cl, 150 mMNaCl, pH 7.5).

Folding was analyzed by CD-spectrometry and oligomerization was also determined by a
sucrose density gradient (5–20% (w/v)) ultracentrifugation (32500 rpm 4°C, 20 h, rotor
SW40Ti, Beckman Coulter Optima XPN-80 centrifuge).

Electron microscopy
Carbon coated copper grids (400 mesh) were hydrophilized by glow discharging (PELCO easi-
Glow, Ted Pella, USA). 5 μl of a protein suspension with a concentration of 15 μg/ml was
applied onto the hydrophilized grids and stained with 2% uranyl acetate after a short washing
step with H2Obidest. Samples were analyzed with a JEOL JEM-2100 transmission electron
microscope using an acceleration voltage of either 80 or 200 kV. For image acquisition a F214
FastScan CCD camera (TVIPS, Gauting) was used.

Supporting Information
S1 Movie. Single molecule microscopy, stream acquisition (20 ms frames) of cells express-
ing FloT-YFP as sole source of the protein, 50 frames/s.
(AVI)

S2 Movie. Exponentially (late stage) growing B. subtilis cells expressing FloA-YFP from the
original gene locus, 400 ms time intervals, shown are 6 frames/s.
(AVI)
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S3 Movie. Exponentially (late stage) growing B. subtilis cells expressing FloT-YFP from the
original gene locus, 400 ms time intervals, shown are 6 frames/s.
(AVI)

S4 Movie. Exponentially (late stage) growing B. subtilis cells expressing KinC-YFP from the
original gene locus, 400 ms time intervals, shown are 6 frames/s.
(AVI)

S5 Movie. Exponentially (late stage) growing B. subtilis cells expressing NfeD2-YFP from
the original gene locus, 400 ms time intervals, shown are 6 frames/s.
(AVI)

S6 Movie. Exponentially (late stage) growing B. subtilis cells expressing FloA-CFP from the
amy locus and FtsH-YFP from the original gene locus, 200 ms time intervals, shown are 6
frames/s.
(AVI)

S7 Movie. Exponentially (late stage) growing B. subtilis cells expressing FloT-CFP from the
amy locus and FstH-YFP from the original gene locus, 200 ms time intervals, shown are 6
frames/s.
(AVI)

S8 Movie. Exponentially (late stage) growing B. subtilis cells expressing FloT-CFP from the
amy locus and KinC-YFP from the original gene locus, 200 ms time intervals, shown are 6
frames/s.
(AVI)

S9 Movie. Exponentially (late stage) growing B. subtilis cells expressing FloT-CFP from the
amy locus and SecA-YFP from the original gene locus, 200 ms time intervals, shown are 6
frames/s.
(AVI)

S10 Movie. Exponentially (late stage) growing B. subtilis cells expressing FloT-CFP from
the amy locus and NfeD2-YFP from the original gene locus, 200 ms time intervals, shown
are 6 frames/s.
(AVI)

S11 Movie. Exponentially (late stage) growing B. subtilis cells expressing FloA-CFP from
the amy locus and FloT-YFP from the original gene locus, 200 ms time intervals, shown are
6 frames/s.
(AVI)

S1 Fig. G-STEDmicroscopy of FloA-YFP or of FloT-YFP in different lipid mutant B. subti-
lisW168 strains during exponential growth. A) FloA-YFP in wild type cells, B) FloA-YFP in
glycolipid mutant cells (ΔugtP), C) FloA-YFP in cardiolipin mutant cells (ΔclsA), D) FloA-YFP
in lysylphosphatidyl-glycerol mutant cells (ΔmprF), E) FloA-YFP in phosphatidyl-ethanol-
amine cells (ΔpssA), F) FloT-YFP in lysylphosphatidyl-glycerol mutant cells (ΔmprF), G) Flo-
T-YFP in phosphatidyl-ethanolamine cells (ΔpssA), H) FloT-YFP in glycolipid mutant cells
(ΔugtP). White bars 2 μm.
(JPG)

S2 Fig. Analytical gel filtration (GF) analysis of soluble Strep-FloAsp. A) GF of Strep-FloAsp
after Streptavidin affinity chromatography. HMW (high molecular weight) fractions A3 to A8,
low molecular weight (LMW) fractions A10 and A11. Fractions in panels showing SDS-PAGE
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correspond to elution fractions in GF. B) GF of the HMW fraction. Different dilutions of the
fraction are marked by different colours. C) GF of the LMW fraction. Because of the low yield
of this fraction, it was not diluted but rather concentrated (indicated by different colour lines)
to investigate concentration-dependent behavior of fraction formation.
(JPG)

S3 Fig. Electron microscopy (negative staining) of the HMW fraction (S2 Fig), showing the
different-size particles formed by soluble FloA
(JPG)

S4 Fig. Particle tracking of FloA-YFP and of FloT-YFP. A) Two examples of FloA-YFP foci
(green, overlaid with bright field acquisition) that are tracked over a time of 8 seconds. B) MSD
plot for FloT, differentiated into x- and y-movement.
(PPTX)

S5 Fig. A) Colocalization of FloT-CFP and NfeD2-YFP, B) Scarce colocalization of FloA-CFP
and KinC-YFP, C) localization of FloT-YFP in an nfeD2 deletion background, D) Scarce colo-
calization of FloT-CFP and of KinC-YFP. E) Double floA nfeD2mutant cells. Colours of foci in
overlays correspond to the single channels. Scale bars 2 μm.
(JPG)

S6 Fig. Dual colour imaging of B. subtilis cells. A) Confocal microscopy. FloT-CFP rarely
colocalizes with FtsH-YFP. The white triangle indicates the presence of a division site, where
both proteins frequently localize. B) Chain of cells with several cases of colocalization of both
proteins, as seen by the yellow colour in the overlay (indicated by white triangles). Colours of
foci in the overlay correspond to the colour of the labelled protein. C) Cases of colocalization of
FloA-CFP and FtsH-YFP (white triangles). D) FloA-CFP colocalizes with SecA-YFP in 10 to
20% of the cases (indicated by white triangles). Colours of foci in overlays correspond to the
single channels. E) FloT-CFP colocalizes with SecA-YFP in 20% of the foci. F) Colocalization
of FloT-YFP expressed from the original gene locus and FloT-CFP expressed from the amylase
locus. Scale bars 2 μm.
(JPG)

S7 Fig. Dual laser epifluorescence microscopy.Dual colour localization studies of A)
FloT-CFP together with OppA-YFP, B) FloT-CFP and ResE-YFP, C) FloA-CFP and PhoR--
YFP, D) FloT-CFP and PhoR-YFP. White bars 2 μm.
(JPG)
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